WO2013022102A1 - Ethylene polymerization catalyst and method for producing ethylene polymer - Google Patents

Ethylene polymerization catalyst and method for producing ethylene polymer Download PDF

Info

Publication number
WO2013022102A1
WO2013022102A1 PCT/JP2012/070564 JP2012070564W WO2013022102A1 WO 2013022102 A1 WO2013022102 A1 WO 2013022102A1 JP 2012070564 W JP2012070564 W JP 2012070564W WO 2013022102 A1 WO2013022102 A1 WO 2013022102A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
tert
mmol
butyl
Prior art date
Application number
PCT/JP2012/070564
Other languages
French (fr)
Japanese (ja)
Inventor
正人 ▲高▼野
伊藤 和幸
昭彦 石井
憲男 中田
史彦 河内
智之 戸田
Original Assignee
住友化学株式会社
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人埼玉大学 filed Critical 住友化学株式会社
Publication of WO2013022102A1 publication Critical patent/WO2013022102A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene

Definitions

  • the present invention relates to a catalyst for ethylene homopolymerization or ethylene and ⁇ -olefin copolymer using a hafnium complex, and a method for producing an ethylene polymer or ethylene and ⁇ -olefin copolymer.
  • metallocene catalysts has been one of the topics in the chemistry of olefin polymerization that has been greatly developed by Ziegler-Natta type magnesium-supported highly active titanium catalysts. Further, recently, development of so-called post metallocene catalysts has attracted attention as a catalyst for constructing a more precise polymerization process.
  • Patent Document 1 reports propylene polymerization of diphenoxytitanium, zirconium or hafnium complexes derived from ethane-1,2-dithiol.
  • Non-patent Document 7 diphenoxy titanium, zirconium and hafnium complexes derived from trans-cyclooctane-1,2-dithiol
  • Non-patent Document 8 1-hexene polymerization was reported (Non-patent Document 8).
  • An object of the present invention is to provide a catalyst containing a tetradentate postmetallocene complex that is highly active in an ethylene-based polymer, and is capable of synthesizing a higher molecular weight polymer. It is in providing the manufacturing method of the used ethylene-type polymer.
  • the catalyst according to the present invention is a catalyst for ethylene homopolymerization or ethylene and ⁇ -olefin copolymer containing a complex represented by the following general formula (1).
  • R 1 and R 5 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, Alkynyl group having 2 to 20 carbon atoms, aralkyl group having 7 to 30 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aralkyloxy group having 7 to 30 carbon atoms, aryloxy having 6 to 30 carbon atoms Group, or a hydrocarbylsilyl group having 1 to 20 carbon atoms
  • R 2 to R 4 and R 6 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, carbon An alkenyl group having 2 to 20 atoms, an alkynyl group having 3 to 10 carbon
  • the hydrocarbyl thiolate group and the carboxylate group may have a substituent.
  • the method for producing an ethylene polymer according to the present invention is a method for producing an ethylene polymer in which ethylene is polymerized alone or ethylene and an ⁇ -olefin are copolymerized in the presence of the above-described catalyst.
  • an ethylene homopolymer or a copolymer of ethylene and ⁇ -olefin can be efficiently obtained, and a polymer having a higher molecular weight can be obtained.
  • the present invention relates to an ethylene homopolymerization catalyst or an ethylene and ⁇ -olefin copolymerization catalyst containing a hafnium complex represented by the following general formula (1).
  • R 1 and R 5 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, Alkynyl group having 2 to 20 carbon atoms, aralkyl group having 7 to 30 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aralkyloxy group having 7 to 30 carbon atoms, aryloxy having 6 to 30 carbon atoms Group, or a hydrocarbylsilyl group having 1 to 20 carbon atoms
  • R 2 to R 4 and R 6 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, carbon An alkenyl group having 2 to 20 atoms, an alkynyl group having 3 to 10 carbon
  • the hydrocarbyl thiolate group and the carboxylate group may have a substituent.
  • n is 2 or 3, preferably 3.
  • R 1 and R 5 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, Alkynyl group having 2 to 20 carbon atoms, aralkyl group having 7 to 30 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aralkyloxy group having 7 to 30 carbon atoms, aryloxy having 6 to 30 carbon atoms Or a hydrocarbylsilyl group having 1 to 20 carbon atoms.
  • R 2 to R 4 and R 6 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms constituting the ring.
  • An aralkyloxy group having 7 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, a hydrocarbylsilyl group having 1 to 20 carbon atoms, or a hetero ring having 3 to 20 carbon atoms constituting the ring Represents a cyclic compound residue.
  • the alkyl group, the cycloalkyl group, the alkenyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the hydrocarbylsilyl group in R 1 to R 12 have a substituent. It may be.
  • R 1 and R 3 are different from each other, and R 5 and R 7 are preferably different from each other. Further, when both R 1 and R 5 are cyclohexyl groups, , R 3 and R 7 are preferably not methyl groups.
  • R 1 and R 5 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, or a group having 7 to 30 carbon atoms.
  • An aralkyl group or a hydrocarbylsilyl group having 1 to 20 carbon atoms is preferable, and the alkyl group, the cycloalkyl group, the aralkyl group, the aryl group, and the hydrocarbylsilyl group have a substituent. You may do it.
  • R 3 and R 7 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, or an aryl having 6 to 30 carbon atoms.
  • R 2 , R 4 , R 6 and R 8 to R 12 are preferably hydrogen atoms.
  • R 1 and R 5 constitute an alkyl group or ring having 5 to 10 carbon atoms.
  • a cycloalkyl group having 3 to 9 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a hydrocarbylsilyl group having 1 to 5 carbon atoms, and having 3 to 9 carbon atoms constituting the ring A cycloalkyl group or an aralkyl group having 10 to 30 carbon atoms is more preferable, and an aralkyl group having 10 to 18 carbon atoms is more preferable.
  • R 1 and R 5 have 1 to 20 alkyl groups, a cycloalkyl group having 3 to 6 carbon atoms constituting the ring, an aralkyl group having 7 to 30 carbon atoms, or a hydrocarbylsilyl group having 1 to 3 carbon atoms are preferable. More preferred are ⁇ 30 aralkyl groups.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert-butyl group.
  • N-pentyl group isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n-octyl group, n-decyl group, n-dodecyl group, n- Pentadecyl group, n-eicosyl group, perfluoromethyl group, perfluoroethyl group, perfluoro-n-propyl group, perfluoroisopropyl group, perfluoro-n-butyl group, perfluoro-sec-butyl group, perfluoroisobutyl Group, perfluoro-tert-butyl group, perfluoro-n-pentyl group, perfluoroiso Nyl group, perfluoro-tert-pentyl group, perfluoronepentyl group, perfluoro
  • Alkyl groups having 4 to 10 carbon atoms such as tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n-octyl group and n-decyl group are preferred, and n-butyl More preferred are alkyl groups having 4 to 8 carbon atoms such as a group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group and texyl group.
  • tertiary alkyl groups having 4 to 8 carbon atoms such as tert-butyl group, tert-pentyl group, and texyl group are particularly preferable, and the molecular weight of the resulting polymer can be improved. From the viewpoint that it can be increased, a tertiary alkyl group having 5 to 8 carbon atoms such as a tert-pentyl group or a texyl group is most preferable.
  • perfluoromethyl group methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert- 4 carbon atoms such as butyl, n-pentyl, isopentyl, tert-pentyl, neopentyl, n-hexyl, texyl, neohexyl, n-heptyl, n-octyl, n-decyl Is preferably an alkyl group having 1 to 8 carbon atoms, such as a perfluoromethyl group, a methyl group, an isopropyl group, an isobutyl group, a tert-butyl group, an isopentyl group, a tert-pentyl group, a neopent
  • Examples of the cycloalkyl group having 3 to 10 carbon atoms constituting the substituted or unsubstituted ring include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and 1-methylcyclopentyl.
  • cyclopentyl group cyclohexyl group, cycloheptyl group, cyclooctyl group, 1-methylcyclopentyl group, 1-methylcyclohexyl group, 1-indanyl group, 2-indanyl Group, norbornyl group, bornyl group, menthyl group, 1-adamantyl group, 2-adamantyl group, 3,5-dimethyladamantyl group, 3,5-diethyladamantyl group, 3,5-diphenyladamantyl group, 3,5-di (P-toluyl) adamantyl group and 3,5-di (3,5-xylyl) adamantyl group, etc., cycloalkyl groups having 5 to 26 carbon atoms (including carbon atoms other than the carbon atoms constituting the ring) Preferred is a cyclohexyl group, 1-methylcyclohexyl group, 1-methylcyclohexyl group, 1-methylcyclo
  • a cyclopentyl group a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a 1-methylcyclopentyl group, a 1-methylcyclohexyl group.
  • a cycloalkyl group having 3 to 9 carbon atoms (including carbon atoms other than carbon atoms constituting the ring) such as a group, 1-indanyl group, 2-indanyl group, norbornyl group, menthyl group, etc.
  • Cycloalkyl having 3 to 7 carbon atoms (including carbon atoms other than carbon atoms constituting the ring) such as cyclohexyl group, cycloheptyl group, cyclooctyl group, 1-methylcyclopentyl group, 1-methylcyclohexyl group, etc. Groups are more preferred.
  • Examples of the substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms include vinyl group, allyl group, propenyl group, 2-methyl-2-propenyl group, homoallyl group, pentenyl group, hexenyl group, heptenyl group, octenyl Group, nonenyl group, decenyl group and the like. From the viewpoint that the molecular weight of the resulting polymer can be improved, an alkenyl group having 3 to 6 carbon atoms is preferable, and an allyl group and a homoallyl group are more preferable.
  • Examples of the substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 3-methyl-1-butynyl group, 3,3-dimethyl group. -1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 4-methyl-1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 4-methyl-1 -Pentenyl group, 1-hexynyl group, 1-octynyl group, phenylethynyl group and the like.
  • an alkynyl group having 3 to 8 carbon atoms is preferable, and a 3-methyl-1-butynyl group, a 3,3-dimethyl-1-butynyl group, 4 More preferred are a methyl-1-pentenyl group and a phenylethynyl group.
  • Examples of the substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, ( 2,3-dimethylphenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethylphenyl) ) Methyl group, (3,5-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethylphenyl) ) Methyl group, (3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) Til group
  • Methylphenyl) methyl group dimethyl (1-naphthyl) methyl group, dimethyl Ru (2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) methyl group, dimethyl (3,5-dimethylphenyl) methyl group, diethyl (phenyl) methyl group and methylbis (4-methyl)
  • a tertiary aralkyl group having 9 to 18 carbon atoms consisting of only a carbon atom such as a phenyl) methyl group and a hydrogen atom.
  • Examples of the substituted or unsubstituted aryl group having 6 to 30 carbon atoms in R 2 to R 4 and R 6 to R 12 include a phenyl group, a 2-tolyl group, a 3-tolyl group, a 4-tolyl group, 2 , 3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetra Methylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropy
  • Examples of the substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms include a perfluoromethoxy group, a perfluoroethoxy group, a perfluoro-n-propoxy group, a perfluoroisopropoxy group, and a perfluoro-n-butoxy group.
  • an alkoxy group having 1 to 4 carbon atoms is preferable, and a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and an n-butoxy group are more preferable. preferable.
  • Examples of the substituted or unsubstituted aralkyloxy group having 7 to 30 carbon atoms include benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, and (4-methylphenyl) methoxy group.
  • Examples of the substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms include phenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2,3,6-trimethylphenoxy. 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3,4,5-tetramethylphenoxy group, 2,3,4,6-tetramethylphenoxy group, 2, 3,5,6-tetramethylphenoxy group, pentamethylphenoxy group, 2,6-diisopropylphenoxy group, 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, pentafluorophenoxy group, 2-triphenyl Fluoromethylphenoxy group, 3-trifluoromethylphenoxy group, 4-trifluoromethylphenoxy group 2,3-difluorophenoxy group, 2,4-fluorophenoxy group, 2,5-difluorophenoxy group, 2-chlorophenoxy group, 2,3-dichloroph
  • aryloxy groups having 6 to 14 carbon atoms are preferred, and 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, More preferred are 2,6-diisopropylphenoxy group and pentafluorophenoxy group.
  • Examples of the substituted or unsubstituted hydrocarbylsilyl group having 1 to 20 carbon atoms include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, Isobutylsilyl group, tert-butyldimethylsilyl group, methyldiphenylsilyl group, dimethyl (phenyl) silyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, methylbis (trimethylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group and tris (Trimethylsilyl) silyl group and the like can be mentioned.
  • trialkylsilyl having 3 to 5 carbon atoms such as trimethylsilyl group, ethyldimethylsilyl group, diethylmethylsilyl group, etc.
  • a silyl group having a hydrocarbylsilyl group having 3 to 20 carbon atoms as a substituent such as methylbis (trimethylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group and tris (trimethylsilyl) silyl group, is preferred. Is more preferable.
  • Examples of the substituted or unsubstituted heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring include thienyl group, furyl group, 1-pyrrolyl group, 1-imidazolyl group, 1-pyrazolyl group, pyridyl group.
  • R 1 and R 2 may be linked to each other to form a ring.
  • R 2 and R 3 may be connected to each other to form a ring.
  • R 3 and R 4 may be connected to each other to form a ring.
  • R 5 and R 6 may be linked to each other to form a ring.
  • R 6 and R 7 may be linked to each other to form a ring.
  • R 7 and R 8 may be linked to each other to form a ring.
  • it is preferably a 4- to 10-membered hydrocarbyl ring or heterocyclic ring containing two carbon atoms on the benzene ring, and the ring may have a substituent. Good.
  • the ring formed by connecting two adjacent R 1 to R 8 specifically includes a cyclobutene ring, a cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a cycloheptene ring, a cyclooctene ring, Benzene ring, naphthalene ring, furan ring, 2,5-dimethylfuran ring, thiophene ring, 2,5-dimethylthiophene ring and pyridine ring are preferable, and cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring are preferable.
  • a benzene ring and a naphthalene ring more preferably a cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a benzene ring and a naphthalene ring formed by linking R 1 and R 2 , and R 5 and R 6 .
  • R 9 and R 10 , and R 11 and R 12 may be independently connected to each other to form a ring, and the ring has a substituent. You may do it.
  • the silyl group is the same as these groups in R 2 to R 4 and R 6 to R 12 .
  • Examples of the substituted or unsubstituted hydrocarbylamino group having 1 to 20 carbon atoms in L include, for example, a dimethylamino group, a diethylamino group, a di-n-butylamino group, a di-n-propylamino group, a diisopropylamino group, a diisopropyl group, A benzylamino group, a diphenylamino group and the like, preferably a hydrocarbylamino group having 2 to 14 carbon atoms, more preferably a dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamino group And a dibenzylamino group.
  • Examples of the substituted or unsubstituted hydrocarbylthiolate group having 1 to 20 carbon atoms in L include, for example, a thiophenoxy group, a 2,3,4-trimethylthiophenoxy group, a 2,3,5-trimethylthiophenoxy group, 2,3,6-trimethylthiophenoxy group, 2,4,6-trimethylthiophenoxy group, 3,4,5-trimethylthiophenoxy group, 2,3,4,5-tetramethylthiophenoxy group, 4,6-tetramethylthiophenoxy group, 2,3,5,6-tetramethylthiophenoxy group, pentamethylthiophenoxy group, 2-fluorothiophenoxy group, 3-fluorothiophenoxy group, 4-fluorothiophenoxy group, pentafluoro Thiophenoxy group, 2-trifluoromethylthiophenoxy group, 3-trifluoromethyl Ofenoxy group, 4-trifluoromethylthiophenoxy group, 2,3-difluorothiophenoxy group, 2,4-flu
  • Examples of the substituted or unsubstituted carboxylate group having 1 to 20 carbon atoms in L include an acetate group, a propionate group, a butyrate group, a pentanate group, a hexanoate group, a 2-ethylhexanoate group, and a trifluoroacetate group.
  • Preferred is a carboxylate group having 2 to 10 carbon atoms, and more preferred are an acetate group, a propionate group, a 2-ethylhexanoate group, and a trifluoroacetate group.
  • L is preferably a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, an amino group, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, an amino group, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms.
  • a benzyl group directly bonded to the hafnium atom of these compounds may be a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a dimethylamino group, a diethylamino group, a methoxy group, an ethoxy group. Or a compound changed to a t-butoxy group.
  • Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
  • Preferred examples of complex (1) include the following compounds.
  • the complex represented by the general formula (1) includes a compound represented by the following general formula (2) (hereinafter referred to as compound (2)) and a compound represented by the following general formula (3) (hereinafter referred to as compound). (Referred to as (3)) as a starting material, but can be produced by the following reaction scheme 1, but is not limited to this method.
  • n and R 1 ⁇ R 12 being are respectively similar to n and R 1 ⁇ R 12 in the general formula (1).
  • L in the compound (3) is the same as L in the general formula (1).
  • Compound (3) may, for example, Hf (CH 2 Ph) 4 , HfCl 2 (CH 2 Ph) 2, Hf (CH 2 SiMe 3) 4, HfF 4, HfCl 4, HfBr 4, HfI 4, Hf (OMe) 4 , Hf (OEt) 4 , Hf (Oi-Pr) 4 , HfCl 2 (Oi-Pr) 2 , Hf (On-Bu) 4 , Hf (Oi-Bu) 4 , Hf (O -T-Bu) 4 , Hf (NMe 2 ) 4 , HfCl 2 (NMe 2 ) 2, Hf (NEt 2 ) 4 and the like.
  • the compound (2) and the compound (3) may be reacted as they are in a solvent, and the compound (3) is reacted after reacting the compound (2) with a base as necessary. You may let them.
  • a base made to react with a compound (2) an organolithium reagent, a Grignard reagent, and a metal hydride are mentioned, for example. Specific examples include methyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, lithium diisopropylamide, lithium hexamethyldisilazane, potassium hexamethyldisilazane, sodium hydride and potassium hydride. it can. Of these, n-butyllithium, lithium diisopropylamide, potassium hexamethyldisilazane, sodium hydride and potassium hydride are preferable.
  • the compound obtained by reacting the hafnium complex represented by the general formula (1), the compound (3), and the compound (2) with a base is unstable with respect to air and moisture. Therefore, the reaction in Reaction Scheme 1 is preferably performed under dehydration and deoxygenation. Specifically, it is under dry helium, dry argon or dry nitrogen, more preferably under dry argon or dry nitrogen.
  • the amount of the compound (2) used may be 1 molar equivalent or more with respect to the compound (3), preferably in the range of 1.0 to 1.5. Moreover, when the compound (2) remains in the course of the reaction, the compound (3) may be added during the reaction.
  • the temperature at which the compound (2) and the compound (3) are reacted is preferably in the temperature range of ⁇ 100 ° C. to 150 ° C., more preferably in the temperature range of ⁇ 80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
  • the reaction between the compound (2) and the compound (3) may be carried out until the time when the yield of the product becomes the highest, preferably 5 minutes to 48 hours, more preferably 10 minutes to 24 hours, More preferably, it is 30 minutes to 18 hours.
  • the temperature at which the compound (2) and the base are reacted is preferably in the temperature range of ⁇ 100 ° C. to 150 ° C., more preferably ⁇ 80 ° C. to 50 ° C. Temperature range. However, it is not intended to be limited to this range.
  • reaction time of the compound (2) and the base may be carried out until the product yield becomes the highest, preferably 5 minutes to 24 hours, more preferably 10 minutes to 12 hours, Preferably, it is 30 minutes to 3 hours.
  • the temperature at which the compound (3) is reacted with the compound formed by reacting the compound (2) with the base is preferably ⁇ 100 ° C. to 150 ° C.
  • the temperature range is more preferably -80 ° C to 50 ° C. However, it is not intended to be limited to this range.
  • reaction time between the compound (2) and the compound produced by reacting the base with the compound (3) may be the time until the yield of the product becomes the highest, and preferably 5 minutes to 48 minutes.
  • the time is more preferably 10 minutes to 24 hours, and further preferably 30 minutes to 3 hours.
  • the solvent used in the reaction shown in Reaction Scheme 1 is not particularly limited as long as it is a solvent generally used in similar reactions, and includes a hydrocarbon solvent and an ether solvent.
  • Preferred are toluene, benzene, o-xylene, m-xylene, p-xylene, hexane, pentane, heptane, cyclohexane, diethyl ether and tetrahydrofuran, and more preferred are diethyl ether, toluene, tetrahydrofuran, hexane, pentane and heptane. And cyclohexane.
  • Compound (2) can be synthesized, for example, according to the method described in Non-Patent Document 8. Specifically, it can be produced by the following reaction scheme 2. However, the preparation method of the compound (2) should not be limited to this method. Hereinafter, each step in Reaction Scheme 2 will be described.
  • X ′ in compound (5) and compound (7) represents an anionic leaving group, for example, halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, acetate group, trifluoroacetate group, benzoate group, CF 3 SO 3 group, CH 3 SO 3 group, 4-MeC 6 H 4 SO 3 group or PhSO 3 group, etc., preferably chlorine atom, bromine atom, iodine atom, CF 3 SO 3 group, CH 3 SO 3 A 4-MeC 6 H 4 SO 3 group or a PhSO 3 group.
  • halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, acetate group, trifluoroacetate group, benzoate group, CF 3 SO 3 group, CH 3 SO 3 group, 4-MeC 6 H 4 SO 3 group or PhSO 3 group, etc., preferably chlorine atom, bromine atom, iodine atom,
  • Compound (6) can be synthesized by reacting 0 to 4.0 molar equivalents, preferably 1.0 to 1.5 molar equivalents, of compound (5) in the presence of a base.
  • the base is not particularly limited, but includes inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate, and amine bases such as triethylamine and triisobutylamine. An amine base is preferred.
  • This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen.
  • it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
  • the compound (6) may be purified as necessary.
  • the purification method include a method of adding an aqueous ammonium chloride solution, an aqueous hydrochloric acid solution or an aqueous sodium chloride solution to the reaction solution, then adding ethyl acetate or diethyl ether, and performing an extraction operation to remove excess base or salt. It is done. Further, the purity can be increased by purification operations such as distillation, recrystallization and silica gel chromatography.
  • Compound (2) can be synthesized by reacting compound (6) with 1.0 to 4.0 molar equivalents, preferably 1.0 to 1.5 molar equivalents of compound (7) in the presence of a base.
  • the base is not particularly limited, but includes inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate, and amine bases such as triethylamine and triisobutylamine. An amine base is preferred.
  • This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen.
  • it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
  • the compound (2) may be purified as necessary.
  • the purification method include a method of adding an aqueous ammonium chloride solution, an aqueous hydrochloric acid solution or an aqueous sodium chloride solution to the reaction solution, then adding ethyl acetate or diethyl ether, and performing an extraction operation to remove excess base or salt. It is done. Further, the purity can be increased by purification operations such as distillation, recrystallization and silica gel chromatography.
  • the compound (2) can also be obtained by reacting the compound (6) and the compound (7) produced in the reactor by controlling the reaction conditions of [step 1].
  • R 1 and R 5 are the same group
  • R 2 and R 6 are the same group
  • R 3 and R 7 are the same group
  • R 4 is the same group as R 8
  • the compound (5) and the compound (7) are combined to form the compound (4).
  • Compound (2) can also be synthesized by reacting 2.0 to 8.0 molar equivalents, preferably 2.0 to 4.0 molar equivalents in the presence of a base.
  • Specific examples of the compound (2) include the following compounds.
  • Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
  • the complex represented by the general formula (1) described above is used as a polymerization catalyst component when a polymer is produced by homopolymerization of ethylene or copolymerization of ethylene and ⁇ -olefin. Preferably, it is used as a catalyst component for homopolymerization.
  • the polymerization catalyst it is preferable to use a polymerization catalyst obtained by contacting the complex represented by the general formula (1) and the promoter component (A).
  • the promoter component (A) include an activation promoter component containing a Group 13 element in the periodic table, for example, It preferably contains at least one compound selected from the group consisting of (A-1) an organoaluminum compound and (A-2) a boron compound.
  • organoaluminum compound (A-1) As the organoaluminum compound (A-1) used in the present invention, a known organoaluminum compound can be used.
  • (A-1-1) an organoaluminum represented by the general formula E 1 a AlY 1 3-a A compound, (A-1-2) a cyclic aluminoxane having a structure represented by the general formula ⁇ -Al (E 2 ) —O— ⁇ b , and (A-1-3) a general formula E 3 ⁇ -Al ( A linear aluminoxane having a structure represented by E 3 ) —O— ⁇ c AlE 3 2 (where E 1 , E 2 , and E 3 are hydrocarbyl groups having 1 to 8 carbon atoms; All E 1 , all E 2 and all E 3 may be the same or different Y 1 represents a hydrogen atom or a halogen atom, and all Y 1 are the same or different A is 1, 2 or 3, b is 2 An integer
  • organoaluminum compound (A-1-1) represented by the general formula E 1 a AlY 1 3-a include trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and trihexylaluminum.
  • Dialkylaluminum chlorides such as dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride and dihexylaluminum chloride; methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride and hexylaluminum dichloride Alkyl aluminum dichlori ; And it can be exemplified dimethyl aluminum hydride, diethyl aluminum hydride, dipropyl aluminum hydride, dialkyl aluminum hydride such as diisobutylaluminum hydride and dihexyl aluminum hydride. Trialkylaluminum is preferable, and triethylaluminum and triisobutylaluminum are more preferable.
  • E 2 Formula ⁇ -Al (E 2) -O- ⁇ E 2 in the aluminoxane (A-1-2) of the annular having a structure represented by b, and the general formula E 3 ⁇ -Al (E 3) -O- ⁇ C
  • E 3 in the linear aluminoxane (A-1-3) having a structure represented by AlE 3 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • alkyl groups such as isobutyl group, n-pentyl group and neopentyl group. Of these, a methyl group and an isobutyl group are preferable.
  • B in the general formula ⁇ —Al (E 2 ) —O— ⁇ b is an integer of 2 or more
  • c in the general formula E 3 ⁇ —Al (E 3 ) —O— ⁇ c AlE 3 2 is an integer of 1 or more. It is. Among these, b is preferably 2 or more and 40 or less, and c is preferably 1 or more and 40 or less.
  • aluminoxane can be made by various methods. There is no restriction
  • a trialkylaluminum such as trimethylaluminum
  • an appropriate organic solvent such as benzene, toluene, and aliphatic hydrocarbon
  • the linear aluminoxane (A-1-3) having a structure represented by E 3 ) —O— ⁇ c AlE 3 2 may be used after removing volatile components by distillation, if necessary. . Further, the compound obtained by distilling off the volatile components and drying may be washed with an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.), and dried again for use.
  • boron compound (A-2) As the boron compound (A-2) used in the present invention, (A-2-1) a boron compound represented by the general formula BR 13 R 14 R 15 , (A-2-2) a general formula W + (BR 13 R 14 R 15 R 16 ) — and a boron compound represented by (A-2-3) general formula (VH) + (BR 13 R 14 R 15 R 16 ) — Either can be used suitably.
  • B is a boron atom in a trivalent valence state
  • R 13 to R 15 are halogen atoms
  • the number of carbon atoms is 1.
  • Preferred R 13 to R 15 are a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, and a halogenated hydrocarbyl group having 1 to 20 carbon atoms.
  • boron compound (A-2-1) examples include triphenylborane, tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4). , 5-tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, and phenylbis (pentafluorophenyl) borane. . Of these, triphenylborane and tris (pentafluorophenyl) borane are preferable.
  • W + is an inorganic or organic cation
  • B is a trivalent valence state. It is a boron atom
  • R 13 to R 16 are the same as R 13 to R 15 in the boron compound (A-2-1).
  • R 13 to R 16 are a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, a substituted silyl group containing 1 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different;
  • R 9 to R 12 are preferably a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, or a halogenated hydrocarbyl group having 1 to 20 carbon atoms.
  • W + that is an inorganic cation examples include a ferrocenium cation, an alkyl-substituted ferrocenium cation, and a silver cation.
  • W + that is an organic cation examples include a triphenylcarbenium cation. (BR 13 R 14 R 15 R 16 ) — includes tetrakis (pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluoro).
  • Phenyl) borate tetrakis (3,4,5-trifluorophenyl) borate, tetrakis (2,3,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate, and tetrakis [3,5- And bis (trifluoromethyl) phenyl] borate.
  • boron compound (A-2-2) represented by the general formula W + (BR 13 R 14 R 15 R 16 ) — examples include ferrocenium tetrakis (pentafluorophenyl) borate, 1,1′- Dimethylferrocenium tetrakis (pentafluorophenyl) borate, silver tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, and triphenylcarbeniumtetrakis [3,5-bis (trifluoromethyl) Phenyl] borate and the like.
  • triphenylcarbenium tetrakis (pentafluorophenyl) borate is particularly preferable.
  • V is a neutral Lewis base
  • B is a boron atom in a trivalent valence state
  • R 13 to R 16 are the same as R 13 to R 15 in the boron compound (A-2-1).
  • R 13 to R 16 are a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, a substituted silyl group containing 1 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different;
  • Preferred R 13 to R 16 are a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, and a halogenated hydrocarbyl group having 1 to 20 carbon atoms.
  • Examples of (VH) + that is a Bronsted acid include trialkyl-substituted ammonium, N, N-dialkylanilinium, dialkylammonium, and triarylphosphonium.
  • examples of (BR 13 R 14 R 15 R 16 ) — include the same as those described above.
  • boron compound (A-2-3) represented by the general formula (VH) + (BR 13 R 14 R 15 R 16 ) — include triethylammonium tetrakis (pentafluorophenyl) borate, tripropyl Ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate, N, N -Dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-2,4,6-pentamethylanilinium tetrakis (pentafluorophenyl) borate, N
  • triphenylcarbenium tetrakis (pentafluorophenyl) borate tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate are preferable.
  • the contact for producing the olefin polymerization catalyst obtained by bringing the complex represented by the general formula (1) and the promoter component (A) into contact with each other is performed by the complex represented by the general formula (1) and the promoter. Any means may be used as long as it contacts the component (A) to form a catalyst.
  • a method of separately supplying the complex and the promoter component (A) to the polymerization tank and bringing them into contact with each other in the polymerization tank can be employed.
  • the co-catalyst component (A) may be used in combination of a plurality of types, but some of them may be mixed in advance or used separately by supplying them to the polymerization tank. May be.
  • the molar ratio of the organoaluminum compound (A-1) to the complex represented by the general formula (1) is, for example, 0.8.
  • the range is from 01 to 10,000, and preferably from 1 to 5,000.
  • the boron compound (A-2) is used as the cocatalyst component (A)
  • the molar ratio of the boron compound (A-2) to the complex represented by the general formula (1) is, for example, 0.8.
  • the range is from 01 to 100, and preferably from 1.0 to 50.
  • the concentration of each component when supplying each component in a solution state or in a state suspended or slurried in a solvent is a device for supplying each component to the polymerization reactor.
  • the concentration of the complex represented by the general formula (1) is, for example, 0.0001 to 10000 mmol / L, more preferably 0.001 to 1000 mmol / L. More preferably, it is in the range of 0.01 to 100 mmol / L, and the concentration of the organoaluminum compound (A-1) is, for example, 0.01 to 10000 mmol / L in terms of Al atoms, more preferably 0.05 to 100 mmol / L.
  • the concentration of the boron compound (A-2) is, for example, 0.001.
  • the organoaluminum compound (A-1) As a catalyst for olefin polymerization obtained by contacting the complex represented by the general formula (1) with at least one of the organoaluminum compound (A-1) and the boron compound (A-2),
  • the organoaluminum compound (A-1) may be the above cyclic aluminoxane (A-1). It is preferable to use at least one of -1-2) and linear aluminoxane (A-1-3).
  • an olefin polymerization catalyst obtained by contacting the complex represented by the general formula (1), the organoaluminum compound (A-1) and the boron compound (A-2).
  • the organoaluminum compound (A-1) is easy to use the organoaluminum compound (A-1-1)
  • the boron compound (A-2) is a boron compound (A-2).
  • -1) or a boron compound (A-2-2) is preferred.
  • the method for producing an ethylene polymer of the present invention is a method in which ethylene is polymerized alone or ethylene and an ⁇ -olefin are copolymerized in the presence of the catalyst of the present invention.
  • ethylene is polymerized alone
  • polyethylene is obtained as an ethylene polymer.
  • ethylene and ⁇ -olefin are copolymerized, a copolymer of ethylene and ⁇ -olefin is obtained.
  • the content of ⁇ -olefin in the copolymer of ethylene and ⁇ -olefin is less than 50 mol%, preferably 35 mol% or less, more preferably 15 mol% or less, and further preferably 10 mol% or less. .
  • the ⁇ -olefin may be a single species or a plurality of species.
  • a copolymer of ethylene and a single kind of ⁇ -olefin can be obtained, and by polymerizing ethylene and a plurality of kinds of ⁇ -olefin, ethylene and a plurality of kinds of ⁇ -olefin can be obtained.
  • a copolymer with ⁇ -olefin is obtained.
  • the ⁇ -olefin compound used for the polymerization is not particularly limited, and examples thereof include monoolefins and diolefins.
  • monoolefins examples include, for example, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, and vinylcyclohexane. 1-alkene (which may be branched) and the like.
  • the monoolefin in the present specification includes styrene in which a part of hydrogen atoms of the monoolefin (for example, ethylene) is substituted with an aromatic group.
  • diolefins examples include butadiene, isoprene and 1,5-hexadiene.
  • the monomer constituting the copolymer examples include ethylene and propylene, ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and 1-decene, and ethylene and 4 -Methyl-1-pentene, ethylene and vinylcyclohexane, ethylene and styrene, ethylene and butadiene, ethylene and isoprene, ethylene and 1,5-hexadiene, and the like.
  • ethylene and propylene ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and 4-methyl-1-pentene, ethylene and vinylcyclohexane, and ethylene and styrene
  • ethylene and propylene More preferred are ethylene and propylene, ethylene and 1-butene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and vinylcyclohexane, and ethylene and styrene, and ethylene and propylene, ethylene and 1-butene, and ethylene.
  • 1-hexene are more preferred.
  • the polymerization method is not particularly limited.
  • aliphatic hydrocarbons such as butane, pentane, hexane, heptane and octane, aromatic hydrocarbons such as benzene and toluene, or halogenated hydrocarbons such as methylene dichloride.
  • Solvent polymerization using carbon as a solvent, slurry polymerization, or the like is possible. Further, both continuous polymerization and batch polymerization are possible.
  • the temperature and time of the polymerization reaction can be determined in consideration of the desired polymerization average molecular weight and the activity and amount of catalyst used.
  • the polymerization temperature can be, for example, in the range of ⁇ 50 ° C. to 200 ° C., and particularly preferably in the range of ⁇ 20 ° C. to 100 ° C.
  • the polymerization pressure is preferably normal pressure to 50 MPa.
  • the polymerization time is appropriately determined depending on the kind of the target polymer and the reaction apparatus, and can be, for example, in the range of 1 minute to 20 hours, preferably in the range of 5 minutes to 18 hours. However, it is not intended to be limited to these ranges.
  • chain transfer agents such as hydrogen, can also be added.
  • the concentration of each compound in the solvent is not particularly limited.
  • the concentration of the complex represented by the general formula (1) in the solvent is, for example, in the range of 1 ⁇ 10 ⁇ 8 mmol / L to 10 mol / L, and the concentration of the promoter component (A) is, for example, 1 It may be in the range of x10 ⁇ 8 mmol / L to 10 mol / L.
  • the ratio of olefin to solvent can be in the range of 100: 0 to 1: 1,000 by volume ratio. However, these ranges are exemplary and are not intended to be limiting. Even when no solvent is used, the concentration of each compound can be appropriately set with reference to the above range.
  • the polymer obtained by polymerization can separate the monomer when there is a solvent and an unreacted monomer.
  • the monomer in the case of a viscous polymer, the monomer can be removed with a vacuum pump. However, this method does not remove the catalyst.
  • the monomer in the case of a solid polymer, the monomer can be removed by washing with methanol after the solvent is distilled off. With this method, at least a part of the catalyst is removed.
  • the number of long chain branches (the number of branches having 7 or more carbon atoms) was determined from the peak area having a peak top in the vicinity of 38.22 to 38.27 ppm.
  • the peak area was in the range from the chemical shift of the valley with the peak adjacent on the high magnetic field side to the chemical shift of the valley with the peak adjacent on the low magnetic field side.
  • the formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure.
  • Ether and saturated aqueous ammonium chloride solution were added to the resulting residue, and the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (developing solvent: hexane-dichloromethane 1: 1) to obtain 6.74 g (yield 89%) of the title compound as colorless crystals.
  • reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure.
  • Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order.
  • the organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 5.1 g of a mixture containing 4-tert-butyl-3- (1,1-diphenylethyl) salicylaldehyde.
  • Triethylamine 0.17mL (1.2mmol) was added here, and it stirred at room temperature for 2 hours. After evaporating volatile components under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and then saturated brine, and then dried over anhydrous magnesium sulfate.
  • a 1 1 mixture of 3- (triphenylmethyl) benzylsulfanyl) cyclooctane and trans-1- (5-tert-butyl-2-hydroxy-3- (triphenylmethyl) benzylsulfanyl) -2-sulfanylcyclooctane 1.12 g was obtained. This mixture was dissolved in 8 mL of tetrahydrofuran, and 0.42 g (0.87 mmol) of 5-tert-butyl-3-cumyl-2-hydroxybenzyl and 0.18 mL (1.3 mmol) of triethylamine were added at room temperature. After stirring for 2 hours, volatile components were distilled off under reduced pressure.
  • the reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 4.2 g of a mixture containing 5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) salicylaldehyde (yield 96%).
  • Triethylamine 0.7mL (5.0mmol) was added here, and it stirred at 0 degreeC for 1 hour, and 2 hours at room temperature. Further, 0.05 g (0.013 mmol) of 5-tert-butyl-2-hydroxy-3- (3, 5-dimethyl-1-adamantyl) benzyl bromide was added, and the mixture was stirred at room temperature for 1 hour. After distilling off volatile components from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • Triethylamine 0.70 mL (5.1 mmol) was added thereto, and the mixture was stirred at 0 ° C for 1 hour and at room temperature for 1 hour. Further, trans-cyclooctane-1,2-dithiol (90 mg, 0.50 mmol) was added and stirred at room temperature for 1 hour. Volatile components were distilled off under reduced pressure, and ethyl acetate and an aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 4.0 g of a mixture containing 5-tert-butyl-3- (1-methyl-1-naphthylethyl) salicylaldehyde (yield 73%).
  • Triethylamine 0.70 mL (5.1 mmol) was added thereto, and the mixture was stirred at 0 ° C for 1 hour and at room temperature for 2 hours. Volatile components were distilled off under reduced pressure, and ethyl acetate and an aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • Triethylamine 1.0 mL (7.2 mmol) was added thereto and stirred at room temperature for 22 hours.
  • the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure.
  • Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue.
  • the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • Triethylamine ⁇ ⁇ 1.0 mL (7.2 mmol) was added thereto and stirred at room temperature for 15.5 hours.
  • the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure.
  • Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue.
  • the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate.
  • Tetramethylethylenediamine 1.0 mL (6.7 ⁇ mmol) and s-butyllithium 6.5 mL (1.0 M cyclohexane, hexane solution, 6.5 mmol) were added thereto and stirred for 19 hours.
  • 18 mL of THF and cooling to ⁇ 65 ° C. 2.2 mL (30 mL) of acetone was added dropwise.
  • the mixture was warmed to room temperature and stirred for 6.5 hours, and then poured into 20 g of ice water. To this was added 2% HCl and ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate.
  • the mixture was cooled in an ice bath, sulfuric acid (6.3 mL, 120 mmol) was added, and the mixture was warmed to room temperature and stirred for 20.5 hours. Furthermore, it heated up to 35 degreeC and stirred for 8.5 hours.
  • the reaction solution was cooled to room temperature and then poured into a 5% aqueous sodium hydrogen carbonate solution. Ethyl acetate was added and the organic layer was dried over anhydrous magnesium sulfate, and then volatile components were distilled off under reduced pressure.
  • reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and 1M HCl were added to the residue. The organic layer was washed with water and saturated brine in that order and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 5.8 g of a mixture containing 5-tert-butyl-3- (1-ethyl-1-phenylpropyl) salicylaldehyde (yield> 99%).
  • Example 1 The autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 40 ° C.
  • Example 2 The input amount of d-MAO was 113 mg, the polymerization temperature was 0 ° C., and ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2 synthesized in Reference Example 6].
  • Example 3 The autoclave with a stirrer with an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 70 ° C.
  • Example 4 d-MAO input was set to 124 mg, and ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium instead of reference example 8 [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylhafnium (0.5 mmol / L toluene solution) 0.10 mL This was carried out in the same manner as in Example 1 except that (0.05 ⁇ mol) was used. The results are shown in Table 1.
  • Example 5 The autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 40 ° C.
  • Example 6 Polymerization was carried out for 60 minutes while maintaining the temperature at 40 ° C. The results are shown in Table 1. (Example 6) d-MAO input was set to 120 mg, and reference example instead of ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (1,1-diphenylethyl) -2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium (0.50 mmol / (L toluene solution) The same procedure as in Example 1 was performed except that 0.20 mL (0.10 ⁇ mol) was used.
  • Example 7 d-MAO input was 126 mg, and reference example instead of ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium 12 ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dibenzylhafnium (0.50 mmol / L toluene solution) It implemented like Example 1 except having used 0.20 mL (0.10 micromol).
  • Example 8 The results are shown in Table 1. (Example 8) The autoclave with a stirrer with an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 70 ° C.
  • Example 9 d-MAO input was 119 mg, and instead of ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-oxoylbenzylsulfanyl] ⁇ dichlorohafnium (0 0.5 mmol / L, toluene solution) Except that 0.20 mL (0.10 ⁇ mol) was used, the same procedure as in Example 1 was performed.
  • Example 11 The ethylene pressure was set to 1.8 MPa, the input amount of triisobutylaluminum was set to 0.50 mL (0.50 mmol) (1.0 mol / L toluene solution), ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-Butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.02 mmol / L toluene solution) was synthesized in Reference Example 14 instead of 0.10 mL (0.002 ⁇ mol).
  • Example 12 d-MAO input was set to 124 mg, and instead of ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-oxoylbenzylsulfanyl] ⁇ dichlorohafnium (0.5) synthesized in Example 16 This was carried out in the same manner as in Example 1 except that 0.20 mL (0.10 ⁇ mol) of mmol / L, toluene solution) was used.
  • Example 13 The input amount of d-MAO was 117 mg, and instead of ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium [Cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-oxoylbenzylsulfanyl)] dichlorohafnium synthesized in Example 18 (1.0 mmol / L, toluene solution) This was carried out in the same manner as in Example 1 except that 0.20 mL (0.20 ⁇ mol) was used.
  • Example 14 d-MAO input was 122 mg, and instead of ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- ⁇ ⁇ (1-methyl-1-naphthylethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.5) synthesized in Example 20 This was carried out in the same manner as in Example 1 except that 0.10 mL (0.050 ⁇ mol) of mmol / L, toluene solution) was used.
  • Example 15 The polymerization temperature was 40 ° C., the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.50 mL (0.50 mmol), ⁇ cyclooctanediyl-trans-1,2-bis [ 5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.02 mmol / L toluene solution) was synthesized in Reference Example 20 instead of 0.10 mL (0.002 ⁇ mol) ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1-naphthylethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.50 mmol / L, toluene solution ) 0.10
  • Example 16 The same procedure as in Example 8 was carried out except that 0.13 mL (0.52 ⁇ mol) was used. The results are shown in Table 1.
  • Example 16 The ethylene pressure was set to 1.8 MPa, the input amount of triisobutylaluminum was set to 0.50 mL (0.50 mmol) (1.0 mol / L toluene solution), ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-Butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.02 mmol / L toluene solution) was synthesized in Reference Example 20 instead of 0.10 mL (0.002 ⁇ mol).
  • Example 17 200 mL of hexane was used instead of 200 mL of toluene as a solvent, ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3) synthesized in Reference Example 20 instead of 0.10 mL (0.002 ⁇ mol) (0.02 mmol / L toluene solution) -(1-methyl-1-naphthylethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.50 mmol / L, toluene solution), 0.10 mL (0.050 ⁇ mol) was used, triphenylcarbenium tetrakis (p
  • Example 18 Except it was performed in the same manner as in Example 8. The results are shown in Table 1. (Example 18) d-MAO input amount was set to 124 mg, and instead of ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium 22 ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methylcyclohexyl) benzylsulfanyl] ⁇ dichlorohafnium (1.0 mmol / L, toluene Solution) The reaction was performed in the same manner as in Example 1 except that 0.20 mL (0.20 ⁇ mol) was used.
  • d-MAO input amount is 127 mg, instead of ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium 24, ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2, 3-dimethyl-2-butyl) -2-oxoylbenzylsulfanyl] ⁇ dichlorohafnium (1.
  • Example 20 This was carried out in the same manner as in Example 1 except that 0.20 mL (0.20 ⁇ mol) (0 mmol / L, toluene solution) was used. The results are shown in Table 1. (Example 20) d-MAO input was 122 mg, and reference example instead of ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium 26 [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3-trimethylsilyl-5-methylbenzylsulfanyl)] dichlorohafnium (0.5 mmol / L, toluene solution) 0.20 mL (0 .10 ⁇ mol) was carried out in the same manner as in Example 1.
  • Example 21 The results are shown in Table 1.
  • the d-MAO input was 73.2 mg, instead of ⁇ cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] ⁇ dibenzylhafnium ⁇ Cyclooctanediyl-trans-1,2-bis [5-bromo-2-oxoyl-3- (1-adamantyl) benzylsulfanyl] ⁇ dichlorohafnium (1.0 ⁇ mmol / L, toluene solution) synthesized in Reference Example 29 This was carried out in the same manner as in Example 1 except that 0.20 mL (0.20 ⁇ mol) was used.
  • Example 25 The polymerization temperature was set to 40 ° C., and ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.02 mmol / (Toluene solution) Instead of 0.10 mL (0.002 ⁇ mol), ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (3,5-dimethylphenyl) ) -1-Methyl-ethyl) benzylsulfanyl] ⁇ dichlorohafnium (1.0 mmol / L
  • Example 27 The polymerization temperature was set to 40 ° C., 200 mL of hexane was used instead of 200 mL of toluene, ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (tri Instead of 0.10 mL (0.002 ⁇ mol) of phenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.02 mmol / L toluene solution), ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2- Oxoyl-3- (1- (3,5-dimethylphenyl) -1-methylethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.50 mmol / L, toluene solution) 0.10 mL (0.050 ⁇ mol) was used Except for
  • Example 28 The polymerization temperature was set to 40 ° C., and ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.02 mmol / L Toluene solution) instead of 0.10 mL (0.002 ⁇ mol) ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (4-dibenzofuranyl) 1-methylethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.50 mmol / L, toluene solution) was carried out in the same manner as in Example 8 except that 0.10 mL (0.050 ⁇ mol) was used.
  • Example 30 The polymerization temperature was set to 40 ° C., and ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.02 mmol / (Toluene solution) Instead of 0.10 mL (0.002 ⁇ mol), ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-ethyl-1-phenyl-propyl) ) Benzylsulfanyl] ⁇ dichlorohafnium (0.50 mmol / L, toluene solution) 0.10 mL (0.050 ⁇ mol) was used, and the same procedure as in Example 8 was performed.
  • Example 32 The same procedure as in Example 8 was carried out except that 0.10 mL (0.050 ⁇ mol) of 50 mmol / L toluene solution was used. The results are shown in Table 1. (Example 32) ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.02 mmol / L toluene solution) 0.10 mL (0 (.002 ⁇ mol) instead of ⁇ cyclooctanediyl-trans-1,2-bis [5-methyl-2-oxoyl-3- (triphenylsilyl)] ⁇ dichlorohafnium (0.050 mmol / L, toluene solution).
  • Example 33 An autoclave with a stirrer having an internal volume of 400 mL was vacuum dried and replaced with argon, and then 185 mL of toluene as a solvent and 15 mL of 1-hexene as a comonomer were charged, and the temperature of the reactor was raised to 40 ° C.
  • Example 34 The amount of toluene was 195 mL, the amount of 1-hexene was 5 mL, and ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ Same as Example 33 except that the amount of dichlorohafnium input (0.10 ⁇ mol / mL toluene solution) 0.10 mL (0.01 ⁇ mol) was changed to 0.10 mL (0.002 ⁇ mol) (0.02 ⁇ mol / mL toluene solution) Implemented. The results are shown in Table 2.
  • Example 35 The amount of toluene was 198 mL, the amount of 1-hexene was 2 mL, and ⁇ cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ Same as Example 33 except that the amount of dichlorohafnium input (0.10 ⁇ mol / mL toluene solution) 0.10 mL (0.01 ⁇ mol) was changed to 0.10 mL (0.002 ⁇ mol) (0.02 ⁇ mol / mL toluene solution) Implemented. The results are shown in Table 2.
  • Example 36 The polymerization temperature was 70 ° C., the amount of toluene was 160 mL, the amount of 1-hexene was 40 mL, the amount of triisobutylaluminum added was 0.25 mL (0.25 mmol) (1.0 mol / L toluene solution), The same procedure as in Example 33 was conducted, except that the amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate was changed to 0.75 mL (3.0 ⁇ mol) (4.0 ⁇ mol / mL toluene solution). The results are shown in Table 2.
  • Example 37 The polymerization temperature was 70 ° C., and the amount of triisobutylaluminum added was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), ⁇ cyclooctanediyl-trans-1,2-bis [5- tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium input (0.10 ⁇ mol / mL toluene solution) 0.10 mL (0.01 ⁇ mol) (0.02 ⁇ mol / mL toluene solution) ) Except 0.10 mL (0.002 ⁇ mol) and the amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate input (4.0 ⁇ mol / mL toluene solution) 0.75 mL (3.0 ⁇ mol) was carried out in the same manner as in
  • Example 38 The polymerization temperature was 70 ° C., the amount of toluene was 190 mL, the amount of 1-hexene was 10 mL, the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium input (0.10 ⁇ mol / mL toluene solution) 0.
  • Example 39 The polymerization temperature was 70 ° C., the amount of toluene was 195 mL, the amount of 1-hexene was 5 mL, the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium input (0.10 ⁇ mol / mL toluene solution) 0.
  • Example 40 The polymerization temperature was 70 ° C., the amount of toluene was 160 mL, the comonomer was 40 mL of vinylcyclohexane instead of 1 mL of 1-hexene, and the amount of triisobutylaluminum added was 0.25 mL (0. 1 mol / L toluene solution). 25 mmol) and the input amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate was set to (4.0 ⁇ mol / mL toluene solution) 0.75 mL (3.0 ⁇ mol), as in Example 33 Carried out. The results are shown in Table 2.
  • Example 41 The polymerization temperature was 70 ° C., the amount of toluene was 160 mL, the amount of 1-hexene was 40 mL, the amount of triisobutylaluminum added was 0.25 mL (0.25 mmol) (1.0 mol / L toluene solution), ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.10 ⁇ mol / mL toluene solution) 0.10 mL (0 (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoylbenzyl) synthesized in Reference Example 14 instead of .01 ⁇ mol) Sulfanyl] ⁇ dichlor
  • Example 42 The polymerization temperature was 70 ° C., the amount of toluene was 180 mL, the amount of 1-hexene was 20 mL, the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.10 ⁇ mol / mL toluene solution) 0.10 mL (0 (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoylbenzyl) synthesized in Reference Example 14 instead of .01 ⁇ mol) Sul
  • Example 45 The polymerization temperature was 70 ° C., the amount of toluene was 160 mL, the comonomer was 40 mL of vinylcyclohexane instead of 1 mL of 1-hexene, and the amount of triisobutylaluminum added was 0.25 mL (0. 1 mol / L toluene solution).
  • Example 46 The polymerization temperature was 70 ° C., 15 mL of vinylcyclohexane was used instead of 15 mL of 1-hexene as a comonomer, and the amount of triisobutylaluminum added was 0.25 mL (0.25 mmol) (1.0 mol / L toluene solution).
  • Example 47 The polymerization temperature was 70 ° C., the amount of toluene was 195 mL, the comonomer was replaced with 15 mL of vinylcyclohexane instead of 1 mL of 1-hexene, and the input amount of triisobutylaluminum (1.0 mol / L toluene solution) was 0.25 mL (0.
  • Example 3 was carried out in the same manner as in Example 33, except that the amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate used was 0.
  • Example 50 The polymerization temperature was 70 ° C., 15 mL of vinylcyclohexane was used instead of 15 mL of 1-hexene as a comonomer, and the amount of triisobutylaluminum added was 0.25 mL (0.25 mmol) (1.0 mol / L toluene solution).
  • Example 51 The polymerization temperature was 70 ° C., the amount of toluene was 195 mL, the comonomer was replaced with 15 mL of vinylcyclohexane instead of 1 mL of 1-hexene, and the input amount of triisobutylaluminum (1.0 mol / L toluene solution) was 0.25 mL (0.
  • Example 3 was carried out in the same manner as in Example 33, except that the amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate used was 0.
  • Example 52 The polymerization temperature was 70 ° C., the amount of toluene was 190 mL, the comonomer was 10 mL of styrene instead of 1 mL of 1-hexene, and the amount of triisobutylaluminum added (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol) ), ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl] ⁇ dichlorohafnium (0.10 ⁇ mol / mL toluene solution) ⁇ Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1-naphthyl) synthesized in Reference Example 20 instead
  • Example 53 To a 200 mL four-necked flask, 60 mL of toluene and 30 mL of a butadiene solution (manufactured by Aldrich, toluene solution, 20 w%) were added, and the temperature was raised to 40 ° C.
  • a butadiene solution manufactured by Aldrich, toluene solution, 20 w%
  • Polymerization was performed for 20 minutes while maintaining the temperature at 40 ° C. As a result of the polymerization, 7.2 g of an ethylene / butadiene copolymer was obtained. About the obtained polymer, melting
  • the present invention is useful in the field relating to the production of ethylene polymers.

Abstract

Provided is a catalyst containing a complex represented by general formula (1), and capable of synthesizing an ethylene polymer by catalyzing an ethylene homopolymer or a copolymer of ethylene and α-olefin, wherein the polymer obtained has high activity and a higher molecular weight.

Description

エチレン系重合用触媒およびエチレン系重合体の製造方法Ethylene-based polymerization catalyst and method for producing ethylene-based polymer
 本発明は、ハフニウム錯体を用いたエチレン単独重合用またはエチレンおよびα-オレフィン共重合用触媒、ならびにエチレン重合体またはエチレンおよびα-オレフィン共重合体の製造方法に関する。 The present invention relates to a catalyst for ethylene homopolymerization or ethylene and α-olefin copolymer using a hafnium complex, and a method for producing an ethylene polymer or ethylene and α-olefin copolymer.
 チーグラ・ナッタ型マグネシウム担持高活性チタン触媒により大いに発展したオレフィン重合の化学において、近年、メタロセン触媒の開発がトピックスの一つである。さらに、最近ではさらなる精密な重合プロセスを構築するための触媒として、いわゆるポストメタロセン系触媒の開発が注目されている。 In recent years, the development of metallocene catalysts has been one of the topics in the chemistry of olefin polymerization that has been greatly developed by Ziegler-Natta type magnesium-supported highly active titanium catalysts. Further, recently, development of so-called post metallocene catalysts has attracted attention as a catalyst for constructing a more precise polymerization process.
 2000年にKolらは、4族金属元素と親和性の高いフェノキシ基と窒素原子とを有する四座配位子を用いて、C対称性を有するジルコニウム錯体を開発し、これを触媒とする1-ヘキセンの重合反応を報告した(非特許文献1~3)。さらに、Kol(非特許文献4)、およびドイツのOkudaら(非特許文献5,6)は、上記四座配位子の窒素原子を硫黄原子に置き換えた配位子を用いて4族金属錯体を合成し、α-オレフィンの立体選択的重合への展開をしている。 In 2000, Kol et al. Developed a zirconium complex having C 2 symmetry by using a tetradentate ligand having a phenoxy group having a high affinity with a group 4 metal element and a nitrogen atom, and using this as a catalyst 1 -Reported the polymerization reaction of hexene (Non-Patent Documents 1 to 3). Furthermore, Kol (Non-Patent Document 4) and Okuda et al. (Non-Patent Documents 5 and 6) in Germany have proposed a group 4 metal complex using a ligand in which the nitrogen atom of the tetradentate ligand is replaced with a sulfur atom. It has been synthesized and developed for stereoselective polymerization of α-olefins.
 特許文献1では、エタン-1,2-ジチオールから誘導されるジフェノキシチタン、ジルコニムまたはハフニウム錯体のプロピレン重合が報告されている。 Patent Document 1 reports propylene polymerization of diphenoxytitanium, zirconium or hafnium complexes derived from ethane-1,2-dithiol.
 本発明者らは、trans-シクロオクタン-1,2-ジチオールから誘導されるジフェノキシチタン、ジルコニウムおよびハフニウム錯体を報告し(非特許文献7)、さらにこれらの錯体のうち、ジルコニウム錯体を触媒とした1-ヘキセンの重合について報告している(非特許文献8)。 The present inventors have reported diphenoxy titanium, zirconium and hafnium complexes derived from trans-cyclooctane-1,2-dithiol (Non-patent Document 7), and among these complexes, the zirconium complex was used as a catalyst. 1-hexene polymerization was reported (Non-patent Document 8).
WO2007/075299WO2007 / 075299
 本発明の課題は、エチレン系重合体において高活性である四座配位のポストメタロセン錯体を含む触媒であって、より高分子量の重合体を合成し得る触媒を提供すること、そして、この触媒を用いたエチレン系重合体の製造方法を提供することにある。 An object of the present invention is to provide a catalyst containing a tetradentate postmetallocene complex that is highly active in an ethylene-based polymer, and is capable of synthesizing a higher molecular weight polymer. It is in providing the manufacturing method of the used ethylene-type polymer.
 本発明に係る触媒は、下記一般式(1)で示される錯体を含む、エチレン単独重合またはエチレンおよびα-オレフィン共重合用の触媒である。 The catalyst according to the present invention is a catalyst for ethylene homopolymerization or ethylene and α-olefin copolymer containing a complex represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、nは2または3であり、
およびRは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、または炭素原子数1~20のハイドロカルビルシリル基を表し、
~RおよびR~R12は、それぞれ独立に、水素原子、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、炭素原子数1~20のハイドロカルビルシリル基、または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表し、
~R12における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基、上記ハイドロカルビルシリル基および上記ヘテロ環式化合物残基は、置換基を有していてもよく、
とR、RとR、RとR、RとR、RとR、RとR、RとR10、およびR11とR12とは、それぞれ独立に、互いに連結して環を形成していてもよく、
2つあるLは、それぞれ独立に、水素原子、ハロゲン原子、アミノ基、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、炭素原子数1~20のハイドロカルビルシリル基、炭素原子数1~20のハイドロカルビルアミノ基、炭素原子数1~20のハイドロカルビルチオラート基、または炭素原子数1~20のカルボキシラート基を表す。Lにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基、上記ハイドロカルビルシリル基、上記ハイドロカルビルアミノ基、上記ハイドロカルビルチオラート基および上記カルボキシラート基は置換基を有していてもよい。)
 本発明に係るエチレン系重合体の製造方法は、上述の触媒の存在下にエチレンを単独で重合させるか、またはエチレンとα-オレフィンとを共重合させる、エチレン系重合体の製造方法である。
(Wherein n is 2 or 3,
R 1 and R 5 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, Alkynyl group having 2 to 20 carbon atoms, aralkyl group having 7 to 30 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aralkyloxy group having 7 to 30 carbon atoms, aryloxy having 6 to 30 carbon atoms Group, or a hydrocarbylsilyl group having 1 to 20 carbon atoms,
R 2 to R 4 and R 6 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, carbon An alkenyl group having 2 to 20 atoms, an alkynyl group having 2 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, carbon Aralkyloxy group having 7 to 30 atoms, aryloxy group having 6 to 30 carbon atoms, hydrocarbylsilyl group having 1 to 20 carbon atoms, or heterocyclic having 3 to 20 carbon atoms constituting the ring Represents a compound residue,
The alkyl group, the cycloalkyl group, the alkenyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, the hydrocarbylsilyl group, and the heterocyclic compound residue in R 1 to R 12 The group may have a substituent,
R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 9 and R 10 , and R 11 and R 12 , Each independently may be linked together to form a ring,
The two Ls are each independently a hydrogen atom, a halogen atom, an amino group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, or 2 to 20 alkenyl groups, aralkyl groups having 7 to 30 carbon atoms, aryl groups having 6 to 30 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aralkyloxy groups having 7 to 30 carbon atoms, 6 carbon atoms An aryloxy group having 1 to 30 carbon atoms, a hydrocarbylsilyl group having 1 to 20 carbon atoms, a hydrocarbylamino group having 1 to 20 carbon atoms, a hydrocarbylthiolate group having 1 to 20 carbon atoms, or the number of carbon atoms Represents 1 to 20 carboxylate groups. The alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, the hydrocarbylsilyl group, the hydrocarbylamino group in L The hydrocarbyl thiolate group and the carboxylate group may have a substituent. )
The method for producing an ethylene polymer according to the present invention is a method for producing an ethylene polymer in which ethylene is polymerized alone or ethylene and an α-olefin are copolymerized in the presence of the above-described catalyst.
 本発明によれば、効率的にエチレン単独重合体またはエチレンとα-オレフィンとの共重合体が得られるとともに、より分子量の大きな重合体を得ることができる。 According to the present invention, an ethylene homopolymer or a copolymer of ethylene and α-olefin can be efficiently obtained, and a polymer having a higher molecular weight can be obtained.
 本発明は、下記一般式(1)で示されるハフニウム錯体を含む、エチレン単独重合用またはエチレンおよびα-オレフィン共重合用触媒に関するものである。 The present invention relates to an ethylene homopolymerization catalyst or an ethylene and α-olefin copolymerization catalyst containing a hafnium complex represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、nは2または3であり、
およびRは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、または炭素原子数1~20のハイドロカルビルシリル基を表し、
~RおよびR~R12は、それぞれ独立に、水素原子、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、炭素原子数1~20のハイドロカルビルシリル基、または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表し、
~R12における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基、上記ハイドロカルビルシリル基および上記ヘテロ環式化合物残基は、置換基を有していてもよく、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、およびR11とR12とは、それぞれ独立に、互いに連結して環を形成していてもよく、
2つあるLは、それぞれ独立に、水素原子、ハロゲン原子、アミノ基、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、炭素原子数1~20のハイドロカルビルシリル基、炭素原子数1~20のハイドロカルビルアミノ基、炭素原子数1~20のハイドロカルビルチオラート基、または炭素原子数1~20のカルボキシラート基を表す。Lにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基、上記ハイドロカルビルシリル基、上記ハイドロカルビルアミノ基、上記ハイドロカルビルチオラート基および上記カルボキシラート基は置換基を有していてもよい。)
 上記一般式(1)中、nは2または3であり、好ましくは3である。
(Wherein n is 2 or 3,
R 1 and R 5 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, Alkynyl group having 2 to 20 carbon atoms, aralkyl group having 7 to 30 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aralkyloxy group having 7 to 30 carbon atoms, aryloxy having 6 to 30 carbon atoms Group, or a hydrocarbylsilyl group having 1 to 20 carbon atoms,
R 2 to R 4 and R 6 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, carbon An alkenyl group having 2 to 20 atoms, an alkynyl group having 2 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, carbon Aralkyloxy group having 7 to 30 atoms, aryloxy group having 6 to 30 carbon atoms, hydrocarbylsilyl group having 1 to 20 carbon atoms, or heterocyclic having 3 to 20 carbon atoms constituting the ring Represents a compound residue,
The alkyl group, the cycloalkyl group, the alkenyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, the hydrocarbylsilyl group, and the heterocyclic compound residue in R 1 to R 12 The group may have a substituent, and R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 9 and R 10 , and R 11 and R 12 may be independently connected to each other to form a ring,
The two Ls are each independently a hydrogen atom, a halogen atom, an amino group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, or 2 to 20 alkenyl groups, aralkyl groups having 7 to 30 carbon atoms, aryl groups having 6 to 30 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aralkyloxy groups having 7 to 30 carbon atoms, 6 carbon atoms An aryloxy group having 1 to 30 carbon atoms, a hydrocarbylsilyl group having 1 to 20 carbon atoms, a hydrocarbylamino group having 1 to 20 carbon atoms, a hydrocarbylthiolate group having 1 to 20 carbon atoms, or the number of carbon atoms Represents 1 to 20 carboxylate groups. The alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, the hydrocarbylsilyl group, the hydrocarbylamino group in L The hydrocarbyl thiolate group and the carboxylate group may have a substituent. )
In the above general formula (1), n is 2 or 3, preferably 3.
 RおよびRは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、または炭素原子数1~20のハイドロカルビルシリル基を表す。また、R~RおよびR~R12は、それぞれ独立に、水素原子、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、炭素原子数1~20のハイドロカルビルシリル基、または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。R~R12における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ハイドロカルビルシリル基は、置換基を有していてもよい。ここで、RとRとは互いに異なる基であり、かつ、RとRとは互いに異なる基であることが好ましく、さらに、RおよびRが何れもシクロヘキシル基である場合は、RおよびRは何れもメチル基ではないことが好ましい。 R 1 and R 5 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, Alkynyl group having 2 to 20 carbon atoms, aralkyl group having 7 to 30 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aralkyloxy group having 7 to 30 carbon atoms, aryloxy having 6 to 30 carbon atoms Or a hydrocarbylsilyl group having 1 to 20 carbon atoms. R 2 to R 4 and R 6 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms constituting the ring. , An alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, and an alkoxy group having 1 to 20 carbon atoms An aralkyloxy group having 7 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, a hydrocarbylsilyl group having 1 to 20 carbon atoms, or a hetero ring having 3 to 20 carbon atoms constituting the ring Represents a cyclic compound residue. The alkyl group, the cycloalkyl group, the alkenyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the hydrocarbylsilyl group in R 1 to R 12 have a substituent. It may be. Here, R 1 and R 3 are different from each other, and R 5 and R 7 are preferably different from each other. Further, when both R 1 and R 5 are cyclohexyl groups, , R 3 and R 7 are preferably not methyl groups.
 なかでも、RおよびRは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数7~30のアラルキル基、または炭素原子数1~20のハイドロカルビルシリル基であることが好ましく、該アルキル基、該シクロアルキル基、該アラルキル基、該アリール基および該ハイドロカルビルシリル基は置換基を有していてもよい。また、RおよびRは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数6~30のアリール基、または炭素原子数1~20のハイドロカルビルシリル基であることが好ましく、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数6~30のアリール基、または炭素原子数1~20のハイドロカルビルシリル基であることがより好ましく、該アルキル基、該シクロアルキル基、該アリール基および該ハイドロカルビルシリル基は置換基を有していてもよい。一方、R、R、RおよびR~R12は、水素原子であることが好ましい。 Among them, R 1 and R 5 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, or a group having 7 to 30 carbon atoms. An aralkyl group or a hydrocarbylsilyl group having 1 to 20 carbon atoms is preferable, and the alkyl group, the cycloalkyl group, the aralkyl group, the aryl group, and the hydrocarbylsilyl group have a substituent. You may do it. R 3 and R 7 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, or an aryl having 6 to 30 carbon atoms. A hydrocarbylsilyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, and the number of carbon atoms More preferably, it is an aryl group having 6 to 30 or a hydrocarbylsilyl group having 1 to 20 carbon atoms, and the alkyl group, the cycloalkyl group, the aryl group and the hydrocarbylsilyl group each have a substituent. You may have. On the other hand, R 2 , R 4 , R 6 and R 8 to R 12 are preferably hydrogen atoms.
 また、得られる重合体における長鎖分岐(LCB:long chain branch)の数を増加させることができるという観点から、RおよびRにおいては、炭素原子数5~10のアルキル基、環を構成する炭素原子数が3~9のシクロアルキル基、炭素原子数7~30のアラルキル基または炭素原子数1~5のハイドロカルビルシリル基が好ましく、環を構成する炭素原子数が3~9のシクロアルキル基、または炭素原子数10~30のアラルキル基がより好ましく、炭素原子数10~18のアラルキル基がさらに好ましい。 Further, from the viewpoint that the number of long chain branches (LCB) in the resulting polymer can be increased, R 1 and R 5 constitute an alkyl group or ring having 5 to 10 carbon atoms. Preferably a cycloalkyl group having 3 to 9 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a hydrocarbylsilyl group having 1 to 5 carbon atoms, and having 3 to 9 carbon atoms constituting the ring A cycloalkyl group or an aralkyl group having 10 to 30 carbon atoms is more preferable, and an aralkyl group having 10 to 18 carbon atoms is more preferable.
 また、エチレンの単独重合またはエチレンとα-オレフィンとの共重合において、得られる重合体におけるエチル分岐の数を増加させることができるという観点から、RおよびRにおいては、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~6のシクロアルキル基、炭素原子数7~30のアラルキル基または炭素原子数1~3のハイドロカルビルシリル基が好ましく、炭素原子数7~30のアラルキル基がより好ましい。 In addition, in the homopolymerization of ethylene or the copolymerization of ethylene and α-olefin, from the viewpoint that the number of ethyl branches in the resulting polymer can be increased, R 1 and R 5 have 1 to 20 alkyl groups, a cycloalkyl group having 3 to 6 carbon atoms constituting the ring, an aralkyl group having 7 to 30 carbon atoms, or a hydrocarbylsilyl group having 1 to 3 carbon atoms are preferable. More preferred are ˜30 aralkyl groups.
 置換または無置換の炭素原子数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、n-ドデシル基、n-ペンタデシル基、n-エイコシル基、パーフルオロメチル基、パーフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロイソプロピル基、パーフルオロ-n-ブチル基、パーフルオロ-sec-ブチル基、パーフルオロイソブチル基、パーフルオロ-tert-ブチル基、パーフルオロ-n-ペンチル基、パーフルオロイソペンチル基、パーフルオロ-tert-ペンチル基、パーフルオロネオペンチル基、パーフルオロ-n-ヘキシル基、パーフルオロ-n-ヘプチル基、パーフルオロ-n-オクチル基、パーフルオロ-n-デシル基、パーフルオロ-n-ドデシル基、パーフルオロ-n-ペンタデシル基およびパーフルオロ-n-エイコシル基等が挙げられる。RおよびRにおいては、得られる重合体の分子量を向上させることができるという観点から、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基などの炭素原子数4~10のアルキル基が好ましく、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、テキシル基などの炭素原子数4~8のアルキル基がより好ましい。なかでも、tert-ブチル基、tert-ペンチル基、テキシル基などの炭素原子数4~8の第3級アルキル基が特に好ましく、得られる重合体の分子量を向上させることができ、また、LCBを増加させることができるという観点から、tert-ペンチル基、テキシル基などの炭素原子数5~8の第3級アルキル基が最も好ましい。一方、R~RおよびR~Rにおいては、パーフルオロメチル基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基などの炭素原子数4~10のアルキル基が好ましく、パーフルオロメチル基、メチル基、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、テキシル基などの炭素原子数1~8のアルキル基がより好ましく、パーフルオロメチル基、メチル基、イソプロピル基、イソブチル基、tert-ブチル基といった炭素原子数1~4のアルキル基がさらに好ましい。 Examples of the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, an isobutyl group, and a tert-butyl group. N-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n-octyl group, n-decyl group, n-dodecyl group, n- Pentadecyl group, n-eicosyl group, perfluoromethyl group, perfluoroethyl group, perfluoro-n-propyl group, perfluoroisopropyl group, perfluoro-n-butyl group, perfluoro-sec-butyl group, perfluoroisobutyl Group, perfluoro-tert-butyl group, perfluoro-n-pentyl group, perfluoroiso Nyl group, perfluoro-tert-pentyl group, perfluoronepentyl group, perfluoro-n-hexyl group, perfluoro-n-heptyl group, perfluoro-n-octyl group, perfluoro-n-decyl group, perfluoro Examples include a fluoro-n-dodecyl group, a perfluoro-n-pentadecyl group, and a perfluoro-n-eicosyl group. In R 1 and R 5 , from the viewpoint that the molecular weight of the resulting polymer can be improved, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, Alkyl groups having 4 to 10 carbon atoms such as tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n-octyl group and n-decyl group are preferred, and n-butyl More preferred are alkyl groups having 4 to 8 carbon atoms such as a group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group and texyl group. Of these, tertiary alkyl groups having 4 to 8 carbon atoms such as tert-butyl group, tert-pentyl group, and texyl group are particularly preferable, and the molecular weight of the resulting polymer can be improved. From the viewpoint that it can be increased, a tertiary alkyl group having 5 to 8 carbon atoms such as a tert-pentyl group or a texyl group is most preferable. On the other hand, in R 2 to R 4 and R 6 to R 8 , perfluoromethyl group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, isobutyl group, tert- 4 carbon atoms such as butyl, n-pentyl, isopentyl, tert-pentyl, neopentyl, n-hexyl, texyl, neohexyl, n-heptyl, n-octyl, n-decyl Is preferably an alkyl group having 1 to 8 carbon atoms, such as a perfluoromethyl group, a methyl group, an isopropyl group, an isobutyl group, a tert-butyl group, an isopentyl group, a tert-pentyl group, a neopentyl group, or a texyl group. More preferably a perfluoromethyl group, a methyl group, an isopropyl group, an isobutyl group, a tert-butyl group. An alkyl group having 1 to 4 carbon atoms more preferred such groups.
 置換または無置換の環を構成する炭素原子数が3~10のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-フェニルシクロヘキシル基、1-インダニル基、2-インダニル基、ノルボルニル基、ボルニル基、メンチル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5,7-トリメチルアダマンチル基、3,5-ジエチルアダマンチル基、3,5,7-トリエチルアダマンチル基、3,5-ジイソプロピルアダマンチル基、3,5,7-トリイソプロピルアダマンチル基、3,5-ジイソブチルアダマンチル基、3,5,7-トリイソブチルアダマンチル基、3,5-ジフェニルアダマンチル基、3,5,7-トリフェニルアダマンチル基、3,5-ジ(p-トルイル)アダマンチル基、3,5,7-トリ(p-トルイル)アダマンチル基、3,5-ジ(3,5-キシリル)アダマンチル基、3,5,7-トリ(3,5-キシリル)アダマンチル基等が挙げられる。得られる重合体の分子量を向上させることができるという観点から、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-インダニル基、2-インダニル基、ノルボルニル基、ボルニル基、メンチル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5-ジエチルアダマンチル基、3,5-ジフェニルアダマンチル基、3,5-ジ(p-トルイル)アダマンチル基および3,5-ジ(3,5-キシリル)アダマンチル基等の炭素原子数(環を構成する炭素原子以外の炭素原子も含めた数)5~26のシクロアルキル基が好ましく、シクロヘキシル基、1-メチルシクロヘキシル基、ノルボルニル基、ボルニル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基および3,5-ジエチルアダマンチル基などの炭素原子数(環を構成する炭素原子以外の炭素原子も含めた数)6~14のシクロアルキル基がより好ましい。得られる重合体の分子量を向上させることができ、また、LCBを増加させることができるという観点から、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-インダニル基、2-インダニル基、ノルボルニル基、メンチル基などの炭素原子数(環を構成する炭素原子以外の炭素原子も含めた数)3~9のシクロアルキル基が好ましく、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基などの炭素原子数(環を構成する炭素原子以外の炭素原子も含めた数)3~7のシクロアルキル基がより好ましい。 Examples of the cycloalkyl group having 3 to 10 carbon atoms constituting the substituted or unsubstituted ring include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and 1-methylcyclopentyl. Group, 1-methylcyclohexyl group, 1-phenylcyclohexyl group, 1-indanyl group, 2-indanyl group, norbornyl group, bornyl group, menthyl group, 1-adamantyl group, 2-adamantyl group, 3,5-dimethyladamantyl group 3,5,7-trimethyladamantyl group, 3,5-diethyladamantyl group, 3,5,7-triethyladamantyl group, 3,5-diisopropyladamantyl group, 3,5,7-triisopropyladamantyl group, 3, 5-diisobutyladamantyl group, 3,5,7- Lysobutyladamantyl group, 3,5-diphenyladamantyl group, 3,5,7-triphenyladamantyl group, 3,5-di (p-toluyl) adamantyl group, 3,5,7-tri (p-toluyl) adamantyl group Group, a 3,5-di (3,5-xylyl) adamantyl group, a 3,5,7-tri (3,5-xylyl) adamantyl group, and the like. From the viewpoint that the molecular weight of the resulting polymer can be improved, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, 1-methylcyclopentyl group, 1-methylcyclohexyl group, 1-indanyl group, 2-indanyl Group, norbornyl group, bornyl group, menthyl group, 1-adamantyl group, 2-adamantyl group, 3,5-dimethyladamantyl group, 3,5-diethyladamantyl group, 3,5-diphenyladamantyl group, 3,5-di (P-toluyl) adamantyl group and 3,5-di (3,5-xylyl) adamantyl group, etc., cycloalkyl groups having 5 to 26 carbon atoms (including carbon atoms other than the carbon atoms constituting the ring) Preferred is a cyclohexyl group, 1-methylcyclohexyl group, norbornyl group, bornyl group 6 to 14 carbon atoms such as 1-adamantyl group, 2-adamantyl group, 3,5-dimethyladamantyl group and 3,5-diethyladamantyl group (including carbon atoms other than the carbon atoms constituting the ring) A cycloalkyl group is more preferred. From the viewpoint of improving the molecular weight of the resulting polymer and increasing the LCB, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a 1-methylcyclopentyl group, a 1-methylcyclohexyl group. A cycloalkyl group having 3 to 9 carbon atoms (including carbon atoms other than carbon atoms constituting the ring) such as a group, 1-indanyl group, 2-indanyl group, norbornyl group, menthyl group, etc., is preferably a cyclopentyl group Cycloalkyl having 3 to 7 carbon atoms (including carbon atoms other than carbon atoms constituting the ring) such as cyclohexyl group, cycloheptyl group, cyclooctyl group, 1-methylcyclopentyl group, 1-methylcyclohexyl group, etc. Groups are more preferred.
 置換または無置換の炭素原子数2~20のアルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、2-メチル-2-プロペニル基、ホモアリル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基およびデセニル基等が挙げられる。得られる重合体の分子量を向上させることができるという観点からは、炭素原子数3~6のアルケニル基が好ましく、アリル基およびホモアリル基がより好ましい。 Examples of the substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms include vinyl group, allyl group, propenyl group, 2-methyl-2-propenyl group, homoallyl group, pentenyl group, hexenyl group, heptenyl group, octenyl Group, nonenyl group, decenyl group and the like. From the viewpoint that the molecular weight of the resulting polymer can be improved, an alkenyl group having 3 to 6 carbon atoms is preferable, and an allyl group and a homoallyl group are more preferable.
 置換または無置換の炭素原子数2~20のアルキニル基としては、例えばエチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-メチル-1-ブチニル基、3,3-ジメチル-1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、4-メチル-1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基、4-メチル-1-ペンテニル基、1-ヘキシニル基、1-オクチニル基およびフェニルエチニル基等が挙げられる。得られる重合体の分子量を向上させることができるという観点からは、炭素原子数3~8のアルキニル基が好ましく、3-メチル-1-ブチニル基、3,3-ジメチル-1-ブチニル基、4-メチル-1-ペンテニル基およびフェニルエチニル基がより好ましい。 Examples of the substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 3-methyl-1-butynyl group, 3,3-dimethyl group. -1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 4-methyl-1-pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 4-methyl-1 -Pentenyl group, 1-hexynyl group, 1-octynyl group, phenylethynyl group and the like. From the viewpoint of improving the molecular weight of the resulting polymer, an alkynyl group having 3 to 8 carbon atoms is preferable, and a 3-methyl-1-butynyl group, a 3,3-dimethyl-1-butynyl group, 4 More preferred are a methyl-1-pentenyl group and a phenylethynyl group.
 置換または無置換の炭素原子数7~30のアラルキル基としては、例えば、ベンジル基、(2-メチルフェニル)メチル基、(3-メチルフェニル)メチル基、(4-メチルフェニル)メチル基、(2,3-ジメチルフェニル)メチル基、(2,4-ジメチルフェニル)メチル基、(2,5-ジメチルフェニル)メチル基、(2,6-ジメチルフェニル)メチル基、(3,4-ジメチルフェニル)メチル基、(3,5-ジメチルフェニル)メチル基、(2,3,4-トリメチルフェニル)メチル基、(2,3,5-トリメチルフェニル)メチル基、(2,3,6-トリメチルフェニル)メチル基、(3,4,5-トリメチルフェニル)メチル基、(2,4,6-トリメチルフェニル)メチル基、(2,3,4,5-テトラメチルフェニル)メチル基、(2,3,4,6-テトラメチルフェニル)メチル基、(2,3,5,6-テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n-プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n-ブチルフェニル)メチル基、(sec-ブチルフェニル)メチル基、(tert-ブチルフェニル)メチル基、(イソブチルフェニル)メチル基、(n-ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n-ヘキシルフェニル)メチル基、(n-オクチルフェニル)メチル基、(n-デシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、ジメチル(3,5-ジメチルフェニル)メチル基、ジメチル(4-ジベンゾフラニル)メチル基、ジエチル(フェニル)メチル基およびトリフェニルメチル基等が挙げられる。得られる重合体の分子量を向上させることができ、また、LCBを増加させることができるという観点から、ベンジル基、ナフチルメチル基、アントラセニルメチル基、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、ジメチル(3,5-ジメチルフェニル)メチル基、ジメチル(4-ジベンゾフラニル)メチル基、ジエチル(フェニル)メチル基およびトリフェニルメチル基が好ましく、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、ジメチル(3,5-ジメチルフェニル)メチル基、ジメチル(4-ジベンゾフラニル)メチル基、ジエチル(フェニル)メチル基およびトリフェニルメチル基などの炭素原子数9~20の第3級アラルキル基がより好ましく、ベンジル基、ナフチルメチル基、アントラセニルメチル基、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、ジメチル(3,5-ジメチルフェニル)メチル基、ジメチル(4-ジベンゾフラニル)メチル基、ジエチル(フェニル)メチル基およびトリフェニルメチル基が好ましく、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、ジメチル(3,5-ジメチルフェニル)メチル基、ジメチル(4-ジベンゾフラニル)メチル基、ジエチル(フェニル)メチル基およびメチルビス(4-メチルフェニル)メチル基などの炭素原子数9~18の第3級アラルキル基がさらに好ましく、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、ジメチル(3,5-ジメチルフェニル)メチル基、ジエチル(フェニル)メチル基およびメチルビス(4-メチルフェニル)メチル基などの炭素原子および水素原子のみからなる炭素原子数9~18の第3級アラルキル基が最も好ましい。得られる重合体の分子量を向上させることができ、エチレンの単独重合において、得られる重合体におけるエチル分岐の数を増加させることができるという観点から、ベンジル基、ナフチルメチル基、アントラセニルメチル基、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、ジメチル(3,5-ジメチルフェニル)メチル基、ジメチル(4-ジベンゾフラニル)メチル基、ジエチル(フェニル)メチル基、メチルビス(4-メチルフェニル)メチル基およびトリフェニルメチル基などが好ましく、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、ジメチル(3,5-ジメチルフェニル)メチル基、ジメチル(4-ジベンゾフラニル)メチル基、ジエチル(フェニル)メチル基およびトリフェニルメチル基などの炭素原子数9~20の第3級アラルキル基がより好ましく、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、ジメチル(3,5-ジメチルフェニル)メチル基、ジメチル(4-ジベンゾフラニル)メチル基、ジエチル(フェニル)メチル基およびメチルビス(4-メチルフェニル)メチル基などの炭素原子数9~18の第3級アラルキル基がさらに好ましい。 Examples of the substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, ( 2,3-dimethylphenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethylphenyl) ) Methyl group, (3,5-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethylphenyl) ) Methyl group, (3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) Til group, (2,3,4,6-tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl group, (N-propylphenyl) methyl group, (isopropylphenyl) methyl group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (isobutylphenyl) methyl group, (N-pentylphenyl) methyl group, (neopentylphenyl) methyl group, (n-hexylphenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, naphthylmethyl group, anthracene Nylmethyl group, dimethyl (phenyl) methyl group, dimethyl (4-methylphenyl) methyl group, dimethyl 1-naphthyl) methyl group, dimethyl (2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) methyl group, methylbis (4-methylphenyl) methyl group, dimethyl (3,5-dimethyl) A phenyl) methyl group, a dimethyl (4-dibenzofuranyl) methyl group, a diethyl (phenyl) methyl group, and a triphenylmethyl group. From the viewpoint that the molecular weight of the resulting polymer can be improved and LCB can be increased, benzyl group, naphthylmethyl group, anthracenylmethyl group, dimethyl (phenyl) methyl group, dimethyl (4- Methylphenyl) methyl group, dimethyl (1-naphthyl) methyl group, dimethyl (2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) methyl group, methylbis (4-methylphenyl) methyl group Dimethyl (3,5-dimethylphenyl) methyl group, dimethyl (4-dibenzofuranyl) methyl group, diethyl (phenyl) methyl group and triphenylmethyl group are preferred, dimethyl (phenyl) methyl group, dimethyl (4-methyl Phenyl) methyl group, dimethyl (1-naphthyl) methyl group, dimethyl 2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) methyl group, methylbis (4-methylphenyl) methyl group, dimethyl (3,5-dimethylphenyl) methyl group, dimethyl (4- Tertiary aralkyl groups having 9 to 20 carbon atoms such as dibenzofuranyl) methyl group, diethyl (phenyl) methyl group and triphenylmethyl group are more preferred, such as benzyl group, naphthylmethyl group, anthracenylmethyl group, dimethyl group (Phenyl) methyl group, dimethyl (4-methylphenyl) methyl group, dimethyl (1-naphthyl) methyl group, dimethyl (2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) methyl group Methylbis (4-methylphenyl) methyl group, dimethyl (3,5-dimethyl) Phenyl) methyl group, dimethyl (4-dibenzofuranyl) methyl group, diethyl (phenyl) methyl group and triphenylmethyl group are preferred, dimethyl (phenyl) methyl group, dimethyl (4-methylphenyl) methyl group, dimethyl (1 -Naphthyl) methyl group, dimethyl (2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) methyl group, dimethyl (3,5-dimethylphenyl) methyl group, dimethyl (4-dibenzofura) More preferred are tertiary aralkyl groups having 9 to 18 carbon atoms, such as a dimethyl (phenyl) methyl group, a dimethyl (4-methylphenyl) methyl group and a dimethyl (4-methylphenyl) methyl group. Methylphenyl) methyl group, dimethyl (1-naphthyl) methyl group, dimethyl Ru (2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) methyl group, dimethyl (3,5-dimethylphenyl) methyl group, diethyl (phenyl) methyl group and methylbis (4-methyl) Most preferred is a tertiary aralkyl group having 9 to 18 carbon atoms consisting of only a carbon atom such as a phenyl) methyl group and a hydrogen atom. From the viewpoint that the molecular weight of the resulting polymer can be improved and the number of ethyl branches in the resulting polymer can be increased in the homopolymerization of ethylene, a benzyl group, a naphthylmethyl group, an anthracenylmethyl group Dimethyl (phenyl) methyl group, dimethyl (4-methylphenyl) methyl group, dimethyl (1-naphthyl) methyl group, dimethyl (2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) A methyl group, a dimethyl (3,5-dimethylphenyl) methyl group, a dimethyl (4-dibenzofuranyl) methyl group, a diethyl (phenyl) methyl group, a methylbis (4-methylphenyl) methyl group, and a triphenylmethyl group are preferable. Dimethyl (phenyl) methyl group, dimethyl (4-methylpheny ) Methyl group, dimethyl (1-naphthyl) methyl group, dimethyl (2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) methyl group, methylbis (4-methylphenyl) methyl group, dimethyl Tertiary aralkyl groups having 9 to 20 carbon atoms such as (3,5-dimethylphenyl) methyl group, dimethyl (4-dibenzofuranyl) methyl group, diethyl (phenyl) methyl group and triphenylmethyl group are more preferable. Dimethyl (phenyl) methyl group, dimethyl (4-methylphenyl) methyl group, dimethyl (1-naphthyl) methyl group, dimethyl (2-naphthyl) methyl group, methyl (ethyl) (phenyl) methyl group, methyl (diphenyl) Methyl group, dimethyl (3,5-dimethylphenyl) methyl group, dimethyl (4-diben) Furanyl) methyl group, a tertiary aralkyl group having a carbon number of 9-18 such as diethyl (phenyl) methyl and methyl bis (4-methylphenyl) methyl group is more preferable.
 R~RおよびR~R12における炭素原子数6~30の置換または無置換のアリール基としては、例えば、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、2,3,4,5-テトラメチルフェニル基、2,3,4,6-テトラメチルフェニル基、2,3,5,6-テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、n-ブチルフェニル基、sec-ブチルフェニル基、tert-ブチルフェニル基、イソブチルフェニル基、n-ペンチルフェニル基、ネオペンチルフェニル基、n-ヘキシルフェニル基、n-オクチルフェニル基、n-デシルフェニル基、n-ドデシルフェニル基、n-テトラデシルフェニル基、ナフチル基、アントラセニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、ペンタフルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2-クロロフェニル基、2,3-ジクロロフェニル基、2,4-ジクロロフェニル基、2,5-ジクロロフェニル基、2-ブロモフェニル基、3-ブロモフェニル基、4-ブロモフェニル基、2,3-ジブロモフェニル基、2,4-ジブロモフェニル基、あるいは2,5-ジブロモフェニル基が挙げられ、好ましくは、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基などの炭素原子数6~20のフェニル基;2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、ペンタフルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基などのフッ素化フェニル基;2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基などのフッ素化アルキルフェニル基であり、より好ましくは、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,6-キシリル基、3,5-キシリル基、2,4,6-トリメチルフェニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基、2-フルオロフェニル基、ペンタフルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基である。 Examples of the substituted or unsubstituted aryl group having 6 to 30 carbon atoms in R 2 to R 4 and R 6 to R 12 include a phenyl group, a 2-tolyl group, a 3-tolyl group, a 4-tolyl group, 2 , 3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetra Methylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n - Ruphenyl group, sec-butylphenyl group, tert-butylphenyl group, isobutylphenyl group, n-pentylphenyl group, neopentylphenyl group, n-hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n- Dodecylphenyl group, n-tetradecylphenyl group, naphthyl group, anthracenyl group, 3,5-diisopropylphenyl group, 2,6-diisopropylphenyl group, 3,5-ditert-butylphenyl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, pentafluorophenyl group, 2-trifluoromethylphenyl group, 3-trifluoromethylphenyl group, 4-trifluoromethylphenyl group, 2,3-difluorophenyl group, 2 , 4-difluorophenyl group, 2,5- Fluorophenyl group, 2,6-difluorophenyl group, 2-chlorophenyl group, 2,3-dichlorophenyl group, 2,4-dichlorophenyl group, 2,5-dichlorophenyl group, 2-bromophenyl group, 3-bromophenyl group, A 4-bromophenyl group, a 2,3-dibromophenyl group, a 2,4-dibromophenyl group, or a 2,5-dibromophenyl group, preferably a phenyl group, a 2-tolyl group, a 3-tolyl group, 4-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3 , 4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethyl 6 to 6 carbon atoms such as ruphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, 3,5-diisopropylphenyl group, 2,6-diisopropylphenyl group, 3,5-ditert-butylphenyl group 20 phenyl groups; 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, pentafluorophenyl group, 2,3-difluorophenyl group, 2,4-difluorophenyl group, 2,5-difluorophenyl Fluorinated phenyl groups such as 2,6-difluorophenyl groups; fluorinated alkylphenyl groups such as 2-trifluoromethylphenyl groups, 3-trifluoromethylphenyl groups, 4-trifluoromethylphenyl groups, and more Preferably, phenyl group, 2-tolyl group, 3-tolyl group, 4-toluene Group, 2,6-xylyl group, 3,5-xylyl group, 2,4,6-trimethylphenyl group, 3,5-diisopropylphenyl group, 2,6-diisopropylphenyl group, 3,5-ditert- Butylphenyl group, 2-fluorophenyl group, pentafluorophenyl group, 2,3-difluorophenyl group, 2,4-difluorophenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group, 2,4 , 6-trifluorophenyl group.
 置換または無置換の炭素原子数1~20のアルコキシ基としては、例えば、パーフルオロメトキシ基、パーフルオロエトキシ基、パーフルオロ-n-プロポキシ基、パーフルオロイソプロポキシ基、パーフルオロ-n-ブトキシ基、パーフルオロ-sec-ブトキシ基、パーフルオロイソブトキシ基、パーフルオロ-n-ペンチルオキシ基、パーフルオロネオペンチルオキシ基、パーフルオロ-n-ヘキシルオキシ基、パーフルオロ-n-ヘプチルオキシ基、パーフルオロ-n-オクチルオキシ基、パーフルオロ-n-デシルオキシ基、パーフルオロ-n-ドデシルオキシ基、パーフルオロ-n-ペンタデシルオキシ基、パーフルオロ-n-エイコシルオキシ基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-ペンタデシルオキシ基、n-エイコシルオキシ基が挙げられる。得られる重合体の分子量を向上させることができるという観点からは、炭素原子数1~4のアルコキシ基が好ましく、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基およびn-ブトキシ基がより好ましい。 Examples of the substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms include a perfluoromethoxy group, a perfluoroethoxy group, a perfluoro-n-propoxy group, a perfluoroisopropoxy group, and a perfluoro-n-butoxy group. Perfluoro-sec-butoxy group, perfluoroisobutoxy group, perfluoro-n-pentyloxy group, perfluoronepentyloxy group, perfluoro-n-hexyloxy group, perfluoro-n-heptyloxy group, perfluoro Fluoro-n-octyloxy group, perfluoro-n-decyloxy group, perfluoro-n-dodecyloxy group, perfluoro-n-pentadecyloxy group, perfluoro-n-eicosyloxy group, methoxy group, ethoxy group , N-propoxy group, isopropoxy group, n-but Si group, sec-butoxy group, isobutoxy group, n-pentyloxy group, neopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-decyloxy group, n-dodecyloxy group N-pentadecyloxy group and n-eicosyloxy group. From the viewpoint of improving the molecular weight of the resulting polymer, an alkoxy group having 1 to 4 carbon atoms is preferable, and a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and an n-butoxy group are more preferable. preferable.
 置換または無置換の炭素原子数7~30のアラルキルオキシ基としては、例えば、ベンジルオキシ基、(2-メチルフェニル)メトキシ基、(3-メチルフェニル)メトキシ基、(4-メチルフェニル)メトキシ基、(2,3-ジメチルフェニル)メトキシ基、(2,4-ジメチルフェニル)メトキシ基、(2,5-ジメチルフェニル)メトキシ基、(2,6-ジメチルフェニル)メトキシ基、(3,4-ジメチルフェニル)メトキシ基、(3,5-ジメチルフェニル)メトキシ基、(2,3,4-トリメチルフェニル)メトキシ基、(2,3,5-トリメチルフェニル)メトキシ基、(2,3,6-トリメチルフェニル)メトキシ基、(2,4,5-トリメチルフェニル)メトキシ基、(2,4,6-トリメチルフェニル)メトキシ基、(3,4,5-トリメチルフェニル)メトキシ基、(2,3,4,5-テトラメチルフェニル)メトキシ基、(2,3,4,6-テトラメチルフェニル)メトキシ基、(2,3,5,6-テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n-プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n-ブチルフェニル)メトキシ基、(sec-ブチルフェニル)メトキシ基、(tert-ブチルフェニル)メトキシ基、(n-ヘキシルフェニル)メトキシ基、(n-オクチルフェニル)メトキシ基、(n-デシルフェニル)メトキシ基、(n-テトラデシルフェニル)メトキシ基、ナフチルメトキシ基およびアントラセニルメトキシ基等が挙げられる。得られる重合体の分子量を向上させることができるという観点からは、炭素原子数7~12のアラルキルオキシ基が好ましく、ベンジルオキシ基がより好ましい。 Examples of the substituted or unsubstituted aralkyloxy group having 7 to 30 carbon atoms include benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, and (4-methylphenyl) methoxy group. , (2,3-dimethylphenyl) methoxy group, (2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group, (3,4- (Dimethylphenyl) methoxy group, (3,5-dimethylphenyl) methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, (2,3,6- Trimethylphenyl) methoxy group, (2,4,5-trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) methoxy group, 3,4,5-trimethylphenyl) methoxy group, (2,3,4,5-tetramethylphenyl) methoxy group, (2,3,4,6-tetramethylphenyl) methoxy group, (2,3,5 , 6-tetramethylphenyl) methoxy group, (pentamethylphenyl) methoxy group, (ethylphenyl) methoxy group, (n-propylphenyl) methoxy group, (isopropylphenyl) methoxy group, (n-butylphenyl) methoxy group, (Sec-butylphenyl) methoxy group, (tert-butylphenyl) methoxy group, (n-hexylphenyl) methoxy group, (n-octylphenyl) methoxy group, (n-decylphenyl) methoxy group, (n-tetradecyl) Phenyl) methoxy group, naphthylmethoxy group, anthracenylmethoxy group and the like. From the viewpoint of improving the molecular weight of the resulting polymer, an aralkyloxy group having 7 to 12 carbon atoms is preferable, and a benzyloxy group is more preferable.
 置換または無置換の炭素原子数6~30のアリールオキシ基としては、例えばフェノキシ基、2,3,4-トリメチルフェノキシ基、2,3,5-トリメチルフェノキシ基、2,3,6-トリメチルフェノキシ基、2,4,6-トリメチルフェノキシ基、3,4,5-トリメチルフェノキシ基、2,3,4,5-テトラメチルフェノキシ基、2,3,4,6-テトラメチルフェノキシ基、2,3,5,6-テトラメチルフェノキシ基、ペンタメチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2-フルオロフェノキシ基、3-フルオロフェノキシ基、4-フルオロフェノキシ基、ペンタフルオロフェノキシ基、2-トリフルオロメチルフェノキシ基、3-トリフルオロメチルフェノキシ基、4-トリフルオロメチルフェノキシ基、2,3-ジフルオロフェノキシ基、2,4-フルオロフェノキシ基、2,5-ジフルオロフェノキシ基、2-クロロフェノキシ基、2,3-ジクロロフェノキシ基、2,4-ジクロロフェノキシ基、2,5-ジクロロフェノキシ基、2-ブロモフェノキシ基、3-ブロモフェノキシ基、4-ブロモフェノキシ基、2,3-ジブロモフェノキシ基、2,4-ジブロモフェノキシ基および2,5-ジブロモフェノキシ基等が挙げられる。得られる重合体の分子量を向上させることができるという観点からは、炭素原子数6~14のアリールオキシ基が好ましく、2,4,6-トリメチルフェノキシ基、3,4,5-トリメチルフェノキシ基、2,6-ジイソプロピルフェノキシ基およびペンタフルオロフェノキシ基がより好ましい。 Examples of the substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms include phenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2,3,6-trimethylphenoxy. 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3,4,5-tetramethylphenoxy group, 2,3,4,6-tetramethylphenoxy group, 2, 3,5,6-tetramethylphenoxy group, pentamethylphenoxy group, 2,6-diisopropylphenoxy group, 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, pentafluorophenoxy group, 2-triphenyl Fluoromethylphenoxy group, 3-trifluoromethylphenoxy group, 4-trifluoromethylphenoxy group 2,3-difluorophenoxy group, 2,4-fluorophenoxy group, 2,5-difluorophenoxy group, 2-chlorophenoxy group, 2,3-dichlorophenoxy group, 2,4-dichlorophenoxy group, 2,5- Examples include dichlorophenoxy group, 2-bromophenoxy group, 3-bromophenoxy group, 4-bromophenoxy group, 2,3-dibromophenoxy group, 2,4-dibromophenoxy group, and 2,5-dibromophenoxy group. From the viewpoint that the molecular weight of the resulting polymer can be improved, aryloxy groups having 6 to 14 carbon atoms are preferred, and 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, More preferred are 2,6-diisopropylphenoxy group and pentafluorophenoxy group.
 置換または無置換の炭素原子数1~20のハイドロカルビルシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリイソプロピルシリル基、トリ-n-ブチルシリル基、トリイソブチルシリル基、tert-ブチルジメチルシリル基、メチルジフェニルシリル基、ジメチル(フェニル)シリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、メチルビス(トリメチルシリル)シリル基、ジメチル(トリメチルシリル)シリル基およびトリス(トリメチルシリル)シリル基等が挙げられる。得られる重合体の分子量を向上させることができ、また、LCBを増加させることができるという観点から、トリメチルシリル基、エチルジメチルシリル基、ジエチルメチルシリル基等の炭素原子数3~5のトリアルキルシリル基;ならびに、メチルビス(トリメチルシリル)シリル基、ジメチル(トリメチルシリル)シリル基およびトリス(トリメチルシリル)シリル基などの炭素原子数3~20のハイドロカルビルシリル基を置換基として有するシリル基が好ましく、トリメチルシリル基がより好ましい。 Examples of the substituted or unsubstituted hydrocarbylsilyl group having 1 to 20 carbon atoms include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, Isobutylsilyl group, tert-butyldimethylsilyl group, methyldiphenylsilyl group, dimethyl (phenyl) silyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, methylbis (trimethylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group and tris (Trimethylsilyl) silyl group and the like can be mentioned. From the viewpoint that the molecular weight of the resulting polymer can be improved and LCB can be increased, trialkylsilyl having 3 to 5 carbon atoms such as trimethylsilyl group, ethyldimethylsilyl group, diethylmethylsilyl group, etc. And a silyl group having a hydrocarbylsilyl group having 3 to 20 carbon atoms as a substituent, such as methylbis (trimethylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group and tris (trimethylsilyl) silyl group, is preferred. Is more preferable.
 環を構成する炭素原子数が3~20の置換または無置換のヘテロ環式化合物残基としては、例えば、チエニル基、フリル基、1-ピロリル基、1-イミダゾリル基、1-ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、2-イソインドリル基、1-インドリル基、キノリル基およびジベンゾ-1H-ピロール-1-イル基等が挙げられ、好ましくは、チエニル基、フリル基、1-ピロリル基、ピリジル基、ピリミジニル基、2-イソインドリル基、1-インドリル基、キノリル基およびジベンゾ-1H-ピロール-1-イル基である。 Examples of the substituted or unsubstituted heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring include thienyl group, furyl group, 1-pyrrolyl group, 1-imidazolyl group, 1-pyrazolyl group, pyridyl group. Group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, 2-isoindolyl group, 1-indolyl group, quinolyl group, dibenzo-1H-pyrrol-1-yl group and the like, preferably thienyl group, furyl group, 1- A pyrrolyl group, a pyridyl group, a pyrimidinyl group, a 2-isoindolyl group, a 1-indolyl group, a quinolyl group, and a dibenzo-1H-pyrrol-1-yl group.
 RとRとは互いに連結して環を形成してもよい。同様に、RとRとは互いに連結して環を形成してもよい。同様に、RとRとは互いに連結して環を形成してもよい。同様に、RとRとは互いに連結して環を形成してもよい。同様に、RとRとは互いに連結して環を形成してもよい。同様に、RとRとは互いに連結して環を形成してもよい。互いに連結して環を形成する場合、好ましくは、ベンゼン環上の2つの炭素原子を含む4~10員環のハイドロカルビル環または複素環であり、該環は置換基を有していてもよい。 R 1 and R 2 may be linked to each other to form a ring. Similarly, R 2 and R 3 may be connected to each other to form a ring. Similarly, R 3 and R 4 may be connected to each other to form a ring. Similarly, R 5 and R 6 may be linked to each other to form a ring. Similarly, R 6 and R 7 may be linked to each other to form a ring. Similarly, R 7 and R 8 may be linked to each other to form a ring. When linked to each other to form a ring, it is preferably a 4- to 10-membered hydrocarbyl ring or heterocyclic ring containing two carbon atoms on the benzene ring, and the ring may have a substituent. Good.
 上記のように、R~Rの隣接する2つが連結して形成される環としては、具体的には、シクロブテン環、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環、ベンゼン環、ナフタレン環、フラン環、2,5-ジメチルフラン環、チオフェン環、2,5-ジメチルチオフェン環およびピリジン環等が挙げられ、好ましくは、シクロブテン環、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、ベンゼン環およびナフタレン環であり、より好ましくは、RとR、およびRとRとが連結して形成されるシクロペンテン環、シクロペンタジエン環、シクロヘキセン環、ベンゼン環およびナフタレン環である。 As described above, the ring formed by connecting two adjacent R 1 to R 8 specifically includes a cyclobutene ring, a cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a cycloheptene ring, a cyclooctene ring, Benzene ring, naphthalene ring, furan ring, 2,5-dimethylfuran ring, thiophene ring, 2,5-dimethylthiophene ring and pyridine ring are preferable, and cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring are preferable. , A benzene ring and a naphthalene ring, more preferably a cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a benzene ring and a naphthalene ring formed by linking R 1 and R 2 , and R 5 and R 6 .
 上記R~R12の定義に関わらず、RとR10、およびR11とR12とは、それぞれ独立に、互いに連結して環を形成してもよく、該環は置換基を有していてもよい。 Regardless of the definitions of R 9 to R 12 above, R 9 and R 10 , and R 11 and R 12 may be independently connected to each other to form a ring, and the ring has a substituent. You may do it.
 Lにおける炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、炭素原子数1~20のハイドロカルビルシリル基は、R~RおよびR~R12におけるこれらの基と同様である。 An alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, a carbon atom in L An aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aralkyloxy group having 7 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, and a hydrocarbyl having 1 to 20 carbon atoms The silyl group is the same as these groups in R 2 to R 4 and R 6 to R 12 .
 Lにおける炭素原子数1~20の置換または無置換のハイドロカルビルアミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジn-ブチルアミノ基、ジn-プロピルアミノ基、ジイソプロピルアミノ基、ジベンジルアミノ基およびジフェニルアミノ基等が挙げられ、好ましくは炭素原子数2~14のハイドロカルビルアミノ基であり、より好ましくは、ジメチルアミノ基、ジエチルアミノ基、ジn-プロピルアミノ基、ジイソプロピルアミノ基およびジベンジルアミノ基である。 Examples of the substituted or unsubstituted hydrocarbylamino group having 1 to 20 carbon atoms in L include, for example, a dimethylamino group, a diethylamino group, a di-n-butylamino group, a di-n-propylamino group, a diisopropylamino group, a diisopropyl group, A benzylamino group, a diphenylamino group and the like, preferably a hydrocarbylamino group having 2 to 14 carbon atoms, more preferably a dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamino group And a dibenzylamino group.
 Lにおける炭素原子数1~20の置換または無置換のハイドロカルビルチオラート基としては、例えば、チオフェノキシ基、2,3,4-トリメチルチオフェノキシ基、2,3,5-トリメチルチオフェノキシ基、2,3,6-トリメチルチオフェノキシ基、2,4,6-トリメチルチオフェノキシ基、3,4,5-トリメチルチオフェノキシ基、2,3,4,5-テトラメチルチオフェノキシ基、2,3,4,6-テトラメチルチオフェノキシ基、2,3,5,6-テトラメチルチオフェノキシ基、ペンタメチルチオフェノキシ基、2-フルオロチオフェノキシ基、3-フルオロチオフェノキシ基、4-フルオロチオフェノキシ基、ペンタフルオロチオフェノキシ基、2-トリフルオロメチルチオフェノキシ基、3-トリフルオロメチルチオフェノキシ基、4-トリフルオロメチルチオフェノキシ基、2,3-ジフルオロチオフェノキシ基、2,4-フルオロチオフェノキシ基、2,5-ジフルオロチオフェノキシ基、2-クロロチオフェノキシ基、2,3-ジクロロチオフェノキシ基、2,4-ジクロロチオフェノキシ基、2,5-ジクロロチオフェノキシ基、2-ブロモチオフェノキシ基、3-ブロモチオフェノキシ基、4-ブロモチオフェノキシ基、2,3-ジブロモチオフェノキシ基、2,4-ジブロモチオフェノキシ基および2,5-ジブロモチオフェノキシ基等が挙げられ、好ましくは炭素原子数6~12のハイドロカルビルチオラート基であり、より好ましくはチオフェノキシ基、2,4,6-トリメチルチオフェノキシ基、3,4,5-トリメチルチオフェノキシ基、2,3,4,5-テトラメチルチオフェノキシ基、2,3,4,6-テトラメチルチオフェノキシ基、2,3,5,6-テトラメチルチオフェノキシ基、ペンタメチルチオフェノキシ基およびペンタフルオロチオフェノキシ基である。 Examples of the substituted or unsubstituted hydrocarbylthiolate group having 1 to 20 carbon atoms in L include, for example, a thiophenoxy group, a 2,3,4-trimethylthiophenoxy group, a 2,3,5-trimethylthiophenoxy group, 2,3,6-trimethylthiophenoxy group, 2,4,6-trimethylthiophenoxy group, 3,4,5-trimethylthiophenoxy group, 2,3,4,5-tetramethylthiophenoxy group, 4,6-tetramethylthiophenoxy group, 2,3,5,6-tetramethylthiophenoxy group, pentamethylthiophenoxy group, 2-fluorothiophenoxy group, 3-fluorothiophenoxy group, 4-fluorothiophenoxy group, pentafluoro Thiophenoxy group, 2-trifluoromethylthiophenoxy group, 3-trifluoromethyl Ofenoxy group, 4-trifluoromethylthiophenoxy group, 2,3-difluorothiophenoxy group, 2,4-fluorothiophenoxy group, 2,5-difluorothiophenoxy group, 2-chlorothiophenoxy group, 2,3-dichloro Thiophenoxy group, 2,4-dichlorothiophenoxy group, 2,5-dichlorothiophenoxy group, 2-bromothiophenoxy group, 3-bromothiophenoxy group, 4-bromothiophenoxy group, 2,3-dibromothiophenoxy group Group, 2,4-dibromothiophenoxy group, 2,5-dibromothiophenoxy group and the like, preferably a hydrocarbylthiolate group having 6 to 12 carbon atoms, more preferably a thiophenoxy group, 4,6-trimethylthiophenoxy group, 3,4,5-trimethylthiopheno Si group, 2,3,4,5-tetramethylthiophenoxy group, 2,3,4,6-tetramethylthiophenoxy group, 2,3,5,6-tetramethylthiophenoxy group, pentamethylthiophenoxy group and pentafluorothio It is a phenoxy group.
 Lにおける炭素原子数1~20の置換または無置換のカルボキシラート基としては、例えば、アセテート基、プロピオネート基、ブチレート基、ペンタネート基、ヘキサノエート基、2-エチルヘキサノエート基およびトリフルオロアセテート基等が挙げられ、好ましくは炭素原子数2~10のカルボキシラート基であり、より好ましくは、アセテート基、プロピオネート基、2-エチルヘキサノエート基およびトリフルオロアセテート基である。 Examples of the substituted or unsubstituted carboxylate group having 1 to 20 carbon atoms in L include an acetate group, a propionate group, a butyrate group, a pentanate group, a hexanoate group, a 2-ethylhexanoate group, and a trifluoroacetate group. Preferred is a carboxylate group having 2 to 10 carbon atoms, and more preferred are an acetate group, a propionate group, a 2-ethylhexanoate group, and a trifluoroacetate group.
 Lは、好ましくは、フッ素原子、塩素原子および臭素原子等のハロゲン原子、アミノ基、炭素原子数1~20のアルキル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数6~30のアリールオキシ基、炭素原子数1~20のハイドロカルビルシリル基および炭素原子数1~20のハイドロカルビルアミノ基である。より好ましくは、塩素原子、臭素原子、炭素原子数1~6のアルキル基、炭素原子数7~10のアラルキル基、炭素原子数1~6のアルコキシ基、炭素原子数6~10のアリールオキシ基、炭素原子数2~10のハイドロカルビルアミノ基であり、さらに好ましくは、塩素原子、メチル基、エチル基、n-ブチル基、tert-ブチル基、ベンジル基、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、フェノキシ基、ジメチルアミノ基およびジエチルアミノ基であり、特に好ましくは、塩素原子、メチル基、ベンジル基、イソプロポキシ基、フェノキシ基およびジメチルアミノ基であり、最も好ましくは、塩素原子およびベンジル基である。 L is preferably a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom, an amino group, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or an alkoxy group having 1 to 20 carbon atoms. Groups, aryloxy groups having 6 to 30 carbon atoms, hydrocarbylsilyl groups having 1 to 20 carbon atoms, and hydrocarbylamino groups having 1 to 20 carbon atoms. More preferably, a chlorine atom, a bromine atom, an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms And a hydrocarbylamino group having 2 to 10 carbon atoms, more preferably a chlorine atom, a methyl group, an ethyl group, an n-butyl group, a tert-butyl group, a benzyl group, a methoxy group, an ethoxy group, an isopropoxy group Group, tert-butoxy group, phenoxy group, dimethylamino group and diethylamino group, particularly preferably a chlorine atom, methyl group, benzyl group, isopropoxy group, phenoxy group and dimethylamino group, most preferably chlorine Atomic and benzyl groups.
 上記一般式(1)で表される錯体の具体例としては、例えば、下記の化合物が挙げられる。 Specific examples of the complex represented by the general formula (1) include, for example, the following compounds.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 また、これらの他にも、例えば、これらの化合物のハフニウム原子に直接結合しているベンジル基を、フッ素原子、塩素原子、臭素原子、ヨウ素原子、ジメチルアミノ基、ジエチルアミノ基、メトキシ基、エトキシ基、またはt-ブトキシ基に変更した化合物も挙げることができる。 In addition to these, for example, a benzyl group directly bonded to the hafnium atom of these compounds may be a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, a dimethylamino group, a diethylamino group, a methoxy group, an ethoxy group. Or a compound changed to a t-butoxy group.
 さらには、例えば、上記それぞれの化合物のRおよびRに相当する基を水素原子またはメチル基に変更した化合物も挙げることができる。 Furthermore, the compound which changed the group corresponded to R < 3 > and R < 7 > of said each compound into the hydrogen atom or the methyl group can also be mentioned, for example.
 さらには、例えば、上記それぞれの化合物の硫黄原子間を架橋している8員環部分を7員環に変更した化合物も挙げることができる。 Furthermore, for example, compounds in which the 8-membered ring portion bridging between the sulfur atoms of each of the above compounds is changed to a 7-membered ring can also be mentioned.
 上記それぞれの化合物におけるR~R12に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。 Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
 錯体(1)の好ましい例としては、下記の化合物が挙げられる。 Preferred examples of complex (1) include the following compounds.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、これらの化合物のハフニウム原子に直接結合しているベンジル基を塩素原子に変更した化合物も挙げられる。 Also, compounds in which the benzyl group directly bonded to the hafnium atom of these compounds is changed to a chlorine atom can be mentioned.
 上記それぞれの化合物のRおよびRに相当する基をメチル基に変更した化合物も挙げることができる。 There can also be mentioned compounds in which the groups corresponding to R 3 and R 7 in each of the above compounds are changed to methyl groups.
 上記一般式(1)で表される錯体は、下記一般式(2)で表される化合物(以下、化合物(2)と称する)および下記一般式(3)で表される化合物(以下、化合物(3)と称する)を出発原料として下記の反応スキーム1により製造することができるが、本方法に限定されるものではない。 The complex represented by the general formula (1) includes a compound represented by the following general formula (2) (hereinafter referred to as compound (2)) and a compound represented by the following general formula (3) (hereinafter referred to as compound). (Referred to as (3)) as a starting material, but can be produced by the following reaction scheme 1, but is not limited to this method.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 化合物(2)中のnおよびR~R12は、それぞれ上記一般式(1)におけるnおよびR~R12と同様である。 Compound (2) n and R 1 ~ R 12 being are respectively similar to n and R 1 ~ R 12 in the general formula (1).
 化合物(3)中のLは、上記一般式(1)におけるLと同様である。化合物(3)は、例えば、Hf(CHPh),HfCl(CHPh),Hf(CHSiMe,HfF,HfCl,HfBr,HfI,Hf(OMe),Hf(OEt),Hf(Oi-Pr),HfCl(O-i-Pr),Hf(O-n-Bu),Hf(O-i-Bu),Hf(O-t-Bu),Hf(NMe,HfCl(NMeおよびHf(NEt等が挙げられる。好ましくは、Hf(CHPh),HfCl(CHPh),Hf(CHSiMe,HfCl,HfBr,Hf(OMe),Hf(OEt),Hf(Oi-Pr),Hf(O-i-Bu),Hf(O-t-Bu),Hf(NMe,HfCl(NMe,Hf(NEtである。 L in the compound (3) is the same as L in the general formula (1). Compound (3) may, for example, Hf (CH 2 Ph) 4 , HfCl 2 (CH 2 Ph) 2, Hf (CH 2 SiMe 3) 4, HfF 4, HfCl 4, HfBr 4, HfI 4, Hf (OMe) 4 , Hf (OEt) 4 , Hf (Oi-Pr) 4 , HfCl 2 (Oi-Pr) 2 , Hf (On-Bu) 4 , Hf (Oi-Bu) 4 , Hf (O -T-Bu) 4 , Hf (NMe 2 ) 4 , HfCl 2 (NMe 2 ) 2, Hf (NEt 2 ) 4 and the like. Preferably, Hf (CH 2 Ph) 4 , HfCl 2 (CH 2 Ph) 2, Hf (CH 2 SiMe 3) 4, HfCl 4, HfBr 4, Hf (OMe) 4, Hf (OEt) 4, Hf (Oi -Pr) 4 , Hf (Oi-Bu) 4 , Hf (Ot-Bu) 4 , Hf (NMe 2 ) 4 , HfCl 2 (NMe 2 ) 2 , Hf (NEt 2 ) 4 .
 上記反応スキーム1においては、溶媒中で、化合物(2)と化合物(3)とをそのまま反応させてもよく、必要に応じて化合物(2)を塩基と反応させた後に化合物(3)を反応させてもよい。化合物(2)に反応させる塩基としては、例えば、有機リチウム試薬、Grignard試薬および金属水素化物が挙げられる。具体的には、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラザン、カリウムヘキサメチルジシラザン、水素化ナトリウムおよび水素化カリウムを挙げることができる。なかでも、n-ブチルリチウム、リチウムジイソプロピルアミド、カリウムヘキサメチルジシラザン、水素化ナトリウムおよび水素化カリウムが好ましい。 In the above reaction scheme 1, the compound (2) and the compound (3) may be reacted as they are in a solvent, and the compound (3) is reacted after reacting the compound (2) with a base as necessary. You may let them. As a base made to react with a compound (2), an organolithium reagent, a Grignard reagent, and a metal hydride are mentioned, for example. Specific examples include methyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, lithium diisopropylamide, lithium hexamethyldisilazane, potassium hexamethyldisilazane, sodium hydride and potassium hydride. it can. Of these, n-butyllithium, lithium diisopropylamide, potassium hexamethyldisilazane, sodium hydride and potassium hydride are preferable.
 上記一般式(1)で表されるハフニウム錯体、化合物(3)、および化合物(2)と塩基とを反応させて得られる化合物は、空気および湿気に対して不安定である。そのため、反応スキーム1における反応は脱水脱酸素下で行うことが好ましい。具体的には、乾燥ヘリウム、乾燥アルゴンまたは乾燥窒素下であり、乾燥アルゴン下または乾燥窒素下がより好ましい。 The compound obtained by reacting the hafnium complex represented by the general formula (1), the compound (3), and the compound (2) with a base is unstable with respect to air and moisture. Therefore, the reaction in Reaction Scheme 1 is preferably performed under dehydration and deoxygenation. Specifically, it is under dry helium, dry argon or dry nitrogen, more preferably under dry argon or dry nitrogen.
 上記反応スキーム1において、化合物(2)の使用量は、化合物(3)に対して1モル当量以上であればよく、好ましくは、1.0~1.5の範囲で用いればよい。また、反応の過程で化合物(2)が残存する場合は、反応の途中で化合物(3)を追加してもよい。 In the above reaction scheme 1, the amount of the compound (2) used may be 1 molar equivalent or more with respect to the compound (3), preferably in the range of 1.0 to 1.5. Moreover, when the compound (2) remains in the course of the reaction, the compound (3) may be added during the reaction.
 化合物(2)と化合物(3)とを反応させる温度は、好適には-100℃~150℃の温度範囲であり、より好適には-80℃~50℃の温度範囲である。ただし、この範囲に限定される意図ではない。 The temperature at which the compound (2) and the compound (3) are reacted is preferably in the temperature range of −100 ° C. to 150 ° C., more preferably in the temperature range of −80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
 化合物(2)と化合物(3)との反応は、生成物の収率が最も高くなる時間まで行えばよく、好ましくは5分間~48時間であり、より好ましくは10分間~24時間であり、さらに好ましくは30分間~18時間である。 The reaction between the compound (2) and the compound (3) may be carried out until the time when the yield of the product becomes the highest, preferably 5 minutes to 48 hours, more preferably 10 minutes to 24 hours, More preferably, it is 30 minutes to 18 hours.
 化合物(2)と塩基とを反応させる場合、化合物(2)と塩基とを反応させる温度は、好適には-100℃~150℃の温度範囲であり、より好適には-80℃~50℃の温度範囲である。ただし、この範囲に限定される意図ではない。 When the compound (2) and the base are reacted, the temperature at which the compound (2) and the base are reacted is preferably in the temperature range of −100 ° C. to 150 ° C., more preferably −80 ° C. to 50 ° C. Temperature range. However, it is not intended to be limited to this range.
 また、化合物(2)と塩基とを反応させる時間は、生成物の収率が最も高くなる時間まで行えばよく、好ましくは5分間~24時間であり、より好ましくは10分間~12時間、さらに好ましくは30分間~3時間である。 Further, the reaction time of the compound (2) and the base may be carried out until the product yield becomes the highest, preferably 5 minutes to 24 hours, more preferably 10 minutes to 12 hours, Preferably, it is 30 minutes to 3 hours.
 化合物(2)と塩基とを反応させる場合に、化合物(2)と塩基とを反応させて生じた化合物と、化合物(3)とを反応させる温度は、好適には-100℃~150℃の温度範囲であり、より好適には-80℃~50℃の温度範囲ある。ただし、この範囲に限定される意図ではない。 When the compound (2) is reacted with the base, the temperature at which the compound (3) is reacted with the compound formed by reacting the compound (2) with the base is preferably −100 ° C. to 150 ° C. The temperature range is more preferably -80 ° C to 50 ° C. However, it is not intended to be limited to this range.
 また、化合物(2)と塩基とを反応させて生じた化合物と、化合物(3)とを反応させる時間は、生成物の収率が最も高くなる時間まで行えばよく、好ましくは5分間~48時間であり、より好ましくは10分間~24時間であり、さらに好ましくは、30分間~3時間である。 In addition, the reaction time between the compound (2) and the compound produced by reacting the base with the compound (3) may be the time until the yield of the product becomes the highest, and preferably 5 minutes to 48 minutes. The time is more preferably 10 minutes to 24 hours, and further preferably 30 minutes to 3 hours.
 反応スキーム1に示す反応の際に用いる溶媒は、類似の反応で一般的に用いられる溶媒であれば特に制限されるものではなく、ハイドロカーボン溶媒およびエーテル系溶媒が挙げられる。好ましくは、トルエン、ベンゼン、o-キシレン、m-キシレン、p-キシレン、ヘキサン、ペンタン、ヘプタン、シクロヘキサン、ジエチルエーテルおよびテトラヒドロフランであり、より好ましくは、ジエチルエーテル、トルエン、テトラヒドロフラン、ヘキサン、ペンタン、ヘプタンおよびシクロヘキサンである。 The solvent used in the reaction shown in Reaction Scheme 1 is not particularly limited as long as it is a solvent generally used in similar reactions, and includes a hydrocarbon solvent and an ether solvent. Preferred are toluene, benzene, o-xylene, m-xylene, p-xylene, hexane, pentane, heptane, cyclohexane, diethyl ether and tetrahydrofuran, and more preferred are diethyl ether, toluene, tetrahydrofuran, hexane, pentane and heptane. And cyclohexane.
 化合物(2)は、例えば、非特許文献8に記載の方法に準じて合成することができる。
具体的には下記反応スキーム2により製造することができる。しかしながら、化合物(2)の調製方法は、本方法に限定されるべきものではない。以下、反応スキーム2における各ステップについて説明する。
Compound (2) can be synthesized, for example, according to the method described in Non-Patent Document 8.
Specifically, it can be produced by the following reaction scheme 2. However, the preparation method of the compound (2) should not be limited to this method. Hereinafter, each step in Reaction Scheme 2 will be described.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記一般式(4)~(7)で表される各化合物(以下、それぞれ化合物(4)~化合物(7)と称する)の少なくとも何れかに含まれるnおよびR~R12は、それぞれ一般式(1)におけるnおよびR~R12と同様である。 N and R 1 to R 12 contained in at least one of the compounds represented by the general formulas (4) to (7) (hereinafter referred to as the compounds (4) to (7), respectively) The same as n and R 1 to R 12 in the formula (1).
 化合物(5)および化合物(7)におけるX’はアニオン性脱離基を表し、例えば、フッ素原子、塩素原子、臭素原子およびヨウ素原子等のハロゲン原子、アセテート基、トリフルオロアセテート基、ベンゾエート基、CFSO基、CHSO基、4-MeCSO基またはPhSO基等であり、好ましくは塩素原子、臭素原子、ヨウ素原子、CFSO基、CHSO基、4-MeCSO基またはPhSO基である。 X ′ in compound (5) and compound (7) represents an anionic leaving group, for example, halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom, acetate group, trifluoroacetate group, benzoate group, CF 3 SO 3 group, CH 3 SO 3 group, 4-MeC 6 H 4 SO 3 group or PhSO 3 group, etc., preferably chlorine atom, bromine atom, iodine atom, CF 3 SO 3 group, CH 3 SO 3 A 4-MeC 6 H 4 SO 3 group or a PhSO 3 group.
 [step1]
 trans-シクロヘプタン-1,2-ジチオール(n=2である場合の化合物(4))またはtrans-シクロオクタン-1,2-ジチオール(n=3である場合の化合物(4))に1.0~4.0モル当量、好ましくは1.0~1.5モル当量の化合物(5)を塩基存在下で反応させ、化合物(6)を合成することができる。
[Step 1]
trans-cycloheptane-1,2-dithiol (compound (4) when n = 2) or trans-cyclooctane-1,2-dithiol (compound (4) when n = 3) Compound (6) can be synthesized by reacting 0 to 4.0 molar equivalents, preferably 1.0 to 1.5 molar equivalents, of compound (5) in the presence of a base.
 塩基としては、特に限定されるべきものではないが、炭酸カリウム、炭酸カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウムおよび炭酸カルシウム等の無機塩基、ならびにトリエチルアミンおよびトリイソブチルアミン等のアミン塩基が挙げられ、好ましくはアミン塩基である。 The base is not particularly limited, but includes inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate, and amine bases such as triethylamine and triisobutylamine. An amine base is preferred.
 本反応は、空気、ヘリウム、アルゴンまたは窒素雰囲気下で行うことができる。好ましくは、ヘリウム、アルゴンまたは窒素雰囲気下、より好ましくは、窒素またはアルゴン雰囲気下である。 This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen. Preferably, it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
 反応終了後、必要に応じて化合物(6)を精製してもよい。精製方法としては、例えば、反応溶液に対して塩化アンモニウム水溶液、塩酸水溶液または塩化ナトリウム水溶液を加え、次いで酢酸エチルまたはジエチルエーテルを加え、抽出操作を行い、過剰の塩基または塩を除去する方法が挙げられる。さらに蒸留、再結晶およびシリカゲルクロマトグラフィー等の精製操作により、純度を高めることができる。 After completion of the reaction, the compound (6) may be purified as necessary. Examples of the purification method include a method of adding an aqueous ammonium chloride solution, an aqueous hydrochloric acid solution or an aqueous sodium chloride solution to the reaction solution, then adding ethyl acetate or diethyl ether, and performing an extraction operation to remove excess base or salt. It is done. Further, the purity can be increased by purification operations such as distillation, recrystallization and silica gel chromatography.
 [step2]
 化合物(6)に1.0~4.0モル当量、好ましくは1.0~1.5モル当量の化合物(7)を塩基存在下で反応させ、化合物(2)を合成することができる。
[Step 2]
Compound (2) can be synthesized by reacting compound (6) with 1.0 to 4.0 molar equivalents, preferably 1.0 to 1.5 molar equivalents of compound (7) in the presence of a base.
 塩基としては、特に限定されるべきものではないが、炭酸カリウム、炭酸カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウムおよび炭酸カルシウム等の無機塩基、ならびにトリエチルアミンおよびトリイソブチルアミン等のアミン塩基が挙げられ、好ましくはアミン塩基である。 The base is not particularly limited, but includes inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate, and amine bases such as triethylamine and triisobutylamine. An amine base is preferred.
 本反応は、空気、ヘリウム、アルゴンまたは窒素雰囲気下で行うことができる。好ましくは、ヘリウム、アルゴンまたは窒素雰囲気下、より好ましくは、窒素またはアルゴン雰囲気下である。 This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen. Preferably, it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
 反応終了後、必要に応じて化合物(2)を精製してもよい。精製方法としては、例えば、反応溶液に対して塩化アンモニウム水溶液、塩酸水溶液または塩化ナトリウム水溶液を加え、次いで酢酸エチルまたはジエチルエーテルを加え、抽出操作を行い、過剰の塩基または塩を除去する方法が挙げられる。さらに蒸留、再結晶およびシリカゲルクロマトグラフィー等の精製操作により、純度を高めることができる。 After completion of the reaction, the compound (2) may be purified as necessary. Examples of the purification method include a method of adding an aqueous ammonium chloride solution, an aqueous hydrochloric acid solution or an aqueous sodium chloride solution to the reaction solution, then adding ethyl acetate or diethyl ether, and performing an extraction operation to remove excess base or salt. It is done. Further, the purity can be increased by purification operations such as distillation, recrystallization and silica gel chromatography.
 [step1]の反応条件を制御することで、反応器内で生成した化合物(6)と化合物(7)とを反応させ、化合物(2)を得ることもできる。 The compound (2) can also be obtained by reacting the compound (6) and the compound (7) produced in the reactor by controlling the reaction conditions of [step 1].
 また、RとRとが同じ基であり、RとRとが同じ基であり、RとRとが同じ基であり、RがRと同じ基であり、かつRとR10の基の組み合わせがR11とR12の基の組み合わせとが同じ基である場合には、化合物(5)と化合物(7)とを合わせて、化合物(4)に対して2.0~8.0モル当量、好ましくは2.0~4.0モル当量を塩基存在下で反応させることにより、化合物(2)を合成することもできる。 R 1 and R 5 are the same group, R 2 and R 6 are the same group, R 3 and R 7 are the same group, R 4 is the same group as R 8 , and When the combination of the groups R 9 and R 10 is the same as the combination of the groups R 11 and R 12 , the compound (5) and the compound (7) are combined to form the compound (4). Compound (2) can also be synthesized by reacting 2.0 to 8.0 molar equivalents, preferably 2.0 to 4.0 molar equivalents in the presence of a base.
 化合物(2)の具体例としては下記の化合物が挙げられる。 Specific examples of the compound (2) include the following compounds.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 他にも、例えば、これらの化合物のRおよびRに相当する基を水素原子またはメチル基で置換した化合物も挙げることができる。 In addition, for example, compounds in which groups corresponding to R 3 and R 7 of these compounds are substituted with a hydrogen atom or a methyl group can also be mentioned.
 さらには、例えば、上記それぞれの化合物における硫黄原子間を架橋している8員環部分を7員環に変更した化合物も挙げることができる。 Furthermore, for example, compounds in which the 8-membered ring part that bridges between the sulfur atoms in each of the above compounds is changed to a 7-membered ring can also be mentioned.
 さらには、例えば、上記それぞれの化合物におけるR~R12に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。 Furthermore, for example, compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group can also be mentioned.
 化合物(5)および化合物(7)の具体例としては下記の化合物が挙げられる。 Specific examples of the compound (5) and the compound (7) include the following compounds.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 他にも、例えば、これらの化合物のRまたはRに相当する基を水素原子またはメチル基で置換した化合物も挙げることができる。 In addition, for example, compounds in which a group corresponding to R 3 or R 7 of these compounds is substituted with a hydrogen atom or a methyl group can also be mentioned.
 上記それぞれの化合物におけるR~R12に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。 Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
 上述した一般式(1)で表される錯体は、エチレンの単独重合またはエチレンおよびα-オレフィンの共重合により重合体を製造するに際して、重合用触媒成分として使用される。好ましくは、単独重合用触媒成分として使用される。 The complex represented by the general formula (1) described above is used as a polymerization catalyst component when a polymer is produced by homopolymerization of ethylene or copolymerization of ethylene and α-olefin. Preferably, it is used as a catalyst component for homopolymerization.
 重合用触媒としては、上記一般式(1)で表される錯体および助触媒成分(A)を接触させて得られる重合用触媒が用いられることが好ましい。助触媒成分(A)としては、周期律表第13族元素を含む活性化助触媒成分が挙げられ、例えば、
(A-1)有機アルミニウム化合物、および
(A-2)ホウ素化合物
からなる群より選択される少なくとも1種の化合物を含んでいることが好ましい。
As the polymerization catalyst, it is preferable to use a polymerization catalyst obtained by contacting the complex represented by the general formula (1) and the promoter component (A). Examples of the promoter component (A) include an activation promoter component containing a Group 13 element in the periodic table, for example,
It preferably contains at least one compound selected from the group consisting of (A-1) an organoaluminum compound and (A-2) a boron compound.
 〔有機アルミニウム化合物(A-1)〕
 本発明に用いられる有機アルミニウム化合物(A-1)としては、公知の有機アルミニウム化合物を使用でき、例えば、(A-1-1)一般式E AlY 3-aで表される有機アルミニウム化合物、(A-1-2)一般式{-Al(E)-O-}で表される構造を有する環状のアルミノキサン、および(A-1-3)一般式E{-Al(E)-O-}AlE で表される構造を有する線状のアルミノキサン(ここで、E、E、およびEは、炭素数1~8のハイドロカルビル基であり、全てのE、全てのEおよび全てのEは同じであっても異なっていてもよい。Yは水素原子またはハロゲン原子を表し、全てのYは同じであっても異なっていてもよい。aは1、2または3であり、bは2以上の整数を、cは1以上の整数を表す。)のうちのいずれか、あるいはそれらの2~3種の混合物を例示することができる。
[Organic aluminum compound (A-1)]
As the organoaluminum compound (A-1) used in the present invention, a known organoaluminum compound can be used. For example, (A-1-1) an organoaluminum represented by the general formula E 1 a AlY 1 3-a A compound, (A-1-2) a cyclic aluminoxane having a structure represented by the general formula {-Al (E 2 ) —O—} b , and (A-1-3) a general formula E 3 {-Al ( A linear aluminoxane having a structure represented by E 3 ) —O—} c AlE 3 2 (where E 1 , E 2 , and E 3 are hydrocarbyl groups having 1 to 8 carbon atoms; All E 1 , all E 2 and all E 3 may be the same or different Y 1 represents a hydrogen atom or a halogen atom, and all Y 1 are the same or different A is 1, 2 or 3, b is 2 An integer of above, c is can be exemplified one or a mixture of two or three kinds of them among the representative.) An integer of 1 or more.
 一般式E AlY 3-aで表される有機アルミニウム化合物(A-1-1)の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウムおよびトリヘキシルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジプロピルアルミニウムクロライド、ジイソブチルアルミニウムクロライドおよびジヘキシルアルミニウムクロライド等のジアルキルアルミニウムクロライド;メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、プロピルアルミニウムジクロライド、イソブチルアルミニウムジクロライドおよびヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド;ならびに、ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドおよびジヘキシルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド等を例示することができる。好ましくは、トリアルキルアルミニウムであり、より好ましくは、トリエチルアルミニウムおよびトリイソブチルアルミニウムである。 Specific examples of the organoaluminum compound (A-1-1) represented by the general formula E 1 a AlY 1 3-a include trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, and trihexylaluminum. Dialkylaluminum chlorides such as dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride and dihexylaluminum chloride; methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride and hexylaluminum dichloride Alkyl aluminum dichlori ; And it can be exemplified dimethyl aluminum hydride, diethyl aluminum hydride, dipropyl aluminum hydride, dialkyl aluminum hydride such as diisobutylaluminum hydride and dihexyl aluminum hydride. Trialkylaluminum is preferable, and triethylaluminum and triisobutylaluminum are more preferable.
 一般式{-Al(E)-O-}で表される構造を有する環状のアルミノキサン(A-1-2)におけるE、および一般式E{-Al(E)-O-}AlE で表される構造を有する線状のアルミノキサン(A-1-3)におけるEの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基およびネオペンチル基等のアルキル基を例示することができる。なかでも、メチル基およびイソブチル基が好ましい。 Formula {-Al (E 2) -O-} E 2 in the aluminoxane (A-1-2) of the annular having a structure represented by b, and the general formula E 3 {-Al (E 3) -O- } C Specific examples of E 3 in the linear aluminoxane (A-1-3) having a structure represented by AlE 3 2 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. And alkyl groups such as isobutyl group, n-pentyl group and neopentyl group. Of these, a methyl group and an isobutyl group are preferable.
 一般式{-Al(E)-O-}におけるbは2以上の整数であり、一般式E{-Al(E)-O-}AlE におけるcは1以上の整数である。なかでも、bは2以上40以下であることが好ましく、cは1以上40以下であることが好ましい。 B in the general formula {—Al (E 2 ) —O—} b is an integer of 2 or more, and c in the general formula E 3 {—Al (E 3 ) —O—} c AlE 3 2 is an integer of 1 or more. It is. Among these, b is preferably 2 or more and 40 or less, and c is preferably 1 or more and 40 or less.
 上記のアルミノキサンは各種の方法で作られる。その方法については特に制限はなく、公知の方法に準じて作ればよい。例えば、トリアルキルアルミニウム(例えば、トリメチルアルミニウム等)を適当な有機溶剤(ベンゼン、トルエン、および脂肪族ハイドロカーボン等)に溶かした溶液を水と接触させてアルミノキサンを作る方法が挙げられる。あるいは、トリアルキルアルミニウム(例えば、トリメチルアルミニウム等)を結晶水を含んでいる金属塩(例えば、硫酸銅水和物等)に接触させてアルミノキサンを作る方法が挙げられる。 The above aluminoxane can be made by various methods. There is no restriction | limiting in particular about the method, What is necessary is just to make according to a well-known method. For example, a method in which a solution obtained by dissolving a trialkylaluminum (such as trimethylaluminum) in an appropriate organic solvent (such as benzene, toluene, and aliphatic hydrocarbon) is brought into contact with water to form an aluminoxane. Or the method of making aluminoxane by making trialkylaluminum (for example, trimethylaluminum etc.) contact the metal salt (for example, copper sulfate hydrate etc.) containing crystal water is mentioned.
 また、上記の方法で得られる、一般式{-Al(E)-O-}で表される構造を有する環状のアルミノキサン(A-1-2)、および一般式E{-Al(E)-O-}AlE で表される構造を有する線状のアルミノキサン(A-1-3)は、必要に応じて、揮発成分を留去して乾燥して用いてもよい。さらに、揮発成分を留去して乾燥して得られた化合物を適当な有機溶剤(ベンゼン、トルエン、および脂肪族ハイドロカーボン等)で洗浄して、再度乾燥し用いてもよい。 In addition, a cyclic aluminoxane (A-1-2) having a structure represented by the general formula {-Al (E 2 ) —O—} b obtained by the above method, and a general formula E 3 {-Al ( The linear aluminoxane (A-1-3) having a structure represented by E 3 ) —O—} c AlE 3 2 may be used after removing volatile components by distillation, if necessary. . Further, the compound obtained by distilling off the volatile components and drying may be washed with an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.), and dried again for use.
 〔ホウ素化合物(A-2)〕
 本発明に用いられるホウ素化合物(A-2)としては、(A-2-1)一般式BR13 14 15で表されるホウ素化合物、(A-2-2)一般式W(BR13 14 15 16で表されるホウ素化合物、および(A-2-3)一般式(V-H)(BR13 14 15 16で表されるホウ素化合物の何れかを好適に使用できる。
[Boron compound (A-2)]
As the boron compound (A-2) used in the present invention, (A-2-1) a boron compound represented by the general formula BR 13 R 14 R 15 , (A-2-2) a general formula W + (BR 13 R 14 R 15 R 16 ) and a boron compound represented by (A-2-3) general formula (VH) + (BR 13 R 14 R 15 R 16 ) Either can be used suitably.
 一般式BR13 14 15で表されるホウ素化合物(A-2-1)において、Bは3価の原子価状態のホウ素原子であり、R13~R15はハロゲン原子、炭素原子数1~20のハイドロカルビル基、炭素原子数1~20のハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、炭素原子数1~20のアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていてもよい。好ましいR13~R15はハロゲン原子、炭素原子数1~20のハイドロカルビル基、および炭素原子数1~20のハロゲン化ハイドロカルビル基である。 In the boron compound (A-2-1) represented by the general formula BR 13 R 14 R 15 , B is a boron atom in a trivalent valence state, R 13 to R 15 are halogen atoms, and the number of carbon atoms is 1. A hydrocarbyl group having ˜20, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, a substituted silyl group containing 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 2 to 20 carbon atoms A disubstituted amino group containing carbon atoms, which may be the same or different; Preferred R 13 to R 15 are a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, and a halogenated hydrocarbyl group having 1 to 20 carbon atoms.
 ホウ素化合物(A-2-1)の具体例としては、トリフェニルボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(2,3,5,6-テトラフルオロフェニル)ボラン、トリス(2,3,4,5-テトラフルオロフェニル)ボラン、トリス(3,4,5-トリフルオロフェニル)ボラン、トリス(2,3,4-トリフルオロフェニル)ボラン、およびフェニルビス(ペンタフルオロフェニル)ボラン等が挙げられ。なかでも、トリフェニルボランおよびトリス(ペンタフルオロフェニル)ボランが好ましい。 Specific examples of the boron compound (A-2-1) include triphenylborane, tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4). , 5-tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, and phenylbis (pentafluorophenyl) borane. . Of these, triphenylborane and tris (pentafluorophenyl) borane are preferable.
 一般式W(BR13 14 15 16で表されるホウ素化合物(A-2-2)において、Wは無機または有機のカチオンであり、Bは3価の原子価状態のホウ素原子であり、R13~R16はホウ素化合物(A-2-1)におけるR13~R15と同様である。
すなわち、R13~R16はハロゲン原子、炭素原子数1~20のハイドロカルビル基、炭素原子数1~20のハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、炭素原子数1~20のアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていてもよい。好ましいR~R12はハロゲン原子、炭素原子数1~20のハイドロカルビル基、炭素原子数1~20のハロゲン化ハイドロカルビル基である。
In the boron compound (A-2-2) represented by the general formula W + (BR 13 R 14 R 15 R 16 ) , W + is an inorganic or organic cation, and B is a trivalent valence state. It is a boron atom, and R 13 to R 16 are the same as R 13 to R 15 in the boron compound (A-2-1).
That is, R 13 to R 16 are a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, a substituted silyl group containing 1 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different; R 9 to R 12 are preferably a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, or a halogenated hydrocarbyl group having 1 to 20 carbon atoms.
 無機のカチオンであるWとしては、フェロセニウムカチオン、アルキル置換フェロセニウムカチオン、および銀陽イオン等が挙げられる。また、有機のカチオンであるWとしては、トリフェニルカルベニウムカチオン等が挙げられる。(BR13 14 15 16としては、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(2,3,5,6-テトラフルオロフェニル)ボレート、テトラキス(2,3,4,5-テトラフルオロフェニル)ボレート、テトラキス(3,4,5-トリフルオロフェニル)ボレート、テトラキス(2,3,4ートリフルオロフェニル)ボレート、フェニルビス(ペンタフルオロフェニル)ボレ-ト、およびテトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレート等が挙げられる。 Examples of W + that is an inorganic cation include a ferrocenium cation, an alkyl-substituted ferrocenium cation, and a silver cation. Examples of W + that is an organic cation include a triphenylcarbenium cation. (BR 13 R 14 R 15 R 16 ) includes tetrakis (pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluoro). Phenyl) borate, tetrakis (3,4,5-trifluorophenyl) borate, tetrakis (2,3,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate, and tetrakis [3,5- And bis (trifluoromethyl) phenyl] borate.
 一般式W(BR13 14 15 16で表されるホウ素化合物(A-2-2)の具体例としては、フェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、銀テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、およびトリフェニルカルベニウムテトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレート等を挙げることができる。なかでも、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートが特に好ましい。 Specific examples of the boron compound (A-2-2) represented by the general formula W + (BR 13 R 14 R 15 R 16 ) include ferrocenium tetrakis (pentafluorophenyl) borate, 1,1′- Dimethylferrocenium tetrakis (pentafluorophenyl) borate, silver tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, and triphenylcarbeniumtetrakis [3,5-bis (trifluoromethyl) Phenyl] borate and the like. Of these, triphenylcarbenium tetrakis (pentafluorophenyl) borate is particularly preferable.
 一般式(V-H)(BR13 14 15 16で表されるホウ素化合物(A-2-3)おいて、Vは中性ルイス塩基であり、(V-H)はブレンステッド酸であり、Bは3価の原子価状態のホウ素原子であり、R13~R16はホウ素化合物(A-2-1)におけるR13~R15と同様である。すなわち、R13~R16はハロゲン原子、炭素原子数1~20のハイドロカルビル基、炭素原子数1~20のハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、炭素原子数1~20のアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていてもよい。好ましいR13~R16はハロゲン原子、炭素原子数1~20のハイドロカルビル基、および炭素原子数1~20のハロゲン化ハイドロカルビル基である。 In the boron compound (A-2-3) represented by the general formula (VH) + (BR 13 R 14 R 15 R 16 ) , V is a neutral Lewis base, and (VH) + Is a Bronsted acid, B is a boron atom in a trivalent valence state, and R 13 to R 16 are the same as R 13 to R 15 in the boron compound (A-2-1). That is, R 13 to R 16 are a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, a substituted silyl group containing 1 to 20 carbon atoms, An alkoxy group having 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different; Preferred R 13 to R 16 are a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, and a halogenated hydrocarbyl group having 1 to 20 carbon atoms.
 ブレンステッド酸である(V-H)としては、トリアルキル置換アンモニウム、N,N-ジアルキルアニリニウム、ジアルキルアンモニウム、およびトリアリールホスホニウム等が挙げられる。一方、(BR13 14 15 16としては、上述したものと同様のものが挙げられる。 Examples of (VH) + that is a Bronsted acid include trialkyl-substituted ammonium, N, N-dialkylanilinium, dialkylammonium, and triarylphosphonium. On the other hand, examples of (BR 13 R 14 R 15 R 16 ) include the same as those described above.
 一般式(V-H)(BR13 14 15 16で表されるホウ素化合物(A-2-3)の具体例としては、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレート、ジイソプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(メチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(ジメチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート等を挙げることができる。なかでも、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、およびN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートが好ましい。 Specific examples of the boron compound (A-2-3) represented by the general formula (VH) + (BR 13 R 14 R 15 R 16 ) include triethylammonium tetrakis (pentafluorophenyl) borate, tripropyl Ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate, N, N -Dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium tetrakis (pentafluorophenyl) borate, N, N-2,4,6-pentamethylanilinium tetrakis (pentafluorophenyl) borate, N , N Dimethylanilinium tetrakis [3,5-bis (trifluoromethyl) phenyl] borate, diisopropylammonium tetrakis (pentafluorophenyl) borate, dicyclohexylammonium tetrakis (pentafluorophenyl) borate, triphenylphosphonium tetrakis (pentafluorophenyl) borate, Examples thereof include tri (methylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, tri (dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, and triphenylcarbenium tetrakis (pentafluorophenyl) borate. Of these, triphenylcarbenium tetrakis (pentafluorophenyl) borate, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) borate, and N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate are preferable.
 上記一般式(1)で表される錯体と助触媒成分(A)とを接触させて得られるオレフィン重合用触媒を製造する際の接触は、一般式(1)で表される錯体と助触媒成分(A)とが接触し、触媒が形成されるならどのような手段によってもよい。例えば、あらかじめ溶媒で希釈して、もしくは希釈せずに一般式(1)で表される錯体と助触媒成分(A)とを混合して接触させる方法、および一般式(1)で表される錯体と助触媒成分(A)とを別々に重合槽に供給して重合槽の中でこれらを接触させる方法等を採用することができる。
ここで、助触媒成分(A)としては複数種類を組み合わせて使用する場合があるが、それらのうちの一部をあらかじめ混合して使用してもよいし、別々に重合槽に供給して使用してもよい。
The contact for producing the olefin polymerization catalyst obtained by bringing the complex represented by the general formula (1) and the promoter component (A) into contact with each other is performed by the complex represented by the general formula (1) and the promoter. Any means may be used as long as it contacts the component (A) to form a catalyst. For example, a method in which the complex represented by the general formula (1) and the cocatalyst component (A) are mixed and brought into contact with each other by dilution with a solvent in advance or without dilution, and the general formula (1). A method of separately supplying the complex and the promoter component (A) to the polymerization tank and bringing them into contact with each other in the polymerization tank can be employed.
Here, the co-catalyst component (A) may be used in combination of a plurality of types, but some of them may be mixed in advance or used separately by supplying them to the polymerization tank. May be.
 助触媒成分(A)として有機アルミニウム化合物(A-1)を使用する場合の使用量は、一般式(1)で表される錯体に対する有機アルミニウム化合物(A-1)のモル比が例えば0.01~10000の範囲であり、好ましくは1~5000の範囲である。また、助触媒成分(A)としてホウ素化合物(A-2)を使用する場合の使用量は、一般式(1)で表される錯体に対するホウ素化合物(A-2)のモル比が例えば0.01~100の範囲であり、好ましくは1.0~50の範囲である。 When the organoaluminum compound (A-1) is used as the cocatalyst component (A), the molar ratio of the organoaluminum compound (A-1) to the complex represented by the general formula (1) is, for example, 0.8. The range is from 01 to 10,000, and preferably from 1 to 5,000. In addition, when the boron compound (A-2) is used as the cocatalyst component (A), the molar ratio of the boron compound (A-2) to the complex represented by the general formula (1) is, for example, 0.8. The range is from 01 to 100, and preferably from 1.0 to 50.
 重合反応器において重合反応前に触媒を製造する場合、各成分を溶液状態または溶媒に懸濁もしくはスラリー化した状態で供給する際の各成分の濃度は、重合反応器に各成分を供給する装置の性能などの条件により、適宜選択されるが、一般に、一般式(1)で表される錯体の濃度が、例えば0.0001~10000mmol/L、より好ましくは、0.001~1000mmol/L、さらに好ましくは、0.01~100mmol/Lの範囲であり、有機アルミニウム化合物(A-1)の濃度が、Al原子換算で、例えば0.01~10000mmol/L、より好ましくは、0.05~5000mmol/L、さらに好ましくは、0.1~2000mmol/Lの範囲であり、ホウ素化合物(A-2)の濃度が、例えば0.001~500mmol/L、より好ましくは、0.01~250mmol/L、さらに好ましくは、0.05~100mmol/Lの範囲となるように各成分を用いることが望ましい。 When a catalyst is produced before a polymerization reaction in a polymerization reactor, the concentration of each component when supplying each component in a solution state or in a state suspended or slurried in a solvent is a device for supplying each component to the polymerization reactor. In general, the concentration of the complex represented by the general formula (1) is, for example, 0.0001 to 10000 mmol / L, more preferably 0.001 to 1000 mmol / L. More preferably, it is in the range of 0.01 to 100 mmol / L, and the concentration of the organoaluminum compound (A-1) is, for example, 0.01 to 10000 mmol / L in terms of Al atoms, more preferably 0.05 to 100 mmol / L. It is 5000 mmol / L, more preferably in the range of 0.1 to 2000 mmol / L, and the concentration of the boron compound (A-2) is, for example, 0.001. 500 mmol / L, more preferably, 0.01 ~ 250 mmol / L, more preferably, it is desirable to use each component to be in the range of 0.05 ~ 100mmol / L.
 上記一般式(1)で表される錯体と、上記有機アルミニウム化合物(A-1)および上記ホウ素化合物(A-2)の少なくとも一方とを接触させて得られるオレフィン重合用触媒として、一般式(1)で表される錯体と有機アルミニウム化合物(A-1)とを接触させて得られるオレフィン重合用触媒を用いる際は、有機アルミニウム化合物(A-1)としては、上記の環状のアルミノキサン(A-1-2)および線状のアルミノキサン(A-1-3)の少なくとも一方を用いることが好ましい。また他に好ましいオレフィン重合用触媒の態様としては、一般式(1)で表される錯体、有機アルミニウム化合物(A-1)およびホウ素化合物(A-2)を接触させて得られるオレフィン重合用触媒が挙げられ、その際の有機アルミニウム化合物(A-1)としては上記の有機アルミニウム化合物(A-1-1)が使用しやすく、ホウ素化合物(A-2)としては、ホウ素化合物(A-2-1)またはホウ素化合物(A-2-2)が好ましい。 As a catalyst for olefin polymerization obtained by contacting the complex represented by the general formula (1) with at least one of the organoaluminum compound (A-1) and the boron compound (A-2), When the olefin polymerization catalyst obtained by contacting the complex represented by 1) with the organoaluminum compound (A-1) is used, the organoaluminum compound (A-1) may be the above cyclic aluminoxane (A-1). It is preferable to use at least one of -1-2) and linear aluminoxane (A-1-3). As another preferred embodiment of the olefin polymerization catalyst, an olefin polymerization catalyst obtained by contacting the complex represented by the general formula (1), the organoaluminum compound (A-1) and the boron compound (A-2). In this case, the organoaluminum compound (A-1) is easy to use the organoaluminum compound (A-1-1), and the boron compound (A-2) is a boron compound (A-2). -1) or a boron compound (A-2-2) is preferred.
 〔エチレン系重合体の製造方法〕
 本発明のエチレン系重合体の製造方法は、上記本発明の触媒の存在下にエチレンを単独で重合させるか、またはエチレンとα-オレフィンとを共重合させる、方法である。エチレンを単独で重合させる場合には、エチレン系重合体としてポリエチレンが得られる。エチレンとα-オレフィンとを共重合させる場合には、エチレンとα-オレフィンとの共重合体が得られる。エチレンとα-オレフィンとの共重合体におけるα-オレフィンの含有量は、50mol%未満であり、好ましくは35mol%以下であり、より好ましくは15mol%以下であり、さらに好ましくは10mol%以下である。α-オレフィンは単一種でも複数種でもよい。エチレンと単一種のα-オレフィンとを重合すれば、エチレンと単一種のα-オレフィンとの共重合体が得られ、エチレンと複数種のα-オレフィンとを重合すれば、エチレンと複数種のα-オレフィンとの共重合体が得られる。重合に用いられるα-オレフィン化合物に特に制限はないが、例えば、モノオレフィンおよびジオレフィンが挙げられる。モノオレフィンの例としては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、およびビニルシクロヘキサン等の1-アルケン(枝分かれしていてもよい)等を挙げることができる。また、本明細書におけるモノオレフィンには、モノオレフィン(例えば、エチレン)の一部の水素原子が芳香族基で置換されているスチレン等も含まれる。ジオレフィンの例としては、例えば、ブタジエン、イソプレンおよび1,5-ヘキサジエン等を挙げることができる。
[Method for producing ethylene polymer]
The method for producing an ethylene polymer of the present invention is a method in which ethylene is polymerized alone or ethylene and an α-olefin are copolymerized in the presence of the catalyst of the present invention. When ethylene is polymerized alone, polyethylene is obtained as an ethylene polymer. When ethylene and α-olefin are copolymerized, a copolymer of ethylene and α-olefin is obtained. The content of α-olefin in the copolymer of ethylene and α-olefin is less than 50 mol%, preferably 35 mol% or less, more preferably 15 mol% or less, and further preferably 10 mol% or less. . The α-olefin may be a single species or a plurality of species. By copolymerizing ethylene and a single kind of α-olefin, a copolymer of ethylene and a single kind of α-olefin can be obtained, and by polymerizing ethylene and a plurality of kinds of α-olefin, ethylene and a plurality of kinds of α-olefin can be obtained. A copolymer with α-olefin is obtained. The α-olefin compound used for the polymerization is not particularly limited, and examples thereof include monoolefins and diolefins. Examples of monoolefins include, for example, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, and vinylcyclohexane. 1-alkene (which may be branched) and the like. In addition, the monoolefin in the present specification includes styrene in which a part of hydrogen atoms of the monoolefin (for example, ethylene) is substituted with an aromatic group. Examples of diolefins include butadiene, isoprene and 1,5-hexadiene.
 共重合体を構成するモノマーの具体例としては、エチレンとプロピレン、エチレンと1-ブテン、エチレンと1-ペンテン、エチレンと1-ヘキセン、エチレンと1-オクテン、エチレンと1-デセン、エチレンと4-メチル-1-ペンテン、エチレンとビニルシクロヘキサン、エチレンとスチレン、エチレンとブタジエン、エチレンとイソプレンおよびエチレンと1,5-ヘキサジエン等を挙げることができる。なかでも、エチレンとプロピレン、エチレンと1-ブテン、エチレンと1-ペンテン、エチレンと1-ヘキセン、エチレンと1-オクテン、エチレンと4-メチル-1-ペンテン、エチレンとビニルシクロヘキサン、およびエチレンとスチレンが好ましく、エチレンとプロピレン、エチレンと1-ブテン、エチレンと1-ヘキセン、エチレンと1-オクテン、エチレンとビニルシクロヘキサン、およびエチレンとスチレンがより好ましく、エチレンとプロピレン、エチレンと1-ブテン、およびエチレンと1-ヘキセンがさらに好ましい。 Specific examples of the monomer constituting the copolymer include ethylene and propylene, ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and 1-decene, and ethylene and 4 -Methyl-1-pentene, ethylene and vinylcyclohexane, ethylene and styrene, ethylene and butadiene, ethylene and isoprene, ethylene and 1,5-hexadiene, and the like. Among them, ethylene and propylene, ethylene and 1-butene, ethylene and 1-pentene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and 4-methyl-1-pentene, ethylene and vinylcyclohexane, and ethylene and styrene More preferred are ethylene and propylene, ethylene and 1-butene, ethylene and 1-hexene, ethylene and 1-octene, ethylene and vinylcyclohexane, and ethylene and styrene, and ethylene and propylene, ethylene and 1-butene, and ethylene. And 1-hexene are more preferred.
 重合方法も、特に限定されるべきものではないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタンおよびオクタン等の脂肪族ハイドロカーボン、ベンゼンおよびトルエン等の芳香族ハイドロカーボン、もしくはメチレンジクロライド等のハロゲン化ハイドロカーボンを溶媒として用いる溶媒重合、またはスラリー重合等が可能である。また、連続重合および回分式重合のどちらでも可能である。 The polymerization method is not particularly limited. For example, aliphatic hydrocarbons such as butane, pentane, hexane, heptane and octane, aromatic hydrocarbons such as benzene and toluene, or halogenated hydrocarbons such as methylene dichloride. Solvent polymerization using carbon as a solvent, slurry polymerization, or the like is possible. Further, both continuous polymerization and batch polymerization are possible.
 重合反応の温度および時間は、所望の重合平均分子量ならびに触媒の活性度および使用量を考慮して決定することができる。重合温度は、例えば、-50℃~200℃の範囲を取り得るが、特に、-20℃~100℃の範囲が好ましい。重合圧力は、常圧~50MPaが好ましい。重合時間は、一般的に、目的とするポリマーの種類、および反応装置により適宜決定されるが、例えば、1分間~20時間の範囲、好ましくは5分間~18時間の範囲を取ることができる。しかしながら、これらの範囲に制限される意図ではない。また、本発明のエチレン系重合体の製造方法では、共重合体の分子量を調節するために、水素等の連鎖移動剤を添加することもできる。 The temperature and time of the polymerization reaction can be determined in consideration of the desired polymerization average molecular weight and the activity and amount of catalyst used. The polymerization temperature can be, for example, in the range of −50 ° C. to 200 ° C., and particularly preferably in the range of −20 ° C. to 100 ° C. The polymerization pressure is preferably normal pressure to 50 MPa. In general, the polymerization time is appropriately determined depending on the kind of the target polymer and the reaction apparatus, and can be, for example, in the range of 1 minute to 20 hours, preferably in the range of 5 minutes to 18 hours. However, it is not intended to be limited to these ranges. Moreover, in the manufacturing method of the ethylene-type polymer of this invention, in order to adjust the molecular weight of a copolymer, chain transfer agents, such as hydrogen, can also be added.
 重合反応に溶媒を使用する場合、溶媒中の各化合物の濃度に特に制限はない。溶媒中の上記一般式(1)で表される錯体の濃度は、例えば、1×10-8mmol/L~10mol/Lの範囲であり、助触媒成分(A)の濃度は、例えば、1×10-8mmol/L~10mol/Lの範囲であり得る。また、オレフィンと溶媒との比率(オレフィン:溶媒)は、体積比で100:0~1:1,000の範囲とすることができる。しかしながら、これらの範囲は例示であって、それらに限定される意図ではない。また、溶媒を使用しない場合でも、上記の範囲を参考に、各化合物の濃度を適宜設定することができる。 When a solvent is used for the polymerization reaction, the concentration of each compound in the solvent is not particularly limited. The concentration of the complex represented by the general formula (1) in the solvent is, for example, in the range of 1 × 10 −8 mmol / L to 10 mol / L, and the concentration of the promoter component (A) is, for example, 1 It may be in the range of x10 −8 mmol / L to 10 mol / L. The ratio of olefin to solvent (olefin: solvent) can be in the range of 100: 0 to 1: 1,000 by volume ratio. However, these ranges are exemplary and are not intended to be limiting. Even when no solvent is used, the concentration of each compound can be appropriately set with reference to the above range.
 重合して得られた重合体は、溶媒、および未反応のモノマーがある場合にはモノマーを分離することができる。例えば、粘性ポリマーの場合は、真空ポンプでモノマーを除去することができる。ただし、この方法では触媒は除去されない。固体ポリマーの場合には、溶媒留去後、メタノール等で洗浄することでモノマーを除去することができる。この方法であれば、触媒の少なくとも一部は除去される。 The polymer obtained by polymerization can separate the monomer when there is a solvent and an unreacted monomer. For example, in the case of a viscous polymer, the monomer can be removed with a vacuum pump. However, this method does not remove the catalyst. In the case of a solid polymer, the monomer can be removed by washing with methanol after the solvent is distilled off. With this method, at least a part of the catalyst is removed.
 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された文献の全てが参考として援用される。 Examples will be shown below, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail. Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and the present invention is also applied to the embodiments obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention. Moreover, all the literatures described in this specification are used as reference.
(1)融点
 熱分析装置 示差走査熱量計(Diamond DSC Perkin Elmer社製)を用いて下記の方法で測定した。
1)サンプル約10mgを窒素雰囲気下、150℃ 5分間保持
2)冷却   150℃~20℃(5℃/分)2分間保持
3)測定   20℃~150℃(5℃/分)
(2)分子量および分子量分布
 各重合体のポリスチレン換算重量平均分子鎖長(Aw)およびポリスチレン換算数平均分子鎖長(An)は、ゲルパーミエーションクロマトグラフィー(GPC)により、下記測定条件で算出した。検量線は、標準ポリスチレンを用いて作成した。ポリスチレンのQファクターとして41.3を用いた。
<測定条件>
装置  :TSK HLC-8121GPC/HT (東ソー社製)
カラム :TSKgel GMHHR-H(20) 2本
測定温度:152℃
溶媒  :o-ジクロロベンゼン(0.05%BHT添加)
溶媒流量:1ml/min
試料濃度:0.05%
カラムおよび装置校正用試料: TSK標準ポリスチレンF-2000~A-1000(東ソー製)
 ポリエチレンの重量平均分子量(Mw)および数平均分子量(Mn)は、上記測定条件により測定したポリスチレン換算重量平均分子鎖長(Aw)および数平均分子鎖長(An)をもとに、ポリエチレンのQファクターを17.7として下式より算出した。
分子量(Mw,Mn)=分子鎖長(Aw,An)×Qファクター
(3)長鎖分岐(LCB)数の算出方法
 下記測定条件により測定した13C-NMRスペクトルにおいて、5~50ppmにピークトップを有するすべてのピークの面積の総和を1000としたときの、炭素原子数7以上の分岐が結合したメチン炭素に由来するピークの面積を、1000炭素あたりの長鎖分岐数(炭素原子数7以上の分岐数)とした。本測定条件においては、38.22~38.27ppm付近にピークトップを有するピーク面積から長鎖分岐の数(炭素原子数7以上の分岐の数)を求めた。当該ピーク面積は、高磁場側で隣接するピークとの谷のケミカルシフトから、低磁場側で隣接するピークとの谷のケミカルシフトまでの範囲とした。
<測定条件>
装置  :Bruker社製 AVANCE600 10mmクライオプローブ
測定溶媒:1,2-ジクロロベンゼン/1,2-ジクロロベンゼン-d=75/25(容積比)の混合液
測定温度:130℃
測定方法:プロトンデカップリング法
パルス幅:45度
パルス繰り返し時間:4秒
化学シフト値基準 :テトラメチルシラン
(4)コモノマー含量の算出方法
エチレン/1-ヘキセン共重合体
 上記条件により測定した13C-NMRスペクトルから、Analytical Chemistry,2004,76,5734-5747に記載の方法に従い算出した。
(5)末端ビニル基数の算出方法
 下記測定条件により測定したポリエチレンのH NMRスペクトルにおいて、0.5~2.5ppmの範囲の面積を1000としたときの、4.92~5.20ppmのピーク面積を1000炭素あたりの末端ビニル基数とした。
H-NMR測定条件>
装置  :日本電子製 EX-270
測定溶媒:1,1,2,2-テトラクロロエタン-d
測定温度:135℃
パルス幅:30度
パルス繰り返し時間:4秒
化学シフト値基準 :1,1,2,2-テトラクロロエタンのピークを6.0ppmとした。
(6)固有粘度([η])(単位:dl/g)
 ウベローデ型粘度計を用い、測定温度135℃にて溶媒にテトラリンを用いて測定した。
(参考例1)
trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサンの合成
 アルゴン雰囲気下、trans-シクロヘキサン-1,2-ジチオール1.08g(7.3mmol)および臭化3,5-ジ-t-ブチル-2-ヒドロキシベンジル4.58g(15.3mmol)をテトラヒドロフラン90mLに溶解し、0℃に冷却した。そこに、トリエチルアミン2.13mL(15.3mmol)を加え、0℃で15時間攪拌した。生成した沈殿物を濾過で除き、濾液を減圧下濃縮した。得られた残渣にエーテルおよび希塩酸を加え、エーテル層を水洗し、無水硫酸マグネシウムで乾燥した後、減圧下、溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン-ジクロロメタン 1:1)で精製し、無色結晶として標記化合物3.86g(収率90%)を得た。
融点:104-106℃ 分解(エタノールより再結晶)
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.19-1.43 (m, 44 H), 2.09-2.15 (m, 2 H), 2.58-2.61 (m, 2 H), 3.79 (s, 4 H), 6.75 (s, 2 H), 6.93 (d, J = 2 Hz, 2 H), 7.25 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz,δ, CDCl3)
24.7, 29.7, 31.6, 32.6, 33.9, 34.2, 35.0, 48.1, 121.6, 123.7, 125.2, 137.3, 142.2, 152.0. 
元素分析:計算値(C3656)C, 73.92%; H, 9.34%.
実測値:C, 74.17%; H, 9.31%.
(参考例2)
[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウムの合成
 以下の実験はアルゴン雰囲気のグローブボックス中で行った。100mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサン200.0mg(0.342mmol)をトルエン10mLに溶解し、この溶液に、室温でテトラベンジルハフニウム185.7mg(0.342mmol)のトルエン溶液10mLを滴下し、さらに1時間攪拌した。トルエンを減圧下留去し、残渣をヘキサン2mLで3回洗浄した後、乾燥し、無色結晶として標記化合物のジアステレオマー混合物として201.3mg(収率62%)を得た。ジアステレオマー比は、64/36であった。
Major:1H-NMR (400 MHz,δ, ppm, CD3C6D5)
1.06-1.92 (m, 44H), 2.55(d, J = 12 Hz, 2H), 2.84(d, J = 12 Hz, 2H), 3.21(d, J = 14 Hz, 2H), 3.37(d, J = 14 Hz, 2H), 6.62 (d, J = 2 Hz, 2H), 6.74-6.81(m, 2H), 7.04-7.12(m, 6H), 7.25(d, J = 8 Hz, 4H), 7.54 (d, J = 2 Hz, 2H).
Minor:1H-NMR (400 MHz,δ, ppm, CD3C6D5)
1.06-1.92 (m, 44H), 2.38(d, J = 12 Hz, 2H), 2.85(d, J = 14Hz, 2H), 2.94(d, J = 12 Hz, 2H), 3.18(d, J = 14 Hz, 2H), 6.59 (d, J = 2 Hz, 2H), 6.74-6.81(m, 2H), 7.04-7.12(m, 6H), 7.31(d, J = 8 Hz, 4H), 7.47 (d, J = 2 Hz, 2H).
(参考例3)
trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの合成
 アルゴン雰囲気下、trans-シクロオクタン-1,2-ジチオール2.18g(12.4mmol)および臭化3,5-ジ-t-ブチル-2-ヒドロキシベンジル7.52g(25.1mmol)をテトラヒドロフラン80mLに溶解し、0℃に冷却した。そこに、トリエチルアミン3.5mL(24.9mmol)を加え、0℃で1時間、さらに室温で終夜攪拌した。生成した沈殿物を濾過して除き、濾液を減圧下濃縮した。得られた残渣にエーテルおよび飽和塩化アンモニウム水溶液を加え、エーテル層を水洗し、無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン-ジクロロメタン 1:1)で精製し、無色結晶として標記化合物6.74g(収率89%)を得た。
融点:122-123℃(ヘキサンより再結晶)
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.12-1.94 (m, 48 H), 2.63-2.65 (m, 2 H), 3.81 (d, J = 13 Hz, 2 H), 3.90 (d, J = 13 Hz, 2 H), 6.92 (d, J = 2 Hz, 2 H), 6.95 (s, 2 H), 7.26 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz,δ, CDCl3)
25.7, 25.8, 29.8, 31.2, 31.6, 34.2, 35.0, 35.4, 49.6, 121.6, 123.7, 125.4, 137.4, 142.0, 152.2. 
元素分析:計算値(C3860)C, 74.45%; H, 9.87%.
実測値:C, 74.39%; H, 10.09%.
(参考例4)
[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウムの合成
 以下の実験はアルゴン雰囲気のグローブボックス中で行った。50mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタン192mg(0.313mmol)をトルエン10mLに溶解し、この溶液に、室温でテトラベンジルジルコニウム170mg(0.313mmol)のトルエン溶液10mLを滴下し、さらに1時間攪拌した。トルエンを減圧下留去し、残渣をヘキサン2mLで洗浄した後、乾燥し、無色結晶として標記化合物209mg(収率69%)を得た。
融点:203℃ 分解
1H-NMR (400 MHz,δ, ppm, C6D6)
1.18-1.94 (m, 48H), 2.35 (m, 2H), 2.61 (d, J = 12 Hz, 2H), 2.88 (d, J = 12 Hz, 2H), 3.13 (d, J = 14 Hz, 2 H), 3.41 (d, J = 14 Hz, 2 H), 6.62 (d, J = 2 Hz, 2H), 6.78 (t, J = 8 Hz, 2H), 7.10 (t, J = 8 Hz, 4H), 7.29 (t, J = 8 Hz, 4H), 7.57 (d, J = 2 Hz, 2H)
13C-NMR (100.4 MHz, δ, ppm, C6D6
25.1, 26.2, 28.8, 30.5, 31.8, 32.1, 34.2, 35.6, 49.1, 77.2, 121.4, 121.8, 124.6, 125.6, 126.0, 129.3, 138.5, 141.1, 148.4, 157.9.
元素分析:計算値(C5272Hf)C, 64.27%; H, 7.47%. 実測値:C, 63.87%; H, 7.59%.
(参考例5)
trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
(1)6-(1-アダマンチル)-2-(ヒドロキシメチル)-p-クレゾールの合成
 窒素置換した1L四口フラスコに、2-(1-アダマンチル)-p-クレゾール20.9g(86.1mmol)、塩化マグネシウム16.4g(172mmol)、パラホルムアルデヒド13.0g(433mmol)およびテトラヒドロフラン400mLを加えた。ここにトリエチルアミン24mL(172mmol)を加え、2.5時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルを加え、1M HCl、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムにより乾燥した後、減圧下で溶媒を留去することで、2-(1-アダマンチル)-5-メチルサリチルアルデヒドを含む混合物19.2gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.78 ~ 2.25 (15H), 2.32(s, 3H), 6.98 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H), 9.82 (s, 1H), 11.64 (s, 1H).
 次いで、窒素置換した500mL四口フラスコに、上記混合物19.2gとテトラヒドロフラン135mLおよびメタノール80mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム1.60g(42.5mmol)をゆっくり加え、室温まで昇温した後、14.5時間撹拌した。減圧下で揮発成分を留去した後、酢酸エチルを加え、1M HCl、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムにより乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:へキサン=1:3~1:0)で精製することで、6-(1-アダマンチル)-2-(ヒドロキシメチル)-p-クレゾール8.80g(収率38%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.78 (m, 6H), 2.01 (br, 1H), 2.07 (m, 3H), 2.15 (m, 6H), 2.25 (s, 3H), 4.81 (d, J = 4 Hz, 2H), 6.70 (d, J = 2 Hz, 1H), 6.99 (d, J = 2 Hz, 1H), 7.50 (s, 1H).
(2)臭化3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルの合成
 窒素置換した200mL四口フラスコに、6-(1-アダマンチル)-2-(ヒドロキシメチル)-p-クレゾール8.80g(32.3mmol)およびジクロロメタン132mLを加えた。ここに、三臭化リン15mL(1.23M ジクロロメタン溶液,18.5mmol)を加え、室温で3.5時間撹拌した。反応溶液を氷水に加え、有機層を水、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジル11.1g(粗収率103%)を淡黄色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.78 (m, 6H), 2.09 (m, 3H), 2.12 (m, 6H), 2.26 (s, 3H), 4.54 (s, 2H), 6.92 (d, J = 2 Hz, 1H), 7.04 (d, J = 2 Hz, 1H).
(3)trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
 窒素置換した200mL四口フラスコに、臭化3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジル7.04g(21.0mmol)およびtrans-シクロオクタン-1,2-ジチオール1.83g(10.4mmol)とテトラヒドロフラン100mLとを加えた。ここに、トリエチルアミン4.3mL(31mmol)を加え、室温で21.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=20:1)で精製することで、trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]シクロオクタンとtrans-1-[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]-2-スルファニルシクロオクタンとの6:1混合物6.61gを得た。この混合物および臭化3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジル1.36g(3.98mmol)をテトラヒドロフラン100mLに溶解し、氷冷した。ここに、トリエチルアミン0.74mL(5.31mmol)を加え、15.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=20:1)で精製し、得られた固体をさらにヘキサンにて室温でリパルプ洗浄することで、trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]シクロオクタン6.08g(収率85%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~2.0 (m, 12H), 1.77 (m, 12H), 2.05 (m, 6H), 2.13 (12H), 2.24 (s, 6H), 2.67 (m, 2H), 3.73 (d, J = 13 Hz, 2H), 3.82 (d, J = 13 Hz, 2H), 6.71 (d, J = 2Hz, 2H), 6.83 (s, 2H), 6.97 (d, J = 2 Hz, 2H).
(参考例6)
{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの合成
 窒素雰囲気下のグローブボックス中、50mLシュレンク管でtrans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-ヒドロキシベンジルスルファニル]シクロオクタン200mg(0.29mmol)のトルエン(6mL)溶液に、テトラベンジルハフニウム159mg(0.29mmol)のトルエン(6mL)溶液を室温で滴下した。1.5時間後、反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウム249mg(収率82%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, トルエン-d8)
0.6~1.4 (m, 12H), 1.84 (m, 6 H), 2.1~2.2 (16H), 2.17 (s, 6H), 2.41 (m, 12H), 2.66 (d, J = 12 Hz, 2H), 2.83 (d, J = 12 Hz, 2H), 3.11 (d, J = 14 Hz, 2H), 3.51 (d, J = 14 Hz, 2H), 6.27 (s, 2H), 6.78 (t, J = 7 Hz, 2H), 7.1~7.2 (10H).
(参考例7)
trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
(1)4-tert-ブチル-2-クミルフェノールの合成
 窒素置換した200mL二口フラスコに、4-tert-ブチルフェノール12.7g(84.6mmol)、α-メチルスチレン5.5mL(42mmol)およびシクロヘキサン100mLを加え、50℃まで昇温した。ここに、p-トルエンスルホン酸73mg(0.42mmol)を加え、4時間撹拌した。反応溶液を室温まで冷却した後、水およびジクロロメタンを加えた。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:ヘプタン=1:3)で精製することで、4-tert-ブチル-2-クミルフェノール8.06g(収率71%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 9H), 1.69 (s, 6H), 4.17(s, 1H), 6.68 (d, J = 8 Hz, 1H), 7.19 (dd, J = 2 Hz, 8 Hz, 1H), 7.2~7.3 (5H), 7.48 (d, J = 2 Hz, 1H).
13C{1H}-NMR (100.4 MHz,δ, ppm, CDCl3)
29.6, 31.6, 34.3, 41.8, 117.1, 123.1, 124.7, 126.0, 126.9, 129.1, 134.5, 143.1, 148.5, 151.4.
(2)4-tert-ブチル-6-クミル-2-(ヒドロキシメチル)フェノールの合成 窒素置換した200mL二口フラスコに、4-tert-ブチル-2-クミルフェノール7.25g(23.3mmol,純度86.3%)、塩化マグネシウム4.44g(46.6mmol)、パラホルムアルデヒド3.50g(117mmol)およびテトラヒドロフラン145mLを加えた。ここにトリエチルアミン6.5mL(47mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-クミルサリチルアルデヒド(純度79.9%,収率93%)を含む混合物8.05gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.42 (s, 9H), 1.74(s, 6H), 7.1~7.4(5H), 7.39 (d, J = 2 Hz, 1H), 7.74 (d, J = 2 Hz, 1H), 9.81 (s, 1H), 11.2 (s, 1H).
 次いで、窒素置換した100mLフラスコに、上記混合物8.05gおよびテトラヒドロフラン40mLとメタノール40mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム340mg(8.97mmol)をゆっくり加え、室温まで昇温した後、7時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:15~1:5)により精製することで、4-tert-ブチル-6-クミル-2-(ヒドロキシメチル)フェノール4.88g(収率75%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.34 (s, 9H), 1.70 (s, 6H), 2.16 (t, J = 6 Hz, 1H), 4.65 (d, J = 6 Hz, 2H), 5.56 (s,1H),7.09 (d, J = 2 Hz, 1H), 7.2~7.4(5H), 7.45 (d, J = 2 Hz, 1H).
(3)臭化5-tert-ブチル-3-クミル-2-ヒドロキシベンジルの合成
 窒素置換した50mLシュレンクに、4-tert-ブチル-6-クミル-2-(ヒドロキシメチル)フェノール4.88g(16.4mmol)およびジクロロメタン24mLを加えた。ここに、三臭化リン8.2mL(1.0M ジクロロメタン溶液,8.2mmol)を加え、室温で1.5時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化5-tert-ブチル-3-クミル-2-ヒドロキシベンジル5.76g(収率98%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 9H), 1.69 (s, 6H), 4.47 (s, 2H), 7.24 (d, J = 2 Hz, 1H), 7.2~7.4(5H), 7.48 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
 窒素置換した100mL二口フラスコに、臭化5-tert-ブチル-3-クミル-2-ヒドロキシベンジル2.85g(7.89mmol)とtrans-シクロオクタン-1,2-ジチオール7.6mL(0.5M テトラヒドロフラン溶液,3.8mmol)およびテトラヒドロフラン21mLとを加え、氷冷した。ここに、トリエチルアミン1.1mL(7.9mmol)を加え、0℃で1時間、さらに室温で2時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層を水、飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:へキサン=1:1)で精製することで、trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタンとtrans-1-(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)-2-スルファニルシクロオクタンとの2:1混合物2.26gを得た。この混合物をテトラヒドロフラン4mLに溶解し、臭化5-tert-ブチル-3-クミル-2-ヒドロキシベンジル0.42g(1.2mmol)およびトリエチルアミン0.2mL(1.4mmol)を室温で加えた。2時間撹拌した後、減圧下で揮発成分を留去した。得られた反応混合物に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに水、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:へキサン=1:1)により精製することで、trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタン2.30g(収率89%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 18H), 1.68(s, 6H), 1.69 (s, 6H), 1.13~1.79 (m, 12H), 2.55 (m, 2H), 3.64 (d, J = 14 Hz, 2H), 3.68 (d, J = 14 Hz, 2H), 5.77 (s, 2H), 7.03 (d, J = 2 Hz, 2H), 7.13~7.26 (10H), 7.39 (d, J = 2 Hz, 2H).
13C{1H}-NMR (100.4 MHz,δ, ppm, CDCl3)
25.8, 25.9, 29.4, 30.0, 31.0, 31.6, 34.0, 34.3, 42.1, 49.9, 123.1, 123.4, 125.67, 125.74, 126.0, 128.2, 136.1, 142.1, 150.2, 150.8.
(参考例8)
[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルハフニウムの合成
 窒素雰囲気下のグローブボックス中、50mLシュレンク管で、trans-1,2-ビス(5-tert-ブチル-3-クミル-2-ヒドロキシベンジルスルファニル)シクロオクタン200mg(0.27mmol)のトルエン(5mL)溶液に、テトラベンジルハフニウム147mg(0.27mmol)のトルエン(5mL)溶液を室温で滴下した。1時間後、反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルハフニウム215mg(収率72%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, トルエン-d8)
0.86~1.4 (m, 12H), 1.20 (s, 18H), 1.44 (d, J = 12 Hz, 2H), 1.85 (d, J = 12 Hz, 2H), 1.92 (s, 6H), 1.94 (s, 6H), 2.21 (m, 2H), 3.04 (d, J = 14 Hz, 2H), 3.13 (d, J = 14 Hz, 2H), 6.62 (d, J = 8 Hz, 2H), 6.74 (t, J = 8 Hz, 2H), 6.89 (d, J = 8 Hz, 4H), 7.05-7.16 (4H), 7.25 (t, J = 8 Hz, 4H), 7.40 (d, J = 8 Hz, 4H), 7.52 (d, J = 2 Hz, 2H).
(参考例9)
trans-1,2-ビス[5-tert-ブチル-3-(1,1-ジフェニルエチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(1,1-ジフェニルエチル)フェノールの合成
 窒素置換した200mL二口フラスコに、4-tert-ブチルフェノール6.25g(41.6mmol)、1,1-ジフェニルエチレン4.9mL(28mmol)およびシクロヘキサン100mLを加え、50℃まで昇温した。ここに、FeCl0.45g(2.8mmol)を加え、7時間撹拌した。反応溶液を室温まで冷却した後、水およびジクロロメタンを加えた。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた褐色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘプタン=30:1)により精製することで、4-tert-ブチル-2-(1,1-ジフェニルエチル)フェノール4.71g(収率51%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.17 (s, 9H), 2.22 (s, 3H), 4.35(s, 1H), 6.73 (d, J = 8 Hz, 1H), 6.88 (d, J = 2 Hz, 1H), 7.1~7.3 (11H).
13C{1H}-NMR (100.4 MHz,δ, ppm, CDCl3)
28.8, 31.4, 34.1, 51.3, 117.1, 124.9, 126.5, 126.7, 128.3, 128.5, 133.7, 143.0, 146.6, 151.6.
(2)4-tert-ブチル-6-(1,1-ジフェニルエチル)-2-(ヒドロキシメチル)フェノールの合成
 窒素置換した200mL二口フラスコに、5-tert-ブチル-2-(1,1-ジフェニルエチル)フェノール4.60g(13.9mmol)、塩化マグネシウム3.98g(41.8mmol)、パラホルムアルデヒド2.09g(69.6mmol)およびテトラヒドロフラン92mLを加えた。ここにトリエチルアミン3.9mL(28mmol)を加え、2時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、4-tert-ブチル-3-(1,1-ジフェニルエチル)サリチルアルデヒドを含む混合物5.1gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.14(s, 9H), 1.55 (s, 3H), 6.6~7.4 (12H), 9.88 (s, 1H), 11.45 (s, 1H).
 次いで、窒素置換した50mLフラスコに、上記混合物5.1gとテトラヒドロフラン26mLおよびメタノール26mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム0.27g(7.1mmol)をゆっくり加え、室温まで昇温した後、終夜撹拌した。減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:15~1:5)で精製することにより、4-tert-ブチル-6-(1,1-ジフェニルエチル)-2-(ヒドロキシメチル)フェノール4.35g(収率85%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.14 (s, 9H), 2.18 (t, J = 6 Hz, 1H), 2.26 (s, 3H), 4.73 (d, J = 6 Hz, 2H), 5.99 (s,1H),6.76 (d, J = 2 Hz, 1H), 7.07 (d, J = 2 Hz, 1H), 7.1~7.3 (10H).
(3)臭化5-tert-ブチル-3-(1,1-ジフェニルエチル)-2-ヒドロキシベンジルの合成
 窒素置換した50mLシュレンクに、4-tert-ブチル-6-(1,1-ジフェニルエチル)-2-(ヒドロキシメチル)フェノール4.35g(12.1mmol)およびジクロロメタン22mLを加えた。ここに、三臭化リン12.1mL(1.0M ジクロロメタン溶液,12.1mmol)を加え、室温で1.5時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化5-tert-ブチル-3-(1,1-ジフェニルエチル)-2-ヒドロキシベンジル4.51g(収率88%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.17 (s, 9H), 2.21 (s, 3H), 4.54 (s, 2H), 6.87 (d, J = 2 Hz, 1H), 7.2~7.3(m, 11H).
(4)trans-1,2-ビス[5-tert-ブチル-3-(1,1-ジフェニルエチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
 窒素置換した100mL二口フラスコに、臭化5-tert-ブチル-3-(1,1-ジフェニルエチル)-2-ヒドロキシベンジル0.55g(1.3mmol)と、trans-シクロオクタン-1,2-ジチオール1.2mL(0.5M テトラヒドロフラン溶液,0.6mmol)と、テトラヒドロフラン21mLとを加えた。ここに、トリエチルアミン0.17mL(1.2mmol)を加え、室温で2時間撹拌した。減圧下で揮発成分を留去した後、酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層を水、飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:へキサン=1:1)で精製することにより、trans-1,2-ビス[5-tert-ブチル-3-(1,1-ジフェニルエチル)-2-ヒドロキシベンジルスルファニル]シクロオクタン0.50g(純度83%,収率78%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.10 (s, 18H), 2.26 (s, 6H), 1.2~1.9 (m, 12H), 2.68 (m, 2H), 3.74 (d, J = 14 Hz, 2H), 3.79 (d, J = 14 Hz, 2H), 6.07 (s, 2H), 6.64 (d, J = 2 Hz, 2H), 7.02 (d, J = 2 Hz, 2H),7.16~7.31 (20H).
(参考例10)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(1,1-ジフェニルエチル)-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの合成
 窒素雰囲気下のグローブボックス中、50mLシュレンク管に、trans-1,2-ビス[5-tert-ブチル-3-(1,1-ジフェニルエチル)-2-ヒドロキシベンジルスルファニル]シクロオクタン50mg(純度83%,0.06mmol)およびテトラベンジルハフニウム32mg(0.06mmol)を仕込み、ここにトルエン1.2mLを加え室温で撹拌した。1時間後、反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(1,1-ジフェニルエチル)-2-オキソイルベンジルスルファニル]}ジベンジルハフニウム36mg(収率51%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, トルエン-d8)
0.80~1.69 (m, 12H), 1.04 (s, 18H), 1.69 (s, 4H), 2.32 (m, 2H), 2.62 (s, 6H), 3.13 (d, J = 14 Hz, 2H), 3.22 (d, J = 14 Hz, 2H), 6.61 (d, J = 8 Hz, 2H), 6.73 (d, J = 2Hz, 2H), 6.78 (t, J = 8 Hz, 2H), 6.89 (d, J = 8 Hz, 4H), 7.1~7.3 (14H).
(参考例11)
trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(トリフェニルメチル)ベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(トリフェニルメチル)フェノールの合成
 窒素置換した100mLシュレンク管に、4-tert-ブチルフェノール3.23g(21.5mmol)およびトリフェニルメチルクロリド2.00g(7.17mmol)を加え、200℃まで昇温した。1.5時間後、反応混合物を室温まで冷却した後、得られた固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:20)で精製することにより、4-tert-ブチル-2-(トリフェニルメチル)フェノール1.28g(収率45%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.13 (s, 9H), 4.32 (s, 1H), 6.76 (d, J = 8 Hz, 1H), 7.07 (d, J = 2 Hz, 1H), 7.2~7.3 (16H).
(2)4-tert-ブチル-2-ヒドロキシメチル-6-(トリフェニルメチル)フェノールの合成
 窒素置換した100mL二口フラスコに、4-tert-ブチル-2-(トリフェニルメチル)フェノール1.20g(3.06mmol)、塩化マグネシウム0.58g(6.1mmol)、パラホルムアルデヒド0.46g(15mmol)およびテトラヒドロフラン24mLを加えた。ここにトリエチルアミン0.85mL(6.1mmol)を加え、8時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-(トリフェニルメチル)サリチルアルデヒド(純度85.1%,収率90%)を含む混合物1.36gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.19(s, 9H), 7.1~7.4 (15H), 7.44 (d, J = 2 Hz, 1H), 7.60 (d, J = 2 Hz, 1H), 9.84 (s, 1H), 11.18 (s, 1H).
 次いで、窒素置換した50mLフラスコに、上記混合物1.36gとテトラヒドロフラン7mLおよびメタノール7mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム0.14g(3.8mmol)をゆっくり加え、室温まで昇温した後、2.5時間撹拌した。減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、4-tert-ブチル-2-ヒドロキシメチル-6-(トリフェニルメチル)フェノール1.36g(収率99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.15 (s, 9H), 2.04 (s, 1H), 4.65 (s, 2H), 5.18 (s,1H), 7.07 (d, J = 2 Hz, 1H), 7.1~7.3 (15H).
(3)臭化5-tert-ブチル-2-ヒドロキシ-3-(トリフェニルメチル)ベンジルの合成
 窒素置換した50mLシュレンクに、4-tert-ブチル-2-ヒドロキシメチル-6-(トリフェニルメチル)フェノール1.35g(3.19mmol)およびジクロロメタン7mLを加えた。ここに、三臭化リン1.6mL(1.0M ジクロロメタン溶液,1.6mmol)を加え、室温で1.5時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化5-tert-ブチル-2-ヒドロキシ-3-(トリフェニルメチル)ベンジル1.43g(収率92%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.15 (s, 9H), 4.50 (s, 2H), 7.1~7.3(m, 17H).
(4)trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(トリフェニルメチル)ベンジルスルファニル]シクロオクタンの合成
 窒素置換した100mL二口フラスコに、臭化5-tert-ブチル-2-ヒドロキシ-3-(トリフェニルメチル)ベンジル1.43g(2.94mmol)と、trans-シクロオクタン-1,2-ジチオール2.8mL(0.5M テトラヒドロフラン溶液,1.4mmol)と、テトラヒドロフラン11mLとを加えた。ここに、トリエチルアミン0.39mL(2.8mmol)を加え、室温で2時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層を水、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:へキサン=1:1)で精製することにより、trans-1,2-ビス(5-tert-ブチル-2-ヒドロキシ-3-(トリフェニルメチル)ベンジルスルファニル)シクロオクタンとtrans-1-(5-tert-ブチル-2-ヒドロキシ-3-(トリフェニルメチル)ベンジルスルファニル)-2-スルファニルシクロオクタンとの1:1混合物1.12gを得た。この混合物をテトラヒドロフラン8mLに溶解し、5-tert-ブチル-3-クミル-2-ヒドロキシベンジル0.42g(0.87mmol)およびトリエチルアミン0.18mL(1.3mmol)を室温で加えた。2時間撹拌した後、減圧下で揮発成分を留去した。得られた反応混合物に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに水、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られたオイルをシリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン:へキサン=1:1)で精製することにより、trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(トリフェニルメチル)ベンジルスルファニル]シクロオクタン1.36g(収率98%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.12 (s, 18H), 1.1~1.8 (m, 12H), 2.63 (m, 2H), 3.69 (s, 4H), 5.44 (s, 2H), 7.05 (d, J = 2 Hz, 2H), 7.1~7.3 (m, 32H).
(参考例12)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジベンジルハフニウムの合成
 窒素雰囲気下のグローブボックス中、50mLシュレンク管で、trans-1,2-ビス(5-tert-ブチル-2-ヒドロキシ-3-(トリフェニルメチル)ベンジルスルファニル)シクロオクタン200mg(0.20mmol)のトルエン(4mL)溶液に、テトラベンジルハフニウム110mg(0.14mmol)のトルエン(4mL)溶液を室温で滴下した。7時間後、反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジベンジルハフニウム145mg(収率53%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, トルエン-d8)
0.63~1.43 (m, 12H), 1.14 (s, 18H), 1.49 (d, J = 12 Hz, 2H), 1.54 (d, J = 12 Hz, 2H), 2.03 (m, 2H), 3.05 (d, J = 14 Hz, 2H), 3.34 (d, J = 14 Hz, 2H), 6.70 (d, J = 8Hz, 4H), 6.76 (d, J = 2Hz, 2H), 6.81 (t, J = 8 Hz, 2H), 7.0~7.7 (26H).
(参考例13)
trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(3, 5-ジメチル-1-アダマンチル)フェノールの合成
 窒素置換した50mLシュレンクに、4-tert-ブチルフェノール3.3g(22mmol)、3,5-ジメチル-1-アダマンタノール 4.0g(22mmol)およびジクロロメタン20mLを加え、氷浴で0℃まで冷却した。ここに硫酸 1.2mL(22mmol)を加え、室温で1時間撹拌した。反応溶液を炭酸水素ナトリウム水溶液に注いだ。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで4-tert-ブチル-2-(3, 5-ジメチル-1-アダマンチル)フェノール 4.0g(収率 59%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.874 (s, 6H), 1.20 (s, 2H), 1.29 (s, 9H), 1.35~1.45 (m, 4H), 1.70~1.78 (m, 4H), 1.95 (m,2H), 2.17 (m, 1H), 4.56 (s, 1H), 6.56 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.24 (d, J = 2 Hz, 1H).
(2)4-tert-ブチル-6-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシメチルフェノールの合成
 窒素置換した100mL二口フラスコに、4-tert-ブチル-2-(3, 5-ジメチル-1-アダマンチル)フェノール4.0g(13mmol)、塩化マグネシウム4.8g(50mmol)、パラホルムアルデヒド2.1g(70mmol)およびテトラヒドロフラン50mLを加えた。ここにトリエチルアミン6.7mL(48mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)サリチルアルデヒド(収率96%)を含む混合物4.2gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.874 (s, 6H), 1.2~2.2 (m, 22H), 7.32 (d, J = 2 Hz, 1H), 7.53 (d, J = 2 Hz, 1H), 9.85 (s, 1H), 11.7 (s, 1H).
 窒素置換した100mLフラスコに、上記混合物4.2gとテトラヒドロフラン20mLおよびメタノール20mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム490mg(13mmol)をゆっくり加え、室温まで昇温後、1時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10~1:5)で精製することで4-tert-ブチル-6-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシメチルフェノール3.4g(収率81%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.875 (s, 6H), 1.2~2.2 (m, 23H), 4.85 (d, J = 5 Hz, 2H), 6.88 (d, J = 2 Hz, 1H), 7.22 (d, J = 2 Hz, 1H), 7.55 (s, 1H).
(3)臭化 5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルの合成
 窒素置換した200mLフラスコに、4-tert-ブチル-6-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシメチルフェノール3.4g(9.9mmol)とジクロロメタン20mLを加えた。ここに、三臭化リン6.6mL(1.0M ジクロロメタン溶液,6.6 mmol)を加え、室温で1時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジル3.95g(収率 98%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.882 (s, 6H), 1.22 (s, 2H), 1.28 (s, 9H), 1.35~1.45 (m, 4H), 1.70~1.78 (m, 4H), 1.96 (m,2H), 2.19 (m, 1H), 4.57 (s, 1H), 7.08 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス(5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
 窒素置換した50mLシュレンクに、臭化 5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジル1.0g(2.5mmol)、trans-シクロオクタン-1,2-ジチオール0.18g(1.0mmol)およびテトラヒドロフラン 7mLを加え、氷冷した。ここに、トリエチルアミン0.7mL(5.0mmol)を加え、0℃で1時間、室温で2時間撹拌した。さらに臭化 5-tert-ブチル-2-ヒドロキシ-3-(3, 5-ジメチル-1-アダマンチル)ベンジル0.05g(0.013mmol)を加え、室温で1時間攪拌した。反応溶液から減圧下で揮発成分を留去した後、酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層を水、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10)で精製することで、trans-1,2-ビス(5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル)シクロオクタン1.0g(収率 >99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.88 (s, 12H), 1.2~2.2 (m, 56H), 2.59 (m, 2H), 3.77 (d, J = 14 Hz, 2H), 3.87 (d, J = 14 Hz, 2H), 6.89 (d, J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H).
(参考例14)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3- (3, 5-ジメチル-1-アダマンチル) -2-オキソイルベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-ヒドロキシベンジルスルファニル)シクロオクタン 83 mg(0.10 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}51 mg(0.10 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3- (3, 5-ジメチル-1-アダマンチル) -2-オキソイルベンジルスルファニル]}ジクロロハフニウム 55 mg (収率 51%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.901 (s, 12H), 1.0~2.4 (m, 56H), 2.58 (brs, 2H), 3.88 (d, J = 14 Hz, 2H), 4.54 (d, J = 14 Hz, 2H), 6.85 (d, J = 2 Hz, 2H), 7.37 (d, J = 2 Hz, 2H).
(参考例15)
trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(2-フェニル-2-ブチル)フェノールの合成
 窒素置換した50 mLシュレンクに、4-tert-ブチルフェノール6.6 g(44 mmol)、2-フェニル-2-ブタノール 3.4 mL(22 mmol)およびヘプタン20 mLを加え、80℃まで加熱した。ここにp-トルエンスルホン酸一水和物73mg(0.38 mmol)を加え、100℃で11.5時間撹拌した。反応溶液に水および酢酸エチルを加えた。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで4-tert-ブチル-2-(2-フェニル-2-ブチル)フェノール 4.4 g(収率 71%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.683 (t, J = 7Hz, 3H), 1.35 (s, 9H), 1.61 (s, 3H), 2.02-2.26 (m, 2H), 4.18 (s, 1H), 6.66 (d, J = 8 Hz, 1H), 7.15~7.38 (m, 6H), 7.44 (d, J = 2 Hz, 1H).
(2)4-tert-ブチル-6-(2-フェニル-2-ブチル)-2-ヒドロキシメチルフェノールの合成
 窒素置換した500mLフラスコに、4-tert-ブチル-2-(2-フェニル-2-ブチル)フェノール3.0 g(11 mmol,)、塩化マグネシウム4.0 g(41 mmol)、パラホルムアルデヒド1.8 g(60 mmol)およびテトラヒドロフラン45 mLを加えた。ここにトリエチルアミン5.6 mL(41 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-(2-フェニル-2-ブチル)サリチルアルデヒド(収率77%)を含む混合物2.7 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.882 (t, J = 7 Hz, 3H), 1.34~1.55(m, 11H), 1.83 (s, 6H), 7.2~7.9 (m, 7H), 9.82 (s, 1H), 11.2 (s, 1H).
 窒素置換した200mLフラスコに、上記混合物 2.7 gとテトラヒドロフラン15 mLおよびメタノール15 mLとを加えた。ここに水素化ホウ素ナトリウム 340 mg(8.9 mmol)をゆっくり加え、室温まで昇温後、1時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10~1:3)で精製することで4-tert-ブチル-6-(2-フェニル-2-ブチル)-2-ヒドロキシメチルフェノール2.1 g(収率 79%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.685 (t, J = 8 Hz, 3H), 1.34 (s, 9H), 1.62 (s, 6H), 2.0~2.4 (m, 3H), 4.62 (d, J = 6 Hz, 2H), 5.38 (s, 1H), 7.0~7.5 (m, 7H).
(3)臭化 5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルの合成
 窒素置換した500mLフラスコに、4-tert-ブチル-6-(2-フェニル-2-ブチル)-2-ヒドロキシメチルフェノール2.1 g(6.7 mmol)およびジクロロメタン15 mLを加えた。ここに、三臭化リン4.5 mL(1.0 M ジクロロメタン溶液, 4.5 mmol)を加え、室温で1時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジル2.5 g(収率 >99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.669(t, J = 8 Hz, 3H), 1.35 (s, 9H), 1.61 (s, 6H), 2.0~2.3 (m, 2H), 4.46 (m, 2H), 7.2~7.5 (m, 7H).
(4)trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
 窒素置換した50 mLフラスコに、臭化 5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジル0.94 g(2.5 mmol)、trans-シクロオクタン-1,2-ジチオール 90 mg(0.50 mmol)およびテトラヒドロフラン 7 mLを加え、氷冷した。ここに、トリエチルアミン 0.70 mL(5.1 mmol)を加え、0℃で1時間、室温で1時間撹拌した。更にtrans-シクロオクタン-1,2-ジチオール 90 mg(0.50 mmol)を加え、室温で1時間攪拌した。減圧下で揮発成分を留去し、得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10)で精製することで、trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタン 0.8 g(収率 >99%)を淡黄色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.663 (t, J = 8 Hz, 3H), 1.1~2.6 (m, 48H), 3.65 (m, 4H), 5.60~5.71 (m, 2H), 7.0~7.4 (m, 14H).
(参考例16)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタン 150 mg(0.20 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}110 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム 97 mg (収率48%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.7~2.2 (m, 46H), 2.47 (m, 1H), 3.20 (m, 1H), 3.54 (m, 2H), 4.08 (m, 2H), 6.82 (s, 2H), 7.0~7.5 (m, 10H).
(参考例17)
trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
(1)2-tert-アミル-4-tert-ブチルフェノールの合成
 窒素置換した50 mLシュレンクに、4-tert-ブチルフェノール3.3 g(22 mmol)、tert-アミルアルコール 2.4 mL(22 mmol)およびジクロロメタン20 mLを加え、氷浴で0℃まで冷却した。ここに硫酸 1.2 mL(22 mmol)を加え、室温で20分間撹拌した。反応溶液を炭酸水素ナトリウム水溶液に注いだ。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで2-tert-アミル-4-tert-ブチルフェノール 3.7 g(収率 75%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.682 (t, J = 8 Hz, 3H), 1.29 (s, 9H), 1.37 (s, 6H), 1.84 (q, J = 8 Hz, 2H), 4.57 (s, 1H), 6.57 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.23 (d, J = 2 Hz, 1H).
(2)6-tert-アミル-4-tert-ブチル-2-ヒドロキシメチルフェノールの合成
 窒素置換した200mL四口フラスコに、2-tert-アミル-4-tert-ブチルフェノール3.7 g(17 mmol,)、塩化マグネシウム3.2 g(33 mmol)、パラホルムアルデヒド2.5 g(83 mmol)およびテトラヒドロフラン75 mLを加えた。ここにトリエチルアミン4.6 mL(33 mmol)を加え、1.5時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、3-tert-アミル-5-tert-ブチルサリチルアルデヒド(収率94%)を含む混合物3.9 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.648 (t, J = 8 Hz, 3H), 1.28 (s, 9H), 1.37 (s, 6H), 1.90 (q, J = 8 Hz, 2H), 7.33 (d, J = 2 Hz, 1H), 7.54 (d, J = 2 Hz, 1H), 9.86 (s, 1H), 11.6 (s, 1H).
 窒素置換した200mL四口フラスコに、上記混合物 3.9 gとテトラヒドロフラン40 mLおよびメタノール20 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 360 mg(9.5 mmol)をゆっくり加え、室温まで昇温後、15時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20~1:9)で精製することで6-tert-アミル-4-tert-ブチル-2-ヒドロキシメチルフェノール2.4 g(収率 61%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.681 (t, J = 7 Hz, 3H), 1.28 (s, 9H), 1.38 (s, 6H), 1.90 (q, J = 7 Hz, 2H), 4.84 (s, 2H), 6.88 (d, J = 2 Hz, 1H), 7.21 (d, J = 2 Hz, 1H), 7.48 (s, 1H).
(3)臭化 3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルの合成
 窒素置換した200mL四口フラスコに、6-tert-アミル-4-tert-ブチル-2-ヒドロキシメチルフェノール2.4 g(9.4 mmol)とジクロロメタン40 mLを加えた。ここに、三臭化リン5.7 mL(1.0 M ジクロロメタン溶液, 5.7 mmol)を加え、室温で3.5時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジル3.2 g(収率>99%)を淡黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.676 (t, J = 8 Hz, 3H), 1.29 (s, 9H), 1.37 (s, 6H), 1.86 (q, J = 7 Hz, 2H), 4.58 (s, 2H), 7.09 (d, J = 2 Hz, 1H), 7.26 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
 窒素置換した50 mL四口フラスコに、臭化 3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジル 1.4 g(4.5 mmol)、trans-シクロオクタン-1,2-ジチオール 0.40 g(2.2 mmol)およびテトラヒドロフラン 22 mLを加え、氷冷した。ここに、トリエチルアミン 1.0 mL(7.2 mmol)を加え、室温で22.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20)で精製することで、trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタンとtrans-1-(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)-2-スルファニルシクロオクタンとの6:1混合物1.5 gを得た。この混合物および臭化 3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジル0.20 g(0.64 mmol)をテトラヒドロフラン100 mLに溶解し、氷冷した。ここに、トリエチルアミン0.12 mL(0.86 mmol)を加え、22.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:40)で精製することで、trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタン1.5 g(収率 >99%)を黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.649 (t, J = 8 Hz, 6H), 1.1~2.0 (m, 46H), 2.64 (m, 2H), 3.81 (d, J = 13 Hz, 2H), 3.90 (d, J = 13 Hz, 2H), 6.90 (d, J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H).
(参考例18)
[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-オキソイルベンジルスルファニル)]ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-ヒドロキシベンジルスルファニル)シクロオクタン 130 mg(0.20 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}100 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-オキソイルベンジルスルファニル)]ジクロロハフニウム 130 mg (収率 69%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.702 (t, J = 7 Hz, 6H), 1.1~2.3 (m, 46H), 2.60 (brs, 2H), 3.87 (d, J = 14 Hz, 2H), 4.49 (d, J = 14 Hz, 2H), 6.86 (d, J = 2 Hz, 2H), 7.33 (d, J = 2 Hz, 1H).
(参考例19)
trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(1-メチル-1-ナフチルエチル)フェノールの合成
 窒素置換した50 mLシュレンクに、4-tert-ブチルフェノール6.6 g(44 mmol)、p-トルエンスルホン酸一水和物73mg(0.38 mmol)およびヘプタン20 mLを加え、100℃まで加熱した。ここにイソプロペニルナフタレン 3.7 g(22 mmol)をヘプタン5 mLに溶解した溶液を滴下し、室温で1時間撹拌した。反応溶液を炭酸水素ナトリウム水溶液に注いだ。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで4-tert-ブチル-2-(1-メチル-1-ナフチルエチル)フェノール 3.0 g(収率 43%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.38 (s, 9H), 1.79 (s, 6H), 4.34 (s, 1H), 6.66 (d, J = 8 Hz, 1H), 7.19~7.30 (m, 2H), 7.44~7.54 (m, 3H), 7.75~7.92 (m, 4H).
(2)4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチル-1-ナフチルエチル)フェノールの合成
 窒素置換した500mLフラスコに、4-tert-ブチル-2-(1-メチル-1-ナフチルエチル)フェノール1.7 g(5.4 mmol,)、塩化マグネシウム2.0 g(20 mmol)、パラホルムアルデヒド0.9 g(30 mmol)およびテトラヒドロフラン20 mLを加えた。ここにトリエチルアミン2.8 mL(20 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-(1-メチル-1-ナフチルエチル)サリチルアルデヒド(収率73%)を含む混合物4.0 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.37 (s, 9H), 1.83 (s, 6H), 4.34 (s, 1H), 7.2~7.9 (m, 9H), 9.82 (s, 1H), 11.2 (s, 1H).
 窒素置換した200mLフラスコに、上記混合物 1.4 gとテトラヒドロフラン10 mLおよびメタノール10 mLとを加えた。ここに水素化ホウ素ナトリウム 160 mg(4.2 mmol)をゆっくり加え、室温まで昇温後、1時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10~1:3)で精製することで4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチル-1-ナフチルエチル)フェノール1.3 g(収率 91%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.37 (s, 9H), 1.80 (s, 6H), 2.08 (t, J = 6 Hz, 1H), 4.62 (d, J = 6 Hz, 2H), 5.60 (s, 1H), 7.1~7.9 (m, 9H).
(3)臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルの合成
 窒素置換した500mLフラスコに、4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチル-1-ナフチルエチル)フェノール1.3 g(3.6 mmol)およびジクロロメタン10 mLを加えた。ここに、三臭化リン2.7 mL(1.0 M ジクロロメタン溶液, 2.7 mmol)を加え、室温で2時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジル1.5 g(収率 >99%)を淡黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.30 (s, 9H), 1.79 (s, 6H), 4.43 (s, 2H), 7.2~8.0 (m, 9H).
(4)trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルスルファニル]シクロオクタンの合成
 窒素置換した50 mLフラスコに、臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジル1.1 g(2.5 mmol)、trans-シクロオクタン-1,2-ジチオール 0.18 g(1.0 mmol)およびテトラヒドロフラン 7 mLを加え、氷冷した。ここに、トリエチルアミン 0.70 mL(5.1 mmol)を加え、0℃で1時間、室温で2時間撹拌した。減圧下で揮発成分を留去し、得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:10)で精製することで、trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルスルファニル]シクロオクタン 0.9 g(収率 >99%)を淡黄色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.8~1.8 (m, 42H), 2.46 (m, 2H), 2.51 (m, 4H), 3.51 (m, 4H), 5.72 (s, 2H), 6.99 (d, J = 2 Hz, 2H), 7.20~7.23 (m, 2H), 7.35~7.44 (m, 6H), 7.60~7.89 (m, 8H).
(参考例20)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-2-ヒドロキシ-3-(1-メチル-1-ナフチルエチル)ベンジルスルファニル)シクロオクタン 170 mg(0.20 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}100 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウム 110 mg (収率 51%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.50~2.2 (m, 56H), 2.48 (d, J = 14 Hz, 2H), 3.28 (d, J = 14 Hz, 2H), 6.58 (s, 2H), 6.97 (d, J = 8 Hz, 2H), 7.3-7.5 (m, 6H), 7.59 (s, 2H), 7.68 (d, J = 6 Hz, 2H), 7.84 (d, J = 7 Hz, 2H), 8.10 (s, 2H).
(参考例21)
trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(1-メチルシクロヘキシル)フェノールの合成
 窒素置換した50 mLシュレンクに、4-tert-ブチルフェノール3.3 g(22 mmol)、1-メチルシクロヘキサノール 2.7 mL(22 mmol)およびジクロロメタン20 mLを加え、氷浴で0℃まで冷却した。ここに硫酸 1.2 mL(22 mmol)を加え、室温で20分間撹拌した。反応溶液を炭酸水素ナトリウム水溶液に注いだ。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで4-tert-ブチル-2-(1-メチルシクロヘキシル)フェノール 3.8 g(収率 70%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~1.8 (m, 20H), 2.19 (m, 2H), 4.60 (s, 1H), 6.58 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.31 (d, J = 2 Hz, 1H).
(2)4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチルシクロヘキシル)フェノールの合成
 窒素置換した200mL四口フラスコに、4-tert-ブチル-2-(1-メチルシクロヘキシル)フェノール3.8 g(16 mmol)、塩化マグネシウム3.0 g(31 mmol)、パラホルムアルデヒド2.3 g(78 mmol)およびテトラヒドロフラン70 mLを加えた。ここにトリエチルアミン4.3 mL(31 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-(1-メチルシクロヘキシル)サリチルアルデヒド(収率91%)を含む混合物4.0 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~1.8 (m, 20H), 2.20 (m, 2H), 7.33 (d, J = 2 Hz, 1H), 7.61 (d, J = 2 Hz, 1H), 9.86 (s, 1H), 11.7 (s, 1H).
 窒素置換した200mL四口フラスコに、上記混合物 4.0 gとテトラヒドロフラン40 mLおよびメタノール20 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 330 mg(8.7 mmol)をゆっくり加え、室温まで昇温後、15時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:9)で精製することで4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチルシクロヘキシル)フェノール2.4 g(収率 61%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~1.8 (m, 20H), 2.16 (brs, 1H), 2.19 (m, 2H), 4.84 (s, 2H), 6.88 (d, J = 2 Hz, 1H), 7.30 (d, J = 2 Hz, 1H), 7.52 (s, 1H).
(3)臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルの合成
 窒素置換した200mL四口フラスコに、4-tert-ブチル-2-ヒドロキシメチル-6-(1-メチルシクロヘキシル)フェノール2.4 g(8.8 mmol)およびジクロロメタン40 mLを加えた。ここに、三臭化リン5.3 mL(1.0 M ジクロロメタン溶液, 5.3 mmol)を加え、室温で3.5時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジル3.8 g(収率 >99%)を淡黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~1.8 (m, 20H), 2.18 (m, 2H), 4.58 (s, 2H), 7.08 (d, J = 2 Hz, 1H), 7.35 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタンの合成
 窒素置換した50 mL四口フラスコに、臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジル 1.5 g(4.3 mmol)、trans-シクロオクタン-1,2-ジチオール 0.38 g(2.1 mmol)およびテトラヒドロフラン 22 mLを加え、氷冷した。ここに、トリエチルアミン 0.90 mL(6.5 mmol)を加え、室温で22.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20)で精製することで、trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタンとtrans-1-[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]-2-スルファニルシクロオクタンとの7:1混合物1.6 gを得た。この混合物および臭化 5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジル0.18 g(0.53 mmol)をテトラヒドロフラン20 mLに溶解し、氷冷した。ここに、トリエチルアミン0.10 mL(0.72 mmol)を加え、22時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20)で精製することで、trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタン 1.6 g(収率 >99%)を黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.1~1.8 (m, 50H), 1.90 (m, 2H), 2.20 (m, 4H), 2.64 (m, 2H), 3.80 (d, J = 13 Hz, 2H), 3.89 (d, J = 13 Hz, 2H), 6.90 (d, J = 2 Hz, 2H), 7.27 (d, J = 2 Hz, 2H).
(参考例22)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-メチルシクロヘキシル)ベンジルスルファニル]シクロオクタン 140 mg(0.20 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}100 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロハフニウム 130 mg (収率 69%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.8~2.4 (m, 56H), 2.58 (brs, 2H), 3.86 (d, J = 14 Hz, 2H), 4.48 (d, J = 14 Hz, 2H), 6.85 (s 2H), 7.41 (s, 2H).
(参考例23)
trans-1,2-ビス[5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
(1)4-tert-ブチル-2-(2, 3-ジメチル-2-ブチル)フェノールの合成
 窒素置換した50 mLシュレンクに、4-tert-ブチルフェノール3.3 g(22 mmol)、2, 3-ジメチル-2-ブタノール 2.7 mL(22 mmol)およびジクロロメタン20 mLを加え、氷浴で0℃まで冷却した。ここに硫酸 1.2 mL(22 mmol)を加え、室温で20分間撹拌した。反応溶液を炭酸水素ナトリウム水溶液に注いだ。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10)で精製することで4-tert-ブチル-2-(2, 3-ジメチル-2-ブチル)フェノール 4.4 g(収率 86%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.746 (d, J = 7 Hz, 6H), 1.27 (s, 9H), 1.32 (s, 6H), 2.72 (m, J = 8 Hz, 1H), 4.61 (s, 1H), 6.56 (d, J = 8 Hz, 1H), 7.05 (dd, J = 2 Hz, 8 Hz, 1H), 7.23 (d, J = 2 Hz, 1H).
(2)4-tert-ブチル-6-(2, 3-ジメチル-2-ブチル)-2-ヒドロキシメチルフェノールの合成
 窒素置換した300mL四口フラスコに、4-tert-ブチル-2-(2, 3-ジメチル-2-ブチル)フェノール4.4 g(19 mmol,)、塩化マグネシウム3.6 g(38 mmol)、パラホルムアルデヒド2.9 g(95 mmol)およびテトラヒドロフラン85 mLを加えた。ここにトリエチルアミン5.3 mL(38 mmol)を加え、2時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルおよび水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)サリチルアルデヒド(収率96%)を含む混合物4.8 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.748 (d, J = 7 Hz, 6H), 1.28 (s, 9H), 1.33 (s, 6H), 2.72 (m, J = 7 Hz, 2H), 7.33 (d, J = 2 Hz, 1H), 7.54 (d, J = 2 Hz, 1H), 9.86 (s, 1H), 11.7 (s, 1H).
 窒素置換した200mL四口フラスコに、上記混合物 4.8 gとテトラヒドロフラン50 mLおよびメタノール25 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 420 mg(11 mmol)をゆっくり加え、室温まで昇温後、15時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20~1:9)で精製することで4-tert-ブチル-6-(2, 3-ジメチル-2-ブチル)-2-ヒドロキシメチルフェノール2.9 g(収率 60%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.755 (d, J = 7 Hz, 3H), 1.28 (s, 9H), 1.33 (s, 6H), 2.06 (s, 1H), 2.68 (m, J = 7 Hz, 1H), 4.83 (s, 2H), 6.87 (d, J = 2 Hz, 1H), 7.22 (d, J = 2 Hz, 1H), 7.48 (s, 1H).
(3)臭化 5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)-2-ヒドロキシベンジルの合成
 窒素置換した200mL四口フラスコに、4-tert-ブチル-6-(2, 3-ジメチル-2-ブチル)-2-ヒドロキシメチルフェノール2.9 g(11 mmol)およびジクロロメタン50 mLを加えた。ここに、三臭化リン6.6 mL(1.0 M ジクロロメタン溶液, 6.6 mmol)を加え、室温で3.5時間撹拌した。反応溶液に水を加え、有機層をさらに水で2回洗浄した後、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)-2-ヒドロキシベンジル3.7 g(収率 >99%)を淡黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.759 (d, J = 7 Hz, 3H), 1.28 (s, 9H), 1.34 (s, 6H), 2.56 (m, J = 7 Hz, 1H), 4.58 (s, 2H), 7.08 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス[5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
 窒素置換した50 mL四口フラスコに、臭化 5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)-2-ヒドロキシベンジル1.5 g(4.6 mmol)、trans-シクロオクタン-1,2-ジチオール 0.40 g(2.2 mmol)およびテトラヒドロフラン 24 mLを加え、氷冷した。ここに、トリエチルアミン 1.0 mL(7.2 mmol)を加え、室温で22時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:40~1:20)で精製することで、trans-1,2-ビス[5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)-2-ヒドロキシベンジルスルファニル]シクロオクタン1.7 g(収率 >99%)を黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.734 (d, J = 7 Hz, 12H), 1.1~1.7 (m, 40H), 1.89 (m, 2H), 2.62(m, 2H), 2.72 (m, J = 7 Hz, 2H), 3.61 (d, J = 13 Hz, 2H), 3.89 (d, J = 13 Hz, 2H), 6.89 (d, J = 2 Hz, 2H), 7.20 (d, J = 2 Hz, 2H).
(参考例24)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)-2-ヒドロキシベンジルスルファニル)シクロオクタン 130 mg(0.20 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}100 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1.5時間後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム 30 mg (収率 16%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.719 (d, J = 6 Hz, 6H), 0.80~1.9 (m, 48H), 2.57 (brs, 2H), 3.06 (m, J = 6 Hz, 2H), 3.87 (d, J = 14 Hz, 2H), 4.48 (d, J = 14 Hz, 2H), 6.85 (d, J = 2 Hz, 2H), 7.34 (d, J = 2 Hz, 2H).
(参考例25)
trans-1,2-ビス(2-ヒドロキシ-3-トリメチルシリル-5-メチルベンジルスルファニル)シクロオクタンの合成
(1)3-トリメチルシリル-5-メチル-2-ヒドロキシベンジルアルコールの合成
 2-ヒドロキソ-5-メチル-3- (トリメチルシリル)ベンズアルデヒド9.57 g(45.9 mmol)をジエチルエーテル70 mLに溶解し、0℃に冷却した。そこに、水素化アルミニウムリチウム2.27 g(59.8 mmol)を加えた後、0℃で2時間攪拌した。希塩酸およびジエチルエーテルを加え、エーテル層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去し、無色結晶として3-トリメチルシリル-5-メチル-2-ヒドロキシベンジルアルコール9.57 g(収率98%)を得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
0.30 (s, 9H), 2.03 (br s, 1H), 2.25 (s, 3H), 4.83 (br s, 1H), 6.84 (d, J = 2 Hz, 1H), 7.11 (d, J = 2 Hz, 1H), 7.39 (s, 1H).
(2)trans-1,2-ビス(2-ヒドロキシ-3-トリメチルシリル-5-メチルベンジルスルファニル)シクロオクタンの合成
 アルゴン雰囲気下、3-トリメチルシリル-5-メチル-2-ヒドロキシベンジルアルコール1.03 g(4.87 mmol)をジエチルエーテル30 mLに溶解し、0℃に冷却した。そこに、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン6.2 mL(44.5 mmol)を加えた後、三臭化リン0.35 mL(3.69 mmol)を加え、25℃で2時間攪拌した。そこに、アルゴン雰囲気下、trans-シクロオクタン-1,2-ジチオール(文献既知)289.2 mg(1.64 mmol)をジエチルエーテル20 mLに溶解した溶液をチューブトランスファーし、加熱還流下で13時間攪拌した。希塩化アンモニウム水溶液およびジエチルエーテルを加え、エーテル層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ジクロロメタン)で精製し、無色オイルとしてtrans-1,2-ビス(2-ヒドロキシ-3-トリメチルシリル-5-メチルベンジルスルファニル)シクロオクタン672.9 mg(収率73%)を得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
0.29 (s, 18H), 1.15-1.96 (m, 12H), 2.25 (s, 6H), 2.65 (br s, 2H), 3.73-3.85 (m, 4H), 6.85 (d, J = 2 Hz, 2H), 6.90 (s, 2H), 7.10 (d, J = 2 Hz, 2H).
13C NMR (125.7 MHz, δ, ppm, CDCl3)
-0.88, 20.5, 25.7, 26.0, 30.9, 34.5, 49.9, 120.8, 127.7, 129.1, 132.4, 135.2, 158.4.
(参考例26)
{シクロオクタンジイル-trans-1,2-ビス[2-オキソイル-3-トリメチルシリル-5-メチルベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(2-ヒドロキシ-3-トリメチルシリル-5-メチルベンジルスルファニル)シクロオクタン300mg(0.53mmol)のトルエン(5 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}0.27 g(0.53 mmol)のトルエン(5 mL)溶液を室温で滴下した。1.5時間後、反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥させることで{シクロオクタンジイル-trans-1,2-ビス[2-オキソイル-3-トリメチルシリル-5-メチルベンジルスルファニル]}ジクロロハフニウム300 mg(収率69%)白色粉末としてを得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
0.425 (s, 18H), 0.70~2.0 (m, 12H), 2.27(s, 6H), 2.63 (brs, 2H), 3.82 (d, J = 14 Hz, 2H), 4.42 (d, J = 14 Hz, 2H), 6.83 (s, 2H), 7.23 (s, 1H).
(参考例27)
[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル)]ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス(5-tert-ブチル-2-ヒドロキシ-3-トリフェニルメチルベンジルスルファニル)シクロオクタン 0.40 g(0.41 mmol)のトルエン(4 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}0.21 g(0.41 mmol)のトルエン(4 mL)溶液を室温で滴下した。6時間後、反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣をヘキサンで洗浄後、ジエチルエーテル/ヘキサン混合溶媒に溶解した。減圧下濃縮した後、ヘキサンを加え3日間室温で静置した。析出した固体を回収し、減圧下で乾燥させることで、[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-2-オキソイル-3-トリフェニルメチルベンジルスルファニル)]ジクロロハフニウム 0.31 g (収率 62%)を白色粉末として得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
0.50-1.6 (m, 30H), 1.83 (brs, 2H), 3.44 (d, J = 14 Hz, 2H), 3.98 (d, J = 14 Hz, 2H), 6.7-7.4 (m, 34H).
(参考例28)
trans-1,2-ビス[5-ブロモ-3-(1-アダマンチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
(1)4-ブロモ-2-(1-アダマンチル)フェノールの合成
 窒素置換した1000 mL四口フラスコに、4-ブロモ-2-(1-アダマンチル)アニソール16 g(50 mmol)、ジクロロメタン300 mLを加え、-63℃まで冷却した。ここに三臭化リン100 mL(1.0 M ジクロロメタン溶液, 100 mmol)を加え、室温で10分間撹拌した。室温まで昇温した後、氷水400 gに注いだ。有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた白色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:40~1:3)で精製することで4-ブロモ-2-(1-アダマンチル)フェノール 13 g(収率 88%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.77 (s, 6H), 2.08 (s, 9H), 4.81 (s, 1H), 6.53 (d, J = 8 Hz, 1H), 7.15 (dd, J = 2 Hz, 8 Hz, 1H), 7.29 (d, J = 2 Hz, 1H).
(2)4-ブロモ-6-(1-アダマンチル)-2-ヒドロキシメチルフェノールの合成
 窒素置換した500mL四口フラスコに、4-ブロモ-2-(1-アダマンチル)フェノール11 g(37 mmol,)、塩化マグネシウム7.1 g(74 mmol)、パラホルムアルデヒド5.5 g(180 mmol)およびテトラヒドロフラン230 mLを加えた。ここにトリエチルアミン11 mL(79 mmol)を加え、2時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルと水を加えた。有機層を1 M HCl、飽和炭酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-ブロモ-3-(1-アダマンチル)サリチルアルデヒド(収率99%)を含む混合物12 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.78 (s, 6H), 2.08 (s, 3H), 2.10 (s, 6H), 4.81 (s, 1H), 6.53 (d, J = 8 Hz, 1H), 7.51 (m, 2H), 9.80 (s, 1H), 11.8 (s, 1H).
窒素置換した300 mL四口フラスコに、上記混合物 13 gとテトラヒドロフラン150 mLおよびメタノール55 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 900 mg(24 mmol)をゆっくり加え、室温まで昇温後、20時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、水および酢酸エチルを加えた。飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下、溶媒を留去した後、得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20~1:2)で精製することで4-ブロモ-6-(1-アダマンチル)-2-ヒドロキシメチルフェノール9.8 g(収率 74%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, DMSO-d6)
1.78 (s, 6H), 2.03 (s, 3H), 2.10 (s, 6H), 4.58 (s, 2H), 7.07 (d, J = 3 Hz, 1H), 7.22 (d, J = 3 Hz, 1H).
(3)臭化 5-ブロモ-3-(1-アダマンチル)-2-ヒドロキシベンジルの合成
 窒素置換した300 mL四口フラスコに、4-ブロモ-6-(1-アダマンチル)-2-ヒドロキシメチルフェノール9.8 g(29 mmol)とジクロロメタン180 mLを加えた。ここに、ジクロロメタン8 mLと三臭化リン1.8 mLとの混合溶液(17 mmol)を加え、室温で3.5時間撹拌した。反応溶液を氷水に加え、有機層を飽和食塩水で2回洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下で揮発成分を留去することで、臭化 5-ブロモ-3-(1-アダマンチル)-2-ヒドロキシベンジル12 g(収率>99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.78 (s, 6H), 2.09 (s, 9H), 4.47 (s, 2H), 7.24 (d, J = 2 Hz, 1H), 7.32 (d, J = 2 Hz, 1H).
(4)trans-1,2-ビス[5-ブロモ-3-(1-アダマンチル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
 窒素置換した100 mL四口フラスコに、臭化 5-ブロモ-3-(1-アダマンチル)-2-ヒドロキシベンジル 1.4 g(3.4 mmol)、trans-シクロオクタン-1,2-ジチオール 0.28 g(1.6 mmol)およびテトラヒドロフラン 22 mLを加え、氷冷した。ここに、トリエチルアミン 0.70 mL(5.0 mmol)を加え、室温で14.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:40~1:20)で精製することで、trans-1,2-ビス[5-ブロモ-2-ヒドロキシ-3-(1-アダマンチル)ベンジルスルファニル]シクロオクタンとtrans-1-[5-ブロモ-2-ヒドロキシ-3-(1-アダマンチル)ベンジルスルファニル]-2-スルファニルシクロオクタンとの8:1混合物1.3 gを得た。この混合物および臭化 5-ブロモ-2-ヒドロキシ-3-(1-アダマンチル)ベンジル0.14 g(0.53 mmol)をテトラヒドロフラン22 mLに溶解し、氷冷した。ここに、トリエチルアミン0.06 mL(0.43 mmol)を加え、22時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20~1:5)で精製することで、trans-1,2-ビス(5-ブロモ-2-ヒドロキシ-3-(1-アダマンチル)ベンジルスルファニル)シクロオクタン 1.4 g(収率 >99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~2.0 (m, 24H), 2.05(s, 6H), 2.10(s, 12H), 2.61 (m, 2H), 3.73 (d, J = 14 Hz, 2H), 3.82 (d, J = 14 Hz, 2H), 7.04 (d, J = 2 Hz, 2H), 7.07 (s, 2H), 7.27 (d, J = 2 Hz, 2H).
(参考例29)
{シクロオクタンジイル-trans-1,2-ビス[5-ブロモ-2-オキソイル-3-(1-アダマンチル)ベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス[5-ブロモ-2-ヒドロキシ-3-(1-アダマンチル)ベンジルスルファニル]シクロオクタン 160 mg(0.20 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}100 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1時間攪拌後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-ブロモ-2-オキソイル-3-(1-アダマンチル)ベンジルスルファニル]}ジクロロハフニウム 62 mg (収率 29%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.853 (m, 2H), 1.15 (m, 2H), 1.4~2.4 (m, 38H), 2.61 (brs, 2H), 3.82 (d, J = 14 Hz, 2H), 4.48 (d, J = 14 Hz, 2H), 7.02 (d, J = 2 Hz, 2H), 7.44 (d, J = 2 Hz, 2H).
(参考例30)
trans-1,2-ビス[2-ヒドロキシ-3-(トリイソプロピルシリル)-5-メチルベンジルスルファニル]シクロオクタンの合成
(1)3-(トリイソプロピルシリル)-5-メチル-2-ヒドロキシベンジルアルコールの合成
 2-ヒドロキシ-5-メチル-3-(トリイソプロピルシリル)ベンズアルデヒド(文献既知)1.38 g(4.71 mmol)をジエチルエーテル20 mLに溶かし0℃に冷却した。そこに、水素化アルミニウムリチウム232.3 mg (6.12 mmol)を加えた後、0℃で21時間攪拌した。希塩酸とジエチルエーテルを加え、エーテル層を水洗、無水硫酸ナトリウムで乾燥後、減圧下で溶媒を留去し、無色結晶として定量的に表題化合物(1.41 g、少量の溶媒を含む)を得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
1.09 (d, J = 8 Hz, 18H), 1.50 (sept, J = 8 Hz, 3H), 2.02 (br s, 1H), 2.26 (s, 3H), 4.81 (d, J = 5 Hz, 1H), 6.84 (d, J = 2 Hz, 1H), 7.14 (d, J = 2 Hz, 1H), 7.34 (s, 1H).
13C NMR (125.7 MHz, δ, ppm, CDCl3)
11.9, 19.1, 20.8, 65.5, 122.3, 123.4, 128.2, 129.7, 137.6, 159.7.
(2)trans-1,2-ビス[2-ヒドロキシ-3-(トリイソプロピルシリル)-5-メチルベンジルスルファニル]シクロオクタンの合成
 アルゴン雰囲気下、3-(トリイソプロピルシリル)-5-メチル-2-ヒドロキシベンジルアルコール1.01 g(3.42 mmol)をテトラヒドロフラン10 mLに溶かし0℃に冷却した。そこに、トリエチルアミン0.8 mL(5.74 mmol)を加えた後、塩化メタンスルホニル0.26 mL(3.35 mmol)を加え、25℃で21時間攪拌した。そこに、アルゴン雰囲気下、trans-シクロオクタン-1,2-ジチオール(文献既知)201.7 mg(1.14 mmol)をテトラヒドロフラン10 mLに溶かした溶液をチューブトランスファーし、加熱還流下で20時間攪拌した。飽和塩化アンモニウム水溶液およびジエチルエーテルを加え、エーテル層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン)で精製し淡黄色オイルとして定量的に表題化合物(1.01 g、少量の溶媒を含む)を得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
1.12 (d, J = 8 Hz, 36H), 1.16-2.00 (m, 12H), 1.51 (sept, J = Hz, 6H), 2.28 (s, 6H), 2.75 (br s, 2H), 3.77-3.88 (m, 4H), 6.79 (s, 2H), 6.89 (d, J = 2 Hz, 2H), 7.16 (d, J = 2 Hz, 2H).
13C NMR (125.7 MHz, δ, ppm, CDCl3)
11.9, 19.1, 19.2, 20.8, 25.9, 26.1, 31.3, 35.3, 50.3, 121.1, 123.2, 128.8, 132.3, 137.3, 158.8.
(参考例31)
{シクロオクタンジイル-trans-1,2-ビス[2-オキソイル-3-(トリイソプロピルシリル)-5-メチルベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス[2-ヒドロキシ-3-(トリイソプロピルシリル)-5-メチルベンジルスルファニル]シクロオクタン 150 mg(0.20 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}100 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1時間攪拌後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3-(トリイソプロピルシリル)-5-メチルベンジルスルファニル)]ジクロロハフニウム 74 mg (収率 38%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.80~2.0 (m, 54H), 2.36 (s, 6H), 2.70 (brs, 2H), 3.80 (d, J = 14 Hz, 2H), 4.41 (d, J = 14 Hz, 2H), 6.80 (s, 2H), 7.27 (s, 2H).
(参考例32)
trans-1,2-ビス[2-ヒドロキシ-3-(tert-ブチルジメチルシリル)-5-メチルベンジルスルファニル]シクロオクタンの合成
(1)3-(tert-ブチルジメチルシリル)-5-メチル-2-ヒドロキシベンジルアルコールの合成
 2-ヒドロキシ-5-メチル-3-(tert-ブチルジメチルシリル)ベンズアルデヒド(文献既知)6.64 g(25.0 mmol)をジエチルエーテル60 mLに溶かし0℃に冷却した。そこに、水素化アルミニウムリチウム1.32 g(34.8 mmol)を加えた後、0℃で17時間攪拌した。希塩酸とジエチルエーテルを加え、エーテル層を水洗、無水硫酸ナトリウムで乾燥後、減圧下で溶媒を留去し、淡黄色結晶として表題化合物6.57 g(収率98%)を得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
0.31 (s, 6H), 0.91 (s, 9H), 2.03 (br s, 1H), 2.25 (s, 3H), 4.80 (d, J = 9 Hz, 1H), 6.85 (d, J = 3 Hz, 1H), 7.10 (d, J = 3 Hz, 1H), 7.27 (s, 1H). 
(2)trans-1,2-ビス[2-ヒドロキシ-3-(tert-ブチルジメチルシリル)-5-メチルベンジルスルファニル]シクロオクタンの合成
 アルゴン雰囲気下、3-(tert-ブチルジメチルシリル)-5-メチル-2-ヒドロキシベンジルアルコール461.9 mg(1.72 mmol)をテトラヒドロフラン5 mLに溶かし0℃に冷却した。そこに、トリエチルアミン0.4 mL(2.87 mmol)を加えた後、塩化メタンスルホニル0.13 mL(1.68 mmol)を加え、25℃で21時間攪拌した。そこに、アルゴン雰囲気下、trans-シクロオクタン-1,2-ジチオール(文献既知)104.2 mg(0.591 mmol)をテトラヒドロフラン5 mLに溶かした溶液をチューブトランスファーし、加熱還流下で20時間攪拌した。飽和塩化アンモニウム水溶液とジエチルエーテルを加え、エーテル層を水洗し、無水硫酸ナトリウムで乾燥後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン)で精製し淡黄色オイルとして定量的に表題化合物(424.4 mg、少量の溶媒を含む)を得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
0.30(d, J = 4 Hz, 12H), 0.91 (s, 18H), 1.17-1.96 (m, 12H), 2.24 (s, 6H), 2.69 (br s, 2H), 3.73-3.85 (m, 4H), 6.75 (s, 2H), 6.86 (d, J = 2 Hz, 2H), 7.09 (d, J = 2 Hz, 2H).
13C NMR (125.7 MHz, δ, ppm, CDCl3)
-4.39, -4.32, 17.8, 20.7, 25.9, 26.1, 27.3, 31.2, 35.0, 50.2, 121.2, 125.4, 128.9, 132.5, 136.9, 158.6.
(参考例33)
{シクロオクタンジイル-trans-1,2-ビス[2-オキソイル-3-(tert-ブチルジメチルシリル)-5-メチルベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、50 mLシュレンク管でtrans-1,2-ビス[2-ヒドロキシ-3-(tert-ブチルジメチルシリル)-5-メチルベンジルスルファニル]シクロオクタン 150 mg(0.20 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}100 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1時間攪拌後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[2-オキソイル-3-(tert-ブチルジメチルシリル)-5-メチルベンジルスルファニル]}ジクロロハフニウム 10 mg (収率 6%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.381(s,6H), 0.494 (s, 6H), 0.70-2.0 (m, 30H), 2.26 (s, 6H), 2.69 (br s, 2H), 3.81 (d, J = 14 Hz, 2H), 4.46 (d, J = 14 Hz, 2H), 6.82 (d, J = 2 Hz, 2H), 7.25 (d, J = 2 Hz, 2H).
(参考例34)
trans-1,2-ビス{5-tert-ブチル-3-[1-(3,5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタンの合成
(1)1-(3,5-ジメチルフェニル)-1-メチルエタノールの合成
 窒素置換した200 mL四口フラスコにTHF 60 mL、および3,5-ジメチルフェニルマグネシウムブロマイド40 mL(0.50 M THF溶液, 20 mmmol)を加えた。-65℃まで冷却した後、アセトン5.2 mL(71 mmol)を滴下した。室温まで昇温し、2.5時間攪拌した後、氷水60 gに注いだ。ここに、1 M HCl、およびジエチルエーテルを加えた。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた薄黄色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:10~1:4)で精製した後、再度シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:9)で精製することで、1-(3,5-ジメチルフェニル)-1-メチルエタノール 1.7 g(収率 50%)を淡黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.56 (s, 6H), 1.76 (s, 1H), 2.33 (s, 6H), 6.89 (s, 1H), 7.10 (s, 2H).
(2)4-tert-ブチル-2-[1-(3,5-ジメチルフェニル)-1-メチルエチル]フェノールの合成
 窒素置換した100 mLフラスコに、1-(3,5-ジメチルフェニル)-1-メチルエタノール1.7 g(10 mmol)、4-tert-ブチルフェノール3.0 g(20 mmol)、およびヘプタン40 mLを加えた。ここにp-トルエンスルホン酸40 mg(0.23 mmol)を加え、100℃まで昇温し、16時間攪拌した。反応溶液を室温まで冷却した後、水および酢酸エチルを加えた。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した後、減圧下で揮発成分を留去した。得られた薄橙色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:20)で精製した後、再度シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:50)で精製することで、4-tert-ブチル-2-[1-(3,5-ジメチルフェニル)-1-メチルエチル]フェノール1.9 g(収率 66%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.36 (s, 9H), 1.65 (s, 6H), 2.28 (s, 6H), 4.38 (s, 1H), 6.68 (d, J = 8 Hz, 1H), 6.89 (s, 1H), 6.94 (s, 2H), 7.18 (dd, J = 2 Hz, 8 Hz, 1H), 7.46 (d, J = 2 Hz, 1H).
(3)4-tert-ブチル-6-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシメチルフェノールの合成
窒素置換した100mL四口フラスコに、4-tert-ブチル-2-[1-(3,5-ジメチルフェニル)-1-メチルエチル]フェノール1.9 g(6.5 mmol)、塩化マグネシウム1.3 g(13 mmol)、パラホルムアルデヒド0.98 g(33 mmol)およびテトラヒドロフラン38 mLを加えた。ここにトリエチルアミン1.8 mL(13 mmol)を加え、100分間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチル、および2% HClを加えた。有機層を水、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで、5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]サリチルアルデヒド(収率>99%)を含む混合物2.2 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.37 (s, 9H), 1.71 (s, 6H), 2.26 (s, 6H), 6.79 (s, 2H), 6.81 (s, 1H), 7.39 (s, 1H), 7.72 (s, 1H), 9.83 (s, 1H), 11.2 (s, 1H).
 窒素置換した200 mL四口フラスコに上記混合物 2.5 g、テトラヒドロフラン40 mLおよびメタノール20 mLを加え、氷冷した。ここに水素化ホウ素ナトリウム 180 mg(4.8 mmol)をゆっくり加え、室温まで昇温した後、15時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、2 M HCl、および酢酸エチルを加えた。飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。得られた無色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:6~1:4)で精製することで、4-tert-ブチル-6-[1-(3,5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシメチルフェノール2.2 g(収率 86%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 9H), 1.66 (s, 6H), 2.24 (t, J = 6 Hz, 1H), 2.28 (s, 6H), 4.62 (d, J = 6 Hz, 2H), 5.26 (s, 1H), 6.89 (s, 1H), 6.93 (s, 2H), 7.12 (s, J = 2 Hz, 1H), 7.43 (s, J = 2 Hz, 1H).
(4)臭化 5-tert-ブチル-3-[1-(3,5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジルの合成
 窒素置換した100 mL四口フラスコに、4-tert-ブチル-6-[1-(3,5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシメチルフェノール2.2 g(6.8 mmol)、およびジクロロメタン30 mLを加えた。ここに、ジクロロメタン2 mLと三臭化リン0.43 mLとの混合溶液(4.1 mmol)を加え、室温で3時間撹拌した。反応溶液を氷水に加え、有機層を飽和食塩水で2回洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジル2.8 g(収率>99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.35 (s, 9H), 1.65 (s, 6H), 2.28 (s, 6H), 4.48 (s, 2H), 6.91 (s, 1H), 6.94 (s, 2H), 7.23 (s, J = 2 Hz, 1H), 7.46 (s, J = 2 Hz, 1H).
(5)trans-1,2-ビス{5-tert-ブチル-3-[1-(3,5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタンの合成
 窒素置換した100 mL四口フラスコに、臭化 5-tert-ブチル-3-[1-(3,5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジル 1.8 g(4.7 mmol)、trans-シクロオクタン-1,2-ジチオール 0.42 g(2.4 mmol)およびテトラヒドロフラン 30 mLを加え、氷冷した。ここに、トリエチルアミン 1. 0 mL(7.2 mmol)を加え、室温で15.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:40~1:20)で精製することで、trans-1,2-ビス{5-tert-ブチル-2-ヒドロキシ-3-[1-(3,5-ジメチルフェニル)-1-メチルエチル]ベンジルスルファニル}シクロオクタンとtrans-1-{5-tert-ブチル-2-ヒドロキシ-3-[1-(3,5-ジメチルフェニル)-1-メチルエチル]ベンジルスルファニル}-2-スルファニルシクロオクタンとの7:3混合物1.7 gを得た。この混合物および臭化 5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジル0.50 g(1.3 mmol)をテトラヒドロフラン20 mLに溶解し、氷冷した。ここに、トリエチルアミン0.25 mL(1.8 mmol)を加え、21.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:40)で精製することで、trans-1,2-ビス{5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタン 1.8 g(収率 94%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.2~2.0 (m, 42H), 2.25 (s, 12H), 2.64 (brs, 2H), 3.67 (s, 4H), 5.56 (s, 2H), 6.82 (s, 2H), 6.86 (s, 4H), 7.09 (d, J = 2 Hz, 2H), 7.36 (d, J = 2 Hz, 2H).
(参考例35)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(3, 5-ジメチルフェニル)-1-メチルエチル)ベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、100 mLシュレンク管で、trans-1,2-ビス{5-tert-ブチル-3-[1-(3, 5-ジメチルフェニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタン 1.0g(1.3 mmol)のトルエン(5 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}640 mg(1.3 mmol)のトルエン(5 mL)溶液を室温で滴下した。1時間攪拌した後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(3, 5-ジメチルフェニル)-1-メチルエチル)ベンジルスルファニル]}ジクロロハフニウム 1.1 g (収率 81%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.73~1.7 (m, 36H), 1.96 (s, 6H), 2.08 (brs, 2H), 2.21 (s, 12H), 3.53 (d, J = 14 Hz, 4H), 4.05 (d, J = 14 Hz, 4H), 6.72 (s, 2H), 6.83 (d, J = 2 Hz, 2H), 6.90 (s, 4H), 7.51 (d, J = 2 Hz, 2H).
(参考例36)
trans-1,2-ビス{5-tert-ブチル-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタンの合成
(1)1-(4-ジベンゾフラニル)-1-メチルエタノールの合成
 窒素置換した100 mL四口フラスコに、ヘキサン8 mL、およびジベンゾフラン1.0 g(6.0 mmmol)を加えた。ここにテトラメチルエチレンジアミン1.0 mL(6.7 mmol)、およびs-ブチルリチウム6.5 mL(1.0 M シクロヘキサン,ヘキサン溶液, 6.5 mmol)を加え、19時間攪拌した。さらにTHF18 mLを加え、-65℃まで冷却した後、アセトン2.2 mL(30 mmol)を滴下した。室温まで昇温し、6.5時間攪拌した後、氷水20 gに注いだ。ここに、2% HCl、および酢酸エチルを加えた。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた橙色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:20~1:10)で精製することで 1-(4-ジベンゾフラニル)-1-メチルエタノール1.1 g(収率79%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.82 (s, 6H), 2.73 (s, 1H), 7.30-7.38 (m, 2H), 7.44-7.49 (m, 1H), 7.54-7.62 (m, 2H), 7.85-7.88 (m, 1H), 7.95-7.97 (m, 1H).
(2)4-tert-ブチル-2-[1-(4-ジベンゾフラニル)-1-メチルエチル]フェノールの合成
 窒素置換した500 mLフラスコに1-(4-ジベンゾフラニル)-1-メチルエタノール7.3 g(32 mmol)、4-tert-ブチルフェノール9.7 g(65 mmol)、およびヘプタン280 mLを加えた。ここにp-トルエンスルホン酸140mg(0.81 mmol)を加え、100℃まで昇温し、20時間攪拌した。反応溶液を室温まで冷却した後、水および酢酸エチルを加えた。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した後、減圧下で揮発成分を留去した。得られた薄橙色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:50~1:20)で精製することで4-tert-ブチル-2-[1-(4-ジベンゾフラニル)-1-メチルエチル]フェノール6.7 g(収率 58%)を無色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.40 (s, 9H), 1.96 (s, 6H), 4.30 (s, 1H), 6.57 (d, J = 8 Hz, 1H), 7.11-7.91 (m, 9H).
(3)4-tert-ブチル-6-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシメチルフェノールの合成
 窒素置換した200mL四口フラスコに、4-tert-ブチル-2-[1-(4-ジベンゾフラニル)-1-メチルエチル]フェノール4.6 g(13 mmol)、塩化マグネシウム2.4 g(25 mmol)、パラホルムアルデヒド1.9 g(64 mmol)およびテトラヒドロフラン75 mLを加えた。ここにトリエチルアミン3.5 mL(25 mmol)を加え、3時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルと2% HClを加えた。有機層を水、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去した。得られた淡黄色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:50)で精製することで、5-tert-ブチル-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]サリチルアルデヒド4.5 g(収率92%)を無色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.41 (s, 9H), 1.99 (s, 6H), 7.25-8.00 (m, 9H), 9.75 (s, 1H), 11.2 (s, 1H).
 窒素置換した300 mL四口フラスコに、上記混合物 4.5 gとテトラヒドロフラン60 mLおよびメタノール30 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 270 mg(7.1 mmol)をゆっくり加え、室温まで昇温した後、14.5時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、2% HClおよび酢酸エチルを加えた。飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。得られた無色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:4~1:1)で精製することで4-tert-ブチル-6-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシメチルフェノール4.4 g(収率 96%)を無色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.38 (s, 9H), 1.97 (s, 6H), 2.00 (t, J = 6 Hz, 1H), 4.62 (d, J = 6 Hz, 2H), 6.24 (s, 1H), 6.98 (d, J = 2 Hz, 1H), 6.97-7.85 (m, 8H).
(4)臭化 5-tert-ブチル-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシベンジルの合成
 窒素置換した100 mL四口フラスコに、4-tert-ブチル-6-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシメチルフェノール4.4 g(11 mmol)およびジクロロメタン50 mLを加えた。ここに、ジクロロメタン3 mLと三臭化リン0.72 mLとの混合溶液(6.8 mmol)を加え、室温で3.5時間撹拌した。反応溶液を氷水に加え、有機層を飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシベンジル5.1 g(収率 99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.43 (s, 9H), 1.95 (s, 6H), 4.40 (s, 2H), 6.97-7.85 (m, 9H).
(4)trans-1,2-ビス{5-tert-ブチル-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタンの合成
 窒素置換した100 mL四口フラスコに、臭化 5-tert-ブチル-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシベンジル 1.9 g(4.3 mmol)、trans-シクロオクタン-1,2-ジチオール 0.38 g(2.1 mmol)およびテトラヒドロフラン 30 mLを加え、氷冷した。ここに、トリエチルアミン 0.9 mL(6.5 mmol)を加え、室温で15時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20)で精製することで、trans-1,2-ビス{5-tert-ブチル-2-ヒドロキシ-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]ベンジルスルファニル}シクロオクタンとtrans-1-{5-tert-ブチル-2-ヒドロキシ-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]ベンジルスルファニル}-2-スルファニルシクロオクタンとの7:3混合物1.8 gを得た。この混合物および臭化 5-tert-ブチル-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシベンジル0.55 g(1.2 mmol)をテトラヒドロフラン30 mLに溶解し、氷冷した。ここに、トリエチルアミン0.23 mL(1.7 mmol)を加え、16時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:40)で精製することで、trans-1,2-ビス{5-tert-ブチル-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタン 1.8 g(収率 92%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.61~1.6 (m, 30H), 1.92 (s, 12H), 1.99 (brs, 2H), 3.42 (d, J = 14 Hz, 2H), 3.53 (d, J = 14 Hz, 2H), 6.06 (s, 2H), 6.85 (d, J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H), 7.29 (m, 8H), 7.44-7.55 (m, 2H), 7.62-7.64 (m, 2H), 7.70-7.73(m, 2H), 7.79-7.82(m, 2H).
(参考例37)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(4-ジベンゾフラニル)-1-メチルエチル)ベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、100 mLシュレンク管でtrans-1,2-ビス{5-tert-ブチル-3-[1-(4-ジベンゾフラニル)-1-メチルエチル]-2-ヒドロキシベンジルスルファニル}シクロオクタン 180 mg(0.20 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}100 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1時間攪拌後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(4-ジベンゾフラニル)-1-メチルエチル) ベンジルスルファニル]}ジクロロハフニウム 210 mg (収率 90%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
-0.20-1.5 (m, 32H), 1.83 (s, 6H), 1.98 (s, 6H), 3.27 (d, J = 14 Hz, 2H), 3.87 (d, J = 14 Hz, 2H), 6.74 (s, 2H), 7.0-7.9 (m, 16H).
(参考例38)
trans-1,2-ビス(5-tert-ブチル-3-(1-エチル-1-フェニルプロピル)-2-ヒドロキシベンジルスルファニル)シクロオクタンの合成
(1)1-エチル-1-フェニルプロパノールの合成
 窒素置換した500 mL四口フラスコに、THF180 mL、およびフェニルリチウム37 mL(1.6 M ジブチルエーテル溶液, 59 mmmol)を加えた。-63℃まで冷却した後、3-ペンタノン22 mL(210 mmol)を滴下した。室温まで昇温し、5.5時間攪拌した後、氷水200 gに注いだ。ここに、2% HCl、および酢酸エチルを加えた。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去した。得られた橙色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:20)で精製することで、1-エチル-1-フェニルプロパノール8.7 g(収率 89%)を薄黄色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.759 (t, J = 7 Hz, 6H), 1.65 (s, 1H), 1.86 (m, 4H), 7.20-7.25 (m, 1H), 7.31-7.39 (m, 4H).
(2)4-tert-ブチル-2-(1-エチル-1-フェニルプロピル)フェノールの合成
 窒素置換した500 mLフラスコに、1-エチル-1-フェニルプロパノール19 g(120 mmol)、4-tert-ブチルフェノール18 g(120 mmol)、および塩化メチレン200 mLを加えた。氷浴で冷却し、硫酸6.3 mL(120 mmol)を加えた後、室温まで昇温し、20.5時間攪拌した。さらに35℃まで昇温し、8.5時間攪拌した。反応溶液を室温まで冷却した後、5%炭酸水素ナトリウム水溶液に注いだ。酢酸エチルを加え、有機層を無水硫酸マグネシウムにより乾燥した後、減圧下で揮発成分を留去した。得られた暗橙色オイルをシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:40~1:20)で精製することで4-tert-ブチル-2-(1-エチル-1-フェニルプロピル)フェノール7.4 g(収率 21%)を無色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.599 (t, J = 7 Hz, 6H), 1.35 (s, 9H), 2.02-2.10 (m, 2H), 2.16-2.23 (m, 2H), 4.20 (s, 1H), 6.65 (d, J = 8 Hz, 1H), 7.14-7.44 (m, 7H).
(3)4-tert-ブチル-6-(1-エチル-1-フェニルプロピル)-2-ヒドロキシメチルフェノールの合成
 窒素置換した200mL四口フラスコに、4-tert-ブチル-2-(1-エチル-1-フェニルプロピル)フェノール5.0 g(17 mmol)、塩化マグネシウム3.2 g(34 mmol)、パラホルムアルデヒド2.6 g(85 mmol)およびテトラヒドロフラン65 mLを加えた。ここにトリエチルアミン4.7 mL(34 mmol)を加え、2時間加熱還流した。反応溶液を室温まで放冷した後、不溶物を濾過した。濾液から減圧下で揮発成分を留去した後、残渣に酢酸エチルと1M HClを加えた。有機層を水、飽和食塩水の順に洗浄し、無水硫酸マグネシウムにより乾燥した。減圧下で溶媒を留去することで5-tert-ブチル-3-(1-エチル-1-フェニルプロピル)サリチルアルデヒド(収率>99%)を含む混合物5.8 gを得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.600 (t, J = 7 Hz, 6H), 1.37 (s, 9H), 1.99 (s, 6H), 2.01-2.06 (m, 2H), 2.39-2.44 (m, 2H), 7.12-7.38 (m, 6H), 7.77 (d, J = 2 Hz, 1H), 9.80 (s, 1H), 11.2 (s, 1H).
 窒素置換した200 mL四口フラスコに、上記混合物 5.8 gとテトラヒドロフラン30 mLおよびメタノール30 mLとを加え、氷冷した。ここに水素化ホウ素ナトリウム 640 mg(17 mmol)をゆっくり加え、室温まで昇温した後、17.5時間撹拌した。反応溶液から減圧下で揮発成分を留去した後、1 M HClおよび酢酸エチルを加えた。飽和食塩水で洗浄し、無水硫酸マグネシウムにより乾燥した。得られた無色固体をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:9~1:4)で精製することで、4-tert-ブチル-6-(1-エチル-1-フェニルプロピル)-2-ヒドロキシメチルフェノール4.8 g(収率 86%)を無色オイルとして得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.594 (t, J = 7 Hz, 6H), 1.34 (s, 9H), 2.01-2.09 (m, 2H), 2.19-2.27 (m, 2H), 4.59 (d, J = 6 Hz, 2H), 5.18 (s, 1H), 7.10 (d, J = 2 Hz, 1H), 7.23-7.34 (m, 5H), 7.41 (d, J = 2 Hz, 1H).
(4)臭化 5-tert-ブチル-3-(1-エチル-1-フェニルプロピル)-2-ヒドロキシベンジルの合成
 窒素置換した200 mL四口フラスコに、4-tert-ブチル-6-(1-エチル-1-フェニルプロピル)-2-ヒドロキシメチルフェノール4.8 g(15 mmol)およびジクロロメタン28 mLを加えた。ここに、ジクロロメタン4 mLと三臭化リン0.92 mLとの混合溶液(8.7 mmol)を加え、室温で3時間撹拌した。反応溶液を氷水に加え、有機層を飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で揮発成分を留去することで、臭化 5-tert-ブチル-3-(1-エチル-1-フェニルプロピル)-2-ヒドロキシベンジル5.6 g(収率 99%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.589 (t, J = 7 Hz, 6H), 1.35 (s, 9H), 2.01-2.07 (m, 2H), 2.17-2.23 (m, 2H), 4.46 (s, 2H), 7.21 (d, J = 2 Hz, 1H), 7.27-7.36 (m, 5H), 7.42 (d, J = 2 Hz, 1H).
(5)trans-1,2-ビス[5-tert-ブチル-3-(1-エチル-1-フェニルプロピル)-2-ヒドロキシベンジルスルファニル]シクロオクタンの合成
 窒素置換した100 mL四口フラスコに、臭化 5-tert-ブチル-3-(1-エチル-1-フェニルプロピル)-2-ヒドロキシベンジル 1.6 g(4.2 mmol)、trans-シクロオクタン-1,2-ジチオール 0.36 g(2.0 mmol)およびテトラヒドロフラン 28 mLを加え、氷冷した。ここに、トリエチルアミン 0.85 mL(6.1 mmol)を加え、室温で21.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加えた。有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄後、無水硫酸マグネシウムで乾燥した。減圧下で溶媒を留去した後、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:20)で精製することで、trans-1,2-ビス[5-tert-ブチル-2-ヒドロキシ-3-(1-エチル-1-フェニルプロピル)]シクロオクタンとtrans-1-[5-tert-ブチル-2-ヒドロキシ-3-(1-エチル-1-フェニルプロピル)ベンジルスルファニル]-2-スルファニルシクロオクタンとの7:3混合物1.5 gを得た。この混合物および臭化 5-tert-ブチル-3-(1-エチル-1-フェニルプロピル)-2-ヒドロキシベンジル0.50 g(1.3 mmol)をテトラヒドロフラン28 mLに溶解し、氷冷した。ここに、トリエチルアミン0.25 mL(1.8 mmol)を加え、16.5時間撹拌した。反応溶液を濾過し、濾液から減圧下で揮発成分を留去した。得られた残渣に酢酸エチルおよび塩化アンモニウム水溶液を加え、有機層をさらに塩化アンモニウム水溶液、飽和食塩水の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:へキサン=1:40~1:20)で精製することで、trans-1,2-ビス[5-tert-ブチル-3-(1-エチル-1-フェニルプロピル)-2-ヒドロキシベンジルスルファニル]シクロオクタン 1.5 g(収率 96%)を白色固体として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.571 (t, J = 7 Hz, 12H), 1.1~1.9 (m, 30H), 1.97-2.05 (m, 4H), 2.24-2.55 (m, 4H), 2.56 (brs, 2H), 3.36 (s, 4H), 5.51 (s, 2H) , 7.04 (d, J = 2 Hz, 2H), 7.14-7.25 (m, 10H), 7.36 (d, J = 2 Hz, 2H).
(参考例39)
{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-エチル-1-フェニルプロピル)ベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、100 mLシュレンク管でtrans-1,2-ビス[5-tert-ブチル-3-(1-エチル-1-フェニルプロピル)-2-ヒドロキシベンジルスルファニル]シクロオクタン 160 mg(0.20 mmol)のトルエン(1 mL)溶液に、ジクロロ{1,1’-オキシビス[エタン][ビス(フェニルメチル)ハフニウム]}100 mg(0.20 mmol)のトルエン(1 mL)溶液を室温で滴下した。1時間攪拌した後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-エチル-1-フェニルプロピル)ベンジルスルファニル]}ジクロロハフニウム 140 mg (収率 67%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.50-2.1 (m, 46H), 2.15 (brs, 2H), 2.42 (brs, 2H), 2.85 (brs, 2H), 3.55 (d, J = 14 Hz, 2H), 4.10 (d, J = 13 Hz, 2H), 6.82 (d, J = 2 Hz, 2H), 7.04-7.26 (m, 10H), 7.51 (d, J = 2 Hz, 2H).
(参考例40)
trans-1,2-ビス[5-メチル-2-ヒドロキシ-3-(トリフェニルシリル)ベンジルスルファニル]シクロオクタンの合成
(1)2-ヒドロキシ-5-メチル-3-(トリフェニルシリル)ベンズアルデヒドの合成
 非特許文献:Thadani, A. N.; Huang, Y.; Rawal, V. H. Org.Lett. 2007, 9, 3873-3876.に記載の手法により合成した。
(2)3-トリフェニルシリル-5-メチル-2-ヒドロキシベンジルアルコールの合成
 2-ヒドロキシ-5-メチル-3-(トリフェニルシリル)ベンズアルデヒド6.68 g(16.9 mmol)をテトラヒドロフラン20 mLに溶解し、0℃に冷却した。そこに、水素化アルミニウムリチウム833.8 mg (22.0 mmol)を加えた後、0℃で15時間攪拌した。そこに、希塩酸およびジエチルエーテルを加え、エーテル層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去し、無色結晶として定量的に標記化合物(6.60 g)を得た。
1H NMR (300 MHz, δ, ppm, CDCl3)
2.17 (s, 3H), 4.79 (d, J = 10 Hz, 1H), 6.75 (s, 1H), 6.95 (d, J = 4 Hz, 1H), 7.02 (d, J = 3 Hz, 1H), 7.34-7.46 (m, 9H), 7.60-7.63 (m, 6H).
13C NMR (100.6 MHz, δ, ppm, CDCl3)
20.6, 64.4, 120.4, 124.9, 128.0, 129.2, 129.7, 131.5, 134.3, 136.5, 138.3, 158.9.
(3)trans-1,2-ビス(2-ヒドロキシ-3-トリフェニルシリル-5-メチルベンジルスルファニル)シクロオクタンの合成
 アルゴン雰囲気下、3-トリイソプロピルシリル-5-メチル-2-ヒドロキシベンジルアルコール1.89 g(4.75 mmol)をテトラヒドロフラン35 mLに溶解し、0℃に冷却した。そこに、トリエチルアミン1.3 mL(9.15 mmol)を加えた後、塩化メタンスルホニル0.36 mL(4.58 mmol)を加え、25℃で20時間攪拌した。そこに、アルゴン雰囲気下、trans-シクロオクタン-1,2-ジチオール310.7 mg(1.76 mmol)をテトラヒドロフラン10 mLに溶解した溶液をチューブトランスファーし、加熱還流下で19時間攪拌した。そこに、飽和塩化アンモニウム水溶液およびジエチルエーテルを加え、エーテル層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下で溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:ジクロロメタン)で精製し、淡黄色オイルとして定量的に標記化合物(1.92 g、少量の溶媒を含む)を得た。
1H NMR (500 MHz, δ, ppm, CDCl3)
1.23-1.97 (m, 12H), 2.12 (s, 6H), 2.72 (br s, 2H), 3.67-3.77 (m, 4H), 6.52 (s, 2H), 6.92 (d, J = 2 Hz, 2H), 6.96 (d, J = 2 Hz, 2H), 7.31-7.39 (m, 18H), 7.58-7.60 (m, 12H).
13C{1H}-NMR (100.4 MHz,δ, ppm, CDCl3)
20.5, 25.8, 26.0, 31.0, 34.0, 50.2, 121.5, 122.3, 127.7, 129.3, 129.4, 133.8, 134.6, 136.3, 138.2, 158.4.
(参考例41)
{シクロオクタンジイル-trans-1,2-ビス[5-メチル-2-オキソイル-3-(トリフェニルシリル)ベンジルスルファニル]}ジクロロハフニウムの合成
 窒素雰囲気下のグローブボックス中、100 mLシュレンク管でtrans-1,2-ビス[5-メチル-3-(トリフェニルシリル)-2-ヒドロキシベンジルスルファニル]シクロオクタン 310 mg(0.30 mmol)のトルエン(1 mL)溶液に、ジクロロ[1,1’-オキシビス(エタン)][ビス(フェニルメチル)ハフニウム]150 mg(0.30 mmol)のトルエン(1 mL)溶液を室温で滴下した。3時間攪拌した後、減圧下で揮発成分を留去した。得られた残渣をペンタンで洗浄し、減圧下で乾燥することで、{シクロオクタンジイル-trans-1,2-ビス[5-メチル-2-オキソイル-3-(トリフェニルシリル)]}ジクロロハフニウム 290 mg (収率 77%)を白色粉末として得た。
1H-NMR (400 MHz,δ, ppm, CDCl3)
0.75-1.7 (m, 12H), 2.12 (s, 6H), 2.15 (brs, 2H), 3.75 (d, J = 15 Hz, 2H), 4.10 (d, J = 14 Hz, 2H), 6.80 (d, J = 2 Hz, 2H), 6.88 (d, J = 2 Hz, 2H), 7.1-7.7 (m, 30H). 
(参考例42)
d-MAO(乾燥メチルアルミノキサン)の調製方法
 3方コックを取り付けた撹拌子入りの200mL二口フラスコを窒素置換し、東ソー・ファインケム社製PMAO-Sトルエン溶液(アルミニウム含量6.1wt%)100mLをシリンジで測り取り、フラスコに投入した。この溶液を減圧し揮発成分を除去した。
得られた白色固体を脱水トルエン100mLに再溶解した後、揮発成分を減圧除去した。
この操作を更に2回繰り返し、白色粉末14.1gを得た。
(実施例1)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン200mLを仕込み、反応器を40℃まで昇温した。昇温後、エチレン圧を0.6MPaに調整しながらフィードし、d-MAO 139mgを投入し、続いて参考例6で合成した{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウム(1.0mmol/Lトルエン溶液)0.10mL(0.1μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。得られた重合体について、上述した測定条件に従い、融点、分子量および分子量分布、固有粘度、長鎖分岐数、ならびに末端ビニル基数を測定した。結果を表1に示す。
(実施例2)
 d-MAO投入量を113mgとし、重合温度を0℃としたこと、参考例6で合成した{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの投入量を(1.0mmol/Lトルエン溶液)2.0mL(2.0μmol)としたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例3)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン200mLを仕込み、反応器を70℃まで昇温した。昇温後、エチレン圧を0.6MPaに調整しながらフィードし、トリノルマルオクチルアルミニウム(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)を投入し、続いて参考例6で合成した{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウム(1.0mmol/Lトルエン溶液)0.50mL(0.50μmol)、さらに続いてトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(4.0μmol/mLトルエン溶液)0.63mL(2.5μmol)を投入して重合を開始した。温度を70℃に保ちながら、60分間重合を行った。結果を表1に示す。
(実施例4)
 d-MAO投入量を124mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例8で合成した[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルハフニウム(0.5mmol/Lトルエン溶液)0.10mL(0.05μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例5)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン200mLを仕込み、反応器を40℃まで昇温した。昇温後、エチレン圧を0.6MPaに調整しながらフィードし、トリイソブチルアルミニウム(1.0mol/Lトルエン溶液)0.5mL(0.5mmol)を投入し、続いて参考例8で合成した[シクロオクタンジイル-trans-1,2-ビス(5-tert-ブチル-3-クミル-2-オキソイルベンジルスルファニル)]ジベンジルハフニウム(0.50μmol/mLトルエン溶液)0.10mL(0.05μmol)、さらに続いてトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(4.0μmol/mLトルエン溶液)0.25mL(1.0μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。結果を表1に示す。
(実施例6)
 d-MAO投入量を120mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例10で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(1,1-ジフェニルエチル)-2-オキソイルベンジルスルファニル]}ジベンジルハフニウム(0.50mmol/Lトルエン溶液)0.20mL(0.10μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例7)
 d-MAO投入量を126mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例12で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジベンジルハフニウム(0.50mmol/Lトルエン溶液)0.20mL(0.10μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例8)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン200mLを仕込み、反応器を70℃まで昇温した。昇温後、エチレン圧を0.6MPaに調整しながらフィードし、トリイソブチルアルミニウム(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)を投入し、続いて参考例27で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)、さらに続いてトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)を投入して重合を開始した。温度を70℃に保ちながら、60分間重合を行った。結果を表1に示す。
(実施例9)
 d-MAO投入量を119 mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(0.5 mmol/L、トルエン溶液)0.20mL(0.10μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例10)
 重合温度を40℃としたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.50mL(0.50mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.25mL(1.0μmol)としたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例11)
 エチレン圧を1.8MPaとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.50mL(0.50mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(0.50 mmol/L、トルエン溶液)0.20mL(0.10μmol)を用いたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例12)
 d-MAO投入量を124 mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例16で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2-フェニル-2-ブチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(0.5 mmol/L、トルエン溶液)0.20mL(0.10μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例13)
 d-MAO投入量を117 mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例18で合成した[シクロオクタンジイル-trans-1,2-ビス(3-tert-アミル-5-tert-ブチル-2-オキソイルベンジルスルファニル)]ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例14)
 d-MAO投入量を122 mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.5 mmol/L、トルエン溶液)0.10mL(0.050μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例15)
 重合温度を40℃としたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.50mL(0.50mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.50 mmol/L、トルエン溶液)0.10mL(0.050μmol)を用いたこと、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.13mL(0.52μmol)としたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例16)
 エチレン圧を1.8MPaとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.50mL(0.50mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.20 mmol/L、トルエン溶液)0.10mL(0.020μmol)を用いたこと、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.13mL(0.52μmol)としたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例17)
 溶媒としてトルエン200mLの代わりにヘキサン200mLを用いたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.50 mmol/L、トルエン溶液)0.10mL(0.050μmol)を用いたこと、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.13mL(0.52μmol)としたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例18)
 d-MAO投入量を124mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例22で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチルシクロヘキシル)ベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例19)
 d-MAO投入量を127mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例24で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(2, 3-ジメチル-2-ブチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例20)
 d-MAO投入量を122mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例26で合成した[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3-トリメチルシリル-5-メチルベンジルスルファニル)]ジクロロハフニウム(0.5 mmol/L、トルエン溶液)0.20mL(0.10μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例21)
 d-MAO投入量を73.2mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例29で合成した{シクロオクタンジイル-trans-1,2-ビス[5-ブロモ-2-オキソイル-3-(1-アダマンチル)ベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例22)
 d-MAO投入量を110mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例31で合成した{シクロオクタンジイル-trans-1,2-ビス[2-オキソイル-3-(トリイソプロピルシリル)-5-メチルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例23)
 d-MAO投入量を110mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例33で合成した{シクロオクタンジイル-trans-1,2-ビス[2-オキソイル-3-(tert-ブチルジメチルシリル)-5-メチルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例24)
 d-MAO投入量を120mgとし、{シクロオクタンジイル‐trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(3,5-ジメチルフェニル)-1-メチル-エチル)ベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(実施例25)
 重合温度を40℃としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(3,5-ジメチルフェニル)-1-メチル-エチル)ベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.10mL(0.10μmol)を用いたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例26)
 {シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(3,5-ジメチルフェニル)-1-メチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.50 mmol/L、トルエン溶液)0.10mL(0.050μmol)を用いたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例27)
 重合温度を40℃としたこと、トルエン200 mLの代わりにヘキサン200 mLを用いたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(3,5-ジメチルフェニル)-1-メチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.50 mmol/L、トルエン溶液)0.10mL(0.050μmol)を用いたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例28)
 重合温度を40℃としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(4-ジベンゾフラニル)-1-メチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.50mmol/L、トルエン溶液)0.10mL(0.050μmol)を用いたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例29)
 {シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-(4-ジベンゾフラニル)-1-メチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.50mmol/L、トルエン溶液)0.10mL(0.050μmol)を用いたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例30)
 重合温度を40℃としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-エチル-1-フェニル-プロピル)ベンジルスルファニル]}ジクロロハフニウム(0.50mmol/L、トルエン溶液)0.10mL(0.050μmol)を用いたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例31)
 {シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(1-エチル-1-フェニルプロピル)ベンジルスルファニル]}ジクロロハフニウム(0.50mmol/L、トルエン溶液)0.10mL(0.050μmol)を用いたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(実施例32)
 {シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.02mmol/Lトルエン溶液)0.10mL(0.002μmol)の代わりに{シクロオクタンジイル-trans-1,2-ビス[5-メチル-2-オキソイル-3-(トリフェニルシリル)]}ジクロロハフニウム(0.050mmol/L、トルエン溶液)0.20mL(0.010μmol)を用いたこと以外は、実施例8と同様にして実施した。結果を表1に示す。
(比較例1)
 d-MAO投入量を92mgとし、{シクロオクタンジイル-trans-1,2-ビス[3-(1-アダマンチル)-5-メチル-2-オキソイルベンジルスルファニル]}ジベンジルハフニウムの代わりに参考例2で合成した[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウムを用いたこと以外は、実施例1と同様にして実施した。結果を表1に示す。
(1) Melting point
A thermal analyzer was measured by the following method using a differential scanning calorimeter (Diamond DSC, Perkin Elmer).
1) Hold about 10mg of sample at 150 ° C for 5 minutes under nitrogen atmosphere
2) Cooling 150 ° C to 20 ° C (5 ° C / min) hold for 2 minutes
3) Measurement: 20 ° C to 150 ° C (5 ° C / min)
(2) Molecular weight and molecular weight distribution
The polystyrene equivalent weight average molecular chain length (Aw) and polystyrene equivalent number average molecular chain length (An) of each polymer were calculated by gel permeation chromatography (GPC) under the following measurement conditions. A calibration curve was prepared using standard polystyrene. 41.3 was used as the Q factor of polystyrene.
<Measurement conditions>
Equipment: TSK HLC-8121GPC / HT (manufactured by Tosoh Corporation)
Column: 2 TSKgel GMHHR-H (20)
Measurement temperature: 152 ° C
Solvent: o-dichlorobenzene (0.05% BHT added)
Solvent flow rate: 1 ml / min
Sample concentration: 0.05%
Column and sample for calibration: TSK standard polystyrene F-2000 to A-1000 (manufactured by Tosoh)
The weight average molecular weight (Mw) and number average molecular weight (Mn) of polyethylene are determined based on the polystyrene-converted weight average molecular chain length (Aw) and number average molecular chain length (An) measured under the above measurement conditions. The factor was calculated from the following formula with 17.7.
Molecular weight (Mw, Mn) = molecular chain length (Aw, An) × Q factor
(3) Method for calculating the number of long chain branches (LCB)
Measured under the following measurement conditions13In the C-NMR spectrum, when the sum of the areas of all peaks having a peak top at 5 to 50 ppm is defined as 1000, the area of the peak derived from methine carbon to which a branch having 7 or more carbon atoms is bonded is represented by 1000 carbon. The number of long-chain branches per unit (the number of branches having 7 or more carbon atoms) was used. Under the present measurement conditions, the number of long chain branches (the number of branches having 7 or more carbon atoms) was determined from the peak area having a peak top in the vicinity of 38.22 to 38.27 ppm. The peak area was in the range from the chemical shift of the valley with the peak adjacent on the high magnetic field side to the chemical shift of the valley with the peak adjacent on the low magnetic field side.
<Measurement conditions>
Equipment: AVANCE600 10mm cryoprobe manufactured by Bruker
Measuring solvent: 1,2-dichlorobenzene / 1,2-dichlorobenzene-d4= 75/25 (volume ratio) liquid mixture
Measurement temperature: 130 ° C
Measuring method: Proton decoupling method
Pulse width: 45 degrees
Pulse repetition time: 4 seconds
Chemical shift value standard: Tetramethylsilane
(4) Calculation method of comonomer content
Ethylene / 1-hexene copolymer
Measured according to the above conditions13It was calculated from the C-NMR spectrum according to the method described in Analytical Chemistry, 2004, 76, 5734-5747.
(5) Calculation method of the number of terminal vinyl groups
Polyethylene measured under the following measurement conditions1In the H NMR spectrum, when the area in the range of 0.5 to 2.5 ppm is 1000, the peak area of 4.92 to 5.20 ppm is defined as the number of terminal vinyl groups per 1000 carbons.
<1H-NMR measurement conditions>
Device: JEOL EX-270
Measuring solvent: 1,1,2,2-tetrachloroethane-d2
Measurement temperature: 135 ° C
Pulse width: 30 degrees
Pulse repetition time: 4 seconds
Chemical shift value standard: The peak of 1,1,2,2-tetrachloroethane was 6.0 ppm.
(6) Intrinsic viscosity ([η]) (unit: dl / g)
Measured using a Ubbelohde viscometer at a measurement temperature of 135 ° C. using tetralin as a solvent.
(Reference Example 1)
Synthesis of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclohexane
Under an argon atmosphere, 1.08 g (7.3 mmol) of trans-cyclohexane-1,2-dithiol and 4.58 g (15.3 mmol) of 3,5-di-t-butyl-2-hydroxybenzyl bromide were added to 90 mL of tetrahydrofuran. Dissolved and cooled to 0 ° C. Triethylamine 2.13mL (15.3mmol) was added there, and it stirred at 0 degreeC for 15 hours. The formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. Ether and dilute hydrochloric acid were added to the obtained residue, the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: hexane-dichloromethane 1: 1) to obtain 3.86 g (yield 90%) of the title compound as colorless crystals.
Melting point: 104-106 ° C decomposition (recrystallization from ethanol)
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.19-1.43 (m, 44 H), 2.09-2.15 (m, 2 H), 2.58-2.61 (m, 2 H), 3.79 (s, 4 H), 6.75 (s, 2 H), 6.93 (d, J = 2 Hz, 2 H), 7.25 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz, δ, CDClThree)
24.7, 29.7, 31.6, 32.6, 33.9, 34.2, 35.0, 48.1, 121.6, 123.7, 125.2, 137.3, 142.2, 152.0.
Elemental analysis: Calculated value (C36H56O2S2) C, 73.92%; H, 9.34%.
Found: C, 74.17%; H, 9.31%.
(Reference Example 2)
Synthesis of [cyclohexanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium
The following experiment was conducted in a glove box in an argon atmosphere. In a 100 mL Schlenk tube, 200.0 mg (0.342 mmol) of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclohexane was dissolved in 10 mL of toluene. At room temperature, 10 mL of a toluene solution of 185.7 mg (0.342 mmol) of tetrabenzylhafnium was added dropwise, and the mixture was further stirred for 1 hour. Toluene was distilled off under reduced pressure, and the residue was washed 3 times with 2 mL of hexane and dried to obtain 201.3 mg (yield 62%) as a diastereomeric mixture of the title compound as colorless crystals. The diastereomeric ratio was 64/36.
Major:1H-NMR (400 MHz, δ, ppm, CDThreeC6DFive)
1.06-1.92 (m, 44H), 2.55 (d, J = 12 Hz, 2H), 2.84 (d, J = 12 Hz, 2H), 3.21 (d, J = 14 Hz, 2H), 3.37 (d, J = 14 Hz, 2H), 6.62 (d, J = 2 Hz, 2H), 6.74-6.81 (m, 2H), 7.04-7.12 (m, 6H), 7.25 (d, J = 8 Hz, 4H), 7.54 (d, J = 2 Hz, 2H).
Minor:1H-NMR (400 MHz, δ, ppm, CDThreeC6DFive)
1.06-1.92 (m, 44H), 2.38 (d, J = 12 Hz, 2H), 2.85 (d, J = 14Hz, 2H), 2.94 (d, J = 12 Hz, 2H), 3.18 (d, J = 14 Hz, 2H), 6.59 (d, J = 2 Hz, 2H), 6.74-6.81 (m, 2H), 7.04-7.12 (m, 6H), 7.31 (d, J = 8 Hz, 4H), 7.47 ( d, J = 2 Hz, 2H).
(Reference Example 3)
Synthesis of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane
Under argon atmosphere, 2.18 g (12.4 mmol) of trans-cyclooctane-1,2-dithiol and 7.52 g (25.1 mmol) of 3,5-di-t-butyl-2-hydroxybenzyl bromide were added to 80 mL of tetrahydrofuran. And cooled to 0 ° C. Thereto was added 3.5 mL (24.9 mmol) of triethylamine, and the mixture was stirred at 0 ° C. for 1 hour and further at room temperature overnight. The formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure. Ether and saturated aqueous ammonium chloride solution were added to the resulting residue, and the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: hexane-dichloromethane 1: 1) to obtain 6.74 g (yield 89%) of the title compound as colorless crystals.
Melting point: 122-123 ° C (recrystallized from hexane)
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.12-1.94 (m, 48 H), 2.63-2.65 (m, 2 H), 3.81 (d, J = 13 Hz, 2 H), 3.90 (d, J = 13 Hz, 2 H), 6.92 (d, J = 2 Hz, 2 H), 6.95 (s, 2 H), 7.26 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz, δ, CDClThree)
25.7, 25.8, 29.8, 31.2, 31.6, 34.2, 35.0, 35.4, 49.6, 121.6, 123.7, 125.4, 137.4, 142.0, 152.2.
Elemental analysis: Calculated value (C38H60O2S2) C, 74.45%; H, 9.87%.
Found: C, 74.39%; H, 10.09%.
(Reference Example 4)
Synthesis of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium
The following experiment was conducted in a glove box in an argon atmosphere. In a 50 mL Schlenk tube, 192 mg (0.313 mmol) of trans-1,2-bis (2-hydroxy-3,5-di-tert-butylbenzylsulfanyl) cyclooctane was dissolved in 10 mL of toluene. Then, 10 mL of a toluene solution of 170 mg (0.313 mmol) of tetrabenzylzirconium was added dropwise, and the mixture was further stirred for 1 hour. Toluene was distilled off under reduced pressure, and the residue was washed with 2 mL of hexane and then dried to obtain 209 mg (yield 69%) of the title compound as colorless crystals.
Melting point: 203 ° C decomposition
1H-NMR (400 MHz, δ, ppm, C6D6)
1.18-1.94 (m, 48H), 2.35 (m, 2H), 2.61 (d, J = 12 Hz, 2H), 2.88 (d, J = 12 Hz, 2H), 3.13 (d, J = 14 Hz, 2 H), 3.41 (d, J = 14 Hz, 2 H), 6.62 (d, J = 2 Hz, 2H), 6.78 (t, J = 8 Hz, 2H), 7.10 (t, J = 8 Hz, 4H ), 7.29 (t, J = 8 Hz, 4 H), 7.57 (d, J = 2 Hz, 2 H)
13C-NMR (100.4 MHz, δ, ppm, C6D6)
25.1, 26.2, 28.8, 30.5, 31.8, 32.1, 34.2, 35.6, 49.1, 77.2, 121.4, 121.8, 124.6, 125.6, 126.0, 129.3, 138.5, 141.1, 148.4, 157.9.
Elemental analysis: Calculated value (C52H72O2S2Hf) C, 64.27%; H, 7.47%. Found: C, 63.87%; H, 7.59%.
(Reference Example 5)
Synthesis of trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane
(1) Synthesis of 6- (1-adamantyl) -2- (hydroxymethyl) -p-cresol
In a nitrogen-substituted 1 L four-necked flask, 20.9 g (86.1 mmol) of 2- (1-adamantyl) -p-cresol, 16.4 g (172 mmol) of magnesium chloride, 13.0 g (433 mmol) of paraformaldehyde and 400 mL of tetrahydrofuran were added. added. Triethylamine 24mL (172mmol) was added here, and it heated and refluxed for 2.5 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate was added to the residue, followed by washing with 1M HCl and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 19.2 g of a mixture containing 2- (1-adamantyl) -5-methylsalicylaldehyde.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.78 ~ 2.25 (15H), 2.32 (s, 3H), 6.98 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H), 9.82 (s, 1H), 11.64 (s, 1H ).
Next, 19.2 g of the above mixture, 135 mL of tetrahydrofuran and 80 mL of methanol were added to a 500 mL four-necked flask purged with nitrogen, and cooled with ice. To this, 1.60 g (42.5 mmol) of sodium borohydride was slowly added, and the temperature was raised to room temperature, followed by stirring for 14.5 hours. After distilling off volatile components under reduced pressure, ethyl acetate was added, and the mixture was washed with 1M HCl and saturated saline in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: chloroform: hexane = 1: 3 to 1: 0) to give 6- (1-adamantyl) -2- (hydroxymethyl) -p-cresol 8 .80 g (38% yield) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.78 (m, 6H), 2.01 (br, 1H), 2.07 (m, 3H), 2.15 (m, 6H), 2.25 (s, 3H), 4.81 (d, J = 4 Hz, 2H), 6.70 (d , J = 2 Hz, 1H), H6.99 (d, J = 2 Hz, 1H), 7.50 (s, 1H).
(2) Synthesis of 3- (1-adamantyl) -5-methyl-2-hydroxybenzyl bromide
To a 200 mL four-necked flask purged with nitrogen, 8.80 g (32.3 mmol) of 6- (1-adamantyl) -2- (hydroxymethyl) -p-cresol and 132 mL of dichloromethane were added. To this, 15 mL of phosphorus tribromide (1.23 M dichloromethane solution, 18.5 mmol) was added, and the mixture was stirred at room temperature for 3.5 hours. The reaction solution was added to ice water, and the organic layer was washed with water and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, and then the volatile component was distilled off under reduced pressure to give 11.1 g of 3- (1-adamantyl) -5-methyl-2-hydroxybenzyl bromide (crude yield: 103% ) Was obtained as a pale yellow solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.78 (m, 6H), 2.09 (m, 3H), 2.12 (m, 6H), 2.26 (s, 3H), 4.54 (s, 2H), 6.92 (d, J = 2 Hz, 1H), 7.04 (d , J = 2 Hz, 1H).
(3) Synthesis of trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane
In a 200 mL four-necked flask purged with nitrogen, 7.04 g (21.0 mmol) of 3- (1-adamantyl) -5-methyl-2-hydroxybenzyl bromide and 1.83 g of trans-cyclooctane-1,2-dithiol ( 10.4 mmol) and 100 mL of tetrahydrofuran were added. Triethylamine 4.3mL (31mmol) was added here, and it stirred at room temperature for 21.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, trans-1,2-bis [3- (1-adamantyl) -5 was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 20: 1). 6.61 g of a 6: 1 mixture of -methyl-2-hydroxybenzylsulfanyl] cyclooctane and trans-1- [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] -2-sulfanylcyclooctane Got. This mixture and 1.36 g (3.98 mmol) of 3- (1-adamantyl) -5-methyl-2-hydroxybenzyl bromide were dissolved in 100 mL of tetrahydrofuran and cooled on ice. Triethylamine 0.74mL (5.31mmol) was added here, and it stirred for 15.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 20: 1), and the obtained solid was further repulp washed with hexane at room temperature, whereby trans-1,2-bis 6.08 g (yield 85%) of [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.2 ~ 2.0 (m, 12H), 1.77 (m, 12H), 2.05 (m, 6H), 2.13 (12H), 2.24 (s, 6H), 2.67 (m, 2H), 3.73 (d, J = 13 Hz , 2H), 3.82 (d, J = 13 Hz, 2H), 6.71 (d, J = 2Hz, 2H), 6.83 (s, 2H), 6.97 (d, J = 2 Hz, 2H).
(Reference Example 6)
Synthesis of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium
Trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-hydroxybenzylsulfanyl] cyclooctane 200 mg (0.29 mmol) in toluene (6 mL) in a 50 mL Schlenk tube in a glove box under nitrogen atmosphere ) A solution of tetrabenzylhafnium 159 mg (0.29 mmol) in toluene (6 mL) was added dropwise at room temperature. After 1.5 hours, the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl] } Obtained 249 mg (82% yield) of dibenzylhafnium as a white powder.
1H-NMR (400MHz, δ, ppm, Toluene-d8)
0.6 ~ 1.4 (m, 12H), 1.84 (m, 6 H), 2.1 ~ 2.2 (16H), 2.17 (s, 6H), 2.41 (m, 12H), 2.66 (d, J = 12 Hz, 2H), 2.83 (d, J = 12 Hz, 2H), 3.11 (d, J = 14 Hz, 2H), 3.51 (d, J = 14 Hz, 2H), 6.27 (s, 2H), 6.78 (t, J = 7 Hz, 2H), 7.1-7.2 (10H).
(Reference Example 7)
Synthesis of trans-1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane
(1) Synthesis of 4-tert-butyl-2-cumylphenol
To a nitrogen-substituted 200 mL two-necked flask, 12.7 g (84.6 mmol) of 4-tert-butylphenol, 5.5 mL (42 mmol) of α-methylstyrene and 100 mL of cyclohexane were added, and the temperature was raised to 50 ° C. To this, 73 mg (0.42 mmol) of p-toluenesulfonic acid was added and stirred for 4 hours. After the reaction solution was cooled to room temperature, water and dichloromethane were added. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained colorless oil was purified by silica gel column chromatography (developing solvent: dichloromethane: heptane = 1: 3) to give 8.06 g (yield 71%) of 4-tert-butyl-2-cumylphenol as a colorless oil. Got as.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.35 (s, 9H), 1.69 (s, 6H), 4.17 (s, 1H), 6.68 (d, J = 8 Hz, 1H), 7.19 (dd, J = 2 Hz, 8 Hz, 1H), 7.2 ~ 7.3 (5H), 7.48 (d, J = 2 Hz, 1H).
13C {1H} -NMR (100.4 MHz, δ, ppm, CDClThree)
29.6, 31.6, 34.3, 41.8, 117.1, 123.1, 124.7, 126.0, 126.9, 129.1, 134.5, 143.1, 148.5, 151.4.
(2) Synthesis of 4-tert-butyl-6-cumyl-2- (hydroxymethyl) phenol In a 200 mL two-necked flask purged with nitrogen, 7.25 g (23.3 mmol, 4-tert-butyl-2-cumylphenol, Purity 86.3%), 4.44 g (46.6 mmol) of magnesium chloride, 3.50 g (117 mmol) of paraformaldehyde and 145 mL of tetrahydrofuran were added. Triethylamine 6.5mL (47mmol) was added here, and it heated and refluxed for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 8.05 g of a mixture containing 5-tert-butyl-3-cumylsalicylaldehyde (purity 79.9%, yield 93%).
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.42 (s, 9H), 1.74 (s, 6H), 7.1-7.4 (5H), 7.39 (d, J = 2 Hz, 1H), 7.74 (d, J = 2 Hz, 1H), 9.81 (s, 1H ), 11.2 (s, 1H).
Next, 8.05 g of the above mixture, 40 mL of tetrahydrofuran and 40 mL of methanol were added to a 100 mL flask purged with nitrogen, and the mixture was ice-cooled. To this was slowly added 340 mg (8.97 mmol) of sodium borohydride, and the mixture was warmed to room temperature and stirred for 7 hours. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After the solvent was distilled off under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 15 to 1: 5) to give 4-tert-butyl-6. 4.88 g (yield 75%) of -cumyl-2- (hydroxymethyl) phenol were obtained as a colorless oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.34 (s, 9H), 1.70 (s, 6H), 2.16 (t, J = 6 Hz, 1H), 4.65 (d, J = 6 Hz, 2H), 5.56 (s, 1H), 7.09 (d, J = 2 Hz, 1H), 7.2 to 7.4 (5H), 7.45 (d, J = 2 Hz, 1H).
(3) Synthesis of 5-tert-butyl-3-cumyl-2-hydroxybenzyl bromide
4-tert-butyl-6-cumyl-2- (hydroxymethyl) phenol 4.88 g (16.4 mmol) and dichloromethane 24 mL were added to nitrogen-substituted 50 mL Schlenk. To this, 8.2 mL of phosphorus tribromide (1.0 M dichloromethane solution, 8.2 mmol) was added, and the mixture was stirred at room temperature for 1.5 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, and then the volatile component was distilled off under reduced pressure, whereby 5.76 g (yield 98%) of 5-tert-butyl-3-cumyl-2-hydroxybenzyl bromide was colorless. Obtained as an oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.35 (s, 9H), 1.69 (s, 6H), 4.47 (s, 2H), 7.24 (d, J = 2 Hz, 1H), 7.2 ~ 7.4 (5H), 7.48 (d, J = 2 Hz, 1H ).
(4) Synthesis of trans-1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane
In a 100 mL two-necked flask purged with nitrogen, 2.85 g (7.89 mmol) of 5-tert-butyl-3-cumyl-2-hydroxybenzyl bromide and 7.6 mL of trans-cyclooctane-1,2-dithiol (0. 5M tetrahydrofuran solution, 3.8 mmol) and 21 mL of tetrahydrofuran were added and ice-cooled. Triethylamine 1.1mL (7.9 mmol) was added here, and it stirred at 0 degreeC for 1 hour, and also at room temperature for 2 hours. After distilling off volatile components from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and then saturated brine, and then dried over anhydrous magnesium sulfate. After the solvent was distilled off under reduced pressure, trans-1,2-bis (5-tert-butyl-3-cumyl-) was purified by silica gel column chromatography (developing solvent: dichloromethane: hexane = 1: 1). 2.26 g of a 2: 1 mixture of 2-hydroxybenzylsulfanyl) cyclooctane and trans-1- (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) -2-sulfanylcyclooctane was obtained. This mixture was dissolved in 4 mL of tetrahydrofuran, and 0.42 g (1.2 mmol) of 5-tert-butyl-3-cumyl-2-hydroxybenzyl bromide and 0.2 mL (1.4 mmol) of triethylamine were added at room temperature. After stirring for 2 hours, volatile components were distilled off under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained reaction mixture, and the organic layer was further washed with water and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The resulting oil was purified by silica gel column chromatography (developing solvent: dichloromethane: hexane = 1: 1), whereby trans-1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) ) 2.30 g (89% yield) of cyclooctane was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.35 (s, 18H), 1.68 (s, 6H), 1.69 (s, 6H), 1.13 ~ 1.79 (m, 12H), 2.55 (m, 2H), 3.64 (d, J = 14 Hz, 2H), 3.68 (d, J = 14 Hz, 2H), 5.77 (s, 2H), 7.03 (d, J = 2 Hz, 2H), 7.13-7.26 (10H), 7.39 (d, J = 2 Hz, 2H).
13C {1H} -NMR (100.4 MHz, δ, ppm, CDClThree)
25.8, 25.9, 29.4, 30.0, 31.0, 31.6, 34.0, 34.3, 42.1, 49.9, 123.1, 123.4, 125.67, 125.74, 126.0, 128.2, 136.1, 142.1, 150.2, 150.8.
(Reference Example 8)
Synthesis of [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylhafnium
In a glove box under a nitrogen atmosphere, in a 50 mL Schlenk tube, trans-1,2-bis (5-tert-butyl-3-cumyl-2-hydroxybenzylsulfanyl) cyclooctane 200 mg (0.27 mmol) in toluene (5 mL) To the solution, 147 mg (0.27 mmol) of tetrabenzylhafnium in toluene (5 mL) was added dropwise at room temperature. After 1 hour, the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] di 215 mg (72% yield) of benzyl hafnium was obtained as a white powder.
1H-NMR (400MHz, δ, ppm, Toluene-d8)
0.86-1.4 (m, 12H), 1.20 (s, 18H), 1.44 (d, J = 12 Hz, 2H), 1.85 (d, J = 12 Hz, 2H), 1.92 (s, 6H), 1.94 (s , 6H), 2.21 (m, 2H), 3.04 (d, J = 14 Hz, 2H), 3.13 (d, J = 14 Hz, 2H), 6.62 (d, J = 8 Hz, 2H), 6.74 (t , J = 8 Hz, 2H), 6.89 (d, J = 8 Hz, 4H), 7.05-7.16 (4H), 7.25 (t, J = 8 Hz, 4H), 7.40 (d, J = 8 Hz, 4H ), 7.52 (d, J = 2 Hz, 2H).
(Reference Example 9)
Synthesis of trans-1,2-bis [5-tert-butyl-3- (1,1-diphenylethyl) -2-hydroxybenzylsulfanyl] cyclooctane
(1) Synthesis of 4-tert-butyl-2- (1,1-diphenylethyl) phenol
4-tert-butylphenol 6.25 g (41.6 mmol), 1,1-diphenylethylene 4.9 mL (28 mmol) and cyclohexane 100 mL were added to a nitrogen-substituted 200 mL two-necked flask, and the temperature was raised to 50 ° C. Where FeCl30.45 g (2.8 mmol) was added and stirred for 7 hours. After the reaction solution was cooled to room temperature, water and dichloromethane were added. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. By purifying the obtained brown oil by silica gel column chromatography (developing solvent: ethyl acetate: heptane = 30: 1), 4.71 g (yield) of 4-tert-butyl-2- (1,1-diphenylethyl) phenol was obtained. 51%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.17 (s, 9H), 2.22 (s, 3H), 4.35 (s, 1H), 6.73 (d, J = 8 Hz, 1H), 6.88 (d, J = 2 Hz, 1H), 7.1-7.3 (11H ).
13C {1H} -NMR (100.4 MHz, δ, ppm, CDClThree)
28.8, 31.4, 34.1, 51.3, 117.1, 124.9, 126.5, 126.7, 128.3, 128.5, 133.7, 143.0, 146.6, 151.6.
(2) Synthesis of 4-tert-butyl-6- (1,1-diphenylethyl) -2- (hydroxymethyl) phenol
In a 200 mL two-necked flask purged with nitrogen, 4.60 g (13.9 mmol) of 5-tert-butyl-2- (1,1-diphenylethyl) phenol, 3.98 g (41.8 mmol) of magnesium chloride, and paraformaldehyde 2. 09 g (69.6 mmol) and 92 mL of tetrahydrofuran were added. Triethylamine 3.9mL (28mmol) was added here, and it heated and refluxed for 2 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 5.1 g of a mixture containing 4-tert-butyl-3- (1,1-diphenylethyl) salicylaldehyde.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.14 (s, 9H), 1.55 (s, 3H), 6.6-7.4 (12H), 9.88 (s, 1H), 11.45 (s, 1H).
Next, 5.1 g of the above mixture, 26 mL of tetrahydrofuran and 26 mL of methanol were added to a nitrogen-substituted 50 mL flask, and the mixture was ice-cooled. To this, 0.27 g (7.1 mmol) of sodium borohydride was slowly added, and the temperature was raised to room temperature, followed by stirring overnight. After distilling off the volatile components under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After the solvent was distilled off under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 15 to 1: 5) to give 4-tert-butyl-6. There was obtained 4.35 g (yield 85%) of-(1,1-diphenylethyl) -2- (hydroxymethyl) phenol as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.14 (s, 9H), 2.18 (t, J = 6 Hz, 1H), 2.26 (s, 3H), 4.73 (d, J = 6 Hz, 2H), 5.99 (s, 1H), 6.76 (d, J = 2 Hz, H1H), 7.07 (d, J = 2 Hz, 1H), 7.1 to 7.3 (10H).
(3) Synthesis of 5-tert-butyl-3- (1,1-diphenylethyl) -2-hydroxybenzyl bromide
4-tert-butyl-6- (1,1-diphenylethyl) -2- (hydroxymethyl) phenol 4.35 g (12.1 mmol) and dichloromethane 22 mL were added to nitrogen-substituted 50 mL Schlenk. To this, 12.1 mL of phosphorus tribromide (1.0 M dichloromethane solution, 12.1 mmol) was added, and the mixture was stirred at room temperature for 1.5 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer with anhydrous magnesium sulfate, 4.51 g of 5-tert-butyl-3- (1,1-diphenylethyl) -2-hydroxybenzyl bromide was removed by distilling off the volatile components under reduced pressure. Yield 88%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.17 (s, 9H), 2.21 (s, 3H), 4.54 (s, 2H), 6.87 (d, J = 2 Hz, 1H), 7.2 ~ 7.3 (m, 11H).
(4) Synthesis of trans-1,2-bis [5-tert-butyl-3- (1,1-diphenylethyl) -2-hydroxybenzylsulfanyl] cyclooctane
In a 100 mL two-necked flask purged with nitrogen, 0.55 g (1.3 mmol) of 5-tert-butyl-3- (1,1-diphenylethyl) -2-hydroxybenzyl bromide and trans-cyclooctane-1,2 -Dithiol 1.2mL (0.5M tetrahydrofuran solution, 0.6mmol) and tetrahydrofuran 21mL were added. Triethylamine 0.17mL (1.2mmol) was added here, and it stirred at room temperature for 2 hours. After evaporating volatile components under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and then saturated brine, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: dichloromethane: hexane = 1: 1) to obtain trans-1,2-bis [5-tert-butyl-3- (1 , 1-diphenylethyl) -2-hydroxybenzylsulfanyl] cyclooctane (0.50 g, purity 83%, yield 78%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.10 (s, 18H), 2.26 (s, 6H), 1.2 ~ 1.9 (m, 12H), 2.68 (m, 2H), 3.74 (d, J = 14 Hz, 2H), 3.79 (d, J = 14 Hz , 2H), 6.07 (s, 2H), 6.64 (d, J = 2 Hz, 2H), 7.02 (d, J = 2 Hz, 2H), 7.16-7.31 (20H).
(Reference Example 10)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (1,1-diphenylethyl) -2-oxoylbenzylsulfanyl]} dibenzylhafnium
In a glove box under a nitrogen atmosphere, 50 mg of a trans-1,2-bis [5-tert-butyl-3- (1,1-diphenylethyl) -2-hydroxybenzylsulfanyl] cyclooctane (purity 83) was added to a 50 mL Schlenk tube. %, 0.06 mmol) and 32 mg (0.06 mmol) of tetrabenzylhafnium were added, and 1.2 mL of toluene was added thereto and stirred at room temperature. After 1 hour, the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (1,1-diphenylethyl) -2- Oxoylbenzylsulfanyl]} dibenzylhafnium 36 mg (51% yield) was obtained as a white powder.
1H-NMR (400MHz, δ, ppm, Toluene-d8)
0.80 ~ 1.69 (m, 12H), 1.04 (s, 18H), 1.69 (s, 4H), 2.32 (m, 2H), 2.62 (s, 6H), 3.13 (d, J = 14 Hz, 2H), 3.22 (d, J = 14 Hz, 2H), 6.61 (d, J = 8 Hz, 2H), 6.73 (d, J = 2Hz, 2H), 6.78 (t, J = 8 Hz, 2H), 6.89 (d, J = 8 Hz, 4H), 7.1 ~ 7.3 (14H).
(Reference Example 11)
Synthesis of trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (triphenylmethyl) benzylsulfanyl] cyclooctane
(1) Synthesis of 4-tert-butyl-2- (triphenylmethyl) phenol
4-tert-butylphenol 3.23 g (21.5 mmol) and triphenylmethyl chloride 2.00 g (7.17 mmol) were added to a nitrogen-substituted 100 mL Schlenk tube, and the temperature was raised to 200 ° C. After 1.5 hours, the reaction mixture was cooled to room temperature, and then the resulting solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20) to give 4-tert-butyl-2- 1.28 g (45% yield) of (triphenylmethyl) phenol was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.13 (s, 9H), 4.32 (s, 1H), 6.76 (d, J = 8 Hz, 1H), 7.07 (d, J = 2 Hz, 1H), 7.2 ~ 7.3 (16H).
(2) Synthesis of 4-tert-butyl-2-hydroxymethyl-6- (triphenylmethyl) phenol
To a 100 mL two-necked flask purged with nitrogen, 1.20 g (3.06 mmol) of 4-tert-butyl-2- (triphenylmethyl) phenol, 0.58 g (6.1 mmol) of magnesium chloride, 0.46 g (15 mmol) of paraformaldehyde ) And 24 mL of tetrahydrofuran were added. Triethylamine 0.85mL (6.1mmol) was added here, and it heated and refluxed for 8 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 1.36 g of a mixture containing 5-tert-butyl-3- (triphenylmethyl) salicylaldehyde (purity 85.1%, yield 90%).
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.19 (s, 9H), 7.1-7.4 (15H), 7.44 (d, J = 2 Hz, 1H), 7.60 (d, J = 2 Hz, 1H), 9.84 (s, 1H), 11.18 (s, 1H ).
Next, 1.36 g of the above mixture, 7 mL of tetrahydrofuran and 7 mL of methanol were added to a 50 mL flask purged with nitrogen, and the mixture was ice-cooled. To this, 0.14 g (3.8 mmol) of sodium borohydride was slowly added, and the temperature was raised to room temperature, followed by stirring for 2.5 hours. After distilling off the volatile components under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 1.36 g (99% yield) of 4-tert-butyl-2-hydroxymethyl-6- (triphenylmethyl) phenol as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.15 (s, 9H), 2.04 (s, 1H), 4.65 (s, 2H), 5.18 (s, 1H), 7.07 (d, J = 2 Hz, 1H), 7.1 ~ 7.3 (15H).
(3) Synthesis of 5-tert-butyl-2-hydroxy-3- (triphenylmethyl) benzyl bromide
4-tert-butyl-2-hydroxymethyl-6- (triphenylmethyl) phenol 1.35 g (3.19 mmol) and dichloromethane 7 mL were added to nitrogen-substituted 50 mL Schlenk. To this, 1.6 mL of phosphorus tribromide (1.0 M dichloromethane solution, 1.6 mmol) was added, and the mixture was stirred at room temperature for 1.5 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. The organic layer was dried over anhydrous magnesium sulfate, and the volatile component was distilled off under reduced pressure to obtain 1.43 g of 5-tert-butyl-2-hydroxy-3- (triphenylmethyl) benzyl bromide (yield 92 %) As a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.15 (s, 9H), 4.50 (s, 2H), 7.1 ~ 7.3 (m, 17H).
(4) Synthesis of trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (triphenylmethyl) benzylsulfanyl] cyclooctane
In a 100 mL two-necked flask purged with nitrogen, 1.43 g (2.94 mmol) of 5-tert-butyl-2-hydroxy-3- (triphenylmethyl) benzyl bromide and trans-cyclooctane-1,2-dithiol 2 8 mL (0.5 M tetrahydrofuran solution, 1.4 mmol) and 11 mL of tetrahydrofuran were added. Triethylamine 0.39mL (2.8mmol) was added here, and it stirred at room temperature for 2 hours. After distilling off volatile components from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, trans-1,2-bis (5-tert-butyl-2-hydroxy-) was purified by silica gel column chromatography (developing solvent: dichloromethane: hexane = 1: 1). A 1: 1 mixture of 3- (triphenylmethyl) benzylsulfanyl) cyclooctane and trans-1- (5-tert-butyl-2-hydroxy-3- (triphenylmethyl) benzylsulfanyl) -2-sulfanylcyclooctane 1.12 g was obtained. This mixture was dissolved in 8 mL of tetrahydrofuran, and 0.42 g (0.87 mmol) of 5-tert-butyl-3-cumyl-2-hydroxybenzyl and 0.18 mL (1.3 mmol) of triethylamine were added at room temperature. After stirring for 2 hours, volatile components were distilled off under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained reaction mixture, and the organic layer was further washed with water and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained oil was purified by silica gel column chromatography (developing solvent: dichloromethane: hexane = 1: 1) to obtain trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (triphenyl). Methyl) benzylsulfanyl] cyclooctane 1.36 g (98% yield) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.12 (s, 18H), 1.1-1.8 ~ (m, 12H), 2.63 (m, 2H), 3.69 (s, 4H), 5.44 (s, 2H), 7.05 (d, J = 2 Hz, 2H), 7.1 ~ 7.3 (m, 32H).
(Reference Example 12)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dibenzylhafnium
In a glove box under a nitrogen atmosphere, 200 mg (0.20 mmol) of trans-1,2-bis (5-tert-butyl-2-hydroxy-3- (triphenylmethyl) benzylsulfanyl) cyclooctane was obtained with a 50 mL Schlenk tube. To a toluene (4 mL) solution was added dropwise a solution of tetrabenzylhafnium 110 mg (0.14 mmol) in toluene (4 mL) at room temperature. After 7 hours, the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl ] 145 mg (53% yield) of dibenzylhafnium was obtained as a white powder.
1H-NMR (400MHz, δ, ppm, Toluene-d8)
0.63 ~ 1.43 (m, 12H), 1.14 (s, 18H), 1.49 (d, J = 12 Hz, 2H), 1.54 (d, J = 12 Hz, 2H), 2.03 (m, 2H), 3.05 (d , J = 14 Hz, 2H), 3.34 (d, J = 14 Hz, 2H), 6.70 (d, J = 8Hz, 4H), 6.76 (d, J = 2Hz, 2H), 6.81 (t, J = 8 Hz, 2H), 7.0 to 7.7 (26H).
(Reference Example 13)
Synthesis of trans-1,2-bis [5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl] cyclooctane
(1) Synthesis of 4-tert-butyl-2- (3, -5-dimethyl-1-adamantyl) phenol
Nitrogen-substituted 50 mL Schlenk was added with 3.3 g (22 mmol) of 4-tert-butylphenol, 4.0 g (22 mmol) of 3,5-dimethyl-1-adamantanol and 20 mL of dichloromethane, and cooled to 0 ° C. in an ice bath. To this was added 1.2 mL (22 mmol) of sulfuric acid, and the mixture was stirred at room temperature for 1 hour. The reaction solution was poured into an aqueous sodium bicarbonate solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained white solid is purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 4.0 g of 4-tert-butyl-2- (3, 5-dimethyl-1-adamantyl) phenol (Yield 59%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.874 (s, 6H), 1.20 (s, 2H), 1.29 (s, 9H), 1.35-1.45 (m, ~ 4H), 1.70-1.78 (m, 4H), 1.95 (m, 2H), 2.17 (m, 1H), 4.56 (s, 1H), 6.56 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.24 (d, J = 2 Hz, 1H).
(2) Synthesis of 4-tert-butyl-6- (3, 5-dimethyl-1-adamantyl) -2-hydroxymethylphenol
In a 100 mL two-necked flask purged with nitrogen, 4.0 g (13 mmol) of 4-tert-butyl-2- (3,5-dimethyl-1-adamantyl) phenol, 4.8 g (50 mmol) of magnesium chloride, 2.1 g of paraformaldehyde (70 mmol) and 50 mL of tetrahydrofuran were added. Triethylamine 6.7mL (48mmol) was added here, and it heated and refluxed for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 4.2 g of a mixture containing 5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) salicylaldehyde (yield 96%).
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.874 (s, 6H), 1.2-2.2 (m, 22H), 7.32 (d, J = 2 Hz, 1H), 7.53 (d, J = 2 Hz, 1H), 9.85 (s, 1H), 11.7 (s , 1H).
To a 100 mL flask purged with nitrogen, 4.2 g of the above mixture, 20 mL of tetrahydrofuran and 20 mL of methanol were added and cooled on ice. To this, 490 mg (13 mmol) of sodium borohydride was slowly added, and the temperature was raised to room temperature, followed by stirring for 1 hour. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10 to 1: 5) to give 4-tert-butyl-6- 3.4 g (yield 81%) of (3, 5-dimethyl-1-adamantyl) -2-hydroxymethylphenol was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.875 (s, 6H), 1.2-2.2 ~ (m, 23H), 4.85 (d, J = 5 Hz, 2H), 6.88 (d, J = 2 Hz, 1H), 7.22 (d, J = 2 Hz, 1H ), 7.55 (s, 1H).
(3) Synthesis of 5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-hydroxybenzyl bromide
To a 200 mL flask purged with nitrogen, 3.4 g (9.9 mmol) of 4-tert-butyl-6- (3,5-dimethyl-1-adamantyl) -2-hydroxymethylphenol and 20 mL of dichloromethane were added. To this was added 6.6 mL of phosphorus tribromide (1.0 M dichloromethane solution, 6.6 mmol), and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer with anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure to give 5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-hydroxybenzyl bromide 3 Obtained .95 g (yield 98%) as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.882 (s, 6H), 1.22 (s, 2H), 1.28 (s, ~ 9H), 1.35 to 1.45 (m, 4H), 1.70 to 1.78 (m, 4H), 1.96 (m, 2H), 2.19 (m, 1H), 4.57 (s, 1H), 7.08 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H).
(4) Synthesis of trans-1,2-bis (5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl) cyclooctane
Nitrogen-substituted 50 mL Schlenk was added to 5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-hydroxybenzyl bromide 1.0 g (2.5 mmol), trans-cyclooctane-1,2 -Dithiol (0.18 g, 1.0 mmol) and tetrahydrofuran (7 mL) were added, and the mixture was ice-cooled. Triethylamine 0.7mL (5.0mmol) was added here, and it stirred at 0 degreeC for 1 hour, and 2 hours at room temperature. Further, 0.05 g (0.013 mmol) of 5-tert-butyl-2-hydroxy-3- (3, 5-dimethyl-1-adamantyl) benzyl bromide was added, and the mixture was stirred at room temperature for 1 hour. After distilling off volatile components from the reaction solution under reduced pressure, ethyl acetate and an aqueous ammonium chloride solution were added. The organic layer was washed with water and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to obtain trans-1,2-bis (5-tert-butyl-3- ( 1.0 g (yield -1-> 99%) of 3, 5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl) cyclooctane was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.88 (s, 12H), 1.2-2.2 ~ (m, 56H), 2.59 (m, 2H), 3.77 (d, J = 14 Hz, 2H), 3.87 (d, J = 14 Hz, 2H), 6.89 (d , J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H).
(Reference Example 14)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-oxoylbenzylsulfanyl]} dichlorohafnium
Trans-1,2-bis (5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-hydroxybenzylsulfanyl) cyclooctane 83 in a 50 mL Schlenk tube in a glove box under nitrogen atmosphere To a solution of mg (0.10 mmol) in toluene (1 mL), dichloro {1,1'-oxybis [ethane] [bis (phenylmethyl) hafnium]} 51 mg (0.10 mmol) in toluene (1 mL) at room temperature It was dripped. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl)] 2-Oxoylbenzylsulfanyl]} dichlorohafnium-55 mg mg (51% yield) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.901 (s, 12H), 1.0-2.4 ~ (m, 56H), 2.58 (brs, 2H), 3.88 (d, J = 14 Hz, 2H), 4.54 (d, J = 14 Hz, 2H), 6.85 (d , J = 2 Hz, 2H), 7.37 (d, J = 2 Hz, 2H).
(Reference Example 15)
Synthesis of trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane
(1) Synthesis of 4-tert-butyl-2- (2-phenyl-2-butyl) phenol
4-tert-butylphenol 6.6 g (44 mmol), 2-phenyl-2-butanol 3.4 mL (22 mmol) and heptane 20 mL were added to nitrogen-substituted 50 mL Schlenk and heated to 80 ° C. To this was added 73 mg (0.38 mmol) of p-toluenesulfonic acid monohydrate, and the mixture was stirred at 100 ° C. for 11.5 hours. Water and ethyl acetate were added to the reaction solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 4.4 tert g of 4-tert-butyl-2- (2-phenyl-2-butyl) phenol (yield) 71%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.683 (t, J = 7Hz, 3H), 1.35 (s, 9H), 1.61 (s, 3H), 2.02-2.26 (m, 2H), 4.18 (s, 1H), 6.66 (d, J = 8 Hz, 1H), 7.15-7.38 (m, 6H), 7.44 (d, J = 2 Hz, 1H).
(2) Synthesis of 4-tert-butyl-6- (2-phenyl-2-butyl) -2-hydroxymethylphenol
In a 500 mL flask purged with nitrogen, 3.0 g (11 mmol) of 4-tert-butyl-2- (2-phenyl-2-butyl) phenol, 4.0 g (41 mmol) of magnesium chloride, 1.8 g (60 mmol) of paraformaldehyde And 45 mL of tetrahydrofuran was added. Triethylamine (5.6 mL, 41 mmol) was added thereto, and the mixture was heated to reflux for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 2.7 g of a mixture containing 5-tert-butyl-3- (2-phenyl-2-butyl) salicylaldehyde (yield 77%).
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.882 (t, J = 7 Hz, 3H), 1.34 ~ 1.55 (m, 11H), 1.83 (s, 6H), 7.2 ~ 7.9 (m, 7H), 9.82 (s, 1H), 11.2 (s, 1H) .
2.7 mLg of the above mixture, 15 mL of tetrahydrofuran and 15 と mL of methanol were added to a 200 mL flask purged with nitrogen. To this was slowly added 340 mg (8.9 mmol) of sodium borohydride, and the mixture was warmed to room temperature and stirred for 1 hour. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the resulting colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10 to 1: 3) to give 4-tert-butyl-6- 2.1 g (yield 79%) of (2-phenyl-2-butyl) -2-hydroxymethylphenol was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.685 (t, J = 8 Hz, 3H), 1.34 (s, 9H), 1.62 (s, 6H), 2.0 ~ 2.4 (m, 3H), 4.62 (d, J = 6 Hz, 2H), 5.38 (s , 1H), 7.0-7.5 (m, 7H).
(3) Synthesis of 5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzyl bromide
4-tert-butyl-6- (2-phenyl-2-butyl) -2-hydroxymethylphenol (2.1 g, 6.7 mmol) and dichloromethane (15 ml) were added to a nitrogen-substituted 500 mL flask. To this was added 4.5 mL of phosphorus tribromide (1.0 M dichloromethane solution, 4.5 mmol), and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure to give 2.5 g of tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzyl bromide ( Yield> 99%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.669 (t, J = 8 Hz, 3H), 1.35 (s, 9H), 1.61 (s, 6H), 2.0 ~ 2.3 (m, 2H), 4.46 (m, 2H), 7.2 ~ 7.5 (m, 7H) .
(4) Synthesis of trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane
In a 50-mL flask purged with nitrogen, 0.94- g (2.5 mmol) bromide, 5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzyl bromide, trans-cyclooctane-1,2-dithiol 90 mg (0.50 mmol) and 7 mL of tetrahydrofuran were added and ice-cooled. Triethylamine 0.70 mL (5.1 mmol) was added thereto, and the mixture was stirred at 0 ° C for 1 hour and at room temperature for 1 hour. Further, trans-cyclooctane-1,2-dithiol (90 mg, 0.50 mmol) was added and stirred at room temperature for 1 hour. Volatile components were distilled off under reduced pressure, and ethyl acetate and an aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to obtain trans-1,2-bis [5-tert-butyl-3- ( 2-Phenyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane (0.8 g, yield> 99%) was obtained as a pale yellow solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.663 (t, J = 8 Hz, 3H), 1.1 to 2.6 (m, 48H), 3.65 (m, 4H), 5.60 to 5.71 (m, 2H), 7.0 to 7.4 (m, 14H).
(Reference Example 16)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-oxoylbenzylsulfanyl]} dichlorohafnium
In a glove box under a nitrogen atmosphere, trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane 150 mg in a 50 mL Schlenk tube ( To a solution of 0.20 mmol) in toluene (1 mL), dichloro {1,1'-oxybis [ethane] [bis (phenylmethyl) hafnium]} 110 mg (0.20 mmol) in toluene (1 mL) was added dropwise at room temperature. . After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2 -Oxoylbenzylsulfanyl]} dichlorohafnium-97 mg mg (48% yield) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.7 ~ 2.2 (m, 46H), 2.47 (m, 1H), 3.20 (m, 1H), 3.54 (m, 2H), 4.08 (m, 2H), 6.82 (s, 2H), 7.0 ~ 7.5 (m, 10H).
(Reference Example 17)
Synthesis of trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl) cyclooctane
(1) Synthesis of 2-tert-amyl-4-tert-butylphenol
4-tert-butylphenol 3.3 g (22 mmol), tert-amyl alcohol 2.4 お よ び mL (22 mmol) and dichloromethane 20 ジ ク ロ ロ メ タ ン mL were added to nitrogen-substituted 50 mL Schlenk, and cooled to 0 ° C in an ice bath. To this was added 1.2 mL (22 mmol) of sulfuric acid and stirred at room temperature for 20 minutes. The reaction solution was poured into an aqueous sodium bicarbonate solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 3.7 g of 2-tert-amyl-4-tert-butylphenol (yield 75%) as a colorless oil. Obtained.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.682 (t, J = 8 Hz, 3H), 1.29 (s, 9H), 1.37 (s, 6H), 1.84 (q, J = 8 Hz, 2H), 4.57 (s, 1H), 6.57 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.23 (d, J = 2 Hz, 1H).
(2) Synthesis of 6-tert-amyl-4-tert-butyl-2-hydroxymethylphenol
In a 200 mL four-necked flask purged with nitrogen, 3.7 g (17 mmol) of 2-tert-amyl-4-tert-butylphenol, 3.2 g (33 mmol) of magnesium chloride, 2.5 g (83 mmol) of paraformaldehyde and 75 mL of tetrahydrofuran added. To this was added 4.6 mL (33 mmol) of triethylamine, and the mixture was heated to reflux for 1.5 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 3.9 g of a mixture containing 3-tert-amyl-5-tert-butylsalicylaldehyde (yield 94%).
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.648 (t, J = 8 Hz, 3H), 1.28 (s, 9H), 1.37 (s, 6H), 1.90 (q, J = 8 Hz, 2H), 7.33 (d, J = 2 Hz, 1H), 7.54 (d, J = 2 Hz, 1H), 9.86 (s, 1H), H11.6 (s, 1H).
To a 200 mL four-necked flask purged with nitrogen, 3.9 μg of the above mixture, 40 μmL of tetrahydrofuran, and 20 μmL of methanol were added and cooled on ice. To this was slowly added 360 mg (9.5 mmol) of sodium borohydride, and the mixture was warmed to room temperature and stirred for 15 hours. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20 to 1: 9) to give 6-tert-amyl-4- 2.4 g of tert-butyl-2-hydroxymethylphenol (yield 61%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.681 (t, J = 7 Hz, 3H), 1.28 (s, 9H), 1.38 (s, 6H), 1.90 (q, J = 7 Hz, 2H), 4.84 (s, 2H), 6.88 (d, J = 2 Hz, 1H), 7.21 (d, J = 2 Hz, 1H), 7.48 (s, 1H).
(3) Synthesis of 3-tert-amyl-5-tert-butyl-2-hydroxybenzyl bromide
To a 200 mL four-necked flask purged with nitrogen, 2.4 g (9.4 と mmol) of 6-tert-amyl-4-tert-butyl-2-hydroxymethylphenol and 40 mL of dichloromethane were added. To this was added 5.7 mL of phosphorus tribromide (1.0 M M dichloromethane solution, 5.7 M mmol), and the mixture was stirred at room temperature for 3.5 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile components are distilled off under reduced pressure to give 3.2 g of tert-amyl bromide-2-tert-butyl-2-hydroxybenzyl bromide (yield> 99%) Was obtained as a pale yellow oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.676 (t, J = 8 Hz, 3H), 1.29 (s, 9H), 1.37 (s, 6H), 1.86 (q, J = 7 Hz, 2H), 4.58 (s, 2H), 7.09 (d, J = 2 Hz, 1H), 7.26 (d, J = 2 Hz, 1H).
(4) Synthesis of trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl) cyclooctane
In a nitrogen-substituted 50 mL 4-necked flask, 、 3-tert-amyl-5-tert-butyl-2-hydroxybenzyl bromide 1.4 g (4.5 mmol), trans-cyclooctane-1,2-dithiol 0.40 g (2.2 mmol) ) And 22 mL of tetrahydrofuran were added and cooled on ice. Triethylamine 1.0 mL (7.2 mmol) was added thereto and stirred at room temperature for 22.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20) to obtain trans-1,2-bis (3-tert-amyl-5-tert -Butyl-2-hydroxybenzylsulfanyl) cyclooctane and trans-1- (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl) -2-sulfanylcyclooctane 1.5: 1 g of a 6: 1 mixture Obtained. This mixture and 0.20 g (0.64 mmol) of tert-amyl-5-tert-butyl-2-hydroxybenzyl bromide were dissolved in 100 mL of tetrahydrofuran and cooled on ice. To this was added 0.12 mL (0.86 mmol) of triethylamine, and the mixture was stirred for 22.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40) to obtain trans-1,2-bis (3-tert-amyl-5-tert-butyl-2- Hydroxybenzylsulfanyl) cyclooctane 1.5 g (yield> 99%) was obtained as a yellow oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.649 (t, J = 8 Hz, 6H), 1.1 ~ 2.0 (m, 46H), 2.64 (m, 2H), 3.81 (d, J = 13 Hz, 2H), 3.90 (d, J = 13 Hz, 2H ), 6.90 (d, J = 2 Hz, H2H), 7.19 (d, J = 2 Hz, 2H).
(Reference Example 18)
Synthesis of [cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-oxoylbenzylsulfanyl)] dichlorohafnium
In a glove box under a nitrogen atmosphere, trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-hydroxybenzylsulfanyl) cyclooctane 130 mg (0.20 ク mmol) of toluene (50 mL Schlenk tube) To a solution of 1 mL), a solution of dichloro {1,1′-oxybis [ethane] [bis (phenylmethyl) hafnium]} 100 μmg (0.20 mmol) in toluene (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to give [cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-oxoylbenzylsulfanyl) ] Dichlorohafnium-130 mg (yield 69%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.702 (t, J = 7 Hz, 6H), 1.1 ~ 2.3 (m, 46H), 2.60 (brs, 2H), 3.87 (d, J = 14 Hz, 2H), 4.49 (d, J = 14 Hz, 2H ), 6.86 (d, J = 2 Hz, 2H), 7.33 (d, J = 2 Hz, 1H).
(Reference Example 19)
Synthesis of trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzylsulfanyl] cyclooctane
(1) Synthesis of 4-tert-butyl-2- (1-methyl-1-naphthylethyl) phenol
4-tert-butylphenol 6.6 g (44 mmol), p-toluenesulfonic acid monohydrate 73 mg (0.38 mmol) and heptane 20 mL were added to nitrogen-substituted 50 mL Schlenk and heated to 100 ° C. A solution prepared by dissolving 3.7 g (22 mmol) of isopropenylnaphthalene in 5 mL of heptane was added dropwise thereto and stirred at room temperature for 1 hour. The reaction solution was poured into an aqueous sodium bicarbonate solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 3.0 g of 4-tert-butyl-2- (1-methyl-1-naphthylethyl) phenol (yield). 43%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.38 (s, 9H), 1.79 (s, 6H), 4.34 (s, 1H), 6.66 (d, J = 8 Hz, 1H), 7.19-7.30 (m, 2H), 7.44-7.54 (m, 3H) , 7.75 ~ 7.92 (m, 4H).
(2) Synthesis of 4-tert-butyl-2-hydroxymethyl-6- (1-methyl-1-naphthylethyl) phenol
In a 500 mL flask purged with nitrogen, 1.7 g (5.4 mmol) of 4-tert-butyl-2- (1-methyl-1-naphthylethyl) phenol, 2.0 g (20 mmol) of magnesium chloride, 0.9 g of paraformaldehyde (30 mmol) ) And 20 mL of tetrahydrofuran were added. To this was added 2.8 mL (20 mmol) of triethylamine, and the mixture was heated to reflux for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 4.0 g of a mixture containing 5-tert-butyl-3- (1-methyl-1-naphthylethyl) salicylaldehyde (yield 73%).
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.37 (s, 9H), 1.83 (s, 6H), 4.34 (s, 1H), 7.2 to 7.9 (m, 9H), 9.82 (s, 1H), 11.2 (s, 1H).
To the 200 mL flask purged with nitrogen, 1.4 g of the above mixture, 10 mL of tetrahydrofuran, and 10 mL of methanol were added. To this was slowly added 160 (mg (4.2 mmol) of sodium borohydride, and the mixture was warmed to room temperature and stirred for 1 hour. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10 to 1: 3) to give 4-tert-butyl-2- Hydroxymethyl-6- (1-methyl-1-naphthylethyl) phenol 1.3 g (yield 91%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.37 (s, 9H), 1.80 (s, 6H), 2.08 (t, J = 6 Hz, 1H), 4.62 (d, J = 6 Hz, 2H), 5.60 (s, 1H), 7.1-7.9 (m , 9H).
(3) Synthesis of tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzyl bromide
To a 500 mL flask purged with nitrogen, 1.3 g (3.6 mmol) of 4-tert-butyl-2-hydroxymethyl-6- (1-methyl-1-naphthylethyl) phenol and 10 mL of dichloromethane were added. To this, 2.7 mL of phosphorus tribromide (1.0 M M dichloromethane solution, 2.7 mmol) was added and stirred at room temperature for 2 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile components are distilled off under reduced pressure to give 1.5 g of tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzyl bromide. (Yield> 99%) was obtained as a pale yellow oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.30 mm (s, 9H), 1.79 mm (s, 6H), 4.43 mm (s, 2H), 7.2-8.0 mm (m, 9H).
(4) Synthesis of trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzylsulfanyl] cyclooctane
In a 50-mL flask purged with nitrogen, add 1.1 g (2.5 mmol) 5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzyl bromide, trans-cyclooctane-1,2-dithiol 0.18 g (1.0 mmol) and 7 mL of tetrahydrofuran were added and ice-cooled. Triethylamine 0.70 mL (5.1 mmol) was added thereto, and the mixture was stirred at 0 ° C for 1 hour and at room temperature for 2 hours. Volatile components were distilled off under reduced pressure, and ethyl acetate and an aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to obtain trans-1,2-bis [5-tert-butyl-2-hydroxy -3- (1-Methyl-1-naphthylethyl) benzylsulfanyl] cyclooctane (0.9 g, yield:> 99%) was obtained as a pale yellow solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.8 ~ 1.8 (m, 42H), 2.46 (m, 2H), 2.51 (m, 4H), 3.51 (m, 4H), 5.72 (s, 2H), 6.99 (d, J = 2 Hz, 2H), 7.20 ~ 7.23mm (m, 2H), 7.35 ~ 7.44mm (m, 6H), 7.60 ~ 7.89mm (m, 8H).
(Reference Example 20)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1-naphthylethyl) benzylsulfanyl]} dichlorohafnium
Trans-1,2-bis (5-tert-butyl-2-hydroxy-3- (1-methyl-1-naphthylethyl) benzylsulfanyl) cyclooctane 170 mg in a 50 グ ロ ー ブ mL Schlenk tube in a glove box under nitrogen atmosphere To a solution of (0.20 ト ル エ ン mmol) in toluene (1 mL), dichloro {1,1'-oxybis [ethane] [bis (phenylmethyl) hafnium]} 100 mg (0.20 mmol) in toluene (1 mL) is added dropwise at room temperature did. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to give {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1- Naphthylethyl) benzylsulfanyl]} dichlorohafnium 110 mg (yield 51%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.50 ~ 2.2 (m, 56H), 2.48 (d, J = 14 Hz, 2H), 3.28 (d, J = 14 Hz, 2H), 6.58 (s, 2H), 6.97 (d, J = 8 Hz, 2H ), 7.3-7.5 (m, 6H), 7.59 (s, 2H), 7.68 (d, J = 6 Hz, 2H), 7.84 (d, J = 7 Hz, 2H), 8.10 (s, 2H).
(Reference Example 21)
Synthesis of trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl] cyclooctane
(1) Synthesis of 4-tert-butyl-2- (1-methylcyclohexyl) phenol
4-tert-butylphenol 3.3 g (22 mmol), 1-methylcyclohexanol 2.7 mL (22 mmol) and dichloromethane 20 mL were added to nitrogen-substituted 50 mL Schlenk, and cooled to 0 ° C. in an ice bath. To this was added 1.2 mL (22 mmol) of sulfuric acid and stirred at room temperature for 20 minutes. The reaction solution was poured into an aqueous sodium bicarbonate solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 3.8 g of 4-tert-butyl-2- (1-methylcyclohexyl) phenol (yield 70%) Was obtained as a colorless oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.2 ~ 1.8 (m, 20H), 2.19 (m, 2H), 4.60 (s, 1H), 6.58 (d, J = 8 Hz, 1H), 7.06 (dd, J = 2 Hz, 8 Hz, 1H), 7.31 (d, J = 2 Hz, 1H).
(2) Synthesis of 4-tert-butyl-2-hydroxymethyl-6- (1-methylcyclohexyl) phenol
In a 200 mL four-necked flask purged with nitrogen, 4-tert-butyl-2- (1-methylcyclohexyl) phenol 3.8 g (16 mmol), magnesium chloride 3.0 g (31 mmol), paraformaldehyde 2.3 g (78 mmol) and tetrahydrofuran 70 mL was added. Triethylamine 4.3 mL (31 mmol) was added thereto and heated to reflux for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 4.0 g of a mixture containing 5-tert-butyl-3- (1-methylcyclohexyl) salicylaldehyde (yield 91%).
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.2 ~ 1.8 (m, 20H), 2.20 (m, 2H), 7.33 (d, J = 2 Hz, 1H), 7.61 (d, J = 2 Hz, 1H), 9.86 (s, 1H), 11.7 (s , 1H).
To a 200 mL four-necked flask purged with nitrogen, 4.0 g of the above mixture, 40 mL of tetrahydrofuran, and 20 mL of methanol were added and ice-cooled. To this was slowly added sodium borohydride 330 mg (8.7 mmol), and the mixture was warmed to room temperature and stirred for 15 hours. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 9) to give 4-tert-butyl-2-hydroxymethyl-6 2.4 g of (1-methylcyclohexyl) phenol (yield 61%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.2 ~ 1.8 (m, 20H), 2.16 (brs, 1H), 2.19 (m, 2H), 4.84 (s, 2H), 6.88 (d, J = 2 Hz, 1H), 7.30 (d, J = 2 Hz , 1H), 7.52 (s, 1H).
(3) Synthesis of tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl bromide
4-tert-Butyl-2-hydroxymethyl-6- (1-methylcyclohexyl) phenol (2.4 g, 8.8 mmol) and dichloromethane (40 ml) were added to a nitrogen-substituted 200 mL four-necked flask. To this, phosphorus tribromide (5.3 mL, 1.0 M dichloromethane solution, 5.3 mmol) was added and stirred at room temperature for 3.5 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer with anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure to give 3.8 g of tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl bromide (yield> 99%) was obtained as a pale yellow oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.2 ~ 1.8 (m, 20H), 2.18 (m, 2H), 4.58 (s, 2H), 7.08 (d, J = 2 Hz, 1H), 7.35 (d, J = 2 Hz, 1H).
(4) Synthesis of trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl] cyclooctane
In a 50-mL four-necked flask purged with nitrogen, tert5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl bromide 1.5 g (4.3 mmol), trans-cyclooctane-1,2-dithiol 0.38 g (2.1 mmol) and 22 mL of tetrahydrofuran were added and ice-cooled. To this, 0.90 エ チ ル mL (6.5 mmol) of triethylamine was added and stirred at room temperature for 22.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20) to obtain trans-1,2-bis [5-tert-butyl-2-hydroxy 7 of 3- (1-methylcyclohexyl) benzylsulfanyl] cyclooctane and trans-1- [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl] -2-sulfanylcyclooctane 1: 1.6 g of mixture was obtained. This mixture and 0.18 g (0.53 mmol) of tert5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzyl bromide were dissolved in 20 mL of tetrahydrofuran and cooled on ice. To this, 0.10 mL (0.72 mmol) of triethylamine was added and stirred for 22 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20), whereby trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1 -Methylcyclohexyl) benzylsulfanyl] cyclooctane 1.6 g (yield 99%) was obtained as a yellow oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.1 ~ 1.8 (m, 50H), 1.90 (m, 2H), 2.20 (m, 4H), 2.64 (m, 2H), 3.80 (d, J = 13 Hz, 2H), 3.89 (d, J = 13 Hz , 2H), 6.90 (d, J = 2 Hz, 2H), 7.27 (d, J = 2 Hz, 2H).
(Reference Example 22)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methylcyclohexyl) benzylsulfanyl]} dichlorohafnium
Trans-1,2-bis [5-tert-butyl-2-hydroxy-3- (1-methylcyclohexyl) benzylsulfanyl] cyclooctane 140 mg (0.20 mmol) in a 50 (mL Schlenk tube in a glove box under nitrogen atmosphere Toluene (1 mL) solution of dichloro {1,1'-oxybis [ethane] [bis (phenylmethyl) hafnium]} 100 mg (0.20 mmol) in toluene (1 mL) was added dropwise at room temperature. After 1.5 hours, volatile components were distilled off under reduced pressure. The residue obtained was washed with pentane and dried under reduced pressure to give {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methylcyclohexyl) benzyl Sulfanyl]} dichlorohafnium-130 mg (yield 69%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.8 ~ 2.4 (m, 56H), 2.58 (brs, 2H), 3.86 (d, J = 14 Hz, 2H), 4.48 (d, J = 14 Hz, 2H), 6.85 (s 2H), 7.41 (s, 2H).
(Reference Example 23)
Synthesis of trans-1,2-bis [5-tert-butyl-3- (2, 3-dimethyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane
(1) Synthesis of 4-tert-butyl-2- (2, 3-dimethyl-2-butyl) phenol
To 50 置換 mL Schlenk purged with nitrogen, 3.3 g (22 mmol) of 4-tert-butylphenol, 2.7 mL (22 mmol) of 2, 3-dimethyl-2-butanol and 20 mL of dichloromethane were added and cooled to 0 ° C in an ice bath. . To this was added 1.2 mL (22 mmol) of sulfuric acid and stirred at room temperature for 20 minutes. The reaction solution was poured into an aqueous sodium bicarbonate solution. After the organic layer was dried over anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure. The obtained white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10) to give 4.4 g of 4-tert-butyl-2- (2, 3-dimethyl-2-butyl) phenol ( Yield 86%) was obtained as a colorless oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.746 (d, J = 7 Hz, 6H), 1.27 (s, 9H), 1.32 (s, 6H), 2.72 (m, J = 8 Hz, 1H), 4.61 (s, 1H), 6.56 (d, J = 8 Hz, 1H), 7.05 (dd, J = 2 Hz, 8 Hz, 1H), 7.23 (d, J = 2 Hz, 1H).
(2) Synthesis of 4-tert-butyl-6- (2, 3-dimethyl-2-butyl) -2-hydroxymethylphenol
In a 300 mL four-necked flask purged with nitrogen, 4.4 g (19 mmol) of 4-tert-butyl-2- (2, 3-dimethyl-2-butyl) phenol, 3.6 g (38 mmol) of magnesium chloride, 2.9 g of paraformaldehyde (95 mmol) and 85 mL of tetrahydrofuran were added. Triethylamine 5.3 mL (38 mL) was added thereto, and the mixture was heated to reflux for 2 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 4.8 g of a mixture containing 5-tert-butyl-3- (2, 3-dimethyl-2-butyl) salicylaldehyde (yield 96%).
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.748 (d, J = 7 Hz, 6H), 1.28 (s, 9H), 1.33 (s, 6H), 2.72 (m, J = 7 Hz, 2H), 7.33 (d, J = 2 Hz, 1H), 7.54 (d, J = 2 Hz, 1H), 9.86 (s, s1H), 11.7 (s, 1H).
4.8 g of the above mixture, 50 ml of tetrahydrofuran and 25 ml of methanol were added to a 200 ml four-necked flask purged with nitrogen, and ice-cooled. To this was slowly added 420 ホ ウ 素 mg (11 mmol) of sodium borohydride, and the mixture was warmed to room temperature and stirred for 15 hours. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20 to 1: 9) to give 4-tert-butyl-6- 2.9 g (yield 60%) of (2, 3-dimethyl-2-butyl) -2-hydroxymethylphenol was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.755 (d, J = 7 Hz, 3H), 1.28 (s, 9H), 1.33 (s, 6H), 2.06 (s, 1H), 2.68 (m, J = 7 Hz, 1H), 4.83 (s, 2H ), 6.87 (d, J = 2 Hz, H1H), 7.22 (d, J = 2 Hz, 1H), 7.48 (s, 1H).
(3) Synthesis of 5-tert-butyl-3- (2, 3-dimethyl-2-butyl) -2-hydroxybenzyl bromide
4-tert-butyl-6- (2, 3-dimethyl-2-butyl) -2-hydroxymethylphenol 2.9 g (11 mmol) and dichloromethane 50 ジ ク ロ ロ メ タ ン mL were added to a nitrogen-substituted 200 mL four-necked flask. To this was added 6.6 mL of phosphorus tribromide (1.0 M dichloromethane solution, 6.6 mmol), and the mixture was stirred at room temperature for 3.5 hours. Water was added to the reaction solution, and the organic layer was further washed twice with water and then with saturated brine. After drying the organic layer with anhydrous magnesium sulfate, the volatile component was distilled off under reduced pressure to give 5-tert-butyl-3- (2, 3-dimethyl-2-butyl) -2-hydroxybenzyl bromide 3.7. g (yield> 99%) was obtained as a pale yellow oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.759 (d, J = 7 Hz, 3H), 1.28 (s, 9H), 1.34 (s, 6H), 2.56 (m, J = 7 Hz, 1H), 4.58 (s, 2H), 7.08 (d, J = 2 Hz, 1H), 7.27 (d, J = 2 Hz, 1H).
(4) Synthesis of trans-1,2-bis [5-tert-butyl-3- (2, 3-dimethyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane
In a 50-mL four-necked flask purged with nitrogen, 1.5 g (4.6 mmol) of 5-tert-butyl-3- (2, 3-dimethyl-2-butyl) -2-hydroxybenzyl bromide, trans-cyclooctane-1, 2-Dithiol 0.40 g (2.2 mmol) and tetrahydrofuran 24 mL were added and ice-cooled. Triethylamine 1.0 mL (7.2 mmol) was added thereto and stirred at room temperature for 22 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the product was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40-1: 20) to obtain trans-1,2-bis [5-tert-butyl -3- (2, 3-dimethyl-2-butyl) -2-hydroxybenzylsulfanyl] cyclooctane 1.7 g (yield> 99%) was obtained as a yellow oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.734 (d, J = 7 Hz, 12H), 1.1-1.7 (m, 40H), 1.89 (m, 2H), 2.62 (m, 2H), 2.72 (m, J = 7 Hz, 2H), 3.61 (d , J = 13 Hz, 2H), 3.89 (d, J = 13 Hz, 2H), 6.89 (d, J = 2 Hz, 2H), 7.20 (d, J = 2 Hz, 2H).
(Reference Example 24)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2, 3-dimethyl-2-butyl) -2-oxoylbenzylsulfanyl]} dichlorohafnium
Trans-1,2-bis (5-tert-butyl-3- (2, 3-dimethyl-2-butyl) -2-hydroxybenzylsulfanyl) cyclooctane 130 in a 50 mL Schlenk tube in a glove box under nitrogen atmosphere To a solution of mg (0.20 の mmol) in toluene (1 mL), add a solution of dichloro {1,1'-oxybis [ethane] [bis (phenylmethyl) hafnium]} 100 mg (0.20 mmol) in toluene (1 mL) at room temperature. It was dripped. After 1.5 hours, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2, 3-dimethyl-2-butyl) 2-Oxoylbenzylsulfanyl]} dichlorohafnium-> 30 mg mg (yield: 16%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.719 (d, J = 6 Hz, 6H), 0.80 ~ 1.9 (m, 48H), 2.57 (brs, 2H), 3.06 (m, J = 6 Hz, 2H), 3.87 (d, J = 14 Hz, 2H ), 4.48 (d, J = 14 Hz, 2H), 6.85 (d, J = 2 Hz, 2H), 7.34 (d, J = 2 Hz, 2H).
(Reference Example 25)
Synthesis of trans-1,2-bis (2-hydroxy-3-trimethylsilyl-5-methylbenzylsulfanyl) cyclooctane
(1) Synthesis of 3-trimethylsilyl-5-methyl-2-hydroxybenzyl alcohol
2-Hydroxo-5-methyl-3- ト リ メ チ ル (trimethylsilyl) benzaldehyde 9.57 g (45.9 mmol) was dissolved in 70 mL of diethyl ether and cooled to 0 ° C. Thereto was added 2.27 g (59.8 mmol) of lithium aluminum hydride, and the mixture was stirred at 0 ° C for 2 hours. Dilute hydrochloric acid and diethyl ether were added, and the ether layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to give 9.57 g of 3-trimethylsilyl-5-methyl-2-hydroxybenzyl alcohol as colorless crystals. Rate 98%).
1H NMR (500 MHz, δ, ppm, CDClThree)
0.30 (s, 9H), 2.03 (br s, 1H), 2.25 (s, 3H), 4.83 (br s, 1H), 6.84 (d, J = 2 Hz, 1H), 7.11 (d, J = 2 Hz , 1H), 7.39 (s, 1H).
(2) Synthesis of trans-1,2-bis (2-hydroxy-3-trimethylsilyl-5-methylbenzylsulfanyl) cyclooctane
In an argon atmosphere, 1.03 g (4.87 mmol) of 3-trimethylsilyl-5-methyl-2-hydroxybenzyl alcohol was dissolved in 30 ml of diethyl ether and cooled to 0 ° C. 1,8-diazabicyclo [5.4.0] undec-7-ene 6.2 エ ン mL (44.5 mmol) was added thereto, and then phosphorus tribromide 0.35 mL (3.69 mmol) was added, followed by stirring at 25 ° C for 2 hours. Thereto, a solution obtained by dissolving 289.2 mg (1.64 mmol) of trans-cyclooctane-1,2-dithiol (document known) in 20 mL of diethyl ether was transferred in a tube under an argon atmosphere, and stirred for 13 hours while heating under reflux. A dilute aqueous ammonium chloride solution and diethyl ether were added, and the ether layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: dichloromethane), and trans-1,2-bis (2-hydroxy-3-trimethylsilyl-5-methylbenzylsulfanyl) cyclooctane 672.9 mg (yield as a colorless oil) 73%).
1H NMR (500 MHz, δ, ppm, CDClThree)
0.29 (s, 18H), 1.15-1.96. (M, 12H), 2.25 (s, 6H), 2.65 (br s, 2H), 3.73-3.85 (m, 4H), 6.85 (d, J = 2 Hz, 2H ), 6.90 (s, 2H), 7.10 (d, J = 2 Hz, 2H).
13C NMR (125.7 MHz, δ, ppm, CDCl3)
-0.88, 20.5, 25.7, 26.0, 30.9, 34.5, 49.9, 120.8, 127.7, 129.1, 132.4, 135.2, 158.4.
(Reference Example 26)
Synthesis of {cyclooctanediyl-trans-1,2-bis [2-oxoyl-3-trimethylsilyl-5-methylbenzylsulfanyl]} dichlorohafnium
In a glove box under nitrogen atmosphere, in a 50 mL Schlenk tube, trans-1,2-bis (2-hydroxy-3-trimethylsilyl-5-methylbenzylsulfanyl) cyclooctane 300mg (0.53mmol) in toluene (5 mL) solution Dichloro {1,1′-oxybis [ethane] [bis (phenylmethyl) hafnium]} 0.27 g (0.53 mmol) in toluene (5 mL) was added dropwise at room temperature. After 1.5 hours, the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to give 300 シ ク ロ mg of {cyclooctanediyl-trans-1,2-bis [2-oxoyl-3-trimethylsilyl-5-methylbenzylsulfanyl]} dichlorohafnium ( (Yield 69%) Obtained as a white powder.
1H NMR (500 MHz, δ, ppm, CDClThree)
0.425 (s, 18H), 0.70 ~ 2.0 ~ (m, 12H), 2.27 (s, 6H), 2.63 (brs, 2H), 3.82 (d, J = 14 Hz, 2H), 4.42 (d, J = 14 Hz , 2H), 6.83 (s, 2H), 7.23 (s, 1H).
(Reference Example 27)
Synthesis of [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl)] dichlorohafnium
In a glove box under a nitrogen atmosphere, trans-1,2-bis (5-tert-butyl-2-hydroxy-3-triphenylmethylbenzylsulfanyl) cyclooctane 0.40 g (0.41 mmol) of toluene (50 mL Schlenk tube) To a 4 mL solution, a solution of dichloro {1,1′-oxybis [ethane] [bis (phenylmethyl) hafnium]} 0.21 g (0.41 mmol) in toluene (4 mL) was added dropwise at room temperature. After 6 hours, the reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. The obtained residue was washed with hexane and then dissolved in a mixed solvent of diethyl ether / hexane. After concentration under reduced pressure, hexane was added and the mixture was allowed to stand at room temperature for 3 days. The precipitated solid was collected and dried under reduced pressure to obtain [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-2-oxoyl-3-triphenylmethylbenzylsulfanyl)] dichlorohafnium 0.31 g (yield 62%) was obtained as a white powder.
1H NMR (500 MHz, δ, ppm, CDClThree)
0.50-1.6 (m, 30H), 1.83 (brs, 2H), 3.44 (d, J = 14 Hz, 2H), 3.98 (d, J = 14 Hz, 2H), 6.7-7.4 (m, 34H).
(Reference Example 28)
Synthesis of trans-1,2-bis [5-bromo-3- (1-adamantyl) -2-hydroxybenzylsulfanyl] cyclooctane
(1) Synthesis of 4-bromo-2- (1-adamantyl) phenol
4-Bromo-2- (1-adamantyl) anisole 16 g (50 mmol) and dichloromethane 300 mL were added to a nitrogen-substituted 1000 mL four-necked flask and cooled to -63 ° C. To this was added 100 mL of phosphorus tribromide (1.0 M dichloromethane solution, 100 加 え mmol), and the mixture was stirred at room temperature for 10 minutes. After raising the temperature to room temperature, it was poured into 400 g of ice water. The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. After drying over anhydrous magnesium sulfate, volatile components were distilled off under reduced pressure. The resulting white solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40 to 1: 3) to give 13 g of 4-bromo-2- (1-adamantyl) phenol (yield 88%) ) Was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.77 (s, 6H), 2.08 (s, 9H), 4.81 (s, 1H), 6.53 (d, J = 8 Hz, 1H), 7.15 (dd, J = 2 Hz, 8 Hz, 1H), 7.29 ( d, J = 2 Hz, 1H).
(2) Synthesis of 4-bromo-6- (1-adamantyl) -2-hydroxymethylphenol
In a nitrogen-substituted 500 mL four-necked flask, 11 g (37 mmol) of 4-bromo-2- (1-adamantyl) phenol, 7.1 g (74 mmol) of magnesium chloride, 5.5 g (180 mmol) of paraformaldehyde and 230 mL of tetrahydrofuran Was added. To this was added 11 mL (79 mL) of triethylamine, and the mixture was heated to reflux for 2 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and water were added to the residue. The organic layer was washed with 1M HCl, saturated aqueous sodium hydrogen carbonate solution and saturated brine in that order, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 12 g of a mixture containing 5-bromo-3- (1-adamantyl) salicylaldehyde (99% yield).
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.78 (s, 6H), 2.08 (s, 3H), 2.10 (s, 6H), 4.81 (s, 1H), 6.53 (d, J = 8 Hz, 1H), 7.51 (m, 2H), 9.80 (s , 1H), 11.8 (s, 1H).
To a 300-mL four-necked flask purged with nitrogen, 13 mL of the above mixture, 150 mL of tetrahydrofuran, and 55 mL of methanol were added and cooled on ice. To this was slowly added 900 mg (24 mmol) of sodium borohydride, and the mixture was warmed to room temperature and stirred for 20 hours. After distilling off volatile components from the reaction solution under reduced pressure, water and ethyl acetate were added. The extract was washed with saturated brine and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20 to 1: 2) to give 4-bromo-6- (1 -Adamantyl) -2-hydroxymethylphenol 9.8 g (yield 74%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, DMSO-d6)
1.78 (s, 6H), 2.03 (s, 3H), 2.10 (s, 6H), 4.58 (s, 2H), 7.07 (d, J = 3 Hz, 1H), 7.22 (d, J = 3 Hz, 1H ).
(3) Synthesis of 5-bromo-3- (1-adamantyl) -2-hydroxybenzyl bromide
4-Bromo-6- (1-adamantyl) -2-hydroxymethylphenol 9.8 g (29 mmol) and dichloromethane 180 mL were added to a nitrogen-substituted 300 mL 4-neck flask. A mixed solution (17 mmol) of dichloromethane (8 ジ ク ロ ロ メ タ ン mL) and phosphorus tribromide (1.8 mL) was added thereto and stirred at room temperature for 3.5 hours. The reaction solution was added to ice water, and the organic layer was washed twice with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile components were distilled off under reduced pressure to obtain 12 g of 5-bromo-3- (1-adamantyl) -2-hydroxybenzyl bromide (> 99% yield). Obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.78 (s, 6H), 2.09 (s, 9H), 4.47 (s, 2H), 7.24 (d, J = 2 Hz, 1H), 7.32 (d, J = 2 Hz, 1H).
(4) Synthesis of trans-1,2-bis [5-bromo-3- (1-adamantyl) -2-hydroxybenzylsulfanyl] cyclooctane
In a 100 mL 4-neck flask with nitrogen substitution, 5-bromo-3- (1-adamantyl) -2-hydroxybenzyl 1.4 g (3.4 mmol), trans-cyclooctane-1,2-dithiol 0.28 g (1.6 mmol) ) And 22 mL of tetrahydrofuran were added and cooled on ice. Triethylamine ト リ 0.70 mL (5.0 mmol) was added thereto and stirred at room temperature for 14.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the product was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40-1: 20), whereby trans-1,2-bis [5-bromo-2 8: 1 of 2-hydroxy-3- (1-adamantyl) benzylsulfanyl] cyclooctane with trans-1- [5-bromo-2-hydroxy-3- (1-adamantyl) benzylsulfanyl] -2-sulfanylcyclooctane 1.3 g of mixture was obtained. This mixture and 0.14 g (0.53 mmol) of 5-bromo-2-hydroxy-3- (1-adamantyl) benzyl bromide were dissolved in 22 mL of tetrahydrofuran and cooled on ice. To this, 0.06 mL (0.43 mmol) of triethylamine was added and stirred for 22 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20 to 1: 5) to obtain trans-1,2-bis (5-bromo-2-hydroxy-3- (1-adamantyl) benzylsulfanyl) cyclooctane 1.4 g (yield> 99%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.2 ~ 2.0 (m, 24H), 2.05 (s, 6H), 2.10 (s, 12H), 2.61 (m, 2H), 3.73 (d, J = 14 Hz, 2H), 3.82 (d, J = 14 Hz , 2H), 7.04 (d, J = 2 Hz, 2H), 7.07 (s, 2H), 7.27 (d, J = 2 Hz, 2H).
(Reference Example 29)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-bromo-2-oxoyl-3- (1-adamantyl) benzylsulfanyl]} dichlorohafnium
In a glove box under a nitrogen atmosphere, trans-1,2-bis [5-bromo-2-hydroxy-3- (1-adamantyl) benzylsulfanyl] cyclooctane 160 mg (0.20 mmol) of toluene (50 mL Schlenk tube) To a solution of 1 mL), a solution of dichloro {1,1′-oxybis [ethane] [bis (phenylmethyl) hafnium]} 100 μmg (0.20 mmol) in toluene (1 mL) was added dropwise at room temperature. After stirring for 1 hour, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-bromo-2-oxoyl-3- (1-adamantyl) benzylsulfanyl]} Dichlorohafnium 62 mg mg (yield 29%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.853 (m, 2H), 1.15 (m, 2H), 1.4 ~ 2.4 (m, 38H), 2.61 (brs, 2H), 3.82 (d, J = 14 Hz, 2H), 4.48 (d, J = 14 Hz , 2H), 7.02 (d, J = 2 Hz, 2H), 7.44 (d, J = 2 Hz, 2H).
(Reference Example 30)
Synthesis of trans-1,2-bis [2-hydroxy-3- (triisopropylsilyl) -5-methylbenzylsulfanyl] cyclooctane
(1) Synthesis of 3- (triisopropylsilyl) -5-methyl-2-hydroxybenzyl alcohol
2-hydroxy-5-methyl-3- (triisopropylsilyl) benzaldehyde (literature known) 1.38 g (4.71 mmol) was dissolved in 20 mL of diethyl ether and cooled to 0 ° C. Thereto was added lithium aluminum hydride 232.3 mg (6.12 mmol), followed by stirring at 0 ° C for 21 hours. Dilute hydrochloric acid and diethyl ether were added, the ether layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to quantitatively obtain the title compound (1.41 g, including a small amount of solvent) as colorless crystals.
1H NMR (500 MHz, δ, ppm, CDClThree)
1.09 (d, J = 8 Hz, 18H), 1.50 (sept, J = 8 Hz, 3H), 2.02 (br s, 1H), 2.26 (s, 3H), 4.81 (d, J = 5 Hz, 1H) , 6.84 (d, J = 2 Hz,) 1H), 7.14 (d, J = 2 Hz, 1H), 7.34 (s, 1H).
13C NMR (125.7 MHz, δ, ppm, CDClThree)
11.9, 19.1, 20.8, 65.5, 122.3, 123.4, 128.2, 129.7, 137.6, 159.7.
(2) Synthesis of trans-1,2-bis [2-hydroxy-3- (triisopropylsilyl) -5-methylbenzylsulfanyl] cyclooctane
In an argon atmosphere, 1.01 g (3.42 mmol) of 3- (triisopropylsilyl) -5-methyl-2-hydroxybenzyl alcohol was dissolved in 10 ml of tetrahydrofuran and cooled to 0 ° C. Thereto was added 0.8 mL (5.74 mmol) of triethylamine, 0.26 mL (3.35 mmol) of methanesulfonyl chloride was added, and the mixture was stirred at 25 ° C for 21 hours. Thereto, a solution obtained by dissolving 201.7 mg (1.14 mmol) of trans-cyclooctane-1,2-dithiol (document known) in 10 mL of tetrahydrofuran was transferred in a tube under an argon atmosphere, and stirred for 20 hours while heating under reflux. A saturated aqueous ammonium chloride solution and diethyl ether were added, the ether layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: dichloromethane) to quantitatively obtain the title compound (1.01 g, containing a small amount of solvent) as a pale yellow oil.
1H NMR (500 MHz, δ, ppm, CDClThree)
1.12 (d, J = 8 Hz, 36H), 1.16-2.00 (m, 12H), 1.51 (sept, J = Hz, 6H), 2.28 (s, 6H), 2.75 (br s, 2H), 3.77-3.88 (m, 4H), 6.79 (s, 2H), 6.89 (d, J = 2 Hz, 2H), 7.16 (d, J = 2 Hz, 2H).
13C NMR (125.7 MHz, δ, ppm, CDClThree)
11.9, 19.1, 19.2, 20.8, 25.9, 26.1, 31.3, 35.3, 50.3, 121.1, 123.2, 128.8, 132.3, 137.3, 158.8.
(Reference Example 31)
Synthesis of {cyclooctanediyl-trans-1,2-bis [2-oxoyl-3- (triisopropylsilyl) -5-methylbenzylsulfanyl]} dichlorohafnium
In a glove box under a nitrogen atmosphere, trans-1,2-bis [2-hydroxy-3- (triisopropylsilyl) -5-methylbenzylsulfanyl] cyclooctane 150 (mg (0.20 mmol) of toluene (50mL mL Schlenk tube) To a solution of 1 mL), a solution of dichloro {1,1′-oxybis [ethane] [bis (phenylmethyl) hafnium]} 100 μmg (0.20 mmol) in toluene (1 mL) was added dropwise at room temperature. After stirring for 1 hour, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3- (triisopropylsilyl) -5-methylbenzylsulfanyl)] Dichlorohafnium 74 mg (yield 38%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.80 ~ 2.0 (m, 54H), 2.36 (s, 6H), 2.70 (brs, 2H), 3.80 (d, J = 14 Hz, 2H), 4.41 (d, J = 14 Hz, 2H), 6.80 (s , 2H), 7.27 (s, 2H).
(Reference Example 32)
Synthesis of trans-1,2-bis [2-hydroxy-3- (tert-butyldimethylsilyl) -5-methylbenzylsulfanyl] cyclooctane
(1) Synthesis of 3- (tert-butyldimethylsilyl) -5-methyl-2-hydroxybenzyl alcohol
2-Hydroxy-5-methyl-3- (tert-butyldimethylsilyl) benzaldehyde (literature known) 6.64 g (25.0 mmol) was dissolved in 60 mL of diethyl ether and cooled to 0 ° C. Thereto was added lithium ion hydride 1.32 g (34.8 、 mmol), and the mixture was stirred at 0 ° C for 17 hours. Dilute hydrochloric acid and diethyl ether were added, and the ether layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain 6.57 g (yield 98%) of the title compound as pale yellow crystals.
1H NMR (500 MHz, δ, ppm, CDClThree)
0.31 (s, 6H), 0.91 (s, 9H), 2.03 (br s, 1H), 2.25 (s, 3H), 4.80 (d, J = 9 Hz, 1H), 6.85 (d, J = 3 Hz, 1H), 7.10 (d, J = 3 Hz, 1H), 7.27 (s, 1H).
(2) Synthesis of trans-1,2-bis [2-hydroxy-3- (tert-butyldimethylsilyl) -5-methylbenzylsulfanyl] cyclooctane
Under an argon atmosphere, 461.9 mg (1.72 mmol) of 3- (tert-butyldimethylsilyl) -5-methyl-2-hydroxybenzyl alcohol was dissolved in 5 mL of tetrahydrofuran and cooled to 0 ° C. To this was added 0.4 mL (2.87 mmol) of triethylamine, 0.13 mL (1.68 mmol) of methanesulfonyl chloride was added, and the mixture was stirred at 25 ° C. for 21 hours. A solution prepared by dissolving 104.2 mg (0.591 mmol) of trans-cyclooctane-1,2-dithiol (document known) in 5 mL of tetrahydrofuran was transferred into a tube under an argon atmosphere, and stirred for 20 hours under heating and reflux. A saturated aqueous ammonium chloride solution and diethyl ether were added, the ether layer was washed with water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: dichloromethane) to quantitatively obtain the title compound (424.4 mg, containing a small amount of solvent) as a pale yellow oil.
1H NMR (500 MHz, δ, ppm, CDClThree)
0.30 (d, J = 4 Hz, 12H), 0.91 (s, 18H), 1.17-1.96 (m, 12H), 2.24 (s, 6H), 2.69 (br s, 2H), 3.73-3.85 (m, 4H ), 6.75 (s, 2H), 6.86 (d, J = 2 Hz, 2H), 7.09 (d, J = 2 Hz, 2H).
13C NMR (125.7 MHz, δ, ppm, CDClThree)
-4.39, -4.32, 17.8, 20.7, 25.9, 26.1, 27.3, 31.2, 35.0, 50.2, 121.2, 125.4, 128.9, 132.5, 136.9, 158.6.
(Reference Example 33)
Synthesis of {cyclooctanediyl-trans-1,2-bis [2-oxoyl-3- (tert-butyldimethylsilyl) -5-methylbenzylsulfanyl]} dichlorohafnium
In a glove box under a nitrogen atmosphere, trans-1,2-bis [2-hydroxy-3- (tert-butyldimethylsilyl) -5-methylbenzylsulfanyl] cyclooctane 150 mg (0.20 mmol) in a 50 mL Schlenk tube To a toluene (1 mL) solution, a toluene (1 mL) solution of dichloro {1,1'-oxybis [ethane] [bis (phenylmethyl) hafnium]} 100 mg (0.20 mmol) was added dropwise at room temperature. After stirring for 1 hour, volatile components were distilled off under reduced pressure. The residue obtained was washed with pentane and dried under reduced pressure to give {cyclooctanediyl-trans-1,2-bis [2-oxoyl-3- (tert-butyldimethylsilyl) -5-methylbenzylsulfanyl] ] Dichlorohafnium 10 mg mg (yield 6%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.381 (s, 6H), 0.494 (s, 6H), 0.70-2.0 (m, 30H), 2.26 (s, 6H), 2.69 (br s, 2H), 3.81 (d, J = 14 Hz, 2H), 4.46 (d, J = 14 Hz, 2H), 6.82 (d, J = 2 Hz, 2H), 7.25 (d, J = 2 Hz, 2H).
(Reference Example 34)
Synthesis of trans-1,2-bis {5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzylsulfanyl} cyclooctane
(1) Synthesis of 1- (3,5-dimethylphenyl) -1-methylethanol
To a 200-mL four-necked flask purged with nitrogen, 60-mL of THF and 40-mL of 3,5-dimethylphenylmagnesium bromide (0.50-M THF solution, 20-mL mmol) were added. After cooling to −65 ° C., 5.2 mL (71 mmol) of acetone was added dropwise. The mixture was warmed to room temperature, stirred for 2.5 hours, and poured into 60 g of ice water. To this, 1M M HCl and diethyl ether were added. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After drying over anhydrous magnesium sulfate, volatile components were distilled off under reduced pressure. The obtained pale yellow oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 10 to 1: 4), and then again purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 9). By purification, 1.7 g (yield 50%) of 1- (3,5-dimethylphenyl) -1-methylethanol was obtained as a pale yellow oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.56 (s, 6H), 1.76 (s, 1H), 2.33 (s, 6H), 6.89 (s, 1H), 7.10 (s, 2H).
(2) Synthesis of 4-tert-butyl-2- [1- (3,5-dimethylphenyl) -1-methylethyl] phenol
1- (3,5-dimethylphenyl) -1-methylethanol (1.7 g, 10 mmol), 4-tert-butylphenol (3.0 g, 20 タ ン mmol), and heptane (40 mL) were added to a nitrogen-substituted 100 mL flask. To this was added 40 mg (0.23 mmol) of p-toluenesulfonic acid, the temperature was raised to 100 ° C., and the mixture was stirred for 16 hours. After the reaction solution was cooled to room temperature, water and ethyl acetate were added. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and then the volatile component was distilled off under reduced pressure. The resulting light orange solid was purified by silica gel column chromatography (developing solvent, ethyl acetate: hexane = 1: 20), and then purified again by silica gel column chromatography (developing solvent, ethyl acetate: hexane = 1: 50). Then, 1.9 g of 4-tert-butyl-2- [1- (3,5-dimethylphenyl) -1-methylethyl] phenol (yield: 66%) was obtained as a colorless oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.36 (s, 9H), 1.65 (s, 6H), 2.28 (s, 6H), 4.38 (s, 1H), 6.68 (d, J = 8 Hz, 1H), 6.89 (s, 1H), 6.94 (s , 2H), 7.18 (dd, J = 2 Hz, 8 Hz, 1H), 7.46 (d, J = 2 Hz, 1H).
(3) Synthesis of 4-tert-butyl-6- [1- (3, 5-dimethylphenyl) -1-methylethyl] -2-hydroxymethylphenol
In a 100 mL four-necked flask purged with nitrogen, 1.9 g (6.5 mmol) of 4-tert-butyl-2- [1- (3,5-dimethylphenyl) -1-methylethyl] phenol and 1.3 g (13 mmol) of magnesium chloride Paraformaldehyde (0.98 g, 33 mmol) and tetrahydrofuran (38 g) were added. To this was added 1.8 mL (13 mmol) of triethylamine, and the mixture was heated to reflux for 100 minutes. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and 2% HCl were added to the residue. The organic layer was washed with water and saturated brine in that order and dried over anhydrous magnesium sulfate. By distilling off the solvent under reduced pressure, 2.2 g of a mixture containing 5-tert-butyl-3- [1- (3, 5-dimethylphenyl) -1-methylethyl] salicylaldehyde (yield> 99%) Got.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.37 (s, 9H), 1.71 (s, 6H), 2.26 (s, 6H), 6.79 (s, 2H), 6.81 (s, 1H), 7.39 (s, 1H), 7.72 (s, 1H), 9.83 (s, 1H), 11.2 (s, 1H).
To a 200-mL four-necked flask purged with nitrogen, 2.5-mL of the above mixture, 40-mL of tetrahydrofuran, and 20-mL of methanol were added and cooled on ice. To this was slowly added 180 mg (4.8 mmol) of sodium borohydride, and the mixture was warmed to room temperature and stirred for 15 hours. After the volatile component was distilled off from the reaction solution under reduced pressure, 2 M HCl and ethyl acetate were added. The extract was washed with saturated brine and dried over anhydrous magnesium sulfate. The obtained colorless oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 6 to 1: 4) to give 4-tert-butyl-6- [1- (3,5-dimethyl Phenyl) -1-methylethyl] -2-hydroxymethylphenol (2.2 g, yield: 86%) was obtained as a colorless oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.35 (s, 9H), 1.66 (s, 6H), 2.24 (t, J = 6 Hz, 1H), 2.28 (s, 6H), 4.62 (d, J = 6 Hz, 2H), 5.26 (s, 1H ), 6.89 (s, 1H), 6.93 (s, 2H), 7.12 (s, J = 2 Hz, 1H), 7.43 (s, J = 2 Hz, 1H).
(4) Synthesis of 5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzyl bromide
In a 100 mL 4-neck flask purged with nitrogen, add 2.2 tertg (6.8 mmol) of 4-tert-butyl-6- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxymethylphenol and dichloromethane. 30 mL was added. A mixed solution (4.1 mmol) of dichloromethane (2 ジ ク ロ ロ メ タ ン mL) and phosphorus tribromide (0.43 mL) was added thereto, and the mixture was stirred at room temperature for 3 hours. The reaction solution was added to ice water, and the organic layer was washed twice with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile components are distilled off under reduced pressure to give 5-tert-butyl-3- [1- (3, 5-dimethylphenyl) -1-methylethyl bromide] 2.8 g (-2-99% yield) of 2-hydroxybenzyl was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.35 (s, 9H), 1.65 (s, 6H), 2.28 (s, 6H), 4.48 (s, 2H), 6.91 (s, 1H), 6.94 (s, 2H), 7.23 (s, J = 2 Hz , 1H), 7.46 (s, J = 2 Hz, 1H).
(5) Synthesis of trans-1,2-bis {5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzylsulfanyl} cyclooctane
A 100-mL four-necked flask purged with nitrogen was charged with tert5-tert-butyl-3- [1- (3,5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzyl 1.8 g (4.7 mmol), trans -Cyclooctane-1,2-dithiol 0.42 g (2.4 mmol) and tetrahydrofuran 30 mL were added and cooled on ice. Triethylamine ト リ 1.0 mL (7.2 mmol) was added thereto and stirred at room temperature for 15.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40-1: 20) to obtain trans-1,2-bis {5-tert-butyl 2-hydroxy-3- [1- (3,5-dimethylphenyl) -1-methylethyl] benzylsulfanyl} cyclooctane and trans-1- {5-tert-butyl-2-hydroxy-3- [1- 1.7 g of a 7: 3 mixture with (3,5-dimethylphenyl) -1-methylethyl] benzylsulfanyl} -2-sulfanylcyclooctane was obtained. This mixture and 0.5- お よ び -tert-butyl-3- [1- (3, 5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzyl bromide bromide were dissolved in 20 mL of tetrahydrofuran and iced. Chilled. Triethylamine 0.25 mL (1.8 mmol) was added thereto and stirred for 21.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40), whereby trans-1,2-bis {5-tert-butyl-3- [1- (3, Thus, 1.8 g (yield: 94%) of 5-dimethylphenyl) -1-methylethyl] -2-hydroxybenzylsulfanyl} cyclooctane was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.2 ~ 2.0 (m, 42H), 2.25 (s, 12H), 2.64 (brs, 2H), 3.67 (s, 4H), 5.56 (s, 2H), 6.82 (s, 2H), 6.86 (s, 4H) , 7.09 (d, J = 2 Hz, 2H), 7.36 (d, J = 2 Hz, 2H).
(Reference Example 35)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (3, 5-dimethylphenyl) -1-methylethyl) benzylsulfanyl]} dichlorohafnium
In a glove box under a nitrogen atmosphere, trans-1,2-bis {5-tert-butyl-3- [1- (3, で 5-dimethylphenyl) -1-methylethyl] -2- Hydroxybenzylsulfanyl} cyclooctane 1.0 g (1.3 mmol) in toluene (5 溶液 mL) to dichloro {1,1'-oxybis [ethane] [bis (phenylmethyl) hafnium]} 640 mg (1.3 mmol) in toluene (1.3 mmol) 5 mL) solution was added dropwise at room temperature. After stirring for 1 hour, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (3,5 -Dimethylphenyl) -1-methylethyl) benzylsulfanyl]} dichlorohafnium-1.1 g (yield: 81%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.73 ~ 1.7 (m, 36H), 1.96 (s, 6H), 2.08 (brs, 2H), 2.21 (s, 12H), 3.53 (d, J = 14 Hz, 4H), 4.05 (d, J = 14 Hz , 4H), 6.72 (s, 2H), 6.83 (d, J = 2 Hz, 2H), 6.90 (s, 4H), 7.51 (d, J = 2 Hz, 2H).
(Reference Example 36)
Synthesis of trans-1,2-bis {5-tert-butyl-3- [1- (4-dibenzofuranyl) -1-methylethyl] -2-hydroxybenzylsulfanyl} cyclooctane
(1) Synthesis of 1- (4-dibenzofuranyl) -1-methylethanol
To a 100 mL 4-neck flask purged with nitrogen, 8 mL of hexane and 1.0 μg (6.0 μmmmol) of dibenzofuran were added. Tetramethylethylenediamine 1.0 mL (6.7 、 mmol) and s-butyllithium 6.5 mL (1.0 M cyclohexane, hexane solution, 6.5 mmol) were added thereto and stirred for 19 hours. After further adding 18 mL of THF and cooling to −65 ° C., 2.2 mL (30 mL) of acetone was added dropwise. The mixture was warmed to room temperature and stirred for 6.5 hours, and then poured into 20 g of ice water. To this was added 2% HCl and ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After drying over anhydrous magnesium sulfate, volatile components were distilled off under reduced pressure. The obtained orange oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20-1: 10) to give 1.1 g of 1- (4-dibenzofuranyl) -1-methylethanol (yield) 79%) was obtained as a colorless oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.82 (s, 6H), 2.73 (s, 1H), 7.30-7.38 (m, 2H), 7.44-7.49 (m, 1H), 7.54-7.62 (m, 2H), 7.85-7.88 (m, 1H), 7.95-7.97 (m, 1H).
(2) Synthesis of 4-tert-butyl-2- [1- (4-dibenzofuranyl) -1-methylethyl] phenol
1- (4-Dibenzofuranyl) -1-methylethanol 7.3 g (32 mmol), 4-tert-butylphenol 9.7 g (65 mmol), and heptane 280 mL were added to a nitrogen-substituted 500 mL flask. To this was added 140 mg (0.81 mmol) of p-toluenesulfonic acid, the temperature was raised to 100 ° C., and the mixture was stirred for 20 hours. After the reaction solution was cooled to room temperature, water and ethyl acetate were added. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and then the volatile component was distilled off under reduced pressure. The resulting pale orange solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 50-1: 20) to give 4-tert-butyl-2- [1- (4-dibenzofuranyl) There was obtained 6.7 g (yield 58%) of -1-methylethyl] phenol as a colorless solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.40 (s, 9H), 1.96 (s, 6H), 4.30 (s, 1H), 6.57 (d, J = 8 Hz, 1H), 7.11-7.91 (m, 9H).
(3) Synthesis of 4-tert-butyl-6- [1- (4-dibenzofuranyl) -1-methylethyl] -2-hydroxymethylphenol
In a 200 mL four-necked flask purged with nitrogen, 4.6 g (13 mmol) of 4-tert-butyl-2- [1- (4-dibenzofuranyl) -1-methylethyl] phenol, 2.4 g (25 mmol) of magnesium chloride, 1.9 g (64 ホ ル ム ア ル デ ヒ ド mmol) of paraformaldehyde and 75 mL of tetrahydrofuran were added. To this was added 3.5 mL (25 mmol) of triethylamine, and the mixture was heated to reflux for 3 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and 2% HCl were added to the residue. The organic layer was washed with water and saturated brine in that order and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure. The resulting pale yellow solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 50) to give 5-tert-butyl-3- [1- (4-dibenzofuranyl) -1- Methylethyl] salicylaldehyde 4.5 g (yield 92%) was obtained as a colorless solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.41 (s, 9H), 1.99 (s, 6H), 7.25-8.00 (m, 9H), 9.75 (s, 1H), 11.2 (s, 1H).
To a 300-mL four-necked flask purged with nitrogen, 4.5 mL of the above mixture, 60 mL of tetrahydrofuran, and 30 mL of methanol were added and ice-cooled. To this was slowly added 270 mg (7.1 mmol) of sodium borohydride, and the mixture was warmed to room temperature and stirred for 14.5 hours. After distilling off volatile components from the reaction solution under reduced pressure, 2% HCl and ethyl acetate were added. The extract was washed with saturated brine and dried over anhydrous magnesium sulfate. The resulting colorless solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 4 to 1: 1) to give 4-tert-butyl-6- [1- (4-dibenzofuranyl) -1-methylethyl] -2-hydroxymethylphenol 4.4 g (yield 96%) was obtained as a colorless solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.38 (s, 9H), 1.97 (s, 6H), 2.00 (t, J = 6 Hz, 1H), 4.62 (d, J = 6 Hz, 2H), 6.24 (s, 1H), 6.98 (d, J = 2 Hz, 1H), 6.97-7.85 (m, 8H).
(4) Synthesis of tert-butyl-3- [1- (4-dibenzofuranyl) -1-methylethyl] -2-hydroxybenzyl bromide
In a 100-mL four-necked flask purged with nitrogen, add 4-tert-butyl-6- [1- (4-dibenzofuranyl) -1-methylethyl] -2-hydroxymethylphenol 4.4 g (11 mmol) and dichloromethane 50 mL Was added. A mixed solution (6.8 mmol) of 3 mL of dichloromethane and 0.72 mL of phosphorus tribromide was added thereto and stirred at room temperature for 3.5 hours. The reaction solution was added to ice water, and the organic layer was washed with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile components are distilled off under reduced pressure to give tert-butyl-3- [1- (4-dibenzofuranyl) -1-methylethyl bromide]- 5.1 g (2-99% yield) of 2-hydroxybenzyl was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
1.43 (s, 9H), 1.95 (s, 6H), 4.40 (s, 2H), 6.97-7.85 (m, 9H).
(4) Synthesis of trans-1,2-bis {5-tert-butyl-3- [1- (4-dibenzofuranyl) -1-methylethyl] -2-hydroxybenzylsulfanyl} cyclooctane
To a 100 mL 4-necked flask purged with nitrogen, add 1.9 g (4.3 mmol) of trans-tert-butyl-3- [1- (4-dibenzofuranyl) -1-methylethyl] -2-hydroxybenzyl bromide, trans- Cyclooctane-1,2-dithiol 0.38 g (2.1 mmol) and tetrahydrofuran 30 mL were added and ice-cooled. To this was added 0.9 mL (6.5 mmol) of triethylamine, and the mixture was stirred at room temperature for 15 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20) to obtain trans-1,2-bis {5-tert-butyl-2-hydroxy -3- [1- (4-Dibenzofuranyl) -1-methylethyl] benzylsulfanyl} cyclooctane and trans-1- {5-tert-butyl-2-hydroxy-3- [1- (4-dibenzofuran 1.8 g of a 7: 3 mixture with (nyl) -1-methylethyl] benzylsulfanyl} -2-sulfanylcyclooctane was obtained. This mixture and 0.55 g (1.2 mmol) of 5-tert-butyl-3- [1- (4-dibenzofuranyl) -1-methylethyl] -2-hydroxybenzyl bromide were dissolved in 30 mL of tetrahydrofuran and cooled on ice. did. Triethylamine 0.23 mL (1.7 mmol) was added here, and it stirred for 16 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40), whereby trans-1,2-bis {5-tert-butyl-3- [1- (4- Dibenzofuranyl) -1-methylethyl] -2-hydroxybenzylsulfanyl} cyclooctane (1.8 g, yield: 92%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.61 ~ 1.6 (m, 30H), 1.92 (s, 12H), 1.99 (brs, 2H), 3.42 (d, J = 14 Hz, 2H), 3.53 (d, J = 14 Hz, 2H), 6.06 (s , 2H), 6.85 (d, J = 2 Hz, 2H), 7.19 (d, J = 2 Hz, 2H), 7.29 (m, 8H), 7.44-7.55 (m, 2H), 7.62-7.64 (m, 2H), 7.70-7.73 (m, 2H), 7.79-7.82 (m, 2H).
(Reference Example 37)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (4-dibenzofuranyl) -1-methylethyl) benzylsulfanyl]} dichlorohafnium
Trans-1,2-bis {5-tert-butyl-3- [1- (4-dibenzofuranyl) -1-methylethyl] -2-hydroxybenzyl in a 100 mL Schlenk tube in a glove box under nitrogen atmosphere Sulfanyl} cyclooctane 180 mg (0.20 mmol) in toluene (1 mL) solution, dichloro {1,1'-oxybis [ethane] [bis (phenylmethyl) hafnium]} 100 mg (0.20 mmol) in toluene (1 mL) ) The solution was added dropwise at room temperature. After stirring for 1 hour, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to obtain {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (4-dibenzo Furanyl) -1-methylethyl) benzylsulfanyl]} dichlorohafnium 210 mg (yield 90%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
-0.20-1.5 (m, 32H), 1.83 (s, 6H), 1.98 (s, 6H), 3.27 (d, J = 14 Hz, 2H), 3.87 (d, J = 14 Hz, 2H), 6.74 ( s, 2H), 7.0-7.9 (m, 16H).
(Reference Example 38)
Synthesis of trans-1,2-bis (5-tert-butyl-3- (1-ethyl-1-phenylpropyl) -2-hydroxybenzylsulfanyl) cyclooctane
(1) Synthesis of 1-ethyl-1-phenylpropanol
To a 500-mL four-necked flask purged with nitrogen, 180 mL of THF and 37 mL of phenyllithium (1.6 M dibutyl ether solution, 59 mol mmol) were added. After cooling to −63 ° C., 22 mL (210 mmol) of 3-pentanone was added dropwise. After warming to room temperature and stirring for 5.5 hours, it was poured into 200 g of ice water. To this, 2% HCl and ethyl acetate were added. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After drying over anhydrous magnesium sulfate, volatile components were distilled off under reduced pressure. The obtained orange oil was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20) to obtain 8.7 kg of 1-ethyl-1-phenylpropanol (yield: 89%) as a light yellow oil. It was.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.759 (t, J = 7 Hz, 6H),) 1.65 (s, 1H), 1.86 (m, 4H), 7.20-7.25 (m, 1H), 7.31-7.39 (m, 4H).
(2) Synthesis of 4-tert-butyl-2- (1-ethyl-1-phenylpropyl) phenol
To a 500-mL flask purged with nitrogen, 19 g (120 mmol) of 1-ethyl-1-phenylpropanol, 18 g (120 mmol) of 4-tert-butylphenol, and 200 mL of methylene chloride were added. The mixture was cooled in an ice bath, sulfuric acid (6.3 mL, 120 mmol) was added, and the mixture was warmed to room temperature and stirred for 20.5 hours. Furthermore, it heated up to 35 degreeC and stirred for 8.5 hours. The reaction solution was cooled to room temperature and then poured into a 5% aqueous sodium hydrogen carbonate solution. Ethyl acetate was added and the organic layer was dried over anhydrous magnesium sulfate, and then volatile components were distilled off under reduced pressure. The resulting dark orange oil is purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40-1: 20) to give 4-tert-butyl-2- (1-ethyl-1-phenylpropyl) 7.4 g of phenol (yield 21%) was obtained as a colorless solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.599 (t, J = 7 Hz, 6H), 1.35 (s, 9H), 2.02-2.10 (m, 2H), 2.16-2.23 (m, 2H), 4.20 (s, 1H), 6.65 (d, J = 8 Hz, 1H), 7.14-7.44 (m, 7H).
(3) Synthesis of 4-tert-butyl-6- (1-ethyl-1-phenylpropyl) -2-hydroxymethylphenol
In a 200 mL four-necked flask purged with nitrogen, 5.0 -g (17 mmol) of 4-tert-butyl-2- (1-ethyl-1-phenylpropyl) phenol, 3.2 g (34 mmol) of magnesium chloride, 2.6 g of paraformaldehyde (85 mmol) and 65 mL of tetrahydrofuran were added. To this was added 4.7 mL (34 mmol) of triethylamine, and the mixture was heated to reflux for 2 hours. The reaction solution was allowed to cool to room temperature, and the insoluble material was filtered off. After distilling off volatile components from the filtrate under reduced pressure, ethyl acetate and 1M HCl were added to the residue. The organic layer was washed with water and saturated brine in that order and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain 5.8 g of a mixture containing 5-tert-butyl-3- (1-ethyl-1-phenylpropyl) salicylaldehyde (yield> 99%).
1H-NMR (400 MHz, δ, ppm, CDCD3)
0.600 (t, J = 7 Hz, 6H), 1.37 (s, 9H), 1.99 (s, 6H), 2.01-2.06 (m, 2H), 2.39-2.44 (m, 2H), 7.12-7.38 (m, 6H), 7.77 (d, J = 2 Hz, 1H), 9.80 (s, 1H), 11.2 (s, 1H).
To a 200-mL four-necked flask purged with nitrogen, 5.8 g of the above mixture, 30-mL of tetrahydrofuran, and 30-mL of methanol were added and cooled on ice. To this was slowly added 640 mg (17 mmol) of sodium borohydride, and the mixture was warmed to room temperature and stirred for 17.5 hours. Volatile components were distilled off from the reaction solution under reduced pressure, and 1M HCl and ethyl acetate were added. The extract was washed with saturated brine and dried over anhydrous magnesium sulfate. The obtained colorless solid was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 9 to 1: 4) to give 4-tert-butyl-6- (1-ethyl-1-phenylpropyl) ) -2-hydroxymethylphenol 4.8 g (yield: 86%) was obtained as a colorless oil.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.594 (t, J = 7 Hz, 6H), 1.34 (s, 9H), 2.01-2.09 (m, 2H), 2.19-2.27 (m, 2H), 4.59 (d, J = 6 Hz, 2H), 5.18 (s, 1H), 7.10 (d, J = 2 Hz, 1H), 7.23-7.34 (m, 5H), 7.41 (d, J = 2 Hz, 1H).
(4) Synthesis of tert-butyl-3- (1-ethyl-1-phenylpropyl) -2-hydroxybenzyl bromide
4-tert-Butyl-6- (1-ethyl-1-phenylpropyl) -2-hydroxymethylphenol 4.8 g (15 mmol) and dichloromethane 28 mL were added to a nitrogen-substituted 200 mL four-necked flask. A mixed solution (8.7 mmol) of 4 mL of dichloromethane and 0.92 mL of phosphorus tribromide was added thereto, and the mixture was stirred at room temperature for 3 hours. The reaction solution was added to ice water, and the organic layer was washed with saturated brine. After drying the organic layer over anhydrous magnesium sulfate, the volatile components are distilled off under reduced pressure to give 5.6tertg 5-tert-butyl-3- (1-ethyl-1-phenylpropyl) -2-hydroxybenzyl bromide (Yield 99%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.589 (t, J = 7 Hz, 6H), 1.35 (s, 9H), 2.01-2.07 (m, 2H), 2.17-2.23 (m, 2H), 4.46 (s, 2H), 7.21 (d, J = 2 Hz, 1H), 7.27-7.36 (m, 5H), 7.42 (d, J = 2 Hz, 1H).
(5) Synthesis of trans-1,2-bis [5-tert-butyl-3- (1-ethyl-1-phenylpropyl) -2-hydroxybenzylsulfanyl] cyclooctane
In a 100 mL four-necked flask purged with nitrogen, tert5-tert-butyl-3- (1-ethyl-1-phenylpropyl) -2-hydroxybenzyl bromide 1.6 g (4.2 mmol), trans-cyclooctane-1,2 -0.36 g (2.0 mmol) of dithiol and 28 mL of tetrahydrofuran were added and ice-cooled. To this, triethylamine 0.85 mL (6.1 mmol) was added and stirred at room temperature for 21.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and aqueous ammonium chloride solution were added to the resulting residue. The organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in that order, and then dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, it was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 20) to obtain trans-1,2-bis [5-tert-butyl-2-hydroxy -3- (1-ethyl-1-phenylpropyl)] cyclooctane and trans-1- [5-tert-butyl-2-hydroxy-3- (1-ethyl-1-phenylpropyl) benzylsulfanyl] -2- 1.5 g of a 7: 3 mixture with sulfanylcyclooctane was obtained. This mixture and 0.50 g (1.3 mmol) of 5-tert-butyl-3- (1-ethyl-1-phenylpropyl) -2-hydroxybenzyl bromide were dissolved in 28 ml of tetrahydrofuran and cooled on ice. To this was added 0.25 mL (1.8 mmol) of triethylamine, and the mixture was stirred for 16.5 hours. The reaction solution was filtered, and volatile components were distilled off from the filtrate under reduced pressure. Ethyl acetate and an aqueous ammonium chloride solution were added to the obtained residue, and the organic layer was further washed with an aqueous ammonium chloride solution and saturated brine in this order. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: ethyl acetate: hexane = 1: 40 to 1:20), whereby trans-1,2-bis [5-tert-butyl-3- (1 -Ethyl-1-phenylpropyl) -2-hydroxybenzylsulfanyl] cyclooctane (1.5 g, yield: 96%) was obtained as a white solid.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.571 (t, J = 7 Hz, 12H), 1.1 ~ 1.9 (m, 30H), 1.97-2.05 (m, 4H), 2.24-2.55 (m, 4H), 2.56 (brs, 2H), 3.36 (s, 4H), 5.51 (s, 2H), 7.04 (d, J = 2 Hz, 2H), 7.14-7.25 (m, 10H), 7.36 (d, J = 2 Hz, 2H).
(Reference Example 39)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-ethyl-1-phenylpropyl) benzylsulfanyl]} dichlorohafnium
In a glove box under a nitrogen atmosphere, trans-1,2-bis [5-tert-butyl-3- (1-ethyl-1-phenylpropyl) -2-hydroxybenzylsulfanyl] cyclooctane 160 mg in a 100 mL Schlenk tube To a solution of (0.20 ト ル エ ン mmol) in toluene (1 mL), dichloro {1,1'-oxybis [ethane] [bis (phenylmethyl) hafnium]} 100 mg (0.20 mmol) in toluene (1 mL) is added dropwise at room temperature did. After stirring for 1 hour, volatile components were distilled off under reduced pressure. The obtained residue was washed with pentane and dried under reduced pressure to give {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-ethyl-1- Phenylpropyl) benzylsulfanyl]} dichlorohafnium 140 mg mg (yield 67%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.50-2.1 (m, 46H), 2.15 (brs, 2H), 2.42 (brs, 2H), 2.85 (brs, 2H), 3.55 (d, J = 14 Hz, 2H), 4.10 (d, J = 13 Hz , 2H), 6.82 (d, J = 2 Hz, 2H), 7.04-7.26 (m, 10H), 7.51 (d, J = 2 Hz, 2H).
(Reference Example 40)
Synthesis of trans-1,2-bis [5-methyl-2-hydroxy-3- (triphenylsilyl) benzylsulfanyl] cyclooctane
(1) Synthesis of 2-hydroxy-5-methyl-3- (triphenylsilyl) benzaldehyde
Non-patent literature: synthesized by the method described in Thadani, A. N .; Huang, Y .; Rawal, V. H. Org.Lett. 2007, 9, 3873-3876.
(2) Synthesis of 3-triphenylsilyl-5-methyl-2-hydroxybenzyl alcohol
2-Hydroxy-5-methyl-3- (triphenylsilyl) benzaldehyde (6.68 g, 16.9 mmol) was dissolved in 20 ml of tetrahydrofuran and cooled to 0 ° C. Thereto was added lithium aluminum hydride 833.8 mg (22.0 mmol), followed by stirring at 0 ° C for 15 hours. Dilute hydrochloric acid and diethyl ether were added thereto, and the ether layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to quantitatively obtain the title compound (6.60 g) as colorless crystals.
1H NMR (300 MHz, δ, ppm, CDClThree)
2.17 (s, 3H), 4.79 (d, J = 10 Hz, 1H), 6.75 (s, 1H), 6.95 (d, J = 4 Hz, 1H), 7.02 (d, J = 3 Hz, 1H), 7.34-7.46 (m, 9H), 7.60-7.63 (m, 6H).
13C NMR (100.6 MHz, δ, ppm, CDClThree)
20.6, 64.4, 120.4, 124.9, 128.0, 129.2, 129.7, 131.5, 134.3, 136.5, 138.3, 158.9.
(3) Synthesis of trans-1,2-bis (2-hydroxy-3-triphenylsilyl-5-methylbenzylsulfanyl) cyclooctane
In an argon atmosphere, 1.89 g (4.75 mmol) of 3-triisopropylsilyl-5-methyl-2-hydroxybenzyl alcohol was dissolved in 35 mL of tetrahydrofuran and cooled to 0 ° C. To this was added 1.3 mL (9.15 mmol) of triethylamine, 0.36 mL (4.58 mmol) of methanesulfonyl chloride was added, and the mixture was stirred at 25 ° C. for 20 hours. Thereto, a solution obtained by dissolving 310.7 mg (1.76 mmol) of trans-cyclooctane-1,2-dithiol in 10 テ ト ラ ヒ ド ロ フ ラ ン mL of tetrahydrofuran was transferred in a tube under an argon atmosphere, and stirred for 19 hours under heating and reflux. A saturated aqueous ammonium chloride solution and diethyl ether were added thereto, the ether layer was washed with water and dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: dichloromethane) to obtain the title compound quantitatively as a pale yellow oil (1.92 g, containing a small amount of solvent).
1H NMR (500 MHz, δ, ppm, CDClThree)
1.23-1.97 (m, 12H), 2.12 (s, 6H), 2.72 (br s, 2H), 3.67-3.77 (m, 4H), 6.52 (s, 2H), 6.92 (d, J = 2 Hz, 2H ), 6.96 (d, J = 2 Hz, 2H), 7.31-7.39 (m, 18H), 7.58-7.60 (m, 12H).
13C {1H} -NMR (100.4 MHz, δ, ppm, CDClThree)
20.5, 25.8, 26.0, 31.0, 34.0, 50.2, 121.5, 122.3, 127.7, 129.3, 129.4, 133.8, 134.6, 136.3, 138.2, 158.4.
(Reference Example 41)
Synthesis of {cyclooctanediyl-trans-1,2-bis [5-methyl-2-oxoyl-3- (triphenylsilyl) benzylsulfanyl]} dichlorohafnium
Trans-1,2-bis [5-methyl-3- (triphenylsilyl) -2-hydroxybenzylsulfanyl] cyclooctane 310 mg (0.30 mmol) of toluene (100 mL Schlenk tube in a glove box under nitrogen atmosphere) To a solution of 1 [mL] dichloro [1,1'-oxybis (ethane)] [bis (phenylmethyl) hafnium] 150 [mu] mg (0.30 [mu] mmol) in toluene (1 [mu] mL) was added dropwise at room temperature. After stirring for 3 hours, volatile components were distilled off under reduced pressure. The resulting residue is washed with pentane and dried under reduced pressure to give {cyclooctanediyl-trans-1,2-bis [5-methyl-2-oxoyl-3- (triphenylsilyl)]} dichlorohafnium 290 mg mg (yield 77%) was obtained as a white powder.
1H-NMR (400 MHz, δ, ppm, CDCDThree)
0.75-1.7 (m, 12H), 2.12 (s, 6H), 2.15 (brs, 2H), 3.75 (d, J = 15 Hz, 2H), 4.10 (d, J = 14 Hz, 2H), 6.80 (d , J = 2 Hz, 2H), 6.88 (d, J = 2 Hz, 2H), 7.1-7.7 (m, 30H).
(Reference Example 42)
Method for preparing d-MAO (dry methylaluminoxane)
A 200 mL two-necked flask containing a stir bar equipped with a three-way cock was replaced with nitrogen, and 100 mL of PMAO-S toluene solution (aluminum content 6.1 wt%) manufactured by Tosoh Finechem Co. was measured with a syringe and put into the flask. The solution was depressurized to remove volatile components.
The obtained white solid was redissolved in 100 mL of dehydrated toluene, and then volatile components were removed under reduced pressure.
This operation was further repeated twice to obtain 14.1 g of white powder.
Example 1
The autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 40 ° C. After the temperature rise, the ethylene pressure was fed while adjusting the pressure to 0.6 MPa, 139 mg of d-MAO was added, and then synthesized in Reference Example 6 {cyclooctanediyl-trans-1,2-bis [3- (1 -Adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium (1.0 mmol / L toluene solution) (0.10 mL, 0.1 μmol) was added to initiate polymerization. Polymerization was carried out for 60 minutes while maintaining the temperature at 40 ° C. About the obtained polymer, melting | fusing point, molecular weight and molecular weight distribution, intrinsic viscosity, the number of long chain branches, and the number of terminal vinyl groups were measured according to the measurement conditions mentioned above. The results are shown in Table 1.
(Example 2)
The input amount of d-MAO was 113 mg, the polymerization temperature was 0 ° C., and {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2 synthesized in Reference Example 6]. -Oxoylbenzylsulfanyl]} dibenzylhafnium was carried out in the same manner as in Example 1 except that the amount of (1.0 mmol / L toluene solution) was 2.0 mL (2.0 μmol). The results are shown in Table 1.
(Example 3)
The autoclave with a stirrer with an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 70 ° C. After raising the temperature, the ethylene pressure was fed while adjusting the pressure to 0.6 MPa, and 0.25 mL (0.25 mmol) of trinormal octylaluminum (1.0 mol / L toluene solution) was added, and then synthesized in Reference Example 6. {Cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium (1.0 mmol / L toluene solution) 0.50 mL (0 Next, 0.63 mL (2.5 μmol) of triphenylcarbenium tetrakis (pentafluorophenyl) borate (4.0 μmol / mL toluene solution) was added to initiate polymerization. Polymerization was performed for 60 minutes while maintaining the temperature at 70 ° C. The results are shown in Table 1.
Example 4
d-MAO input was set to 124 mg, and {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium instead of reference example 8 [cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylhafnium (0.5 mmol / L toluene solution) 0.10 mL This was carried out in the same manner as in Example 1 except that (0.05 μmol) was used. The results are shown in Table 1.
(Example 5)
The autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 40 ° C. After raising the temperature, the ethylene pressure was fed while adjusting to 0.6 MPa, 0.5 mL (0.5 mmol) of triisobutylaluminum (1.0 mol / L toluene solution) was added, and then synthesized in Reference Example 8 [ Cyclooctanediyl-trans-1,2-bis (5-tert-butyl-3-cumyl-2-oxoylbenzylsulfanyl)] dibenzylhafnium (0.50 μmol / mL toluene solution) 0.10 mL (0.05 μmol) Subsequently, 0.25 mL (1.0 μmol) of triphenylcarbenium tetrakis (pentafluorophenyl) borate (4.0 μmol / mL toluene solution) was added to initiate polymerization. Polymerization was carried out for 60 minutes while maintaining the temperature at 40 ° C. The results are shown in Table 1.
(Example 6)
d-MAO input was set to 120 mg, and reference example instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (1,1-diphenylethyl) -2-oxoylbenzylsulfanyl]} dibenzylhafnium (0.50 mmol / (L toluene solution) The same procedure as in Example 1 was performed except that 0.20 mL (0.10 μmol) was used. The results are shown in Table 1.
(Example 7)
d-MAO input was 126 mg, and reference example instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium 12 {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dibenzylhafnium (0.50 mmol / L toluene solution) It implemented like Example 1 except having used 0.20 mL (0.10 micromol). The results are shown in Table 1.
(Example 8)
The autoclave with a stirrer with an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 200 mL of toluene was charged as a solvent, and the temperature of the reactor was raised to 70 ° C. After raising the temperature, the ethylene pressure was fed while adjusting to 0.6 MPa, 0.25 mL (0.25 mmol) of triisobutylaluminum (1.0 mol / L toluene solution) was added, and then synthesized in Reference Example 27 { 0.10 mL of cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L toluene solution) 002 μmol), followed by 0.75 mL (3.0 μmol) of triphenylcarbenium tetrakis (pentafluorophenyl) borate (4.0 μmol / mL toluene solution) to initiate polymerization. Polymerization was performed for 60 minutes while maintaining the temperature at 70 ° C. The results are shown in Table 1.
Example 9
d-MAO input was 119 mg, and instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-oxoylbenzylsulfanyl]} dichlorohafnium (0 0.5 mmol / L, toluene solution) Except that 0.20 mL (0.10 μmol) was used, the same procedure as in Example 1 was performed. The results are shown in Table 1.
(Example 10)
The polymerization temperature was 40 ° C., the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.50 mL (0.50 mmol), {cyclooctanediyl-trans-1,2-bis [ 5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L toluene solution) was synthesized in Reference Example 14 instead of 0.10 mL (0.002 μmol) { Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-oxoylbenzylsulfanyl]} dichlorohafnium (1.0 mmol / L, (Toluene solution) 0.20 mL (0.20 μmol) was used, and the amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate charged was changed to (4. 0 μmol / mL toluene solution) The same procedure as in Example 8 was carried out except that the concentration was 0.25 mL (1.0 μmol). The results are shown in Table 1.
Example 11
The ethylene pressure was set to 1.8 MPa, the input amount of triisobutylaluminum was set to 0.50 mL (0.50 mmol) (1.0 mol / L toluene solution), {cyclooctanediyl-trans-1,2-bis [5-tert-Butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L toluene solution) was synthesized in Reference Example 14 instead of 0.10 mL (0.002 μmol). {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3, 5-dimethyl-1-adamantyl) -2-oxoylbenzylsulfanyl]} dichlorohafnium (0.50 mmol / L This was carried out in the same manner as in Example 8 except that 0.20 mL (0.10 μmol) of toluene solution was used. The results are shown in Table 1.
(Example 12)
d-MAO input was set to 124 mg, and instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2-phenyl-2-butyl) -2-oxoylbenzylsulfanyl]} dichlorohafnium (0.5) synthesized in Example 16 This was carried out in the same manner as in Example 1 except that 0.20 mL (0.10 μmol) of mmol / L, toluene solution) was used. The results are shown in Table 1.
(Example 13)
The input amount of d-MAO was 117 mg, and instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium [Cyclooctanediyl-trans-1,2-bis (3-tert-amyl-5-tert-butyl-2-oxoylbenzylsulfanyl)] dichlorohafnium synthesized in Example 18 (1.0 mmol / L, toluene solution) This was carried out in the same manner as in Example 1 except that 0.20 mL (0.20 μmol) was used. The results are shown in Table 1.
(Example 14)
d-MAO input was 122 mg, and instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- イ ル (1-methyl-1-naphthylethyl) benzylsulfanyl]} dichlorohafnium (0.5) synthesized in Example 20 This was carried out in the same manner as in Example 1 except that 0.10 mL (0.050 μmol) of mmol / L, toluene solution) was used. The results are shown in Table 1.
(Example 15)
The polymerization temperature was 40 ° C., the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.50 mL (0.50 mmol), {cyclooctanediyl-trans-1,2-bis [ 5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L toluene solution) was synthesized in Reference Example 20 instead of 0.10 mL (0.002 μmol) { Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1-naphthylethyl) benzylsulfanyl]} dichlorohafnium (0.50 mmol / L, toluene solution ) 0.10 mL (0.050 μmol) was used, and the amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate charged was (4. 0 μmol / mL toluene solution) The same procedure as in Example 8 was carried out except that 0.13 mL (0.52 μmol) was used. The results are shown in Table 1.
(Example 16)
The ethylene pressure was set to 1.8 MPa, the input amount of triisobutylaluminum was set to 0.50 mL (0.50 mmol) (1.0 mol / L toluene solution), {cyclooctanediyl-trans-1,2-bis [5-tert-Butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L toluene solution) was synthesized in Reference Example 20 instead of 0.10 mL (0.002 μmol). {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1-naphthylethyl) benzylsulfanyl]} dichlorohafnium (0.20 mmol / L, toluene Solution) 0.10 mL (0.020 μmol) was used, input amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate Was carried out in the same manner as in Example 8 except that 0.13 mL (0.52 μmol) was added (4.0 μmol / mL toluene solution). The results are shown in Table 1.
(Example 17)
200 mL of hexane was used instead of 200 mL of toluene as a solvent, {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3) synthesized in Reference Example 20 instead of 0.10 mL (0.002 μmol) (0.02 mmol / L toluene solution) -(1-methyl-1-naphthylethyl) benzylsulfanyl]} dichlorohafnium (0.50 mmol / L, toluene solution), 0.10 mL (0.050 μmol) was used, triphenylcarbenium tetrakis (pentafluorophenyl) ) The amount of borate input was set to 0.13 mL (0.52 μmol) (4.0 μmol / mL toluene solution). Except it was performed in the same manner as in Example 8. The results are shown in Table 1.
(Example 18)
d-MAO input amount was set to 124 mg, and instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium 22 {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methylcyclohexyl) benzylsulfanyl]} dichlorohafnium (1.0 mmol / L, toluene Solution) The reaction was performed in the same manner as in Example 1 except that 0.20 mL (0.20 μmol) was used. The results are shown in Table 1.
(Example 19)
d-MAO input amount is 127 mg, instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium 24, {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (2, 3-dimethyl-2-butyl) -2-oxoylbenzylsulfanyl]} dichlorohafnium (1. This was carried out in the same manner as in Example 1 except that 0.20 mL (0.20 μmol) (0 mmol / L, toluene solution) was used. The results are shown in Table 1.
(Example 20)
d-MAO input was 122 mg, and reference example instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium 26 [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3-trimethylsilyl-5-methylbenzylsulfanyl)] dichlorohafnium (0.5 mmol / L, toluene solution) 0.20 mL (0 .10 μmol) was carried out in the same manner as in Example 1. The results are shown in Table 1.
(Example 21)
The d-MAO input was 73.2 mg, instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium {Cyclooctanediyl-trans-1,2-bis [5-bromo-2-oxoyl-3- (1-adamantyl) benzylsulfanyl]} dichlorohafnium (1.0 合成 mmol / L, toluene solution) synthesized in Reference Example 29 This was carried out in the same manner as in Example 1 except that 0.20 mL (0.20 μmol) was used. The results are shown in Table 1.
(Example 22)
d-MAO input amount was 110 mg, and reference example instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium {Cyclooctanediyl-trans-1,2-bis [2-oxoyl-3- (triisopropylsilyl) -5-methylbenzylsulfanyl]} dichlorohafnium synthesized at 31 (1.0 mmol / L, toluene solution) 0 Performed in the same manner as in Example 1 except that 20 mL (0.20 μmol) was used. The results are shown in Table 1.
(Example 23)
d-MAO input amount was 110 mg, and reference example instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium {Cyclooctanediyl-trans-1,2-bis [2-oxoyl-3- (tert-butyldimethylsilyl) -5-methylbenzylsulfanyl]} dichlorohafnium (1.0 し た mmol / L, toluene solution) This was carried out in the same manner as in Example 1 except that 0.20 mL (0.20 μmol) was used. The results are shown in Table 1.
(Example 24)
The d-MAO input was 120 mg, and {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} Octanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (3,5-dimethylphenyl) -1-methyl-ethyl) benzylsulfanyl]} dichlorohafnium (1. This was carried out in the same manner as in Example 1 except that 0.20 mL (0.20 μmol) (0 mmol / L, toluene solution) was used. The results are shown in Table 1.
(Example 25)
The polymerization temperature was set to 40 ° C., and {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / (Toluene solution) Instead of 0.10 mL (0.002 μmol), {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (3,5-dimethylphenyl) ) -1-Methyl-ethyl) benzylsulfanyl]} dichlorohafnium (1.0 mmol / L, toluene solution), except that 0.10 mL (0.10 μmol) was used. The results are shown in Table 1.
(Example 26)
{Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L toluene solution) 0.10 mL (0 .002 μmol) instead of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (3,5-dimethylphenyl) -1-methylethyl) benzylsulfanyl ]} Carried out in the same manner as in Example 8, except that 0.10 mL (0.050 μmol) of dichlorohafnium (0.50 mmol / L, toluene solution) was used. The results are shown in Table 1.
(Example 27)
The polymerization temperature was set to 40 ° C., 200 mL of hexane was used instead of 200 mL of toluene, {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (tri Instead of 0.10 mL (0.002 μmol) of phenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L toluene solution), {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2- Oxoyl-3- (1- (3,5-dimethylphenyl) -1-methylethyl) benzylsulfanyl]} dichlorohafnium (0.50 mmol / L, toluene solution) 0.10 mL (0.050 μmol) was used Except for this, the same procedure as in Example 8 was performed. The results are shown in Table 1.
(Example 28)
The polymerization temperature was set to 40 ° C., and {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L Toluene solution) instead of 0.10 mL (0.002 μmol) {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (4-dibenzofuranyl) 1-methylethyl) benzylsulfanyl]} dichlorohafnium (0.50 mmol / L, toluene solution) was carried out in the same manner as in Example 8 except that 0.10 mL (0.050 μmol) was used. The results are shown in Table 1.
(Example 29)
{Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L toluene solution) 0.10 mL (0 .002 μmol) instead of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1- (4-dibenzofuranyl) -1-methylethyl) benzylsulfanyl] } It carried out like Example 8 except having used 0.10 mL (0.050 micromol) of dichloro hafnium (0.50 mmol / L, toluene solution). The results are shown in Table 1.
(Example 30)
The polymerization temperature was set to 40 ° C., and {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / (Toluene solution) Instead of 0.10 mL (0.002 μmol), {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-ethyl-1-phenyl-propyl) ) Benzylsulfanyl]} dichlorohafnium (0.50 mmol / L, toluene solution) 0.10 mL (0.050 μmol) was used, and the same procedure as in Example 8 was performed. The results are shown in Table 1.
(Example 31)
{Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L toluene solution) 0.10 mL (0 .002 μmol) instead of {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-ethyl-1-phenylpropyl) benzylsulfanyl]} dichlorohafnium (0. The same procedure as in Example 8 was carried out except that 0.10 mL (0.050 μmol) of 50 mmol / L toluene solution was used. The results are shown in Table 1.
(Example 32)
{Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.02 mmol / L toluene solution) 0.10 mL (0 (.002 μmol) instead of {cyclooctanediyl-trans-1,2-bis [5-methyl-2-oxoyl-3- (triphenylsilyl)]} dichlorohafnium (0.050 mmol / L, toluene solution). It implemented like Example 8 except having used 20 mL (0.010 micromol). The results are shown in Table 1.
(Comparative Example 1)
d-MAO input was 92 mg, and reference example instead of {cyclooctanediyl-trans-1,2-bis [3- (1-adamantyl) -5-methyl-2-oxoylbenzylsulfanyl]} dibenzylhafnium The same procedure as in Example 1 except that [cyclohexanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium synthesized in 2 was used. Carried out. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
(実施例33)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン185mL、コモノマーとして1-ヘキセン15mLを仕込み、反応器を40℃まで昇温した。昇温後、エチレン圧を0.6MPaに調整しながらフィードし、トリイソブチルアルミニウム(1.0mol/Lトルエン溶液)0.5mL(0.5mmol)を投入し、続いて参考例27で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)、さらに続いてトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(4.0μmol/mLトルエン溶液)0.13mL(0.52μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。重合の結果0.51gのエチレン/1-ヘキセン共重合体が得られた。得られた重合体について、上述した測定条件に従い、融点、分子量および分子量分布、固有粘度およびコモノマー含量を測定した。結果を表2に示す。
(実施例34)
 トルエン量を195mL、1-ヘキセン量を5mLとしたこと、および{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウムの投入量(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)を(0.02μmol/mLトルエン溶液)0.10mL(0.002μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例35)
 トルエン量を198mL、1-ヘキセン量を2mLとしたこと、および{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウムの投入量(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)を(0.02μmol/mLトルエン溶液)0.10mL(0.002μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例36)
 重合温度を70℃とし、トルエン量を160mL、1-ヘキセン量を40mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例37)
 重合温度を70℃とし、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウムの投入量(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)を(0.02μmol/mLトルエン溶液)0.10mL(0.002μmol)としたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例38)
 重合温度を70℃とし、トルエン量を190mL、1-ヘキセン量を10mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウムの投入量(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)を(0.02μmol/mLトルエン溶液)0.10mL(0.002μmol)としたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例39)
 重合温度を70℃とし、トルエン量を195mL、1-ヘキセン量を5mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウムの投入量(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)を(0.02μmol/mLトルエン溶液)0.10mL(0.002μmol)としたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例40)
 重合温度を70℃とし、トルエン量を160mL、コモノマーとして1-ヘキセン15mLの代わりにビニルシクロヘキサン40mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例41)
 重合温度を70℃とし、トルエン量を160mL、1-ヘキセン量を40mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.40mL(0.40μmol)を用いたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例42)
 重合温度を70℃とし、トルエン量を180mL、1-ヘキセン量を20mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.25mL(1.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例43)
 重合温度を70℃とし、トルエン量を190mL、1-ヘキセン量を10mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.25mL(1.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例44)
 重合温度を70℃とし、トルエン量を195mL、1-ヘキセン量を5mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.25mL(1.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例45)
 重合温度を70℃とし、トルエン量を160mL、コモノマーとして1-ヘキセン15mLの代わりにビニルシクロヘキサン40mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.40mL(0.40μmol)を用いたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例46)
 重合温度を70℃とし、コモノマーとして1-ヘキセン15mLの代わりにビニルシクロヘキサン15mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例47)
 重合温度を70℃とし、トルエン量を195mL、コモノマーとして1-ヘキセン15mLの代わりにビニルシクロヘキサン5mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例14で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-3-(3, 5-ジメチル-1-アダマンチル)-2-オキソイルベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)0.20mL(0.20μmol)を用いたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例48)
 重合温度を70℃とし、トルエン量を190mL、1-ヘキセン量を10mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、および{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.20 mmol/L、トルエン溶液)0.10mL(0.020μmol)を用いたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例49)
 重合温度を70℃とし、トルエン量を195mL、1-ヘキセン量を5mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、および{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.20 mmol/L、トルエン溶液)0.10mL(0.020μmol)を用いたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例50)
 重合温度を70℃とし、コモノマーとして1-ヘキセン15mLの代わりにビニルシクロヘキサン15mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.20 mmol/L、トルエン溶液)0.10mL(0.020μmol)を用いたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例51)
 重合温度を70℃とし、トルエン量を195mL、コモノマーとして1-ヘキセン15mLの代わりにビニルシクロヘキサン5mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウム(0.20 mmol/L、トルエン溶液)0.10mL(0.020μmol)を用いたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)0.75mL(3.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(実施例52)
 重合温度を70℃とし、トルエン量を190mL、コモノマーとして1-ヘキセン15mLの代わりにスチレン10mLとしたこと、トリイソブチルアルミニウムの投入量を(1.0mol/Lトルエン溶液)0.25mL(0.25mmol)としたこと、{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(0.10μmol/mLトルエン溶液)0.10mL(0.01μmol)の代わりに参考例20で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3- (1-メチル-1-ナフチルエチル)ベンジルスルファニル]}ジクロロハフニウム(1.0 mmol/L、トルエン溶液)3.0mL(3.0μmol)を用いたこと、およびトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートの投入量を(4.0μmol/mLトルエン溶液)1.0mL(4.0μmol)としたこと以外は実施例33と同様に実施した。結果を表2に示す。
(Example 33)
An autoclave with a stirrer having an internal volume of 400 mL was vacuum dried and replaced with argon, and then 185 mL of toluene as a solvent and 15 mL of 1-hexene as a comonomer were charged, and the temperature of the reactor was raised to 40 ° C. After raising the temperature, the ethylene pressure was fed while adjusting the pressure to 0.6 MPa, 0.5 mL (0.5 mmol) of triisobutylaluminum (1.0 mol / L toluene solution) was added, and then synthesized in Reference Example 27 { Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) 0.10 mL (0. Then, 0.13 mL (0.52 μmol) of triphenylcarbenium tetrakis (pentafluorophenyl) borate (4.0 μmol / mL toluene solution) was added to initiate polymerization. Polymerization was carried out for 60 minutes while maintaining the temperature at 40 ° C. As a result of the polymerization, 0.51 g of ethylene / 1-hexene copolymer was obtained. About the obtained polymer, melting | fusing point, molecular weight and molecular weight distribution, intrinsic viscosity, and comonomer content were measured according to the measurement conditions mentioned above. The results are shown in Table 2.
(Example 34)
The amount of toluene was 195 mL, the amount of 1-hexene was 5 mL, and {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} Same as Example 33 except that the amount of dichlorohafnium input (0.10 μmol / mL toluene solution) 0.10 mL (0.01 μmol) was changed to 0.10 mL (0.002 μmol) (0.02 μmol / mL toluene solution) Implemented. The results are shown in Table 2.
(Example 35)
The amount of toluene was 198 mL, the amount of 1-hexene was 2 mL, and {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} Same as Example 33 except that the amount of dichlorohafnium input (0.10 μmol / mL toluene solution) 0.10 mL (0.01 μmol) was changed to 0.10 mL (0.002 μmol) (0.02 μmol / mL toluene solution) Implemented. The results are shown in Table 2.
(Example 36)
The polymerization temperature was 70 ° C., the amount of toluene was 160 mL, the amount of 1-hexene was 40 mL, the amount of triisobutylaluminum added was 0.25 mL (0.25 mmol) (1.0 mol / L toluene solution), The same procedure as in Example 33 was conducted, except that the amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate was changed to 0.75 mL (3.0 μmol) (4.0 μmol / mL toluene solution). The results are shown in Table 2.
(Example 37)
The polymerization temperature was 70 ° C., and the amount of triisobutylaluminum added was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), {cyclooctanediyl-trans-1,2-bis [5- tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium input (0.10 μmol / mL toluene solution) 0.10 mL (0.01 μmol) (0.02 μmol / mL toluene solution) ) Except 0.10 mL (0.002 μmol) and the amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate input (4.0 μmol / mL toluene solution) 0.75 mL (3.0 μmol) Was carried out in the same manner as in Example 33. The results are shown in Table 2.
(Example 38)
The polymerization temperature was 70 ° C., the amount of toluene was 190 mL, the amount of 1-hexene was 10 mL, the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium input (0.10 μmol / mL toluene solution) 0. 10 mL (0.01 μmol) was changed to (0.02 μmol / mL toluene solution) 0.10 mL (0.002 μmol), and the input amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate was (4.0 μmol / mL) (Toluene solution) The same as in Example 33 except that 0.75 mL (3.0 μmol) was used. It was. The results are shown in Table 2.
(Example 39)
The polymerization temperature was 70 ° C., the amount of toluene was 195 mL, the amount of 1-hexene was 5 mL, the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium input (0.10 μmol / mL toluene solution) 0. 10 mL (0.01 μmol) was changed to (0.02 μmol / mL toluene solution) 0.10 mL (0.002 μmol), and the input amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate was (4.0 μmol / mL) (Toluene solution) Executed in the same manner as in Example 33 except that 0.75 mL (3.0 μmol) was used. It was. The results are shown in Table 2.
(Example 40)
The polymerization temperature was 70 ° C., the amount of toluene was 160 mL, the comonomer was 40 mL of vinylcyclohexane instead of 1 mL of 1-hexene, and the amount of triisobutylaluminum added was 0.25 mL (0. 1 mol / L toluene solution). 25 mmol) and the input amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate was set to (4.0 μmol / mL toluene solution) 0.75 mL (3.0 μmol), as in Example 33 Carried out. The results are shown in Table 2.
(Example 41)
The polymerization temperature was 70 ° C., the amount of toluene was 160 mL, the amount of 1-hexene was 40 mL, the amount of triisobutylaluminum added was 0.25 mL (0.25 mmol) (1.0 mol / L toluene solution), {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) 0.10 mL (0 (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoylbenzyl) synthesized in Reference Example 14 instead of .01 μmol) Sulfanyl]} dichlorohafnium (1.0 mmol / L, toluene solution) 0.40 mL (0.40 μmol) was used, and triphenylcarbenium teto The same procedure as in Example 33 was performed except that the amount of lakis (pentafluorophenyl) borate input was changed to 0.75 mL (3.0 μmol) (4.0 μmol / mL toluene solution). The results are shown in Table 2.
(Example 42)
The polymerization temperature was 70 ° C., the amount of toluene was 180 mL, the amount of 1-hexene was 20 mL, the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) 0.10 mL (0 (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoylbenzyl) synthesized in Reference Example 14 instead of .01 μmol) Sulfanyl]} dichlorohafnium (1.0 mmol / L, toluene solution) 0.20 mL (0.20 μmol) was used, and triphenylcarbenium teto The same procedure as in Example 33 was performed except that the amount of lakis (pentafluorophenyl) borate charged was 0.25 mL (1.0 μmol) (4.0 μmol / mL toluene solution). The results are shown in Table 2.
(Example 43)
The polymerization temperature was 70 ° C., the amount of toluene was 190 mL, the amount of 1-hexene was 10 mL, the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) 0.10 mL (0 (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoylbenzyl) synthesized in Reference Example 14 instead of .01 μmol) Sulfanyl]} dichlorohafnium (1.0 mmol / L, toluene solution) 0.20 mL (0.20 μmol) was used, and triphenylcarbenium teto The same procedure as in Example 33 was performed except that the amount of lakis (pentafluorophenyl) borate charged was 0.25 mL (1.0 μmol) (4.0 μmol / mL toluene solution). The results are shown in Table 2.
(Example 44)
The polymerization temperature was 70 ° C., the amount of toluene was 195 mL, the amount of 1-hexene was 5 mL, the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) 0.10 mL (0 (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoylbenzyl) synthesized in Reference Example 14 instead of .01 μmol) Sulfanyl]} dichlorohafnium (1.0 mmol / L, toluene solution) 0.20 mL (0.20 μmol) was used, and triphenylcarbenium tetra The same procedure as in Example 33 was performed except that the amount of kiss (pentafluorophenyl) borate was changed to 0.25 mL (1.0 μmol) (4.0 μmol / mL toluene solution). The results are shown in Table 2.
(Example 45)
The polymerization temperature was 70 ° C., the amount of toluene was 160 mL, the comonomer was 40 mL of vinylcyclohexane instead of 1 mL of 1-hexene, and the amount of triisobutylaluminum added was 0.25 mL (0. 1 mol / L toluene solution). 25 mmol), {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) ) Synthesized in Reference Example 14 instead of 0.10 mL (0.01 μmol) {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl)] -2-oxoylbenzylsulfanyl]} dichlorohafnium (1.0 mmol / L, toluene solution) 0.40 mL (0.40 μmol) ) And the input amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate was changed to 0.75 mL (3.0 μmol) (4.0 μmol / mL toluene solution), as in Example 33 Carried out. The results are shown in Table 2.
(Example 46)
The polymerization temperature was 70 ° C., 15 mL of vinylcyclohexane was used instead of 15 mL of 1-hexene as a comonomer, and the amount of triisobutylaluminum added was 0.25 mL (0.25 mmol) (1.0 mol / L toluene solution). , {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) 0.10 mL ( (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl) -2-oxoyl) synthesized in Reference Example 14 instead of 0.01 μmol) Benzylsulfanyl]} dichlorohafnium (1.0 mmol / L, toluene solution) 0.20 mL (0.20 μmol) was used, and The same operation as in Example 33 was performed except that the amount of rephenylcarbenium tetrakis (pentafluorophenyl) borate was changed to 0.75 mL (3.0 μmol) (4.0 μmol / mL toluene solution). The results are shown in Table 2.
(Example 47)
The polymerization temperature was 70 ° C., the amount of toluene was 195 mL, the comonomer was replaced with 15 mL of vinylcyclohexane instead of 1 mL of 1-hexene, and the input amount of triisobutylaluminum (1.0 mol / L toluene solution) was 0.25 mL (0. 25 mmol), {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) ) Synthesized in Reference Example 14 instead of 0.10 mL (0.01 μmol) {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-3- (3,5-dimethyl-1-adamantyl)] -2-oxoylbenzylsulfanyl]} dichlorohafnium (1.0 mmol / L, toluene solution) 0.20 mL (0.20 μmol) Example 3 was carried out in the same manner as in Example 33, except that the amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate used was 0.75 mL (3.0 μmol) (4.0 μmol / mL toluene solution). did. The results are shown in Table 2.
(Example 48)
The polymerization temperature was 70 ° C., the amount of toluene was 190 mL, the amount of 1-hexene was 10 mL, the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), And {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) 0.10 mL ( (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1-naphthylethyl) benzylsulfanyl) synthesized in Reference Example 20 instead of 0.01 μmol) ]} Conducted in the same manner as in Example 33 except that 0.10 mL (0.020 μmol) of dichlorohafnium (0.20 mmol / L, toluene solution) was used. It was. The results are shown in Table 2.
(Example 49)
The polymerization temperature was 70 ° C., the amount of toluene was 195 mL, the amount of 1-hexene was 5 mL, the amount of triisobutylaluminum charged was (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol), And {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) 0.10 mL ( (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1-naphthylethyl) benzylsulfanyl) synthesized in Reference Example 20 instead of 0.01 μmol) ]} Performed in the same manner as in Example 33 except that 0.10 mL (0.020 μmol) of dichlorohafnium (0.20 mmol / L, toluene solution) was used. . The results are shown in Table 2.
(Example 50)
The polymerization temperature was 70 ° C., 15 mL of vinylcyclohexane was used instead of 15 mL of 1-hexene as a comonomer, and the amount of triisobutylaluminum added was 0.25 mL (0.25 mmol) (1.0 mol / L toluene solution). , {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) 0.10 mL ( (Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1-naphthylethyl) benzylsulfanyl) synthesized in Reference Example 20 instead of 0.01 μmol) ]} Dichlorohafnium (0.20 mmol / L, toluene solution) 0.10 mL (0.020 μmol) was used, and The same operation as in Example 33 was performed except that the amount of rephenylcarbenium tetrakis (pentafluorophenyl) borate was changed to 0.75 mL (3.0 μmol) (4.0 μmol / mL toluene solution). The results are shown in Table 2.
(Example 51)
The polymerization temperature was 70 ° C., the amount of toluene was 195 mL, the comonomer was replaced with 15 mL of vinylcyclohexane instead of 1 mL of 1-hexene, and the input amount of triisobutylaluminum (1.0 mol / L toluene solution) was 0.25 mL (0. 25 mmol), {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) ) Synthesized in Reference Example 20 instead of 0.10 mL (0.01 μmol) {cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1- Naphthylethyl) benzylsulfanyl]} dichlorohafnium (0.20 mmol / L, toluene solution) 0.10 mL (0.020 μmol) Example 3 was carried out in the same manner as in Example 33, except that the amount of triphenylcarbenium tetrakis (pentafluorophenyl) borate used was 0.75 mL (3.0 μmol) (4.0 μmol / mL toluene solution). did. The results are shown in Table 2.
(Example 52)
The polymerization temperature was 70 ° C., the amount of toluene was 190 mL, the comonomer was 10 mL of styrene instead of 1 mL of 1-hexene, and the amount of triisobutylaluminum added (1.0 mol / L toluene solution) 0.25 mL (0.25 mmol) ), {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (0.10 μmol / mL toluene solution) {Cyclooctanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (1-methyl-1-naphthyl) synthesized in Reference Example 20 instead of 0.10 mL (0.01 μmol) Ethyl) benzylsulfanyl]} dichlorohafnium (1.0 mmol / L, toluene solution) 3.0 mL (3.0 μmol) was used, and And triphenylcarbenium tetrakis (pentafluorophenyl) borate was carried out in the same manner as in Example 33 except that 1.0 mL (4.0 μmol) (4.0 μmol / mL toluene solution) was used. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
(実施例53)
 200mL四口フラスコにトルエン60mL、ブタジエン溶液(アルドリッチ社製、トルエン溶液、20w%)30mLを加え、40℃まで昇温した。昇温後、エチレンを0.3L/minの流速でフィードし、トリイソブチルアルミニウム1.0mol/Lトルエン溶液)0.5mL(0.5mmol)を投入し、続いて参考例27で合成した{シクロオクタンジイル-trans-1,2-ビス[5-tert-ブチル-2-オキソイル-3-(トリフェニルメチル)ベンジルスルファニル]}ジクロロハフニウム(10μmol/mLトルエン溶液)4.0mL(40μmol)、さらに続いてトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(4.0μmol/mLトルエン溶液)15mL(60μmol)を投入して重合を開始した。温度を40℃に保ちながら、20分間重合を行った。重合の結果7.2gのエチレン/ブタジエン共重合体が得られた。得られた重合体について、上述した測定条件に従い、融点、分子量および分子量分布を測定した。融点120.6℃、Aw5,940、Aw/An3.8であった。
(Example 53)
To a 200 mL four-necked flask, 60 mL of toluene and 30 mL of a butadiene solution (manufactured by Aldrich, toluene solution, 20 w%) were added, and the temperature was raised to 40 ° C. After raising the temperature, ethylene was fed at a flow rate of 0.3 L / min, 0.5 mL (0.5 mmol) of triisobutylaluminum 1.0 mol / L toluene solution) was added, and then synthesized in Reference Example 27 {cyclo Octanediyl-trans-1,2-bis [5-tert-butyl-2-oxoyl-3- (triphenylmethyl) benzylsulfanyl]} dichlorohafnium (10 μmol / mL in toluene) 4.0 mL (40 μmol), followed by Then, 15 mL (60 μmol) of triphenylcarbenium tetrakis (pentafluorophenyl) borate (4.0 μmol / mL toluene solution) was added to initiate polymerization. Polymerization was performed for 20 minutes while maintaining the temperature at 40 ° C. As a result of the polymerization, 7.2 g of an ethylene / butadiene copolymer was obtained. About the obtained polymer, melting | fusing point, molecular weight, and molecular weight distribution were measured according to the measurement conditions mentioned above. The melting point was 120.6 ° C., Aw 5,940, and Aw / An 3.8.
 本発明は、エチレン系重合体の製造に関する分野に有用である。 The present invention is useful in the field relating to the production of ethylene polymers.

Claims (14)

  1.  下記一般式(1)で示される錯体を含む、エチレン単独重合またはエチレンおよびα-オレフィン共重合用の触媒。
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは2または3であり、
    およびRは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、または炭素原子数1~20のハイドロカルビルシリル基を表し、
    ~RおよびR~R12は、それぞれ独立に、水素原子、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数2~20のアルキニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、炭素原子数1~20のハイドロカルビルシリル基、または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表し、
    ~R12における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基、上記ハイドロカルビルシリル基および上記ヘテロ環式化合物残基は、置換基を有していてもよく、
    とR、RとR、RとR、RとR、RとR、RとR、RとR10、およびR11とR12とは、それぞれ独立に、互いに連結して環を形成していてもよく、
    2つあるLは、それぞれ独立に、水素原子、ハロゲン原子、アミノ基、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、炭素原子数1~20のハイドロカルビルシリル基、炭素原子数1~20のハイドロカルビルアミノ基、炭素原子数1~20のハイドロカルビルチオラート基、または炭素原子数1~20のカルボキシラート基を表す。Lにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基、上記ハイドロカルビルシリル基、上記ハイドロカルビルアミノ基、上記ハイドロカルビルチオラート基および上記カルボキシラート基は置換基を有していてもよい。)
    A catalyst for ethylene homopolymerization or ethylene and α-olefin copolymer containing a complex represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein n is 2 or 3,
    R 1 and R 5 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an alkenyl group having 2 to 20 carbon atoms, Alkynyl group having 2 to 20 carbon atoms, aralkyl group having 7 to 30 carbon atoms, alkoxy group having 1 to 20 carbon atoms, aralkyloxy group having 7 to 30 carbon atoms, aryloxy having 6 to 30 carbon atoms Group, or a hydrocarbylsilyl group having 1 to 20 carbon atoms,
    R 2 to R 4 and R 6 to R 12 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, carbon An alkenyl group having 2 to 20 atoms, an alkynyl group having 2 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, carbon Aralkyloxy group having 7 to 30 atoms, aryloxy group having 6 to 30 carbon atoms, hydrocarbylsilyl group having 1 to 20 carbon atoms, or heterocyclic having 3 to 20 carbon atoms constituting the ring Represents a compound residue,
    The alkyl group, the cycloalkyl group, the alkenyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, the hydrocarbylsilyl group, and the heterocyclic compound residue in R 1 to R 12 The group may have a substituent,
    R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 9 and R 10 , and R 11 and R 12 , Each independently may be linked together to form a ring,
    The two Ls are each independently a hydrogen atom, a halogen atom, an amino group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, or 2 to 20 alkenyl groups, aralkyl groups having 7 to 30 carbon atoms, aryl groups having 6 to 30 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aralkyloxy groups having 7 to 30 carbon atoms, 6 carbon atoms An aryloxy group having 1 to 30 carbon atoms, a hydrocarbylsilyl group having 1 to 20 carbon atoms, a hydrocarbylamino group having 1 to 20 carbon atoms, a hydrocarbylthiolate group having 1 to 20 carbon atoms, or the number of carbon atoms Represents 1 to 20 carboxylate groups. The alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, the hydrocarbylsilyl group, the hydrocarbylamino group in L The hydrocarbyl thiolate group and the carboxylate group may have a substituent. )
  2.  R~R12が水素原子である、請求項1に記載の触媒。 The catalyst according to claim 1, wherein R 9 to R 12 are hydrogen atoms.
  3.  活性化用助触媒成分をさらに含む、請求項1または2に記載の触媒。 The catalyst according to claim 1 or 2, further comprising a promoter component for activation.
  4.  上記活性化用助触媒成分は、ホウ素化合物または有機アルミニウム化合物である、請求項3に記載の触媒。 The catalyst according to claim 3, wherein the activation promoter component is a boron compound or an organoaluminum compound.
  5.  上記ホウ素化合物として、一般式:BR13 14 15、一般式:W(BR13 14 15 16、または一般式:(V-H)(BR13 14 15 16で表されるホウ素化合物を含む、請求項4に記載の触媒。
    (式中、R13~R16はハロゲン原子、炭素原子数1~20のハイドロカルビル基、炭素原子数1~20のハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、炭素原子数1~20のアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていてもよく、
    は無機または有機のカチオンであり、
    Vは中性ルイス塩基であり、(V-H)はブレンステッド酸である。)
    As the boron compound, a general formula: BR 13 R 14 R 15 , a general formula: W + (BR 13 R 14 R 15 R 16 ) , or a general formula: (V—H) + (BR 13 R 14 R 15 R The catalyst according to claim 4, comprising a boron compound represented by 16 ) - .
    Wherein R 13 to R 16 are a halogen atom, a hydrocarbyl group having 1 to 20 carbon atoms, a halogenated hydrocarbyl group having 1 to 20 carbon atoms, and a substituted silyl containing 1 to 20 carbon atoms. A group, an alkoxy group having 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different;
    W + is an inorganic or organic cation,
    V is a neutral Lewis base and (VH) + is a Bronsted acid. )
  6.  上記有機アルミニウム化合物として、環状のアルミノキサンおよび線状のアルミノキサンの少なくとも一方を含む、請求項4または5に記載の触媒。 The catalyst according to claim 4 or 5, comprising at least one of a cyclic aluminoxane and a linear aluminoxane as the organoaluminum compound.
  7.  nは3である、請求項1~6の何れか1項に記載の触媒。 The catalyst according to any one of claims 1 to 6, wherein n is 3.
  8.  RおよびRは、それぞれ独立に、ハロゲン原子、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数7~30のアラルキル基、または炭素原子数1~20のハイドロカルビルシリル基であり、該アルキル基、該シクロアルキル基、該アラルキル基、該アリール基および該ハイドロカルビルシリル基は置換基を有していてもよい、請求項1~7の何れか1項に記載の触媒。 R 1 and R 5 are each independently a halogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an aralkyl group having 7 to 30 carbon atoms, Or a hydrocarbylsilyl group having 1 to 20 carbon atoms, and the alkyl group, the cycloalkyl group, the aralkyl group, the aryl group, and the hydrocarbylsilyl group may have a substituent. The catalyst according to any one of claims 1 to 7.
  9.  R、R、RおよびRが水素原子である、請求項1~8の何れか1項に記載の触媒。 The catalyst according to any one of claims 1 to 8, wherein R 2 , R 4 , R 6 and R 8 are hydrogen atoms.
  10.  RおよびRは、それぞれ独立に、炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数6~30のアリール基、または炭素原子数1~20のハイドロカルビルシリル基である、請求項1~9の何れか1項に記載の触媒。 R 3 and R 7 are each independently an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms constituting the ring, an aryl group having 6 to 30 carbon atoms, or a carbon atom The catalyst according to any one of claims 1 to 9, which is a hydrocarbylsilyl group having a number of 1 to 20.
  11.  2つあるLは、それぞれ独立に、ハロゲン原子、アミノ基、炭素原子数1~20のアルキル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数6~30のアリールオキシ基、炭素原子数1~20のハイドロカルビルシリル基、または炭素原子数1~20のハイドロカルビルアミノ基である、請求項1~10の何れか1項に記載の触媒。 The two Ls are each independently a halogen atom, an amino group, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 6 carbon atoms. The catalyst according to any one of claims 1 to 10, which is an aryloxy group having 1 to 30 carbon atoms, a hydrocarbylsilyl group having 1 to 20 carbon atoms, or a hydrocarbylamino group having 1 to 20 carbon atoms. .
  12.  RおよびRは、それぞれ独立に、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数7~30のアラルキル基、または炭素原子数1~20のハイドロカルビルシリル基であり、該アルキル基、該アラルキル基および該ハイドロカルビルシリル基は置換基を有していてもよい、請求項1~11の何れか1項に記載の触媒。 R 1 and R 5 each independently represents a cycloalkyl group having 3 to 10 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a hydrocarbylsilyl group having 1 to 20 carbon atoms constituting the ring. The catalyst according to any one of claims 1 to 11, wherein the alkyl group, the aralkyl group, and the hydrocarbylsilyl group may have a substituent.
  13.  請求項1~12の何れか1項に記載の触媒の存在下にエチレンを単独で重合させるか、またはエチレンとα-オレフィンとを共重合させる、エチレン系重合体の製造方法。 13. A method for producing an ethylene polymer, wherein ethylene is polymerized alone in the presence of the catalyst according to claim 1 or ethylene and an α-olefin are copolymerized.
  14.  上記α-オレフィンはモノオレフィンまたはジオレフィンである、請求項13に記載のエチレン系重合体の製造方法。 14. The method for producing an ethylene polymer according to claim 13, wherein the α-olefin is a monoolefin or a diolefin.
PCT/JP2012/070564 2011-08-11 2012-08-10 Ethylene polymerization catalyst and method for producing ethylene polymer WO2013022102A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011176418 2011-08-11
JP2011-176418 2011-08-11
JP2012032182 2012-02-16
JP2012-032182 2012-02-16

Publications (1)

Publication Number Publication Date
WO2013022102A1 true WO2013022102A1 (en) 2013-02-14

Family

ID=47668604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070564 WO2013022102A1 (en) 2011-08-11 2012-08-10 Ethylene polymerization catalyst and method for producing ethylene polymer

Country Status (1)

Country Link
WO (1) WO2013022102A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593194B2 (en) 2011-08-11 2017-03-14 Sumitomo Chemical Company, Limited Method for producing olefin block polymer using group 4 transition metal complex
US9695260B2 (en) 2011-12-02 2017-07-04 Sumitomo Chemical Company, Limited Method for producing olefin block polymer using plurality of types of transition metal catalysts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099583A1 (en) * 2010-02-12 2011-08-18 国立大学法人埼玉大学 Stereoselective olefin polymerization catalyst, and stereoselective polyolefin production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099583A1 (en) * 2010-02-12 2011-08-18 国立大学法人埼玉大学 Stereoselective olefin polymerization catalyst, and stereoselective polyolefin production method
WO2011099584A1 (en) * 2010-02-12 2011-08-18 国立大学法人埼玉大学 Ethylene polymerisation catalyst and ethylene polymer production method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAPACCHIONE C. ET AL.: "Synthesis of Branched Polyethylene by Ethylene Homopolymerization Using Titanium Catalysts that Contain a Bridged Bis(phenolate) Ligand", JOURNAL OF POLYMER SCIENCE: PART A: POLYMER CHEMISTRY, vol. 42, 2004, pages 2815 - 2822 *
ISHII A. ET AL.: "Synthesis of Titanium(IV) and Zirconium(IV) Complexes with an [OSSO]-Type Bis(phenolate) Bearing a trans-Cyclohexane-1,2- diyl Ring and 1-Hexene Polymerization", ORGANOMETALLICS, vol. 30, 11 May 2011 (2011-05-11), pages 2947 - 2956 *
ISHII A. ET AL.: "Zirconium Complex of an [OSSO]-Type Diphenolate Ligand Bearing trans-1,2-Cyclooctanediylbis(thio) Core: Synthesis, Structure, and Isospecific 1-Hexene Polymerization", JOURNAL OF AMERICAN CHEMICAL SOCIETY, vol. 131, 2009, pages 13566 - 13567 *
NAKATA N. ET AL.: "Recent advances in the chemistry of Group 4 metal complexes incorporating [OSSO]-type bis(phenolato) ligands as post-metallocene catalysts", POLYMER CHEMISTRY, vol. 2, 16 March 2011 (2011-03-16), pages 1597 - 1610 *
TODA T. ET AL.: "Synthesis and structures of dialkyl zirconium complexes with and [OSSO]- type bis(phenolate) ligand bearing a trans-1,2-cyclooctanediylbis(thio) unit", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 696, 15 March 2011 (2011-03-15), pages 1258 - 1261 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9593194B2 (en) 2011-08-11 2017-03-14 Sumitomo Chemical Company, Limited Method for producing olefin block polymer using group 4 transition metal complex
US9695260B2 (en) 2011-12-02 2017-07-04 Sumitomo Chemical Company, Limited Method for producing olefin block polymer using plurality of types of transition metal catalysts

Similar Documents

Publication Publication Date Title
JP4838475B2 (en) Metallocene compounds, processes for their preparation and their use in catalyst systems for olefin polymerization
KR102533900B1 (en) Germanium-Bridged Bis-Biphenyl-Phenoxy Catalysts for Olefin Polymerization
KR20020000120A (en) Transition metal compound, catalyst for addition polymerization, and process for producing addition polymer
JPWO2011099584A1 (en) Catalyst for ethylene polymerization and method for producing ethylene polymer
US10654029B2 (en) Bridged bi-aromatic ligands and olefin polymerization catalysts prepared therefrom
WO2017159226A1 (en) Method for producing oligomer and catalyst
WO2016148214A1 (en) Oligomer production method and catalyst
JP2013053308A (en) Olefin polymer producing method, ethylene polymer and mold product
WO2003066641A1 (en) Transition metal complexes, ligands, polymerization catalysts for olefins, and process for production of olefin polymers
WO2012111779A1 (en) Catalyst for ethylene polymerization and method for producing ethylenic polymer
JP2013166735A (en) New complex, catalyst for polymerization and catalyst for oligomerization including the complex, and use thereof
WO2012111780A1 (en) Catalyst for olefin polymerization and method for producing olefin polymer
JP2013166898A (en) Olefin polymerization catalyst, and method for production of olefinic polymer
WO2013022102A1 (en) Ethylene polymerization catalyst and method for producing ethylene polymer
WO2016136892A1 (en) Olefin polymerization catalyst and method for producing olefin oligomer
JP2007217284A (en) Transition metal complex, method for producing transition metal complex, substituted fluorene compound, method for producing substituted fluorene compound, catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
JP2014198744A (en) Olefin polymerization catalyst and method for producing olefin polymer
JP2013166897A (en) Catalyst for polymerizing olefin, and method for producing olefinic polymer
WO2012169641A1 (en) Complex, catalyst for polymerization of olefins, and process for producing olefin polymers
WO2012111778A1 (en) Catalyst for olefin polymerisation, and manufacturing method for olefin polymer
JP4389889B2 (en) Transition metal complex, catalyst for olefin polymerization, and method for producing olefin polymer
JP2004131391A (en) Transition metal complex, catalyst for polymerizing olefin and method for producing olefin polymer using the same
WO2012111777A1 (en) Catalyst for olefin polymerisation, and manufacturing method for olefin polymer
JP3669069B2 (en) Transition metal complex, catalyst for olefin polymerization, and method for producing olefin polymer
JP2010202742A (en) New polymer and production method of the polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP