WO2012111586A1 - Semiconductor device and display apparatus - Google Patents
Semiconductor device and display apparatus Download PDFInfo
- Publication number
- WO2012111586A1 WO2012111586A1 PCT/JP2012/053222 JP2012053222W WO2012111586A1 WO 2012111586 A1 WO2012111586 A1 WO 2012111586A1 JP 2012053222 W JP2012053222 W JP 2012053222W WO 2012111586 A1 WO2012111586 A1 WO 2012111586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- transistor
- potential
- circuit
- signal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/02—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
- H03K19/08—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
- H03K19/094—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
- H03K19/096—Synchronous circuits, i.e. using clock signals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3674—Details of drivers for scan electrodes
- G09G3/3677—Details of drivers for scan electrodes suitable for active matrices only
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3685—Details of drivers for data electrodes
- G09G3/3688—Details of drivers for data electrodes suitable for active matrices only
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C19/00—Digital stores in which the information is moved stepwise, e.g. shift registers
- G11C19/18—Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
- G11C19/182—Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
- G11C19/184—Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C19/00—Digital stores in which the information is moved stepwise, e.g. shift registers
- G11C19/28—Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0264—Details of driving circuits
- G09G2310/0286—Details of a shift registers arranged for use in a driving circuit
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2330/00—Aspects of power supply; Aspects of display protection and defect management
- G09G2330/02—Details of power systems and of start or stop of display operation
- G09G2330/021—Power management, e.g. power saving
Definitions
- the present invention relates to a semiconductor device composed of transistors of the same conductivity type.
- a shift register that generates a signal for sequentially driving pixels arranged in an array is used in a scanning signal line driving circuit and a data signal line driving circuit.
- the liquid crystal display device uses a level shifter that converts the power supply voltage level and a so-called buffer that outputs a broad amplification signal with a low output impedance, such as an amplification circuit that obtains an output equal to the input signal.
- these semiconductor devices such as a shift register and a buffer are composed of CMOS transistors, a process for forming each of the p-channel and the n-channel is required, which complicates the manufacturing process. Therefore, it is preferable to simplify the manufacturing process and to use transistors of the same conductivity type, for example, a unipolar channel such as only a p-channel.
- a semiconductor device including such a unipolar transistor is disclosed in Patent Document 1, for example.
- FIG. 46 is a circuit diagram showing a configuration of the semiconductor device of Patent Document 1.
- This semiconductor device is composed of an n-type MOS transistor.
- the semiconductor device 100 includes four n-type MOS transistors T101 to T104 and a capacitor C101.
- the transistor T101 has a drain terminal connected to the power supply VDD and a gate terminal connected to the input terminal IN.
- the transistor T103 has a source terminal connected to the power supply VSS and a gate terminal to which a STOP signal (control signal) is input.
- the transistor T102 has a drain terminal connected to the clock terminal ⁇ and a gate terminal connected to the source terminal of the transistor T101 and the drain terminal of the transistor T103.
- the transistor T104 has a drain terminal connected to the source terminal of the transistor T102, a source terminal connected to the power supply VSS, and a gate terminal connected to the gate terminal of the transistor T103.
- a connection point between the transistors T101, T102, and T103 is a node N1
- a connection point between the transistors T102 and T104 is a node N2.
- a capacitor C101 is provided between the node N1 and the node N2.
- Node N2 is connected to output terminal OUT.
- FIG. 47 is a timing chart showing waveforms of various signals in the semiconductor device 100.
- the transistor T101 When the input signal IN becomes high level, the transistor T101 is turned on, and the potential of the node N1 becomes VDD ⁇ Vth when the threshold voltage of the transistor T101 is Vth (precharge operation). When the potential of the node N1 rises, the transistor T102 is turned on. When the clock signal ⁇ is at a low level, a low-level signal is output from the output terminal OUT. The potential of the node N1 is held (floating state) once the charge is precharged until the STOP signal becomes active (high level). When the clock signal ⁇ becomes high level in this floating state, the potential of the node N1 is increased by the ⁇ potential by the capacitor C101 and becomes VDD ⁇ Vth + ⁇ (bootstrap operation). While this potential exceeds VDD + Vth, a signal having a potential level of VDD is output from the output terminal OUT.
- the node N1 is discharged to VSS by the transistor T103, and the transistor T102 is turned off.
- a signal having a potential level of VSS is output from the output terminal OUT when the transistor T104 is turned on.
- a high-potential signal can be output with a simple configuration by using the bootstrap operation. Therefore, such a semiconductor device can be suitably used in each part in the liquid crystal display device.
- the above-described semiconductor device has a problem that the potential of the output signal gradually decreases under the influence of an off-leakage (a minute current that flows when the transistor is off).
- FIG. 48 is a circuit diagram showing a configuration of the semiconductor device of Patent Document 2.
- the semiconductor device 200 (hereinafter also referred to as a circuit 200) includes three n-type MOS transistors T201 to T203 and a capacitor C201.
- the transistor T201 has a drain terminal connected to the power supply VDD and a gate terminal connected to the input terminal IN.
- the transistor T202 has a drain terminal connected to the power supply VDD, a source terminal connected to the output terminal OUT, and a gate terminal connected to the source terminal of the transistor T201.
- the capacitor C201 has one terminal connected to the clock terminal CK and the other terminal connected to the source terminal of the transistor T201 and the gate terminal of the transistor T202.
- the transistor T203 has a drain terminal connected to the source terminal of the transistor T201, a gate terminal of the transistor T202, and the other terminal of the capacitor C201, a source terminal connected to the power supply VSS, and a gate terminal connected to the control terminal (STOP). .
- a connection point (node) of the transistors T201, T202, T203 and the capacitor C201 is n201.
- the frequency of the clock signal input to the clock terminal CK is set to be higher than the frequency of the output signal output from the output terminal OUT.
- the potential of the node n201 is pushed up according to the cycle of the clock signal having a frequency higher than that of the output signal. Therefore, even if the potential of the node n201 is lowered due to off-leakage or the like, , Can immediately restore the potential. As a result, the potential of the node n201 can be increased in a shorter cycle than the configuration of Patent Document 1, so that the potential level of the output signal can be stabilized, and the operation of the subsequent circuit that receives the output signal can be stabilized. Can do.
- Patent Document 2 discloses a configuration for reducing power consumption in the semiconductor device 200.
- the semiconductor device 200 shown in FIG. 48 has a problem that the power consumption increases because the load capacity (clock load) of the clock terminal CK is large.
- the clock load will be specifically described with reference to the semiconductor device 200 of FIG.
- the load capacity of the clock terminal CK increases during the period when the node n201 is not in the floating state.
- the load capacity becomes very large.
- Patent Document 2 discloses a semiconductor device 210 (hereinafter also referred to as a circuit 210) in FIG.
- the semiconductor device 210 further includes a transistor T208 in the semiconductor device 200 of FIG.
- the transistor T208 has a gate terminal connected to the input terminal INB, a drain terminal connected to the clock terminal CK, and a source terminal connected to the node n201 via the capacitor C201.
- the transistor T208 allows the node n201 not to be in a floating state, and the clock terminal CK and the capacitor C201 can be disconnected during a period when the load on the clock terminal CK becomes very large.
- the node n201 when the potential of the node n201 is fixed at VSS, the node n201 does not need to be pushed up by the clock signal CK. Therefore, the period is electrically connected between the clock terminal CK and the capacitor C201 by the transistor T208. As a result, the load on the clock terminal CK becomes only the parasitic capacitance of the transistor T208, and thus becomes very small.
- the semiconductor device 210 includes a transistor T209, a resistor R201, and a transistor T211 in order to stably fix the potential of the node n203 between the transistor T208 and the capacitor C201 while the transistor T208 is in the off state.
- An inverter 206 is provided (FIG. 49).
- the transistor T209 has a drain terminal connected to the node n203, a source terminal connected to the power supply VSS, and a gate terminal connected to the input terminal IN of the inverter 206. Accordingly, when the transistors T201 and T208 are turned off, the transistors T203 and T209 are turned on, and the potentials of the nodes n201 and n203 can be fixed to VSS.
- the semiconductor device 210 it is necessary to add transistors T208, T209, T211 and a resistor R201 to the semiconductor device 200 shown in FIG. 48 in order to achieve low power consumption and stabilization of the potential of the node n203. Downsizing is impeded. Further, the potential of the node n203 has a problem that a sufficient amplitude cannot be obtained because the potential of the clock signal is a potential obtained by dropping the threshold value by the transistor T208.
- the present invention has been made in view of the above-described problems, and the object thereof is composed of transistors of the same conductivity type, and with a simple configuration, while reducing power consumption and preventing a decrease in potential level, is stable. It is an object to provide a semiconductor device capable of outputting a signal and a display device including the semiconductor device.
- a semiconductor device provides A semiconductor device composed of a plurality of transistors of the same conductivity type, A first transistor in which an on-voltage is applied to the first terminal and an input signal is input to the control terminal; A second transistor having an on-voltage applied to the first terminal, a second terminal connected to the output terminal, and a control terminal connected to the second terminal of the first transistor; A capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal for inputting a clock signal; The frequency of the clock signal is set higher than the frequency of the output signal output from the output terminal, The capacitance is characterized in that a capacitance value changes according to a change in potential at the connection point.
- the transistor includes a first terminal, a second terminal, and a control terminal.
- the transistor conducts the first terminal and the second terminal by a control signal input to the control terminal, and outputs a signal having a desired potential level.
- the control signal here has a voltage (signal level: VDD) that turns the transistor on when supplied to the control terminal, and a voltage (signal level) that turns the transistor off when supplied to the control terminal. : VSS).
- the potential of the node connected to the control terminal of the transistor that outputs a signal of a desired potential level gradually decreases due to the influence of off-leakage or the like.
- a node is connected to a control terminal of a transistor that outputs a signal having a desired potential level, that is, a connection point (node) between the first transistor and the second transistor via a capacitor.
- a clock signal having a frequency higher than that of the output signal is input.
- the potential of the node is first increased by ⁇ potential by the clock signal and the capacitance, and then decreased by, for example, ⁇ potential by off-leakage or the like, and VDD ⁇ Vth + ⁇ .
- the clock signal becomes low level (VSS)
- the node potential becomes VDD ⁇ Vth ⁇ .
- the input signal is high level (VDD)
- the node potential becomes VDD ⁇ Vth. It is charged until.
- the clock signal becomes high level again, the potential of the node is pushed up to VDD ⁇ Vth + ⁇ again.
- the push-up operation is performed according to the cycle of the clock signal having a frequency higher than that of the output signal. Therefore, even when the potential of the node decreases due to off-leakage or the like, the potential can be recovered immediately by the pushing-up operation. As a result, the potential of the node can be increased in a cycle shorter than that of the conventional configuration, so that the potential level of the output signal can be stabilized and the operation of the subsequent circuit that receives the output signal can be stabilized.
- the output signal can be maintained at VDD.
- the output signal can maintain a low impedance and is resistant to noise.
- the capacitance has a configuration in which the capacitance value changes in accordance with a change in the potential of the node. Therefore, for example, when the capacitance is configured such that the capacitance value decreases as the node potential decreases while the capacitance value increases as the node potential increases, the node potential is low level (VSS).
- the load capacitance of the clock terminal can be made smaller than the load capacitance of the clock terminal CK in the conventional semiconductor device 200 (FIG. 48) from the above equation (3). Thereby, the power consumption of the semiconductor device of the present invention can be reduced as compared with the conventional semiconductor device.
- the semiconductor device of the present invention by replacing the transistors T208 and T209, the inverter 206, and the capacitor C201 in the conventional semiconductor device 210 shown in FIG. Power consumption and potential stabilization of the node n203 (corresponding to the node n1 of the present invention) can be realized. Therefore, the circuit configuration can be simplified as compared with the conventional semiconductor device 210.
- the potential of the clock signal drops to the potential at the node n203.
- the threshold value does not drop. Therefore, the operation margin of the semiconductor device can be increased and the output signal can be further stabilized.
- the semiconductor device of the present invention it is possible to output a stable signal with a simple configuration while reducing power consumption and preventing a decrease in potential level.
- a semiconductor device provides A semiconductor device composed of a plurality of transistors of the same conductivity type, A first transistor in which an on-voltage is applied to the first terminal and an input signal is input to the control terminal; A second transistor having an on-voltage applied to the first terminal, a second terminal connected to the output terminal, and a control terminal connected to the second terminal of the first transistor; A capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal for inputting a clock signal; An eighth transistor having a first terminal connected to the connection point and an on-voltage input to the control terminal; A third transistor having a first terminal connected to the second terminal of the eighth transistor, an off-voltage input to the second terminal, and a control signal input to the control terminal; The frequency of the clock signal is set higher than the frequency of the output signal output from the output terminal, The capacitance is characterized in that a capacitance value changes according to a change in potential at the connection point.
- the semiconductor device includes an eighth transistor between the node and the third transistor. Accordingly, although details will be described later, for example, the potential applied to the third transistor can be lowered, so that a highly reliable circuit can be configured.
- the capacitance value of the capacitor changes according to the change in the potential at the connection point. Accordingly, a semiconductor device that includes transistors of the same conductivity type and can output a stable signal with a simple configuration while reducing power consumption and preventing a decrease in potential level, and a display device including the semiconductor device are provided. There is an effect that can be done.
- FIG. 1 is a circuit diagram illustrating a configuration of a circuit according to a first embodiment.
- 2 is a timing chart showing waveforms of various signals in the circuit shown in FIG.
- (A) is a figure which shows the structure of the capacity
- (b) is a graph which shows the relationship between the applied voltage and capacity value in a capacity
- (A) is a figure which shows the structure of the capacity
- (b) is a graph which shows the relationship between the applied voltage and capacity value in a capacity
- 2 is a timing chart showing waveforms of various signals when affected by off-leakage or the like in the circuit shown in FIG. FIG.
- FIG. 45 is a timing chart showing waveforms of various signals when affected by off-leakage or the like in the conventional circuit shown in FIG. 44.
- FIG. 2 is a timing chart showing waveforms of various signals when a clock signal ⁇ is input to the drain terminal of a transistor T2 in the circuit shown in FIG.
- FIG. 6 is a circuit diagram illustrating a configuration of a circuit according to a second embodiment. It is a timing chart which shows the waveform of various signals in the circuit shown in FIG.
- FIG. 6 is a circuit diagram illustrating a configuration of a circuit according to a third embodiment.
- FIG. 12 is a circuit diagram illustrating another configuration of the transistor T6 in the circuit illustrated in FIG. 11.
- FIG. 12 is a circuit diagram illustrating another configuration of the transistor T6 in the circuit illustrated in FIG. 11.
- FIG. 10 is a circuit diagram showing a configuration of a circuit according to a fifth embodiment.
- FIG. 10 is a circuit diagram showing a configuration of a circuit according to a sixth embodiment.
- FIG. 2 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
- FIG. 9 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
- FIG. 11 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
- FIG. 10 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
- FIG. 12 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
- FIG. 16 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
- FIG. 17 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG. 18 is a timing chart showing waveforms of various signals in the circuit shown in FIG. It is a figure which shows the waveform of the clock signal CK in each embodiment of this invention. It is a block diagram which shows the whole structure of the liquid crystal display device which concerns on this Embodiment.
- FIG. 3 is a block diagram illustrating a configuration of a memory circuit provided in the CS driver according to the first embodiment.
- FIG. 27 is a circuit diagram showing a configuration of a memory circuit shown in FIG. 26.
- 27 is a timing chart showing waveforms of various signals in the memory circuit shown in FIG. 26.
- FIG. 27 is a circuit diagram showing a configuration of an inverter circuit that generates an inverted signal INB from an input signal IN in the memory circuit shown in FIG. 26.
- FIG. 27 is a circuit diagram illustrating another configuration of an inverter circuit that generates an inverted signal INB from an input signal IN in the memory circuit illustrated in FIG. 26.
- FIG. 6 is a block diagram illustrating a configuration of a buffer circuit according to a second embodiment.
- FIG. 32 is a circuit diagram showing a configuration of a buffer circuit shown in FIG. 31.
- FIG. 32 is a block diagram showing a case where the inverter is configured by a bootstrap circuit in the buffer circuit shown in FIG. 31.
- FIG. 34 is a circuit diagram showing a configuration of a buffer circuit shown in FIG. 33.
- FIG. 10 is a block diagram illustrating a configuration of a buffer circuit according to a third embodiment.
- FIG. 36 is a circuit diagram showing a case where the inverter is configured by a bootstrap circuit in the buffer circuit shown in FIG. 35.
- FIG. 10 is a block diagram illustrating a configuration of a buffer circuit according to a fourth embodiment.
- FIG. 38 is a circuit diagram showing a configuration of a buffer circuit shown in FIG. 37.
- FIG. 38 is a circuit diagram showing a configuration of a buffer circuit shown in FIG. 37.
- FIG. 10 is a block diagram illustrating a configuration of a unit circuit constituting a shift register according to a fifth embodiment.
- FIG. 40 is a block diagram illustrating another configuration of the unit circuit that configures the shift register illustrated in FIG. 39.
- FIG. 40 is a block diagram showing another configuration of the unit circuit configuring the shift register shown in FIG. 39.
- FIG. 2 is a circuit diagram in the case where the circuit configuration illustrated in FIG. 1 is configured by a p-channel transistor.
- 42 is a timing chart showing waveforms of various signals in the circuit shown in FIG. 42, where (a) in the figure shows a waveform when VSS is inputted to the source terminal of the transistor T2 ′, and (b) in the figure shows the transistor.
- the waveform is shown when the clock signal ⁇ is input to the source terminal of T2 ′.
- (A) is a figure which shows the structure of the capacity
- (b) is a graph which shows the relationship between the applied voltage and capacity value in a capacity
- (A) is a figure which shows the structure of the capacity
- (b) is a graph which shows the relationship between the applied voltage and capacity
- 10 is a circuit diagram showing a configuration of a conventional semiconductor device according to Patent Document 1.
- FIG. 47 is a timing chart showing waveforms of various signals in the semiconductor device shown in FIG. 46.
- FIG. 10 is a circuit diagram showing a configuration of a conventional semiconductor device according to Patent Document 2.
- FIG. 12 is a circuit diagram showing another configuration of a conventional semiconductor device according to Patent Document 2.
- An Active signal holding circuit (hereinafter simply referred to as “circuit”) corresponding to the semiconductor device of the present invention is configured using transistors of the same conductivity type, that is, a unipolar channel (n-channel type or p-channel type). Yes.
- a unipolar channel n-channel type or p-channel type.
- the configuration of an n-channel transistor is described as an example, and the configuration of a p-channel transistor is only illustrated at the end of this column, and detailed description is omitted.
- this transistor for example, a TFT and a field effect transistor formed on a silicon substrate can be used.
- FIG. 1 is a circuit diagram showing the configuration of the circuit 10
- FIG. 2 is a timing chart showing waveforms of various signals in the circuit 10.
- the circuit 10 includes a transistor T1 (first transistor), a transistor T2 (second transistor), a transistor T3 (third transistor), and a capacitor TC1, and the output signal OUT of the circuit 10 is connected to one end of the capacitor TC1.
- a clock signal CK having a higher frequency is input.
- the voltage (signal level) that turns the transistor on when applied to the gate terminal (control terminal) is referred to as on-voltage (on level), and the voltage that turns the transistor off when applied to the gate terminal (signal level).
- Signal level is called off voltage (off level).
- a high voltage is an on voltage (high level is an on level)
- a low voltage is an off voltage (low level is an off level)
- vice versa for a p-channel transistor In an n-channel transistor, a high voltage is an on voltage (high level is an on level), a low voltage is an off voltage (low level is an off level), and vice versa for a p-channel transistor.
- the transistor T1 has a drain terminal (first terminal) connected to the power supply VDD and a gate terminal (control terminal) connected to the input terminal IN.
- the transistor T2 has a drain terminal (first terminal) connected to the power supply VDD, a gate terminal (control terminal) connected to the source terminal of the transistor T1, and a source terminal (second terminal) connected to the output terminal OUT.
- the transistor T3 has a drain terminal (first terminal) connected to the source terminal of the transistor T1 and the gate terminal of the transistor T2.
- the capacitor TC1 includes a transistor, and a gate terminal (control terminal) is connected to a source terminal of the transistor T1, a drain terminal of the transistor T3, and a control terminal of the transistor T2, and a drain terminal (first terminal) and A source terminal (second terminal) is connected to the clock terminal CK.
- the capacitor TC1 is also referred to as a transistor TC1 as necessary.
- a connection point between the transistors T1, T2, T3, and TC1 is a node n1.
- FIG. 3A is a diagram illustrating a configuration of the capacitor TC1
- FIG. 3B is a graph illustrating a relationship between an applied voltage and a capacitance value in the capacitor TC1.
- 4A is a diagram illustrating a configuration of a conventional capacitor C201
- FIG. 4B is a graph illustrating a relationship between an applied voltage and a capacitance value in the capacitor C201.
- the capacitance value is substantially constant regardless of the voltage between the gate electrode and Si.
- the capacitor TC1 of the circuit 10 is not doped with N + as shown in FIG.
- the capacitor TC1 functions as a MOS capacitor and does not function as a capacitor unless a voltage (ON voltage) is applied to the gate electrode GE. That is, the capacitor TC1 functioning as a transistor is turned off when the potential of the node n1 is lower than the potential of the clock terminal CK, while the potential of the node n1 is equal to or higher than the potential of the clock terminal CK (on voltage). Turns on. In FIG. 3B, Von indicates the ON voltage.
- the capacitance value of the capacitor TC1 changes according to the voltage between the gate electrode and Si, as shown in FIG. That is, as the voltage applied to the gate electrode increases, the capacitance value of the capacitor TC1 increases. More specifically, the capacitance value of the capacitor TC1 decreases as the potential of the node n1 decreases, while the capacitance value of the capacitor TC1 increases as the potential of the node n1 increases.
- the operation of the circuit 10 will be described in detail with reference to FIG. Note that the potentials of the internal signals and input / output signals of the circuit 10 are VDD when high and VSS (zero) when low unless otherwise specified.
- the transistor T1 When the input signal IN becomes high level (VDD), the transistor T1 is turned on, and the potential of the node n1 becomes VDD ⁇ Vth when the threshold voltage of the transistor T1 is Vth (precharge operation). When the potential of the node n1 rises, the transistor T2 and the capacitor TC1 (transistor TC1) are turned on. When the input signal IN changes from a high level to a low level (VSS), the node n1 is in a floating state while retaining a high level charge. In this state, when the clock signal CK becomes high level, the potential of the node n1 is increased by the ⁇ potential by the clock signal CK and becomes VDD ⁇ Vth + ⁇ . When this potential exceeds VDD + Vth, the transistor T2 outputs VDD to the output terminal OUT.
- the transistor T3 is turned on, the charge of the node n1 is discharged, and the transistor T2 and the transistor TC1 are turned off. As a result, the output terminal OUT enters a floating state (shaded area in FIG. 2).
- the potential decreases due to the influence of off-leakage or the like of the transistor T3 and the like until the potential of the node n1 pushed up by the clock signal CK becomes lower than VDD + Vth.
- the VDD is normally output from the output terminal OUT.
- FIG. 5 is a timing chart showing waveforms of various signals when the circuit 10 is affected by off-leakage or the like.
- FIG. 6 is a timing chart showing waveforms of various signals when the conventional circuit 100 shown in FIG. 46 is affected by off-leakage or the like.
- VDD ⁇ Vth + ⁇ when the potential of the node n1 is pushed up by the clock signal CK and then drops by ⁇ potential due to leakage, VDD ⁇ Vth + ⁇ is obtained. After that, when the clock signal CK becomes low level, the potential of the node n1 becomes VDD ⁇ Vth ⁇ . However, if the input signal IN is high level here, the potential of the node n1 reaches VDD ⁇ Vth. Charged. Therefore, when the clock signal CK becomes high level again, the potential of the node n1 is pushed up to VDD ⁇ Vth + ⁇ (portion surrounded by a dotted line in FIG. 5).
- the output signal OUT can maintain a low impedance and is resistant to noise.
- the potential of the node n1 can be charged again to VDD ⁇ Vth. Since the frequency of the clock signal CK is set higher than the frequency of the output signal, the potential of the node n1 is again increased to VDD + Vth or more by the push-up operation by the clock signal CK until the STOP signal becomes high level. Can be pushed up. Accordingly, it is possible to ensure a period during which VDD can be output and a period during which the impedance is low as compared with the conventional case.
- the clock signal CK having a frequency higher than that of the output signal OUT is input to one end of the capacitor TC1, and the other end of the capacitor TC1 holds the high-level signal in a floating state. It is the structure connected to. With this configuration, it is possible to maintain a potential level and output a stable signal that is hardly affected by noise.
- the conventional circuit 200 (FIG. 48) has a problem that the power consumption increases because the capacity (clock load) of the clock terminal CK is large.
- the above equation (1) clock terminal CK
- the capacity of the clock terminal CK does not increase, so that power consumption does not increase, but the potential of the node n201 is low level (VSS), as shown by the following equation: 1 / (1 / C201 + 1 / Ctr))
- the capacitor TC1 of the circuit 10 is configured by a transistor and functions as a MOS capacitor, the capacitor TC1 functions as an on-capacitance when the potential of the node n1 is higher than the potential of the clock signal CK. When the potential of the node n1 is lower than the potential of the clock signal CK, it functions as an off-capacitance.
- the capacitance value becomes small as shown in FIG. Therefore, from the above equation (3), the load capacity of the clock terminal CK can be made smaller than the load capacity of the clock terminal CK in the conventional circuit 200. Thereby, the power consumption of the circuit 10 according to the present embodiment can be reduced as compared with the conventional circuit 200.
- the transistors T208 and T209, the inverter 206, and the capacitor C201 in the conventional circuit 210 shown in FIG. 49 are replaced with the capacitor TC1 shown in FIG.
- the circuit configuration can be simplified as compared with the conventional circuit 210, the circuit 10 and a device incorporating the circuit 10 can be downsized.
- the node n203 has a potential at which the potential of the clock signal drops.
- the threshold value does not drop. Therefore, the operation margin of the circuit 10 can be increased and the output signal can be further stabilized.
- the amplitude of the clock signal CK and the capacitor TC1 are set so that the potential (VDD ⁇ Vth + ⁇ ) of the pushed-up node n1 is equal to or higher than VDD + Vth.
- FIG. 7 is a timing chart showing waveforms of various signals in the configuration of the circuit 10 when the clock signal ⁇ is input to the drain terminal of the transistor T2.
- the potential level of the signal input to the transistor T2 can be output, the potential of the clock signal ⁇ is turned on when the transistor T2 is turned on. The level is output.
- FIG. 8 is a circuit diagram showing the configuration of the circuit 20
- FIG. 9 is a timing chart showing waveforms of various signals in the circuit 20.
- members having the same functions as those shown in the first embodiment are given the same reference numerals, and explanation thereof is omitted.
- the terms defined in Embodiment 1 are used in accordance with the definitions in this embodiment unless otherwise specified.
- the output terminal OUT is in a floating state (hatched line in FIG. 2) at the timing when the STOP signal becomes high level and the node n1 becomes low level potential. Therefore, the output signal OUT is easily affected by noise or the like.
- the circuit 20 of this embodiment further includes a transistor T4 (fourth transistor) in the circuit 10.
- the transistor T4 has a drain terminal (first terminal) connected to the source terminal and the output terminal OUT of the transistor T2, a source terminal (second terminal) connected to the power source VSS, and a gate terminal. (Control terminal) is connected to the gate terminal of the transistor T3.
- the gate terminals of the transistors T3 and T4 are connected to the input terminal IN2, and an input signal IN2 for controlling on / off of the transistors T3 and T4 is input.
- a connection point between the transistors T2 and T4 and the output terminal OUT is a node n2.
- the transistors T3 and T4 are turned on by inputting the high-level input signal IN2 at the timing when the node n1 becomes the low-level potential.
- the electric charge of n1 can be surely discharged and the potential level of the output signal OUT can be fixed to the low level (VSS).
- the signal input to the gate terminal of the transistor T4 is not particularly limited as long as the potential level of the output signal OUT can be fixed to a low level (VSS), and another control signal may be input.
- VSS low level
- FIG. 10 is a circuit diagram showing the configuration of the circuit 30.
- members having the same functions as those shown in the first and second embodiments are given the same reference numerals, and explanation thereof is omitted.
- the terms defined in Embodiments 1 and 2 are used in accordance with the definitions in this embodiment unless otherwise specified.
- the circuit 30 of the present embodiment further includes a transistor T5 (fifth transistor) that plays a role of a refresh function in the circuit 20 shown in FIG.
- the transistor T5 has a drain terminal (first terminal) connected to the power supply VDD, a source terminal (second terminal) connected to the node n1, and a gate terminal (control terminal) connected to the node n2. Connected to.
- the output signal OUT is input to the gate terminal of the transistor T5, the input signal IN1 is at a low level and the transistor T1 is off while the output signal OUT is at a high level.
- the transistor T5 is charged again to VDD-Vth (refresh operation).
- the potential of the node n1 can be pushed up to VDD ⁇ Vth + ⁇ during the period when the clock signal CK outputs a high level. Therefore, the output signal OUT can stably output VDD, and can operate normally without malfunction during low frequency operation.
- FIG. 11 is a circuit diagram showing the configuration of the circuit 40
- FIG. 12 is a timing chart showing waveforms of various signals in the circuit 40.
- members having the same functions as those shown in the first to third embodiments are given the same reference numerals, and explanation thereof is omitted.
- the terms defined in Embodiments 1 to 3 are used in accordance with the definitions in this embodiment unless otherwise specified.
- a transistor T6 (sixth transistor) is further provided between the input terminal IN1 and the transistor T1.
- the transistor T6 has a drain terminal (first terminal) connected to the input terminal IN1, a source terminal (second terminal) connected to the gate terminal of the transistor T1, and a gate terminal (control terminal). ) Is input with an enable signal EN.
- the source terminal of the transistor T6 is also connected to a connection point (node n2) between the transistors T2 and T4.
- the circuit 40 can be kept in the active state.
- the transistor T1 since the output terminal OUT and the gate terminal of the transistor T1 are connected to each other, the transistor T1 is turned on when the potential of the node n1 is equal to or lower than VDD ⁇ Vth while the output signal OUT is at a high level. become. Note that when the potential of the node n1 becomes higher than VDD ⁇ Vth, the transistor T1 is turned off and the node n1 is in a floating state.
- the potential of the node n1 is charged again to VDD-Vth by the transistor T1 (refresh operation) even if the potential of the node n1 decreases due to off-leakage or the like.
- the potential of the node n1 can be pushed up to VDD ⁇ Vth + ⁇ , so that the output signal OUT can stably output VDD, It can operate normally without malfunction during low frequency operation.
- the transistor T6 is not limited to the configuration of FIG. 11 described above, and other configurations include, for example, a configuration in which the source terminal floats when the input signal IN1 becomes a low level potential. Includes the configuration shown in FIG. 13 and the configuration shown in FIG. 14. In the configuration shown in FIG. 13, the power supply VDD is connected to the drain terminal of the transistor T6, and the input signal IN1 is input to the gate terminal. In the configuration shown in FIG. 14, the input signal IN1 is input to the drain terminal and the gate terminal of the transistor T6. In these configurations, once the input signal IN1 becomes active (high level) regardless of other signals (for example, the enable signal EN), the active state is maintained even if the input signal IN1 subsequently becomes low level. Suitable for configuration.
- FIG. 15 is a circuit diagram showing a configuration of the circuit 50.
- members having the same functions as those shown in Embodiments 1 to 4 are given the same reference numerals, and explanation thereof is omitted. Further, the terms defined in Embodiments 1 to 4 are used in accordance with the definitions in this embodiment unless otherwise specified.
- the circuit 50 of the present embodiment further includes a transistor T7 (seventh transistor) in each of the circuits shown in the first to fourth embodiments.
- a circuit 50 illustrated in FIG. 15 includes a transistor T7 in addition to the circuit 10 illustrated in FIG. 1, and the transistor T7 receives an initialization signal INI at a gate terminal (control terminal) and a source terminal (first terminal). 2 terminal) is connected to the power supply VSS, and the drain terminal (first terminal) is connected to the node n1.
- the potential of the node n1 can be fixed to VSS, so that the initial state can be stabilized.
- the initial state can be stabilized for each circuit of the second to fourth embodiments by providing the transistor T7 as described above.
- FIG. 16 is a circuit diagram showing the configuration of the circuit 60.
- members having the same functions as those shown in the first to fifth embodiments are given the same reference numerals, and the explanation thereof is omitted. Is omitted. Further, the terms defined in Embodiments 1 to 5 are used in accordance with the definitions in this embodiment unless otherwise specified.
- the transistor connected to the node n1 is connected between the gate and the source.
- a high voltage is applied between the gate and the drain and between the source and the drain. In some cases, the transistor exceeds its own withstand voltage, and there is a risk of being destroyed.
- a high voltage is applied particularly between the gate and drain and between the source and drain of the transistor T3.
- VDD ⁇ Vth + ⁇ the voltage between the gate and the drain and between the source and the drain of the transistor T3 is VDD ⁇ Vth + ⁇ VSS.
- VDD 10V
- VSS ⁇ 10V
- ⁇ 15V
- VDD-Vth + ⁇ -VSS 35V-Vth It becomes.
- a potential difference of 20 V between VDD and VSS is applied to other nodes.
- a high voltage is applied to the transistor connected to the node n1.
- the circuit 60 of this embodiment further includes a transistor T8 (eighth transistor) in each of the circuits shown in the first to fifth embodiments.
- a circuit 60 illustrated in FIG. 16 includes a transistor T8 in addition to the circuit 10 illustrated in FIG. 1.
- the transistor T8 includes a gate terminal (control terminal) connected to the power supply VDD and a drain terminal (first terminal). Terminal) is connected to the node n1, and the source terminal (second terminal) is connected to the drain terminal of the transistor T3.
- a connection point between the transistors T3 and T8 is a node n4.
- the gate-source potential is Vth
- the drain terminal of the transistor T1 is connected to the power supply VDD.
- the configuration of the circuit of the present invention is not limited to this, and may be a so-called diode-connected configuration in which the drain terminal and the gate terminal of the transistor T1 are connected to each other.
- 17 to 22 are circuits showing the configurations of the circuits 11, 21, 31, 41, 51, and 61 when the transistor T1 is diode-connected in the circuits 10, 20, 30, 40, 50, and 60 described above, respectively.
- the transistor T1 is configured as in the circuit 10
- the transistor T3 when the transistor T3 is in an on state and a low level is input to the input terminal IN and the noise is generated in the input signal, the transistor T1 is instantaneously
- a through current flows from the power supply VDD to the power supply VSS via the transistors T1 and T3, resulting in an increase in current consumption or a malfunction.
- the gate terminal and the drain terminal of the transistor T1 are connected, even if noise occurs in the input terminal IN and the transistor T1 is turned on, the source ⁇
- the potential difference between the drains is only the potential of noise, and the through current is reduced because the potential difference is small compared to the case where the power supply VDD is connected to the drain terminal.
- the transistor T3 since the transistor T3 is in the on state, even if the transistor T1 is turned on due to noise, the potential changed by the noise of the input terminal IN is pulled to the power supply VSS via the transistor T3. The action of turning off works. Therefore, malfunction of the transistor T1 due to the influence of noise can be prevented.
- FIG. 23 is a timing chart showing waveforms of various signals in the circuit 11 shown in FIG. 17 among the respective circuits when the transistor T1 is diode-connected. As shown in FIG. 23, as in the configuration of the circuit 10 shown in FIG. 1, since the potential level of the signal input to the drain terminal of the transistor T2 can be output and held, the VDD is applied when the transistor T2 is turned on. Is output.
- the configuration in which the clock signal ⁇ is input to the drain terminal of the transistor T2 has been described. However, this configuration can also be applied to the circuit described in each embodiment. When turned on, the potential level of the clock signal ⁇ is output.
- the clock signal CK input to the Active signal holding circuit of the present invention has a waveform in which a high level and a low level are periodically repeated.
- the output signal OUT of the Active signal holding circuit has a particularly low impedance when the clock signal CK is at a high level (period T). Therefore, as shown in FIG. 24, when the duty ratio of the clock signal CK is 50%, for example, the output signal OUT has a low impedance during this 50% period. That is, the low impedance period of the output signal OUT can be adjusted by adjusting the duty ratio of the clock signal CK.
- a preferable value for the duty ratio of the clock signal CK is examined with reference to the configuration of FIG.
- the clock signal CK becomes low level
- the potential of the node n1 decreases due to off-leakage or the like, and becomes VDD ⁇ Vth ⁇ .
- the high period: low period T1 ⁇ t ⁇ : t ⁇ is an ideal duty ratio.
- the period during which the clock signal CK shifts from the high level to the low level is determined by the time constant of the load (capacitance and resistance) of the clock CK terminal.
- the duty ratio of the clock signal is such that the low level period of one cycle of the clock signal CK is the period until the potential of the node n1 is saturated after the clock signal CK changes from the high level to the low level. It is preferable to set so as to be.
- the duty ratio is preferably set so that the low impedance period of the transistor T2 is longer.
- the transition time in the clock signal CK exceeds 50%, the transition to the next high level is ensured without the low level after the transition. Therefore, in order to obtain the push-up voltage ⁇ , the capacitance TC1 is further increased. It is necessary to correct (correct). As a result, the circuit scale becomes large, or the capacity load increases, so that the transition time is further increased. In order to avoid this, the transition time is generally within 50% by slowing the frequency of the clock signal or by designing the load to be driven by the clock signal CK to be small.
- the duty ratio is preferably 50% or more so that the period of low impedance is as long as possible.
- the clock signal CK_H in FIG. 24 is an example of a waveform when the high-level period T is lengthened (duty ratio is increased). This makes it possible to lengthen the low impedance period of the output signal OUT of the Active signal holding circuit. And since the period of low impedance can be lengthened, it becomes more resistant to noise and the load can be driven quickly. Thus, it is preferable that the clock signal CK has a higher frequency than the output signal OUT and has a high level (active side potential) period.
- Each circuit (Active signal holding circuit) shown in the first to sixth embodiments can be preferably used particularly in a liquid crystal display device (display device).
- FIG. 25 is a block diagram showing the overall configuration of the liquid crystal display device.
- the liquid crystal display device 151 includes a pixel region 153, a source driver 154, a gate / CS driver 155, a BUFF / level shifter circuit 156, a power supply circuit 157, and a terminal 158 on the panel 152.
- the source driver 154 includes an output circuit 154 a and outputs a data signal to each source bus line in the pixel region 153.
- the gate / CS driver 155 includes an output circuit 155 a, outputs a selection signal to the gate bus line to write a data signal output from the source driver 154 to each pixel in the pixel region 153, and In order to increase the write potential to each pixel, a CS signal is output to the CS bus line.
- the output circuits 154a and 155a are composed of a buffer which is an amplifier circuit with a low output impedance that generates a data signal of the same magnification from the input signal.
- the BUFF / level shifter circuit 156 includes buffers that are amplifier circuits with low output impedance, such as an equal magnification amplifier circuit that corrects signal attenuation such as an inverter, and a level shifter circuit that converts a power supply voltage level of the signal.
- the signal that has passed through the buffer is supplied to the source driver 154 and the gate driver 155.
- the power supply circuit 157 generates a power supply for a logic circuit, a reference voltage for a data signal, a counter voltage, an auxiliary capacitance voltage, and the like.
- Terminals 158... Are terminals for inputting signals and power to the above-described circuits on the panel 152.
- the liquid crystal display device may be configured by a demultiplexer instead of the source driver.
- Each circuit shown in the first to sixth embodiments can be applied to each part in the liquid crystal display device 151, and in particular, a switch, a buffer circuit, a level shifter circuit, a source driver (data signal) in the CS driver. Line driver circuit) and a shift register in a gate driver (scanning signal line driver circuit). Further, the present invention can be applied to a common electrode driving circuit (COM driver).
- COM driver common electrode driving circuit
- FIG. 26 is a block diagram showing a configuration of the memory circuit 1 provided in the CS driver in the present embodiment
- FIG. 27 is a circuit diagram of the memory circuit 1.
- FIG. 28 is a timing chart showing waveforms of various signals in the memory circuit 1.
- the memory circuit 1 includes the two circuits (Active signal holding circuits) described in the above embodiments. Specifically, in the memory circuit 1, for example, the STOP terminal of one circuit 10 (denoted as the circuit 10b) shown in FIG. 1 and the output terminal OUT of the other circuit 10 (denoted as the circuit 10a) are connected. It is constituted by.
- the memory circuit only needs to have at least the configuration of the circuit 10 shown in FIG. 1.
- the transistor T4 in addition to the configuration of the circuit 10, the transistor T4 (transistors Ta4 and Tb4 in FIG. 26). And includes the configuration of the circuit 20 shown in FIG.
- the circuit 10a to which a high-level signal is input is in an active state, and the node na1 holds charges while the clock signal is input. Therefore, the output signal OUT of VDD is output from the circuit 10a as described in the above embodiments. The output signal OUT is input to the STOP terminal (FIG. 26) of the other circuit 10b.
- the circuit 10b in which the VDD signal is input to the STOP terminal becomes inactive, and VSS is output from the transistor Tb4. Since IN and INB have opposite polarities, when one outputs VDD, the other outputs VSS. Thus, while the clock signal CK is being input, the potentials of the circuits 10a and 10b are held until the next enable signal EN becomes high level.
- the inverted signal INB of the input signal IN is input from the outside.
- the configuration is not limited to this, and other configurations are shown in FIGS. 29 and 30, for example.
- the inverter circuit may be configured in the memory circuit 1 to generate the inverted signal INB from the input signal IN.
- FIG. 29 shows an inverter constituted by a resistor R1 and a transistor T11
- FIG. 30 shows an inverter constituted by a bootstrap circuit. According to these configurations, when the input signal IN is at a high level (VDD), a low level (VSS) signal is output as the inverted signal INB, and when the input signal IN is at a low level (VSS), the high level is output.
- the signal (VDD) is output as the inverted signal INB.
- the transistor T7 (FIG. 15) shown in the fifth embodiment may be provided in each of the circuits 10a and 10b in order to stabilize the initial state.
- the initialization signal INI is input to the gate terminal
- the respective drain terminals are connected to the node na1 and the node nb1
- the respective source terminals are the power supply VSS and the power supply Connected to each of VDD.
- the initial state can be stabilized by inputting the high-level initialization signal INI in the initial state.
- the memory circuit 1 since the memory circuit 1 has the refresh function described in the above embodiment, it is possible to normally hold a value even at low frequency driving.
- the memory circuit 1 configured by the circuit 20 of the second embodiment has been described.
- the memory circuit 1 according to another embodiment for example, the circuit 30, 40, or 50
- the same effect can be obtained.
- FIG. 31 is a block diagram showing the configuration of the buffer circuit 2 in the present embodiment
- FIG. 32 is a circuit diagram of the buffer circuit 2.
- the buffer circuit 2 includes the circuit (Active signal holding circuit) shown in each of the above embodiments. Specifically, the buffer circuit 2 only needs to have at least the configuration of the circuit 10 shown in FIG. 1.
- a transistor T4 is provided in addition to the configuration of the circuit 10, and FIG. 8 includes the configuration of the circuit 20 shown in FIG.
- the inverter that generates the signal INB input to the circuit 10 is composed of a resistor R1 and a transistor T11. Therefore, when the input signal IN of the inverter is at a high level, a steady current (through current) flows from the power supply VDD to the power supply VSS, and power consumption increases. Therefore, in order to reduce power consumption, it is conceivable to configure the resistor R to have a high resistance. However, in this case, there arises a problem that the drive capability is lowered and a new problem that the resistance becomes weak against noise. .
- the buffer circuit 2 of the present embodiment since the output terminal INB of the inverter is connected only to the gate terminal of the transistor T1 of the circuit 10, the load becomes very small. Therefore, even if the drive capability of the inverter is reduced (even if the resistor R1 is set to a high resistance), the load at the gate terminal of the transistor T1 can be driven quickly, so that high-speed operation is possible and operation of the circuit 10 As a result, the driving capability of the buffer circuit 2 itself can be increased. Therefore, according to the above configuration, a buffer circuit with low power consumption and high driving capability can be configured.
- buffer circuit 2 comprised by the circuit 20 of the said Embodiment 2 was demonstrated in the present Example, you may comprise by the circuit (for example, circuit 30, 40 or 50) in other embodiment. In these configurations, the same effect can be obtained.
- the level shifter Functions as a circuit.
- the inverter may be constituted by a bootstrap circuit. Also in this configuration, when the input signal IN is at a high level, a steady current (through current) flows from the power supply VDD to the power supply VSS through the transistors T12 and T13, and power consumption increases. Therefore, in order to reduce power consumption, it is conceivable to reduce the size of the transistors T12 and T13. In this case, however, the problem is that the driving capability is reduced, as in the case of an inverter using resistors, and noise. A new problem of weakening.
- FIG. 35 is a circuit diagram showing a configuration of the buffer circuit 3 in the present embodiment.
- the buffer circuit 3 includes the inverter shown in FIG. 29 and a configuration obtained by modifying the circuit 20 shown in FIG. Specifically, in the circuit 20 shown in FIG. 8, the transistor T3 is omitted, and the transistor T1 has a gate terminal connected to the power supply VDD and a drain terminal connected to the output terminal INB of the inverter. The gate terminal of the transistor T3 is connected to the input terminal IN of the inverter.
- the inverted signal INB becomes VDD.
- the inverted signal INB of VDD is input to the transistor T1
- the potential of the node n1 is charged to VDD ⁇ Vth
- the potential of the node n1 rises to VDD ⁇ Vth + ⁇ by the push-up operation by the clock signal CK. Since the node n1 is connected to the gate terminal of the transistor T2, the potential of the output signal OUTB is VDD with no threshold drop.
- the inverted signal INB becomes VSS, and the potential of the node n1 is discharged to VSS.
- the transistor T3 is turned on, and the potential of the output signal OUTB becomes VSS.
- the transistor T2 when the potential of the node n1 is high due to the push-up operation of the clock signal CK, the transistor T2 has low impedance, so that it is resistant to noise and can drive the load quickly.
- the load charged by this terminal is only the parasitic capacitances of the transistors T1 and T2 and the capacitance TC1, so that high-speed driving is possible and low power consumption can be achieved. it can.
- the transistor T3 for discharging the node n1 is not necessary, so that the circuit scale can be reduced.
- the buffer circuit 3 of the present embodiment when the voltage of the input signal IN is input with a voltage other than VDD / VSS (for example, when the High voltage is lower than VDD and the Low voltage is VSS), Functions as a level shifter circuit.
- the inverter may be constituted by a bootstrap circuit as in the second embodiment.
- FIG. 36 is a circuit diagram showing a configuration of a buffer circuit including an inverter configured by a bootstrap circuit.
- the buffer circuit 2 of the second embodiment can operate normally even when the input signal IN is a DC signal.
- the buffer 3 of the third embodiment even when the input signal IN is a DC signal, the voltage at the gate terminal of the transistor T12 becomes VDD ⁇ Vth due to off-leakage. Therefore, since the voltage at the output terminal of the inverter is VDD-2 ⁇ Vth, the node n1 is VDD-2 ⁇ Vth. Although the potential of the node n1 becomes VDD ⁇ 2 ⁇ Vth + ⁇ due to the rising of the clock signal CK, if the capacitor TC1 is set so that it becomes larger than VDD + Vth, it operates normally even when the input signal IN is a DC signal. It is possible.
- FIG. 37 is a block diagram showing a configuration of the buffer circuit 4 in the present embodiment
- FIG. 38 is a circuit diagram of the buffer circuit 4.
- the buffer circuit 4 includes the inverter shown in FIG. 29 and the circuit 10 shown in FIG. Specifically, as shown in FIG. 38, the output terminal INB of the inverter is connected to the gate terminal of the transistor T1 and the output terminal OUTB of the buffer circuit 4, and the gate terminal of the transistor T3 is connected to the input terminal IN of the inverter. Connected.
- the buffer circuit 4 of the present embodiment when the input signal IN of the inverter is at a low level, the inverted signal INB is output from the high resistance R1, and thus becomes the high impedance VDD, but the output signal of the circuit 10 (transistor With the output signal T2), the output signal OUTB can obtain a low impedance VDD.
- the buffer circuit 4 since the output terminals INB and OUTB are connected to each other, even when the clock signal CK is stopped, it is possible to output a signal having a potential of VDD that does not drop the threshold value.
- the buffer circuit 4 of this embodiment when the voltage of the input signal IN is input with a voltage other than VDD / VSS (for example, when the High voltage is lower than VDD and the Low voltage is VSS), Functions as a level shifter circuit.
- the buffer circuit 4 of this embodiment can operate normally even when the input signal IN is a DC signal, like the buffer circuits 2 and 3 of the second and third embodiments.
- the input signal IN and the inverted signal INB may be interchanged.
- FIG. 39 is a block diagram showing the configuration of the unit circuit 5 constituting the shift register in this embodiment.
- the shift register is configured by cascade connection of the unit circuits 5 shown in FIG. 39, and the unit circuit 5 is configured to include the circuit (Active signal holding circuit) 10 shown in the first embodiment.
- a conventional configuration can be applied to the configuration excluding the circuit 10.
- the output signal of the circuit 10 is fed back to the input side of the circuit 10. Accordingly, since the node n5 can be held at a high level that is not in a floating state, the disabled state of the shift register can be held. Therefore, the problem with respect to leakage and noise can be solved.
- the clock signal CK1 is input to the clock terminal CK of the even-numbered unit circuit 5 among the clock signals CK1 and CK2 that do not become high level at the same time.
- the clock signal CK2 is input to the clock terminal CK of the unit circuit 5 in the stage, the input signal On-1 is an output signal from the unit circuit 5 in the previous stage, and the input signal On + 1 is an output signal from the unit circuit 5 in the subsequent stage.
- the transistor T1 is turned on, and electric charge is stored in the capacitor TC1. Thereafter, every time the clock signal CK is input, the potential of the output signal OUT is raised to VDD through the transistor T2, so that the potential of the node n5 does not decrease due to off-leakage or the like. Then, since the output signal OUT of VDD is fed back to the input terminal IN, the potential of the node n5 is held at VDD until the input signal On-1 next becomes the high level.
- the circuit 10 Active signal holding circuit of the first embodiment to the conventional shift register, the potential of the node n5, which has been lowered due to a drop in threshold value, leakage, or the like in the past, is obtained. It can be reliably held at VDD.
- the shift register configured by the circuit 10 according to the first embodiment has been described.
- the shift register may be configured by a circuit according to another embodiment. In these configurations, the same effect can be obtained.
- the configuration of the shift register to which the circuit in each embodiment can be applied is not particularly limited.
- the unit circuit of each stage in the shift register does not use the output signal of the subsequent unit circuit, that is, it A configuration in which a reset signal is generated in a unit circuit of a stage can be given. In these configurations as well, the disabled state can be maintained.
- the clock signals CK1 and CK2 that do not simultaneously become high in any unit circuit, the clock signal CK1 is input to the clock terminal CK of the even-numbered unit circuit, and the clock signal CK2 is input to the clock terminal CKB.
- the clock signal CK2 is input to the clock terminal CK of the odd-numbered unit circuit 5, the clock signal CK1 is input to the clock terminal CKB, and the input signal On-1 is the output signal of the unit circuit 5 of the previous stage. It is.
- the circuit 10 holds the potential of the node n5 at VDD until the next time the input signal On-1 becomes high level.
- FIG. 42 is a circuit diagram of a circuit 10 ′ when the circuit 10 is configured by p-channel transistors.
- FIG. 43 is a timing chart showing waveforms of various signals in the circuit 10 ′.
- FIG. 43A shows a waveform when VSS is input to the drain terminal of the transistor T2 ′, and FIG.
- FIG. 44A is a diagram showing the configuration of the capacitor TC1 ′
- FIG. 44B is a graph showing the relationship between the applied voltage and the capacitance value in the capacitor TC1 ′.
- FIG. 45A is a diagram showing a configuration of a conventional capacitor (PNOS type), and
- FIG. 45B is a graph showing a relationship between an applied voltage and a capacitance value in the capacitor.
- the conventional capacitor is formed by doping silicon Si with P + and forming a capacitor between the gate electrode GE and Si.
- the capacitance value is substantially constant regardless of the voltage between the gate electrode and Si.
- the capacitor TC1 ′ of the circuit 10 ′ As shown in FIG. 44A, Si (silicon layer) is not doped with P +. As a result, the capacitor TC1 ′ functions as a MOS capacitor, and does not function as a capacitor unless a voltage (ON voltage) is applied to the gate electrode GE. That is, the capacitor TC1 ′ functioning as a transistor is turned off when the potential of the node n1 ′ is higher than the potential of the clock terminal CK, while the potential of the node n1 ′ is equal to or lower than the potential of the clock terminal CK (on voltage). Turns on when there is. In FIG. 44 (b), Von represents the on-voltage.
- the capacitance value of the capacitor TC1 ′ changes according to the voltage between the gate electrode and Si, as shown in FIG. 44 (b). That is, as the voltage applied to the gate electrode decreases, the capacitance value of the capacitor TC1 ′ increases. More specifically, the capacitance value of the capacitor TC1 ′ increases as the potential of the node n1 ′ decreases, while the capacitance value of the capacitor TC1 ′ decreases as the potential of the node n1 ′ increases.
- the semiconductor device includes a capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal that inputs a clock signal, and the clock signal Is set higher than the frequency of the output signal output from the output terminal, and the capacitance value of the capacitor changes according to the change in the potential at the connection point. That is, when the Si forming the capacitor is an NMOS process, the capacitance decreases as the potential at the connection point decreases, while the capacitance value increases as the potential at the connection point increases. Or (ii) when the Si forming the capacitance is a PMOS process, the capacitance value increases as the potential at the connection point decreases, while the capacitance value increases as the potential at the connection point increases. Therefore, the capacitance value becomes small. When the Si forming the capacitor is an NMOS process, Si is not doped with N +, and when the Si forming the capacitor is a PMOS process, Si is not doped with P +.
- the display device according to the present invention includes the semiconductor device.
- a semiconductor device that includes transistors of the same conductivity type and can output a stable signal with a simple configuration while reducing power consumption and preventing a decrease in potential level, and a display device including the semiconductor device are provided. There is an effect that can be done.
- a semiconductor device is the above semiconductor device,
- the capacitance includes silicon, and the capacitance value decreases as the potential at the connection point decreases, and the capacitance value increases as the potential at the connection point increases. it can.
- a semiconductor device is the above semiconductor device,
- the capacitor includes silicon, and the capacitance value increases as the potential at the connection point decreases, and the capacitance value decreases as the potential at the connection point increases. it can.
- a semiconductor device is the above semiconductor device,
- the capacitor is composed of a transistor having a control terminal connected to the connection point, and a first terminal and a second terminal connected to the clock terminal,
- the transistor constituting the capacitor is turned off when the potential at the connection point is lower than the potential at the clock terminal, and is turned on when the potential at the connection point is equal to or higher than the potential at the clock terminal. It can also be set as the structure which becomes.
- the capacitor since the capacitor is formed of a transistor and functions as a MOS capacitor, the capacitor functions as an on-capacitance when the node potential is higher than the clock signal potential, and the node potential is higher than the clock signal potential. When it is low, it functions as an off-capacitance. Since the semiconductor device of the present invention includes the capacitor, the circuit configuration can be simplified.
- a semiconductor device is the above semiconductor device,
- the capacitor is composed of a transistor having a control terminal connected to the connection point, and a first terminal and a second terminal connected to the clock terminal,
- the transistor constituting the capacitor is turned off when the potential of the connection point is higher than the potential of the clock terminal, and is turned on when the potential of the connection point is equal to or lower than the potential of the clock terminal. It can also be set as the structure which becomes.
- the capacitor since the capacitor is configured by a transistor and functions as a MOS capacitor, the capacitor functions as an on-capacitance when the node potential is lower than the clock signal potential, and the node potential is higher than the clock signal potential. When it is high, it functions as an off-capacity. Since the semiconductor device of the present invention includes the capacitor, the circuit configuration can be simplified.
- a semiconductor device according to the present invention is the above semiconductor device,
- the silicon constituting the capacitor may be configured not to be doped with N +.
- a semiconductor device according to the present invention is the above semiconductor device,
- the silicon constituting the capacitor may be configured not to be doped with P +.
- a semiconductor device is the above semiconductor device,
- the capacitor is preferably formed between the gate electrode as the control terminal and the silicon as the first terminal and the second terminal.
- a semiconductor device is the above semiconductor device, It is desirable to further include a third transistor in which the first terminal is connected to the connection point, the off voltage is input to the second terminal, and the control signal is input to the control terminal.
- the potential of the node can be reliably lowered to VSS.
- a semiconductor device is the above semiconductor device, It is desirable to further include a fourth transistor having a first terminal connected to the output terminal, an off voltage applied to the second terminal, and the control signal input to the control terminal.
- the potential of the node can be reliably lowered to VSS and the potential level of the output signal is set to the low level (off voltage). : VSS).
- a semiconductor device is the above semiconductor device, It is desirable to further include a fifth transistor in which an on-voltage is input to the first terminal, a second terminal is connected to the connection point, and a control terminal is connected to the output terminal.
- the output signal is input to the control terminal of the fifth transistor, the input signal becomes low level while the output signal is outputting high level (ON voltage: VDD).
- the fifth transistor is again charged to VDD-Vth even if the potential of the node is decreased due to off-leakage or the like.
- a semiconductor device is the above semiconductor device, A sixth transistor that outputs the input signal;
- the sixth transistor has a first terminal connected to the input terminal, a second terminal connected to the control terminal and the output terminal of the first transistor, and an enable signal input to the control terminal. desirable.
- the control signal of the first transistor is always high level. A signal can be input. Thereby, the active state of the semiconductor device can be stably maintained.
- the first terminal is connected to the connection point, the off voltage is input to the second terminal, and the initial state of the semiconductor device is stabilized at the control terminal. It is desirable to further include a seventh transistor to which the initialization signal is input.
- the potential of the node can be fixed to VSS by inputting a high-level initialization signal to the seventh transistor in the initial state, so that the initial state can be stabilized.
- a semiconductor device is the above semiconductor device,
- the clock signal has a waveform that periodically repeats a high level and a low level, and the potential at the connection point is saturated after the clock signal changes from a high level to a low level during a low level period in one cycle. It is desirable that the period is set to be a period until.
- a display device includes any one of the above semiconductor devices.
- the display device according to the present invention is preferably a liquid crystal display device.
- the present invention is a circuit that can stably output without lowering the potential level of an input signal, it can be suitably applied particularly to a display device.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Logic Circuits (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
A circuit (10) is provided with a transistor (T1), a transistor (T2), and a capacitor (TC1) installed between a node (n1) and a CK terminal. The frequency of a clock signal is higher than the frequency of an output signal (OUT), and the capacitance of the capacitor (TC1) becomes smaller as the electric potential of the node (n1) drops, and becomes greater as the electric potential of the node (n1) rises.
Description
本発明は、同一導電型のトランジスタで構成される半導体装置に関するものである。
The present invention relates to a semiconductor device composed of transistors of the same conductivity type.
液晶表示装置では、例えば、アレイ状に配列された画素を順次駆動するための信号を生成するシフトレジスタが、走査信号線駆動回路及びデータ信号線駆動回路に用いられている。また、液晶表示装置には、電源電圧レベルを変換するレベルシフタ、及び入力信号に対して等倍の出力を得る増幅回路のように低出力インピーダンスで広義の増幅信号を出力するいわゆるバッファが用いられている。これらシフトレジスタ及びバッファ等の半導体装置をCMOSトランジスタで構成するとpチャネル及びnチャネルのそれぞれを形成するプロセスが必要になるため、製造工程が複雑化する。そこで、製造工程の簡略化を図って、同一導電型、例えばpチャネルのみなど単極性のチャネルのトランジスタで構成することが好ましい。このような単極性のトランジスタで構成された半導体装置が、例えば特許文献1に開示されている。
In a liquid crystal display device, for example, a shift register that generates a signal for sequentially driving pixels arranged in an array is used in a scanning signal line driving circuit and a data signal line driving circuit. The liquid crystal display device uses a level shifter that converts the power supply voltage level and a so-called buffer that outputs a broad amplification signal with a low output impedance, such as an amplification circuit that obtains an output equal to the input signal. Yes. If these semiconductor devices such as a shift register and a buffer are composed of CMOS transistors, a process for forming each of the p-channel and the n-channel is required, which complicates the manufacturing process. Therefore, it is preferable to simplify the manufacturing process and to use transistors of the same conductivity type, for example, a unipolar channel such as only a p-channel. A semiconductor device including such a unipolar transistor is disclosed in Patent Document 1, for example.
図46は、特許文献1の半導体装置の構成を示す回路図である。この半導体装置は、n型MOSトランジスタで構成されている。
FIG. 46 is a circuit diagram showing a configuration of the semiconductor device of Patent Document 1. In FIG. This semiconductor device is composed of an n-type MOS transistor.
具体的には、半導体装置100は、4個のn型MOSトランジスタT101~T104と、容量C101とを備えている。トランジスタT101は、ドレイン端子が電源VDDに接続され、ゲート端子が入力端子INに接続される。トランジスタT103は、ソース端子が電源VSSに接続され、ゲート端子にはSTOP信号(制御信号)が入力される。トランジスタT102は、ドレイン端子がクロック端子φに接続され、ゲート端子がトランジスタのT101のソース端子及びトランジスタT103のドレイン端子に接続される。トランジスタT104は、ドレイン端子がトランジスタT102のソース端子に接続され、ソース端子が電源VSSに接続され、ゲート端子がトランジスタT103のゲート端子に接続される。トランジスタT101とT102とT103との接続点をノードN1とし、トランジスタT102とT104との接続点をノードN2とする。ノードN1とノードN2との間には、容量C101が設けられる。ノードN2は、出力端子OUTに接続される。
Specifically, the semiconductor device 100 includes four n-type MOS transistors T101 to T104 and a capacitor C101. The transistor T101 has a drain terminal connected to the power supply VDD and a gate terminal connected to the input terminal IN. The transistor T103 has a source terminal connected to the power supply VSS and a gate terminal to which a STOP signal (control signal) is input. The transistor T102 has a drain terminal connected to the clock terminal φ and a gate terminal connected to the source terminal of the transistor T101 and the drain terminal of the transistor T103. The transistor T104 has a drain terminal connected to the source terminal of the transistor T102, a source terminal connected to the power supply VSS, and a gate terminal connected to the gate terminal of the transistor T103. A connection point between the transistors T101, T102, and T103 is a node N1, and a connection point between the transistors T102 and T104 is a node N2. A capacitor C101 is provided between the node N1 and the node N2. Node N2 is connected to output terminal OUT.
次に、半導体装置100の動作について説明する。図47は、半導体装置100における各種信号の波形を示すタイミングチャートである。
Next, the operation of the semiconductor device 100 will be described. FIG. 47 is a timing chart showing waveforms of various signals in the semiconductor device 100.
入力信号INがハイレベルになると、トランジスタT101がオン状態になり、ノードN1の電位は、トランジスタT101の閾値電圧をVthとすると、VDD-Vthになる(プリチャージ動作)。ノードN1の電位が上昇すると、トランジスタT102はオン状態になり、クロック信号φがローレベルのときはローレベルの信号が出力端子OUTから出力される。ノードN1の電位は、電荷が一旦プリチャージされると、STOP信号がアクティブ(ハイレベル)になるまで保持される(フローティング状態)。このフローティング状態でクロック信号φがハイレベルになると、容量C101により、ノードN1の電位は、α電位分突き上げられ、VDD-Vth+αになる(ブートストラップ動作)。そして、この電位がVDD+Vthを超えている間は、出力端子OUTからはVDDの電位レベルの信号が出力される。
When the input signal IN becomes high level, the transistor T101 is turned on, and the potential of the node N1 becomes VDD−Vth when the threshold voltage of the transistor T101 is Vth (precharge operation). When the potential of the node N1 rises, the transistor T102 is turned on. When the clock signal φ is at a low level, a low-level signal is output from the output terminal OUT. The potential of the node N1 is held (floating state) once the charge is precharged until the STOP signal becomes active (high level). When the clock signal φ becomes high level in this floating state, the potential of the node N1 is increased by the α potential by the capacitor C101 and becomes VDD−Vth + α (bootstrap operation). While this potential exceeds VDD + Vth, a signal having a potential level of VDD is output from the output terminal OUT.
その後、STOP信号がハイレベルになると、ノードN1はトランジスタT103によりVSSまでディスチャージされ、トランジスタT102はオフ状態になる。出力端子OUTからは、トランジスタT104がオン状態になることにより、VSSの電位レベルの信号が出力される。
Thereafter, when the STOP signal becomes high level, the node N1 is discharged to VSS by the transistor T103, and the transistor T102 is turned off. A signal having a potential level of VSS is output from the output terminal OUT when the transistor T104 is turned on.
このように、上記半導体装置の構成によれば、ブートストラップ動作を利用することにより、簡易な構成で、高電位の信号を出力することができる。そのため、このような半導体装置を液晶表示装置内の各部において好適に利用することが可能となる。
As described above, according to the configuration of the semiconductor device, a high-potential signal can be output with a simple configuration by using the bootstrap operation. Therefore, such a semiconductor device can be suitably used in each part in the liquid crystal display device.
しかし、上記半導体装置では、出力信号がオフリーク(トランジスタがオフ時に流す微小な電流)などの影響を受けて、その電位が次第に低下するという問題がある。
However, the above-described semiconductor device has a problem that the potential of the output signal gradually decreases under the influence of an off-leakage (a minute current that flows when the transistor is off).
このような問題を解決できる技術が、特許文献2に開示されている。図48は、特許文献2の半導体装置の構成を示す回路図である。この半導体装置200(以下、回路200ともいう)は、3個のn型MOSトランジスタT201~T203と、容量C201とを備えている。トランジスタT201は、ドレイン端子が電源VDDに接続され、ゲート端子が入力端子INに接続される。トランジスタT202は、ドレイン端子が電源VDDに接続され、ソース端子が出力端子OUTに接続され、ゲート端子がトランジスタT201のソース端子に接続される。容量C201は、一方の端子がクロック端子CKに接続され、他方の端子がトランジスタT201のソース端子及びトランジスタT202のゲート端子に接続される。トランジスタT203は、ドレイン端子がトランジスタT201のソース端子とトランジスタT202のゲート端子と容量C201の他方の端子に接続され、ソース端子が電源VSSに接続され、ゲート端子が制御端子(STOP)に接続される。トランジスタT201,T202,T203、容量C201の接続点(ノード)をn201とする。ここで、クロック端子CKに入力されるクロック信号の周波数は、出力端子OUTから出力される出力信号の周波数よりも高くなるように設定されている。
A technique capable of solving such a problem is disclosed in Patent Document 2. FIG. 48 is a circuit diagram showing a configuration of the semiconductor device of Patent Document 2. The semiconductor device 200 (hereinafter also referred to as a circuit 200) includes three n-type MOS transistors T201 to T203 and a capacitor C201. The transistor T201 has a drain terminal connected to the power supply VDD and a gate terminal connected to the input terminal IN. The transistor T202 has a drain terminal connected to the power supply VDD, a source terminal connected to the output terminal OUT, and a gate terminal connected to the source terminal of the transistor T201. The capacitor C201 has one terminal connected to the clock terminal CK and the other terminal connected to the source terminal of the transistor T201 and the gate terminal of the transistor T202. The transistor T203 has a drain terminal connected to the source terminal of the transistor T201, a gate terminal of the transistor T202, and the other terminal of the capacitor C201, a source terminal connected to the power supply VSS, and a gate terminal connected to the control terminal (STOP). . A connection point (node) of the transistors T201, T202, T203 and the capacitor C201 is n201. Here, the frequency of the clock signal input to the clock terminal CK is set to be higher than the frequency of the output signal output from the output terminal OUT.
上記半導体装置200の構成によれば、出力信号よりも周波数の高いクロック信号の周期に応じて、ノードn201の電位が突き上げられるため、オフリークなどによりノードn201の電位が低下しても、突き上げ動作により、すぐに電位を回復させることができる。これにより、ノードn201の電位を、特許文献1の構成よりも短い周期で高めることができるため、出力信号の電位レベルを安定させることができ、出力信号を受け取る後段の回路の動作を安定させることができる。
According to the configuration of the semiconductor device 200, the potential of the node n201 is pushed up according to the cycle of the clock signal having a frequency higher than that of the output signal. Therefore, even if the potential of the node n201 is lowered due to off-leakage or the like, , Can immediately restore the potential. As a result, the potential of the node n201 can be increased in a shorter cycle than the configuration of Patent Document 1, so that the potential level of the output signal can be stabilized, and the operation of the subsequent circuit that receives the output signal can be stabilized. Can do.
ここで、上記特許文献2には、上記半導体装置200における消費電力を低減するための構成が開示されている。
Here, Patent Document 2 discloses a configuration for reducing power consumption in the semiconductor device 200.
図48に示す半導体装置200では、クロック端子CKの負荷容量(クロック負荷)が大きいため、消費電力が増大するという問題がある。以下、クロック負荷について、図48の半導体装置200を用いて具体的に説明する。
The semiconductor device 200 shown in FIG. 48 has a problem that the power consumption increases because the load capacity (clock load) of the clock terminal CK is large. Hereinafter, the clock load will be specifically described with reference to the semiconductor device 200 of FIG.
ノードn201の電位がハイレベル(VDD-Vth以上)の場合、つまり、ノードn201がフローティング状態になっている期間について考えると、クロック端子CKの負荷容量は、トランジスタT201,T202及びT203の寄生容量の合計をCtrとすると、
1/クロック端子CKの負荷容量=1/C201+1/Ctr・・・(1)
となる。なお、説明の便宜上、配線負荷等は省略している。 When the potential of the node n201 is at a high level (VDD−Vth or higher), that is, when the node n201 is in a floating state, the load capacitance of the clock terminal CK is the parasitic capacitance of the transistors T201, T202, and T203. If the total is Ctr,
1 / Load capacity of clock terminal CK = 1 / C201 + 1 / Ctr (1)
It becomes. For convenience of explanation, wiring loads and the like are omitted.
1/クロック端子CKの負荷容量=1/C201+1/Ctr・・・(1)
となる。なお、説明の便宜上、配線負荷等は省略している。 When the potential of the node n201 is at a high level (VDD−Vth or higher), that is, when the node n201 is in a floating state, the load capacitance of the clock terminal CK is the parasitic capacitance of the transistors T201, T202, and T203. If the total is Ctr,
1 / Load capacity of clock terminal CK = 1 / C201 + 1 / Ctr (1)
It becomes. For convenience of explanation, wiring loads and the like are omitted.
ここで、ノードn201の電位を大きく突き上げようとすると、C201>Ctrとなる。仮に、クロック信号CKの振幅Vpに対して、ノードn201の電圧を、2×Vp/3分突き上げようとすると、C201:Ctr=2:1となる。これを式(1)に代入すると、
クロック端子CKの負荷容量=1/3×C201・・・(2)
となる。 Here, if the potential of the node n201 is greatly increased, C201> Ctr. If the voltage at the node n201 is increased by 2 × Vp / 3 with respect to the amplitude Vp of the clock signal CK, C201: Ctr = 2: 1. Substituting this into equation (1) gives
Load capacity of clock terminal CK = 1/3 × C201 (2)
It becomes.
クロック端子CKの負荷容量=1/3×C201・・・(2)
となる。 Here, if the potential of the node n201 is greatly increased, C201> Ctr. If the voltage at the node n201 is increased by 2 × Vp / 3 with respect to the amplitude Vp of the clock signal CK, C201: Ctr = 2: 1. Substituting this into equation (1) gives
Load capacity of clock terminal CK = 1/3 × C201 (2)
It becomes.
次に、ノードn201の電位がローレベル(VSS)の場合、つまり、ノードn201がフローティング状態でない期間について考えると、クロック端子CKの負荷容量は、
クロック端子CKの負荷容量=C201・・・(3)
となる。 Next, when the potential of the node n201 is at a low level (VSS), that is, when the node n201 is not in a floating state, the load capacitance of the clock terminal CK is
Load capacity of clock terminal CK = C201 (3)
It becomes.
クロック端子CKの負荷容量=C201・・・(3)
となる。 Next, when the potential of the node n201 is at a low level (VSS), that is, when the node n201 is not in a floating state, the load capacitance of the clock terminal CK is
Load capacity of clock terminal CK = C201 (3)
It becomes.
このように、ノードn201がフローティング状態でない期間に関しては、クロック端子CKの負荷容量が大きくなることが分かる。特に、半導体装置200を複数段使用し、クロック端子CKに同じクロック信号CKを入力する場合には、非常に大きな負荷容量となる。
Thus, it can be seen that the load capacity of the clock terminal CK increases during the period when the node n201 is not in the floating state. In particular, when the semiconductor device 200 is used in a plurality of stages and the same clock signal CK is input to the clock terminal CK, the load capacity becomes very large.
そこで、このクロック負荷を低減できる構成として、特許文献2には、図49の半導体装置210(以下、回路210ともいう)が開示されている。半導体装置210では、図48の半導体装置200において、さらにトランジスタT208を備えている。トランジスタT208は、ゲート端子が入力端子INBに接続され、ドレイン端子がクロック端子CKに接続され、ソース端子が容量C201を介してノードn201に接続されている。
Therefore, as a configuration capable of reducing this clock load, Patent Document 2 discloses a semiconductor device 210 (hereinafter also referred to as a circuit 210) in FIG. The semiconductor device 210 further includes a transistor T208 in the semiconductor device 200 of FIG. The transistor T208 has a gate terminal connected to the input terminal INB, a drain terminal connected to the clock terminal CK, and a source terminal connected to the node n201 via the capacitor C201.
半導体装置210では、トランジスタT208により、ノードn201がフローティング状態とはならず、クロック端子CKの負荷が非常に大きくなる期間に、クロック端子CKと容量C201とを切り離すことができる。
In the semiconductor device 210, the transistor T208 allows the node n201 not to be in a floating state, and the clock terminal CK and the capacitor C201 can be disconnected during a period when the load on the clock terminal CK becomes very large.
具体的には、ノードn201の電位がVSSに固定される場合には、ノードn201がクロック信号CKによる突き上げを必要としないため、その期間をトランジスタT208により、クロック端子CKと容量C201とを電気的に切り離すことで、クロック端子CKの負荷は、トランジスタT208の寄生容量のみになるため、非常に小さくなる。
Specifically, when the potential of the node n201 is fixed at VSS, the node n201 does not need to be pushed up by the clock signal CK. Therefore, the period is electrically connected between the clock terminal CK and the capacitor C201 by the transistor T208. As a result, the load on the clock terminal CK becomes only the parasitic capacitance of the transistor T208, and thus becomes very small.
そのため、クロック端子CKを駆動する回路の駆動能力低減と容量の削減効果により、低消費電力化が可能となる。
Therefore, it is possible to reduce power consumption due to the reduction in driving capability and capacity of the circuit that drives the clock terminal CK.
さらに、半導体装置210では、トランジスタT208がオフ状態である期間、トランジスタT208と容量C201との間のノードn203を安定的に電位固定するために、トランジスタT209、及び、抵抗R201とトランジスタT211とを含むインバータ206が設けられている(図49)。トランジスタT209は、ドレイン端子がノードn203に接続され、ソース端子が電源VSSに接続され、ゲート端子がインバータ206の入力端子INに接続される。これにより、トランジスタT201及びT208がオフ状態になる場合、トランジスタT203及びT209はオン状態になり、ノードn201及びn203の電位をVSSに固定することができる。
Further, the semiconductor device 210 includes a transistor T209, a resistor R201, and a transistor T211 in order to stably fix the potential of the node n203 between the transistor T208 and the capacitor C201 while the transistor T208 is in the off state. An inverter 206 is provided (FIG. 49). The transistor T209 has a drain terminal connected to the node n203, a source terminal connected to the power supply VSS, and a gate terminal connected to the input terminal IN of the inverter 206. Accordingly, when the transistors T201 and T208 are turned off, the transistors T203 and T209 are turned on, and the potentials of the nodes n201 and n203 can be fixed to VSS.
しかしながら、上記半導体装置210では、低消費電力及びノードn203の電位の安定化を図るために、図48に示す半導体装置200に、トランジスタT208,T209,T211、抵抗R201を追加する必要があり、装置の小型化が妨げられる。また、ノードn203の電位は、クロック信号の電位がトランジスタT208により閾値落ちした電位となるため、十分な振幅が得られないという問題もある。
However, in the semiconductor device 210, it is necessary to add transistors T208, T209, T211 and a resistor R201 to the semiconductor device 200 shown in FIG. 48 in order to achieve low power consumption and stabilization of the potential of the node n203. Downsizing is impeded. Further, the potential of the node n203 has a problem that a sufficient amplitude cannot be obtained because the potential of the clock signal is a potential obtained by dropping the threshold value by the transistor T208.
本発明は、上記の問題点に鑑みてなされたものであり、その目的は、同一導電型のトランジスタからなり、簡易な構成により、低消費電力を図りつつ、電位レベルの低下を防いで安定した信号を出力することができる半導体装置、及びそれを備えた表示装置を提供することにある。
The present invention has been made in view of the above-described problems, and the object thereof is composed of transistors of the same conductivity type, and with a simple configuration, while reducing power consumption and preventing a decrease in potential level, is stable. It is an object to provide a semiconductor device capable of outputting a signal and a display device including the semiconductor device.
本発明に係る半導体装置は、上記課題を解決するために、
同一導電型の複数のトランジスタにより構成される半導体装置であって、
第1の端子にオン電圧が与えられ、制御端子に入力信号が入力される第1のトランジスタと、
第1の端子にオン電圧が与えられ、第2の端子が出力端子に接続され、制御端子が前記第1のトランジスタの第2の端子に接続される第2のトランジスタと、
前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量とを備え、
前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高く設定されており、
前記容量は、前記接続点の電位の変化に応じて容量値が変化するものであることを特徴としている。 In order to solve the above problems, a semiconductor device according to the present invention provides
A semiconductor device composed of a plurality of transistors of the same conductivity type,
A first transistor in which an on-voltage is applied to the first terminal and an input signal is input to the control terminal;
A second transistor having an on-voltage applied to the first terminal, a second terminal connected to the output terminal, and a control terminal connected to the second terminal of the first transistor;
A capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal for inputting a clock signal;
The frequency of the clock signal is set higher than the frequency of the output signal output from the output terminal,
The capacitance is characterized in that a capacitance value changes according to a change in potential at the connection point.
同一導電型の複数のトランジスタにより構成される半導体装置であって、
第1の端子にオン電圧が与えられ、制御端子に入力信号が入力される第1のトランジスタと、
第1の端子にオン電圧が与えられ、第2の端子が出力端子に接続され、制御端子が前記第1のトランジスタの第2の端子に接続される第2のトランジスタと、
前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量とを備え、
前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高く設定されており、
前記容量は、前記接続点の電位の変化に応じて容量値が変化するものであることを特徴としている。 In order to solve the above problems, a semiconductor device according to the present invention provides
A semiconductor device composed of a plurality of transistors of the same conductivity type,
A first transistor in which an on-voltage is applied to the first terminal and an input signal is input to the control terminal;
A second transistor having an on-voltage applied to the first terminal, a second terminal connected to the output terminal, and a control terminal connected to the second terminal of the first transistor;
A capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal for inputting a clock signal;
The frequency of the clock signal is set higher than the frequency of the output signal output from the output terminal,
The capacitance is characterized in that a capacitance value changes according to a change in potential at the connection point.
トランジスタは、第1の端子、第2の端子及び制御端子で構成され、制御端子に入力される制御信号により第1の端子及び第2の端子を導通し、所望の電位レベルの信号を出力する回路である。ここでの制御信号は、制御端子に与えたときにトランジスタをオン状態にする電圧(信号のレベル:VDD)を有し、制御端子に与えたときにトランジスタをオフ状態にする電圧(信号のレベル:VSS)を有する。
The transistor includes a first terminal, a second terminal, and a control terminal. The transistor conducts the first terminal and the second terminal by a control signal input to the control terminal, and outputs a signal having a desired potential level. Circuit. The control signal here has a voltage (signal level: VDD) that turns the transistor on when supplied to the control terminal, and a voltage (signal level) that turns the transistor off when supplied to the control terminal. : VSS).
ここで、従来の半導体装置100(図46)では、通常、上述したとおり、所望の電位レベルの信号を出力するトランジスタの制御端子に接続されるノードの電位は、オフリークなどの影響により次第に低下する。
Here, in the conventional semiconductor device 100 (FIG. 46), normally, as described above, the potential of the node connected to the control terminal of the transistor that outputs a signal of a desired potential level gradually decreases due to the influence of off-leakage or the like. .
そこで、本発明の半導体装置では、所望の電位レベルの信号を出力するトランジスタの制御端子に接続されるノード、すなわち第1のトランジスタ及び第2のトランジスタ同士の接続点(ノード)に、容量を介して、出力信号よりも高周波数のクロック信号が入力される構成としている。
Therefore, in the semiconductor device of the present invention, a node is connected to a control terminal of a transistor that outputs a signal having a desired potential level, that is, a connection point (node) between the first transistor and the second transistor via a capacitor. Thus, a clock signal having a frequency higher than that of the output signal is input.
この構成によれば、第1のトランジスタの閾値電圧をVthとすると、上記ノードの電位は、まずクロック信号及び容量によってα電位分突き上げられた後、オフリークなどにより例えばβ電位分下げられ、VDD-Vth+α-βになる。その後、クロック信号がローレベル(VSS)になると、ノードの電位は、VDD-Vth-βになるが、ここで入力信号がハイレベル(VDD)の場合には、ノードの電位は、VDD-Vthまで充電される。そして、クロック信号が再びハイレベルになると、ノードの電位は、再びVDD-Vth+αまで突き上げられる。
According to this configuration, assuming that the threshold voltage of the first transistor is Vth, the potential of the node is first increased by α potential by the clock signal and the capacitance, and then decreased by, for example, β potential by off-leakage or the like, and VDD− Vth + α−β. After that, when the clock signal becomes low level (VSS), the node potential becomes VDD−Vth−β. However, when the input signal is high level (VDD), the node potential becomes VDD−Vth. It is charged until. Then, when the clock signal becomes high level again, the potential of the node is pushed up to VDD−Vth + α again.
このように、本発明の半導体装置の構成によれば、出力信号よりも周波数の高いクロック信号の周期に応じて突き上げ動作が行われる。そのため、オフリークなどによりノードの電位が低下しても、突き上げ動作により、すぐに電位を回復させることができる。これにより、ノードの電位を、従来の構成よりも短い周期で高めることができるため、出力信号の電位レベルを安定させることができ、出力信号を受け取る後段の回路の動作を安定させることができる。
Thus, according to the configuration of the semiconductor device of the present invention, the push-up operation is performed according to the cycle of the clock signal having a frequency higher than that of the output signal. Therefore, even when the potential of the node decreases due to off-leakage or the like, the potential can be recovered immediately by the pushing-up operation. As a result, the potential of the node can be increased in a cycle shorter than that of the conventional configuration, so that the potential level of the output signal can be stabilized and the operation of the subsequent circuit that receives the output signal can be stabilized.
また、上記突き上げられたノードの電位(VDD-Vth+α)が、VDD+Vth(Vthは第2のトランジスタの閾値電圧とする)以上になるように、クロック信号の振幅及び容量を設定することにより、出力信号の電位レベルをVDDに保つことができる。
Further, by setting the amplitude and capacitance of the clock signal so that the potential of the pushed-up node (VDD−Vth + α) becomes equal to or higher than VDD + Vth (Vth is the threshold voltage of the second transistor), the output signal Can be maintained at VDD.
また、第2のトランジスタの制御端子に高電位の信号が入力されるため、出力信号は、低インピーダンスを保つことができ、ノイズに対しても強くなる。
Also, since a high-potential signal is input to the control terminal of the second transistor, the output signal can maintain a low impedance and is resistant to noise.
さらに、本発明の半導体装置では、容量は、ノードの電位の変化に応じて容量値が変化する構成を有している。そのため、例えば、容量が、ノードの電位の低下に伴って容量値が小さくなる一方、ノードの電位の上昇に伴って容量値が大きくなる構成である場合、ノードの電位がローレベル(VSS)の場合は容量値が小さくなるため、上記(3)式より、クロック端子の負荷容量を、従来の半導体装置200(図48)におけるクロック端子CKの負荷容量よりも小さくすることができる。これにより、本発明の半導体装置の消費電力を、従来の半導体装置よりも低減することができる。
Furthermore, in the semiconductor device of the present invention, the capacitance has a configuration in which the capacitance value changes in accordance with a change in the potential of the node. Therefore, for example, when the capacitance is configured such that the capacitance value decreases as the node potential decreases while the capacitance value increases as the node potential increases, the node potential is low level (VSS). In this case, since the capacitance value is small, the load capacitance of the clock terminal can be made smaller than the load capacitance of the clock terminal CK in the conventional semiconductor device 200 (FIG. 48) from the above equation (3). Thereby, the power consumption of the semiconductor device of the present invention can be reduced as compared with the conventional semiconductor device.
また、本発明の半導体装置では、図49に示す従来の半導体装置210におけるトランジスタT208及びT209、インバータ206、及び容量C201を、上記容量に置き換えることにより、半導体装置210の構成により奏する効果、すなわち低消費電力及びノードn203(本発明のノードn1に相当)の電位安定化を実現することができる。よって、従来の半導体装置210と比較して、回路構成を簡略することができる。
Further, in the semiconductor device of the present invention, by replacing the transistors T208 and T209, the inverter 206, and the capacitor C201 in the conventional semiconductor device 210 shown in FIG. Power consumption and potential stabilization of the node n203 (corresponding to the node n1 of the present invention) can be realized. Therefore, the circuit configuration can be simplified as compared with the conventional semiconductor device 210.
また、従来の半導体装置210では、クロック端子CKと容量C201とがトランジスタT208を介して接続されているため、ノードn203は、クロック信号の電位が閾値落ちした電位となる。これに対して、本発明の半導体装置では、トランジスタを介さずにクロック端子と容量とが接続されるため、上記閾値落ちすることがない。そのため、半導体装置の動作マージンを高めることができ、出力信号をより安定させることができる。
Further, in the conventional semiconductor device 210, since the clock terminal CK and the capacitor C201 are connected via the transistor T208, the potential of the clock signal drops to the potential at the node n203. In contrast, in the semiconductor device of the present invention, since the clock terminal and the capacitor are connected without a transistor, the threshold value does not drop. Therefore, the operation margin of the semiconductor device can be increased and the output signal can be further stabilized.
以上のように、本発明の半導体装置によれば、簡易な構成により、低消費電力を図りつつ、電位レベルの低下を防いで安定した信号を出力することができる。
As described above, according to the semiconductor device of the present invention, it is possible to output a stable signal with a simple configuration while reducing power consumption and preventing a decrease in potential level.
また、本発明に係る半導体装置は、上記課題を解決するために、
同一導電型の複数のトランジスタにより構成される半導体装置であって、
第1の端子にオン電圧が与えられ、制御端子に入力信号が入力される第1のトランジスタと、
第1の端子にオン電圧が与えられ、第2の端子が出力端子に接続され、制御端子が前記第1のトランジスタの第2の端子に接続される第2のトランジスタと、
前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量と、
第1の端子が前記接続点に接続され、制御端子にオン電圧が入力される第8のトランジスタと、
第1の端子が第8のトランジスタの第2の端子に接続され、第2の端子にオフ電圧が入力され、制御端子に制御信号が入力される第3のトランジスタを備え、
前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高く設定されており、
前記容量は、前記接続点の電位の変化に応じて容量値が変化するものであることを特徴としている。 In order to solve the above problems, a semiconductor device according to the present invention provides
A semiconductor device composed of a plurality of transistors of the same conductivity type,
A first transistor in which an on-voltage is applied to the first terminal and an input signal is input to the control terminal;
A second transistor having an on-voltage applied to the first terminal, a second terminal connected to the output terminal, and a control terminal connected to the second terminal of the first transistor;
A capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal for inputting a clock signal;
An eighth transistor having a first terminal connected to the connection point and an on-voltage input to the control terminal;
A third transistor having a first terminal connected to the second terminal of the eighth transistor, an off-voltage input to the second terminal, and a control signal input to the control terminal;
The frequency of the clock signal is set higher than the frequency of the output signal output from the output terminal,
The capacitance is characterized in that a capacitance value changes according to a change in potential at the connection point.
同一導電型の複数のトランジスタにより構成される半導体装置であって、
第1の端子にオン電圧が与えられ、制御端子に入力信号が入力される第1のトランジスタと、
第1の端子にオン電圧が与えられ、第2の端子が出力端子に接続され、制御端子が前記第1のトランジスタの第2の端子に接続される第2のトランジスタと、
前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量と、
第1の端子が前記接続点に接続され、制御端子にオン電圧が入力される第8のトランジスタと、
第1の端子が第8のトランジスタの第2の端子に接続され、第2の端子にオフ電圧が入力され、制御端子に制御信号が入力される第3のトランジスタを備え、
前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高く設定されており、
前記容量は、前記接続点の電位の変化に応じて容量値が変化するものであることを特徴としている。 In order to solve the above problems, a semiconductor device according to the present invention provides
A semiconductor device composed of a plurality of transistors of the same conductivity type,
A first transistor in which an on-voltage is applied to the first terminal and an input signal is input to the control terminal;
A second transistor having an on-voltage applied to the first terminal, a second terminal connected to the output terminal, and a control terminal connected to the second terminal of the first transistor;
A capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal for inputting a clock signal;
An eighth transistor having a first terminal connected to the connection point and an on-voltage input to the control terminal;
A third transistor having a first terminal connected to the second terminal of the eighth transistor, an off-voltage input to the second terminal, and a control signal input to the control terminal;
The frequency of the clock signal is set higher than the frequency of the output signal output from the output terminal,
The capacitance is characterized in that a capacitance value changes according to a change in potential at the connection point.
上記ノードの電位は、クロック信号により突き上げられるため、上記ノードに接続される各トランジスタには高電圧が印加される。そのため、トランジスタは、自身の耐圧を越えると破壊される危険性がある。
Since the potential of the node is pushed up by the clock signal, a high voltage is applied to each transistor connected to the node. Therefore, there is a risk that the transistor will be destroyed if it exceeds its withstand voltage.
そこで、上記半導体装置では、上記ノードと第3のトランジスタとの間に第8のトランジスタを備えている。これにより、詳細は後述するが、例えば第3のトランジスタにかかる電位を低下させることができるため、信頼性の高い回路を構成することができる。
Therefore, the semiconductor device includes an eighth transistor between the node and the third transistor. Accordingly, although details will be described later, for example, the potential applied to the third transistor can be lowered, so that a highly reliable circuit can be configured.
本発明に係る半導体装置は、以上のように、前記容量は、前記接続点の電位の変化に応じて容量値が変化するものである。したがって、同一導電型のトランジスタからなり、簡易な構成により、低消費電力を図りつつ、電位レベルの低下を防いで安定した信号を出力することができる半導体装置、及びそれを備えた表示装置を提供することができるという効果を奏する。
As described above, in the semiconductor device according to the present invention, the capacitance value of the capacitor changes according to the change in the potential at the connection point. Accordingly, a semiconductor device that includes transistors of the same conductivity type and can output a stable signal with a simple configuration while reducing power consumption and preventing a decrease in potential level, and a display device including the semiconductor device are provided. There is an effect that can be done.
本発明の実施の形態について図面に基づいて説明すると以下の通りである。
Embodiments of the present invention are described below with reference to the drawings.
本発明の半導体装置に相当するActive信号保持回路(以下、単に「回路」と表す)は、同一導電型、すなわち単極性のチャネル(nチャネル型又はpチャネル型)のトランジスタを用いて構成されている。以下に示す各実施の形態では、nチャネル型のトランジスタの構成を例に挙げて説明し、pチャネル型の構成については本欄の末尾に例示するにとどめ、詳細な説明は省略する。このトランジスタには、例えば、TFT、及びシリコン基板状に形成した電界効果トランジスタを使用することが可能である。
An Active signal holding circuit (hereinafter simply referred to as “circuit”) corresponding to the semiconductor device of the present invention is configured using transistors of the same conductivity type, that is, a unipolar channel (n-channel type or p-channel type). Yes. In each embodiment described below, the configuration of an n-channel transistor is described as an example, and the configuration of a p-channel transistor is only illustrated at the end of this column, and detailed description is omitted. As this transistor, for example, a TFT and a field effect transistor formed on a silicon substrate can be used.
〔実施の形態1〕
本実施の形態における回路10の構成について、以下に説明する。図1は回路10の構成を示す回路図であり、図2は回路10における各種信号の波形を示すタイミングチャートである。 [Embodiment 1]
The configuration of thecircuit 10 in this embodiment will be described below. FIG. 1 is a circuit diagram showing the configuration of the circuit 10, and FIG. 2 is a timing chart showing waveforms of various signals in the circuit 10.
本実施の形態における回路10の構成について、以下に説明する。図1は回路10の構成を示す回路図であり、図2は回路10における各種信号の波形を示すタイミングチャートである。 [Embodiment 1]
The configuration of the
回路10は、トランジスタT1(第1のトランジスタ)、トランジスタT2(第2のトランジスタ)、トランジスタT3(第3のトランジスタ)、及び容量TC1を備え、容量TC1の一端には、回路10の出力信号OUTよりも周波数の高いクロック信号CKが入力される構成である。以下、ゲート端子(制御端子)に与えたときにトランジスタをオン状態にする電圧(信号のレベル)をオン電圧(オンレベル)といい、ゲート端子に与えたときにトランジスタをオフ状態にする電圧(信号のレベル)をオフ電圧(オフレベル)という。nチャネル型トランジスタでは、ハイ電圧がオン電圧(ハイレベルがオンレベル)、ロー電圧がオフ電圧(ローレベルがオフレベル)になり、pチャネル型トランジスタではその逆になる。
The circuit 10 includes a transistor T1 (first transistor), a transistor T2 (second transistor), a transistor T3 (third transistor), and a capacitor TC1, and the output signal OUT of the circuit 10 is connected to one end of the capacitor TC1. In this configuration, a clock signal CK having a higher frequency is input. Hereinafter, the voltage (signal level) that turns the transistor on when applied to the gate terminal (control terminal) is referred to as on-voltage (on level), and the voltage that turns the transistor off when applied to the gate terminal (signal level). Signal level) is called off voltage (off level). In an n-channel transistor, a high voltage is an on voltage (high level is an on level), a low voltage is an off voltage (low level is an off level), and vice versa for a p-channel transistor.
図1に示すように、トランジスタT1は、ドレイン端子(第1の端子)が電源VDDに接続され、ゲート端子(制御端子)が入力端子INに接続される。トランジスタT2は、ドレイン端子(第1の端子)が電源VDDに接続され、ゲート端子(制御端子)がトランジスタT1のソース端子に接続され、ソース端子(第2の端子)が出力端子OUTに接続される。トランジスタT3は、ドレイン端子(第1の端子)がトランジスタT1のソース端子及びトランジスタT2のゲート端子に接続される。容量TC1は、トランジスタで構成されており、ゲート端子(制御端子)が、トランジスタT1のソース端子とトランジスタT3のドレイン端子とトランジスタT2の制御端子とに接続され、ドレイン端子(第1の端子)及びソース端子(第2の端子)がクロック端子CKに接続される。以下、必要に応じて、容量TC1をトランジスタTC1ともいう。トランジスタT1とT2とT3とTC1との接続点をノードn1とする。
As shown in FIG. 1, the transistor T1 has a drain terminal (first terminal) connected to the power supply VDD and a gate terminal (control terminal) connected to the input terminal IN. The transistor T2 has a drain terminal (first terminal) connected to the power supply VDD, a gate terminal (control terminal) connected to the source terminal of the transistor T1, and a source terminal (second terminal) connected to the output terminal OUT. The The transistor T3 has a drain terminal (first terminal) connected to the source terminal of the transistor T1 and the gate terminal of the transistor T2. The capacitor TC1 includes a transistor, and a gate terminal (control terminal) is connected to a source terminal of the transistor T1, a drain terminal of the transistor T3, and a control terminal of the transistor T2, and a drain terminal (first terminal) and A source terminal (second terminal) is connected to the clock terminal CK. Hereinafter, the capacitor TC1 is also referred to as a transistor TC1 as necessary. A connection point between the transistors T1, T2, T3, and TC1 is a node n1.
ここで、容量TC1の具体的な構成について説明する。図3の(a)は、容量TC1の構成を示す図であり、(b)は、容量TC1における印加電圧と容量値の関係を示すグラフである。また、図4の(a)は、従来の容量C201の構成を示す図であり、(b)は、容量C201における印加電圧と容量値の関係を示すグラフである。
Here, a specific configuration of the capacitor TC1 will be described. 3A is a diagram illustrating a configuration of the capacitor TC1, and FIG. 3B is a graph illustrating a relationship between an applied voltage and a capacitance value in the capacitor TC1. 4A is a diagram illustrating a configuration of a conventional capacitor C201, and FIG. 4B is a graph illustrating a relationship between an applied voltage and a capacitance value in the capacitor C201.
従来の容量C201は、図4の(a)に示すように、シリコンSiにN+をドープして、Siを低抵抗にしてゲート電極GEとSiとの間に容量を形成している。この容量C201の場合、図4の(b)に示すように、ゲート電極及びSi間の電圧に関わらず略一定の容量値となる。
In the conventional capacitor C201, as shown in FIG. 4A, silicon Si is doped with N +, Si is made low resistance, and a capacitor is formed between the gate electrode GE and Si. In the case of this capacitance C201, as shown in FIG. 4B, the capacitance value is substantially constant regardless of the voltage between the gate electrode and Si.
これに対して本実施の形態に係る回路10の容量TC1は、図3の(a)に示すように、Si(シリコン層)にN+がドープされていない。これにより、容量TC1はMOS容量として機能し、ゲート電極GEに電圧(オン電圧)が印加されない限り容量として機能しない。すなわち、トランジスタとして機能する容量TC1は、ノードn1の電位がクロック端子CKの電位よりも低い場合にオフ状態になる一方、ノードn1の電位がクロック端子CKの電位以上(オン電圧)である場合にオン状態になる。なお、図3の(b)において、Vonは、上記オン電圧を示す。
On the other hand, in the capacitor TC1 of the circuit 10 according to the present embodiment, Si (silicon layer) is not doped with N + as shown in FIG. Thereby, the capacitor TC1 functions as a MOS capacitor and does not function as a capacitor unless a voltage (ON voltage) is applied to the gate electrode GE. That is, the capacitor TC1 functioning as a transistor is turned off when the potential of the node n1 is lower than the potential of the clock terminal CK, while the potential of the node n1 is equal to or higher than the potential of the clock terminal CK (on voltage). Turns on. In FIG. 3B, Von indicates the ON voltage.
よって、容量TC1は、図3の(b)に示すように、ゲート電極及びSi間の電圧に応じて容量値が変化する。すなわち、ゲート電極に印加される電圧が大きくなるほど、容量TC1の容量値が大きくなる。より具体的には、ノードn1の電位の低下に伴って容量TC1の容量値が小さくなる一方、ノードn1の電位の上昇に伴って容量TC1の容量値が大きくなる。
Therefore, the capacitance value of the capacitor TC1 changes according to the voltage between the gate electrode and Si, as shown in FIG. That is, as the voltage applied to the gate electrode increases, the capacitance value of the capacitor TC1 increases. More specifically, the capacitance value of the capacitor TC1 decreases as the potential of the node n1 decreases, while the capacitance value of the capacitor TC1 increases as the potential of the node n1 increases.
次に、図2を用いて、回路10の動作とともに具体的に説明する。なお、回路10の内部の信号及び入出力信号の電位は、特に断わらない限り、ハイレベルのときはVDD、ローレベルのときはVSS(ゼロ)とする。
Next, the operation of the circuit 10 will be described in detail with reference to FIG. Note that the potentials of the internal signals and input / output signals of the circuit 10 are VDD when high and VSS (zero) when low unless otherwise specified.
入力信号INがハイレベル(VDD)になると、トランジスタT1がオン状態になり、ノードn1の電位は、トランジスタT1の閾値電圧をVthとするとき、VDD-Vthになる(プリチャージ動作)。ノードn1の電位が上昇すると、トランジスタT2及び容量TC1(トランジスタTC1)はオン状態になる。入力信号INが、ハイレベルからローレベル(VSS)になると、ノードn1はハイレベルの電荷を保持したままフローティング状態になる。この状態で、クロック信号CKがハイレベルになると、クロック信号CKにより、ノードn1の電位は、α電位分突き上げられ、VDD-Vth+αになる。この電位がVDD+Vthを超える場合は、トランジスタT2は、出力端子OUTにVDDを出力する。
When the input signal IN becomes high level (VDD), the transistor T1 is turned on, and the potential of the node n1 becomes VDD−Vth when the threshold voltage of the transistor T1 is Vth (precharge operation). When the potential of the node n1 rises, the transistor T2 and the capacitor TC1 (transistor TC1) are turned on. When the input signal IN changes from a high level to a low level (VSS), the node n1 is in a floating state while retaining a high level charge. In this state, when the clock signal CK becomes high level, the potential of the node n1 is increased by the α potential by the clock signal CK and becomes VDD−Vth + α. When this potential exceeds VDD + Vth, the transistor T2 outputs VDD to the output terminal OUT.
このように、ノードn1の電位がクロック信号CKによって突き上げられているときは、トランジスタT2のゲート端子には高電位の信号が入力されるため、トランジスタT2から出力端子OUTにVDDの電位レベルの信号が出力されるとともに、出力インピーダンスが低くなる(図2のt期間)。
Thus, when the potential of the node n1 is pushed up by the clock signal CK, a high potential signal is input to the gate terminal of the transistor T2, and thus a signal having a potential level of VDD from the transistor T2 to the output terminal OUT. Is output and the output impedance is lowered (period t in FIG. 2).
その後、STOP信号がハイレベルになると、トランジスタT3がオン状態になり、ノードn1の電荷がディスチャージされ、トランジスタT2及びトランジスタTC1はオフ状態になる。これにより、出力端子OUTはフローティング状態になる(図2の斜線部分)。
Thereafter, when the STOP signal becomes high level, the transistor T3 is turned on, the charge of the node n1 is discharged, and the transistor T2 and the transistor TC1 are turned off. As a result, the output terminal OUT enters a floating state (shaded area in FIG. 2).
このように、STOP信号がハイレベルになるまでの期間において、トランジスタT3などのオフリークなどの影響により電位が低下し、クロック信号CKにより突き上げられたノードn1の電位がVDD+Vthより低くなるまでの間は、出力端子OUTからは、正常にVDDが出力される。
Thus, in the period until the STOP signal becomes high level, the potential decreases due to the influence of off-leakage or the like of the transistor T3 and the like until the potential of the node n1 pushed up by the clock signal CK becomes lower than VDD + Vth. The VDD is normally output from the output terminal OUT.
また、図2に示すように、ハイレベルの入力信号INが入力され、ノードn1がプリチャージされるときに、クロック信号CKによる突き上げによりノードn1の電位が上がるため、出力信号OUTの立ち上がりが速くなり(点線で囲った部分)、駆動速度を向上させることができる。
Further, as shown in FIG. 2, when the high-level input signal IN is input and the node n1 is precharged, the potential of the node n1 rises due to the rise by the clock signal CK, so that the output signal OUT rises quickly. As a result, the driving speed can be improved.
ここで、回路10がオフリーク等の影響を受けた場合の動作について、従来の構成と比較して説明する。図5は、回路10において、オフリーク等の影響を受けた場合の各種信号の波形を示すタイミングチャートである。図6は、図46に示す従来の回路100において、オフリーク等の影響を受けた場合の各種信号の波形を示すタイミングチャートである。
Here, the operation when the circuit 10 is affected by off-leakage or the like will be described in comparison with the conventional configuration. FIG. 5 is a timing chart showing waveforms of various signals when the circuit 10 is affected by off-leakage or the like. FIG. 6 is a timing chart showing waveforms of various signals when the conventional circuit 100 shown in FIG. 46 is affected by off-leakage or the like.
図46に示す従来の回路100において、ノードN1にリーク経路がある場合、クロック信号φがハイレベルを継続している間、ノードN1の電位が次第に低下する。このとき、再び入力信号INがハイレベルになったとしても、ノードN1の電位がVDD-Vth以下にまでリークした場合には、VDD-Vthまでしか充電されない(図6の点線で囲った部分)。そのため、出力信号OUTは高インピーダンスの状態になり、ノイズに弱くなる。さらに、出力信号OUTにリークがある場合には、ノードN2の電位は、再充電されても、VDD-2×Vthまでしか上昇しないため、出力端子OUTに接続される後段の回路の動作マージンが低下する。
In the conventional circuit 100 shown in FIG. 46, when the node N1 has a leak path, the potential of the node N1 gradually decreases while the clock signal φ continues to be at a high level. At this time, even if the input signal IN becomes high level again, if the potential of the node N1 leaks to VDD−Vth or less, only the voltage of VDD−Vth is charged (the portion surrounded by the dotted line in FIG. 6). . Therefore, the output signal OUT is in a high impedance state and becomes weak against noise. Further, when the output signal OUT has a leak, the potential of the node N2 rises only to VDD−2 × Vth even if it is recharged, so that the operation margin of the subsequent circuit connected to the output terminal OUT is reduced. descend.
これに対して、本実施の形態の回路10では、ノードn1の電位がクロック信号CKによって突き上げられた後、リークによってβ電位分下がると、VDD-Vth+α-βになる。その後、クロック信号CKがローレベルになると、ノードn1の電位は、VDD-Vth-βになるが、ここで入力信号INがハイレベルになっていれば、ノードn1の電位は、VDD-Vthまで充電される。そのため、再びクロック信号CKがハイレベルになると、ノードn1の電位は、VDD-Vth+αまで突き上げられる(図5の点線で囲った部分)。これにより、出力信号OUTにリーク等があっても、安定してVDDの電位を保持することができる。よって、出力信号OUTに接続される後段の回路は安定した動作を得ることができる。また、トランジスタT2のゲート端子に高電位の信号が入力されるため、出力信号OUTは、低インピーダンスを保つことができ、ノイズに対しても強くなる。
On the other hand, in the circuit 10 of the present embodiment, when the potential of the node n1 is pushed up by the clock signal CK and then drops by β potential due to leakage, VDD−Vth + α−β is obtained. After that, when the clock signal CK becomes low level, the potential of the node n1 becomes VDD−Vth−β. However, if the input signal IN is high level here, the potential of the node n1 reaches VDD−Vth. Charged. Therefore, when the clock signal CK becomes high level again, the potential of the node n1 is pushed up to VDD−Vth + α (portion surrounded by a dotted line in FIG. 5). Thus, even when there is a leak in the output signal OUT, the potential of VDD can be stably held. Therefore, a subsequent circuit connected to the output signal OUT can obtain a stable operation. In addition, since a high-potential signal is input to the gate terminal of the transistor T2, the output signal OUT can maintain a low impedance and is resistant to noise.
このように、本実施の形態の回路10の構成によれば、出力信号OUTにリーク等が生じたとしても、ノードn1の電位を再びVDD-Vthまで充電することができる。そして、クロック信号CKの周波数が出力信号の周波数よりも高く設定されているため、STOP信号がハイレベルになるまでの間に、ノードn1の電位を、再びクロック信号CKによる突き上げ動作によりVDD+Vth以上に突き上げることができる。これにより、VDDを出力できる期間、及び低インピーダンスの期間を従来よりも長く確保することができる。
Thus, according to the configuration of the circuit 10 of the present embodiment, even if a leak or the like occurs in the output signal OUT, the potential of the node n1 can be charged again to VDD−Vth. Since the frequency of the clock signal CK is set higher than the frequency of the output signal, the potential of the node n1 is again increased to VDD + Vth or more by the push-up operation by the clock signal CK until the STOP signal becomes high level. Can be pushed up. Accordingly, it is possible to ensure a period during which VDD can be output and a period during which the impedance is low as compared with the conventional case.
また、本実施の形態の回路10は、容量TC1の一端に出力信号OUTよりも高周波数のクロック信号CKが入力され、容量TC1の他端が、ハイレベルの信号をフローティング状態で保持するノードn1に接続されている構成である。この構成を有することにより、電位レベルを維持し、ノイズの影響を受け難い安定した信号を出力することが可能になる。
In the circuit 10 of the present embodiment, the clock signal CK having a frequency higher than that of the output signal OUT is input to one end of the capacitor TC1, and the other end of the capacitor TC1 holds the high-level signal in a floating state. It is the structure connected to. With this configuration, it is possible to maintain a potential level and output a stable signal that is hardly affected by noise.
ここで、従来の回路200(図48)では、クロック端子CKの容量(クロック負荷)が大きいため、消費電力が増大するという問題がある。具体的には、ノードn201の電位がハイレベル(VDD-Vth以上)の場合、つまり、STOP信号がローレベルでノードn201がフローティング状態になっている場合は、上記(1)式(クロック端子CKの容量=1/(1/C201+1/Ctr))で示されるように、クロック端子CKの容量は大きくならないため、消費電力が増大することはないが、ノードn201の電位がローレベル(VSS)の場合、つまり、STOP信号がハイレベルでノードn201がフローティング状態でない場合は、上記(3)式(クロック端子CKの容量=C201)で示されるように、クロック端子CKの容量が大きくなるため、消費電力が増大する。
Here, the conventional circuit 200 (FIG. 48) has a problem that the power consumption increases because the capacity (clock load) of the clock terminal CK is large. Specifically, when the potential of the node n201 is high level (VDD−Vth or more), that is, when the STOP signal is low level and the node n201 is in a floating state, the above equation (1) (clock terminal CK The capacity of the clock terminal CK does not increase, so that power consumption does not increase, but the potential of the node n201 is low level (VSS), as shown by the following equation: 1 / (1 / C201 + 1 / Ctr)) In this case, that is, when the STOP signal is at a high level and the node n201 is not in the floating state, the capacity of the clock terminal CK increases as shown in the above equation (3) (capacitance of the clock terminal CK = C201). Power increases.
これに対して、本実施の形態に係る回路10の容量TC1は、トランジスタで構成されMOS容量として機能するため、ノードn1の電位がクロック信号CKの電位よりも高い場合はオン容量として機能し、ノードn1の電位がクロック信号CKの電位よりも低い場合はオフ容量として機能する。
On the other hand, since the capacitor TC1 of the circuit 10 according to the present embodiment is configured by a transistor and functions as a MOS capacitor, the capacitor TC1 functions as an on-capacitance when the potential of the node n1 is higher than the potential of the clock signal CK. When the potential of the node n1 is lower than the potential of the clock signal CK, it functions as an off-capacitance.
よって、ノードn1の電位がローレベル(VSS)の場合、つまり、STOP信号がハイレベルでノードn1がフローティング状態でない場合は、図3の(b)に示すように容量値は小さくなる。そのため、上記(3)式より、クロック端子CKの負荷容量を、上記従来の回路200におけるクロック端子CKの負荷容量よりも小さくすることができる。これにより、本実施の形態に係る回路10の消費電力を、従来の回路200よりも低減することができる。
Therefore, when the potential of the node n1 is low level (VSS), that is, when the STOP signal is high level and the node n1 is not in a floating state, the capacitance value becomes small as shown in FIG. Therefore, from the above equation (3), the load capacity of the clock terminal CK can be made smaller than the load capacity of the clock terminal CK in the conventional circuit 200. Thereby, the power consumption of the circuit 10 according to the present embodiment can be reduced as compared with the conventional circuit 200.
また、本実施の形態に係る回路10では、図49に示す従来の回路210におけるトランジスタT208及びT209、インバータ206、及び容量C201を、図1に示す容量TC1に置き換えることにより、回路210の構成により奏する効果、すなわち低消費電力及びノードn203(本回路10のクロック端子CKと容量TC1との間に相当)の電位安定化を実現することができる。よって、従来の回路210と比較して、回路構成を簡略することができるため、回路10及びこれを組み込む装置の小型化を実現することができる。また、従来の回路210では、クロック端子CKと容量C201とがトランジスタT208を介して接続されているため、ノードn203は、クロック信号の電位が閾値落ちした電位となる。これに対して、本実施の形態に係る回路10では、トランジスタを介さずにクロック端子CKと容量TC1とが接続されるため、上記閾値落ちすることがない。そのため、回路10の動作マージンを高めることができ、出力信号をより安定させることができる。
In the circuit 10 according to the present embodiment, the transistors T208 and T209, the inverter 206, and the capacitor C201 in the conventional circuit 210 shown in FIG. 49 are replaced with the capacitor TC1 shown in FIG. Thus, it is possible to achieve the effect, that is, low power consumption and potential stabilization of the node n203 (corresponding to between the clock terminal CK and the capacitor TC1 of the circuit 10). Therefore, since the circuit configuration can be simplified as compared with the conventional circuit 210, the circuit 10 and a device incorporating the circuit 10 can be downsized. In the conventional circuit 210, since the clock terminal CK and the capacitor C201 are connected via the transistor T208, the node n203 has a potential at which the potential of the clock signal drops. On the other hand, in the circuit 10 according to the present embodiment, since the clock terminal CK and the capacitor TC1 are connected without using a transistor, the threshold value does not drop. Therefore, the operation margin of the circuit 10 can be increased and the output signal can be further stabilized.
ここで、クロック信号CKの振幅、及び容量TC1は、突き上げられたノードn1の電位(VDD-Vth+α)が、VDD+Vth以上になるように設定される。
Here, the amplitude of the clock signal CK and the capacitor TC1 are set so that the potential (VDD−Vth + α) of the pushed-up node n1 is equal to or higher than VDD + Vth.
なお、図1に示す回路10の構成では、トランジスタT2のドレイン端子が電源VDDに接続されているが、これに限定されるものではなく、例えば、ドレイン端子にクロック信号φが入力される構成であってもよい。図7は、トランジスタT2のドレイン端子にクロック信号φが入力される場合の回路10の構成における各種信号の波形を示すタイミングチャートである。この構成においても、図1に示す回路10の構成と同様、トランジスタT2に入力される信号の電位レベルを保持したまま出力することができるため、トランジスタT2がオン状態になると、クロック信号φの電位レベルが出力される。
In the configuration of the circuit 10 shown in FIG. 1, the drain terminal of the transistor T2 is connected to the power supply VDD. However, the present invention is not limited to this. For example, the clock signal φ is input to the drain terminal. There may be. FIG. 7 is a timing chart showing waveforms of various signals in the configuration of the circuit 10 when the clock signal φ is input to the drain terminal of the transistor T2. In this configuration as well, as in the configuration of the circuit 10 shown in FIG. 1, since the potential level of the signal input to the transistor T2 can be output, the potential of the clock signal φ is turned on when the transistor T2 is turned on. The level is output.
〔実施の形態2〕
本実施の形態における回路20の構成について、以下に説明する。図8は回路20の構成を示す回路図であり、図9は回路20における各種信号の波形を示すタイミングチャートである。なお、説明の便宜上、上記実施の形態1において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。 [Embodiment 2]
The configuration of thecircuit 20 in the present embodiment will be described below. FIG. 8 is a circuit diagram showing the configuration of the circuit 20, and FIG. 9 is a timing chart showing waveforms of various signals in the circuit 20. For convenience of explanation, members having the same functions as those shown in the first embodiment are given the same reference numerals, and explanation thereof is omitted. In addition, the terms defined in Embodiment 1 are used in accordance with the definitions in this embodiment unless otherwise specified.
本実施の形態における回路20の構成について、以下に説明する。図8は回路20の構成を示す回路図であり、図9は回路20における各種信号の波形を示すタイミングチャートである。なお、説明の便宜上、上記実施の形態1において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。 [Embodiment 2]
The configuration of the
ここで、実施の形態1に示す回路10の構成(図1)では、STOP信号がハイレベルになり、ノードn1がローレベルの電位になるタイミングで、出力端子OUTはフローティング状態(図2の斜線部分)になるため、出力信号OUTはノイズ等の影響を受け易くなる。
Here, in the configuration of the circuit 10 shown in FIG. 1 (FIG. 1), the output terminal OUT is in a floating state (hatched line in FIG. 2) at the timing when the STOP signal becomes high level and the node n1 becomes low level potential. Therefore, the output signal OUT is easily affected by noise or the like.
そこで、このフローティング状態を解消すべく、本実施の形態の回路20では、回路10において、さらにトランジスタT4(第4のトランジスタ)を備えている。図8に示すように、トランジスタT4は、ドレイン端子(第1の端子)がトランジスタT2のソース端子及び出力端子OUTに接続され、ソース端子(第2の端子)が電源VSSに接続され、ゲート端子(制御端子)がトランジスタT3のゲート端子に接続される。トランジスタT3,T4のそれぞれのゲート端子は、入力端子IN2に接続され、トランジスタT3及びT4のオン/オフを制御する入力信号IN2が入力される。トランジスタT2とT4と出力端子OUTとの接続点をノードn2とする。
Therefore, in order to eliminate this floating state, the circuit 20 of this embodiment further includes a transistor T4 (fourth transistor) in the circuit 10. As shown in FIG. 8, the transistor T4 has a drain terminal (first terminal) connected to the source terminal and the output terminal OUT of the transistor T2, a source terminal (second terminal) connected to the power source VSS, and a gate terminal. (Control terminal) is connected to the gate terminal of the transistor T3. The gate terminals of the transistors T3 and T4 are connected to the input terminal IN2, and an input signal IN2 for controlling on / off of the transistors T3 and T4 is input. A connection point between the transistors T2 and T4 and the output terminal OUT is a node n2.
上記の構成によれば、図9に示すように、ノードn1がローレベルの電位になるタイミングで、ハイレベルの入力信号IN2を入力することにより、トランジスタT3及びT4がオン状態になるため、ノードn1の電荷が確実にディスチャージされるとともに、出力信号OUTの電位レベルをローレベル(VSS)に固定することができる。
According to the above configuration, as shown in FIG. 9, the transistors T3 and T4 are turned on by inputting the high-level input signal IN2 at the timing when the node n1 becomes the low-level potential. The electric charge of n1 can be surely discharged and the potential level of the output signal OUT can be fixed to the low level (VSS).
なお、トランジスタT4のゲート端子に入力する信号は、特に限定されるものではなく、出力信号OUTの電位レベルをローレベル(VSS)に固定できればよく、他の制御信号を入力してもよい。
Note that the signal input to the gate terminal of the transistor T4 is not particularly limited as long as the potential level of the output signal OUT can be fixed to a low level (VSS), and another control signal may be input.
〔実施の形態3〕
本実施の形態における回路30の構成について、以下に説明する。図10は回路30の構成を示す回路図である。なお、説明の便宜上、上記実施の形態1及び2において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1及び2において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。 [Embodiment 3]
The configuration of thecircuit 30 in the present embodiment will be described below. FIG. 10 is a circuit diagram showing the configuration of the circuit 30. For convenience of explanation, members having the same functions as those shown in the first and second embodiments are given the same reference numerals, and explanation thereof is omitted. Further, the terms defined in Embodiments 1 and 2 are used in accordance with the definitions in this embodiment unless otherwise specified.
本実施の形態における回路30の構成について、以下に説明する。図10は回路30の構成を示す回路図である。なお、説明の便宜上、上記実施の形態1及び2において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1及び2において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。 [Embodiment 3]
The configuration of the
本実施の形態の回路30では、図8に示す回路20において、さらに、リフレッシュ機能の役割を担うトランジスタT5(第5のトランジスタ)を備えている。図10に示すように、トランジスタT5は、ドレイン端子(第1の端子)が電源VDDに接続され、ソース端子(第2の端子)がノードn1に接続され、ゲート端子(制御端子)がノードn2に接続される。
The circuit 30 of the present embodiment further includes a transistor T5 (fifth transistor) that plays a role of a refresh function in the circuit 20 shown in FIG. As shown in FIG. 10, the transistor T5 has a drain terminal (first terminal) connected to the power supply VDD, a source terminal (second terminal) connected to the node n1, and a gate terminal (control terminal) connected to the node n2. Connected to.
上記の構成によれば、出力信号OUTがトランジスタT5のゲート端子に入力されるため、出力信号OUTがハイレベルを出力している間は、入力信号IN1がローレベルになりトランジスタT1がオフ状態である場合に、ノードn1の電位が、オフリーク等により低下したとしても、トランジスタT5により再びVDD-Vthまでチャージされる(リフレッシュ動作)。これにより、クロック信号CKがハイレベルを出力している期間中は、ノードn1の電位を、VDD-Vth+αまで突き上げることができる。そのため、出力信号OUTは、安定してVDDを出力することができ、低周波動作時に誤動作することなく、正常に動作することができる。
According to the above configuration, since the output signal OUT is input to the gate terminal of the transistor T5, the input signal IN1 is at a low level and the transistor T1 is off while the output signal OUT is at a high level. In some cases, even if the potential of the node n1 is decreased due to off-leakage or the like, the transistor T5 is charged again to VDD-Vth (refresh operation). Thus, the potential of the node n1 can be pushed up to VDD−Vth + α during the period when the clock signal CK outputs a high level. Therefore, the output signal OUT can stably output VDD, and can operate normally without malfunction during low frequency operation.
〔実施の形態4〕
本実施の形態における回路40の構成について、以下に説明する。図11は回路40の構成を示す回路図であり、図12は回路40における各種信号の波形を示すタイミングチャートである。なお、説明の便宜上、上記実施の形態1~3において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1~3において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。 [Embodiment 4]
The configuration of thecircuit 40 in the present embodiment will be described below. 11 is a circuit diagram showing the configuration of the circuit 40, and FIG. 12 is a timing chart showing waveforms of various signals in the circuit 40. As shown in FIG. For convenience of explanation, members having the same functions as those shown in the first to third embodiments are given the same reference numerals, and explanation thereof is omitted. Further, the terms defined in Embodiments 1 to 3 are used in accordance with the definitions in this embodiment unless otherwise specified.
本実施の形態における回路40の構成について、以下に説明する。図11は回路40の構成を示す回路図であり、図12は回路40における各種信号の波形を示すタイミングチャートである。なお、説明の便宜上、上記実施の形態1~3において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1~3において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。 [Embodiment 4]
The configuration of the
本実施の形態の回路40では、図8に示す回路20において、さらに、入力端子IN1とトランジスタT1との間にトランジスタT6(第6のトランジスタ)を備えている。図11に示すように、トランジスタT6は、ドレイン端子(第1の端子)が入力端子IN1に接続され、ソース端子(第2の端子)がトランジスタT1のゲート端子に接続され、ゲート端子(制御端子)にイネーブル信号ENが入力される構成である。また、トランジスタT6のソース端子は、トランジスタT2とT4との接続点(ノードn2)にも接続される。
In the circuit 40 of the present embodiment, in the circuit 20 shown in FIG. 8, a transistor T6 (sixth transistor) is further provided between the input terminal IN1 and the transistor T1. As shown in FIG. 11, the transistor T6 has a drain terminal (first terminal) connected to the input terminal IN1, a source terminal (second terminal) connected to the gate terminal of the transistor T1, and a gate terminal (control terminal). ) Is input with an enable signal EN. The source terminal of the transistor T6 is also connected to a connection point (node n2) between the transistors T2 and T4.
上記の構成によれば、イネーブル信号ENが一旦ハイレベルになると、その後、イネーブル信号ENがローレベルになっても、出力信号OUTがハイレベルであれば、トランジスタT1のゲート端子に、常にハイレベルの信号を入力することができる。これにより、回路40をアクティブ状態で保持し続けることができる。
According to the above configuration, once the enable signal EN becomes high level, even if the enable signal EN subsequently becomes low level, if the output signal OUT is high level, the gate terminal of the transistor T1 is always high level. Can be input. Thereby, the circuit 40 can be kept in the active state.
また、出力端子OUT及びトランジスタT1のゲート端子が互いに接続されているので、出力信号OUTがハイレベルを出力している間は、ノードn1の電位がVDD-Vth以下になると、トランジスタT1はオン状態になる。なお、ノードn1の電位がVDD-Vthよりも高くなると、トランジスタT1はオフ状態になり、ノードn1はフローティング状態になる。
In addition, since the output terminal OUT and the gate terminal of the transistor T1 are connected to each other, the transistor T1 is turned on when the potential of the node n1 is equal to or lower than VDD−Vth while the output signal OUT is at a high level. become. Note that when the potential of the node n1 becomes higher than VDD−Vth, the transistor T1 is turned off and the node n1 is in a floating state.
これにより、出力信号OUTがハイレベルを出力している間は、ノードn1の電位は、オフリーク等により低下したとしても、トランジスタT1により再びVDD-Vthまでチャージされる(リフレッシュ動作)。これにより、クロック信号CKがハイレベルを出力している期間中は、ノードn1の電位を、VDD-Vth+αまで突き上げることができるため、出力信号OUTは、安定してVDDを出力することができ、低周波動作時に誤動作することなく、正常に動作することができる。
As a result, while the output signal OUT is outputting a high level, the potential of the node n1 is charged again to VDD-Vth by the transistor T1 (refresh operation) even if the potential of the node n1 decreases due to off-leakage or the like. Thus, during the period when the clock signal CK is outputting a high level, the potential of the node n1 can be pushed up to VDD−Vth + α, so that the output signal OUT can stably output VDD, It can operate normally without malfunction during low frequency operation.
ここで、トランジスタT6は、上述した図11の構成に限定されるものではなく、他の構成としては、例えば、入力信号IN1がローレベルの電位になるとソース端子がフローティングになる構成、具体的には、図13に示す構成及び図14に示す構成が挙げられる。図13に示す構成では、トランジスタT6のドレイン端子に電源VDDが接続され、ゲート端子に入力信号IN1が入力される。また、図14に示す構成では、トランジスタT6のドレイン端子及びゲート端子に入力信号IN1が入力される。これらの構成は、他の信号(例えばイネーブル信号EN)によらず、一旦、入力信号IN1がアクティブ(ハイレベル)になると、その後入力信号IN1がローレベルになっても、アクティブ状態を保持し続ける構成に好適である。
Here, the transistor T6 is not limited to the configuration of FIG. 11 described above, and other configurations include, for example, a configuration in which the source terminal floats when the input signal IN1 becomes a low level potential. Includes the configuration shown in FIG. 13 and the configuration shown in FIG. 14. In the configuration shown in FIG. 13, the power supply VDD is connected to the drain terminal of the transistor T6, and the input signal IN1 is input to the gate terminal. In the configuration shown in FIG. 14, the input signal IN1 is input to the drain terminal and the gate terminal of the transistor T6. In these configurations, once the input signal IN1 becomes active (high level) regardless of other signals (for example, the enable signal EN), the active state is maintained even if the input signal IN1 subsequently becomes low level. Suitable for configuration.
〔実施の形態5〕
本実施の形態における回路50の構成について、以下に説明する。図15は回路50の構成を示す回路図である。なお、説明の便宜上、上記実施の形態1~4において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1~4において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。 [Embodiment 5]
The configuration of thecircuit 50 in the present embodiment will be described below. FIG. 15 is a circuit diagram showing a configuration of the circuit 50. For convenience of explanation, members having the same functions as those shown in Embodiments 1 to 4 are given the same reference numerals, and explanation thereof is omitted. Further, the terms defined in Embodiments 1 to 4 are used in accordance with the definitions in this embodiment unless otherwise specified.
本実施の形態における回路50の構成について、以下に説明する。図15は回路50の構成を示す回路図である。なお、説明の便宜上、上記実施の形態1~4において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1~4において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。 [Embodiment 5]
The configuration of the
ここで、実施の形態1~4に示す回路の構成では、初期状態で入力信号INがローレベルの場合に、容量TC1に蓄積されている電荷量が分からず、ノードn1の電位が不定状態になっている。そのため、初期状態が不安定になるという問題がある。
Here, in the circuit configurations shown in Embodiments 1 to 4, when the input signal IN is at a low level in the initial state, the amount of charge accumulated in the capacitor TC1 is not known, and the potential of the node n1 is in an indefinite state. It has become. Therefore, there is a problem that the initial state becomes unstable.
そこで、初期状態を安定させるべく、本実施の形態の回路50では、実施の形態1~4に示す各回路において、さらにトランジスタT7(第7のトランジスタ)を備えている。図15に示す回路50は、図1に示した回路10に対してトランジスタT7を備えた構成であり、トランジスタT7は、ゲート端子(制御端子)に初期化信号INIが入力され、ソース端子(第2の端子)が電源VSSに接続され、ドレイン端子(第1の端子)がノードn1に接続される。
Therefore, in order to stabilize the initial state, the circuit 50 of the present embodiment further includes a transistor T7 (seventh transistor) in each of the circuits shown in the first to fourth embodiments. A circuit 50 illustrated in FIG. 15 includes a transistor T7 in addition to the circuit 10 illustrated in FIG. 1, and the transistor T7 receives an initialization signal INI at a gate terminal (control terminal) and a source terminal (first terminal). 2 terminal) is connected to the power supply VSS, and the drain terminal (first terminal) is connected to the node n1.
上記の構成によれば、初期状態において、ハイレベルの初期化信号INIを入力することにより、ノードn1の電位をVSSに固定することができるため、初期状態を安定させることができる。
According to the above configuration, by inputting the high-level initialization signal INI in the initial state, the potential of the node n1 can be fixed to VSS, so that the initial state can be stabilized.
なお、実施の形態2~4の各回路に対しても、上記と同様に、トランジスタT7を備えることにより、初期状態を安定させることができる。
It should be noted that the initial state can be stabilized for each circuit of the second to fourth embodiments by providing the transistor T7 as described above.
〔実施の形態6〕
本実施の形態における回路60の構成について、以下に説明する。図16は回路60の構成を示す回路図であり、なお、説明の便宜上、上記実施の形態1~5において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1~5において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。 [Embodiment 6]
The configuration of thecircuit 60 in this embodiment will be described below. FIG. 16 is a circuit diagram showing the configuration of the circuit 60. For convenience of explanation, members having the same functions as those shown in the first to fifth embodiments are given the same reference numerals, and the explanation thereof is omitted. Is omitted. Further, the terms defined in Embodiments 1 to 5 are used in accordance with the definitions in this embodiment unless otherwise specified.
本実施の形態における回路60の構成について、以下に説明する。図16は回路60の構成を示す回路図であり、なお、説明の便宜上、上記実施の形態1~5において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1~5において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。 [Embodiment 6]
The configuration of the
ここで、実施の形態1~5に示す回路の構成では、ノードn1がクロック信号CKの突き上げ動作により、VDD-Vth+αという高い電位になるため、ノードn1に接続されるトランジスタは、ゲート-ソース間、ゲート-ドレイン間、ソース-ドレイン間に高電圧が印加され、場合によってはトランジスタが、自身の耐圧を超え、破壊される危険性が生じる。
Here, in the circuit configurations described in Embodiments 1 to 5, since the node n1 is set to a high potential of VDD−Vth + α by the push-up operation of the clock signal CK, the transistor connected to the node n1 is connected between the gate and the source. A high voltage is applied between the gate and the drain and between the source and the drain. In some cases, the transistor exceeds its own withstand voltage, and there is a risk of being destroyed.
具体的には、回路10では、特にトランジスタT3のゲート-ドレイン間、ソース-ドレイン間に高電圧が印加される。入力信号INがVSSのとき、ノードn1の電位が突き上げられると、VDD-Vth+αとなるため、トランジスタT3について、ゲート-ドレイン間、及びソース-ドレイン間は、VDD-Vth+α-VSSという電圧になる。ここで、VDD=10V,VSS=-10V,α=15Vとすると、
VDD-Vth+α-VSS=35V-Vth
となる。これに対して、他のノードでは、VDDとVSSとの電位差20Vが印加される。このように、ノードn1に接続されるトランジスタには高電圧が印加される。 Specifically, in thecircuit 10, a high voltage is applied particularly between the gate and drain and between the source and drain of the transistor T3. When the potential of the node n1 is raised when the input signal IN is VSS, VDD−Vth + α is obtained. Therefore, the voltage between the gate and the drain and between the source and the drain of the transistor T3 is VDD−Vth + α−VSS. Here, if VDD = 10V, VSS = −10V, α = 15V,
VDD-Vth + α-VSS = 35V-Vth
It becomes. On the other hand, a potential difference of 20 V between VDD and VSS is applied to other nodes. Thus, a high voltage is applied to the transistor connected to the node n1.
VDD-Vth+α-VSS=35V-Vth
となる。これに対して、他のノードでは、VDDとVSSとの電位差20Vが印加される。このように、ノードn1に接続されるトランジスタには高電圧が印加される。 Specifically, in the
VDD-Vth + α-VSS = 35V-Vth
It becomes. On the other hand, a potential difference of 20 V between VDD and VSS is applied to other nodes. Thus, a high voltage is applied to the transistor connected to the node n1.
そこで、トランジスタの耐圧対策として、本実施の形態の回路60では、実施の形態1~5に示す各回路において、さらにトランジスタT8(第8のトランジスタ)を備えている。図16に示す回路60は、図1に示した回路10に対してトランジスタT8を備えた構成であり、トランジスタT8は、ゲート端子(制御端子)が電源VDDに接続され、ドレイン端子(第1の端子)がノードn1に接続され、ソース端子(第2の端子)がトランジスタT3のドレイン端子に接続される。トランジスタT3とT8との接続点を、ノードn4とする。
Therefore, as a countermeasure against the breakdown voltage of the transistor, the circuit 60 of this embodiment further includes a transistor T8 (eighth transistor) in each of the circuits shown in the first to fifth embodiments. A circuit 60 illustrated in FIG. 16 includes a transistor T8 in addition to the circuit 10 illustrated in FIG. 1. The transistor T8 includes a gate terminal (control terminal) connected to the power supply VDD and a drain terminal (first terminal). Terminal) is connected to the node n1, and the source terminal (second terminal) is connected to the drain terminal of the transistor T3. A connection point between the transistors T3 and T8 is a node n4.
上記の構成によれば、入力信号INがVSSの場合に、ノードn1の電位はVDD-Vth+αまで上昇するが、ノードn4はVDD-Vthまでしか上がらない。そのため、トランジスタT3について、ゲート-ドレイン間、及びソース-ドレイン間の電圧は、VDD-Vth-VSS=20V-Vthとなり、回路10の場合と比較して、α電位分、印加電圧が低くなる。
According to the above configuration, when the input signal IN is VSS, the potential of the node n1 rises to VDD−Vth + α, but the node n4 rises only to VDD−Vth. Therefore, the voltage between the gate and the drain and between the source and the drain of the transistor T3 is VDD−Vth−VSS = 20V−Vth, and the applied voltage is lower by the α potential than in the case of the circuit 10.
また、トランジスタT8のゲート-ドレイン間の電位は、α-Vth=15V-Vth、ゲート-ソース間の電位はVth、ソース-ドレイン間の電位はα=15Vとなり、何れも低電圧となる。
Further, the gate-drain potential of the transistor T8 is α-Vth = 15V-Vth, the gate-source potential is Vth, and the source-drain potential is α = 15V, both of which are low voltages.
これにより、クロック信号CKによりフローティング状態のノードn1の電位が突き上げられても、ノードn1に接続されるトランジスタにかかる電圧負荷を低減することができるため、信頼性の高い回路を構成することができる。
Accordingly, even when the potential of the node n1 in the floating state is raised by the clock signal CK, the voltage load applied to the transistor connected to the node n1 can be reduced, so that a highly reliable circuit can be configured. .
上述した本実施の形態の、トランジスタT8によりトランジスタの耐圧対策を図る構成は、上記実施の形態1~5に示した各回路において、同様に適用することができる。
The above-described configuration of the present embodiment in which the transistor T8 takes measures against the withstand voltage of the transistor can be similarly applied to each circuit shown in the first to fifth embodiments.
ここで、以上の実施の形態1~6に示した各回路では、トランジスタT1のドレイン端子が電源VDDに接続されている構成である。しかしながら、本発明の回路の構成はこれに限定されるものではなく、例えば、トランジスタT1のドレイン端子とゲート端子とが互いに接続される、いわゆるダイオード接続の構成であってもよい。図17~図22は、それぞれ、上述した回路10,20,30,40,50及び60において、トランジスタT1をダイオード接続した場合の回路11,21,31,41,51及び61の構成を示す回路図である。例えばトランジスタT1が回路10のような構成の場合には、トランジスタT3がオン状態で、入力端子INにローレベルが入力されている場合に、入力される信号にノイズが発生すると、トランジスタT1が瞬間的にオン状態となり、トランジスタT1及びトランジスタT3を介して電源VDDから電源VSSへ貫通電流が流れ、消費電流の増加もしくは誤動作の原因になるという問題が生じる。この点、上記ダイオード接続の構成によれば、トランジスタT1のゲート端子とドレイン端子が接続されているので、入力端子INにノイズが発生して、トランジスタT1がオン状態になったとしても、ソース-ドレイン間の電位差がノイズの電位分だけであり、ドレイン端子に電源VDDが接続されている場合と比べ、電位差が小さいため貫通電流が小さくなる。更に、トランジスタT3がオン状態になっているため、トランジスタT1がノイズによってオンしたとしても、トランジスタT3を介して、入力端子INのノイズによって変動した電位を電源VSSへ引っ張ることになり、トランジスタT1をオフする方向の作用が働く。そのため、ノイズの影響によるトランジスタT1の誤動作を防止することができる。
Here, in each of the circuits shown in the first to sixth embodiments, the drain terminal of the transistor T1 is connected to the power supply VDD. However, the configuration of the circuit of the present invention is not limited to this, and may be a so-called diode-connected configuration in which the drain terminal and the gate terminal of the transistor T1 are connected to each other. 17 to 22 are circuits showing the configurations of the circuits 11, 21, 31, 41, 51, and 61 when the transistor T1 is diode-connected in the circuits 10, 20, 30, 40, 50, and 60 described above, respectively. FIG. For example, in the case where the transistor T1 is configured as in the circuit 10, when the transistor T3 is in an on state and a low level is input to the input terminal IN and the noise is generated in the input signal, the transistor T1 is instantaneously As a result, there is a problem that a through current flows from the power supply VDD to the power supply VSS via the transistors T1 and T3, resulting in an increase in current consumption or a malfunction. In this respect, according to the diode-connected configuration, since the gate terminal and the drain terminal of the transistor T1 are connected, even if noise occurs in the input terminal IN and the transistor T1 is turned on, the source − The potential difference between the drains is only the potential of noise, and the through current is reduced because the potential difference is small compared to the case where the power supply VDD is connected to the drain terminal. Further, since the transistor T3 is in the on state, even if the transistor T1 is turned on due to noise, the potential changed by the noise of the input terminal IN is pulled to the power supply VSS via the transistor T3. The action of turning off works. Therefore, malfunction of the transistor T1 due to the influence of noise can be prevented.
図23は、上記トランジスタT1をダイオード接続した場合の各回路のうち、図17に示す回路11における各種信号の波形を示すタイミングチャートである。図23に示すように、図1に示す回路10の構成と同様、トランジスタT2のドレイン端子に入力される信号の電位レベルを保持したまま出力することができるため、トランジスタT2がオン状態になるとVDDが出力される。
FIG. 23 is a timing chart showing waveforms of various signals in the circuit 11 shown in FIG. 17 among the respective circuits when the transistor T1 is diode-connected. As shown in FIG. 23, as in the configuration of the circuit 10 shown in FIG. 1, since the potential level of the signal input to the drain terminal of the transistor T2 can be output and held, the VDD is applied when the transistor T2 is turned on. Is output.
また、上記実施の形態1において、トランジスタT2のドレイン端子にクロック信号φが入力される構成について説明したが、この構成についても、各実施の形態に示した回路に適用可能であり、トランジスタT2がオン状態になると、クロック信号φの電位レベルが出力される。
In the first embodiment, the configuration in which the clock signal φ is input to the drain terminal of the transistor T2 has been described. However, this configuration can also be applied to the circuit described in each embodiment. When turned on, the potential level of the clock signal φ is output.
ところで、本発明のActive信号保持回路に入力されるクロック信号CKは、図24に示すように、ハイレベルとローレベルとが周期的に繰り返される波形を示す。そして、上述したように、Active信号保持回路の出力信号OUTは、クロック信号CKがハイレベルのとき(期間T)に、特に低インピーダンスになる。そのため、クロック信号CKのデューティ比が図24に示すように、例えば50%である場合には、この50%の期間は、出力信号OUTが低インピーダンスになる。すなわち、クロック信号CKのデューティ比を調整することにより、出力信号OUTの低インピーダンスの期間を調整することができる。
Incidentally, as shown in FIG. 24, the clock signal CK input to the Active signal holding circuit of the present invention has a waveform in which a high level and a low level are periodically repeated. As described above, the output signal OUT of the Active signal holding circuit has a particularly low impedance when the clock signal CK is at a high level (period T). Therefore, as shown in FIG. 24, when the duty ratio of the clock signal CK is 50%, for example, the output signal OUT has a low impedance during this 50% period. That is, the low impedance period of the output signal OUT can be adjusted by adjusting the duty ratio of the clock signal CK.
ここで、クロック信号CKのデューティ比について、好ましい値について図1の構成を参考に検討する。上述したように、クロック信号CKがローレベルになると、オフリーク等によりノードn1の電位が低下し、VDD-Vth-βになる。ここで、このノードn1の電位がVDD-Vthに再充電されるまでの時間をtβ、1周期をT1とすると、ハイ期間:ロー期間=T1-tβ:tβが理想のデューティ比となる。また、クロック信号CKがハイレベルからローレベルに移行する期間は、クロックCK端子の負荷(容量と抵抗)の時定数で決まる。このクロック信号CKがハイレベルからローレベル(もしくはその逆)に移行する期間をtckとすると、このtckの期間をパルスの幅として持っていなければ、ノードn1の突き上げに対して、所望の突き上げ電圧αを得ることができないため、時定数の点から考えると、ハイ期間:ロー期間=T1-tck:tckが理想のデューティ比となる。
Here, a preferable value for the duty ratio of the clock signal CK is examined with reference to the configuration of FIG. As described above, when the clock signal CK becomes low level, the potential of the node n1 decreases due to off-leakage or the like, and becomes VDD−Vth−β. Here, assuming that the time until the potential of the node n1 is recharged to VDD−Vth is tβ and the period is T1, the high period: low period = T1−tβ: tβ is an ideal duty ratio. Further, the period during which the clock signal CK shifts from the high level to the low level is determined by the time constant of the load (capacitance and resistance) of the clock CK terminal. If the period during which the clock signal CK transitions from the high level to the low level (or vice versa) is tck, if the tck period is not included as the pulse width, the desired push-up voltage is increased with respect to the push-up of the node n1. Since α cannot be obtained, from the viewpoint of the time constant, the ideal duty ratio is high period: low period = T1−tck: tck.
実際の動作では、オフリーク等による再充電と、クロック信号CKのハイレベルからローレベルへの移行とは同時に行われる。そのため、両者を考慮して、クロック信号CKがローレベルの時に、VDD-Vthになるまでの時間をtβ′とすると、ハイ期間:ロー期間=T1-tβ′:tβ′が理想のデューティ比となる。これにより、正常に回路のアクティブ状態を保持しながら、トランジスタT2の出力インピーダンスを下げることが可能となる。
In actual operation, recharging due to off-leakage and the like and the transition of the clock signal CK from high level to low level are performed simultaneously. Therefore, if both are taken into consideration and the time until VDD−Vth is reached when the clock signal CK is at a low level is tβ ′, the high period: low period = T1−tβ ′: tβ ′ is the ideal duty ratio. Become. As a result, the output impedance of the transistor T2 can be lowered while normally maintaining the active state of the circuit.
上記考察によれば、クロック信号のデューティ比は、クロック信号CKの1周期のうちローレベルの期間が、クロック信号CKがハイレベルからローレベルに変化した後にノードn1の電位が飽和するまでの期間となるように設定されていることが好ましい。
According to the above consideration, the duty ratio of the clock signal is such that the low level period of one cycle of the clock signal CK is the period until the potential of the node n1 is saturated after the clock signal CK changes from the high level to the low level. It is preferable to set so as to be.
また、上記デューティ比は、トランジスタT2の低インピーダンスの期間がより長くなるように設定されていることが好ましい。
The duty ratio is preferably set so that the low impedance period of the transistor T2 is longer.
なお、クロック信号CKにおける遷移時間が50%を超える場合には、遷移後に確実にローレベルにならないまま、次のハイレベルへ遷移するため、突き上げ電圧αを得るためには、容量TC1をさらに大きくする(補正する)必要がでてくる。その影響により、回路規模が大きくなってしまう、または容量負荷が増大することにより、更に遷移時間が大きくなってしまうことになる。これを回避するため、一般的にクロック信号の周波数を遅くする、もしくはクロック信号CKの駆動する負荷が小さくなるように設計するなどして、遷移時間が50%以内になっていることから、トランジスタT2が低インピーダンスの期間をできるだけ長くなるように、上記デューティ比は50%以上であることが好ましい。
When the transition time in the clock signal CK exceeds 50%, the transition to the next high level is ensured without the low level after the transition. Therefore, in order to obtain the push-up voltage α, the capacitance TC1 is further increased. It is necessary to correct (correct). As a result, the circuit scale becomes large, or the capacity load increases, so that the transition time is further increased. In order to avoid this, the transition time is generally within 50% by slowing the frequency of the clock signal or by designing the load to be driven by the clock signal CK to be small. The duty ratio is preferably 50% or more so that the period of low impedance is as long as possible.
図24のクロック信号CK_Hは、ハイレベルの期間Tを長くした(デューティ比を大きくした)場合の波形の一例である。これにより、Active信号保持回路の出力信号OUTの低インピーダンスの期間を長くすることが可能になる。そして、低インピーダンスの期間を長くできるため、よりノイズに強くなり、また負荷をすばやく駆動することが可能になる。このように、クロック信号CKは、出力信号OUTよりも高周波数であるとともに、ハイレベル(アクティブ側の電位)の期間が長いことが好ましい。
The clock signal CK_H in FIG. 24 is an example of a waveform when the high-level period T is lengthened (duty ratio is increased). This makes it possible to lengthen the low impedance period of the output signal OUT of the Active signal holding circuit. And since the period of low impedance can be lengthened, it becomes more resistant to noise and the load can be driven quickly. Thus, it is preferable that the clock signal CK has a higher frequency than the output signal OUT and has a high level (active side potential) period.
なお、pチャネル型のトランジスタで構成する場合には、ロジックが全く逆となるため、同様の理由によりクロック信号CKのローレベル期間が長いことが好ましい。
Note that in the case of using a p-channel transistor, since the logic is completely reversed, it is preferable that the low level period of the clock signal CK is long for the same reason.
以上の実施の形態1~6に示した各回路(Active信号保持回路)は、特に液晶表示装置(表示装置)内において好適に使用することが可能である。図25は、液晶表示装置の全体構成を示すブロック図である。
Each circuit (Active signal holding circuit) shown in the first to sixth embodiments can be preferably used particularly in a liquid crystal display device (display device). FIG. 25 is a block diagram showing the overall configuration of the liquid crystal display device.
液晶表示装置151は、パネル152上に、画素領域153、ソースドライバ154、ゲート/CSドライバ155、BUFF/レベルシフタ回路156、電源回路157、および、端子158…を備えている。ソースドライバ154は出力回路154aを備えており、画素領域153の各ソースバスラインにデータ信号を出力する。ゲート/CSドライバ155は出力回路155aを備えており、画素領域153の各画素にソースドライバ154から出力されるデータ信号を書き込むためにゲートバスラインに選択信号を出力し、また、画素領域153の各画素への書き込み電位を大きくするためにCSバスラインにCS信号を出力する。出力回路154a及び155aは、入力信号から等倍のデータ信号を生成する低出力インピーダンスの増幅回路であるバッファからなる。BUFF/レベルシフタ回路156は、インバータなどの信号の減衰を補正する等倍の増幅回路及び信号の電源電圧レベルを変換するレベルシフタ回路などの、低出力インピーダンスの増幅回路であるバッファを備えており、これらバッファを通した信号をソースドライバ154およびゲートドライバ155に供給する。電源回路157は、ロジック回路用電源、データ信号の基準電圧、対向電圧、及び、補助容量電圧などを生成する。端子158…は、パネル152上の上述した各回路に信号及び電源を入力するための端子である。なお、液晶表示装置は、ソースドライバに代えて、デマルチプレクサにより構成されていてもよい。
The liquid crystal display device 151 includes a pixel region 153, a source driver 154, a gate / CS driver 155, a BUFF / level shifter circuit 156, a power supply circuit 157, and a terminal 158 on the panel 152. The source driver 154 includes an output circuit 154 a and outputs a data signal to each source bus line in the pixel region 153. The gate / CS driver 155 includes an output circuit 155 a, outputs a selection signal to the gate bus line to write a data signal output from the source driver 154 to each pixel in the pixel region 153, and In order to increase the write potential to each pixel, a CS signal is output to the CS bus line. The output circuits 154a and 155a are composed of a buffer which is an amplifier circuit with a low output impedance that generates a data signal of the same magnification from the input signal. The BUFF / level shifter circuit 156 includes buffers that are amplifier circuits with low output impedance, such as an equal magnification amplifier circuit that corrects signal attenuation such as an inverter, and a level shifter circuit that converts a power supply voltage level of the signal. The signal that has passed through the buffer is supplied to the source driver 154 and the gate driver 155. The power supply circuit 157 generates a power supply for a logic circuit, a reference voltage for a data signal, a counter voltage, an auxiliary capacitance voltage, and the like. Terminals 158... Are terminals for inputting signals and power to the above-described circuits on the panel 152. The liquid crystal display device may be configured by a demultiplexer instead of the source driver.
上記実施の形態1~6に示した各回路は、上記液晶表示装置151において、各部に適用することが可能であり、特に、CSドライバ内のスイッチ、バッファ回路、レベルシフタ回路、ソースドライバ(データ信号線駆動回路)及びゲートドライバ(走査信号線駆動回路)内のシフトレジスタに好適に利用することができる。また、共通電極駆動回路(COMドライバ)に適用することもできる。以下では、その一例として、CSドライバ内に設けられるメモリ回路に適用した例(実施例1)、バッファ回路及びレベルシフタ回路に適用した例(実施例2~4)、及びシフトレジスタに適用した例(実施例5)について説明する。
Each circuit shown in the first to sixth embodiments can be applied to each part in the liquid crystal display device 151, and in particular, a switch, a buffer circuit, a level shifter circuit, a source driver (data signal) in the CS driver. Line driver circuit) and a shift register in a gate driver (scanning signal line driver circuit). Further, the present invention can be applied to a common electrode driving circuit (COM driver). In the following, as an example, an example applied to a memory circuit provided in a CS driver (Example 1), an example applied to a buffer circuit and a level shifter circuit (Examples 2 to 4), and an example applied to a shift register (Example 1) Example 5) will be described.
〔実施例1〕
図26は、本実施例におけるCSドライバ内に設けられるメモリ回路1の構成を示すブロック図であり、図27は該メモリ回路1の回路図である。図28は、メモリ回路1における各種信号の波形を示すタイミングチャートである。メモリ回路1は、上記各実施の形態に示した2つの回路(Active信号保持回路)を含んで構成される。具体的には、メモリ回路1は、例えば、図1に示した一方の回路10(回路10bと表す)のSTOP端子と、他方の回路10(回路10aと表す)の出力端子OUTとが接続されることにより構成される。なお、メモリ回路は、少なくとも図1に示した回路10の構成を備えていればよく、本実施例のメモリ回路1では、回路10の構成に加えてトランジスタT4(図26ではトランジスタTa4及びTb4)が設けられ、図8に示した回路20の構成を含んでいる。 [Example 1]
FIG. 26 is a block diagram showing a configuration of thememory circuit 1 provided in the CS driver in the present embodiment, and FIG. 27 is a circuit diagram of the memory circuit 1. FIG. 28 is a timing chart showing waveforms of various signals in the memory circuit 1. The memory circuit 1 includes the two circuits (Active signal holding circuits) described in the above embodiments. Specifically, in the memory circuit 1, for example, the STOP terminal of one circuit 10 (denoted as the circuit 10b) shown in FIG. 1 and the output terminal OUT of the other circuit 10 (denoted as the circuit 10a) are connected. It is constituted by. The memory circuit only needs to have at least the configuration of the circuit 10 shown in FIG. 1. In the memory circuit 1 of this embodiment, in addition to the configuration of the circuit 10, the transistor T4 (transistors Ta4 and Tb4 in FIG. 26). And includes the configuration of the circuit 20 shown in FIG.
図26は、本実施例におけるCSドライバ内に設けられるメモリ回路1の構成を示すブロック図であり、図27は該メモリ回路1の回路図である。図28は、メモリ回路1における各種信号の波形を示すタイミングチャートである。メモリ回路1は、上記各実施の形態に示した2つの回路(Active信号保持回路)を含んで構成される。具体的には、メモリ回路1は、例えば、図1に示した一方の回路10(回路10bと表す)のSTOP端子と、他方の回路10(回路10aと表す)の出力端子OUTとが接続されることにより構成される。なお、メモリ回路は、少なくとも図1に示した回路10の構成を備えていればよく、本実施例のメモリ回路1では、回路10の構成に加えてトランジスタT4(図26ではトランジスタTa4及びTb4)が設けられ、図8に示した回路20の構成を含んでいる。 [Example 1]
FIG. 26 is a block diagram showing a configuration of the
次に、メモリ回路1の動作について説明する。ここでは、イネーブル信号ENがハイレベルのときに、ハイレベルの入力信号INが回路10aに入力され、ローレベルの入力信号INB(INの反転信号)が、回路10bに入力される場合を例に挙げて説明する。
Next, the operation of the memory circuit 1 will be described. In this example, when the enable signal EN is at a high level, a high-level input signal IN is input to the circuit 10a, and a low-level input signal INB (an inverted signal of IN) is input to the circuit 10b. I will give you a description.
ハイレベルの信号が入力された回路10aはアクティブ状態になり、ノードna1には、クロック信号が入力されている間、電荷が保持される。そのため、回路10aからは、上記各実施の形態で説明したとおり、VDDの出力信号OUTが出力される。そして、この出力信号OUTは、他方の回路10bのSTOP端子(図26)に入力される。
The circuit 10a to which a high-level signal is input is in an active state, and the node na1 holds charges while the clock signal is input. Therefore, the output signal OUT of VDD is output from the circuit 10a as described in the above embodiments. The output signal OUT is input to the STOP terminal (FIG. 26) of the other circuit 10b.
VDDの信号がSTOP端子に入力される回路10bは、非アクティブ状態になり、トランジスタTb4からVSSが出力される。INとINBは、互いの極性が逆転しているため、一方がVDDを出力しているときには他方はVSSを出力することになる。これにより、クロック信号CKが入力されている間は、次のイネーブル信号ENがハイレベルになるまで、回路10a及び10bの電位が保持されることになる。
The circuit 10b in which the VDD signal is input to the STOP terminal becomes inactive, and VSS is output from the transistor Tb4. Since IN and INB have opposite polarities, when one outputs VDD, the other outputs VSS. Thus, while the clock signal CK is being input, the potentials of the circuits 10a and 10b are held until the next enable signal EN becomes high level.
なお、図26のメモリ回路1では、入力信号INの反転信号INBは外部から入力される構成であるが、これに限定されるものではなく、他の構成として例えば、図29及び図30に示すように、メモリ回路1内部において、インバータ回路を構成し、入力信号INから反転信号INBを生成する構成であってもよい。図29は抵抗R1及びトランジスタT11により構成されるインバータを示し、図30はブートストラップ回路により構成されるインバータを示している。これらの構成によれば、入力信号INがハイレベル(VDD)のときは、ローレベル(VSS)の信号が反転信号INBとして出力され、入力信号INがローレベル(VSS)のときは、ハイレベル(VDD)の信号が反転信号INBとして出力される。
In the memory circuit 1 of FIG. 26, the inverted signal INB of the input signal IN is input from the outside. However, the configuration is not limited to this, and other configurations are shown in FIGS. 29 and 30, for example. As described above, the inverter circuit may be configured in the memory circuit 1 to generate the inverted signal INB from the input signal IN. FIG. 29 shows an inverter constituted by a resistor R1 and a transistor T11, and FIG. 30 shows an inverter constituted by a bootstrap circuit. According to these configurations, when the input signal IN is at a high level (VDD), a low level (VSS) signal is output as the inverted signal INB, and when the input signal IN is at a low level (VSS), the high level is output. The signal (VDD) is output as the inverted signal INB.
また、図26のメモリ回路1において、例えば初期状態を安定させるべく、上記実施の形態5において示したトランジスタT7(図15)を、回路10a及び10bのそれぞれに備えていてもよい。回路10aのトランジスタTa7、及び回路10bのトランジスタTb7は、ゲート端子に初期化信号INIが入力され、それぞれのドレイン端子がノードna1及びノードnb1のそれぞれに接続され、それぞれのソース端子が電源VSS及び電源VDDのそれぞれに接続される。これにより、初期状態において、ハイレベルの初期化信号INIを入力することにより、初期状態を安定させることができる。
In the memory circuit 1 of FIG. 26, for example, the transistor T7 (FIG. 15) shown in the fifth embodiment may be provided in each of the circuits 10a and 10b in order to stabilize the initial state. In the transistor Ta7 of the circuit 10a and the transistor Tb7 of the circuit 10b, the initialization signal INI is input to the gate terminal, the respective drain terminals are connected to the node na1 and the node nb1, and the respective source terminals are the power supply VSS and the power supply Connected to each of VDD. Thus, the initial state can be stabilized by inputting the high-level initialization signal INI in the initial state.
なお、メモリ回路1は、上記実施の形態において説明したリフレッシュ機能を有しているため、低周波駆動でも正常に値を保持することが可能である。
Note that, since the memory circuit 1 has the refresh function described in the above embodiment, it is possible to normally hold a value even at low frequency driving.
本実施例では、上記実施の形態2の回路20により構成したメモリ回路1について説明したが、他の実施の形態における回路(例えば回路30,40又は50)により構成してもよい。これらの構成においても、同様の効果を得ることができる。
In this example, the memory circuit 1 configured by the circuit 20 of the second embodiment has been described. However, the memory circuit 1 according to another embodiment (for example, the circuit 30, 40, or 50) may be configured. In these configurations, the same effect can be obtained.
〔実施例2〕
図31は、本実施例におけるバッファ回路2の構成を示すブロック図であり、図32は、該バッファ回路2の回路図である。バッファ回路2は、上記各実施の形態に示した回路(Active信号保持回路)を含んで構成される。具体的には、バッファ回路2は、少なくとも図1に示した回路10の構成を備えていればよく、本実施例のバッファ回路2では、回路10の構成に加えてトランジスタT4が設けられ、図8に示した回路20の構成を含んでいる。 [Example 2]
FIG. 31 is a block diagram showing the configuration of thebuffer circuit 2 in the present embodiment, and FIG. 32 is a circuit diagram of the buffer circuit 2. The buffer circuit 2 includes the circuit (Active signal holding circuit) shown in each of the above embodiments. Specifically, the buffer circuit 2 only needs to have at least the configuration of the circuit 10 shown in FIG. 1. In the buffer circuit 2 of this embodiment, a transistor T4 is provided in addition to the configuration of the circuit 10, and FIG. 8 includes the configuration of the circuit 20 shown in FIG.
図31は、本実施例におけるバッファ回路2の構成を示すブロック図であり、図32は、該バッファ回路2の回路図である。バッファ回路2は、上記各実施の形態に示した回路(Active信号保持回路)を含んで構成される。具体的には、バッファ回路2は、少なくとも図1に示した回路10の構成を備えていればよく、本実施例のバッファ回路2では、回路10の構成に加えてトランジスタT4が設けられ、図8に示した回路20の構成を含んでいる。 [Example 2]
FIG. 31 is a block diagram showing the configuration of the
ここで、回路10に入力される信号INBを生成するインバータは、抵抗R1とトランジスタT11とにより構成されている。そのため、インバータの入力信号INがハイレベルの場合には、電源VDDから電源VSSに定常的な電流(貫通電流)が流れ、消費電力が増大してしまう。そこで、消費電力を低減するために、抵抗Rを高抵抗に構成することが考えられるが、この場合には、駆動能力が低下するという問題、及びノイズに対して弱くなるという新たな問題が生じる。
Here, the inverter that generates the signal INB input to the circuit 10 is composed of a resistor R1 and a transistor T11. Therefore, when the input signal IN of the inverter is at a high level, a steady current (through current) flows from the power supply VDD to the power supply VSS, and power consumption increases. Therefore, in order to reduce power consumption, it is conceivable to configure the resistor R to have a high resistance. However, in this case, there arises a problem that the drive capability is lowered and a new problem that the resistance becomes weak against noise. .
この点、本実施例のバッファ回路2では、インバータの出力端子INBが、回路10のトランジスタT1のゲート端子にのみ接続されるため、負荷が非常に小さくなる。そのため、インバータの駆動能力が低下しても(抵抗R1を高抵抗にしても)、すばやくトランジスタT1のゲート端子の負荷を駆動することができるため、高速動作が可能であると共に、回路10の動作によりバッファ回路2自体の駆動能力を高めることができる。よって、上記の構成によれば、低消費電力で駆動能力の高いバッファ回路を構成することができる。
In this regard, in the buffer circuit 2 of the present embodiment, since the output terminal INB of the inverter is connected only to the gate terminal of the transistor T1 of the circuit 10, the load becomes very small. Therefore, even if the drive capability of the inverter is reduced (even if the resistor R1 is set to a high resistance), the load at the gate terminal of the transistor T1 can be driven quickly, so that high-speed operation is possible and operation of the circuit 10 As a result, the driving capability of the buffer circuit 2 itself can be increased. Therefore, according to the above configuration, a buffer circuit with low power consumption and high driving capability can be configured.
なお、本実施例では、上記実施の形態2の回路20により構成したバッファ回路2について説明したが、他の実施の形態における回路(例えば回路30,40又は50)により構成してもよい。これらの構成においても、同様の効果を得ることができる。
In addition, although the buffer circuit 2 comprised by the circuit 20 of the said Embodiment 2 was demonstrated in the present Example, you may comprise by the circuit (for example, circuit 30, 40 or 50) in other embodiment. In these configurations, the same effect can be obtained.
また、本実施例のバッファ回路2において、入力信号INの電圧がVDD/VSS以外の電圧で入力される場合(例えば、High電圧がVDDよりも小さく、Low電圧がVSSの場合)には、レベルシフタ回路として機能する。
In the buffer circuit 2 of this embodiment, when the voltage of the input signal IN is input with a voltage other than VDD / VSS (for example, when the High voltage is lower than VDD and the Low voltage is VSS), the level shifter Functions as a circuit.
また、上記バッファ回路及びレベルシフタ回路は、図33及び図34に示すように、上記インバータが、ブートストラップ回路により構成されていてもよい。この構成においても、入力信号INがハイレベルの場合には、トランジスタT12及びT13を通して電源VDDから電源VSSに定常的な電流(貫通電流)が流れ、消費電力が増大してしまう。そこで、消費電力を低減するために、トランジスタT12及びT13のサイズを小さくすることが考えられるが、この場合には、抵抗を用いたインバータと同様、駆動能力が低下するという問題、及びノイズに対して弱くなるという新たな問題が生じる。
In the buffer circuit and the level shifter circuit, as shown in FIGS. 33 and 34, the inverter may be constituted by a bootstrap circuit. Also in this configuration, when the input signal IN is at a high level, a steady current (through current) flows from the power supply VDD to the power supply VSS through the transistors T12 and T13, and power consumption increases. Therefore, in order to reduce power consumption, it is conceivable to reduce the size of the transistors T12 and T13. In this case, however, the problem is that the driving capability is reduced, as in the case of an inverter using resistors, and noise. A new problem of weakening.
この点、図33及び図34に示すバッファ回路及びレベルシフタ回路では、インバータの出力端子INBが、回路10のトランジスタT1のゲート端子にのみ接続されるため、上述の抵抗を用いたインバータにより構成されるバッファと同様の効果が得られる。
In this regard, in the buffer circuit and the level shifter circuit shown in FIGS. 33 and 34, since the output terminal INB of the inverter is connected only to the gate terminal of the transistor T1 of the circuit 10, it is configured by the inverter using the above-described resistor. The same effect as the buffer can be obtained.
〔実施例3〕
次に、バッファ回路の他の構成例について説明する。図35は、本実施例におけるバッファ回路3の構成を示す回路図である。バッファ回路3は、図29に示したインバータと、図8に示した回路20を変形した構成とを含んでいる。具体的には、図8に示す回路20において、トランジスタT3が省略され、トランジスタT1は、ゲート端子が電源VDDに接続され、ドレイン端子がインバータの出力端子INBに接続される。また、トランジスタT3のゲート端子はインバータの入力端子INに接続される。 Example 3
Next, another configuration example of the buffer circuit will be described. FIG. 35 is a circuit diagram showing a configuration of thebuffer circuit 3 in the present embodiment. The buffer circuit 3 includes the inverter shown in FIG. 29 and a configuration obtained by modifying the circuit 20 shown in FIG. Specifically, in the circuit 20 shown in FIG. 8, the transistor T3 is omitted, and the transistor T1 has a gate terminal connected to the power supply VDD and a drain terminal connected to the output terminal INB of the inverter. The gate terminal of the transistor T3 is connected to the input terminal IN of the inverter.
次に、バッファ回路の他の構成例について説明する。図35は、本実施例におけるバッファ回路3の構成を示す回路図である。バッファ回路3は、図29に示したインバータと、図8に示した回路20を変形した構成とを含んでいる。具体的には、図8に示す回路20において、トランジスタT3が省略され、トランジスタT1は、ゲート端子が電源VDDに接続され、ドレイン端子がインバータの出力端子INBに接続される。また、トランジスタT3のゲート端子はインバータの入力端子INに接続される。 Example 3
Next, another configuration example of the buffer circuit will be described. FIG. 35 is a circuit diagram showing a configuration of the
ここで、本実施例のバッファ回路3の動作について説明する。
Here, the operation of the buffer circuit 3 of this embodiment will be described.
まず、インバータの入力信号INがローレベルの場合、反転信号INBはVDDとなる。VDDの反転信号INBがトランジスタT1に入力されると、ノードn1の電位は、VDD-Vthまで充電され、クロック信号CKによる突き上げ動作により、ノードn1の電位は、VDD-Vth+αまで上がる。ノードn1は、トランジスタT2のゲート端子に接続されているため、出力信号OUTBの電位は、閾値落ちのないVDDとなる。
First, when the input signal IN of the inverter is at a low level, the inverted signal INB becomes VDD. When the inverted signal INB of VDD is input to the transistor T1, the potential of the node n1 is charged to VDD−Vth, and the potential of the node n1 rises to VDD−Vth + α by the push-up operation by the clock signal CK. Since the node n1 is connected to the gate terminal of the transistor T2, the potential of the output signal OUTB is VDD with no threshold drop.
次に、インバータの入力信号INがハイレベルになると、反転信号INBはVSSとなり、ノードn1の電位はVSSまでディスチャージされる。このとき、入力信号INは、ハイレベルであるため、トランジスタT3はオン状態になり、出力信号OUTBの電位はVSSとなる。
Next, when the input signal IN of the inverter becomes high level, the inverted signal INB becomes VSS, and the potential of the node n1 is discharged to VSS. At this time, since the input signal IN is at a high level, the transistor T3 is turned on, and the potential of the output signal OUTB becomes VSS.
この構成によれば、ノードn1の電位がクロック信号CKの突き上げ動作により高電位になっているときは、トランジスタT2が低インピーダンスになるため、ノイズに強くまた、負荷をすばやく駆動することができる。
According to this configuration, when the potential of the node n1 is high due to the push-up operation of the clock signal CK, the transistor T2 has low impedance, so that it is resistant to noise and can drive the load quickly.
また、ノードn1がリークにより電荷が抜ける場合においても、ノードn1の電位がVDD-Vthよりも低くなると、トランジスタT1がオン状態となり再充電されるため、低周波動作時の誤動作に対するマージンを確保することができる。
Even when the node n1 is discharged due to leakage, if the potential of the node n1 becomes lower than VDD−Vth, the transistor T1 is turned on and recharged, so that a margin for malfunction during low frequency operation is ensured. be able to.
また、抵抗R1を高抵抗にしても、この端子が充電する負荷はトランジスタT1及びT2の寄生容量と容量TC1とだけであるため、高速駆動が可能になるとともに、低消費電力化を図ることができる。
Even if the resistance R1 is made high, the load charged by this terminal is only the parasitic capacitances of the transistors T1 and T2 and the capacitance TC1, so that high-speed driving is possible and low power consumption can be achieved. it can.
さらに、上記実施例2のバッファ回路2の構成と比べて、ノードn1をディスチャージするトランジスタT3が不要になるため、回路規模の縮小化を図ることができる。
Furthermore, as compared with the configuration of the buffer circuit 2 of the second embodiment, the transistor T3 for discharging the node n1 is not necessary, so that the circuit scale can be reduced.
なお、本実施例のバッファ回路3においても、入力信号INの電圧がVDD/VSS以外の電圧で入力される場合(例えば、High電圧がVDDよりも小さく、Low電圧がVSSの場合)には、レベルシフタ回路として機能する。
Also in the buffer circuit 3 of the present embodiment, when the voltage of the input signal IN is input with a voltage other than VDD / VSS (for example, when the High voltage is lower than VDD and the Low voltage is VSS), Functions as a level shifter circuit.
また、上記バッファ回路及びレベルシフタ回路は、上記実施例2と同様、上記インバータが、ブートストラップ回路により構成されていてもよい。図36は、ブートストラップ回路により構成されたインバータを備えるバッファ回路の構成を示す回路図である。
Further, in the buffer circuit and the level shifter circuit, the inverter may be constituted by a bootstrap circuit as in the second embodiment. FIG. 36 is a circuit diagram showing a configuration of a buffer circuit including an inverter configured by a bootstrap circuit.
なお、実施例2のバッファ回路2は、入力信号INがDC信号の場合でも、正常に動作することが可能である。
Note that the buffer circuit 2 of the second embodiment can operate normally even when the input signal IN is a DC signal.
また、実施例3のバッファ3は、入力信号INがDC信号の場合でも、オフリークによりトランジスタT12のゲート端子の電圧はVDD-Vthとなる。そのため、インバータの出力端子の電圧は、VDD-2×Vthとなるため、ノードn1はVDD-2×Vthとなる。クロック信号CKの突き上げによりノードn1の電位はVDD―2×Vth+αとなるが、これがVDD+Vthより大きくなるように容量TC1を設定しておけば、入力信号INがDC信号の場合でも、正常に動作することが可能である。
In the buffer 3 of the third embodiment, even when the input signal IN is a DC signal, the voltage at the gate terminal of the transistor T12 becomes VDD−Vth due to off-leakage. Therefore, since the voltage at the output terminal of the inverter is VDD-2 × Vth, the node n1 is VDD-2 × Vth. Although the potential of the node n1 becomes VDD−2 × Vth + α due to the rising of the clock signal CK, if the capacitor TC1 is set so that it becomes larger than VDD + Vth, it operates normally even when the input signal IN is a DC signal. It is possible.
〔実施例4〕
さらに、バッファ回路の他の構成例について説明する。図37は、本実施例におけるバッファ回路4の構成を示すブロック図であり、図38は、該バッファ回路4の回路図である。バッファ回路4は、図29に示したインバータと、図1に示した回路10とを含んで構成されている。具体的には、図38に示すように、インバータの出力端子INBが、トランジスタT1のゲート端子と、バッファ回路4の出力端子OUTBとに接続され、トランジスタT3のゲート端子がインバータの入力端子INに接続される。 Example 4
Furthermore, another configuration example of the buffer circuit will be described. FIG. 37 is a block diagram showing a configuration of thebuffer circuit 4 in the present embodiment, and FIG. 38 is a circuit diagram of the buffer circuit 4. The buffer circuit 4 includes the inverter shown in FIG. 29 and the circuit 10 shown in FIG. Specifically, as shown in FIG. 38, the output terminal INB of the inverter is connected to the gate terminal of the transistor T1 and the output terminal OUTB of the buffer circuit 4, and the gate terminal of the transistor T3 is connected to the input terminal IN of the inverter. Connected.
さらに、バッファ回路の他の構成例について説明する。図37は、本実施例におけるバッファ回路4の構成を示すブロック図であり、図38は、該バッファ回路4の回路図である。バッファ回路4は、図29に示したインバータと、図1に示した回路10とを含んで構成されている。具体的には、図38に示すように、インバータの出力端子INBが、トランジスタT1のゲート端子と、バッファ回路4の出力端子OUTBとに接続され、トランジスタT3のゲート端子がインバータの入力端子INに接続される。 Example 4
Furthermore, another configuration example of the buffer circuit will be described. FIG. 37 is a block diagram showing a configuration of the
本実施例のバッファ回路4によれば、インバータの入力信号INがローレベルの場合、反転信号INBは高抵抗R1から出力されるため、高インピーダンスのVDDとなるが、回路10の出力信号(トランジスタT2の出力信号)によって、出力信号OUTBは低インピーダンスのVDDを得ることができる。
According to the buffer circuit 4 of the present embodiment, when the input signal IN of the inverter is at a low level, the inverted signal INB is output from the high resistance R1, and thus becomes the high impedance VDD, but the output signal of the circuit 10 (transistor With the output signal T2), the output signal OUTB can obtain a low impedance VDD.
なお、バッファ回路4においては、出力端子INBとOUTBとが互いに接続されているため、クロック信号CKが停止した場合でも、閾値落ちしないVDDの電位の信号を出力することが可能とある。
In the buffer circuit 4, since the output terminals INB and OUTB are connected to each other, even when the clock signal CK is stopped, it is possible to output a signal having a potential of VDD that does not drop the threshold value.
また、回路10の代わりに他の実施の形態に示した回路を用いていも同様の効果を得ることできる。
Further, the same effect can be obtained even when the circuit shown in another embodiment is used instead of the circuit 10.
なお、本実施例のバッファ回路4においても、入力信号INの電圧がVDD/VSS以外の電圧で入力される場合(例えば、High電圧がVDDよりも小さく、Low電圧がVSSの場合)には、レベルシフタ回路として機能する。
Also in the buffer circuit 4 of this embodiment, when the voltage of the input signal IN is input with a voltage other than VDD / VSS (for example, when the High voltage is lower than VDD and the Low voltage is VSS), Functions as a level shifter circuit.
また、本実施例のバッファ回路4は、実施例2、3のバッファ回路2、3と同様に、入力信号INがDC信号の場合でも、正常に動作することが可能である。
The buffer circuit 4 of this embodiment can operate normally even when the input signal IN is a DC signal, like the buffer circuits 2 and 3 of the second and third embodiments.
ここで、上記実施例1~4に示したバッファ回路においては、入力信号INと反転信号INBとを入れ替えた構成にしてもよい。
Here, in the buffer circuits shown in the first to fourth embodiments, the input signal IN and the inverted signal INB may be interchanged.
〔実施例5〕
図39は、本実施例におけるシフトレジスタを構成する単位回路5の構成を示すブロック図である。シフトレジスタは、図39に示す単位回路5を従属接続して構成されており、単位回路5は、上記実施の形態1に示した回路(Active信号保持回路)10を含んで構成されている。なお、回路10を除いた構成については、従来の構成を適用することができる。 Example 5
FIG. 39 is a block diagram showing the configuration of theunit circuit 5 constituting the shift register in this embodiment. The shift register is configured by cascade connection of the unit circuits 5 shown in FIG. 39, and the unit circuit 5 is configured to include the circuit (Active signal holding circuit) 10 shown in the first embodiment. A conventional configuration can be applied to the configuration excluding the circuit 10.
図39は、本実施例におけるシフトレジスタを構成する単位回路5の構成を示すブロック図である。シフトレジスタは、図39に示す単位回路5を従属接続して構成されており、単位回路5は、上記実施の形態1に示した回路(Active信号保持回路)10を含んで構成されている。なお、回路10を除いた構成については、従来の構成を適用することができる。 Example 5
FIG. 39 is a block diagram showing the configuration of the
ここで、従来のシフトレジスタの単位回路の構成では、入力信号On-1とOn+1とが、ともにローレベルの場合には、ノードn5がフローティング状態となるため、リーク及びノイズに対するマージンが小さくなるという問題がある。
Here, in the configuration of the conventional unit circuit of the shift register, when both the input signals On-1 and On + 1 are at the low level, the node n5 is in a floating state, so that the margin for leakage and noise is reduced. There's a problem.
この点、本実施例のシフトレジスタの単位回路5の構成では、回路10の出力信号を、回路10の入力側にフィードバックしている。これにより、ノードn5をフローティング状態でないハイレベルに保持することができるため、シフトレジスタのディセーブル状態を保持することができる。そのため、リーク及びノイズに対する問題を解決することができる。
In this respect, in the configuration of the unit circuit 5 of the shift register of the present embodiment, the output signal of the circuit 10 is fed back to the input side of the circuit 10. Accordingly, since the node n5 can be held at a high level that is not in a floating state, the disabled state of the shift register can be held. Therefore, the problem with respect to leakage and noise can be solved.
なお、単位回路5が従属接続されるシフトレジスタでは、同時にハイレベルになることのないクロック信号CK1及びCK2のうち、偶数段の単位回路5のクロック端子CKにはクロック信号CK1が入力され、奇数段の単位回路5のクロック端子CKにはクロック信号CK2が入力され、入力信号On-1は前段の単位回路5の出力信号であり、入力信号On+1は後段の単位回路5の出力信号である。
In the shift register to which the unit circuit 5 is cascade-connected, the clock signal CK1 is input to the clock terminal CK of the even-numbered unit circuit 5 among the clock signals CK1 and CK2 that do not become high level at the same time. The clock signal CK2 is input to the clock terminal CK of the unit circuit 5 in the stage, the input signal On-1 is an output signal from the unit circuit 5 in the previous stage, and the input signal On + 1 is an output signal from the unit circuit 5 in the subsequent stage.
上記の構成において、入力信号On-1がハイレベルになると、トランジスタT14を介してブートストラップ容量C2に電荷が蓄えられ、入力信号On-1がローレベルになった後もノードn6はハイレベル状態を保持する。また、トランジスタT16がオン状態になることにより、ノードn5はローレベルになる。クロック信号CKがハイレベルになると、ブートストラップ効果により、出力端子Onからはクロック信号CKが出力される。また、入力信号On+1がハイレベルになると、トランジスタT15を介してノードn5がハイレベルになり、トランジスタT17がオン状態になることにより出力信号Onはローレベルになる。
In the above configuration, when the input signal On-1 becomes high level, charges are stored in the bootstrap capacitor C2 via the transistor T14, and the node n6 remains in the high level state even after the input signal On-1 becomes low level. Hold. Further, when the transistor T16 is turned on, the node n5 becomes low level. When the clock signal CK becomes high level, the clock signal CK is output from the output terminal On due to the bootstrap effect. When the input signal On + 1 becomes high level, the node n5 becomes high level via the transistor T15, and the transistor T17 is turned on, so that the output signal On becomes low level.
また、回路10の入力信号INがハイレベルになることで、トランジスタT1がオン状態になり容量TC1に電荷が蓄えられる。以降、クロック信号CKが入力されるたびに、トランジスタT2を介して出力信号OUTの電位がVDDまで引き上げられるため、ノードn5の電位が、オフリーク等により低下することがない。そして、VDDの出力信号OUTが入力端子INにフィードバックされるため、次に入力信号On-1がハイレベルになるまで、ノードn5の電位がVDDに保持される。
Further, when the input signal IN of the circuit 10 becomes high level, the transistor T1 is turned on, and electric charge is stored in the capacitor TC1. Thereafter, every time the clock signal CK is input, the potential of the output signal OUT is raised to VDD through the transistor T2, so that the potential of the node n5 does not decrease due to off-leakage or the like. Then, since the output signal OUT of VDD is fed back to the input terminal IN, the potential of the node n5 is held at VDD until the input signal On-1 next becomes the high level.
このように、従来のシフトレジスタに、上記実施の形態1の回路10(Active信号保持回路)を適用することにより、従来では閾値落ちやリーク等により電位が低下していたノードn5の電位を、確実にVDDに保持することができる。
As described above, by applying the circuit 10 (Active signal holding circuit) of the first embodiment to the conventional shift register, the potential of the node n5, which has been lowered due to a drop in threshold value, leakage, or the like in the past, is obtained. It can be reliably held at VDD.
本実施例5では、上記実施の形態1の回路10により構成したシフトレジスタについて説明したが、他の実施の形態における回路により構成してもよい。これらの構成においても、同様の効果を得ることができる。
In the fifth embodiment, the shift register configured by the circuit 10 according to the first embodiment has been described. However, the shift register may be configured by a circuit according to another embodiment. In these configurations, the same effect can be obtained.
また、各実施の形態における回路が適用可能なシフトレジスタの構成は、特に限定されるものではない。他のシフトレジスタの構成としては、例えば、図40及び図41に示すように、シフトレジスタにおける各段の単位回路が、それぞれ、後段の単位回路の出力信号を使用しない場合の構成、つまり、自段の単位回路内でリセット信号を生成する構成が挙げられる。これらの構成においても、同様にディセーブル状態を保持することができる。なお、何れの単位回路も、同時にハイレベルになることのないクロック信号CK1及びCK2のうち、偶数段の単位回路のクロック端子CKにはクロック信号CK1が入力され、クロック端子CKBにはクロック信号CK2が入力され、奇数段の単位回路5のクロック端子CKにはクロック信号CK2、が入力され、クロック端子CKBにはクロック信号CK1が入力され、入力信号On-1は前段の単位回路5の出力信号である。
Further, the configuration of the shift register to which the circuit in each embodiment can be applied is not particularly limited. As another shift register configuration, for example, as shown in FIGS. 40 and 41, the unit circuit of each stage in the shift register does not use the output signal of the subsequent unit circuit, that is, it A configuration in which a reset signal is generated in a unit circuit of a stage can be given. In these configurations as well, the disabled state can be maintained. Of the clock signals CK1 and CK2 that do not simultaneously become high in any unit circuit, the clock signal CK1 is input to the clock terminal CK of the even-numbered unit circuit, and the clock signal CK2 is input to the clock terminal CKB. , The clock signal CK2 is input to the clock terminal CK of the odd-numbered unit circuit 5, the clock signal CK1 is input to the clock terminal CKB, and the input signal On-1 is the output signal of the unit circuit 5 of the previous stage. It is.
図40に示す単位回路5では、前段の単位回路5の出力信号On-1によりブートストラップ容量C2に電荷が蓄えられ、クロック信号CKが出力端子Onに出力された後、クロック信号CKBがハイレベルになると、トランジスタT20がオン状態となることで、抵抗R2によりノードn5の電位がハイレベルになる。
In the unit circuit 5 shown in FIG. 40, charges are stored in the bootstrap capacitor C2 by the output signal On-1 of the preceding unit circuit 5, and after the clock signal CK is output to the output terminal On, the clock signal CKB is at the high level. Then, the transistor T20 is turned on, so that the potential of the node n5 becomes high level by the resistor R2.
図41に示す単位回路5では、前段の単位回路5の出力信号On-1によりブートストラップ容量C2に電荷を蓄えられ、クロック信号CKが出力端子Onから出力された後、クロック信号CKとCKBとの入力ごとに容量C3の電荷が容量C4に転送され、ノードn5の電位がハイレベルになる。
In the unit circuit 5 shown in FIG. 41, charges are stored in the bootstrap capacitor C2 by the output signal On-1 of the previous unit circuit 5, and after the clock signal CK is output from the output terminal On, the clock signals CK and CKB For each input, the charge in the capacitor C3 is transferred to the capacitor C4, and the potential of the node n5 goes high.
また、図40及び図41の単位回路5においても同様に、回路10は、次に入力信号On-1がハイレベルになるまでノードn5の電位をVDDに保持する。
Similarly, in the unit circuit 5 of FIGS. 40 and 41, the circuit 10 holds the potential of the node n5 at VDD until the next time the input signal On-1 becomes high level.
最後に、上記各実施の形態における回路をpチャネル型のトランジスタを用いて構成した場合の一例を示す。実施の形態1~6及び実施例1~5で説明した内容をpチャネル型のトランジスタを用いて構成するには、電源VDDを電源VSSに、電源VSSを電源VDDに、ハイレベルはローレベルにというように全てのロジックを逆転させることで可能である。図42は、回路10の構成をpチャネル型のトランジスタで構成した場合の回路10′の回路図である。また、図43は回路10′における各種信号の波形を示すタイミングチャートであり、図中の(a)はトランジスタT2′のドレイン端子にVSSが入力される場合の波形を示し、図中の(b)はトランジスタT2′のドレイン端子にクロック信号φが入力される場合の波形を示している。この構成においても、上述したnチャネル型のトランジスタにより構成した回路の場合と同様、簡易な構成により、低消費電力を図りつつ、電位レベルの低下を防いで安定した信号を出力することができるという効果を奏する。
Finally, an example of the case where the circuit in each of the above embodiments is configured using a p-channel transistor is shown. In order to configure the contents described in Embodiments 1 to 6 and Examples 1 to 5 using p-channel transistors, the power supply VDD is set to the power supply VSS, the power supply VSS is set to the power supply VDD, and the high level is set to the low level. This is possible by reversing all the logic. FIG. 42 is a circuit diagram of a circuit 10 ′ when the circuit 10 is configured by p-channel transistors. FIG. 43 is a timing chart showing waveforms of various signals in the circuit 10 ′. FIG. 43A shows a waveform when VSS is input to the drain terminal of the transistor T2 ′, and FIG. ) Shows a waveform when the clock signal φ is input to the drain terminal of the transistor T2 ′. Even in this configuration, as in the case of the circuit configured by the n-channel transistor described above, a simple configuration can output a stable signal while preventing a decrease in potential level while reducing power consumption. There is an effect.
ここで、図42に示す回路10′における容量TC1′の具体的な構成について説明する。図44の(a)は、容量TC1′の構成を示す図であり、(b)は、容量TC1′における印加電圧と容量値の関係を示すグラフである。また、図45の(a)は、従来の容量(PNOS型)の構成を示す図であり、(b)は、当該容量における印加電圧と容量値の関係を示すグラフである。
Here, a specific configuration of the capacitor TC1 ′ in the circuit 10 ′ shown in FIG. 42 will be described. 44A is a diagram showing the configuration of the capacitor TC1 ′, and FIG. 44B is a graph showing the relationship between the applied voltage and the capacitance value in the capacitor TC1 ′. FIG. 45A is a diagram showing a configuration of a conventional capacitor (PNOS type), and FIG. 45B is a graph showing a relationship between an applied voltage and a capacitance value in the capacitor.
従来の容量は、図45の(a)に示すように、シリコンSiにP+をドープして、ゲート電極GEとSiとの間に容量を形成している。この容量の場合、図45の(b)に示すように、ゲート電極及びSi間の電圧に関わらず略一定の容量値となる。
As shown in FIG. 45A, the conventional capacitor is formed by doping silicon Si with P + and forming a capacitor between the gate electrode GE and Si. In the case of this capacitance, as shown in FIG. 45B, the capacitance value is substantially constant regardless of the voltage between the gate electrode and Si.
これに対して本実施の形態に係る回路10′の容量TC1′は、図44の(a)に示すように、Si(シリコン層)にP+がドープされていない。これにより、容量TC1′はMOS容量として機能し、ゲート電極GEに電圧(オン電圧)が印加されない限り容量として機能しない。すなわち、トランジスタとして機能する容量TC1′は、ノードn1′の電位がクロック端子CKの電位よりも高い場合にオフ状態になる一方、ノードn1′の電位がクロック端子CKの電位以下(オン電圧)である場合にオン状態になる。なお、図44の(b)において、Vonは、上記オン電圧を示す。
On the other hand, in the capacitor TC1 ′ of the circuit 10 ′ according to the present embodiment, as shown in FIG. 44A, Si (silicon layer) is not doped with P +. As a result, the capacitor TC1 ′ functions as a MOS capacitor, and does not function as a capacitor unless a voltage (ON voltage) is applied to the gate electrode GE. That is, the capacitor TC1 ′ functioning as a transistor is turned off when the potential of the node n1 ′ is higher than the potential of the clock terminal CK, while the potential of the node n1 ′ is equal to or lower than the potential of the clock terminal CK (on voltage). Turns on when there is. In FIG. 44 (b), Von represents the on-voltage.
よって、容量TC1′は、図44の(b)に示すように、ゲート電極及びSi間の電圧に応じて容量値が変化する。すなわち、ゲート電極に印加される電圧が小さくなるほど、容量TC1′の容量値が大きくなる。より具体的には、ノードn1′の電位の低下に伴って容量TC1′の容量値が大きくなる一方、ノードn1′の電位の上昇に伴って容量TC1′の容量値が小さくなる。
Therefore, the capacitance value of the capacitor TC1 ′ changes according to the voltage between the gate electrode and Si, as shown in FIG. 44 (b). That is, as the voltage applied to the gate electrode decreases, the capacitance value of the capacitor TC1 ′ increases. More specifically, the capacitance value of the capacitor TC1 ′ increases as the potential of the node n1 ′ decreases, while the capacitance value of the capacitor TC1 ′ decreases as the potential of the node n1 ′ increases.
本発明に係る半導体装置は、以上のように、前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量を備え、前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高く設定されており、また、前記容量は、前記接続点の電位の変化に応じて容量値が変化するものである。すなわち、前記容量は、(i)容量を形成するSiがNMOSプロセスの場合は、前記接続点の電位の低下に伴って容量値が小さくなる一方、前記接続点の電位の上昇に伴って容量値が大きくなるものである、あるいは、(ii)容量を形成するSiがPMOSプロセスの場合は、前記接続点の電位の低下に伴って容量値が大きくなる一方、前記接続点の電位の上昇に伴って容量値が小さくなるものである。なお、容量を形成するSiがNMOSプロセスの場合は、SiにN+がドープされておらず、容量を形成するSiがPMOSプロセスの場合は、SiにP+がドープされていない。
As described above, the semiconductor device according to the present invention includes a capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal that inputs a clock signal, and the clock signal Is set higher than the frequency of the output signal output from the output terminal, and the capacitance value of the capacitor changes according to the change in the potential at the connection point. That is, when the Si forming the capacitor is an NMOS process, the capacitance decreases as the potential at the connection point decreases, while the capacitance value increases as the potential at the connection point increases. Or (ii) when the Si forming the capacitance is a PMOS process, the capacitance value increases as the potential at the connection point decreases, while the capacitance value increases as the potential at the connection point increases. Therefore, the capacitance value becomes small. When the Si forming the capacitor is an NMOS process, Si is not doped with N +, and when the Si forming the capacitor is a PMOS process, Si is not doped with P +.
また、本発明に係る表示装置は、上記半導体装置を備えている。
The display device according to the present invention includes the semiconductor device.
したがって、同一導電型のトランジスタからなり、簡易な構成により、低消費電力を図りつつ、電位レベルの低下を防いで安定した信号を出力することができる半導体装置、及びそれを備えた表示装置を提供することができるという効果を奏する。
Accordingly, a semiconductor device that includes transistors of the same conductivity type and can output a stable signal with a simple configuration while reducing power consumption and preventing a decrease in potential level, and a display device including the semiconductor device are provided. There is an effect that can be done.
本発明に係る半導体装置は、上記半導体装置において、
前記容量は、シリコンを含んで構成されており、前記接続点の電位の低下に伴って容量値が小さくなる一方、前記接続点の電位の上昇に伴って容量値が大きくなる構成とすることができる。 A semiconductor device according to the present invention is the above semiconductor device,
The capacitance includes silicon, and the capacitance value decreases as the potential at the connection point decreases, and the capacitance value increases as the potential at the connection point increases. it can.
前記容量は、シリコンを含んで構成されており、前記接続点の電位の低下に伴って容量値が小さくなる一方、前記接続点の電位の上昇に伴って容量値が大きくなる構成とすることができる。 A semiconductor device according to the present invention is the above semiconductor device,
The capacitance includes silicon, and the capacitance value decreases as the potential at the connection point decreases, and the capacitance value increases as the potential at the connection point increases. it can.
本発明に係る半導体装置は、上記半導体装置において、
前記容量は、シリコンを含んで構成されており、前記接続点の電位の低下に伴って容量値が大きくなる一方、前記接続点の電位の上昇に伴って容量値が小さくなる構成とすることができる。 A semiconductor device according to the present invention is the above semiconductor device,
The capacitor includes silicon, and the capacitance value increases as the potential at the connection point decreases, and the capacitance value decreases as the potential at the connection point increases. it can.
前記容量は、シリコンを含んで構成されており、前記接続点の電位の低下に伴って容量値が大きくなる一方、前記接続点の電位の上昇に伴って容量値が小さくなる構成とすることができる。 A semiconductor device according to the present invention is the above semiconductor device,
The capacitor includes silicon, and the capacitance value increases as the potential at the connection point decreases, and the capacitance value decreases as the potential at the connection point increases. it can.
本発明に係る半導体装置は、上記半導体装置において、
前記容量は、制御端子が前記接続点に接続され、第1の端子および第2の端子が前記クロック端子に接続されたトランジスタで構成されており、
前記容量を構成する前記トランジスタは、前記接続点の電位が前記クロック端子の電位よりも低い場合はオフ状態になる一方、前記接続点の電位が前記クロック端子の電位以上である場合はオン状態になる構成とすることもできる。 A semiconductor device according to the present invention is the above semiconductor device,
The capacitor is composed of a transistor having a control terminal connected to the connection point, and a first terminal and a second terminal connected to the clock terminal,
The transistor constituting the capacitor is turned off when the potential at the connection point is lower than the potential at the clock terminal, and is turned on when the potential at the connection point is equal to or higher than the potential at the clock terminal. It can also be set as the structure which becomes.
前記容量は、制御端子が前記接続点に接続され、第1の端子および第2の端子が前記クロック端子に接続されたトランジスタで構成されており、
前記容量を構成する前記トランジスタは、前記接続点の電位が前記クロック端子の電位よりも低い場合はオフ状態になる一方、前記接続点の電位が前記クロック端子の電位以上である場合はオン状態になる構成とすることもできる。 A semiconductor device according to the present invention is the above semiconductor device,
The capacitor is composed of a transistor having a control terminal connected to the connection point, and a first terminal and a second terminal connected to the clock terminal,
The transistor constituting the capacitor is turned off when the potential at the connection point is lower than the potential at the clock terminal, and is turned on when the potential at the connection point is equal to or higher than the potential at the clock terminal. It can also be set as the structure which becomes.
上記の構成によれば、容量は、トランジスタで構成されMOS容量として機能するため、ノードの電位がクロック信号の電位よりも高い場合はオン容量として機能し、ノードの電位がクロック信号の電位よりも低い場合はオフ容量として機能する。本発明の半導体装置は上記容量を備えているため、回路構成を簡略することができる。
According to the above configuration, since the capacitor is formed of a transistor and functions as a MOS capacitor, the capacitor functions as an on-capacitance when the node potential is higher than the clock signal potential, and the node potential is higher than the clock signal potential. When it is low, it functions as an off-capacitance. Since the semiconductor device of the present invention includes the capacitor, the circuit configuration can be simplified.
本発明に係る半導体装置は、上記半導体装置において、
前記容量は、制御端子が前記接続点に接続され、第1の端子および第2の端子が前記クロック端子に接続されたトランジスタで構成されており、
前記容量を構成する前記トランジスタは、前記接続点の電位が前記クロック端子の電位よりも高い場合はオフ状態になる一方、前記接続点の電位が前記クロック端子の電位以下である場合はオン状態になる構成とすることもできる。 A semiconductor device according to the present invention is the above semiconductor device,
The capacitor is composed of a transistor having a control terminal connected to the connection point, and a first terminal and a second terminal connected to the clock terminal,
The transistor constituting the capacitor is turned off when the potential of the connection point is higher than the potential of the clock terminal, and is turned on when the potential of the connection point is equal to or lower than the potential of the clock terminal. It can also be set as the structure which becomes.
前記容量は、制御端子が前記接続点に接続され、第1の端子および第2の端子が前記クロック端子に接続されたトランジスタで構成されており、
前記容量を構成する前記トランジスタは、前記接続点の電位が前記クロック端子の電位よりも高い場合はオフ状態になる一方、前記接続点の電位が前記クロック端子の電位以下である場合はオン状態になる構成とすることもできる。 A semiconductor device according to the present invention is the above semiconductor device,
The capacitor is composed of a transistor having a control terminal connected to the connection point, and a first terminal and a second terminal connected to the clock terminal,
The transistor constituting the capacitor is turned off when the potential of the connection point is higher than the potential of the clock terminal, and is turned on when the potential of the connection point is equal to or lower than the potential of the clock terminal. It can also be set as the structure which becomes.
上記の構成によれば、容量は、トランジスタで構成されMOS容量として機能するため、ノードの電位がクロック信号の電位よりも低い場合はオン容量として機能し、ノードの電位がクロック信号の電位よりも高い場合はオフ容量として機能する。本発明の半導体装置は上記容量を備えているため、回路構成を簡略することができる。
According to the above configuration, since the capacitor is configured by a transistor and functions as a MOS capacitor, the capacitor functions as an on-capacitance when the node potential is lower than the clock signal potential, and the node potential is higher than the clock signal potential. When it is high, it functions as an off-capacity. Since the semiconductor device of the present invention includes the capacitor, the circuit configuration can be simplified.
本発明に係る半導体装置は、上記半導体装置において、
前記容量を構成するシリコンには、N+がドープされていない構成とすることもできる。 A semiconductor device according to the present invention is the above semiconductor device,
The silicon constituting the capacitor may be configured not to be doped with N +.
前記容量を構成するシリコンには、N+がドープされていない構成とすることもできる。 A semiconductor device according to the present invention is the above semiconductor device,
The silicon constituting the capacitor may be configured not to be doped with N +.
本発明に係る半導体装置は、上記半導体装置において、
前記容量を構成するシリコンには、P+がドープされていない構成とすることもできる。 A semiconductor device according to the present invention is the above semiconductor device,
The silicon constituting the capacitor may be configured not to be doped with P +.
前記容量を構成するシリコンには、P+がドープされていない構成とすることもできる。 A semiconductor device according to the present invention is the above semiconductor device,
The silicon constituting the capacitor may be configured not to be doped with P +.
本発明に係る半導体装置は、上記半導体装置において、
前記容量は、前記制御端子としてのゲート電極と、前記第1の端子及び前記第2の端子としての前記シリコンとの間に形成されていることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
The capacitor is preferably formed between the gate electrode as the control terminal and the silicon as the first terminal and the second terminal.
前記容量は、前記制御端子としてのゲート電極と、前記第1の端子及び前記第2の端子としての前記シリコンとの間に形成されていることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
The capacitor is preferably formed between the gate electrode as the control terminal and the silicon as the first terminal and the second terminal.
本発明に係る半導体装置は、上記半導体装置において、
第1の端子が前記接続点に接続され、第2の端子にオフ電圧が入力され、制御端子に制御信号が入力される第3のトランジスタをさらに備えていることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
It is desirable to further include a third transistor in which the first terminal is connected to the connection point, the off voltage is input to the second terminal, and the control signal is input to the control terminal.
第1の端子が前記接続点に接続され、第2の端子にオフ電圧が入力され、制御端子に制御信号が入力される第3のトランジスタをさらに備えていることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
It is desirable to further include a third transistor in which the first terminal is connected to the connection point, the off voltage is input to the second terminal, and the control signal is input to the control terminal.
上記の構成によれば、制御信号により、第3のトランジスタがオン状態になると、上記ノードの電位を確実にVSSに下げることができる。
According to the above configuration, when the third transistor is turned on by the control signal, the potential of the node can be reliably lowered to VSS.
本発明に係る半導体装置は、上記半導体装置において、
第1の端子が前記出力端子に接続され、第2の端子にオフ電圧が与えられ、制御端子に前記制御信号が入力される第4のトランジスタをさらに備えていることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
It is desirable to further include a fourth transistor having a first terminal connected to the output terminal, an off voltage applied to the second terminal, and the control signal input to the control terminal.
第1の端子が前記出力端子に接続され、第2の端子にオフ電圧が与えられ、制御端子に前記制御信号が入力される第4のトランジスタをさらに備えていることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
It is desirable to further include a fourth transistor having a first terminal connected to the output terminal, an off voltage applied to the second terminal, and the control signal input to the control terminal.
上記の構成によれば、制御信号により、第3及び第4のトランジスタがオン状態になると、上記ノードの電位を確実にVSSに下げることができるとともに、出力信号の電位レベルをローレベル(オフ電圧:VSS)に固定することができる。
According to the above configuration, when the third and fourth transistors are turned on by the control signal, the potential of the node can be reliably lowered to VSS and the potential level of the output signal is set to the low level (off voltage). : VSS).
本発明に係る半導体装置は、上記半導体装置において、
第1の端子にオン電圧が入力され、第2の端子が前記接続点に接続され、制御端子が前記出力端子に接続される第5のトランジスタをさらに備えていることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
It is desirable to further include a fifth transistor in which an on-voltage is input to the first terminal, a second terminal is connected to the connection point, and a control terminal is connected to the output terminal.
第1の端子にオン電圧が入力され、第2の端子が前記接続点に接続され、制御端子が前記出力端子に接続される第5のトランジスタをさらに備えていることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
It is desirable to further include a fifth transistor in which an on-voltage is input to the first terminal, a second terminal is connected to the connection point, and a control terminal is connected to the output terminal.
上記の構成によれば、出力信号が第5のトランジスタの制御端子に入力されるため、出力信号がハイレベル(オン電圧:VDD)を出力している間は、入力信号がローレベルになり第1のトランジスタがオフ状態である場合に、上記ノードの電位が、オフリーク等により低下したとしても、第5のトランジスタにより再びVDD-Vthまでチャージされる。
According to the above configuration, since the output signal is input to the control terminal of the fifth transistor, the input signal becomes low level while the output signal is outputting high level (ON voltage: VDD). When the first transistor is off, the fifth transistor is again charged to VDD-Vth even if the potential of the node is decreased due to off-leakage or the like.
これにより、クロック信号がハイレベルを出力している期間中は、上記ノードの電位を、VDD-Vth+αまで突き上げることができる。そのため、出力信号の電位レベルをより安定させることができる。
This makes it possible to push the potential of the node up to VDD−Vth + α during the period when the clock signal is outputting a high level. Therefore, the potential level of the output signal can be further stabilized.
本発明に係る半導体装置は、上記半導体装置において、
前記入力信号を出力する第6のトランジスタをさらに備え、
前記第6のトランジスタは、第1の端子が入力端子に接続され、第2の端子が前記第1のトランジスタの制御端子と前記出力端子に接続され、制御端子にイネーブル信号が入力されることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
A sixth transistor that outputs the input signal;
The sixth transistor has a first terminal connected to the input terminal, a second terminal connected to the control terminal and the output terminal of the first transistor, and an enable signal input to the control terminal. desirable.
前記入力信号を出力する第6のトランジスタをさらに備え、
前記第6のトランジスタは、第1の端子が入力端子に接続され、第2の端子が前記第1のトランジスタの制御端子と前記出力端子に接続され、制御端子にイネーブル信号が入力されることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
A sixth transistor that outputs the input signal;
The sixth transistor has a first terminal connected to the input terminal, a second terminal connected to the control terminal and the output terminal of the first transistor, and an enable signal input to the control terminal. desirable.
上記の構成によれば、イネーブル信号が一旦ハイレベルになると、その後、イネーブル信号がローレベルになっても、出力信号がハイレベルであれば、第1のトランジスタの制御端子に、常にハイレベルの信号を入力することができる。これにより、半導体装置のアクティブ状態を安定して維持することができる。
According to the above configuration, once the enable signal becomes high level, even if the enable signal subsequently becomes low level, if the output signal is high level, the control signal of the first transistor is always high level. A signal can be input. Thereby, the active state of the semiconductor device can be stably maintained.
本発明に係る半導体装置は、上記半導体装置において、第1の端子が前記接続点に接続され、第2の端子にオフ電圧が入力され、制御端子に、当該半導体装置の初期状態を安定させるための初期化信号が入力される第7のトランジスタをさらに備えていることが望ましい。
In the semiconductor device according to the present invention, in the semiconductor device, the first terminal is connected to the connection point, the off voltage is input to the second terminal, and the initial state of the semiconductor device is stabilized at the control terminal. It is desirable to further include a seventh transistor to which the initialization signal is input.
上記の構成によれば、初期状態において、第7のトランジスタにハイレベルの初期化信号を入力することにより、上記ノードの電位をVSSに固定することができるため、初期状態を安定させることができる。
According to the above configuration, the potential of the node can be fixed to VSS by inputting a high-level initialization signal to the seventh transistor in the initial state, so that the initial state can be stabilized. .
本発明に係る半導体装置は、上記半導体装置において、
前記クロック信号は、ハイレベルとローレベルとを周期的に繰り返す波形を示し、1周期のうちローレベルの期間が、該クロック信号がハイレベルからローレベルに変化した後に前記接続点の電位が飽和するまでの期間となるように設定されていることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
The clock signal has a waveform that periodically repeats a high level and a low level, and the potential at the connection point is saturated after the clock signal changes from a high level to a low level during a low level period in one cycle. It is desirable that the period is set to be a period until.
前記クロック信号は、ハイレベルとローレベルとを周期的に繰り返す波形を示し、1周期のうちローレベルの期間が、該クロック信号がハイレベルからローレベルに変化した後に前記接続点の電位が飽和するまでの期間となるように設定されていることが望ましい。 A semiconductor device according to the present invention is the above semiconductor device,
The clock signal has a waveform that periodically repeats a high level and a low level, and the potential at the connection point is saturated after the clock signal changes from a high level to a low level during a low level period in one cycle. It is desirable that the period is set to be a period until.
これにより、半導体装置のアクティブ状態を保持しながら、出力信号のインピーダンスを下げることができる。
This makes it possible to reduce the impedance of the output signal while maintaining the active state of the semiconductor device.
本発明に係る表示装置は、上記何れかの半導体装置を備えていることを特徴としている。
A display device according to the present invention includes any one of the above semiconductor devices.
これにより、電位レベルの低下を防いで安定した信号を出力することができる表示装置を提供することができる。
Thereby, it is possible to provide a display device that can prevent a decrease in potential level and output a stable signal.
なお、本発明に係る表示装置は、液晶表示装置であることが望ましい。
The display device according to the present invention is preferably a liquid crystal display device.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
本発明は、入力信号の電位レベルを低下させることなく安定して出力することができる回路であるため、特に表示装置において好適に適用できる。
Since the present invention is a circuit that can stably output without lowering the potential level of an input signal, it can be suitably applied particularly to a display device.
1 メモリ回路
2,3,4 バッファ回路
5 (シフトレジスタの)単位回路
10,20,30,40,50,60 回路(半導体装置)
11,21,31,41,51,61 回路(半導体装置)
T1 トランジスタ(第1のトランジスタ)
T2 トランジスタ(第2のトランジスタ)
T3 トランジスタ(第3のトランジスタ)
T4 トランジスタ(第4のトランジスタ)
T5 トランジスタ(第5のトランジスタ)
T6 トランジスタ(第6のトランジスタ)
T7 トランジスタ(第7のトランジスタ)
T8 トランジスタ(第8のトランジスタ)
TC1 トランジスタ(容量)
151 液晶表示装置(表示装置)
n1,n2,n4,n5,n6 ノード(接続点)
100,200,210 回路(従来の半導体装置)
1 memory circuit 2, 3, 4 buffer circuit 5 unit circuit (of shift register) 10, 20, 30, 40, 50, 60 circuit (semiconductor device)
11, 21, 31, 41, 51, 61 Circuit (semiconductor device)
T1 transistor (first transistor)
T2 transistor (second transistor)
T3 transistor (third transistor)
T4 transistor (fourth transistor)
T5 transistor (fifth transistor)
T6 transistor (sixth transistor)
T7 transistor (seventh transistor)
T8 transistor (eighth transistor)
TC1 transistor (capacitance)
151 Liquid crystal display device (display device)
n1, n2, n4, n5, n6 nodes (connection points)
100, 200, 210 circuit (conventional semiconductor device)
2,3,4 バッファ回路
5 (シフトレジスタの)単位回路
10,20,30,40,50,60 回路(半導体装置)
11,21,31,41,51,61 回路(半導体装置)
T1 トランジスタ(第1のトランジスタ)
T2 トランジスタ(第2のトランジスタ)
T3 トランジスタ(第3のトランジスタ)
T4 トランジスタ(第4のトランジスタ)
T5 トランジスタ(第5のトランジスタ)
T6 トランジスタ(第6のトランジスタ)
T7 トランジスタ(第7のトランジスタ)
T8 トランジスタ(第8のトランジスタ)
TC1 トランジスタ(容量)
151 液晶表示装置(表示装置)
n1,n2,n4,n5,n6 ノード(接続点)
100,200,210 回路(従来の半導体装置)
1
11, 21, 31, 41, 51, 61 Circuit (semiconductor device)
T1 transistor (first transistor)
T2 transistor (second transistor)
T3 transistor (third transistor)
T4 transistor (fourth transistor)
T5 transistor (fifth transistor)
T6 transistor (sixth transistor)
T7 transistor (seventh transistor)
T8 transistor (eighth transistor)
TC1 transistor (capacitance)
151 Liquid crystal display device (display device)
n1, n2, n4, n5, n6 nodes (connection points)
100, 200, 210 circuit (conventional semiconductor device)
Claims (16)
- 同一導電型の複数のトランジスタにより構成される半導体装置であって、
第1の端子にオン電圧が与えられ、制御端子に入力信号が入力される第1のトランジスタと、
第1の端子にオン電圧が与えられ、第2の端子が出力端子に接続され、制御端子が前記第1のトランジスタの第2の端子に接続される第2のトランジスタと、
前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量とを備え、
前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高く設定されており、
前記容量は、前記接続点の電位の変化に応じて容量値が変化するものであることを特徴とする半導体装置。 A semiconductor device composed of a plurality of transistors of the same conductivity type,
A first transistor in which an on-voltage is applied to the first terminal and an input signal is input to the control terminal;
A second transistor having an on-voltage applied to the first terminal, a second terminal connected to the output terminal, and a control terminal connected to the second terminal of the first transistor;
A capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal for inputting a clock signal;
The frequency of the clock signal is set higher than the frequency of the output signal output from the output terminal,
The semiconductor device is characterized in that a capacitance value of the capacitor changes according to a change in potential of the connection point. - 前記容量は、シリコンを含んで構成されており、前記接続点の電位の低下に伴って容量値が小さくなる一方、前記接続点の電位の上昇に伴って容量値が大きくなるものであることを特徴とする請求項1に記載の半導体装置。 The capacitor is configured to include silicon, and the capacitance value decreases as the potential at the connection point decreases, while the capacitance value increases as the potential at the connection point increases. The semiconductor device according to claim 1.
- 前記容量は、シリコンを含んで構成されており、前記接続点の電位の低下に伴って容量値が大きくなる一方、前記接続点の電位の上昇に伴って容量値が小さくなるものであることを特徴とする請求項1に記載の半導体装置。 The capacitance is configured to include silicon, and the capacitance value increases as the potential at the connection point decreases, while the capacitance value decreases as the potential at the connection point increases. The semiconductor device according to claim 1.
- 前記容量は、制御端子が前記接続点に接続され、第1の端子および第2の端子が前記クロック端子に接続されたトランジスタで構成されており、
前記容量を構成する前記トランジスタは、前記接続点の電位が前記クロック端子の電位よりも低い場合はオフ状態になる一方、前記接続点の電位が前記クロック端子の電位以上である場合はオン状態になることを特徴とする請求項2に記載の半導体装置。 The capacitor is composed of a transistor having a control terminal connected to the connection point, and a first terminal and a second terminal connected to the clock terminal,
The transistor constituting the capacitor is turned off when the potential at the connection point is lower than the potential at the clock terminal, and is turned on when the potential at the connection point is equal to or higher than the potential at the clock terminal. The semiconductor device according to claim 2, wherein - 前記容量は、制御端子が前記接続点に接続され、第1の端子および第2の端子が前記クロック端子に接続されたトランジスタで構成されており、
前記容量を構成する前記トランジスタは、前記接続点の電位が前記クロック端子の電位よりも高い場合はオフ状態になる一方、前記接続点の電位が前記クロック端子の電位以下である場合はオン状態になることを特徴とする請求項3に記載の半導体装置。 The capacitor is composed of a transistor having a control terminal connected to the connection point, and a first terminal and a second terminal connected to the clock terminal,
The transistor constituting the capacitor is turned off when the potential of the connection point is higher than the potential of the clock terminal, and is turned on when the potential of the connection point is equal to or lower than the potential of the clock terminal. The semiconductor device according to claim 3, wherein - 前記容量を構成するシリコンには、N+がドープされていないことを特徴とする請求項2または4に記載の半導体装置。 5. The semiconductor device according to claim 2, wherein the silicon constituting the capacitor is not doped with N +.
- 前記容量を構成するシリコンには、P+がドープされていないことを特徴とする請求項3または5に記載の半導体装置。 6. The semiconductor device according to claim 3, wherein the silicon constituting the capacitor is not doped with P +.
- 前記容量は、前記制御端子としてのゲート電極と、前記第1の端子及び前記第2の端子としての前記シリコンとの間に形成されていることを特徴とする請求項6または7に記載の半導体装置。 8. The semiconductor according to claim 6, wherein the capacitor is formed between a gate electrode as the control terminal and the silicon as the first terminal and the second terminal. apparatus.
- 第1の端子が前記接続点に接続され、第2の端子にオフ電圧が入力され、制御端子に制御信号が入力される第3のトランジスタをさらに備えていることを特徴とする請求項1~8に記載の半導体装置。 The semiconductor device further comprises a third transistor having a first terminal connected to the connection point, an off-voltage input to the second terminal, and a control signal input to the control terminal. 8. The semiconductor device according to 8.
- 第1の端子が前記出力端子に接続され、第2の端子にオフ電圧が与えられ、制御端子に前記制御信号が入力される第4のトランジスタをさらに備えていることを特徴とする請求項9に記載の半導体装置。 10. The apparatus according to claim 9, further comprising: a fourth transistor having a first terminal connected to the output terminal, an off voltage applied to the second terminal, and the control signal input to a control terminal. A semiconductor device according to 1.
- 第1の端子にオン電圧が入力され、第2の端子が前記接続点に接続され、制御端子が前記出力端子に接続される第5のトランジスタをさらに備えていることを特徴とする請求項10に記載の半導体装置。 11. The apparatus further comprises a fifth transistor in which an on-voltage is input to the first terminal, a second terminal is connected to the connection point, and a control terminal is connected to the output terminal. A semiconductor device according to 1.
- 前記入力信号を出力する第6のトランジスタをさらに備え、
前記第6のトランジスタは、第1の端子が入力端子に接続され、第2の端子が前記第1のトランジスタの制御端子と前記出力端子とに接続され、制御端子にイネーブル信号が入力されることを特徴とする請求項11に記載の半導体装置。 A sixth transistor that outputs the input signal;
The sixth transistor has a first terminal connected to the input terminal, a second terminal connected to the control terminal of the first transistor and the output terminal, and an enable signal input to the control terminal. The semiconductor device according to claim 11. - 第1の端子が前記接続点に接続され、第2の端子にオフ電圧が入力され、制御端子に、当該半導体装置の初期状態を安定させるための初期化信号が入力される第7のトランジスタをさらに備えていることを特徴とする請求項12に記載の半導体装置。 A seventh transistor having a first terminal connected to the connection point, an off-voltage input to the second terminal, and an initialization signal for stabilizing an initial state of the semiconductor device to the control terminal; The semiconductor device according to claim 12, further comprising:
- 同一導電型の複数のトランジスタにより構成される半導体装置であって、
第1の端子にオン電圧が与えられ、制御端子に入力信号が入力される第1のトランジスタと、
第1の端子にオン電圧が与えられ、第2の端子が出力端子に接続され、制御端子が前記第1のトランジスタの第2の端子に接続される第2のトランジスタと、
前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量と、
第1の端子が前記接続点に接続され、制御端子にオン電圧が入力される第8のトランジスタと、
第1の端子が第8のトランジスタの第2の端子に接続され、第2の端子にオフ電圧が入力され、制御端子に制御信号が入力される第3のトランジスタを備え、
前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高く設定されており、
前記容量は、前記接続点の電位の変化に応じて容量値が変化するものであることを特徴とする半導体装置。 A semiconductor device composed of a plurality of transistors of the same conductivity type,
A first transistor in which an on-voltage is applied to the first terminal and an input signal is input to the control terminal;
A second transistor having an on-voltage applied to the first terminal, a second terminal connected to the output terminal, and a control terminal connected to the second terminal of the first transistor;
A capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal for inputting a clock signal;
An eighth transistor having a first terminal connected to the connection point and an on-voltage input to the control terminal;
A third transistor having a first terminal connected to the second terminal of the eighth transistor, an off-voltage input to the second terminal, and a control signal input to the control terminal;
The frequency of the clock signal is set higher than the frequency of the output signal output from the output terminal,
The semiconductor device is characterized in that a capacitance value of the capacitor changes according to a change in potential of the connection point. - 前記クロック信号は、ハイレベルとローレベルとを周期的に繰り返す波形を示し、1周期のうちローレベルの期間が、該クロック信号がハイレベルからローレベルに変化した後に前記接続点の電位が飽和するまでの期間となるように設定されていることを特徴とする請求項1または14に記載の半導体装置。 The clock signal has a waveform that periodically repeats a high level and a low level, and the potential at the connection point is saturated after the clock signal changes from a high level to a low level during a low level period in one cycle. The semiconductor device according to claim 1, wherein the semiconductor device is set so as to have a period until completion.
- 請求項1または14に記載の半導体装置を備えていることを特徴とする表示装置。
A display device comprising the semiconductor device according to claim 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011033743 | 2011-02-18 | ||
JP2011-033743 | 2011-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012111586A1 true WO2012111586A1 (en) | 2012-08-23 |
Family
ID=46672505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/053222 WO2012111586A1 (en) | 2011-02-18 | 2012-02-13 | Semiconductor device and display apparatus |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012111586A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109637483A (en) * | 2019-01-22 | 2019-04-16 | 深圳市华星光电半导体显示技术有限公司 | GOA circuit and liquid crystal display device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003344866A (en) * | 2002-05-24 | 2003-12-03 | Sony Corp | Display device and manufacturing method therefor |
WO2009084272A1 (en) * | 2007-12-28 | 2009-07-09 | Sharp Kabushiki Kaisha | Semiconductor device and display device |
-
2012
- 2012-02-13 WO PCT/JP2012/053222 patent/WO2012111586A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003344866A (en) * | 2002-05-24 | 2003-12-03 | Sony Corp | Display device and manufacturing method therefor |
WO2009084272A1 (en) * | 2007-12-28 | 2009-07-09 | Sharp Kabushiki Kaisha | Semiconductor device and display device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109637483A (en) * | 2019-01-22 | 2019-04-16 | 深圳市华星光电半导体显示技术有限公司 | GOA circuit and liquid crystal display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4902750B2 (en) | Semiconductor device and display device | |
US8194817B2 (en) | Shift register circuit | |
US7738623B2 (en) | Shift register circuit and image display apparatus containing the same | |
KR101768485B1 (en) | Shift register | |
JP4959813B2 (en) | Semiconductor device and display device | |
US20100111245A1 (en) | Shift register circuit | |
JP3851302B2 (en) | Buffer circuit and active matrix display device using the same | |
US10270363B2 (en) | CMOS inverter circuit that suppresses leakage currents | |
JP5530344B2 (en) | Level shift circuit and drive circuit having the same | |
JP5433966B2 (en) | Shift register and display device using the same | |
JP2009094927A (en) | Buffer, level shifting circuit, and display device | |
JP2006344306A (en) | Shift register | |
JP4969322B2 (en) | Voltage generating circuit and image display device including the same | |
JP2012239046A (en) | Latch circuit and display device using latch circuit | |
JP2010086637A (en) | Shift register circuit and image display device with the same | |
KR100590034B1 (en) | Level shifter and display device using the same | |
JP4869569B2 (en) | Display device | |
WO2012111586A1 (en) | Semiconductor device and display apparatus | |
KR20180123936A (en) | Gate Driver Circuit And Display Device Including The Same | |
JP4357936B2 (en) | Semiconductor device | |
JP2005311790A (en) | Signal level conversion circuit and liquid crystal display device using this circuit | |
KR102627933B1 (en) | Scan driver circuit for improving degradation of TFT | |
JP4624340B2 (en) | Semiconductor display device | |
JP2005134780A (en) | Shift register and display having same | |
JP2006135384A (en) | Level shifter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12746703 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12746703 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |