WO2012111540A1 - Heat-resistant adhesive tape for semiconductor device manufacturing, and method for manufacturing semiconductor chips using tape - Google Patents

Heat-resistant adhesive tape for semiconductor device manufacturing, and method for manufacturing semiconductor chips using tape Download PDF

Info

Publication number
WO2012111540A1
WO2012111540A1 PCT/JP2012/053048 JP2012053048W WO2012111540A1 WO 2012111540 A1 WO2012111540 A1 WO 2012111540A1 JP 2012053048 W JP2012053048 W JP 2012053048W WO 2012111540 A1 WO2012111540 A1 WO 2012111540A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
adhesive tape
manufacturing
semiconductor device
resin
Prior art date
Application number
PCT/JP2012/053048
Other languages
French (fr)
Japanese (ja)
Inventor
下川 大輔
雄太 島崎
栄一 井本
高正 平山
和樹 副島
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2012111540A1 publication Critical patent/WO2012111540A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/757Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the cycloaliphatic ring by means of an aliphatic group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09J175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • C08G2170/40Compositions for pressure-sensitive adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/412Additional features of adhesives in the form of films or foils characterized by the presence of essential components presence of microspheres
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat-resistant adhesive tape for manufacturing a semiconductor device for temporarily fixing a chip used in a method for manufacturing a substrate-less semiconductor package that does not use a metal lead frame, and a semiconductor device manufacturing method using the same.
  • CSP Chip Size / Scale Package
  • WLP Wafer Level Package
  • a chip-only package that does not use a substrate such as WLP (Wafer Level Package)
  • WLP Wafer Level Package
  • a plurality of semiconductor Si wafer chips arranged in an orderly manner without using a substrate are collectively sealed with a sealing resin, and then cut into individual structures by cutting, so that the conventional method using a substrate is used. Even small packages can be produced efficiently.
  • Patent Document 1 discloses a step of attaching an acrylic resin-based adhesive means that has adhesive strength before processing but decreases adhesive strength after processing on a substrate, and a plurality or a plurality of the adhesive means on the adhesive means.
  • a step of fixing a semiconductor chip of a seed type with its electrode face down, a step of depositing a protective substance on the entire surface including a plurality of or a plurality of types of semiconductor chips, and applying a predetermined treatment to the adhesive means Reducing the adhesive force of the adhesive means and peeling the pseudo-wafer to which the semiconductor chip is fixed; and cutting the protective substance between the plurality or types of semiconductor chips to each semiconductor chip or chip-like electronic component A method of manufacturing a chip-shaped electronic component having a step of separating the components is described.
  • Patent Document 2 discloses a step of attaching an acrylic resin-based adhesive means that has adhesive strength before processing but decreases in adhesive strength after processing on a substrate, and a plurality or a plurality of the adhesive means on the adhesive means.
  • a step of fixing a semiconductor chip of a seed type with its electrode surface facing down, a step of depositing a protective substance on the entire surface including the plurality or types of semiconductor chips, and the protection from the side opposite to the electrode surface Removing the substance up to the opposite surface of the semiconductor chip, reducing the adhesive force of the adhesive means by applying a predetermined treatment to the adhesive means, and peeling the pseudo wafer to which the semiconductor chip is fixed;
  • a method for manufacturing a chip-shaped electronic component is described, which includes a step of cutting the protective substance between the plurality or types of semiconductor chips to separate each semiconductor chip or chip-shaped electronic component.
  • Patent Document 3 describes a method of adhering a semiconductor element obtained by dicing to a support member, including an epoxy resin and acrylic rubber in an adhesive layer, although it is a dicing die bonding tape.
  • the pressure-sensitive adhesive layer is selected in consideration of adhesiveness to the substrate, not the method of the substrate-less semiconductor device.
  • FIG. 1 shows a method for manufacturing a substrate-less semiconductor package, and the problems will be described below.
  • a structure shown in (a) in which a plurality of chips 1 are attached to a heat-resistant adhesive tape 2 for manufacturing a semiconductor device having adhesive layers on both sides, and the heat-resistant adhesive tape 2 for manufacturing a semiconductor device is fixed to a substrate 3. To do.
  • a heat-resistant adhesive tape 2 for manufacturing a semiconductor device is attached on the substrate 3, and the chip 1 is fixed to obtain a structure shown in (a).
  • a plurality of chips are sealed with a sealing resin 4 from above the chip 1 having the structure shown in (a), and shown in (b).
  • the heat resistant adhesive tape 2 for manufacturing a semiconductor device and the substrate 3 are further integrated, and a plurality of chips 1 sealed with the sealing resin 4 are separated, or the sealing resin 4 is formed by peeling off the chip 1 and the heat-resistant adhesive tape 2 for manufacturing a semiconductor device 2 from the substrate 3 and further removing only the heat-resistant adhesive tape 2 for manufacturing a semiconductor device.
  • a plurality of chips 1 sealed by 4 are obtained.
  • the electrode 5 is formed at a required position to obtain the structure shown in (d).
  • a dicing tape 8 provided with a dicing ring 7 is bonded to the sealing resin side as necessary, and a plurality of chips 1 sealed with the sealing resin 4 for a dicing process are fixed.
  • dicing is performed by the dicing blade 6, and finally, a plurality of substrate-less packages in which a plurality of chips are sealed with resin as shown in (f) are obtained.
  • the heat-resistant adhesive tape 2 for manufacturing a semiconductor device has high adhesiveness even under the temperature at the time of resin sealing so that the position of the chip 1 on the tape does not move due to the pressure of resin sealing. Must have.
  • the general pressure-sensitive pressure-sensitive adhesive has such problems that it is difficult to peel without being lightly peeled at the time of peeling, adhesive residue is generated as shown in FIG. 2, or peeling charging occurs. Further, when peeling becomes difficult, it takes time, and thus productivity is lowered. When the adhesive residue 9 is generated, it becomes impossible to carry out subsequent steps such as electrode formation. Inconveniences in the process may occur.
  • the present invention provides a chip temporary fixing pressure-sensitive adhesive tape that is used by being stuck when resin-sealing a substrateless semiconductor chip contains a urethane polymer component and a vinyl polymer.
  • a heat-resistant adhesive tape for manufacturing semiconductor devices which has a heat-expandable adhesive layer containing heat-expandable microspheres on one side of the resin layer, and without using a metal lead frame A method of manufacturing a semiconductor chip was adopted.
  • the present invention relates to an adhesive tape for temporarily fixing a chip used in a substrate-less semiconductor package manufacturing method (for example, a WLP manufacturing method) that does not use a metal lead frame, and the chip is designated by pressure at the time of resin sealing.
  • a substrate-less semiconductor package manufacturing method for example, a WLP manufacturing method
  • the chip is designated by pressure at the time of resin sealing.
  • the schematic diagram of a base material-less package manufacturing method The figure which a charge and adhesive residue generate
  • Chip 2 Heat-resistant adhesive tape 3 for manufacturing semiconductor device 3: Substrate 4: Sealing resin 5: Electrode 6: Dicing blade 7: Dicing ring 8: Dicing tape 9: Residual residue 10: Smooth release sheet 11: Resin layer 12: Rubbery organic elastic layer 13: Thermally expandable pressure-sensitive adhesive layer
  • a heat-resistant adhesive tape for manufacturing semiconductor devices comprising a thermally expandable adhesive layer containing thermally expandable microspheres on one surface of a resin layer containing a urethane polymer component and a vinyl polymer. It was found that the above-mentioned problems can be solved by using, and the present invention has been completed.
  • FIG. 3 illustrates a heat resistant adhesive tape 2 for manufacturing a semiconductor device used in the present invention.
  • 10 is a smooth release sheet
  • 11 is a resin layer
  • 12 is a rubber-like organic elastic layer
  • 13 is a thermally expandable pressure-sensitive adhesive layer.
  • each of the resin layer and the rubbery organic elastic layer may be composed of a plurality of layers.
  • the resin layer 11 is a layer made of a resin containing a urethane polymer component and a vinyl polymer.
  • the urethane polymer used for the resin layer is obtained by reacting a polyol and diisocyanate.
  • a catalyst generally used in a urethane reaction such as dibutyltin dilaurate, tin octoate, 1,4-diazabicyclo (2,2,2) octane is used. Also good.
  • Polyols include polyether polyols obtained by addition polymerization of ethylene oxide, propylene oxide, tetrahydrofuran, etc., or polycondensation of the above-mentioned dihydric alcohols with divalent basic acids such as adipic acid, azelaic acid, and sepatic acid.
  • polyester polyols acrylic polyols, carbonate polyols, epoxy polyols, and caprolactone polyols.
  • polyether polyols such as polyoxytetramethylene glycol (PTMG) and polyoxypropylene glycol (PPG), non-crystalline polyester polyols, non-crystalline polycarbonate polyols and the like are preferably used. These polyols can be used alone or in combination.
  • diisocyanate examples include aromatic, aliphatic, and alicyclic diisocyanates.
  • Aromatic, aliphatic, and alicyclic diisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate.
  • These diisocyanates can be used alone or in combination. From the viewpoint of urethane reactivity, compatibility with acrylic, and the like, the type and combination of polyisocyanates can be appropriately selected.
  • the amount of the polyol component and the diisocyanate component used to form the urethane polymer is not particularly limited.
  • the amount of the polyol component used is NCO / OH (equivalent ratio) of 1 with respect to the diisocyanate component. It is preferably 0.0 or more, and more preferably 2.0 or less.
  • NCO / OH is 1.0 or more, the terminal functional group of the urethane molecular chain becomes a hydroxyl group, and the strength of the temporary fixing layer can be prevented from being lowered.
  • NCO / OH is 2.0 or less, moderate elongation and intensity
  • the urethane polymer is an acryloyl group-terminated urethane polymer.
  • an acryloyl group By having such an acryloyl group, it is possible to adjust the cohesive force by crosslinking with the vinyl polymer.
  • the molecular weight of the urethane polymer component in the present invention can be appropriately determined according to the type of polyol or diisocyanate used and the NCO / OH ratio.
  • the molecular weight is not particularly limited, but the number average molecular weight (Mw) is preferably 5000 or more, more preferably 10,000 or more.
  • a hydroxyl group-containing acrylic monomer it is desirable to add a hydroxyl group-containing acrylic monomer to the urethane polymer separately from the vinyl polymer in the present invention.
  • a hydroxyl group-containing acrylic monomer By adding a hydroxyl group-containing acrylic monomer, an acryloyl group can be introduced into the molecule of the urethane polymer, and copolymerizability with the acrylic monomer can be imparted.
  • the hydroxyl group-containing acrylic monomer hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxyhexyl (meth) acrylate, or the like is used.
  • the amount of the hydroxyl group-containing acrylic monomer used is desirably 0.1 to 10 parts by weight, and more desirably 0.1 to 5 parts by weight with respect to 100 parts by weight of the urethane polymer.
  • the vinyl polymer used in the resin layer in the present invention may be obtained by polymerizing only the vinyl compound constituting the vinyl monomer, and in this case, a single monomer or a mixture of two or more monomers is used for polymerization. It is obtained by attaching.
  • the polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like.
  • the pressure-sensitive adhesive layer preferably has a low content of low molecular weight substances from the viewpoint of preventing contamination of semiconductor wafers and the like. In this respect, the weight average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3,000,000.
  • the resin layer may be obtained by blending the urethane polymer with the following vinyl polymer. Alternatively, it may be obtained by preparing a mixture of a urethane polymer and a vinyl monomer and then polymerizing the vinyl polymer. Among these, from the viewpoint of the types of monomers that can be used and the processability of sheeting, the urethane obtained by reacting a polyol and an isocyanate in a vinyl monomer alone or in a mixture of two or more to form a urethane polymer. It is preferable that a mixture containing a polymer and a vinyl monomer is applied on a substrate, cured by irradiation with radiation, and formed.
  • the vinyl monomer is preferably a (meth) acrylic monomer.
  • the vinyl monomer is polymerized, whereby the acryloyl group is polymerized with the vinyl group, and the urethane polymer and the It is also possible to use a resin formed by bonding a vinyl polymer.
  • the vinyl polymer in the present invention is a polymer obtained by polymerizing a vinyl monomer.
  • a (meth) acrylic monomer is preferably used as described above.
  • the (meth) acrylic monomer for example, , Ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, n-octyl (meta ) Acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, dodecyl (meth) acrylate, n-octadecyl (meth) acrylate, acrylic acid, methacrylic acid, carboxyethyl acrylate Car
  • amide monomers such as N-substituted (meth) acrylamide such as (meth) acrylamide and N-methylolacrylamide, N- (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, Succinimide monomers such as N- (meth) acryloyl-8-oxyoctamethylenesuccinimide, vinyl monomers such as vinyl acetate, N-vinylpyrrolidone, N-vinylcarboxylic acid amides, N-vinylcaprolactam; acrylonitrile, methacrylonitrile Cyanoacrylate monomers such as glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate , Acrylic ester monomers such as fluorine (meth)
  • (meth) acrylic monomers are appropriately determined in kind, combination, amount of use, etc. in consideration of compatibility with urethane, polymerizability at the time of photocuring such as radiation, and characteristics of the high molecular weight obtained.
  • The it is desirable to use a monomer having a carboxyl group so that the vinyl polymer can contain a carboxyl group in consideration of the adhesive strength at the time of heating and peeling, and (meth) acrylic acid If a monomer having a polar group such as is used, the balance of the adhesive force during heating and cooling peeling is good.
  • the addition amount of (meth) acrylic acid is preferably 5 parts by weight or more and less than 80 parts by weight, and more preferably 10 parts by weight or more when the total amount of urethane polymer and vinyl polymer is 100 parts by weight. Less than 70 parts by weight.
  • polyfunctional monomers can be added as long as the characteristics are not impaired.
  • examples of the polyfunctional monomer include hexanediol diacrylate, trimethylolpropane triacrylate, dipentaerythritol hexaacrylate, and the like.
  • the resin layer in the present invention contains a urethane polymer and a vinyl polymer as active ingredients.
  • the ratio of the urethane polymer and the vinyl polymer is not particularly limited, but the weight of the urethane polymer is preferably 10% or more and 90% or less, and more preferably 20% or more and less than 80% with respect to the total amount of the urethane polymer and the vinyl polymer. It is.
  • the proportion of the urethane polymer is 10% or more, the elastic modulus at high temperature is not lowered and sufficient processing accuracy can be obtained. On the other hand, if it is 90% or less, the handling property and productivity at the time of producing the sheet are good.
  • a vinyl monomer constituting a vinyl polymer by polymerization is used alone or in a mixture of two or more to form a urethane polymer by reacting a polyol and an isocyanate, and the urethane polymer and the vinyl monomer Is applied onto a support substrate, and depending on the type of photopolymerization initiator, ionizing radiation such as ⁇ rays, ⁇ rays, ⁇ rays, neutron rays, electron rays, radiation such as ultraviolet rays, visible light, etc. It can be obtained by being cured by irradiating the like. Moreover, it is also possible to form by blending a urethane polymer and a vinyl polymer, and applying and drying this on a support substrate.
  • hydroxyl group-containing acrylic monomer when using the above hydroxyl group-containing acrylic monomer, after forming a urethane polymer by reacting a polyol and an isocyanate in a vinyl monomer alone or in a mixture of two or more constituting a vinyl polymer by polymerization, A hydroxyl group-containing acrylic monomer is added to react with the urethane polymer, and the resulting mixture is applied onto a support substrate, and ⁇ -rays, ⁇ -rays, ⁇ -rays, neutron rays, depending on the type of photopolymerization initiator, It can be obtained by curing by irradiating ionizing radiation such as an electron beam, radiation such as ultraviolet rays, visible light or the like.
  • ionizing radiation such as an electron beam, radiation such as ultraviolet rays, visible light or the like.
  • the viscosity is adjusted by adding diisocyanate or the like and reacting with the polyol, and this is applied to a support base material, and then a low-pressure mercury lamp or the like is used.
  • a temporarily fixed sheet can be obtained.
  • the vinyl monomer may be added all at once during the urethane synthesis, or may be added in several divided portions.
  • the polyol may be reacted after the diisocyanate is dissolved in the vinyl monomer.
  • the molecular weight is not limited and a high molecular weight polyurethane can be produced, so that the molecular weight of the finally obtained urethane can be designed to an arbitrary size.
  • oxygen may be blocked by placing a further peeled substrate on a mixture of urethane polymer and vinyl monomer coated on a supporting substrate.
  • the oxygen concentration may be lowered by putting a release liner in a container filled with an inert gas.
  • the solvent can be appropriately selected from commonly used solvents, and examples thereof include ethyl acetate, toluene, chloroform, dimethylformamide and the like.
  • the type of radiation and the type of lamp used for irradiation can be selected as appropriate, such as a low-pressure lamp such as a fluorescent chemical lamp, a black light and a sterilization lamp, a high-pressure such as a metal halide lamp and a high-pressure mercury lamp.
  • a lamp or the like can be used.
  • the irradiation amount of ultraviolet rays or the like can be arbitrarily set according to the required characteristics of the temporary fixing layer. In general, the irradiation amount of ultraviolet rays is 50-5000 mJ / cm 2 , preferably 100-4000 mJ / cm 2 , more preferably 100-3000 mJ / cm 2 . If the irradiation amount of ultraviolet rays is in the range of 50 to 5000 mJ / cm 2 , a sufficient polymerization rate can be obtained without deterioration.
  • the mixture mainly composed of a urethane polymer and a vinyl monomer contains a photopolymerization initiator.
  • photopolymerization initiators include benzoin ethers such as benzoin methyl ether, benzoin isopropyl ether, and 2,2-dimethoxy-1,2-diphenylethane-1-one; substituted benzoin ethers such as anisole methyl ether; Substituted acetophenones such as ethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxy-cyclohexyl-phenylketone; substituted alpha-ketols such as 2-methyl-2-hydroxypropiophenone; 2-naphthalenesulfonyl chloride, etc.
  • Aromatic sulfonyl chlorides such as 1-phenyl-1,1-propanedione-2- (o-ethoxycarbonyl) -oxime; 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide And acylphosphine oxides such as bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
  • the thickness of the resin layer in the present invention can be appropriately selected according to the purpose and the like, but is generally about 5 to 500 ⁇ m, preferably about 10 to 100 ⁇ m.
  • the resin layer of the present invention has a shear adhesive strength to a silicon chip at 175 ° C. of 100 g / 10 mm 2 or more, preferably 150 g / 10 mm 2 or more, more preferably 200 g / 10 mm 2 or more, further 300 g / 10 mm 2 or more. And 90 ° peel-off adhesive strength to the sealing resin after heating at 175 ° C.
  • the resin sealing / curing step is often performed at a temperature of about 175 ° C., and such a shear adhesive strength is 100 g / 10 mm 2 or more and a peeling adhesive strength is 0.50 N / 20 mm or less.
  • the semiconductor chip can be supported and securely fixed without being displaced at the time of sealing and curing with resin. Further, after cooling to a specific temperature and peeling off the resin layer from the individualized package, the smaller the 90 ° film peeling adhesive force to the sealing resin, the smaller the force required for peeling. The package will not be damaged.
  • the resin layer of the adhesive sheet for manufacturing a semiconductor device has a property of developing an adhesive force at a specific temperature of 40 ° C. or higher and losing the adhesive force below the specific temperature. More preferably, it has an adhesive strength at a specific temperature of 70 ° C or higher, and particularly preferably has an adhesive strength at a specific temperature of 100 ° C or higher.
  • the expression of the adhesive strength at a specific temperature of 40 ° C. or higher means that the adhesive strength is first expressed at a certain temperature of 40 ° C. or higher, and does not exhibit the adhesive strength at a temperature lower than the certain temperature. It means that it does not show adhesive strength at temperature.
  • the storage elastic modulus G ′ at 175 ° C. of the resin layer in the present invention is 1.0 ⁇ 10 5 Pa or more, preferably 2.0 ⁇ 10 5 Pa or more, more preferably 3.0 ⁇ 10 5 Pa or more, Furthermore, it is preferably 4.0 ⁇ 10 5 Pa or more. If the storage elastic modulus G ′ is 1.0 ⁇ 10 5 Pa or more, the stand-off in which the chip is embedded in the resin layer is small, and the yield in the subsequent process does not decrease.
  • the rubber-like organic elastic layer 12 has a function of providing a large adhesion area by following the surface shape of the adherend when the heat-resistant pressure-sensitive adhesive tape for manufacturing a semiconductor device is adhered to the adherend.
  • swelling restraint and the function which promotes the function of encouraging the formation of a jelly structure by the three-dimensional structural change of the heat-expandable adhesive layer 13 is also included.
  • the rubbery organic elastic layer 12 can be provided as necessary, but when it is provided, the thickness is preferably 5 to 50 ⁇ m in order to sufficiently exhibit its characteristics.
  • the rubbery organic elastic layer 12 can be formed of natural rubber or synthetic rubber of 50 or less, preferably 40 or less, based on ASTM D-2240 D-type Sure D-type hardness, or a synthetic resin having rubber elasticity.
  • Examples of the synthetic rubber or synthetic resin include nitrile, diene, and acrylic synthetic rubbers, thermoplastic elastomers such as polyolefins and polyesters, ethylene-vinyl acetate copolymers, polyurethane, polybutadiene, and soft polychlorinated polymers.
  • Examples thereof include synthetic resins having rubber elasticity such as vinyl.
  • an essentially hard polymer such as polyvinyl chloride having rubber elasticity in combination with a compounding agent such as a plasticizer or a softener can be used in the present invention. Further, it can be formed by a generally known pressure-sensitive adhesive such as rubber or resin.
  • the pressure sensitive adhesive an appropriate material such as a rubber pressure sensitive adhesive, an acrylic pressure sensitive adhesive, a styrene / conjugated diene block copolymer based pressure sensitive adhesive, or the like can be used.
  • a resin containing a heat-meltable resin having a melting point of about 200 ° C. or lower and having improved creep properties can be used.
  • the pressure-sensitive adhesive may be a mixture of appropriate additives such as an antistatic agent, a crosslinking agent, a tackifier, a plasticizer, a filler, and an anti-aging agent.
  • a rubber-based pressure-sensitive adhesive based on natural rubber or synthetic rubber, methyl group, ethyl group, propyl group, butyl group, 2-ethylhexyl group, isooctyl group, isononyl group, isodecyl group
  • Acrylic acid such as acrylic acid or methacrylic acid having an alkyl group having 20 or less carbon atoms, typically dodecyl group, lauryl group, tridecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group
  • Alkyl ester acrylic acid, methacrylic acid, itaconic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, N-methylolacrylamide, acrylonitrile, acryl
  • the pressure-sensitive adhesive forming the heat-expandable pressure-sensitive adhesive layer 13 needs to allow foaming and / or expansion of the heat-expandable microspheres during heating, and can be used in the rubbery organic elastic layer.
  • the heat-foaming pressure-sensitive adhesive is obtained by blending thermally expandable fine particles with the above general pressure-sensitive pressure-sensitive adhesive.
  • the heat-expandable pressure-sensitive adhesive is such that the adhesive area decreases due to foaming of the heat-expandable fine particles due to heat, and peeling becomes easy.
  • the average particle diameter of the heat-expandable fine particles is preferably about 1 ⁇ m to 25 ⁇ m. More preferably, it is 5 ⁇ m to 15 ⁇ m, particularly about 10 ⁇ m.
  • the heat-expandable pressure-sensitive adhesive layer is appropriately mixed with a tackifier such as a known resin, a plasticizer, a pigment, a filler, a conductive agent, an antistatic agent, etc., and an other functional epoxy compound or an isocyanate compound It is crosslinked with a crosslinking agent such as an aziridine compound, a melamine resin, a urea resin, an anhydrous compound, a polyamine, or a carboxyl group-containing polymer.
  • a tackifier such as a known resin, a plasticizer, a pigment, a filler, a conductive agent, an antistatic agent, etc.
  • an other functional epoxy compound or an isocyanate compound It is crosslinked with a crosslinking agent such as an aziridine compound, a melamine resin, a urea resin, an anhydrous compound, a polyamine, or a carboxyl group-containing polymer.
  • the heat-expandable pressure-sensitive adhesive layer 13 can be formed by blending heat-expandable microspheres with the pressure-sensitive adhesive.
  • Thermally expandable microspheres include, for example, thermal expansion in which a suitable material showing thermal expansion properties such as isobutane, propane and pentane is encapsulated in a shell-forming material by a coacervation method or an interfacial polymerization method. Microspheres can be used.
  • the heat-expandable microspheres used have a volume expansion ratio of 5 times or more, preferably 10 times or more of the heat-expandable microspheres.
  • thermally expandable microspheres examples are generally vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, and the like. In the present invention, it may be made of a hot-melt material or a material that is destroyed by thermal expansion. Thermally expandable microspheres also have advantages such as excellent dispersibility with the pressure-sensitive adhesive. Examples of commercially available products of thermally expandable microspheres include microspheres (trade name: manufactured by Matsumoto Yushi Seiyaku Co., Ltd.).
  • the blending amount of the heat-expandable microspheres may be appropriately determined according to the degree to which the heat-expandable pressure-sensitive adhesive layer 13 is expanded (foamed) or the degree to which the adhesive force is reduced. In general, 1 to 150 parts by weight, preferably 25 to 100 parts by weight are blended per 100 parts by weight of the base polymer.
  • the thickness of the heat-expandable pressure-sensitive adhesive layer is 5 to 100 ⁇ m, preferably 15 to 50 ⁇ m.
  • the heat treatment conditions for enabling the heat-resistant adhesive tape 2 for manufacturing a semiconductor device of the present invention to be easily peeled off from the adherend are the adhesion area depending on the surface state of the adherend and the type of thermally expandable microspheres.
  • the smooth release sheet 10 is a sheet formed by forming a release agent layer on one side of a base film, and the adhesive layer on each side is exposed before using the heat-resistant adhesive tape 2 for manufacturing a semiconductor device of the present invention. It is a sheet which is peeled to make it happen.
  • the release agent layer can be appropriately selected from known release agent layers such as a long chain alkyl group, a fluororesin, and a silicone resin depending on the pressure sensitive adhesive.
  • This release sheet can also be used as a base when forming a resin layer or a heat-expandable pressure-sensitive adhesive layer, or can be used by being laminated on the surface of the formed resin layer or heat-expandable pressure-sensitive adhesive layer. Good.
  • polyetheretherketone polyetherimide
  • polyarylate polyethylene naphthalate
  • polyethylene film polypropylene film
  • polybutene film polybutadiene film
  • polymethylpentene film polyvinyl chloride film.
  • Vinyl chloride copolymer film polyethylene terephthalate film, polybutylene terephthalate film, polyurethane film, ethylene-vinyl acetate copolymer film, ionomer resin film, ethylene- (meth) acrylic acid copolymer film, ethylene- (meth) Acrylic ester copolymer film, polystyrene film, and plastic film such as polycarbonate film
  • plastic film such as polycarbonate film
  • the release agent layer that can be used is a known release agent such as a fluorinated silicone resin release agent, a fluorine resin release agent, a silicone resin release agent, a polyvinyl alcohol resin, a polypropylene resin, a long chain alkyl compound, It is a layer selected and contained according to the resin of the pressure-sensitive adhesive layer.
  • the heat-resistant adhesive tape 2 for manufacturing a semiconductor device of the present invention can be manufactured by a general manufacturing method.
  • a coating liquid is prepared by dissolving a composition constituting each of the resin layer, the rubbery organic elastic layer 12, and the thermally expandable pressure-sensitive adhesive layer 13 in a predetermined solvent, and these coating liquids have releasability.
  • coating so that it may become the layer structure of the target heat resistant adhesive tape 2 for semiconductor device manufacture on resin layers, such as a separator, the application layer is heated and dried in order on predetermined conditions.
  • a single film may be prepared by casting the resin layer, the rubbery organic elastic layer 12 and the heat-expandable pressure-sensitive adhesive layer 13 on a peelable film or the like, and these may be laminated in order.
  • the solvent is not particularly limited, but a ketone solvent such as methyl ethyl ketone is preferably used in consideration of the good solubility of the constituent materials.
  • the heat-resistant adhesive tape 2 for manufacturing a semiconductor device is used in the process described above with reference to FIG. That is, it is used as a means for fixing the chip in the semiconductor chip bonding process, sealing process, and peeling process described below.
  • the resin used in the sealing step in which the heat-resistant adhesive tape 2 for manufacturing a semiconductor device of the present invention is used can be arbitrarily changed depending on the application, but may be a known sealing resin such as an epoxy resin.
  • the melting temperature and curing temperature of the powdered resin and the curing temperature of the liquid resin are selected in consideration of the heat resistance of the heat-resistant adhesive tape 2 for manufacturing a semiconductor device, but the heat-resistant adhesive tape for manufacturing a semiconductor device of the present invention. 2 has heat resistance at the melting temperature and curing temperature of a normal sealing resin.
  • the sealing step is performed in the mold with the above resin for chip protection, for example, at 170 to 180 ° C. Thereafter, after the heat-resistant adhesive tape 2 for manufacturing a semiconductor device is peeled off, post mold curing is performed.
  • the heat-resistant adhesive tape 2 for manufacturing a semiconductor device is peeled from the layer formed by sealing the chip with a resin. Further, the heat resistant adhesive tape 2 for manufacturing a semiconductor device and the substrate 3 are integrated without being separated, and the plurality of chips 1 sealed with the sealing resin 4 are separated from the resin layer of the heat resistant adhesive tape 2 for manufacturing a semiconductor device. A method may be adopted.
  • Electrode formation process Next, on the side where one surface of the chip 1 formed by sealing the chip 1 with the sealing resin 4 is exposed, that is, on the side where the heat-resistant adhesive tape 2 for manufacturing a semiconductor device is laminated, screen printing or the like
  • the electrode 5 is formed at a predetermined position of each chip by the method.
  • a known material can be used as the electrode material.
  • a layer formed by sealing the chip 1 with the sealing resin 4 is fixed to a dicing tape 8 preferably provided with a dicing ring 7, and then a dicing blade 6 used in a normal dicing process is used for each package. Tidy up. At this time, if each chip 1 does not exist at a predetermined position, in addition to inaccurate electrode formation, if the position of the chip 1 of each package is incorrect or severe, dicing is performed. Sometimes, the dicing blade 6 may come into contact with the chip 1.
  • the heat-resistant adhesive tape 2 for manufacturing a semiconductor device according to the present invention When the heat-resistant adhesive tape 2 for manufacturing a semiconductor device according to the present invention is used, the position of the chip 1 can be prevented from shifting in the sealing process with the sealing resin 4, so that the dicing process is smoothly performed without such trouble. As a result, a package in which the chip 1 is accurately positioned in the sealing resin is obtained. Further, the heat-resistant adhesive tape 2 for manufacturing a semiconductor device can be peeled off from a chip sealed with a sealing resin by light peeling, and since no adhesive residue is produced, it is manufactured while maintaining a high yield. Is possible.
  • the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
  • Example 1 Poly (tetramethylene) glycol having a number average molecular weight of 650, 50 parts by weight of isobornyl acrylate (IBXA) as a (meth) acrylic monomer and polyol as a (meth) acrylic monomer in a reaction vessel equipped with a condenser, a thermometer, and a stirring device 72.8 parts by weight (PTMG, manufactured by Mitsubishi Chemical Corporation) was added, and 27.2 parts by weight of hydrogenated xylylene diisocyanate (HXDI, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.) was added dropwise with stirring to 65 ° C. For 10 hours to obtain a urethane polymer-acrylic monomer mixture.
  • IBXA isobornyl acrylate
  • HXDI hydrogenated xylylene diisocyanate
  • the urethane polymer and the acrylic monomer mixture were applied on a PET having a thickness of 38 ⁇ m which was subjected to a release treatment so that the thickness after curing was 100 ⁇ m.
  • the PET film after the release treatment was overlaid and coated, and then the coated PET film surface was cured by irradiating with ultraviolet light (illuminance 5 mW / cm 2 , light amount 1000 mJ / cm 2 ) using a black light, Resin layer 1 (urethane-acrylic composite film) was formed on the PET film.
  • thermally expandable pressure-sensitive adhesive layer 1.0 part of an epoxy-based crosslinking agent was added to 100 parts of a copolymer polymer consisting of ethyl acrylate-butyl acrylate-acrylic acid (20 parts-80 parts-10 parts), A coating solution is prepared by uniformly mixing and dissolving 5 parts of a rosin-based tackifier, 50 parts of thermally expandable microspheres of 200 ° C. foaming expansion type, and toluene.
  • a heat-resistant pressure-sensitive adhesive tape 1 for producing a semiconductor device having a pressure-sensitive adhesive layer of 40 ⁇ m was obtained.
  • this heat-resistant adhesive tape for manufacturing semiconductor devices is crimped and fixed to a smooth base, a 5 mm ⁇ 5 mm Si wafer chip is placed on the resin layer on the opposite surface, and a liquid epoxy-based sealing
  • the resin was poured and molded at 175 ° C. ⁇ 2 min. Thereafter, the curing of the resin was promoted (post mold cure) by heating at 150 ° C. for 60 minutes to produce a package.
  • Example 2 In a reaction vessel equipped with a condenser, a thermometer, and a stirrer, as a (meth) acrylic monomer, 80 parts by weight of isobornyl acrylate (IBXA), 20 parts by weight of butyl acrylate (BA), and several polyols are used. 72.8 parts by weight of poly (tetramethylene) glycol having an average molecular weight of 650 (PTMG, manufactured by Mitsubishi Chemical Corporation) was added, and 27.2 parts by weight of HXDI was added dropwise with stirring, and the mixture was reacted at 65 ° C. for 10 hours. A urethane polymer-acrylic monomer mixture was obtained.
  • IBXA isobornyl acrylate
  • BA butyl acrylate
  • HXDI poly (tetramethylene) glycol having an average molecular weight of 650
  • the PET film after the release treatment was overlaid and coated, and then the coated PET film surface was cured by irradiating with ultraviolet light (illuminance 5 mW / cm 2 , light amount 1000 mJ / cm 2 ) using a black light,
  • ultraviolet light illumination 5 mW / cm 2 , light amount 1000 mJ / cm 2
  • a package was prepared in the same manner as in Example 1 except that the resin layer 2 (urethane-acrylic composite film 2) was formed on the PET film.
  • Example 3 In a reaction vessel equipped with a condenser, a thermometer, and a stirrer, 100 parts by weight of isobornyl acrylate (IBXA) as a (meth) acrylic monomer and poly (tetramethylene) glycol having a number average molecular weight of 650 as a polyol 72.8 parts by weight (PTMG, manufactured by Mitsubishi Chemical Co., Ltd.) was added, and 27.2 parts by weight of HXDI was added dropwise with stirring and reacted at 65 ° C. for 10 hours to obtain a urethane polymer-acrylic monomer mixture. It was.
  • IBXA isobornyl acrylate
  • PTMG poly (tetramethylene) glycol having a number average molecular weight of 650 as a polyol 72.8 parts by weight
  • the PET film that had been subjected to the peeling treatment was overlaid and coated, and then the coated PET film surface was irradiated with ultraviolet rays (illuminance 5 mW / cm 2 , light quantity 1000 mJ / cm 2 ) using a black light, and cured.
  • a package was prepared in the same manner as in Example 1 except that the resin layer 3 (urethane-acrylic composite film 3) was formed on the PET film.
  • Comparative Example 2 100 parts by weight of stearyl acrylate and 0.3 parts by weight of 2,2-dimethoxy-1,2-diphenylethane-1-one are placed in a four-necked flask and partially photopolymerized by exposure to ultraviolet light in a nitrogen atmosphere. As a result, a partially polymerized product (monomer syrup) was obtained. To 40 parts by weight of this partially polymerized product, 54 parts of isooctyl acrylate, 6 parts by weight of acrylic acid and 0.1 part by weight of hexanediol diacrylate as a crosslinking agent were added, and these were uniformly mixed to produce a photopolymerizable composition. Was prepared.
  • the above-mentioned photopolymerizable composition was applied so as to have a thickness of 100 ⁇ m, and further, a polyethylene terephthalate film on which one side having a thickness of 38 ⁇ m was peeled was covered to form a coating layer.
  • This sheet was irradiated with 1000 mJ / cm 2 of UV light with a light intensity of 5 mW / cm 2 (measured with Topcon UVR-T1 having a peak sensitivity maximum wave of 350 nm) using a black light (15 W / cm 2 ), and contains a side chain crystallizable polymer.
  • a temporary fixing sheet was obtained.
  • a package was produced in the same manner as in Example 1, such as applying a thermally expandable adhesive layer to the base material surface of this side chain crystallizable polymer-containing temporary fixing sheet in the same manner as in Example 1.
  • Sheets prepared in Examples and Comparative Examples were cut into 20 mm squares, 10 mm square silicon chips were placed on the resin layer (the opposite side of the thermally expandable adhesive layer), and then a 175 ° C. shear adhesive test with a plate base. After being set in the machine and allowed to stand for 3 minutes, as shown in FIG. 4, the load when the silicon chip was pushed in the horizontal direction at a speed of 0.5 mm / sec was measured.
  • ⁇ Measurement method of storage elastic modulus G '> The storage elastic modulus (G ′) was measured by “ARES” (manufactured by TA Instruments). The measurement was performed in a temperature range of ⁇ 60 ° C. to 200 ° C. under conditions of a temperature rising rate of 5 ° C./min and a frequency of 1 Hz.
  • Comparative Example 1 since the resin layer does not contain a urethane polymer component, it is not possible to suppress chip displacement at the time of molding, and Comparative Example 2 does not contain a vinyl polymer.
  • the elastic modulus at 175 ° C. was low, so that the silicon chip was embedded in the resin layer, and the standoff value was large.
  • a fixing heat-resistant heat-peelable pressure-sensitive adhesive tape could be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

In a step for peeling a heat-resistant adhesive tape for a semiconductor device manufacturing (2) from a chip, light peeling is required after resin sealing and resin curing. As a result, regular pressure-sensitive adhesives that are highly-viscous at high temperatures are not easily peeled by light peeling when it comes time to peel the adhesive off, adhesive is left behind as shown in figure 2, or peeling causes static buildup. To solve this problem, the present invention provides a substrate-free heat-resistant adhesive tape for semiconductor device manufacturing, which is applied when resin sealing a semiconductor chip to temporarily immobilize the chip, and is characterized by having a thermally-expandable adhesive layer containing thermally-expandable microspheres on one surface of a resin layer containing a urethane polymer component and a vinyl-based polymer.

Description

半導体装置製造用耐熱性粘着テープ及びそのテープを用いた半導体チップの製造方法Heat resistant adhesive tape for manufacturing semiconductor device and method for manufacturing semiconductor chip using the tape
 本発明は、金属製のリードフレームを用いない基板レス半導体パッケージの製造方法に使用されるチップ仮固定用半導体装置製造用耐熱性粘着テープ及びそれを用いた半導体装置製造方法に関する。 The present invention relates to a heat-resistant adhesive tape for manufacturing a semiconductor device for temporarily fixing a chip used in a method for manufacturing a substrate-less semiconductor package that does not use a metal lead frame, and a semiconductor device manufacturing method using the same.
 近年、LSIの実装技術において、CSP(Chip Size/Scale Package)技術が注目されている。この技術のうち、WLP(Wafer Level Package)に代表される基板を用いないチップのみの形態のパッケージについては、小型化と高集積の面で特に注目されるパッケージ形態のひとつである。WLPの製造方法では、基板を用いずに整然と配列した複数の半導体Siウエハチップを封止樹脂にて一括封止した後、切断によって個別の構造物に切り分けることにより、基板を用いる従来のものよりも小型のパッケージを効率的に生産することができる。 In recent years, CSP (Chip Size / Scale Package) technology has attracted attention as LSI mounting technology. Among these technologies, a chip-only package that does not use a substrate, such as WLP (Wafer Level Package), is one of the package forms that are particularly noted in terms of miniaturization and high integration. In the manufacturing method of WLP, a plurality of semiconductor Si wafer chips arranged in an orderly manner without using a substrate are collectively sealed with a sealing resin, and then cut into individual structures by cutting, so that the conventional method using a substrate is used. Even small packages can be produced efficiently.
 このようなWLPの製造方法においては、従来基板上に固定するチップを、別の支持体上に固定することが必要となる。さらに樹脂封止を経て個別のパッケージに成型された後には固定を解除する必要があるため、その支持体は永久接着ではなく再剥離可能であることが必要となる。そこで、このようなチップの仮固定用支持体として粘着テープを用いる手法が知られている。 In such a manufacturing method of WLP, it is necessary to fix a chip fixed on a conventional substrate on another support. Furthermore, after the resin is sealed and molded into individual packages, it is necessary to release the fixing. Therefore, it is necessary that the support is not permanently bonded but can be peeled off again. Therefore, a technique using an adhesive tape as a support for temporarily fixing such a chip is known.
 例えば、特許文献1には、基板上に、処理前は粘着力を持つが処理後は粘着力が低下するアクリル樹脂系の粘着手段を貼り付ける工程と、この粘着手段の上に複数個又は複数種の半導体チップをその電極面を下にして固定する工程と、保護物質を前記複数個又は複数種の半導体チップ間を含む全面に被着する工程と、前記粘着手段に所定の処理を施して前記粘着手段の粘着力を低下させ、前記半導体チップを固定した疑似ウエハを剥離する工程と、前記複数個又は複数種の半導体チップ間において前記保護物質を切断して各半導体チップ又はチップ状電子部品を分離する工程を有する、チップ状電子部品の製造方法が記載されている。 For example, Patent Document 1 discloses a step of attaching an acrylic resin-based adhesive means that has adhesive strength before processing but decreases adhesive strength after processing on a substrate, and a plurality or a plurality of the adhesive means on the adhesive means. A step of fixing a semiconductor chip of a seed type with its electrode face down, a step of depositing a protective substance on the entire surface including a plurality of or a plurality of types of semiconductor chips, and applying a predetermined treatment to the adhesive means Reducing the adhesive force of the adhesive means and peeling the pseudo-wafer to which the semiconductor chip is fixed; and cutting the protective substance between the plurality or types of semiconductor chips to each semiconductor chip or chip-like electronic component A method of manufacturing a chip-shaped electronic component having a step of separating the components is described.
 また、特許文献2には、基板上に、処理前は粘着力を持つが処理後は粘着力が低下するアクリル樹脂系の粘着手段を貼り付ける工程と、この粘着手段の上に複数個又は複数種の半導体チップをその電極面を下にして固定する工程と、保護物質を前記複数個又は複数種の半導体チップ間を含む全面に被着する工程と、前記電極面とは反対側から前記保護物質を半導体チップの前記反対側の面まで除去する工程と、前記粘着手段に所定の処理を施して前記粘着手段の粘着力を低下させ、前記半導体チップを固定した疑似ウエハを剥離する工程と、前記複数個又は複数種の半導体チップ間において前記保護物質を切断して各半導体チップ又はチップ状電子部品を分離する工程を有する、チップ状電子部品の製造方法が記載されている。
 これらの方法によれば、チップが保護されるので、個片後の実装ハンドリングにおいてもチップが保護されるし、実装密度を向上させることができる等の効果を得ることが可能である。
 特許文献3にはダイシング・ダイボンディングテープではあるものの、粘着剤層にはエポキシ樹脂とアクリルゴムを含有すること、ダイシングにより得られた半導体素子を支持部材に接着する方法が記載され、この方法は明らかに基板レス半導体装置の方法ではなく、基板への接着性等も考慮して粘着剤層が選択されている。
Further, Patent Document 2 discloses a step of attaching an acrylic resin-based adhesive means that has adhesive strength before processing but decreases in adhesive strength after processing on a substrate, and a plurality or a plurality of the adhesive means on the adhesive means. A step of fixing a semiconductor chip of a seed type with its electrode surface facing down, a step of depositing a protective substance on the entire surface including the plurality or types of semiconductor chips, and the protection from the side opposite to the electrode surface Removing the substance up to the opposite surface of the semiconductor chip, reducing the adhesive force of the adhesive means by applying a predetermined treatment to the adhesive means, and peeling the pseudo wafer to which the semiconductor chip is fixed; A method for manufacturing a chip-shaped electronic component is described, which includes a step of cutting the protective substance between the plurality or types of semiconductor chips to separate each semiconductor chip or chip-shaped electronic component.
According to these methods, since the chip is protected, it is possible to protect the chip even in mounting handling after an individual piece, and it is possible to obtain effects such as improving the mounting density.
Patent Document 3 describes a method of adhering a semiconductor element obtained by dicing to a support member, including an epoxy resin and acrylic rubber in an adhesive layer, although it is a dicing die bonding tape. Apparently, the pressure-sensitive adhesive layer is selected in consideration of adhesiveness to the substrate, not the method of the substrate-less semiconductor device.
特開2001-308116号公報JP 2001-308116 A 特開2001-313350号公報JP 2001-313350 A 特開2008-101183号公報JP 2008-101183 A
 図1に基板レス半導体パッケージの製造方法を示しつつ、以下に課題を述べる。
 複数のチップ1を両面に粘着剤層を有する半導体装置製造用耐熱性粘着テープ2に貼り付け、さらに半導体装置製造用耐熱性粘着テープ2を基板3に固定させて(a)で示される構造とする。あるいは、基板3上に半導体装置製造用耐熱性粘着テープ2を貼り付け、さらにチップ1を固定して、(a)で示される構造とする。
FIG. 1 shows a method for manufacturing a substrate-less semiconductor package, and the problems will be described below.
A structure shown in (a) in which a plurality of chips 1 are attached to a heat-resistant adhesive tape 2 for manufacturing a semiconductor device having adhesive layers on both sides, and the heat-resistant adhesive tape 2 for manufacturing a semiconductor device is fixed to a substrate 3. To do. Alternatively, a heat-resistant adhesive tape 2 for manufacturing a semiconductor device is attached on the substrate 3, and the chip 1 is fixed to obtain a structure shown in (a).
 次いで、該(a)で示される構造のチップ1の上から、封止樹脂4により複数のチップが一体となるように封止して(b)で示されるものとする。
 そして(c)に示されるように、さらに半導体装置製造用耐熱性粘着テープ2と基板3を一体とし、封止樹脂4により封止された複数のチップ1を分離する方法、あるいは、封止樹脂4により封止された複数のチップ1と半導体装置製造用耐熱性粘着テープ2からなるものを基板3から剥離し、さらに半導体装置製造用耐熱性粘着テープ2のみを剥離する方法により、封止樹脂4により封止された複数のチップ1を得る。
Next, a plurality of chips are sealed with a sealing resin 4 from above the chip 1 having the structure shown in (a), and shown in (b).
And as shown in (c), the heat resistant adhesive tape 2 for manufacturing a semiconductor device and the substrate 3 are further integrated, and a plurality of chips 1 sealed with the sealing resin 4 are separated, or the sealing resin 4 is formed by peeling off the chip 1 and the heat-resistant adhesive tape 2 for manufacturing a semiconductor device 2 from the substrate 3 and further removing only the heat-resistant adhesive tape 2 for manufacturing a semiconductor device. A plurality of chips 1 sealed by 4 are obtained.
 その封止樹脂4により封止された複数のチップ1の、半導体装置製造用耐熱性粘着テープ2が設けられていた側であり、チップ1の表面が露出している側において、チップ1表面の必要とされる箇所に電極5を形成して(d)で示される構造とする。
 この構造に対して、封止樹脂側に必要に応じてダイシングリング7を設けたダイシングテープ8を接着して、ダイシング工程のために封止樹脂4により封止された複数のチップ1を固定する。これを(e)に示すように、ダイシングブレード6によりダイシングを行い、最後に(f)のように複数のチップが樹脂により封止されてなる複数の基板レスパッケージを得る。
The side of the plurality of chips 1 sealed with the sealing resin 4 on which the heat-resistant adhesive tape 2 for manufacturing a semiconductor device is provided and the surface of the chip 1 is exposed, The electrode 5 is formed at a required position to obtain the structure shown in (d).
To this structure, a dicing tape 8 provided with a dicing ring 7 is bonded to the sealing resin side as necessary, and a plurality of chips 1 sealed with the sealing resin 4 for a dicing process are fixed. . As shown in (e), dicing is performed by the dicing blade 6, and finally, a plurality of substrate-less packages in which a plurality of chips are sealed with resin as shown in (f) are obtained.
 この樹脂による封止の工程では、半導体装置製造用耐熱性粘着テープ2は、テープ上のチップ1の位置が樹脂封止の圧力によって移動しないように、樹脂封止時の温度下でも高い粘着性を有していなければならない。 In this resin sealing step, the heat-resistant adhesive tape 2 for manufacturing a semiconductor device has high adhesiveness even under the temperature at the time of resin sealing so that the position of the chip 1 on the tape does not move due to the pressure of resin sealing. Must have.
 これに対して樹脂封止・樹脂硬化後の、半導体装置製造用耐熱性粘着テープ2をチップから剥離する工程では、軽剥離であることが必要とされるため、高温下で高い粘着性を持った一般の感圧型の粘着剤では、剥離時に軽剥離にはならずに剥離が困難となったり、図2に示すような糊残りが生じたり、あるいは剥離帯電を起こすといった課題があった。
 また、剥離が困難になるとその分時間を要するので生産性が低下し、糊残り9が生じるとその後の電極形成等の工程を実施できなくなり、また剥離帯電が生じると塵等の付着によるその後の工程での不都合が生じることがある。
On the other hand, in the process of peeling the heat-resistant adhesive tape 2 for manufacturing semiconductor devices from the chip after resin sealing and resin curing, it is required to be lightly peeled, so it has high adhesiveness at high temperatures. However, the general pressure-sensitive pressure-sensitive adhesive has such problems that it is difficult to peel without being lightly peeled at the time of peeling, adhesive residue is generated as shown in FIG. 2, or peeling charging occurs.
Further, when peeling becomes difficult, it takes time, and thus productivity is lowered. When the adhesive residue 9 is generated, it becomes impossible to carry out subsequent steps such as electrode formation. Inconveniences in the process may occur.
 上記課題を解決するために、本発明は、基板レス半導体チップを樹脂封止する際に、貼着して使用されるチップ仮固定用粘着テープが、ウレタンポリマー成分とビニル系ポリマーとを含有した樹脂層の一方の面に、熱膨張性微小球を含有する熱膨張性粘着層を有することを特徴とする半導体装置製造用耐熱性粘着テープを用いて、金属製のリードフレームを用いない基板レス半導体チップを製造する方法を採用した。 In order to solve the above-described problems, the present invention provides a chip temporary fixing pressure-sensitive adhesive tape that is used by being stuck when resin-sealing a substrateless semiconductor chip contains a urethane polymer component and a vinyl polymer. Using a heat-resistant adhesive tape for manufacturing semiconductor devices, which has a heat-expandable adhesive layer containing heat-expandable microspheres on one side of the resin layer, and without using a metal lead frame A method of manufacturing a semiconductor chip was adopted.
 本発明は、金属製のリードフレームを用いない基板レス半導体パッケージの製造方法(例えばWLPの製造方法等)に使用されるチップ仮固定用粘着テープに関し、樹脂封止の際の圧力によりチップが指定の位置からずれることなく、封止後には特定温度以下の温度下で、封止樹脂に対する糊残りが発生することなく軽剥離可能な半導体装置製造用耐熱性粘着テープを提供することができるという効果を奏するものである。 The present invention relates to an adhesive tape for temporarily fixing a chip used in a substrate-less semiconductor package manufacturing method (for example, a WLP manufacturing method) that does not use a metal lead frame, and the chip is designated by pressure at the time of resin sealing. The effect that it is possible to provide a heat-resistant adhesive tape for manufacturing a semiconductor device that can be lightly peeled off at a temperature equal to or lower than a specific temperature after sealing without causing adhesive residue on the sealing resin. It plays.
基材レスパッケージ製造方法の模式図。The schematic diagram of a base material-less package manufacturing method. 半導体装置製造用耐熱性粘着テープを剥離する際に帯電及び糊残りが生じる図。The figure which a charge and adhesive residue generate | occur | produce when peeling the heat resistant adhesive tape for semiconductor device manufacture. 本発明の半導体装置製造用耐熱性粘着テープの断面図。Sectional drawing of the heat resistant adhesive tape for semiconductor device manufacture of this invention. せん断接着力試験機による試験の図。The figure of the test by a shear adhesion tester.
1:チップ
2:半導体装置製造用耐熱性粘着テープ
3:基板
4:封止樹脂
5:電極
6:ダイシングブレード
7:ダイシングリング
8:ダイシングテープ
9:糊残り
10:平滑な剥離シート
11:樹脂層
12:ゴム状有機弾性層
13:熱膨張性粘着剤層
1: Chip 2: Heat-resistant adhesive tape 3 for manufacturing semiconductor device 3: Substrate 4: Sealing resin 5: Electrode 6: Dicing blade 7: Dicing ring 8: Dicing tape 9: Residual residue 10: Smooth release sheet 11: Resin layer 12: Rubbery organic elastic layer 13: Thermally expandable pressure-sensitive adhesive layer
 本発明者らは、上記の課題を解決すべく、半導体装置製造用耐熱性粘着テープの材料、構成等について鋭意研究した。その結果、ウレタンポリマー成分とビニル系ポリマーとを含有した樹脂層の一方の面に、熱膨張性微小球を含有する熱膨張性粘着層を有することを特徴とする半導体装置製造用耐熱性粘着テープを使用することで、前記の課題を解決できることを見出し、本発明を完成するに至った。 In order to solve the above-mentioned problems, the present inventors have intensively studied the material, the configuration, etc. of the heat-resistant adhesive tape for manufacturing semiconductor devices. As a result, a heat-resistant adhesive tape for manufacturing semiconductor devices, comprising a thermally expandable adhesive layer containing thermally expandable microspheres on one surface of a resin layer containing a urethane polymer component and a vinyl polymer. It was found that the above-mentioned problems can be solved by using, and the present invention has been completed.
 以下に本発明の半導体装置製造用耐熱性粘着テープを説明する。
 図3に本発明に用いる半導体装置製造用耐熱性粘着テープ2を例示した。10は平滑な剥離シート、11は樹脂層、12がゴム状有機弾性層、13が熱膨張性粘着剤層である。
 ここで、該樹脂層及び該ゴム状有機弾性層はそれぞれ、複数の層から構成されていてもよい。
The heat-resistant adhesive tape for manufacturing semiconductor devices of the present invention will be described below.
FIG. 3 illustrates a heat resistant adhesive tape 2 for manufacturing a semiconductor device used in the present invention. 10 is a smooth release sheet, 11 is a resin layer, 12 is a rubber-like organic elastic layer, and 13 is a thermally expandable pressure-sensitive adhesive layer.
Here, each of the resin layer and the rubbery organic elastic layer may be composed of a plurality of layers.
(樹脂層)
 樹脂層11はウレタンポリマー成分とビニル系ポリマーとを含有した樹脂からなる層である。
(ウレタンポリマー)
 樹脂層に用いられるウレタンポリマーは、ポリオールとジイソシアネートとを反応させて得られる。ポリオールの水酸基とイソシアネートとの反応には、例えば、ジブチル錫ジラウレート、オクトエ酸錫、1,4-ジアザビシクロ(2,2,2)オクタン等の、ウレタン反応において一般的に使用される触媒を用いてもよい。
(Resin layer)
The resin layer 11 is a layer made of a resin containing a urethane polymer component and a vinyl polymer.
(Urethane polymer)
The urethane polymer used for the resin layer is obtained by reacting a polyol and diisocyanate. For the reaction between the hydroxyl group of the polyol and the isocyanate, for example, a catalyst generally used in a urethane reaction such as dibutyltin dilaurate, tin octoate, 1,4-diazabicyclo (2,2,2) octane is used. Also good.
 ポリオールとしては、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等を付加重合して得られるポリエーテルポリオール、あるいは上述の2価のアルコールとアジピン酸、アゼライン酸、セパチン酸等の2価の塩基酸との重縮合物からなるポリエステルポリオールや、アクリルポリオール、カーボネートポリオール、エポキシポリオール、カプロラクトンポリオール等が挙げられる。これらの中では、例えば、ポリオキシテトラメチレングリコール(PTMG)、ポリオキシプロピレングリコール(PPG)等のポリエーテルポリオール、非結晶性のポリエステルポリオール、非結晶性のポリカーボネートポリオール等が好ましく使用される。これらのポリオール類は単独あるいは併用して使用することができる。 Polyols include polyether polyols obtained by addition polymerization of ethylene oxide, propylene oxide, tetrahydrofuran, etc., or polycondensation of the above-mentioned dihydric alcohols with divalent basic acids such as adipic acid, azelaic acid, and sepatic acid. Examples include polyester polyols, acrylic polyols, carbonate polyols, epoxy polyols, and caprolactone polyols. Among these, for example, polyether polyols such as polyoxytetramethylene glycol (PTMG) and polyoxypropylene glycol (PPG), non-crystalline polyester polyols, non-crystalline polycarbonate polyols and the like are preferably used. These polyols can be used alone or in combination.
 ジイソシアネートとしては、芳香族、脂肪族、脂環族のジイソシアネート等が挙げられる。芳香族、脂肪族、脂環族のジイソシアネートとしては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、水添キシリレンジイソシアネート、イソホロンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,5-ナフチレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、ブタン-1,4-ジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、ジシクロヘキシルメタン-4,4-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、m-テトラメチルキシリレンジイソシアネート等が挙げられる。これらのジイソシアネートは単独あるいは併用で使用することができる。ウレタン反応性、アクリルとの相溶性等の観点から、ポリイソシアネートの種類、組合せ等を適宜選択することができる。 Examples of the diisocyanate include aromatic, aliphatic, and alicyclic diisocyanates. Aromatic, aliphatic, and alicyclic diisocyanates include tolylene diisocyanate, diphenylmethane diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate. 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, butane-1,4-diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4 -Diisocyanate, dicyclohexylmethane-4,4-diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, methyl Cyclohexane diisocyanate, m- tetramethylxylylene diisocyanate, and the like. These diisocyanates can be used alone or in combination. From the viewpoint of urethane reactivity, compatibility with acrylic, and the like, the type and combination of polyisocyanates can be appropriately selected.
 ウレタンポリマーを形成するための上記ポリオール成分と上記ジイソシアネート成分の使用量は特に限定されるものではないが、例えば、ポリオール成分の使用量は、ジイソシアネート成分に対し、NCO/OH(当量比)が1.0以上であることが好ましく、2.0以下であることがさらに好ましい。NCO/OHが1.0以上では、ウレタン分子鎖の末端官能基が水酸基となり、仮固定層の強度低下を防止できる。また、NCO/OHが2.0以下であれば、適度な伸びと強度を確保することができる。
 また、ウレタンポリマーの少なくとも一部がアクリロイル基末端ウレタンポリマーであることが望ましく、このようなアクリロイル基を有することにより、ビニル系ポリマーと架橋して凝集力を調整することが可能となる。
The amount of the polyol component and the diisocyanate component used to form the urethane polymer is not particularly limited. For example, the amount of the polyol component used is NCO / OH (equivalent ratio) of 1 with respect to the diisocyanate component. It is preferably 0.0 or more, and more preferably 2.0 or less. When NCO / OH is 1.0 or more, the terminal functional group of the urethane molecular chain becomes a hydroxyl group, and the strength of the temporary fixing layer can be prevented from being lowered. Moreover, if NCO / OH is 2.0 or less, moderate elongation and intensity | strength can be ensured.
In addition, it is desirable that at least a part of the urethane polymer is an acryloyl group-terminated urethane polymer. By having such an acryloyl group, it is possible to adjust the cohesive force by crosslinking with the vinyl polymer.
 本発明におけるウレタンポリマー成分の分子量は用いるポリオールやジイソシアネートの種類、NCO/OH比によって適宜決定することができる。その分子量は特に限定されないが、好ましくは数平均分子量(Mw)が5000以上、さらに好ましくは10000以上である。 The molecular weight of the urethane polymer component in the present invention can be appropriately determined according to the type of polyol or diisocyanate used and the NCO / OH ratio. The molecular weight is not particularly limited, but the number average molecular weight (Mw) is preferably 5000 or more, more preferably 10,000 or more.
 上記ウレタンポリマーに対し、本発明中のビニル系ポリマーとは別に水酸基含有アクリルモノマーを添加することが望ましい。水酸基含有アクリルモノマーを添加することにより、ウレタンポリマーの分子内にアクリロイル基を導入することができ、アクリルモノマーとの共重合性を付与することができる。水酸基含有アクリルモノマーとしては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等が用いられる。水酸基含有アクリルモノマーの使用量は、ウレタンポリマー100重量部に対して、0.1~10重量部であることが望ましく、さらに望ましくは0.1~5重量部である。 It is desirable to add a hydroxyl group-containing acrylic monomer to the urethane polymer separately from the vinyl polymer in the present invention. By adding a hydroxyl group-containing acrylic monomer, an acryloyl group can be introduced into the molecule of the urethane polymer, and copolymerizability with the acrylic monomer can be imparted. As the hydroxyl group-containing acrylic monomer, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxyhexyl (meth) acrylate, or the like is used. The amount of the hydroxyl group-containing acrylic monomer used is desirably 0.1 to 10 parts by weight, and more desirably 0.1 to 5 parts by weight with respect to 100 parts by weight of the urethane polymer.
(ビニル系ポリマー)
 本発明における樹脂層にて使用するビニル系ポリマーは、ビニルモノマーを構成するビニル化合物のみを重合することによって得てもよく、その際には、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合等のいずれの方式で行うこともできる。粘着剤層は半導体ウエハ等の汚染防止等の点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの重量平均分子量は、好ましくは30万以上、さらに好ましくは40万~300万程度である
 樹脂層は上記ウレタンポリマーと下記のビニル系ポリマーとのブレンドによって得てもよく、また、ウレタンポリマーとビニル系モノマーの混合物を調整し、次いでビニル系ポリマーを重合することにより得てもよい。
 なかでも、使用できるモノマーの種類やシート化の加工性等の点から、ビニル系モノマー単独あるいは2種以上の混合物中で、ポリオールとイソシアネートとを反応させてウレタンポリマーを形成し、得られたウレタンポリマーとビニル系モノマーとを含む混合物を、基材上に塗布し、放射線を照射して硬化させて、形成させることが好ましい。またビニル系モノマーとしては(メタ)アクリル系モノマーが好ましい。
(Vinyl polymer)
The vinyl polymer used in the resin layer in the present invention may be obtained by polymerizing only the vinyl compound constituting the vinyl monomer, and in this case, a single monomer or a mixture of two or more monomers is used for polymerization. It is obtained by attaching. The polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. The pressure-sensitive adhesive layer preferably has a low content of low molecular weight substances from the viewpoint of preventing contamination of semiconductor wafers and the like. In this respect, the weight average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3,000,000. The resin layer may be obtained by blending the urethane polymer with the following vinyl polymer. Alternatively, it may be obtained by preparing a mixture of a urethane polymer and a vinyl monomer and then polymerizing the vinyl polymer.
Among these, from the viewpoint of the types of monomers that can be used and the processability of sheeting, the urethane obtained by reacting a polyol and an isocyanate in a vinyl monomer alone or in a mixture of two or more to form a urethane polymer. It is preferable that a mixture containing a polymer and a vinyl monomer is applied on a substrate, cured by irradiation with radiation, and formed. The vinyl monomer is preferably a (meth) acrylic monomer.
 さらに上記のように、水酸基含有アクリルモノマーを使用することによりウレタンポリマーにアクリロイル基を導入した後にビニル系モノマーを重合することにより、該アクリロイル基がビニル基と重合してなり、該ウレタンポリマーと該ビニル系ポリマーが結合してなる樹脂とすることも可能である。 Furthermore, as described above, by introducing an acryloyl group into the urethane polymer by using a hydroxyl group-containing acrylic monomer, the vinyl monomer is polymerized, whereby the acryloyl group is polymerized with the vinyl group, and the urethane polymer and the It is also possible to use a resin formed by bonding a vinyl polymer.
 本発明におけるビニル系ポリマーはビニル系モノマーを重合してなるポリマーであり、そのビニル系モノマーとしては上記の通り(メタ)アクリル系モノマーが好ましく用いられ、その(メタ)アクリル系モノマーとしては、例えば、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、n-オクタデシル(メタ)アクリレート、アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、クロトン酸等のカルボキシル基含有モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレート等のヒドロキシル基含有モノマー;シクロへキシル(メタ)アクリレート、イソボルニルアクリレート等の脂環式構造を有するモノマー;無水マレイン酸、無水イタコン酸等の酸無水物モノマー;2-アクリルアミド-2-メチルプロパンスルホン酸、スルホプロピルアクリレート等のスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェート等のリン酸含有モノマー等が挙げられる。また、(メタ)アクリルアミド、N-メチロールアクリルアミド等のN-置換(メタ)アクリルアミド等のアミド系モノマー、N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド等のスクシンイミド系モノマー、酢酸ビニル、N-ビニルピロリドン、N-ビニルカルボン酸アミド類、N-ビニルカプロラクタム等のビニル系モノマー;アクリロニトリル、メタクリロニトリル等のシアノアクリレート系モノマー、(メタ)アクリル酸グリシジル、テトラヒドロフルフリル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレート、2-メトキシエチルアクリレート等のアクリル酸エステル系モノマー;メチル(メタ)アクリレートやオクタデシル(メタ)アクリレート等のモノマーを1種又は2種以上を用いることができる。これらの(メタ)アクリル系モノマーは、ウレタンとの相溶性、放射線等の光硬化時の重合性や、得られる高分子量体の特性を考慮して、種類、組合せ、使用量等が適宜決定される。
 特に、加温時と剥離時の粘着力を考慮して、ビニル系ポリマーがカルボキシル基を含有することができるように、カルボキシル基を有するモノマーを使用することが望ましく、さらに、(メタ)アクリル酸等の極性基を持つモノマーを使用すると加温時と冷却剥離時の粘着力のバランスがよい。
The vinyl polymer in the present invention is a polymer obtained by polymerizing a vinyl monomer. As the vinyl monomer, a (meth) acrylic monomer is preferably used as described above. As the (meth) acrylic monomer, for example, , Ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-butyl (meth) acrylate, n-octyl (meta ) Acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, dodecyl (meth) acrylate, n-octadecyl (meth) acrylate, acrylic acid, methacrylic acid, carboxyethyl acrylate Carboxyl group-containing monomers such as carboxypentyl acrylate, itaconic acid, maleic acid, and crotonic acid; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) -methyl acrylate Hydroxyl group-containing monomers such as cyclohexyl (meth) acrylate, monomers having an alicyclic structure such as isobornyl acrylate, acid anhydride monomers such as maleic anhydride and itaconic anhydride; 2-acrylamido-2-methyl propane Sulfonic acids, sulfonic acid group-containing monomers such as sulfopropyl acrylate; 2-hydroxyethyl acryloyl phosphate phosphate-containing monomers such like. In addition, amide monomers such as N-substituted (meth) acrylamide such as (meth) acrylamide and N-methylolacrylamide, N- (meth) acryloyloxymethylene succinimide, N- (meth) acryloyl-6-oxyhexamethylene succinimide, Succinimide monomers such as N- (meth) acryloyl-8-oxyoctamethylenesuccinimide, vinyl monomers such as vinyl acetate, N-vinylpyrrolidone, N-vinylcarboxylic acid amides, N-vinylcaprolactam; acrylonitrile, methacrylonitrile Cyanoacrylate monomers such as glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate , Acrylic ester monomers such as fluorine (meth) acrylate, silicone (meth) acrylate, 2-methoxyethyl acrylate, etc .; one or more monomers such as methyl (meth) acrylate and octadecyl (meth) acrylate are used be able to. These (meth) acrylic monomers are appropriately determined in kind, combination, amount of use, etc. in consideration of compatibility with urethane, polymerizability at the time of photocuring such as radiation, and characteristics of the high molecular weight obtained. The
In particular, it is desirable to use a monomer having a carboxyl group so that the vinyl polymer can contain a carboxyl group in consideration of the adhesive strength at the time of heating and peeling, and (meth) acrylic acid If a monomer having a polar group such as is used, the balance of the adhesive force during heating and cooling peeling is good.
 (メタ)アクリル酸の添加量としては好ましくはウレタンポリマーとビニル系ポリマーの全量を100重量部としたときに、5重量部以上80重量部未満であることが好ましく、さらに好ましくは10重量部以上70重量部未満である。5重量部以上とすることで加温時と冷却剥離時の粘着力のバランスが得られやすく、また80重量部未満にすると柔軟性を備えて加温時の粘着力が向上する。 The addition amount of (meth) acrylic acid is preferably 5 parts by weight or more and less than 80 parts by weight, and more preferably 10 parts by weight or more when the total amount of urethane polymer and vinyl polymer is 100 parts by weight. Less than 70 parts by weight. By setting the amount to 5 parts by weight or more, it is easy to obtain a balance between the adhesive force at the time of heating and cooling peeling, and when it is less than 80 parts by weight, the adhesive force at the time of heating is improved with flexibility.
 本発明においては、特性を損なわない範囲内で他の多官能モノマーを添加することもできる。多官能モノマーとしては、ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、ジペンタエリスリトールヘキサアクリレート等が挙げられる。 In the present invention, other polyfunctional monomers can be added as long as the characteristics are not impaired. Examples of the polyfunctional monomer include hexanediol diacrylate, trimethylolpropane triacrylate, dipentaerythritol hexaacrylate, and the like.
(ウレタンポリマーとビニル系ポリマーの含有比率)
 本発明における樹脂層はウレタンポリマーとビニル系ポリマーを有効成分として含有する。ウレタンポリマーとビニル系ポリマーの比率は特に限定されないが、ウレタンポリマーとビニル系ポリマーの合計量に対し、ウレタンポリマーの占める重量は10%以上90%以下が好ましく、さらに好ましくは20%以上80%未満である。ウレタンポリマーの割合が10%以上であると高温時の弾性率が低くならず十分な加工精度を得ることができる。また90%以下ではシート作製時のハンドリング性及び生産性が良好である。
(Content ratio of urethane polymer and vinyl polymer)
The resin layer in the present invention contains a urethane polymer and a vinyl polymer as active ingredients. The ratio of the urethane polymer and the vinyl polymer is not particularly limited, but the weight of the urethane polymer is preferably 10% or more and 90% or less, and more preferably 20% or more and less than 80% with respect to the total amount of the urethane polymer and the vinyl polymer. It is. When the proportion of the urethane polymer is 10% or more, the elastic modulus at high temperature is not lowered and sufficient processing accuracy can be obtained. On the other hand, if it is 90% or less, the handling property and productivity at the time of producing the sheet are good.
(樹脂層形成方法)
 本発明の樹脂層は、重合によりビニル系ポリマーを構成するビニル系モノマー単独あるいは2種以上の混合物中で、ポリオールとイソシアネートとを反応させてウレタンポリマーを形成し、ウレタンポリマーと該ビニル系モノマーとを含む混合物を、支持基材上に塗布し、光重合開始剤の種類等に応じてα線、β線、γ線、中性子線、電子線等の電離性放射線や紫外線等の放射線、可視光等を照射することにより、硬化させて得ることができる。
 また、ウレタンポリマーとビニル系ポリマーとをブレンドし、これを支持基材上に塗布・乾燥させることによって形成することも可能である。
(Resin layer forming method)
In the resin layer of the present invention, a vinyl monomer constituting a vinyl polymer by polymerization is used alone or in a mixture of two or more to form a urethane polymer by reacting a polyol and an isocyanate, and the urethane polymer and the vinyl monomer Is applied onto a support substrate, and depending on the type of photopolymerization initiator, ionizing radiation such as α rays, β rays, γ rays, neutron rays, electron rays, radiation such as ultraviolet rays, visible light, etc. It can be obtained by being cured by irradiating the like.
Moreover, it is also possible to form by blending a urethane polymer and a vinyl polymer, and applying and drying this on a support substrate.
 また、上記水酸基含有アクリルモノマーを使用する場合には、重合によりビニル系ポリマーを構成するビニル系モノマー単独あるいは2種以上の混合物中で、ポリオールとイソシアネートとを反応させてウレタンポリマーを形成した後に、水酸基含有アクリルモノマーを添加してウレタンポリマーと反応させ、得られた混合物を、支持基材上に塗布し、光重合開始剤の種類等に応じてα線、β線、γ線、中性子線、電子線等の電離性放射線や紫外線等の放射線、可視光等を照射することにより、硬化させて得ることができる。 Further, when using the above hydroxyl group-containing acrylic monomer, after forming a urethane polymer by reacting a polyol and an isocyanate in a vinyl monomer alone or in a mixture of two or more constituting a vinyl polymer by polymerization, A hydroxyl group-containing acrylic monomer is added to react with the urethane polymer, and the resulting mixture is applied onto a support substrate, and α-rays, β-rays, γ-rays, neutron rays, depending on the type of photopolymerization initiator, It can be obtained by curing by irradiating ionizing radiation such as an electron beam, radiation such as ultraviolet rays, visible light or the like.
 具体的には、ポリオールをビニル系モノマーに溶解させた後、ジイソシアネート等を添加してポリオールと反応させて粘度調整を行い、これを支持基材等に塗工した後、低圧水銀ランプ等を用いて硬化させることにより、仮固定シートを得ることもできる。この方法では、ビニル系モノマーをウレタン合成中に一度に添加してもよいし、何回かに分割して添加してもよい。また、ジイソシアネートをビニル系モノマーに溶解させた後、ポリオールを反応させてもよい。この方法によれば、分子量が限定されるということはなく、高分子量のポリウレタンを生成することもできるので、最終的に得られるウレタンの分子量を任意の大きさに設計することができる。 Specifically, after the polyol is dissolved in the vinyl monomer, the viscosity is adjusted by adding diisocyanate or the like and reacting with the polyol, and this is applied to a support base material, and then a low-pressure mercury lamp or the like is used. By temporarily curing, a temporarily fixed sheet can be obtained. In this method, the vinyl monomer may be added all at once during the urethane synthesis, or may be added in several divided portions. Alternatively, the polyol may be reacted after the diisocyanate is dissolved in the vinyl monomer. According to this method, the molecular weight is not limited and a high molecular weight polyurethane can be produced, so that the molecular weight of the finally obtained urethane can be designed to an arbitrary size.
 この際、酸素による重合阻害を避けるために、支持基材上に塗布したウレタンポリマーとビニル系モノマーとの混合物の上に、さらに剥離処理された基材をのせて、酸素を遮断してもよいし、不活性ガスを充填した容器内に剥離ライナーを入れて、酸素濃度を下げてもよい。 At this time, in order to avoid polymerization inhibition due to oxygen, oxygen may be blocked by placing a further peeled substrate on a mixture of urethane polymer and vinyl monomer coated on a supporting substrate. The oxygen concentration may be lowered by putting a release liner in a container filled with an inert gas.
 また、塗工の粘度調整のため、少量の溶剤を加えてもよい。溶剤としては、通常使用される溶剤の中から適宜選択することができるが、例えば、酢酸エチル、トルエン、クロロホルム、ジメチルホルムアミド等が挙げられる。 Also, a small amount of solvent may be added to adjust the coating viscosity. The solvent can be appropriately selected from commonly used solvents, and examples thereof include ethyl acetate, toluene, chloroform, dimethylformamide and the like.
 本発明において、放射線等の種類や照射に使用されるランプの種類等は適宜選択することができ、蛍光ケミカルランプ、ブラックライト、殺菌ランプ等の低圧ランプや、メタルハライドランプ、高圧水銀ランプ等の高圧ランプ等を用いることができる。
 紫外線等の照射量は、要求される仮固定層の特性に応じて、任意に設定することができる。一般的には、紫外線の照射量は、50-5000mJ/cm2、好ましくは100-4000mJ/cm2、さらに好ましくは100-3000mJ/cm2である。紫外線の照射量が50~5000mJ/cm2の範囲であれば劣化せずに十分な重合率が得られる。
In the present invention, the type of radiation and the type of lamp used for irradiation can be selected as appropriate, such as a low-pressure lamp such as a fluorescent chemical lamp, a black light and a sterilization lamp, a high-pressure such as a metal halide lamp and a high-pressure mercury lamp. A lamp or the like can be used.
The irradiation amount of ultraviolet rays or the like can be arbitrarily set according to the required characteristics of the temporary fixing layer. In general, the irradiation amount of ultraviolet rays is 50-5000 mJ / cm 2 , preferably 100-4000 mJ / cm 2 , more preferably 100-3000 mJ / cm 2 . If the irradiation amount of ultraviolet rays is in the range of 50 to 5000 mJ / cm 2 , a sufficient polymerization rate can be obtained without deterioration.
 ウレタンポリマーとビニル系モノマーとを主成分とする混合物には、光重合開始剤が含まれる。光重合開始剤としては、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンゾインエーテル;アニソールメチルエーテル等の置換ベンゾインエーテル;2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニルケトン等の置換アセトフェノン;2-メチル-2-ヒドロキシプロピオフェノン等の置換アルファーケトール;2-ナフタレンスルフォニルクロライド等の芳香族スルフォニルクロライド;1-フェニル-1,1-プロパンジオン-2-(o-エトキシカルボニル)-オキシム等の光活性オキシム;2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド等が挙げられる。 The mixture mainly composed of a urethane polymer and a vinyl monomer contains a photopolymerization initiator. Examples of photopolymerization initiators include benzoin ethers such as benzoin methyl ether, benzoin isopropyl ether, and 2,2-dimethoxy-1,2-diphenylethane-1-one; substituted benzoin ethers such as anisole methyl ether; Substituted acetophenones such as ethoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxy-cyclohexyl-phenylketone; substituted alpha-ketols such as 2-methyl-2-hydroxypropiophenone; 2-naphthalenesulfonyl chloride, etc. Aromatic sulfonyl chlorides; photoactive oximes such as 1-phenyl-1,1-propanedione-2- (o-ethoxycarbonyl) -oxime; 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide And acylphosphine oxides such as bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.
 本発明における樹脂層の厚みは、目的等に応じて適宜選択することができるが、一般的には5~500μm、好ましくは10~100μm程度である。
 本発明の樹脂層は、175℃におけるシリコンチップに対するせん断接着力が100g/10mm2以上であり、好ましくは150g/10mm2以上、さらに好ましくは200g/10mm2以上、さらには300g/10mm2以上であり、かつ、175℃加熱後の封止樹脂に対する90°引き剥がし粘着力が0.50N/20mm以下、好ましくは0.40N/20mm以下、さらに好ましくは0.30N/20mm以下、さらには0.20N/20mm以下である。
 通常、樹脂の封止・硬化工程は約175℃付近の温度下で行われることが多く、このようなせん断接着力が100g/10mm2以上で、かつ引き剥がし粘着力が0.50N/20mm以下である場合には、半導体チップを担持して樹脂による封止・硬化時に確実に該半導体チップはずれることなく固定することができる。
 さらにその後、特定温度まで冷却し、個化したパッケージから樹脂層を剥がす際には、封止樹脂に対する90°フィルム引き剥がし粘着力が小さい程、剥離に要する力がより小さくて済むことにより、該パッケージを破損等することがない。
The thickness of the resin layer in the present invention can be appropriately selected according to the purpose and the like, but is generally about 5 to 500 μm, preferably about 10 to 100 μm.
The resin layer of the present invention has a shear adhesive strength to a silicon chip at 175 ° C. of 100 g / 10 mm 2 or more, preferably 150 g / 10 mm 2 or more, more preferably 200 g / 10 mm 2 or more, further 300 g / 10 mm 2 or more. And 90 ° peel-off adhesive strength to the sealing resin after heating at 175 ° C. is 0.50 N / 20 mm or less, preferably 0.40 N / 20 mm or less, more preferably 0.30 N / 20 mm or less, and further 20 N / 20 mm or less.
Usually, the resin sealing / curing step is often performed at a temperature of about 175 ° C., and such a shear adhesive strength is 100 g / 10 mm 2 or more and a peeling adhesive strength is 0.50 N / 20 mm or less. In this case, the semiconductor chip can be supported and securely fixed without being displaced at the time of sealing and curing with resin.
Further, after cooling to a specific temperature and peeling off the resin layer from the individualized package, the smaller the 90 ° film peeling adhesive force to the sealing resin, the smaller the force required for peeling. The package will not be damaged.
 本発明において、半導体装置製造用接着シートの樹脂層は、40℃以上の特定の温度において、粘着力を発現し、その特定の温度以下では粘着力を消失する性質を有することが好ましい。さらに好ましくは70℃以上の特定の温度において粘着力を有し、特に好ましくは100℃以上の特定の温度において粘着力を有することが好ましい。
 40℃以上の特定の温度において粘着力を発現するとは、40℃以上のある温度において初めて粘着力を発現し、そのある温度未満では粘着力を発現しないことを意味し、結局少なくとも40℃未満の温度においては粘着力を示さないことを意味する。このような温度により粘着力が変化する特性によって、熱膨張性微小球を含有する熱膨張性粘着層の発泡時には確実に半導体チップを半導体装置製造用基板レス耐熱性粘着テープに確実に固定させることが可能となると共に、製品を加熱時以外においては樹脂層から取り出しやすくなる。
 本発明における樹脂層の175℃での貯蔵弾性率G'は1.0×105Pa以上であり、好ましくは2.0×105Pa以上、さらに好ましくは3.0×105Pa以上、さらには、好ましくは4.0×105Pa以上である。
 貯蔵弾性率G'が1.0×105Pa以上であれば、チップが樹脂層に埋まり込むスタンドオフが小さく、その後の工程での歩留まりが低下することはない。
In the present invention, it is preferable that the resin layer of the adhesive sheet for manufacturing a semiconductor device has a property of developing an adhesive force at a specific temperature of 40 ° C. or higher and losing the adhesive force below the specific temperature. More preferably, it has an adhesive strength at a specific temperature of 70 ° C or higher, and particularly preferably has an adhesive strength at a specific temperature of 100 ° C or higher.
The expression of the adhesive strength at a specific temperature of 40 ° C. or higher means that the adhesive strength is first expressed at a certain temperature of 40 ° C. or higher, and does not exhibit the adhesive strength at a temperature lower than the certain temperature. It means that it does not show adhesive strength at temperature. Due to the characteristic that the adhesive force changes depending on the temperature, the semiconductor chip is securely fixed to the substrate-less heat-resistant adhesive tape for manufacturing semiconductor devices when the thermally expandable adhesive layer containing the thermally expandable microspheres is foamed. And the product can be easily taken out from the resin layer except during heating.
The storage elastic modulus G ′ at 175 ° C. of the resin layer in the present invention is 1.0 × 10 5 Pa or more, preferably 2.0 × 10 5 Pa or more, more preferably 3.0 × 10 5 Pa or more, Furthermore, it is preferably 4.0 × 10 5 Pa or more.
If the storage elastic modulus G ′ is 1.0 × 10 5 Pa or more, the stand-off in which the chip is embedded in the resin layer is small, and the yield in the subsequent process does not decrease.
(ゴム状有機弾性層)
 ゴム状有機弾性層12は、半導体装置製造用耐熱性粘着テープを被着体に接着する際にその表面が被着体の表面形状に良好に追従して大きい接着面積を提供する働きと、半導体装置製造用耐熱性粘着テープより被着体を剥離するために熱膨張性粘着剤層13を加熱して発泡及び/又は膨張させる際に半導体装置製造用耐熱性粘着テープの面方向における発泡及び/又は膨張の拘束を少なくして熱膨張性粘着剤層13が三次元的構造変化することによるウネリ構造形成を助長する働きをするものも含まれる。
(Rubber organic elastic layer)
The rubber-like organic elastic layer 12 has a function of providing a large adhesion area by following the surface shape of the adherend when the heat-resistant pressure-sensitive adhesive tape for manufacturing a semiconductor device is adhered to the adherend. When the thermally expandable pressure-sensitive adhesive layer 13 is heated and foamed and / or expanded in order to peel off the adherend from the heat-resistant pressure-sensitive adhesive tape for manufacturing the device, foaming in the surface direction of the heat-resistant pressure-sensitive adhesive tape for manufacturing the semiconductor device and / or Or what restrains expansion | swelling restraint and the function which promotes the function of encouraging the formation of a jelly structure by the three-dimensional structural change of the heat-expandable adhesive layer 13 is also included.
 ゴム状有機弾性層12は必要に応じて設けることができるが、設ける場合には、その特性を十分に発揮させるために、その厚さを5~50μmとすることが好ましい。
 ゴム状有機弾性層12は、ASTM D-2240のD型シュアーD型硬度に基づいて50以下、好ましくは40以下の天然ゴムや合成ゴム、又はゴム弾性を有する合成樹脂により形成することができる。
The rubbery organic elastic layer 12 can be provided as necessary, but when it is provided, the thickness is preferably 5 to 50 μm in order to sufficiently exhibit its characteristics.
The rubbery organic elastic layer 12 can be formed of natural rubber or synthetic rubber of 50 or less, preferably 40 or less, based on ASTM D-2240 D-type Sure D-type hardness, or a synthetic resin having rubber elasticity.
 前記の合成ゴム又は合成樹脂としては、例えばニトリル系、ジエン系、アクリル系等の合成ゴム、ポリオレフィン系やポリエステル系の如き熱可塑性エラストマー、エチレン-酢酸ビニル共重合体、ポリウレタン、ポリブタジエン、軟質ポリ塩化ビニル等のゴム弾性を有する合成樹脂が挙げられる。なお、ポリ塩化ビニルの如く本質的には硬質系のポリマーであっても可塑剤や柔軟剤等の配合剤との組み合わせでゴム弾性をもたせたものも本発明では用いうる。
 また、ゴム系や樹脂等の一般的に知られる感圧接着剤により形成することもできる。
Examples of the synthetic rubber or synthetic resin include nitrile, diene, and acrylic synthetic rubbers, thermoplastic elastomers such as polyolefins and polyesters, ethylene-vinyl acetate copolymers, polyurethane, polybutadiene, and soft polychlorinated polymers. Examples thereof include synthetic resins having rubber elasticity such as vinyl. It should be noted that an essentially hard polymer such as polyvinyl chloride having rubber elasticity in combination with a compounding agent such as a plasticizer or a softener can be used in the present invention.
Further, it can be formed by a generally known pressure-sensitive adhesive such as rubber or resin.
 感圧接着剤としては、ゴム系感圧接着剤、アクリル系感圧接着剤、スチレン・共役ジエンブロック共重合体系感圧接着剤等の適宜なものを用いることができる。また、融点が約200℃以下等の熱溶融性樹脂を含有してクリープ性を改善したもの等も用いうる。
 なお、感圧接着剤は、帯電防止剤、架橋剤、粘着付与剤、可塑剤、充填剤、老化防止剤等の適宜な添加剤を配合したものであってもよい。
As the pressure sensitive adhesive, an appropriate material such as a rubber pressure sensitive adhesive, an acrylic pressure sensitive adhesive, a styrene / conjugated diene block copolymer based pressure sensitive adhesive, or the like can be used. In addition, a resin containing a heat-meltable resin having a melting point of about 200 ° C. or lower and having improved creep properties can be used.
The pressure-sensitive adhesive may be a mixture of appropriate additives such as an antistatic agent, a crosslinking agent, a tackifier, a plasticizer, a filler, and an anti-aging agent.
 より具体的には、例えば、天然ゴムや合成ゴムをベースポリマーとするゴム系感圧接着剤、メチル基、エチル基、プロピル基、ブチル基、2-エチルヘキシル基、イソオクチル基、イソノニル基、イソデシル基、ドデシル基、ラウリル基、トリデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基の如き通例、炭素数が20以下のアルキル基を有するアクリル酸ないしメタクリル酸等のアクリル酸系アルキルエステル、アクリル酸、メタクリル酸、イタコン酸、アクリル酸ヒドロキシエチル、メタクリル酸ヒドロキシエチル、アクリル酸ヒドロキシプロピル、メタクリル酸ヒドロキシプロピル、N-メチロールアクリルアミド、アクリロニトリル、メタクリロニトリル、アクリル酸グリシジル、メタクリル酸グリシジル、酢酸ビニル、スチレン、イソプレン、ブタジエン、イソブチレン、ビニルエーテル等を主成分とするアクリル系ポリマーをベースポリマーとするアクリル系感圧接着剤等が挙げられる。 More specifically, for example, a rubber-based pressure-sensitive adhesive based on natural rubber or synthetic rubber, methyl group, ethyl group, propyl group, butyl group, 2-ethylhexyl group, isooctyl group, isononyl group, isodecyl group Acrylic acid such as acrylic acid or methacrylic acid having an alkyl group having 20 or less carbon atoms, typically dodecyl group, lauryl group, tridecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group Alkyl ester, acrylic acid, methacrylic acid, itaconic acid, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, N-methylolacrylamide, acrylonitrile, methacrylonitrile, acrylic acid Rishijiru, glycidyl methacrylate, vinyl acetate, styrene, isoprene, butadiene, isobutylene, acrylic pressure sensitive adhesive or the like to an acrylic polymer as a base polymer consisting mainly of vinyl ether.
(熱膨張性粘着剤層)
 熱膨張性粘着剤層13を形成する感圧接着剤としては、加熱時に熱膨張性微小球の発泡及び/又は膨張を許容することが必要であり、上記のゴム状有機弾性層にて使用できるゴム系材料や(メタ)アクリル系樹脂等をベースとする公知の感圧接着剤、好ましくは熱膨張性微小球の発泡及び/又は膨張を可及的に拘束しない程度の弾性を有するものが用いられる。
 熱発泡型粘着剤は、上記一般的な感圧性粘着剤に熱膨張性微粒子が配合されたものである。熱発泡型粘着剤は、熱による熱膨張性微粒子の発泡により、接着面積が減少して剥離が容易になるものであり、熱膨張性微粒子の平均粒子径は1μm~25μm程度のものが好ましい。より好ましくは5μm~15μmであり、特に10μm程度のものが好ましい。 また上記熱膨張性粘着剤層には、公知の樹脂等の粘着付与剤、可塑剤、顔料、充填剤、導電剤、帯電防止剤等が適宜配合され、他官能性エポキシ化合物、又は、イソシアネート化合物、アジリジン化合物、メラミン樹脂、尿素樹脂、無水化合物、ポリアミン、カルボキシル基含有ポリマー等の架橋剤により架橋される。
(Thermal expansion adhesive layer)
The pressure-sensitive adhesive forming the heat-expandable pressure-sensitive adhesive layer 13 needs to allow foaming and / or expansion of the heat-expandable microspheres during heating, and can be used in the rubbery organic elastic layer. A known pressure-sensitive adhesive based on a rubber-based material or (meth) acrylic resin or the like, preferably one having elasticity that does not restrain the expansion and / or expansion of thermally expandable microspheres as much as possible. It is done.
The heat-foaming pressure-sensitive adhesive is obtained by blending thermally expandable fine particles with the above general pressure-sensitive pressure-sensitive adhesive. The heat-expandable pressure-sensitive adhesive is such that the adhesive area decreases due to foaming of the heat-expandable fine particles due to heat, and peeling becomes easy. The average particle diameter of the heat-expandable fine particles is preferably about 1 μm to 25 μm. More preferably, it is 5 μm to 15 μm, particularly about 10 μm. Further, the heat-expandable pressure-sensitive adhesive layer is appropriately mixed with a tackifier such as a known resin, a plasticizer, a pigment, a filler, a conductive agent, an antistatic agent, etc., and an other functional epoxy compound or an isocyanate compound It is crosslinked with a crosslinking agent such as an aziridine compound, a melamine resin, a urea resin, an anhydrous compound, a polyamine, or a carboxyl group-containing polymer.
 熱膨張性粘着剤層13は、粘着剤に熱膨張性微小球を配合することにより形成することができる。熱膨張性微小球としては、例えばイソブタン、プロパン、ペンタンの如く容易にガス化して熱膨張性を示す適宜な物質をコアセルベーション法や界面重合法等で殻形成物質内に内包させた熱膨張性微小球を用いることができる。用いる熱膨張性微小球は、熱膨張性微小球の体積膨張倍率が5倍以上、好ましくは10倍以上のものが望ましい。
 なお、熱膨張性微小球を形成する殻形成物質としては、例えば塩化ビニリデン-アクリロニトリル共重合体、ポリビニルアルコール、ポリビニルブチラール、ポリメチルメタクリレート、ポリアクリロニトリル、ポリ塩化ビニリデン、ポリスルホン等が一般的であるが、本発明においては熱溶融性物質や熱膨張で破壊する物質等からなっていればよい。熱膨張性微小球は、上記粘着剤との分散混合性に優れている等の利点も有する。熱膨張性微小球の市販品としては、例えば、マイクロスフェアー(商品名:松本油脂製薬(株)製)等が挙げられる。
The heat-expandable pressure-sensitive adhesive layer 13 can be formed by blending heat-expandable microspheres with the pressure-sensitive adhesive. Thermally expandable microspheres include, for example, thermal expansion in which a suitable material showing thermal expansion properties such as isobutane, propane and pentane is encapsulated in a shell-forming material by a coacervation method or an interfacial polymerization method. Microspheres can be used. The heat-expandable microspheres used have a volume expansion ratio of 5 times or more, preferably 10 times or more of the heat-expandable microspheres.
Examples of shell forming substances that form thermally expandable microspheres are generally vinylidene chloride-acrylonitrile copolymer, polyvinyl alcohol, polyvinyl butyral, polymethyl methacrylate, polyacrylonitrile, polyvinylidene chloride, polysulfone, and the like. In the present invention, it may be made of a hot-melt material or a material that is destroyed by thermal expansion. Thermally expandable microspheres also have advantages such as excellent dispersibility with the pressure-sensitive adhesive. Examples of commercially available products of thermally expandable microspheres include microspheres (trade name: manufactured by Matsumoto Yushi Seiyaku Co., Ltd.).
 熱膨張性微小球の配合量は、熱膨張性粘着剤層13を膨張(発泡)させる程度や接着力を低下させる程度に応じて適宜に決定してよい。一般には、ベースポリマー100重量部あたり1~150重量部、好ましくは25~100重量部配合される。熱膨張性粘着剤層の厚さは、5~100μm、好ましくは15~50μmを用いる。
 本発明の半導体装置製造用耐熱性粘着テープ2を被着体より容易に剥離できるようにするための加熱処理条件は、被着体の表面状態や熱膨張性微小球の種類等による接着面積の減少性、基材や被着体の耐熱性や加熱方法等の条件により決められるが、一般的な条件は100~250℃、1~90秒間(ホットプレート等)又は5~15分間(熱風乾燥器等)であるが、本用途においては、樹脂封止温度が約175度程度であることから、200~250℃、1~90秒間(ホットプレート等)又は1~15分間(熱風乾燥器等)であることが望ましい。
The blending amount of the heat-expandable microspheres may be appropriately determined according to the degree to which the heat-expandable pressure-sensitive adhesive layer 13 is expanded (foamed) or the degree to which the adhesive force is reduced. In general, 1 to 150 parts by weight, preferably 25 to 100 parts by weight are blended per 100 parts by weight of the base polymer. The thickness of the heat-expandable pressure-sensitive adhesive layer is 5 to 100 μm, preferably 15 to 50 μm.
The heat treatment conditions for enabling the heat-resistant adhesive tape 2 for manufacturing a semiconductor device of the present invention to be easily peeled off from the adherend are the adhesion area depending on the surface state of the adherend and the type of thermally expandable microspheres. Decrease, heat resistance of substrate and adherend, heating method, etc., but general conditions are 100-250 ° C, 1-90 seconds (hot plate, etc.) or 5-15 minutes (hot air drying) However, in this application, since the resin sealing temperature is about 175 ° C., 200 to 250 ° C., 1 to 90 seconds (hot plate, etc.) or 1 to 15 minutes (hot air dryer, etc.) ) Is desirable.
(平滑な剥離シート)
 平滑な剥離シート10は、基材フィルムの片面に剥離剤層を形成してなるシートであり、本発明の半導体装置製造用耐熱性粘着テープ2を使用する前に各面の粘着剤層を露出させるために剥離されるシートである。
 剥離剤層は、接する粘着剤に応じて長鎖アルキル基系、フッ素樹脂系、シリコーン樹脂系等の公知の剥離剤層から適宜選択して得ることができる。
 この剥離シートは、樹脂層や熱膨張性粘着剤層を形成させる際の土台として使用することもでき、また、形成された樹脂層や熱膨張性粘着剤層表面に積層させて使用してもよい。
(Smooth release sheet)
The smooth release sheet 10 is a sheet formed by forming a release agent layer on one side of a base film, and the adhesive layer on each side is exposed before using the heat-resistant adhesive tape 2 for manufacturing a semiconductor device of the present invention. It is a sheet which is peeled to make it happen.
The release agent layer can be appropriately selected from known release agent layers such as a long chain alkyl group, a fluororesin, and a silicone resin depending on the pressure sensitive adhesive.
This release sheet can also be used as a base when forming a resin layer or a heat-expandable pressure-sensitive adhesive layer, or can be used by being laminated on the surface of the formed resin layer or heat-expandable pressure-sensitive adhesive layer. Good.
 基材フィルムとしては公知のものを使用でき、例えばポリエーテルエーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート、ポリエチレンフィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン-酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン-(メタ)アクリル酸共重合体フィルム、エチレン-(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、及びポリカーボネートフィルム等のプラスチックフィルム等から選択することが可能である。
 使用できる剥離剤層は、フッ素化されたシリコーン樹脂系剥離剤、フッ素樹脂系剥離剤、シリコーン樹脂系剥離剤、ポリビニルアルコール系樹脂、ポリプロピレン系樹脂、長鎖アルキル化合物等の公知の剥離剤を、粘着剤層の樹脂に応じて選択して含有させてなる層である。
As the base film, known ones can be used, for example, polyetheretherketone, polyetherimide, polyarylate, polyethylene naphthalate, polyethylene film, polypropylene film, polybutene film, polybutadiene film, polymethylpentene film, polyvinyl chloride film. , Vinyl chloride copolymer film, polyethylene terephthalate film, polybutylene terephthalate film, polyurethane film, ethylene-vinyl acetate copolymer film, ionomer resin film, ethylene- (meth) acrylic acid copolymer film, ethylene- (meth) Acrylic ester copolymer film, polystyrene film, and plastic film such as polycarbonate film can be selected. That.
The release agent layer that can be used is a known release agent such as a fluorinated silicone resin release agent, a fluorine resin release agent, a silicone resin release agent, a polyvinyl alcohol resin, a polypropylene resin, a long chain alkyl compound, It is a layer selected and contained according to the resin of the pressure-sensitive adhesive layer.
(半導体装置製造用耐熱性粘着テープの製造方法)
 本発明の半導体装置製造用耐熱性粘着テープ2は、一般的な製造方法により製造することができる。例えば、樹脂層、ゴム状有機弾性層12、熱膨張性粘着剤層13のそれぞれを構成する組成物を所定の溶剤に溶解させて塗布液を調製し、これらの塗布液を、剥離性を有するセパレータ等の樹脂層上に目的とする半導体装置製造用耐熱性粘着テープ2の層構成となるように塗布した後、その塗布層を所定条件下で加熱・乾燥することを順に行う。
(Method for producing heat-resistant adhesive tape for semiconductor device production)
The heat-resistant adhesive tape 2 for manufacturing a semiconductor device of the present invention can be manufactured by a general manufacturing method. For example, a coating liquid is prepared by dissolving a composition constituting each of the resin layer, the rubbery organic elastic layer 12, and the thermally expandable pressure-sensitive adhesive layer 13 in a predetermined solvent, and these coating liquids have releasability. After apply | coating so that it may become the layer structure of the target heat resistant adhesive tape 2 for semiconductor device manufacture on resin layers, such as a separator, the application layer is heated and dried in order on predetermined conditions.
 また、樹脂層、ゴム状有機弾性層12、熱膨張性粘着剤層13を剥離性フィルム等に流延する等により単体のフィルムを作成し、これらを順に積層させてもよい。ここで、溶剤としては特に限定されないが、構成材料の溶解性が良好な点を考慮すると、メチルエチルケトン等のケトン系溶剤が好適に用いられる。 Alternatively, a single film may be prepared by casting the resin layer, the rubbery organic elastic layer 12 and the heat-expandable pressure-sensitive adhesive layer 13 on a peelable film or the like, and these may be laminated in order. Here, the solvent is not particularly limited, but a ketone solvent such as methyl ethyl ketone is preferably used in consideration of the good solubility of the constituent materials.
(半導体装置製造用耐熱性粘着テープの使用方法)
 半導体装置製造用耐熱性粘着テープ2は上記において図1を基に説明した工程において使用する。
 つまり、以下に示す半導体チップの接着工程、封止工程、剥離工程においてチップを固定する手段として使用するものである。
(How to use heat-resistant adhesive tape for semiconductor device manufacturing)
The heat-resistant adhesive tape 2 for manufacturing a semiconductor device is used in the process described above with reference to FIG.
That is, it is used as a means for fixing the chip in the semiconductor chip bonding process, sealing process, and peeling process described below.
(半導体チップの接着工程)
 樹脂層と熱膨張性粘着剤層からなる半導体装置製造用耐熱性粘着テープ2の、該熱膨張性粘着剤層の熱膨張性粘着層上の剥離シートを除去した熱膨張性粘着剤層13側を基板上に接着して、その反対の樹脂層面側が上面に露出するようにする。
 その上に樹脂により封止しようとする所定の半導体チップ1を、目的とする配置となるように載置・接着して、半導体装置製造用耐熱性粘着テープ2の樹脂層上に配列する。その際の半導体チップ1の構造、形状、大きさ等は特に限定されない。
(Semiconductor chip bonding process)
The heat-expandable pressure-sensitive adhesive layer 13 side from which the release sheet on the heat-expandable pressure-sensitive adhesive layer of the heat-expandable pressure-sensitive adhesive layer 2 of the heat-resistant pressure-sensitive adhesive tape 2 for manufacturing a semiconductor device comprising a resin layer and a heat-expandable pressure-sensitive adhesive layer is removed. Is adhered on the substrate so that the opposite resin layer surface side is exposed on the upper surface.
A predetermined semiconductor chip 1 to be sealed with resin is placed and bonded in a desired arrangement on the resin layer of the heat-resistant adhesive tape 2 for manufacturing a semiconductor device. The structure, shape, size, etc. of the semiconductor chip 1 at that time are not particularly limited.
(封止工程)
 本発明の半導体装置製造用耐熱性粘着テープ2が使用される封止工程に用いられる樹脂は、用途によって任意に変更し得るが、エポキシ樹脂等の公知の封止樹脂でよい。粉末状の樹脂の溶融温度や硬化温度、液状の樹脂の硬化温度は、半導体装置製造用耐熱性粘着テープ2の耐熱性を勘案して選ばれるが、本発明の半導体装置製造用耐熱性粘着テープ2は通常の封止樹脂の溶融温度や硬化温度において耐熱性を有する。
 封止工程はチップ保護のために上記の樹脂により金型内にて行われ、例えば170~180℃において行われる。
 その後、半導体装置製造用耐熱性粘着テープ2を剥離した後に、ポストモールドキュアがなされる。
(Sealing process)
The resin used in the sealing step in which the heat-resistant adhesive tape 2 for manufacturing a semiconductor device of the present invention is used can be arbitrarily changed depending on the application, but may be a known sealing resin such as an epoxy resin. The melting temperature and curing temperature of the powdered resin and the curing temperature of the liquid resin are selected in consideration of the heat resistance of the heat-resistant adhesive tape 2 for manufacturing a semiconductor device, but the heat-resistant adhesive tape for manufacturing a semiconductor device of the present invention. 2 has heat resistance at the melting temperature and curing temperature of a normal sealing resin.
The sealing step is performed in the mold with the above resin for chip protection, for example, at 170 to 180 ° C.
Thereafter, after the heat-resistant adhesive tape 2 for manufacturing a semiconductor device is peeled off, post mold curing is performed.
(剥離工程)
 基板上の半導体装置製造用耐熱性粘着テープ2に固定されたチップが樹脂により封止された後、200~250℃で、1~90秒間(ホットプレート等)又は1~15分間(熱風乾燥器等)の条件下で加熱を行い、半導体装置製造用耐熱性粘着テープ2の熱膨張性粘着剤層13を膨張させることにより、半導体装置製造用耐熱性粘着テープ2の熱膨張性粘着剤層13と基板3との接着力を低下させて、半導体装置製造用耐熱性粘着テープ2と基板3とを剥離する。
 次いで、特定温度以下にまで冷却した後、チップを樹脂により封止してなる層から、半導体装置製造用耐熱性粘着テープ2を剥離する。
 また、半導体装置製造用耐熱性粘着テープ2と基板3を分離せず一体とし、半導体装置製造用耐熱性粘着テープ2の樹脂層から封止樹脂4により封止された複数のチップ1を分離する方法を採用してもよい。
(Peeling process)
After the chip fixed to the heat-resistant adhesive tape 2 for manufacturing the semiconductor device on the substrate is sealed with resin, it is 200 to 250 ° C. for 1 to 90 seconds (hot plate or the like) or 1 to 15 minutes (hot air dryer) Etc.) to expand the heat-expandable pressure-sensitive adhesive layer 13 of the heat-resistant adhesive tape 2 for manufacturing a semiconductor device, thereby expanding the heat-expandable pressure-sensitive adhesive layer 13 of the heat-resistant adhesive tape 2 for manufacturing a semiconductor device. The adhesive force between the substrate 3 and the substrate 3 is reduced, and the heat-resistant adhesive tape 2 for manufacturing a semiconductor device and the substrate 3 are peeled off.
Subsequently, after cooling to below a specific temperature, the heat-resistant adhesive tape 2 for manufacturing a semiconductor device is peeled from the layer formed by sealing the chip with a resin.
Further, the heat resistant adhesive tape 2 for manufacturing a semiconductor device and the substrate 3 are integrated without being separated, and the plurality of chips 1 sealed with the sealing resin 4 are separated from the resin layer of the heat resistant adhesive tape 2 for manufacturing a semiconductor device. A method may be adopted.
(電極形成工程)
 次いで、チップ1を封止樹脂4により封止してなるチップ1の一面が表面に露出されている側、つまり半導体装置製造用耐熱性粘着テープ2が積層されていた側において、スクリーン印刷等の方法により、各々のチップの所定の箇所に電極5を形成する。電極材料としては公知の材料を使用できる。
(Electrode formation process)
Next, on the side where one surface of the chip 1 formed by sealing the chip 1 with the sealing resin 4 is exposed, that is, on the side where the heat-resistant adhesive tape 2 for manufacturing a semiconductor device is laminated, screen printing or the like The electrode 5 is formed at a predetermined position of each chip by the method. A known material can be used as the electrode material.
(ダイシング工程)
 チップ1を封止樹脂4により封止してなる層を好ましくはダイシングリング7を設けたダイシングテープ8に固定した後に、通常のダイシング工程において使用されるダイシングブレード6を用いて、各パッケージに個片化する。
 このときに、各チップ1が所定の位置に存在していないと、電極の形成が不正確になることに加え、個々のパッケージのチップ1の位置が不正確であったり、ひどい場合にはダイシング時にダイシングブレード6がチップ1に接触する可能性がある。
(Dicing process)
A layer formed by sealing the chip 1 with the sealing resin 4 is fixed to a dicing tape 8 preferably provided with a dicing ring 7, and then a dicing blade 6 used in a normal dicing process is used for each package. Tidy up.
At this time, if each chip 1 does not exist at a predetermined position, in addition to inaccurate electrode formation, if the position of the chip 1 of each package is incorrect or severe, dicing is performed. Sometimes, the dicing blade 6 may come into contact with the chip 1.
 本発明の半導体装置製造用耐熱性粘着テープ2を使用すると、封止樹脂4による封止工程においてチップ1の位置がずれることを防止できるので、このような支障がなく、円滑にダイシング工程を実施でき、結果的に封止樹脂内に正確にチップ1が位置するパッケージが得られる。
 また、半導体装置製造用耐熱性粘着テープ2は封止樹脂により封止されたチップから軽剥離で引き剥がすことが可能であり、また糊残りが生じないため、高い歩留まりを維持しながら製造することが可能となる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
When the heat-resistant adhesive tape 2 for manufacturing a semiconductor device according to the present invention is used, the position of the chip 1 can be prevented from shifting in the sealing process with the sealing resin 4, so that the dicing process is smoothly performed without such trouble. As a result, a package in which the chip 1 is accurately positioned in the sealing resin is obtained.
Further, the heat-resistant adhesive tape 2 for manufacturing a semiconductor device can be peeled off from a chip sealed with a sealing resin by light peeling, and since no adhesive residue is produced, it is manufactured while maintaining a high yield. Is possible.
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
実施例1
 冷却管、温度計、及び攪拌装置を備えた反応容器に、(メタ)アクリル系モノマーとして、イソボルニルアクリレート(IBXA)を50重量部、ポリオールとして、数平均分子量650のポリ(テトラメチレン)グリコール(PTMG、三菱化学(株)製)を72.8重量部投入し、攪拌しながら、水添キシリレンジイソシアネート(HXDI、三井化学ポリウレタン(株)製)を27.2重量部滴下し、65 ℃で10時間反応させ、ウレタンポリマー-アクリル系モノマー混合物を得た。その後、2-ヒドロキシエチルアクリレート(HEA)を6.5重量部滴下してさらに3時間反応させた後、アクリル酸(AA)を50重量部と光重合開始剤として0.3重量部の2,2-ジメトキシ-1,2-ジフェニルエタン-1オン(IRGACURE 651、チバ・ジャパン(株)製)を加えた。なお、ポリイソシアネート成分とポリオール成分の使用量は、NCO/OH(当量比)=1.25であった。
 ウレタンポリマーとアクリル系モノマー混合物を、厚さ38μmの剥離処理したPET上に、硬化後の厚みが100μmになるように塗布した。この上に、剥離処理したPETフィルムを重ねて被覆した後、この被覆したPETフィルム面にブラックライトを用いて紫外線(照度5mW/cm2, 光量1000mJ/cm2)を照射して硬化させて、PETフィルム上に樹脂層1(ウレタン-アクリル複合フィルム)を形成した。
 また、熱膨張性粘着剤層として、アクリル酸エチル-アクリル酸ブチル-アクリル酸(20部-80部-10部)からなる共重合体ポリマー100部に、エポキシ系架橋剤を1.0部、ロジン系粘着付与剤5部、200℃発泡膨張タイプの熱膨張性微小球50部とトルエンを均一に混合、溶解した塗工液を作製し、樹脂層上に塗布して乾燥し、厚さ約40μmの粘着剤層を有する半導体装置製造用耐熱性粘着テープ1を得た。
Example 1
Poly (tetramethylene) glycol having a number average molecular weight of 650, 50 parts by weight of isobornyl acrylate (IBXA) as a (meth) acrylic monomer and polyol as a (meth) acrylic monomer in a reaction vessel equipped with a condenser, a thermometer, and a stirring device 72.8 parts by weight (PTMG, manufactured by Mitsubishi Chemical Corporation) was added, and 27.2 parts by weight of hydrogenated xylylene diisocyanate (HXDI, manufactured by Mitsui Chemicals Polyurethanes Co., Ltd.) was added dropwise with stirring to 65 ° C. For 10 hours to obtain a urethane polymer-acrylic monomer mixture. Thereafter, 6.5 parts by weight of 2-hydroxyethyl acrylate (HEA) was dropped and reacted for another 3 hours, and then 50 parts by weight of acrylic acid (AA) and 0.3 parts by weight of 2, 2 parts by weight as a photopolymerization initiator. 2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE 651, manufactured by Ciba Japan Co., Ltd.) was added. In addition, the usage-amount of the polyisocyanate component and the polyol component was NCO / OH (equivalent ratio) = 1.25.
The urethane polymer and the acrylic monomer mixture were applied on a PET having a thickness of 38 μm which was subjected to a release treatment so that the thickness after curing was 100 μm. On top of this, the PET film after the release treatment was overlaid and coated, and then the coated PET film surface was cured by irradiating with ultraviolet light (illuminance 5 mW / cm 2 , light amount 1000 mJ / cm 2 ) using a black light, Resin layer 1 (urethane-acrylic composite film) was formed on the PET film.
Further, as a thermally expandable pressure-sensitive adhesive layer, 1.0 part of an epoxy-based crosslinking agent was added to 100 parts of a copolymer polymer consisting of ethyl acrylate-butyl acrylate-acrylic acid (20 parts-80 parts-10 parts), A coating solution is prepared by uniformly mixing and dissolving 5 parts of a rosin-based tackifier, 50 parts of thermally expandable microspheres of 200 ° C. foaming expansion type, and toluene. A heat-resistant pressure-sensitive adhesive tape 1 for producing a semiconductor device having a pressure-sensitive adhesive layer of 40 μm was obtained.
 この半導体装置製造用耐熱性粘着テープの熱膨張粘着剤面を平滑な台に圧着固定後、反対面の樹脂層上に、5mm×5mmサイズのSiウエハチップを配置し、液状のエポキシ系封止樹脂を流し込み、175 ℃×2minでモールドした。その後、150℃×60minの加熱により樹脂の硬化を促進(ポストモールドキュア)させ、パッケージを作製した。 After the thermal expansion adhesive surface of this heat-resistant adhesive tape for manufacturing semiconductor devices is crimped and fixed to a smooth base, a 5 mm × 5 mm Si wafer chip is placed on the resin layer on the opposite surface, and a liquid epoxy-based sealing The resin was poured and molded at 175 ° C. × 2 min. Thereafter, the curing of the resin was promoted (post mold cure) by heating at 150 ° C. for 60 minutes to produce a package.
実施例2
 冷却管、温度計、及び攪拌装置を備えた反応容器に、(メタ)アクリル系モノマーとして、イソボルニルアクリレート(IBXA)を80重量部、ブチルアクリレート(BA)を20重量部、ポリオールとして、数平均分子量650のポリ(テトラメチレン)グリコール(PTMG、三菱化学(株)製)を72.8重量部投入し、攪拌しながら、HXDIを27.2重量部滴下し、65 ℃で10時間反応させ、ウレタンポリマー-アクリル系モノマー混合物を得た。その後、2-ヒドロキシエチルアクリレート(HEA)を6.5重量部滴下してさらに3時間反応させた後、アクリル酸(AA)を30重量部と光重合開始剤として0.3重量部のIRGACURE 651を加えた。なお、ポリイソシアネート成分とポリオール成分の使用量は、NCO/OH(当量比)=1.25であった。
 ウレタンポリマーとアクリル系モノマー混合物を、厚さ38μmの剥離処理したPET上に、硬化後の厚みが100μmになるように塗布した。この上に、剥離処理したPETフィルムを重ねて被覆した後、この被覆したPETフィルム面にブラックライトを用いて紫外線(照度5mW/cm2, 光量1000mJ/cm2)を照射して硬化させて、PETフィルム上に樹脂層2(ウレタン-アクリル複合フィルム2)を形成して作製した以外は、実施例1と同様の方法でパッケージを作製した。
Example 2
In a reaction vessel equipped with a condenser, a thermometer, and a stirrer, as a (meth) acrylic monomer, 80 parts by weight of isobornyl acrylate (IBXA), 20 parts by weight of butyl acrylate (BA), and several polyols are used. 72.8 parts by weight of poly (tetramethylene) glycol having an average molecular weight of 650 (PTMG, manufactured by Mitsubishi Chemical Corporation) was added, and 27.2 parts by weight of HXDI was added dropwise with stirring, and the mixture was reacted at 65 ° C. for 10 hours. A urethane polymer-acrylic monomer mixture was obtained. Thereafter, 6.5 parts by weight of 2-hydroxyethyl acrylate (HEA) was dropped and reacted for another 3 hours, and then 30 parts by weight of acrylic acid (AA) and 0.3 parts by weight of IRGACURE 651 as a photopolymerization initiator. Was added. In addition, the usage-amount of the polyisocyanate component and the polyol component was NCO / OH (equivalent ratio) = 1.25.
The urethane polymer and the acrylic monomer mixture were applied on a PET having a thickness of 38 μm which was subjected to a release treatment so that the thickness after curing was 100 μm. On top of this, the PET film after the release treatment was overlaid and coated, and then the coated PET film surface was cured by irradiating with ultraviolet light (illuminance 5 mW / cm 2 , light amount 1000 mJ / cm 2 ) using a black light, A package was prepared in the same manner as in Example 1 except that the resin layer 2 (urethane-acrylic composite film 2) was formed on the PET film.
実施例3
 冷却管、温度計、及び攪拌装置を備えた反応容器に、(メタ)アクリル系モノマーとして、イソボルニルアクリレート(IBXA)を100重量部、ポリオールとして、数平均分子量650のポリ(テトラメチレン)グリコール(PTMG、三菱化学(株)製)を72.8重量部投入し、攪拌しながら、HXDIを27.2重量部滴下し、65 ℃で10時間反応させ、ウレタンポリマー-アクリル系モノマー混合物を得た。その後、2-ヒドロキシエチルアクリレート(HEA)を6.5重量部滴下してさらに3時間反応させた後、光重合開始剤として0.3重量部のIRGACURE 651を加えた。なお、ポリイソシアネート成分とポリオール成分の使用量は、NCO/OH(当量比)=1.25であった。
 ウレタンポリマーとアクリル系モノマー混合物を、厚さ38μmの剥離処理したPET上に、硬化後の厚みが100μmになるように塗布した。この上に、剥離処理したPETフィルムを重ねて被覆した後、この被覆したPETフィルム面にブラックライトを用いて紫外線(照度5mW/cm2, 光量1000mJ/cm)を照射して硬化させて、PETフィルム上に樹脂層3(ウレタン-アクリル複合フィルム3)を形成して作製した以外は、実施例1と同様の方法でパッケージを作製した。
Example 3
In a reaction vessel equipped with a condenser, a thermometer, and a stirrer, 100 parts by weight of isobornyl acrylate (IBXA) as a (meth) acrylic monomer and poly (tetramethylene) glycol having a number average molecular weight of 650 as a polyol 72.8 parts by weight (PTMG, manufactured by Mitsubishi Chemical Co., Ltd.) was added, and 27.2 parts by weight of HXDI was added dropwise with stirring and reacted at 65 ° C. for 10 hours to obtain a urethane polymer-acrylic monomer mixture. It was. Thereafter, 6.5 parts by weight of 2-hydroxyethyl acrylate (HEA) was added dropwise and reacted for another 3 hours, and then 0.3 parts by weight of IRGACURE 651 was added as a photopolymerization initiator. In addition, the usage-amount of the polyisocyanate component and the polyol component was NCO / OH (equivalent ratio) = 1.25.
The urethane polymer and the acrylic monomer mixture were applied on a PET having a thickness of 38 μm which was subjected to a release treatment so that the thickness after curing was 100 μm. On top of this, the PET film that had been subjected to the peeling treatment was overlaid and coated, and then the coated PET film surface was irradiated with ultraviolet rays (illuminance 5 mW / cm 2 , light quantity 1000 mJ / cm 2 ) using a black light, and cured. A package was prepared in the same manner as in Example 1 except that the resin layer 3 (urethane-acrylic composite film 3) was formed on the PET film.
比較例1
 アクリル系共重合体(アクリル酸2-エチルヘキシル:アクリル酸エチル:アクリル酸2-ヒドロキシエチル=70重量部:30重量部:5重量部)100重量部、イソシアネート系架橋剤(コローネートL、日本ポリウレタン(株)製)3重量部をトルエンに溶解し、厚さ100μmのポリエステルフィルム上に、乾燥後の厚さが10μmとなるように塗布して作成した以外は、実施例1と同様の方法でパッケージを作製した。
Comparative Example 1
Acrylic copolymer (2-ethylhexyl acrylate: ethyl acrylate: 2-hydroxyethyl acrylate = 70 parts by weight: 30 parts by weight: 5 parts by weight), 100 parts by weight of an isocyanate-based crosslinking agent (Coronate L, Nippon Polyurethane ( Co., Ltd.) 3 parts by weight dissolved in toluene and packaged in the same manner as in Example 1 except that it was coated on a 100 μm thick polyester film so that the thickness after drying was 10 μm. Was made.
比較例2
 ステアリルアクリレート100重量部、2,2-ジメトキシー1,2-ジフェニルエタン-1-オン0.3重量部を4つ口フラスコに投入し、窒素雰囲気下で紫外線に曝露して部分的に光重合させることによって、部分重合物(モノマーシロップ)を得た。この部分重合物40重量部に、イソオクチルアクリレート54部、アクリル酸6重量部、架橋剤としてヘキサンジオールジアクリレートを0.1重量部添加した後、これらを均一に混合して光重合性組成物を調製した。厚み100μmのポリエチレンテレフタレートフィルム上に、上記光重合性組成物を厚み100μmになるように塗布し、さらにその上に厚さ38μmの片面を剥離処理されたポリエチレンテレフタレートフィルムを被せ、塗布層を形成した。このシートにブラックライト(15W/cm)を用いて光照度5mW/cm2(ピーク感度最大波350nmのトプコンUVR-T1で測定)の紫外線を1000mJ/cm2照射し、側鎖結晶化可能ポリマー含有仮固定シートを得た。この側鎖結晶化可能ポリマー含有仮固定シートの基材面に、実施例1と同様に熱膨張性粘着層を塗布する等、実施例1と同様の方法でパッケージを作製した。
Comparative Example 2
100 parts by weight of stearyl acrylate and 0.3 parts by weight of 2,2-dimethoxy-1,2-diphenylethane-1-one are placed in a four-necked flask and partially photopolymerized by exposure to ultraviolet light in a nitrogen atmosphere. As a result, a partially polymerized product (monomer syrup) was obtained. To 40 parts by weight of this partially polymerized product, 54 parts of isooctyl acrylate, 6 parts by weight of acrylic acid and 0.1 part by weight of hexanediol diacrylate as a crosslinking agent were added, and these were uniformly mixed to produce a photopolymerizable composition. Was prepared. On the polyethylene terephthalate film having a thickness of 100 μm, the above-mentioned photopolymerizable composition was applied so as to have a thickness of 100 μm, and further, a polyethylene terephthalate film on which one side having a thickness of 38 μm was peeled was covered to form a coating layer. . This sheet was irradiated with 1000 mJ / cm 2 of UV light with a light intensity of 5 mW / cm 2 (measured with Topcon UVR-T1 having a peak sensitivity maximum wave of 350 nm) using a black light (15 W / cm 2 ), and contains a side chain crystallizable polymer. A temporary fixing sheet was obtained. A package was produced in the same manner as in Example 1, such as applying a thermally expandable adhesive layer to the base material surface of this side chain crystallizable polymer-containing temporary fixing sheet in the same manner as in Example 1.
<評価>
 以上のようにして作製した耐熱性熱剥離型粘着シート及びパッケージにおいて、175℃におけるシリコンチップに対するせん断接着力、パッケージから耐熱性熱剥離型粘着テープを実際に剥離する際の90°引き剥がし粘着力、貯蔵弾性率G'、チップの初期位置からのずれ距離の値、及び耐熱性熱剥離型粘着シート剥離後の糊残りの顕微鏡を用いた目視による有無、封止面からのどれくらいチップが出ているか(スタンドオフ量)を評価した。結果を表1に示す。
<Evaluation>
In the heat-resistant heat-peelable pressure-sensitive adhesive sheet and package produced as described above, the shear adhesive strength to the silicon chip at 175 ° C., and the 90 ° peel-off adhesive strength when actually peeling the heat-resistant heat-peelable adhesive tape from the package , Storage elastic modulus G ', value of deviation distance from the initial position of the chip, and presence / absence of the adhesive residue with a microscope after the heat-resistant heat-peelable adhesive sheet is peeled off, how much the chip comes out from the sealing surface We evaluated whether or not (standoff amount). The results are shown in Table 1.
<175℃におけるシリコンチップに対するせん断接着>
 実施例及び比較例で作成したシートを20mm角に切断し、樹脂層(熱膨張性粘着層の逆側)上に10mm角のシリコンチップを置いた後、175℃のプレート台付きせん断接着力試験機にセットし、3分間放置した後、図4に示すようにして、速度0.5mm/secでシリコンチップを水平方向に押し込んだ時の荷重を測定した。
<Shear bonding to silicon chip at 175 ° C.>
Sheets prepared in Examples and Comparative Examples were cut into 20 mm squares, 10 mm square silicon chips were placed on the resin layer (the opposite side of the thermally expandable adhesive layer), and then a 175 ° C. shear adhesive test with a plate base. After being set in the machine and allowed to stand for 3 minutes, as shown in FIG. 4, the load when the silicon chip was pushed in the horizontal direction at a speed of 0.5 mm / sec was measured.
<175℃加熱後のパッケージからの90°引き剥がし粘着力>
 175℃×2minの封止工程を経た後、常温まで冷却し、剥離速度300mm/min、引っ張り角度90°でテープを引き剥がした際の荷重を測定した。
<90 ° peel-off adhesive strength from package after heating at 175 ° C.>
After passing through a sealing step of 175 ° C. × 2 min, it was cooled to room temperature, and the load when the tape was peeled off at a peeling speed of 300 mm / min and a pulling angle of 90 ° was measured.
<貯蔵弾性率G'の測定方法>
 貯蔵弾性率(G')は「ARES」(TAインスツルメンツ(株)製)にて測定を行った。なお、測定は-60℃~200℃の温度領域を、昇温速度5℃/min、周波数1Hzの条件で行った。
<Measurement method of storage elastic modulus G '>
The storage elastic modulus (G ′) was measured by “ARES” (manufactured by TA Instruments). The measurement was performed in a temperature range of −60 ° C. to 200 ° C. under conditions of a temperature rising rate of 5 ° C./min and a frequency of 1 Hz.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3においては、充分なモールド時の粘着力を有することによりチップずれを抑制し、かつ冷却後の封止樹脂への粘着力が小さいという特性から、パッケージの軽剥離かつ剥離後の糊残りもない良好なパッケージを得ることができ、またスタンドオフも小さい値となった。 In Examples 1 to 3, since the adhesive strength at the time of molding is suppressed to suppress chip displacement and the adhesive strength to the sealing resin after cooling is small, the package is lightly peeled and after peeling. A good package with no adhesive residue could be obtained, and the stand-off value was small.
 これに対して、比較例1においては、樹脂層がウレタンポリマー成分を含有しないために、モールド時のチップズレを抑制することができず、また比較例2は、ビニル系ポリマーを含有しないために、175℃での弾性率が低く、そのためシリコンチップが樹脂層に埋まり込み、スタンドオフが大きな値となってしまった。 On the other hand, in Comparative Example 1, since the resin layer does not contain a urethane polymer component, it is not possible to suppress chip displacement at the time of molding, and Comparative Example 2 does not contain a vinyl polymer. The elastic modulus at 175 ° C. was low, so that the silicon chip was embedded in the resin layer, and the standoff value was large.
 以上の結果より、樹脂封止工程でチップを保持し、その後所定の温度に冷却することにより糊残りなくテープを剥離でき、また小さなスタンドオフを達成することができる基板レス半導体パッケージ製造時チップ仮固定用耐熱性熱剥離型粘着テープを提供することができた。 From the above results, it is possible to peel off the tape without adhesive residue by holding the chip in the resin sealing process and then cooling to a predetermined temperature, and achieve a small standoff. A fixing heat-resistant heat-peelable pressure-sensitive adhesive tape could be provided.

Claims (8)

  1.  半導体チップを樹脂封止する際に、貼着して使用されるチップ仮固定用粘着テープであって、ウレタンポリマー成分とビニル系ポリマーとを含有した樹脂層の一方の面に、熱膨張性微小球を含有する熱膨張性粘着層を有することを特徴とする半導体装置製造用基板レス耐熱性粘着テープ。 An adhesive tape for temporarily fixing a chip that is used when a semiconductor chip is sealed with a resin, and has a heat-expandable microscopic surface on one surface of a resin layer containing a urethane polymer component and a vinyl polymer. A substrate-less heat-resistant adhesive tape for manufacturing semiconductor devices, comprising a thermally expandable adhesive layer containing spheres.
  2.  前記半導体装置製造用耐熱性粘着テープにおいて、樹脂層のビニル系ポリマーがカルボキシル基を含有することを特徴とする請求項1記載の半導体装置製造用耐熱性粘着テープ。 2. The heat resistant pressure-sensitive adhesive tape for manufacturing semiconductor devices according to claim 1, wherein the vinyl polymer of the resin layer contains a carboxyl group.
  3.   前記半導体装置製造用耐熱性粘着テープにおいて、樹脂層のウレタンポリマーの少なくとも一部がアクリロイル基末端ウレタンポリマーであることを特徴とする請求項1又は2記載の半導体装置製造用耐熱性粘着テープ。 The heat-resistant adhesive tape for manufacturing semiconductor devices according to claim 1 or 2, wherein at least part of the urethane polymer of the resin layer is an acryloyl group-terminated urethane polymer.
  4.  前記半導体装置製造用耐熱性粘着テープにおいて、樹脂層が40℃以上の特定の温度において粘着力を発現し、その特定の温度以下では粘着力が消失することを特徴とする請求項1~3のいずれかに記載の半導体装置製造用耐熱性粘着テープ。 4. The heat-resistant adhesive tape for manufacturing a semiconductor device according to claim 1, wherein the resin layer exhibits an adhesive force at a specific temperature of 40 ° C. or higher, and the adhesive force disappears at the specific temperature or lower. The heat resistant adhesive tape for semiconductor device manufacture in any one.
  5.   前記半導体装置用耐熱性粘着テープにおいて、樹脂層の175℃におけるシリコンチップに対するせん断接着力が100g/10mm2以上であり、かつ樹脂層の175℃加熱後の封止樹脂に対する90°引き剥がし粘着力が0.50N/20mm以下であることを特徴とする請求項1~4記載の半導体装置製造用耐熱性粘着テープ。 In the heat-resistant adhesive tape for semiconductor device, the resin layer has a shear adhesive force of 100 g / 10 mm 2 or more to the silicon chip at 175 ° C., and the resin layer has a 90 ° peel-off adhesive force to the sealing resin after heating at 175 ° C. 5. The heat-resistant adhesive tape for manufacturing a semiconductor device according to claim 1, wherein is 0.50 N / 20 mm or less.
  6.   前記半導体装置用耐熱性粘着テープにおいて、樹脂層の175℃での貯蔵弾性率G'が1.0×105Pa以上であることを特徴とする請求項1~5記載の半導体装置製造用耐熱性粘着テープ。 6. The heat-resistant adhesive for semiconductor device manufacture according to claim 1, wherein in the heat-resistant adhesive tape for semiconductor device, a storage elastic modulus G ′ at 175 ° C. of the resin layer is 1.0 × 10 5 Pa or more. Adhesive tape.
  7.    請求項1~6記載の半導体装置製造用熱剥離粘着テープを用いた、金属製のリードフレームを用いない基板レス半導体チップの製造方法。 A method for manufacturing a substrate-less semiconductor chip using the heat-peeling adhesive tape for manufacturing a semiconductor device according to claim 1 without using a metal lead frame.
  8.   請求項7記載の半導体装置製造用熱剥離粘着テープを用いた金属製のリードフレームを用いない基板レス半導体チップの製造方法であって、(A)該粘着シートの熱膨張性粘着層表面に支持体を貼り合せ、樹脂層に被着体を貼り合せる工程、(B)被着体を加工する工程、(C)加熱処理により、支持体から該粘着シートを剥離する工程、及び(D)加工後の被着体から該粘着シートを剥離する工程を含む被着体加工方法。 A method of manufacturing a substrate-less semiconductor chip using a heat-peelable adhesive tape for manufacturing a semiconductor device according to claim 7 without using a metal lead frame, comprising: (A) supporting the surface of the adhesive sheet on the thermally expandable adhesive layer Bonding the body and bonding the adherend to the resin layer, (B) processing the adherend, (C) peeling the pressure-sensitive adhesive sheet from the support by heat treatment, and (D) processing An adherend processing method comprising a step of peeling the pressure-sensitive adhesive sheet from a subsequent adherend.
PCT/JP2012/053048 2011-02-14 2012-02-10 Heat-resistant adhesive tape for semiconductor device manufacturing, and method for manufacturing semiconductor chips using tape WO2012111540A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-028910 2011-02-14
JP2011028910A JP2012167177A (en) 2011-02-14 2011-02-14 Heat-resistant adhesive tape for manufacturing semiconductor device, and method for manufacturing semiconductor chip using the same

Publications (1)

Publication Number Publication Date
WO2012111540A1 true WO2012111540A1 (en) 2012-08-23

Family

ID=46672465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053048 WO2012111540A1 (en) 2011-02-14 2012-02-10 Heat-resistant adhesive tape for semiconductor device manufacturing, and method for manufacturing semiconductor chips using tape

Country Status (3)

Country Link
JP (1) JP2012167177A (en)
TW (1) TW201241132A (en)
WO (1) WO2012111540A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196296A1 (en) * 2013-06-07 2014-12-11 日東電工株式会社 Method for manufacturing semiconductor device
WO2017038914A1 (en) * 2015-09-01 2017-03-09 リンテック株式会社 Adhesive sheet
WO2017038919A1 (en) * 2015-09-01 2017-03-09 リンテック株式会社 Adhesive sheet
CN110462816A (en) * 2017-03-31 2019-11-15 琳得科株式会社 The manufacturing method and bonding sheet of semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2011512C2 (en) 2013-09-26 2015-03-30 Besi Netherlands B V Method for moulding and surface processing electronic components and electronic component produced with this method.
JP2015076503A (en) * 2013-10-09 2015-04-20 日東電工株式会社 Semiconductor device manufacturing method
DE112016000628T5 (en) * 2015-02-06 2017-11-02 Asahi Glass Company, Limited Film, method for its production and method for producing a semiconductor device using the film
JP6908395B2 (en) * 2017-02-28 2021-07-28 日東電工株式会社 Adhesive tape
JP6820774B2 (en) * 2017-03-16 2021-01-27 三井化学東セロ株式会社 Manufacturing method of adhesive film and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022801A (en) * 2002-06-17 2004-01-22 Nitto Denko Corp Adhesive tape for masking, and resin-sealing method
JP2004186323A (en) * 2002-12-02 2004-07-02 Nitto Denko Corp Method of manufacturing semiconductor device and heat-resistant adhesive tape used therefor
JP2006229139A (en) * 2005-02-21 2006-08-31 Nitto Denko Corp Manufacturing method of semiconductor device, and heat-resistant adhesive tape used for it
WO2007057954A1 (en) * 2005-11-17 2007-05-24 Fujitsu Limited Semiconductor device and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022801A (en) * 2002-06-17 2004-01-22 Nitto Denko Corp Adhesive tape for masking, and resin-sealing method
JP2004186323A (en) * 2002-12-02 2004-07-02 Nitto Denko Corp Method of manufacturing semiconductor device and heat-resistant adhesive tape used therefor
JP2006229139A (en) * 2005-02-21 2006-08-31 Nitto Denko Corp Manufacturing method of semiconductor device, and heat-resistant adhesive tape used for it
WO2007057954A1 (en) * 2005-11-17 2007-05-24 Fujitsu Limited Semiconductor device and method for manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196296A1 (en) * 2013-06-07 2014-12-11 日東電工株式会社 Method for manufacturing semiconductor device
JP2014239154A (en) * 2013-06-07 2014-12-18 日東電工株式会社 Method of manufacturing semiconductor device
WO2017038914A1 (en) * 2015-09-01 2017-03-09 リンテック株式会社 Adhesive sheet
WO2017038919A1 (en) * 2015-09-01 2017-03-09 リンテック株式会社 Adhesive sheet
JPWO2017038914A1 (en) * 2015-09-01 2017-09-07 リンテック株式会社 Adhesive sheet
CN110462816A (en) * 2017-03-31 2019-11-15 琳得科株式会社 The manufacturing method and bonding sheet of semiconductor device
CN110462816B (en) * 2017-03-31 2023-09-19 琳得科株式会社 Method for manufacturing semiconductor device and adhesive sheet

Also Published As

Publication number Publication date
TW201241132A (en) 2012-10-16
JP2012167177A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
WO2012111540A1 (en) Heat-resistant adhesive tape for semiconductor device manufacturing, and method for manufacturing semiconductor chips using tape
JP4711777B2 (en) Adhesive sheet, manufacturing method thereof, and product processing method
EP1354925B1 (en) Heat-peelable pressure-sensitive adhesive sheet for electronic part, method of processing electronic part, and electronic part
JP5519971B2 (en) Dicing die-bonding film and method for manufacturing semiconductor device
TWI565591B (en) A sheet having a subsequent resin layer, and a method for manufacturing the semiconductor device
JP4721834B2 (en) Adhesive sheet and product processing method using the adhesive sheet
EP2471884B1 (en) Radiation-curable adhesive composition and adhesive sheet
JP2010129700A (en) Dicing die-bonding film and method for producing semiconductor device
JP6139515B2 (en) Dicing sheet
KR20070027465A (en) Pressure-sensitive adhesive sheet and method of processing articles
JP6744930B2 (en) Dicing sheet and chip manufacturing method using the dicing sheet
WO2014155756A1 (en) Adhesive sheet, composite sheet for forming protective film, and method for manufacturing chip with protective film
TWI654267B (en) Adhesive composition, subsequent film, and method of manufacturing semiconductor device
JP5414953B1 (en) Dicing sheet and device chip manufacturing method
JP2010278427A (en) Laminated film and process for producing semiconductor device
KR20160140456A (en) Dicing die bond film, method for producing semiconductor device, and semiconductor device
JP2014189564A (en) Pressure sensitive adhesive sheet, composite sheet for forming protection film, and method for producing chip with protection film
TWI754679B (en) Adhesive sheet for semiconductor processing
TW201842108A (en) Adhesive sheet
TW201839868A (en) Semiconductor device production method and double-sided adhesive sheet
JP5572487B2 (en) Viscoelastic body and method for producing the same
JPWO2015141555A6 (en) Dicing sheet and chip manufacturing method using the dicing sheet
JP2012167178A (en) Heat peelable adhesive sheet
TW201842103A (en) Adhesive sheet
TW201224104A (en) Temporary fixing sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746482

Country of ref document: EP

Kind code of ref document: A1