WO2012111311A1 - 断熱箱体 - Google Patents

断熱箱体 Download PDF

Info

Publication number
WO2012111311A1
WO2012111311A1 PCT/JP2012/000958 JP2012000958W WO2012111311A1 WO 2012111311 A1 WO2012111311 A1 WO 2012111311A1 JP 2012000958 W JP2012000958 W JP 2012000958W WO 2012111311 A1 WO2012111311 A1 WO 2012111311A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
vacuum heat
gas
box
Prior art date
Application number
PCT/JP2012/000958
Other languages
English (en)
French (fr)
Inventor
宅島 司
法幸 宮地
上門 一登
真弥 小島
将裕 越山
昌道 橋田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011087035A external-priority patent/JP2012217942A/ja
Priority claimed from JP2011192683A external-priority patent/JP5899395B2/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12747650.5A priority Critical patent/EP2676714A1/en
Priority to CN2012800088806A priority patent/CN103384556A/zh
Priority to US13/983,504 priority patent/US20130306655A1/en
Publication of WO2012111311A1 publication Critical patent/WO2012111311A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • B65D81/3816Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container formed of foam material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3813Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container
    • B65D81/3818Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container formed with double walls, i.e. hollow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/38Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation
    • B65D81/3825Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container with one or more containers located inside the external container
    • B65D81/3834Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents with thermal insulation rigid container being in the form of a box, tray or like container with one or more containers located inside the external container the external tray being formed of different materials, e.g. laminated or foam filling between walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Definitions

  • the present invention relates to a heat insulating box.
  • the vacuum heat insulating material is obtained by sealing a core material made of glass wool or the like and an adsorbent under reduced pressure in a gas barrier material. Compared to conventional urethane foam foam insulation, it has about 20 times the insulation performance. For this reason, the vacuum heat insulating material is attracting attention as an effective means capable of saving energy while satisfying customer demands for increasing the internal volume of the heat insulating box for the outer dimensions.
  • the foam heat insulating material of the urethane foam has been proposed to place the vacuum heat insulating material in places where it does not adhere and where it can be easily detached from the outside of the heat insulation box (inner box, outer box, door inner plate, door outer plate is recessed). ing.
  • alkali ions from the glass surface by contact with the glass surface containing alkali oxides such as soda lime and water that penetrates over time. Selective elution of alkali ions occurs. As a result, a layer rich in Si—OH is formed on the glass surface, and the concentration of hydroxyl groups (—OH) in water increases due to the elution of the alkali ions.
  • the pH is 9 or more, the Si—O—Si bond is broken, and the deterioration of the vacuum heat insulating material may be promoted.
  • the present invention solves the above-mentioned conventional problems, and when a heat insulating box is formed using a vacuum heat insulating material using a core material made of glass wool or the like, a gas that enters during the use period of the heat insulating box or An object is to suppress the deterioration of the vacuum heat insulating material due to moisture and to improve the recyclability of the vacuum heat insulating material.
  • the heat insulation performance of the heat insulation box is maintained for a long time by the vacuum heat insulating material when the heat insulation box is used, and the recyclability of the vacuum heat insulating material of the heat insulation box is improved when the used heat insulation box is discarded.
  • an insulating box is an inner box accommodated by arranging a space for heat insulation between the outer box and the inner surface of the outer box in the outer box.
  • a plurality of vacuum heat insulating materials disposed in the space for heat insulation, and a foam heat insulating material filled in a space other than the plurality of vacuum heat insulating materials in the space for heat insulation, the plurality
  • the vacuum heat insulating material has at least a core material and a moisture adsorbent, and is configured by sealing the core material and the water adsorbent under reduced pressure in a space covered with a jacket material.
  • the vacuum heat insulating material having the largest area among them further includes a gas adsorbing device having nitrogen adsorption performance and moisture adsorption performance in addition to the core material and the moisture adsorbent, and is a space covered with the jacket material.
  • the core material, the moisture adsorbent, and the gas adsorption device are sealed under reduced pressure. And that is intended.
  • the moisture adsorbing into the vacuum heat insulating material during the use period of the heat insulating box is adsorbed by the gas adsorption device included in the vacuum heat insulating material.
  • the core material taken out from the vacuum heat insulating material of the heat insulating box is in a state in which the weathering and deterioration due to moisture are small and the initial performance is maintained.
  • the heat insulating performance of the heat insulating box can be maintained over a long period of time.
  • the core material and the vacuum heat insulating material can be easily reused when the used heat insulating box is discarded.
  • a gas adsorption device for a heat insulating box includes a gas adsorbent having nitrogen adsorption performance and moisture adsorption performance in a seal bag having gas permeability, A gas permeable sealing bag filled with the gas adsorbent, wherein the gas adsorbent has a ratio of silica to alumina in the zeolite skeleton of 8 to 25 and is subjected to copper ion exchanged ZSM-5 And a chemical water adsorbent covering the periphery of the copper ion exchanged ZSM-5 type zeolite and having a higher adsorption activity on water than the copper ion exchanged ZSM-5 type zeolite.
  • the chemical moisture adsorbent covering the periphery of the ZSM-5 type zeolite subjected to the copper ion exchange comes into contact with the water vapor (moisture) prior to the ZSM-5 type zeolite subjected to the copper ion exchange. Moisture) can be adsorbed and immobilized.
  • the chemical moisture adsorbent since the chemical moisture adsorbent has higher water adsorption activity than the ZSM-5 type zeolite exchanged with copper ions, the chemical moisture adsorbent is not adsorbed by the chemical moisture adsorbent and passes through the gap of the chemical moisture adsorbent.
  • the heat insulating performance of the heat insulating box can be maintained over a long period of time. Moreover, since deterioration of the gas adsorption device, the core material, and the vacuum heat insulating material is suppressed, the core material and the vacuum heat insulating material can be easily reused when the used heat insulating box is discarded.
  • the gas adsorbent is filled in a bag having an appropriate gas permeability, the concentration of water vapor entering the vacuum heat insulating material with the passage of time is thin, and most of the water vapor Is selectively adsorbed and immobilized on the chemical moisture adsorbent.
  • the ZSM-5 type zeolite exchanged with copper ions in the gas adsorption device can maintain a high nitrogen adsorption activity for a long period of time, so that the vacuum heat insulating material does not deteriorate for a long period of time. It becomes easier to reuse the core material and the vacuum heat insulating material at the time of disposal.
  • a gas adsorption device for a heat insulating box includes a powdery gas adsorption substance having nitrogen adsorption performance and moisture adsorption performance, and an elongated flat cylindrical shape.
  • a metal storage container that seals both sides of a storage unit that stores the gas adsorbing substance in a reduced pressure state, and is opposed to at least one of the storage container and the storage unit. It has a contact part where the inner surfaces of the storage container closely contact each other.
  • the powdery gas adsorbing substance stored in the storage unit can be prevented from being dispersed when the sealing unit is opened by having the close contact part.
  • the recyclability of the vacuum insulation is improved at the time of disposal.
  • the vacuum heat insulating material is recovered from the heat insulation box, and weathering and deterioration due to moisture are small.
  • a refrigerator with low load and resource saving can be provided.
  • FIG. 1 is a front view of a heat insulating box according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the heat insulation box according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view of the vacuum heat insulating material according to Embodiment 1 of the present invention.
  • FIG. 4 is a plan view of the vacuum heat insulating material according to Embodiment 1 of the present invention as viewed from the adhesive side.
  • FIG. 5 is a diagram showing the amount of moisture adsorption in the difference in water adsorption equilibrium pressure according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of a gas adsorbent according to Embodiment 2 of the present invention.
  • FIG. 1 is a front view of a heat insulating box according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the heat insulation box according to Embodiment
  • FIG. 7 is a schematic diagram of a gas adsorbent pack according to Embodiment 3 of the present invention.
  • FIG. 8 is a plan view showing a configuration example of the gas adsorption device according to Embodiment 4 of the present invention.
  • 9 is a cross-sectional view taken along line AA in FIG.
  • FIG. 10 is a plan view showing a configuration example of the gas adsorption device according to Embodiment 5 of the present invention.
  • 11 is a cross-sectional view taken along line BB in FIG. 12 is a cross-sectional view taken along the line CC of FIG.
  • the first invention includes an outer box, an inner box housed in the outer box with a space for heat insulation between the inner surface of the outer box, and a plurality of pieces disposed in the space for heat insulation.
  • a vacuum heat insulating material, and a foam heat insulating material filled in a space other than the plurality of vacuum heat insulating materials among the heat insulating space, and the plurality of vacuum heat insulating materials include at least a core material and a moisture adsorbent.
  • a vacuum insulating material having at least the largest area among the plurality of vacuum heat insulating materials, wherein the core material and the moisture adsorbent are sealed under reduced pressure in a space covered with a jacket material.
  • a gas adsorption device having nitrogen adsorption performance and moisture adsorption performance in addition to the material and the moisture adsorption agent, and in the space covered with the jacket material, the core material, the moisture adsorption agent, and the It is a heat insulation box configured by sealing the gas adsorption device under reduced pressure.
  • the “core material” glass wool (glass fiber), open cells such as polyurethane and polystyrene, inorganic fibers such as ceramic fibers, and polyester fibers
  • organic fibers such as silica and inorganic powders such as silica and pearlite can be used. Moreover, those composites may be sufficient.
  • the “cover material” may be any material that plays the role of maintaining the vacuum degree of the vacuum heat insulating material.
  • a laminate film in which a heat-welded film as the innermost layer, a resin film deposited with metal foil or metal atoms as the gas barrier film as the intermediate layer, and a surface protective film as the outermost layer are used.
  • a heat welding film a low density polyethylene film (polyethylene film), a linear low density polyethylene film, a high density polyethylene film, a polypropylene film (polypropylene film), a polyacrylonitrile film (polyacrylonitrile film) ) Or a mixture thereof can be used.
  • Gas barrier films include metal foils such as aluminum and copper foils, polyethylene terephthalate films and ethylene-vinyl alcohol copolymers, and metal and metal oxides such as aluminum and copper. A film or the like on which an object is deposited can be used.
  • the vacuum heat insulating material is constituted by sealing a gas adsorption device having nitrogen adsorption performance and moisture adsorption performance together with a core material and a moisture adsorbent under reduced pressure.
  • a gas adsorption device having nitrogen adsorption performance and moisture adsorption performance together with a core material and a moisture adsorbent under reduced pressure.
  • the gas adsorbing device adsorbs moisture in the high water adsorption equilibrium pressure range and can be suppressed by the moisture adsorbent, and it absorbs a trace amount of water over a long period in the low water adsorption equilibrium pressure region. Can do.
  • the reduced pressure state of the vacuum heat insulating material can be easily maintained, and the high heat insulating performance of the vacuum heat insulating material can be maintained over a long period of time.
  • the dry state of the vacuum heat insulating material during a use period is maintained, the weathering of a core material is suppressed. For this reason, the performance deterioration of the core material taken out from the vacuum heat insulating material at the time of disposal is small, and the reuse to the vacuum heat insulating material becomes easy.
  • a vacuum heat insulating material is disposed in a heat insulating space formed by the outer box and the inner box, and a space other than the vacuum heat insulating material in the heat insulating space is filled with a foam heat insulating material.
  • the gas adsorption device includes a powdery gas adsorption material having nitrogen adsorption performance and moisture adsorption performance, and a storage container for housing the gas adsorption material, and is covered with the covering material.
  • the storage container and the core material are held only by vacuum sealing without using an adhesive.
  • the “storage container” serves to store the gas adsorbing substance in a reduced pressure state.
  • metal materials such as aluminum, copper, iron, and stainless steel, can be used.
  • the “gas adsorbing substance” may be any substance having the ability to adsorb nitrogen or oxygen in the air and the ability to adsorb moisture in the air.
  • the type of gas adsorbing substance lithium compounds and ZSM-5 type zeolite exchanged with copper ions can be used.
  • the core material and the gas adsorbing device are not bonded to each other via an adhesive or the like, and are sealed under reduced pressure inside the jacket material without using an adhesive. For this reason, the core material in a state in which there is no impurity and the heat insulation performance is maintained can be taken out from the vacuum heat insulating material, and the core material and the vacuum heat insulating material can be easily reused.
  • the vacuum heat insulating material is bonded to the inner surface of the outer box or the outer surface of the inner box via an adhesive, and the vacuum heat insulating material is bonded to the inner surface of the outer box or the outer surface of the inner box.
  • the bonding surface and the central portion of the vacuum heat insulating material by not being bonded to the central surface portion of the vacuum heat insulating material separated from the edge of the core portion of the vacuum heat insulating material by a predetermined width or more.
  • the outer peripheral portion of the vacuum heat insulating material is preferentially bonded by the adhesive along the edge of the core material portion of the vacuum heat insulating material. is there.
  • Thermally expandable adhesives have the property that their expanded state is maintained even after cooling at room temperature after they have expanded at high temperatures and lost their adhesive strength. For this reason, the vacuum heat insulating material can be easily separated from the adherend such as the outer box or the inner box at room temperature.
  • the gas adsorbing device comprises a gas adsorbent having a nitrogen adsorbing performance and a water adsorbing performance in a gas permeable sealing bag, and a gas permeable with the gas adsorbing material filled therein.
  • a chemical water adsorbent covering the periphery of the copper ion-exchanged ZSM-5 type zeolite and having a larger water adsorption activity than the ZSM-5 type zeolite subjected to the copper ion exchange.
  • a low-density polyethylene film, a polypropylene film, or the like can be used for the “sealing bag having an appropriate gas permeability”.
  • the gas barrier property may be adjusted so as to allow fine gas to enter from the holes by drilling those films.
  • a nonwoven fabric obtained by heating and spreading polyester fiber and polypropylene fiber, or one produced by a span bond method can be used. “Moderate” means that the film can be selected according to the amount of water remaining. When there is a large amount of water remaining, the material has a low water vapor transmission rate. It is preferable to select a material having a high gas permeability as much as possible.
  • the gas barrier properties of these films are determined by the water vapor permeability and nitrogen permeability of the films.
  • the thickness of the film can be determined according to the gas barrier properties.
  • the chemical moisture adsorbent can be placed in contact with the outer shell by placing the chemical moisture adsorbent in the middle of the core material or in the middle of the core material. preferable.
  • a method for preparing a copper ion exchanged ZSM-5 type zeolite having a silica-to-alumina ratio in the zeolite skeleton of 8 to 25 is performed as follows.
  • copper ion exchange is performed on sodium-type zeolite having a silica-to-alumina ratio of 8 to 25 in the zeolite framework.
  • This copper ion exchange can be performed by a conventionally known method, but a method of immersing in an aqueous solution of a soluble salt of copper such as an aqueous solution of chlorinated copper or an aqueous solution of ammine acid is generally used.
  • ZSM-5 type zeolite prepared by a method using a Cu2 + solution containing a carboxylate such as copper propionate (II) or copper acetate (II), or a method using a copper nitrate (II) solution. Things have high nitrogen adsorption activity.
  • the copper ion exchange rate is desirably at least 50 (%) or more of the ion exchangeable amount.
  • the Cu2 + introduced by the copper ion exchange is reduced to Cu1 + by sufficiently carrying out recommendation, drying, and appropriate heat treatment under low pressure, thereby expressing the nitrogen adsorption ability.
  • the pressure during the heat treatment is 10 (mPa) or less, preferably 1 (mPa) or less, and the temperature is 350 (° C.) or more, preferably 500 (° C.) or more.
  • the method for producing the gas adsorbent of the present invention is performed as follows.
  • Copper ion exchanged ZSM-5 type zeolite with a silica to alumina ratio in the zeolite skeleton that has been heat-treated to become nitrogen adsorption activity of 8 to 25 is inactive such as Ar without contact with nitrogen, water, or oxygen.
  • the chemical moisture adsorbent is mixed with the chemical moisture adsorbent so as to be covered with the chemical moisture adsorbent.
  • a chemical moisture adsorbent having a higher activity with respect to water than the obtained ZSM-5 type zeolite substituted with copper ions is selected.
  • the chemical water adsorbent covering the periphery of the copper ion exchanged ZSM-5 type zeolite comes into contact with the water vapor (water) before the copper ion exchanged ZSM-5 type zeolite. Can be adsorbed and immobilized. Furthermore, since the chemical moisture adsorbent has higher water adsorption activity than the ZSM-5 type zeolite exchanged with copper ions, the chemical moisture adsorbent is not adsorbed by the chemical moisture adsorbent and passes through the gap of the chemical moisture adsorbent.
  • the amount of water vapor (moisture) reaching the exchanged ZSM-5 type zeolite can be reduced, and the activity of the copper ion exchanged ZSM-5 type zeolite is hardly lost by the water vapor (water content). From this, it is possible to suppress a decrease in nitrogen adsorption activity of the ZSM-5 type zeolite subjected to copper ion exchange. As a result, when the heat insulating box is used, the deterioration of the nitrogen adsorption performance of the ZSM-5 type zeolite with the copper ion exchange of the gas adsorption device is suppressed, and as a result, the core sealed together with the gas adsorption device in the envelope material under reduced pressure.
  • the heat insulation performance of a heat insulation box can be maintained over a long period of time. Moreover, since deterioration of the gas adsorption device, the core material, and the vacuum heat insulating material is suppressed, the core material and the vacuum heat insulating material can be more easily reused when the used heat insulating box is discarded.
  • the heat insulation performance of the vacuum heat insulating material can be further improved when the heat insulating box is used.
  • the gas adsorbent since the gas adsorbent is filled in a seal bag having appropriate gas permeability, the remaining water does not flow into the gas adsorbent at a stretch. Further, the activity of the chemical moisture adsorbent with respect to water is larger than the activity with respect to water of the ZSM-5 type zeolite subjected to the copper ion exchange. For this reason, the remaining moisture passes through the chemical moisture adsorbent and reaches the ZSM-5 type zeolite that has undergone copper ion exchange, so that the nitrogen adsorption capacity of the ZSM-5 type zeolite that has undergone copper ion exchange has decreased. Can be suppressed. Since the deterioration of the gas adsorption device, the core material, and the vacuum heat insulating material is suppressed, the core material and the vacuum heat insulating material can be more easily reused when the used heat insulating box is discarded.
  • the gas adsorbing device seals both sides of a gas adsorbing material having nitrogen adsorbing performance and moisture adsorbing performance, and an accommodating portion that stores the gas adsorbing material in a decompressed state in an elongated flat tube shape.
  • a metal storage container, and between the sealing part and at least one of the storage container and the storage part, a close contact portion where the inner surfaces of the opposing storage containers are in close contact with each other is there.
  • the “storage container” plays a role of storing a gas adsorbing substance in a reduced pressure state and forming a close contact portion in the gas adsorbing device.
  • materials such as aluminum, copper, iron, and stainless steel, can be used.
  • the storage container is annealed so that the close contact portion can be easily formed. More preferably, from the viewpoint of formability and cost, it is desirable to use an aluminum storage container of less than 0.5 mm.
  • “sealing” is a means for keeping the inside of the storage container in a reduced pressure state, a method of filling the inner surface of the storage container with an adhesive member such as brazing material, adhesive or glass, A method of joining the inner surfaces using a method such as high-frequency welding or ultrasonic welding, or a method of molding the bottom so that the inner surfaces of the storage container are continuous by impact press or deep drawing can be used.
  • the powdery gas adsorbing substance stored in the storage unit can be prevented from being dispersed when the sealing unit is opened by having the close contact part.
  • the recyclability of the vacuum insulation is improved at the time of disposal.
  • FIG. 1 is a front view of a refrigerator provided with a heat insulation box according to Embodiment 1 of the present invention
  • FIG. 2 is a cross-sectional view of the refrigerator provided with the heat insulation box according to Embodiment 1.
  • FIG. 3 is a cross-sectional view before fin folding of the vacuum heat insulating material provided in the heat insulating box according to Embodiment 1 of the present invention
  • FIG. 4 is vacuum heat insulation after fin folding provided in the heat insulating box according to the same embodiment. It is the top view which looked at material from the adhesive agent side.
  • the heat insulating box 1 includes a metal (for example, iron plate) outer box 2 that opens forward and a hard resin (for example, ABS (Acrylonitrile Butadiene Styrene). ), And a foam heat insulating material 4 made of rigid urethane foam filled with cyclopentane as a foaming agent, filled between the outer box 2 and the inner box 3.
  • a metal for example, iron plate
  • a hard resin for example, ABS (Acrylonitrile Butadiene Styrene).
  • foam heat insulating material 4 made of rigid urethane foam filled with cyclopentane as a foaming agent
  • the refrigerator 100 provided with the heat insulation box 1 includes a refrigerating room 20 provided at the upper part of the main body (heat insulating box 1), an upper freezer room 21 provided at the lower part of the refrigerating room 20, and an upper stage at the lower part of the refrigerating room 20.
  • An ice making chamber 22 provided in parallel with the freezer compartment 21, a vegetable compartment 23 provided at the lower part of the main body, an upper freezer compartment 21 and a lower freezer compartment 24 provided between the ice making chamber 22 and the vegetable compartment 23, Prepare.
  • the refrigerator compartment 20 is provided with the rotary door 5 which is a single opening and closes the refrigerator compartment 20 so that it can be opened and closed.
  • the front part of each of the upper freezer compartment 21, the ice making compartment 22, the lower freezer compartment 24, and the vegetable compartment 23 is freely opened and closed by a corresponding drawer type door.
  • the heat insulating box 1 is provided with a plurality of vacuum heat insulating materials 10.
  • the plurality of vacuum heat insulating materials 10 have at least a core material 8 made of glass wool (glass fiber) and a moisture adsorbent 6 made of calcium oxide, and (8, 6) are made of two gas barrier properties.
  • the outer cover material 9 made of a laminate film or the like is sealed under reduced pressure.
  • the laminate film employed as the outer cover material 9 is a linear low density polyethylene film having a thickness of 50 ⁇ m as an innermost heat-welding layer, an aluminum foil having a thickness of 6 ⁇ m as a gas barrier layer as an intermediate layer, and an outermost layer.
  • the surface protective layer two layers of nylon films having a thickness of 15 ⁇ m and 25 ⁇ m are laminated.
  • An aluminum vapor deposition film may be applied to the gas barrier layer, or a combination of an aluminum vapor deposition film and an aluminum foil may be applied.
  • the ZSM-5 type further exchanged with copper ions is used in addition to the core material 8 and the moisture adsorbent 6, in addition to the core material 8 and the moisture adsorbent 6, the ZSM-5 type further exchanged with copper ions is used.
  • a gas adsorbing device 7 using zeolite is provided, and the core material 8 and the moisture adsorbent 6 are sealed under reduced pressure in the jacket material 9. It has been found that the ZSM-5 type zeolite adopted as the gas adsorbing material for the gas adsorbing device 7 has high moisture adsorption performance in addition to high nitrogen adsorption performance.
  • the core material 8, the moisture adsorbent 6 and the gas adsorbing device 7 may be sealed in the outer cover material 9 under reduced pressure.
  • the vacuum heat insulating material 10 having at least the largest area may be configured by sealing the gas adsorbing device 7 together with the core material 8 and the moisture adsorbent 6 in the outer cover material 9 under reduced pressure.
  • the gas adsorbing device 7 is formed by sealing a gas adsorbing material using powdered ZSM-5 type zeolite in a metal container 81. After sealing this gas adsorbing device 7 together with the core material 8 and the moisture adsorbent 6 in the outer cover material 9 by opening a through hole in the storage container 81 by some method such as destruction by external force, The internal space is in communication with the external space of the storage container 81 in the jacket material 9.
  • the heat insulation box 1 of this Embodiment after attaching the vacuum heat insulating material 10 to the inner surface of the outer box 2 with the adhesive agent 11, it is a foam heat insulating material in the space formed by the outer box 2 and the inner box 3. 4 is filled.
  • a hot-melt adhesive or a thermal expansion adhesive can be applied.
  • the hot melt adhesive for example, AZ7785 manufactured by Asahi Chemical Synthesis Co., Ltd. can be used.
  • urethane (urethane) or EVA (ethylene vinyl acetate) hot melt may be applied, but the time from application to the vacuum heat insulating material 10 to application to the outer box 2 is different.
  • the initial adhesiveness can be maintained by applying the adhesive 11 to the vacuum heat insulating material 10 and then covering it with a release paper or the like.
  • the adhesive 11 is applied in the form of dots or a combination of dots and lines, and the vacuum heat insulating material 10 is applied to the inner surface of the outer box 2 or the outer surface of the inner box 3, and then the foamed heat insulating material 4 is filled and foamed. This is for temporarily fixing the vacuum heat insulating material 10 until formation.
  • the application area of the adhesive 11 is set to a range of 10% or less of the surface area of the core part on one side of the vacuum heat insulating material 10.
  • the outer peripheral portion of the vacuum heat insulating material 10 is bonded to the adhesive 11 along the edge of the core material portion 12 of the vacuum heat insulating material 10 (the portion where the core material 8 is between two laminate films (covering material 9)) 12. It is trying to bond with the focus. The reason for this is that the bonding surface for bonding the vacuum heat insulating material 10 on the inner surface of the outer box 2 is not bonded to the central portion of the vacuum heat insulating material 10 separated by a predetermined width or more from the edge of the core member 12 of the vacuum heat insulating material 10. This is to prevent the foam heat insulating material 4 from entering the gap between the adhesive surface of the outer box 2 to which the vacuum heat insulating material 10 is bonded and the central portion of the vacuum heat insulating material 10.
  • FIG. 5 is a diagram for explaining a comparison of the amount of moisture adsorption for each water adsorption equilibrium pressure of each of the ZSM-5 type zeolite and the other moisture adsorbent contained in the vacuum heat insulating material provided in the heat insulation box according to the present embodiment.
  • the ZSM-5 type zeolite showing the numerical example shown in FIG. 5 has a ratio of copper monovalent sites of 60% or more, and among the copper monovalent sites, the oxygen tricoordinate copper monovalent sites are 70% or more. belongs to.
  • FIG. 5 shows the amount of moisture adsorbed by the moisture adsorbent for each water adsorption equilibrium pressure under a reduced pressure condition, which is lower than the atmospheric pressure of 13200 (Pa).
  • the moisture adsorption amount at 3000 (Pa) is the largest at 735 (cc / g) for the activated carbon.
  • the activated carbon maintains a high moisture adsorption amount exceeding 500 (cc / g) even in a state where the pressure is reduced to 2000 (Pa).
  • the ZSM-5 type zeolite adopted as the gas adsorbing material in the present embodiment is far below the activated carbon with respect to the moisture adsorption amount in a reduced pressure state of 2000 (Pa) or more.
  • the water adsorption amount of the ZSM-5 type zeolite exceeds 100 (cc / g).
  • the vacuum degree is 500 (Pa), which is higher than 1000 (Pa)
  • the moisture adsorption amount exceeding 100 (cc / g) is maintained.
  • a vacuum heat insulating material applied to a refrigerator has a water adsorption equilibrium pressure of 500 (Pa) or less even after 10 years of use.
  • the dry state of the core material is maintained so that the water adsorption equilibrium pressure is 100 (Pa) or less even after 10 years of use. Therefore, in the vacuum heat insulating material of the refrigerator having a high degree of vacuum, by providing the gas adsorption device using the ZSM-5 type zeolite of the present embodiment, even if the water adsorption equilibrium pressure has a high degree of vacuum, In addition to nitrogen, which occupies most of the air, it is possible to easily adsorb moisture contained in the air.
  • the dry state of the core material is maintained so that the water adsorption equilibrium pressure is 200 (Pa) or less. In this case, it is possible to maintain the initial performance with little influence from the weathering of the glass wool (core material).
  • the vacuum heat insulating material 10 seals the gas adsorbing device 7 under reduced pressure together with the core material 8 and the moisture adsorbent 6.
  • air and moisture entering from the outside of the vacuum heat insulating material 10 can be adsorbed by the moisture adsorbent 6 and the gas adsorbing device 7, and the gas adsorbing device 7 adsorbs moisture and deteriorates. It can be suppressed with the agent 6. Therefore, the reduced pressure state can be maintained over a long period of time, and the high heat insulating performance of the vacuum heat insulating material 10 can be maintained over a long period of time.
  • a vacuum heat insulating material 10 is arranged in a space formed by the outer box 2 and the inner box 3, and a space other than the vacuum heat insulating material 10 in the space formed by the outer box 2 and the inner box 3 is a foam heat insulating material. 4 is filled.
  • the vacuum heat insulating material 10 is arranged outside the space formed by the outer box 2 and the inner box 3, it is difficult for air and moisture to enter the vacuum heat insulating material 10, and the inside of the vacuum heat insulating material 10
  • the increase in internal pressure of the vacuum heat insulating material 10 due to the intrusion of air or moisture and the deterioration of the heat insulating performance of the vacuum heat insulating material 10 due to the increase in internal pressure are less likely to occur.
  • the vacuum heat insulating material 10 seals the gas adsorbing device 7 using ZSM-5 type zeolite as a gas adsorbing material together with the core material 8 and the moisture adsorbent 6 under reduced pressure.
  • ZSM-5 type zeolite as a gas adsorbing material together with the core material 8 and the moisture adsorbent 6 under reduced pressure.
  • air and moisture entering from the outside of the vacuum heat insulating material 10 can be adsorbed by the ZSM-5 type zeolite of the gas adsorption device 7 in addition to the moisture adsorbent 6.
  • the moisture adsorbent 6 can suppress the gas adsorption device 7 from adsorbing moisture and deteriorating.
  • a trace amount of water can be adsorbed over a long period in a low water adsorption equilibrium pressure region.
  • the reduced pressure state can be easily maintained, and the high heat insulating performance of the vacuum heat insulating material 10 can be maintained over a long period of time.
  • the weathering of the core material 8 which consists of glass wool etc. is suppressed. For this reason, the performance deterioration of the core material 8 taken out from the vacuum heat insulating material 10 at the time of disposal is suppressed, and the reuse of the core material 8 to a new vacuum heat insulating material becomes easy.
  • the vacuum heat insulating material 10 is bonded to the inner surface of the outer box 2 or the outer surface of the inner box 3 via an adhesive 11.
  • the bonding surface for bonding the vacuum heat insulating material 10 on the inner surface of the outer box 2 or the outer surface of the inner box 3 and the edge of the core material portion 12 of the vacuum heat insulating material 10 (the portion where the core material 8 is between the laminated films on both sides).
  • the outer periphery of the vacuum heat insulating material 10 is preferentially bonded along the edge of the core member 12 of the vacuum heat insulating material 10.
  • the core material 8 such as glass wool and the gas adsorption device 7 are not bonded via the adhesive 11, and the core material 8 and the gas adsorption device 7 are bonded to the inside of the jacket material 9. Sealed under reduced pressure without using the agent 11. Therefore, when the vacuum heat insulating material 10 is recycled, it is easy to separate the core material 8 and the gas adsorption device 7, and the core material 8 can be taken out from the vacuum heat insulating material 10 without impurities. Therefore, it is possible to reuse the core material 8 with more heat insulation performance maintained. Furthermore, when the outer cover material 9 is broken and the core material 8 inside thereof is reused, more core material 8 can be taken out with the man-hours for breaking the same outer cover material 9, and therefore more recycled. Efficiency can be increased.
  • the vacuum heat insulating material 10 is adhere
  • the foam heat insulating material 4 enters the gap between the bonding surface and the central portion of the vacuum heat insulating material 10 because the central portion of the vacuum heat insulating material 10 separated by a predetermined width or more from the edge of the core material portion 12 is not bonded.
  • the outer peripheral portion of the vacuum heat insulating material 10 is preferentially bonded along the edge of the core material portion 12 of the vacuum heat insulating material 10.
  • the vacuum heat insulating material 10 is buried in the inside of the foam heat insulating material 4 in the vicinity of the middle between the outer box 2 and the inner box 3, or almost the entire one surface of the core member 12 of the vacuum heat insulating material 10 is bonded.
  • the adhesive 11 is bonded to the inner surface of the outer box 2 or the outer surface of the inner box 3
  • the vacuum heat insulating material 10 is easily recovered without being damaged.
  • the outer appearance of the outer box 2 of the heat insulating box 1 is prevented by preventing the foam heat insulating material 4 from entering the gap between the bonding surface of the outer box 2 to which the vacuum heat insulating material 10 is bonded and the central portion of the vacuum heat insulating material 10. Deformation can be suppressed.
  • a hot melt adhesive or a thermal expansion adhesive is applied as the adhesive 11 and is applied in the form of dots or a combination of dots and lines, and the vacuum heat insulating material 10 is applied to the outer box.
  • 2 is used to temporarily fix the vacuum heat insulating material 10 until the foaming heat insulating material 4 is filled and foamed after being attached to the inner surface of 2 or the outer surface of the inner box 3.
  • the application area of the adhesive 11 is set to a range of 10 (%) or less of the surface area of the core part 12 on one side of the vacuum heat insulating material 10.
  • a thermal expansion type adhesive maintains its expanded state even when cooled at room temperature after it expands at a high temperature and loses its adhesive strength. For this reason, when a thermal expansion type adhesive is applied as the adhesive 11, the vacuum heat insulating material 10 can be easily separated from the adherend such as the outer box 2 or the inner box 3 at room temperature.
  • the heat insulating performance of the heat insulating box 1 can be maintained over a long period of time, and when the used heat insulating box 1 is discarded, from the heat insulating box 1
  • the heat insulation box 1 which can collect
  • the vacuum heat insulating material 10 of the heat insulation box 1 of this Embodiment can maintain a pressure-reduced state over a long period of time, and can maintain high heat insulation performance over a long period of time. For this reason, if there is no problem in the heat insulation performance of the vacuum heat insulating material 10 taken out from the used heat insulation box 1, it can be reused as it is.
  • FIG. 1 and 2 show only an example in which the vacuum heat insulating material 10 is bonded to the inner surface of the outer box 2, but the vacuum heat insulating material 10 may be bonded to the outer surface of the inner box 3. Absent.
  • the core material 8 can be made of open cells such as polyurethane and polystyrene, inorganic fibers such as ceramic fibers, organic fibers such as polyester fibers, and inorganic powders such as silica and pearlite. . Moreover, those composites may be sufficient.
  • the jacket material 9 may be any material that plays the role of maintaining the degree of vacuum of the vacuum heat insulating material.
  • the heat welding film is not particularly specified, but in addition to the linear low density polyethylene film, a thermoplastic resin such as a low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, or the like. Mixtures can be used.
  • metal foil such as copper foil other than the above aluminum foil, polyethylene terephthalate film, ethylene-vinyl alcohol copolymer, metal such as aluminum or copper, and metal oxide Or a mixture thereof (for example, a combination of an aluminum deposited film and an aluminum foil) can be used.
  • FIG. 6 is a schematic diagram of a gas adsorbent applied to the gas adsorption device according to Embodiment 2 of the present invention.
  • the gas adsorbing material 71 in the present embodiment is applied to the gas adsorbing device 7 in the first embodiment, and is used to adsorb air in the closed space and maintain the reduced pressure state in the closed space.
  • the gas adsorbent 71 is composed of a ZSM-5 type zeolite 72 exchanged with copper ions having a silica to alumina ratio of 8 or more and 25 or less in a zeolite skeleton having nitrogen adsorption activity, and a ZSM-5 type zeolite 72 exchanged with copper ions. And a chemical moisture adsorbent 73 formed to cover the surface. Note that the water adsorption activity of the chemical moisture adsorbent 73 is larger than the water adsorption activity of the ZSM-5 type zeolite 72 subjected to copper ion exchange.
  • the adjustment of the ZSM-5 type zeolite 72 exchanged with copper ions having a silica to alumina ratio in the zeolite framework of 8 or more and 25 or less is carried out by the following method.
  • copper ion exchange is performed on sodium-type zeolite having a silica to alumina ratio of 8 to 25 in the ZSM-5 type zeolite 72 framework.
  • This copper ion exchange can be performed by a conventionally known method, but a method of immersing in an aqueous solution of a soluble salt of copper such as a chlorinated copper aqueous solution or a copper ammine aqueous solution is common.
  • a method using a Cu 2+ solution containing a carboxylate such as copper (II) propionate or copper (II) acetate or a method prepared using a method using a copper (II) nitrate solution has high nitrogen adsorption activity.
  • the copper ion exchange rate is desirably at least 50 (%) or more of the ion exchangeable amount.
  • the Cu2 + introduced by the copper ion exchange is reduced to Cu1 + by sufficiently carrying out recommendation, drying, and appropriate heat treatment under low pressure, thereby expressing the nitrogen adsorption ability.
  • the pressure during the heat treatment is 10 (mPa) or less, preferably 1 (mPa) or less, and the temperature is 350 (° C.) or more, preferably 500 (° C.) or more.
  • the production of the gas adsorbent 71 is performed by the following method.
  • the ZSM-5 type zeolite 72 having a silica-to-alumina ratio of 8 to 25 in the zeolite skeleton that has been subjected to a heat treatment and has become a nitrogen adsorption activity is free from contact with nitrogen, water, oxygen, or the like without being exposed to nitrogen, water, or oxygen.
  • the mixture Under an active gas atmosphere, the mixture is mixed with the chemical moisture adsorbent 73 so as to be covered with the chemical moisture adsorbent 73.
  • a chemical moisture adsorbent 73 having a higher activity with respect to water than the ZSM-5 type zeolite 72 substituted with copper ions is selected.
  • the chemical moisture adsorbent 73 covering the periphery of the ZSM-5 type zeolite 72 subjected to copper ion exchange comes into contact with water vapor (moisture) prior to the ZSM-5 type zeolite 72 subjected to copper ion exchange. (Moisture) is adsorbed and immobilized.
  • the chemical moisture adsorbent 73 has higher adsorption activity to water than the ZSM-5 type zeolite 72 subjected to the copper ion exchange, and therefore the chemical moisture adsorbent 73 is not adsorbed by the chemical moisture adsorbent 73.
  • the amount of water vapor (moisture) reaching the ZSM-5 type zeolite 72 exchanged with copper ions through the gap is reduced. Therefore, since the activity of the ZSM-5 type zeolite 72 subjected to the copper ion exchange is less likely to be lost due to water vapor (moisture), the decrease in the nitrogen adsorption activity of the ZSM-5 type zeolite 72 subjected to the copper ion exchange can be suppressed. For this reason, the gas adsorbent 71 in the present embodiment has a large capacity of nitrogen adsorption capability.
  • a copper ion-exchanged ZSM-5 type zeolite 72 having a nitrogen-to-alumina ratio of silica to alumina of 8 to 25 and calcium oxide as a chemical water adsorbent 73 were prepared, and the activity to water was measured. .
  • a sample of calcium oxide 25 (g) was placed in warm water 1 (L) (with BTB indicator) and stirred while using a 4N hydrochloric acid aqueous solution. Perform Japanese titration. Thereafter, the amount of 4N hydrochloric acid aqueous solution consumed for 10 minutes was defined as the activity.
  • the activity of calcium oxide hereinafter referred to as first calcium oxide for convenience of description
  • the change in humidity was measured in a desiccator and compared with the activity of the first calcium oxide in water. Specifically, after the first calcium oxide was placed in a desiccator adjusted to 95 (% RH) and left for 10 minutes, the humidity became 4 (% RH). On the other hand, after the ZSM-5 type zeolite 72 subjected to copper ion exchange was similarly placed in a desiccator adjusted to 95 (% RH) and left for 10 minutes, the humidity became 12 (%).
  • the gas adsorbent 71 obtained by mixing the first calcium oxide and the ZSM-5 type zeolite 72 exchanged with copper ions at a mixing ratio of 9: 1 is made of glass wool (glass fiber) or the like.
  • a vacuum heat insulating material 10 (hereinafter referred to as a first vacuum heat insulating material for convenience of explanation) is inserted into a jacket material 9 made of a laminate film or the like together with the core material 8 and evacuated until the chamber pressure becomes 1 (Pa). (Referred to as material 10).
  • the thermal conductivity of the first vacuum heat insulating material 10 thus manufactured was 0.0017 (W / mK). In this state, it was left in an atmosphere of 100 (° C.), and when the thermal conductivity of the first vacuum heat insulating material 10 after 200 days was measured, it was 0.0019 (W / mK).
  • a calcium oxide having a water activity of 125 (ml) and a production method different from that of the example (hereinafter referred to as second calcium oxide for convenience of description) is prepared, and the desiccator is used in the same manner as in the example.
  • the humidity after 10 minutes was measured the humidity was 27 (% RH).
  • the gas adsorbent obtained by mixing the second calcium oxide and the ZSM-5 type zeolite 72 exchanged with copper ions at a mixing ratio of 9: 1 is a core made of glass wool (glass fiber) or the like. It inserts into the jacket material 9 which consists of a laminate film etc. with the material 8, and is evacuated until a chamber pressure becomes 1 (Pa), and a vacuum heat insulating material (hereinafter, for convenience of explanation, a second vacuum heat insulating material and Called).
  • the thermal conductivity of the second vacuum heat insulating material was 0.0017 (W / mK).
  • the first vacuum heat insulating material 10 of the example has a higher activity with respect to water than the ZSM-5 type zeolite 72 subjected to copper ion exchange. In this case, the thermal conductivity of the first vacuum heat insulating material 10 after 200 days is Almost no deterioration from initial thermal conductivity.
  • the second calcium oxide has a lower activity with respect to water than the ZSM-5 type zeolite 72 subjected to copper ion exchange, and the thermal conductivity of the second vacuum heat insulating material after 200 days is 0. .001 (W / mK).
  • the reason for this is that, within 200 days, the first vacuum heat insulating material 10 of the example continues to adsorb air components entering from the outside, whereas the second vacuum heat insulating material of the comparative example from the outside. It is considered that it is no longer possible to continue adsorbing the invading air component.
  • FIG. 7 is a schematic diagram of a gas adsorption device according to Embodiment 3 of the present invention.
  • the gas adsorption device 7a in the present embodiment includes a gas adsorbent 71 comprising a ZSM-5 type zeolite 72 exchanged with copper ions and a chemical moisture adsorbent 73 in the second embodiment, Is filled in a three-sided seal bag 75 of a low-density polyethylene film having a thickness of 15 ⁇ m having an appropriate gas permeability, and the opening of the three-side seal bag 75 is packed (sealed) by heat sealing.
  • the gas adsorbing device 7 a is covered with a core material 8 made of glass wool (glass fiber) or the like and an outer cover material 9 made of a laminate film having a gas barrier property.
  • the vacuum heat insulating material 10 is formed by decompressing the inside of the jacket material 9.
  • the gas adsorbent 71 since the gas adsorbent 71 is filled in the three-sided seal bag 75, the concentration of water vapor entering with the passage of time is thin, and most of the water vapor is directed toward the chemical water adsorbent 73. It is selectively adsorbed and immobilized. Therefore, the ZSM-5 type zeolite 72 subjected to the copper ion exchange can maintain a high nitrogen adsorption activity for a long time, and the vacuum heat insulating material 10 provided with the gas adsorbing material 71 does not deteriorate for a long time.
  • the ZSM-5 type zeolite 72 subjected to copper ion exchange has a ratio of silica to alumina in the zeolite skeleton of the gas adsorbent 71 of 8 or more and 25 or less, and adsorbs nitrogen that cannot be removed by an industrial vacuum exhaust process. Can do. As a result, the heat insulation performance of the vacuum heat insulating material 10 can be improved.
  • the gas adsorbing material 71 is filled in a three-sided sealing bag 75 of a low-density polyethylene film having a thickness of 15 ⁇ m, which has an appropriate gas permeability. For this reason, the remaining water does not flow into the gas adsorbent 71 at a stretch.
  • the activity of the chemical moisture adsorbent 73 constituting the gas adsorbent 71 with respect to water is greater than the activity of the ZSM-5 type zeolite 72 subjected to copper ion exchange with respect to water. For this reason, the remaining moisture passes through the chemical moisture adsorbent 73 and reaches the ZSM-5 type zeolite 72 subjected to the copper ion exchange, so that the moisture adsorbed on the ZSM-5 type zeolite 72 subjected to the copper ion exchange is reduced. The decline in performance can be suppressed.
  • the three-side seal bag 75 may be a seal bag having an appropriate gas permeability, and a low-density polyethylene film or a polypropylene film can be used.
  • the gas barrier property may be adjusted so as to allow fine gas to enter from the holes by drilling those films.
  • a nonwoven fabric formed by heating and spreading polyester fibers and polypropylene fibers, or a nonwoven fabric made by a spunbond method can be used.
  • the film can be selected according to the amount of water remaining. When the amount of remaining water is large, a material having a low water vapor transmission rate is selected. When the amount of water remaining is small, the water vapor transmission rate is selected. It is preferable to select a material having a high gas permeability as much as possible.
  • the gas barrier properties of these films are determined by the water vapor permeability and nitrogen permeability of these films. The thickness of these films can also be determined in accordance with the gas barrier properties.
  • Examples of the method for arranging the chemical moisture adsorbent 73 include a method for arranging the chemical moisture adsorbent 73 so as to be in contact with the outer shell, a method for arranging the chemical moisture adsorbent 73 in the middle of the core material 8, and the like. Among them, it is preferable to dispose them in the middle of the core material 8.
  • the vacuum heat insulating material 10 to which the gas adsorption device 7a in the present embodiment was applied was produced in the same procedure as in the second embodiment. And when the heat conductivity of the initial vacuum heat insulating material 10 is measured, it is 0.0017 (W / mK), and the heat conductivity after 200 days at 100 ° C. is also 0.0017 (W / mK). all right. The reason for this is considered that the ZSM-5 type zeolite 72 further exchanged with copper ions maintains a stable adsorption capacity without deterioration as compared with the second embodiment.
  • FIG. 8 is a plan view showing a configuration example of the gas adsorption device according to Embodiment 4 of the present invention.
  • 9 is a cross-sectional view taken along line AA in FIG.
  • the gas adsorbing device 7b in the present embodiment includes a gas adsorbing substance 74 made of ZSM-5 type zeolite exchanged with copper ions, and an elongated flat cylindrical gas adsorbing substance. And an aluminum storage container 81 for storing 74 in a decompressed state.
  • the storage container 81 includes a storage portion 80 that stores the gas adsorbing substance 74 and sealing portions 82 that are positioned at both ends of the storage portion 80.
  • one sealing portion 82a is a bottom obtained by deep drawing the storage container 81 into a bottomed cylindrical shape.
  • the other sealing part 82b seals the constriction part 84 which made the inner surface of the storage container 81 which opposes mutually approached with the glass for sealing.
  • the narrowed portions 84 may be formed together with the sealing portions 82 located at both ends of the storage portion 80 and sealed with sealing glass.
  • the storage container 81 has a contact portion 83 between the other sealing portion 82b and the storage portion 80, where the inner surfaces of the storage containers 81 facing each other are in close contact with each other.
  • both two flat surfaces which the storage container 81 mutually opposes are depressed.
  • adherence part 83 which comprises a bottom, and the edge part which stands
  • the recess is formed by the portion 82b and the storage portion 80. Alternatively, either one of the two flat surfaces of the storage container 81 facing each other may be recessed.
  • the gas adsorbing device 7b is configured such that when the internal space of the storage container 81 is communicated with the outside of the storage container 81 (opening the gas adsorbing device 7b), the contact portion 83 expands.
  • the gas adsorption device 7b as described above is manufactured by the following manufacturing method.
  • the manufacturing method of the gas adsorbing device 7b includes the step of storing the gas adsorbing substance 74 in the storage container 81, the step of forming the constricted portion 84 while forming the contact portion 83 by external force, and the other sealing portion 82b.
  • the step of performing the heat treatment specifically includes the step of activating the gas adsorbing substance 74, the step of melting the sealing glass under reduced pressure, and the sealing glass while slowly cooling the heating furnace.
  • the storage container 81 at the time of deep drawing is formed so that a close contact part 83 is formed between the storage part 80 and the other sealing part 82b on the narrowed part 84 side due to a pressure difference between the inside and outside of the storage container 81. It is preferable to have a process in which the flatness of the container and the thickness of the storage container 81 are adjusted.
  • the storage container between one sealing portion 82a and the constriction portion 84 before the constriction portion 84 is sealed with respect to the amount (volume) of the gas adsorbing substance 74 put in the storage container 81. It is preferable to have a step of adjusting the volume of 81 to be sufficiently large.
  • the amount of the gas adsorbing substance 74 is large.
  • gas is released from the gas adsorbing substance 74 in the storage container 81. Therefore, if there is too much gas adsorbing substance 74, the internal pressure increases due to the released gas, and the storage container 81 is sealed. It becomes difficult.
  • the sealing material disposed in the narrowed portion 84 is displaced by the momentum of the released gas, and the narrowed portion 84 cannot be properly sealed with the sealing material.
  • the amount of the gas adsorbing substance 74 that occupies the volume inward of the constriction portion 84 (in other words, the dimensional ratio between the storage portion 80 and the close contact portion 83) needs to be set appropriately.
  • the ratio between the length of the contact portion 83 and the length of the storage portion 80 is approximately 1: 1.
  • the longitudinal direction of the storage container 81 becomes the vertical direction from the time when it is placed in the vacuum heating furnace until the sealing glass is solidified and the external pressure of the storage container 81 is returned to the atmospheric pressure, and the other side It is preferable to have a step of placing the storage container 81 vertically so that the sealing portion 82b is positioned above the one sealing portion 82a.
  • the powdery gas adsorbing substance 74 accommodated in the accommodating portion 80 is dispersed when the other sealing portion 82b is opened by having the close contact portion 83. Therefore, the recyclability of the vacuum heat insulating material 10 is improved when the used heat insulating box is discarded.
  • FIG. 10 is a plan view showing a configuration example of the gas adsorption device according to Embodiment 2 of the present invention.
  • 11 is a cross-sectional view taken along line BB in FIG. 12 is a cross-sectional view taken along the line CC of FIG.
  • the gas adsorbing device 7c in the present embodiment includes a gas adsorbing substance 74 made of ZSM-5 type zeolite subjected to copper ion exchange, and a gas adsorbing substance 74 in an elongated flat cylindrical shape. And an aluminum storage container 81 in which both sides of the storage unit 80 stored in a decompressed state are sealed.
  • One sealing portion 82a of the sealing portions 82 located at both ends of the storage portion 80 is sealed by ultrasonic welding with the inner surfaces of the storage containers 81 facing each other approaching, and the other sealing portion As in the first embodiment, the portion 82b is formed by sealing the constricted portion 84 with the inner surfaces of the storage containers 81 facing each other approaching each other with sealing glass.
  • both two flat surfaces of the storage container 81 facing each other are recessed.
  • vertical to the longitudinal direction of the storage container 81 is depressed.
  • the gas adsorbing device 7b is configured such that the close contact portions 83a and 83b expand when the internal space of the storage container 81 is communicated with the outside of the storage container 81 (the gas adsorbing device 7b is opened).
  • the gas adsorption device 7c is manufactured by the following manufacturing method. First, one end of the storage container 81 is sealed by ultrasonic welding. Next, the one sealing portion 82a and the storage portion 80 are formed so that a close contact portion 83a is formed between the one sealing portion 82a sealed by ultrasonic welding and the storage portion 80 for storing the gas adsorbing substance 74. A portion to be a close contact portion 83a is brought into close contact with an external force. Next, the gas adsorbent 74 is stored in the storage container 81. Next, a narrowed portion 84 for forming the other sealing portion 82b is formed.
  • the heat treatment process of the gas adsorption device 7c includes the process of activating the gas adsorption substance 74, the process of melting the sealing glass under reduced pressure, and the cooling furnace slowly, as in the fourth embodiment. However, it has the process of solidifying the glass for sealing, and the process of annealing a storage container.
  • the flatness of the storage container 81 and the thickness of the storage container 81 are such that a close contact part 83b is formed between the storage part 80 and the other sealing part 82b on the narrowed part 84 side due to the pressure difference inside and outside the storage container 81. It is preferable to have the process of adjusting.
  • the close contact portion 83a and the constriction portion 84 on the side of one sealing portion 82a sealed by ultrasonic welding It is preferable to have the process of adjusting so that the volume of the storage container 81 in between may be enlarged sufficiently.
  • the longitudinal direction of the storage container 81 is the vertical direction and the narrow portion 84 side It is preferable to have a step of placing the storage container 81 vertically so that the other sealing portion 82b is positioned above one sealing portion 82a sealed by ultrasonic welding.
  • the powdery gas adsorbing substance 74 accommodated in the accommodating portion 80 is dispersed when the other sealing portion 82b is opened by having the close contact portion 83. Therefore, the recyclability of the vacuum heat insulating material 10 is improved when the used heat insulating box is discarded.
  • the heat insulation box of the present invention can maintain the heat insulation performance of the heat insulation box for a long time when in use, and it is easy to recover the vacuum heat insulating material from the heat insulation box when the used heat insulation box is discarded. Applicable to applications such as vending machines, hot water containers, building insulation, automotive insulation, cold insulation / heat insulation boxes, etc.

Abstract

本発明の断熱箱体(1)は、外箱(2)と、外箱内に外箱内面との間で断熱用の空間を配して収容された内箱(3)と、断熱用の空間に配設された複数の真空断熱材(10)と、断熱用の空間のうち複数の真空断熱材以外の空間に充填された発泡断熱材(4)と、を有し、複数の真空断熱材は、芯材及び水分吸着剤を少なくとも有し、外被材で覆われた空間内に、芯材及び水分吸着剤を減圧密封して構成され、複数の真空断熱材のうち少なくとも面積が最も大きい真空断熱材は、芯材及び水分吸着剤に加えて窒素吸着性能及び水分吸着性能を有した気体吸着デバイスをさらに有し、外被材で覆われた空間内に、芯材、水分吸着剤、及び気体吸着デバイスを減圧密封して構成されている。

Description

断熱箱体
 本発明は、断熱箱体に関する。
 近年、省エネルギー技術に注目が集まり、真空断熱材を備えた断熱箱体を用いて形成された冷蔵庫や自動販売機などの様々な製品が発売され、好評を得ている。なお、真空断熱材とは、グラスウール(glass wool)などから成る芯材と、吸着剤とをガスバリア(gas barrier)性の外被材内に減圧密封したものである。従来のウレタンフォーム(urethane foam)の発泡断熱材と比較すると、約20倍の断熱性能を有している。このため、真空断熱材は、外形寸法の割に該断熱箱体の内容積を大きくしたいといった顧客要望を満たしつつ、省エネルギー化を図ることが可能な有力な手段として注目されている。
 ただし、真空断熱材(グラスウールなどの芯材を有する)を備えた断熱箱体のリサイクル性の点でまだまだ課題がある。従来のリサイクルシステムにおいて、ウレタンフォームの発泡断熱材を備えた断熱箱体と混在するように、真空断熱材を備えた断熱箱体をそのまま破砕すると、破砕後にウレタンフォームの発泡断熱材とグラスウールなどの芯材とが混合してしまう。この結果、ウレタンの固形化が困難になり、ウレタンの再資源化が難しくなる。
 そこで、好ましい断熱箱体のリサイクル方法としては、真空断熱材を備えた断熱箱体の破砕前に、該真空断熱材を備えた断熱箱体から該真空断熱材をあらかじめ取り出しておく必要がある。そこで、グラスウールなどの芯材を有する真空断熱材とウレタンフォームの発泡断熱材とを備えた断熱箱体から該真空断熱材の脱着を容易にするための方法として、該ウレタンフォームの発泡断熱材とは密着しない箇所、しかも断熱箱体外部から容易に脱着できる箇所(内箱、外箱、扉内板、扉外板を凹ませた箇所)に、該真空断熱材を配設することが提案されている。これにより、真空断熱材単体でのサービス交換を容易にし、従来と同様に断熱材の薄壁化による断熱箱体の内容積の向上に貢献できる、とされている(例えば、特許文献1参照)。
特許第3811963号公報
 前記従来の構成では、断熱箱体からの真空断熱材の取り外しは容易なものとなるが、例えばウレタンフォームの発泡断熱材の中に真空断熱材が埋設されている場合(特許文献1の従来技術)と比較すると、外箱又は内箱の形状が複雑になる。これにより、断熱箱体の製造コストが増加し、しかも断熱箱体の強度が低下したりする。また、断熱箱体外部から真空断熱材内にガスが侵入しやすくなるので、真空断熱材の断熱性能の劣化が早まり、この結果、省エネルギー性能の悪化を引き起こし、消費電力量増加による炭酸ガス排出量アップなどの環境面の悪化に繋がる。
 また、真空断熱材にグラスウールなどから成る芯材が使用される場合には、ソーダ石灰などのアルカリ酸化物を含むガラス表面と経時的に侵入する水との接触により、該ガラス表面からアルカリイオン(alkali ion)の選択的な溶出がおこる。これにより、前記ガラス表面にはSi-OHに富む層が形成され、前記アルカリイオンの溶出によって水中の水酸基(-OH)濃度が増す。そしてPHが9以上になるとSi-O-Si結合の切断が起こり、真空断熱材の劣化が促進される可能性がある。
 本発明は、前記従来の課題を解決するもので、グラスウールなどから成る芯材を使用した真空断熱材を用いて断熱箱体を形成した場合、該断熱箱体の使用期間中に侵入する気体や水分による該真空断熱材の劣化を抑制し、該真空断熱材のリサイクル性を向上することを目的とする。言い換えると、断熱箱体の使用時では真空断熱材によって断熱箱体の断熱性能を長期に亘って維持し、使用済み断熱箱体の廃棄時では断熱箱体の真空断熱材のリサイクル性を向上することを目的とする。
 前記課題を達成するために、本発明のある形態に係る断熱箱体は、外箱と、前記外箱内に前記外箱内面との間で断熱用の空間を配して収容された内箱と、前記断熱用の空間に配設された複数の真空断熱材と、前記断熱用の空間のうち前記複数の真空断熱材以外の空間に充填された発泡断熱材と、を有し、前記複数の真空断熱材は、芯材及び水分吸着剤を少なくとも有し、外被材で覆われた空間内に、該芯材及び該水分吸着剤を減圧密封して構成され、前記複数の真空断熱材のうち少なくとも面積が最も大きい真空断熱材は、前記芯材及び前記水分吸着剤に加えて窒素吸着性能及び水分吸着性能を有した気体吸着デバイスをさらに有し、前記外被材で覆われた空間内に、該芯材、該水分吸着剤、及び該気体吸着デバイスを減圧密封して構成されている、ものである。
 前記構成によれば、真空断熱材に内包されている気体吸着デバイスによって、断熱箱体の使用期間中に該真空断熱材に侵入する水分を吸着しているので、使用済み断熱箱体の廃棄時に、断熱箱体の真空断熱材から取り出された芯材は、水分による風化や劣化が小さく、初期性能を維持した状態となっている。このように、断熱箱体の使用時では、芯材及び真空断熱材の劣化が抑制されているので、断熱箱体の断熱性能を長期に亘って維持することができる。また、芯材及び真空断熱材の劣化が抑制されているので、使用済み断熱箱体の廃棄時に芯材及び真空断熱材の再利用が容易なものとなる。
 前記課題を達成するために、本発明の他の形態に係る断熱箱体の気体吸着デバイスは、ガス透過性を有するシール袋内に、窒素吸着性能及び水分吸着性能を有した気体吸着材と、該気体吸着材が内部に充填されたガス透過性を有するシール袋とを有し、前記気体吸着材は、ゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM-5型ゼオライトと、前記銅イオン交換したZSM-5型ゼオライトの周囲を覆った、水に対する吸着活性が前記銅イオン交換したZSM-5型ゼオライトよりも大きい化学的水分吸着剤と、を含んで成る、ものである。
 前記構成によれば、銅イオン交換したZSM-5型ゼオライトの周囲を覆った化学的水分吸着剤が、銅イオン交換したZSM-5型ゼオライトよりも先に水蒸気(水分)と接触して水蒸気(水分)を吸着固定化することができる。ここで、化学的水分吸着剤は銅イオン交換したZSM-5型ゼオライトよりも水に対する吸着活性が高いため、化学的水分吸着剤で吸着されずに化学的水分吸着剤の隙間を通過して銅イオン交換したZSM-5型ゼオライトに到達する水蒸気(水分)の量が減少する。したがって、銅イオン交換したZSM-5型ゼオライトが水蒸気(水分)により活性が失われないことから、銅イオン交換したZSM-5型ゼオライトの窒素吸着活性の低下を抑制することができる。そして、この結果、断熱箱体の使用時には、気体吸着デバイスの銅イオン交換したZSM-5型ゼオライトの窒素吸着性能の劣化が抑制され、ひいては気体吸着デバイスとともに外被材に減圧密封されている芯材の劣化が抑制されているので、断熱箱体の断熱性能を長期に亘って維持することができる。また、気体吸着デバイス、芯材及び真空断熱材の劣化が抑制されているので、使用済み断熱箱体の廃棄時に芯材及び真空断熱材の再利用が容易なものとなる。
 また、前記構成によれば、前記気体吸着材を適度なガス透過性を有する袋内に充填しているため、経過時間と共に真空断熱材に侵入してくる水蒸気は濃度が薄く、その水蒸気のほとんどが化学的水分吸着剤に選択的に吸着固定化される。この結果、気体吸着デバイスの銅イオン交換したZSM-5型ゼオライトが、長期に亘って高い窒素吸着活性を維持することができるので、真空断熱材は長期間劣化しないものとなり、使用済み断熱箱体の廃棄時に芯材及び真空断熱材の再利用がさらに容易なものとなる。
 前記課題を解決するために、本発明のさらに他の形態に係る断熱箱体の気体吸着デバイスは、窒素吸着性能及び水分吸着性能を備えた粉状の気体吸着物質と、細長い扁平な筒状で前記気体吸着物質を減圧状態で収納する収納部の両側を封止した金属製の収納容器とを有し、前記収納容器の少なくともどちらか一方の封止部と前記収納部との間に、対向する前記収納容器の内面同士が密着する密着部を有する、ものである。
 前記構成によれば、密着部を有することによって封止部を開封したときに収納部に収納された粉状の気体吸着物質が離散するのを防止することができるので、使用済み断熱箱体の廃棄時において真空断熱材のリサイクル性が向上する。
 本発明の前記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明は、使用済み断熱箱体の廃棄時は、断熱箱体から真空断熱材を回収した状態で、水分による風化、劣化が小さく、初期性能を維持した状態で、再利用が可能となり、環境負荷が小さく、省資源化を図った冷蔵庫を提供することができる。
図1は本発明の実施の形態1に係る断熱箱体の正面図である。 図2は本発明の実施の形態1に係る断熱箱体の横断面図である。 図3は本発明の実施の形態1における真空断熱材の断面図である。 図4は本発明の実施の形態1における真空断熱材を接着剤側から見た平面図である。 図5は本発明の実施の形態1における水吸着平衡圧の違いにおける水分吸着量を示した図である。 図6は本発明の実施の形態2における気体吸着材の模式図である。 図7は本発明の実施の形態3における気体吸着材パックの模式図である。 図8は本発明の実施の形態4における気体吸着デバイスの構成例を示す平面図である。 図9は図8のA-A線断面図である。 図10は本発明の実施の形態5における気体吸着デバイスの構成例を示す平面図である。 図11は図10のB-B線断面図である。 図12は図10のC-C線断面図である。
 以下、本発明の実施の形態を、図面を参照しながら説明する。なお、以下ではすべての図を通じて同一又は相当する要素には同一の参照符号を付して、特に言及しない場合にはその重複する説明を省略する。
 第1の発明は、外箱と、前記外箱内に前記外箱内面との間で断熱用の空間を配して収容された内箱と、前記断熱用の空間に配設された複数の真空断熱材と、前記断熱用の空間のうち前記複数の真空断熱材以外の空間に充填された発泡断熱材と、を有し、前記複数の真空断熱材は、芯材及び水分吸着剤を少なくとも有し、外被材で覆われた空間内に、該芯材及び該水分吸着剤を減圧密封して構成され、前記複数の真空断熱材のうち少なくとも面積が最も大きい真空断熱材は、前記芯材及び前記水分吸着剤に加えて窒素吸着性能及び水分吸着性能を備えた気体吸着デバイスをさらに有し、前記外被材で覆われた空間内に、該芯材、該水分吸着剤、及び該気体吸着デバイスを減圧密封して構成されている、断熱箱体である。
 なお、本発明において、「芯材」として、グラスウール(ガラス繊維)、ポリウレタン(poly urethane)やポリスチレン(polystyrene)などの連通気泡体、セラミックファイバー(ceramic fiber)などの無機繊維、ポリエステル(polyester)繊維などの有機繊維、及びシリカ(silica)やパーライト(pearlite)などの無機粉末などが利用可能である。また、それらの複合体であっても良い。
 また、「外被材」とは、真空断熱材の真空度を維持する役割を果たすものであればよい。例えば、最内層の熱溶着フィルムと、中間層としてのガスバリアフィルム(gas barrier film)として金属箔や金属原子を蒸着した樹脂フィルムと、最外層として表面保護フィルムとを、それぞれラミネートしたラミネートフィルムが使用可能である。なお、熱溶着フィルムとしては、特に指定するものではないが、低密度ポリエチレンフィルム(polyethylene film)、直鎖低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム(polypropylene film)、ポリアクリロニトリルフィルム(polyacrylonitrile film)などの熱可塑性樹脂、あるいはそれらの混合体が使用可能である。また、ガスバリアフィルムとしては、アルミニウム箔や銅箔などの金属箔や、ポリエチレンテレフタレートフィルム(polyethylene terephthalate film)やエチレン-ビニルアルコール(ethylene-vinyl alcohol)共重合体へアルミニウムや銅などの金属や金属酸化物を蒸着したフィルムなどが使用可能である。
 前記のとおり、真空断熱材は、芯材及び水分吸着剤とともに、窒素吸着性能及び水分吸着性能を備えた気体吸着デバイスを減圧密封して構成されている。これにより、真空断熱材の外部から侵入する空気や水分を水分吸着剤と気体吸着デバイスとにより吸着することができ、しかも気体吸着デバイスが水分を吸着して劣化することを水分吸着剤で抑えることができる。言い換えると、高い水吸着平衡圧域においては気体吸着デバイスが水分を吸着して劣化すること水分吸着剤で抑えることができ、低い水吸着平衡圧域においては微量水分を長期に亘って吸着することができる。この結果、真空断熱材の減圧状態を容易に維持することができ、真空断熱材の高い断熱性能を長期に亘って維持できる。また、使用期間中の真空断熱材の乾燥状態が維持されているので、芯材の風化が抑制される。このため、廃棄時に真空断熱材から取り出された芯材の性能劣化が小さく、真空断熱材への再利用が容易なものとなる。
 また、外箱と内箱とで形成される断熱用の空間内に真空断熱材が配設され、断熱用の空間のうち真空断熱材以外の空間は発泡断熱材が充填されている。これにより、例えば断熱用の空間外に真空断熱材が配設される場合と比較すると、真空断熱材内に空気や水分が侵入し難くなり、真空断熱材の内圧上昇による真空断熱材の断熱性能の悪化を抑制できる。
 第2の発明は、前記気体吸着デバイスは、窒素吸着性能及び水分吸着性能を備えた粉末状の気体吸着物質と、該気体吸着物質を収納する収納容器とを有し、前記外被材で覆われた空間内に、前記収納容器と前記芯材とが互いに接着剤を介することなく減圧密封のみによって保持されている、ものである。
 なお、本発明において、「収納容器」とは、気体吸着物質を減圧状態で収納する役割を果たすものである。なお、収納容器の種類に関して特に指定するものではないが、アルミニウム、銅、鉄、ステンレスなどの金属材料が使用可能である。また、「気体吸着物質」は、空気中の窒素や酸素を吸着する能力及び空気中の水分を吸着する能力を持った物質であればよい。なお、気体吸着物質の種類に関して特に指定するものではないが、リチウム化合物や銅イオン交換されたZSM-5型ゼオライトが使用可能である。
 前記構成によれば、芯材と気体吸着デバイスとが、接着剤などを介して互いに接着されておらず、外被材の内部に接着剤を介することなく減圧密封されている。このため、真空断熱材から、不純物が無くより断熱性能を維持した状態の芯材を取り出すことができ、芯材及び真空断熱材の再利用が容易なものとなる。
 第3の発明は、前記真空断熱材は、前記外箱の内面もしくは前記内箱の外面に接着剤を介して接着され、前記外箱の内面又は前記内箱の外面における前記真空断熱材を接着する接着面と、前記真空断熱材の芯材部の縁から所定幅以上離れた前記真空断熱材の中央部と、が接着されないことにより、前記接着面と前記真空断熱材の中央部との間の隙間に前記発泡断熱材が入り込むことを防止すべく、前記真空断熱材の芯材部の縁に沿って前記真空断熱材の外周部が前記接着剤によって重点的に接着されている、ものである。
 これによって、外箱と内箱との中間付近に発泡断熱材の内部に真空断熱材が埋没されている場合や、真空断熱材の芯材部の片面のほぼ全面を接着剤を介して外箱の内面又は内箱の外面に接着している場合と比べると、真空断熱材を破損せずに回収し易くなる。つまり、使用済み断熱箱体の廃棄時に、断熱箱体から真空断熱材を回収し易くなっており、リサイクル性を向上させた断熱箱体を提供することができる
 第4の発明は、前記接着剤として熱膨張型接着剤を用いたものである。熱膨張型接着剤は、高温で膨張して接着力が失われた後に常温冷却してもその膨張状態が維持される特性を有している。このため、常温で、外箱又は内箱などの被着体から真空断熱材を容易に分離することができる。
 第5の発明は、前記気体吸着デバイスは、ガス透過性を有するシール袋内に、窒素吸着性能及び水分吸着性能を備えた気体吸着材と、該気体吸着材が内部に充填されたガス透過性を有するシール袋とを有し、前記気体吸着材は、ゼオライト(zeolite)骨格中のシリカ(silica)対アルミナ(alumina)比が8以上25以下である銅イオン交換したZSM-5型ゼオライトと、前記銅イオン交換したZSM-5型ゼオライトの周囲を覆った、水に対する吸着活性が前記銅イオン交換したZSM-5型ゼオライトよりも大きい化学的水分吸着剤と、を含んで成る、ものである。
 なお、本発明において、「適度なガス透過度を有するシール袋」には、低密度ポリエチレンフィルムやポリプロピレンフィルムなどが使用可能である。又は、それらのフィルムを穴加工して微小のガスを穴から侵入するようガスバリア性を調整しても良い。又は、不織布はポリエステル繊維とポリプロピレン繊維を加熱延展したもの、あるいはスパンボンド(span bond)方式により造られたものなどが使用可能である。「適度」とは、残存する水分の量に応じてフィルムの選択が可能であり、水分の残存量が多い場合は、水蒸気透過度の低い材料、水分の残存量が少ない場合は水蒸気透過度の高い材料を選択し、気体透過度はできる限り大きなものを選択することが好ましい。これらのフィルムのガスバリア性は、そのフィルムの水蒸気透過度、及び窒素透過度によって決定される。ガスバリア性に合わせてそのフィルムの厚みを決めることもできる。また、化学的水分吸着剤の配置方法は、外殻と接するように化学的水分吸着剤を配置する方法や、芯材の中間に配置する方法があるが、芯材の中間に配置する方が好ましい。
 また、ゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM-5型ゼオライトの調整方法はつぎのように行われる。
 まず、ゼオライト骨格中のシリカ対アルミナ比が8以上25以下であるナトリウム型ゼオライトに対して銅イオン交換が行われる。この銅イオン交換は、従来から行われている既知の方法で行うことができるが、塩素銅水溶液やアンミン(ammine)酸銅水溶液など銅の可溶性塩の水溶液に浸漬する方法が一般的である。その中でも、プロピオン酸銅(II)や酢酸銅(II)などカルボキシラート(carboxylate)を含むCu2+溶液を用いた方法や、硝酸銅(II)溶液を用いた方法で調整されたZSM-5型ゼオライトものは、窒素吸着活性が高い。
 銅イオン交換率は、イオン交換可能な量の少なくとも50(%)以上であることが望ましい。銅イオン交換後は、十分に推薦、乾燥後、低圧下にて適切な熱処理を行うことにより、銅イオン交換により導入されたCu2+がCu1+へと還元され、窒素吸着能を発現するものである。熱処理時の圧力は10(mPa)以下、好ましくは1(mPa)以下であり、温度は350(℃)以上、好ましくは500(℃)以上である。
 また、本発明の気体吸着材の作成方法はつぎのように行われる。
 熱処理されて窒素吸着活性となったゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM-5型ゼオライトは、窒素や水、酸素に触れることなく、Arなどの不活性ガス雰囲気下で、化学的水分吸着剤により周囲が覆われるように該化学的水分吸着剤と混合される。このとき、得られた銅イオンを置換したZSM-5型ゼオライトよりも水に対する活性度の大きい化学的水分吸着剤を選択する。この活性度の差は、大きければ大きいほど良いが、実用的には2倍以上が好ましい。なお、ZSM-5型ゼオライトに銅一価イオンを担持させたものは有害性情報が無く、環境負荷も低いと考えられる。
 前記構成によれば、銅イオン交換したZSM-5型ゼオライトの周囲を覆う化学的水分吸着剤が銅イオン交換したZSM-5型ゼオライトよりも先に水蒸気(水分)と接触して水蒸気(水分)を吸着固定化することができる。さらに、化学的水分吸着剤は銅イオン交換したZSM-5型ゼオライトよりも水に対する吸着活性が高いため、化学的水分吸着剤で吸着されずに化学的水分吸着剤の隙間を通過して銅イオン交換したZSM-5型ゼオライトに到達する水蒸気(水分)の量が減少することができ、銅イオン交換したZSM-5型ゼオライトが水蒸気(水分)により活性が失われにくくなる。このことから、銅イオン交換したZSM-5型ゼオライトの窒素吸着活性の低下を抑制することができる。そして、この結果、断熱箱体の使用時には、気体吸着デバイスの銅イオン交換したZSM-5型ゼオライトの窒素吸着性能の劣化が抑制され、ひいては気体吸着デバイスとともに外被材に減圧密封されている芯材の劣化が抑制されるので、断熱箱体の断熱性能を長期に亘って維持することができる。また、気体吸着デバイス、芯材及び真空断熱材の劣化が抑制されているので、使用済み断熱箱体の廃棄時に芯材及び真空断熱材の再利用がさらに容易なものとなる。
 また、前記構成において、気体吸着材におけるゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM-5型ゼオライトが、工業的真空排気プロセスで除去しきれない窒素を吸着することができ、その結果、断熱箱体の使用時において、真空断熱材の断熱性能のさらなる向上を図ることができる。
 また、前記構成において、気体吸着材が適度なガス透過性を有するシール袋内に充填されているため、残存していた水分が一気に気体吸着材内へ流れ込むことがない。また、化学的水分吸着剤の水に対する活性度は、銅イオン交換したZSM-5型ゼオライトの水に対する活性度よりも大きい。このため、残存していた水分が化学的水分吸着剤を通り抜けて銅イオン交換したZSM-5型ゼオライトへ到達する水分がごく僅かとなり、銅イオン交換したZSM-5型ゼオライトの窒素吸着能の低下を抑制できる。気体吸着デバイス、芯材及び真空断熱材の劣化が抑制されているので、使用済み断熱箱体の廃棄時に芯材及び真空断熱材の再利用がさらに容易なものとなる。
 第6の発明は、前記気体吸着デバイスは、窒素吸着性能及び水分吸着性能を備えた気体吸着物質と、細長い扁平な筒状で前記気体吸着物質を減圧状態で収納する収納部の両側を封止した金属製の収納容器とを有し、前記収納容器の少なくともどちらか一方の封止部と前記収納部との間に、対向する前記収納容器の内面同士が密着する密着部を有する、ものである。
 なお、本発明において、「収納容器」とは、気体吸着物質を減圧状態で収納する役割を果たすとともに、気体吸着デバイスに密着部を形成する役割を果たすものである。なお、収納容器の種類に関して特に指定するものではないが、アルミニウムや銅、鉄、ステンレスなどの材料が使用可能である。さらに、密着部を容易に形成できるよう、収納容器は焼き鈍し処理がなされていることが望ましい。さらに望ましくは、成形性やコストの観点から、0.5mm未満のアルミニウム収納容器とすることが望ましい。
 また、「封止」とは、収納容器内を減圧状態に保つための手段であり、ろう材や接着剤やガラスなどの接着部材を収納容器の内面に充填する方法、互いに対向する収納容器の内面同士を高周波溶接や超音波溶接などの方法をもちいて接合する方法、又はインパクトプレスや深絞り成型によって収納容器の内面同士が連続するように底を成型する方法が利用可能である。
 前記構成によれば、密着部を有することによって封止部を開封したときに収納部に収納された粉状の気体吸着物質が離散するのを防止することができるので、使用済み断熱箱体の廃棄時において真空断熱材のリサイクル性が向上する。
 以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。
 (実施の形態1)
 図1は本発明の実施の形態1に係る断熱箱体を備えた冷蔵庫の正面図であり、図2は同実施の形態1に係る断熱箱体を備えた冷蔵庫の横断面図である。なお、図1、図2の説明で用いる方向の概念は、冷蔵庫100の高さ方向を上下方向とし、冷蔵庫100の幅方向を左右方向とし、冷蔵庫100の奥行方向を前後方向とする。図3は本発明の実施の形態1に係る断熱箱体が備える真空断熱材のヒレ折り前の断面図であり、図4は同実施の形態に係る断熱箱体が備えるヒレ折り後の真空断熱材を接着剤側から見た平面図である。
 図1乃至図4に示すように、本実施の形態に係る断熱箱体1は、前方に開口する金属(例えば、鉄板)製の外箱2と、硬質樹脂(例えば、ABS(Acrylonitrile Butadiene Styrene))製の内箱3と、外箱2と内箱3との間に充填された、シクロペンタン(cyclopentane)を発泡剤として適用した硬質ウレタンフォームから成る発泡断熱材4と、を備える。
 断熱箱体1を備えた冷蔵庫100は、本体(断熱箱体1)上部に設けられた冷蔵室20と、冷蔵室20の下部に設けられた上段冷凍室21と、冷蔵室20の下部で上段冷凍室21と並列に設けられた製氷室22と、本体下部に設けられた野菜室23と、上段冷凍室21及び製氷室22と野菜室23の間に設けられた下段冷凍室24と、を備える。なお、冷蔵室20は片開きであって冷蔵室20を開閉自在に閉塞する回転式扉5を備えている。また、上段冷凍室21、製氷室22、下段冷凍室24、及び野菜室23それぞれの前面部は、それぞれに対応した引き出し式の扉により開閉自由に閉塞されている。
 断熱箱体1は、複数の真空断熱材10を備えている。複数の真空断熱材10は、グラスウール(ガラス繊維)から成る芯材8と、酸化カルシウムから成る水分吸着剤6と、を少なくとも有しており、それら(8,6)をガスバリア性の2枚のラミネートフィルムなどから成る外被材9内に減圧密封して構成されている。なお、外被材9として採用したラミネートフィルムは、最内層の熱溶着層として、厚み50μmの直鎖低密度ポリエチレンフィルムを、中間層のガスバリア層として、厚み6μmのアルミニウム箔を、また最外層の表面保護層として、厚み15μmと25μmのナイロンフィルム2層を積層して成る。ガスバリア層は、アルミ蒸着フィルムを適用しても良く、また、アルミ蒸着フィルムとアルミニウム箔を組み合わせて適用しても良い。
 特に、断熱箱体1に備えられた複数の真空断熱材10のうち最も面積の大きい真空断熱材10においては、芯材8及び水分吸着剤6に加えて、さらに銅イオン交換したZSM-5型ゼオライトを用いた気体吸着デバイス7が備えられており、芯材8及び水分吸着剤6とともに外被材9内に減圧密封されている。気体吸着デバイス7の気体吸着物質として採用したZSM-5型ゼオライトは、窒素吸着性能が高いことに加えて、水分吸着性能も高いことが分かっている。なお、最も面積の大きい真空断熱材10のみならず、面積の大きさを基準として上位に位置づけられている、複数の真空断熱材10のうちのいくつか(最も面積の大きい真空断熱材10を含む)が、芯材8、水分吸着剤6及び気体吸着デバイス7を外被材9内に減圧密封して構成されてもよい。なお、少なくとも最も面積の大きい真空断熱材10が芯材8及び水分吸着剤6とともに気体吸着デバイス7を外被材9内に減圧密封して構成されていればよい。
 気体吸着デバイス7は、粉末状のZSM-5型ゼオライトを用いた気体吸着物質を金属製の収納容器81内に密封して形成されている。この気体吸着デバイス7を芯材8及び水分吸着剤6とともに外被材9内に減圧密封した後、外力による破壊などの何らかの方法によって、収納容器81に貫通孔を開けることで、収納容器81の内部空間と外被材9内であって収納容器81の外部空間とを連通させている。
 ところで、本実施の形態の断熱箱体1では、外箱2の内面に真空断熱材10を接着剤11で接着した上で、外箱2と内箱3とにより形成される空間に発泡断熱材4が充填されている。接着剤11としては、ホットメルト(hot melt)接着剤又は熱膨張型接着剤を適用することができる。ホットメルト接着剤としては、例えば旭化学合成株式会社製AZ7785を用いることができる。その他、ウレタン(urethane)系やEVA(ethylene vinyl acetate)系のホットメルトを適用しても良いが、真空断熱材10に塗布してから外箱2への貼り付けまでの時間が異なる。本接着剤11は、真空断熱材10に塗布した後、離型紙などで覆うことにより、初期の接着性を維持することができる。なお、接着剤11は、点状又は点状と線状との組み合わせで塗布し、真空断熱材10を外箱2の内面又は内箱3の外面に貼り付け後、発泡断熱材4の充填発泡形成までの間、真空断熱材10を仮固定しておくためのものである。接着剤11の塗布面積は、真空断熱材10の片面の芯材部の表面積の10%以下の範囲とする。
 特に、真空断熱材10の芯材部12(2枚のラミネートフィルム(外被材9)間に芯材8がある部分)12の縁に沿って、真空断熱材10の外周部を接着剤11で重点的に接着するようにしている。この理由は、外箱2の内面における真空断熱材10を接着する接着面と、真空断熱材10の芯材部12の縁から所定幅以上離れた真空断熱材10の中央部とが接着されないことにより、外箱2における真空断熱材10を接着する接着面と真空断熱材10の中央部との間の隙間に発泡断熱材4が入り込むことを防止するためである。
 図5は、本実施の形態に係る断熱箱体が備える真空断熱材に内包されたZSM-5型ゼオライトとその他の水分吸着剤それぞれの水吸着平衡圧ごとの水分吸着量の比較を説明するための図である。なお、図5に示される数値例を示すZSM-5型ゼオライトは、銅1価サイトの割合が60%以上であり、銅1価サイトのうち酸素3配位の銅1価サイトは70%以上のものである。
 図5では、大気圧とされる13200(Pa)よりも減圧状態下における水吸着平衡圧ごとの水分吸着剤の水分吸着量が示されている。大気圧よりも低い水吸着平衡圧ごとの水分吸着量のうち、3000(Pa)での水分吸着量については活性炭の水分吸着量が最も大きく735(cc/g)となっている。なお、活性炭は、図5に示すように、2000(Pa)まで減圧した状態であっても、500(cc/g)を上回る高い水分吸着量を維持していることが分かる。
 一方、本実施の形態で気体吸着物質として採用したZSM-5型ゼオライトは、2000(Pa)以上の減圧状態における水分吸着量に関して活性炭を大きく下回っている。しかしながら、1000(Pa)以下の真空度が高くなっている水吸着平衡圧においては、ZSM-5型ゼオライトの水分吸着量は、100(cc/g)を上回っている。特に、1000(Pa)よりも真空度の高い500(Pa)であっても、100(cc/g)を上回る水分吸着量を維持している。
 一般に、冷蔵庫に適用される真空断熱材は、使用期間10年間を経過した後であってもその水吸着平衡圧は500(Pa)以下である。特に、実製品においては、使用期間10年間を経過した後であっても、100(Pa)以下といった水吸着平衡圧となるように、芯材の乾燥状態が維持されている。よって、高い真空度を有する冷蔵庫の真空断熱材において、本実施の形態のZSM-5型ゼオライトを用いた気体吸着デバイスが具備されることにより、高い真空度の水吸着平衡圧であっても、空気の中で大部分を占める窒素に加えて、空気中に含まれる水分を容易に吸着することが可能となる。また、仮に、何らかの外乱影響を受けた場合であっても、200(Pa)以下の水吸着平衡圧となるように芯材の乾燥状態が維持されることが望ましい。この場合には、グラスウール(芯材)の風化の影響をほとんど受けず、初期の性能を維持することが可能となる。
 前記構成において、真空断熱材10は、芯材8及び水分吸着剤6とともに、気体吸着デバイス7を減圧密封している。これにより、真空断熱材10の外部から侵入する空気や水分を水分吸着剤6と気体吸着デバイス7とにより吸着することができ、しかも気体吸着デバイス7が水分を吸着して劣化するのを水分吸着剤6で抑えることができる。したがって、長期に亘って減圧状態を維持でき、真空断熱材10の高い断熱性能を長期に亘って維持できる。
 また、外箱2と内箱3とで形成される空間内に真空断熱材10が配置され、外箱2と内箱3とで形成される空間の真空断熱材10以外の空間は発泡断熱材4が充填されている。これにより、外箱2と内箱3とで形成される空間の外に真空断熱材10を配置する場合と比較すると、真空断熱材10内に空気や水分が侵入し難く、真空断熱材10内に空気や水分が侵入することによる真空断熱材10の内圧上昇と、その内圧上昇による真空断熱材10の断熱性能の悪化が発生しにくくなる。
 前記のように、真空断熱材10は、芯材8及び水分吸着剤6とともに、気体吸着物質としてZSM-5型ゼオライトを用いた気体吸着デバイス7を減圧密封している。これにより、真空断熱材10の外部から侵入する空気や水分を、水分吸着剤6に加え、気体吸着デバイス7のZSM-5型ゼオライトによっても吸着することができる。特に、高い水吸着平衡圧域においては気体吸着デバイス7が水分を吸着して劣化することを水分吸着剤6で抑えることができる。一方、低い水吸着平衡圧域においては微量水分を長期に亘って吸着することができる。この結果、減圧状態を容易に維持することができ、真空断熱材10の高い断熱性能を長期に亘って維持できる。また、使用期間中の真空断熱材10の乾燥状態が維持されているので、グラスウールなどから成る芯材8の風化が抑制される。このため、廃棄時に真空断熱材10から取り出された芯材8の性能劣化が抑制されており、新たな真空断熱材への芯材8の再利用が容易なものとなる。
 さらに、真空断熱材10は、外箱2の内面又は内箱3の外面に接着剤11を介して接着されている。特に、外箱2の内面又は内箱3の外面における真空断熱材10を接着する接着面と、真空断熱材10の芯材部12(両面のラミネートフィルム間に芯材8がある部分)の縁から所定幅以上離れた真空断熱材10の中央部とが接着されないことにより、該接着面と真空断熱材10の該中央部との隙間にウレタンの発泡断熱材4が入り込むことを防止すべく、真空断熱材10の芯材部12の縁に沿って真空断熱材10の外周部が重点的に接着されている。これにより、真空断熱材10が外箱2と内箱3との中間付近であって発泡断熱材4の内部に埋没されている場合や、真空断熱材10の芯材部12の片面のほぼ全面を接着剤11を介して外箱2の内面又は内箱3の外面に接着している場合と比べると、真空断熱材10を破損せずに回収し易くなっている。
 さらに、真空断熱材10の芯材8(特にグラスウール)は空気の進入により、風化が促進されることが知られている。この際、芯材8の体積が小さいことに伴い面積が小さい真空断熱材10よりも、芯材8の体積が大きいことに伴い面積が大きい真空断熱材10の方が、空気の進入による内圧の上昇が少なく、すなわち、真空断熱材10の経年劣化が生じにくい。そこで、本実施の形態では、最も面積の大きい真空断熱材10に気体吸着デバイス7が備えられることで、グラスウールなどの芯材8の風化を防ぐことができる。特に、10年間といった長期間使用した後にリサイクルする場合においても、芯材8の風化が抑制され、より断熱性能を維持した芯材8を用いた再利用が可能となるので、リサイクル性が向上する。
 さらに、本実施の形態では、グラスウールなどの芯材8と気体吸着デバイス7とが接着剤11を介して接着されておらず、外被材9の内部に芯材8及び気体吸着デバイス7を接着剤11を用いずに減圧密封している。したがって、真空断熱材10のリサイクルを行う場合に、芯材8と気体吸着デバイス7とを分別することが容易であり、真空断熱材10から芯材8を不純物なしに取出すことができる。したがって、より断熱性能を維持した芯材8を用いた再利用が可能となる。さらに、外被材9を破断してその内部の芯材8を再利用する場合には、同じ外被材9を破断する工数で、より多くの芯材8を取出すことができるので、よりリサイクル効率を高めることが可能となる。
 さらに、本実施の形態では、真空断熱材10は外箱2の内面に接着剤11を介して接着されており、外箱2の内面における真空断熱材10を接着する接着面と、真空断熱材10の芯材部12の縁から所定幅以上離れた真空断熱材10の中央部と、が接着されないことにより、該接着面と真空断熱材10の中央部との隙間に発泡断熱材4が入り込むことを防止するように、真空断熱材10の芯材部12の縁に沿って真空断熱材10の外周部が重点的に接着されている。これにより、真空断熱材10が外箱2と内箱3との中間付近で発泡断熱材4の内部に埋没させている場合や、真空断熱材10の芯材部12の片面のほぼ全面が接着剤11を介して外箱2の内面又は内箱3の外面に接着している場合と比べると、真空断熱材10を破損せずに回収し易くなる。また、外箱2における真空断熱材10を接着する接着面と真空断熱材10の中央部との隙間に発泡断熱材4が入り込まないようにすることにより、断熱箱体1の外箱2の外観変形を抑制できる。
 さらに、本実施の形態では、接着剤11としてホットメルト接着剤又は熱膨張型接着剤を適用しており、点状又は点状と線状との組み合わせで塗布し、真空断熱材10を外箱2の内面又は内箱3の外面に貼り付け後、発泡断熱材4の充填発泡形成までの間、真空断熱材10を仮固定するために用いられている。また、接着剤11の塗布面積は、真空断熱材10の片面の芯材部12の表面積の10(%)以下の範囲としている。このように、接着剤11の塗布量を必要最低限に抑えているので、外箱2又は内箱3の離型が容易となり、真空断熱材10を破袋せずに取り出すことができる。
 特に、熱膨張型接着剤は高温で膨張して接着力が失われた後に常温冷却してもその膨張状態が維持されることが知られている。このため、接着剤11として熱膨張型接着剤を適用した場合は、常温で、外箱2又は内箱3などの被着体から真空断熱材10を容易に分離することができる。
 以上説明したように、本実施の形態では、断熱箱体1の使用時は断熱箱体1の断熱性能を長期に亘って維持でき、使用済み断熱箱体1の廃棄時は断熱箱体1から真空断熱材10を回収し易い断熱箱体1を提供することができる。特に、本実施の形態の断熱箱体1の真空断熱材10は、長期に亘って減圧状態を維持でき、高い断熱性能を長期に亘って維持できる。このため、使用済みの断熱箱体1から取り出されたた真空断熱材10の断熱性能に特に問題がなければ、そのままの状態で再利用が可能となる。
 なお、図1及び図2には、真空断熱材10を外箱2の内面に接着している例のみが示されているが、真空断熱材10を内箱3の外面に接着しても構わない。
 また、芯材8は、グラスウールの他にも、ポリウレタンやポリスチレンなどの連通気泡体、セラミックファイバーなどの無機繊維、ポリエステル繊維などの有機繊維、及びシリカやパーライトなどの無機粉末などが利用可能である。また、それらの複合体であっても良い。
 また、外被材9は、真空断熱材の真空度を維持する役割を果たすものであればよい。例えば、前記のとおり、最内層の熱溶着フィルムと、中間層としてのガスバリアフィルムとして金属箔や金属原子を蒸着した樹脂フィルムと、最外層として表面保護フィルムとをそれぞれラミネートしたラミネートフィルムが使用可能である。なお、熱溶着フィルムとしては、特に指定しないが、前記の直鎖低密度ポリエチレンフィルムの他に、低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルムなどの熱可塑性樹脂、或いはそれらの混合体が使用可能である。また、ガスバリアフィルムとしては、前記のアルミニウム箔の他に、前記のアルミニウム箔以外の銅箔などの金属箔、ポリエチレンテレフタレートフィルム、エチレン-ビニルアルコール共重合体へアルミニウムや銅などの金属や金属酸化物を蒸着したフィルム、或いはそれらの混合体(例えば、アルミ蒸着フィルムとアルミニウム箔との組み合わせ)が使用可能である。
 (実施の形態2)
 [気体吸着材の構成例]
 図6は、本発明の実施の形態2における気体吸着デバイスに適用される気体吸着材の模式図である。本実施の形態における気体吸着材71は、実施の形態1における気体吸着デバイス7に適用されるものであり、閉空間の空気を吸着して閉空間の減圧状態を維持するために用いられる。気体吸着材71は、窒素吸着活性であるゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM-5型ゼオライト72と、銅イオン交換したZSM-5型ゼオライト72の周囲を覆うように形成された化学的水分吸着剤73とを含んで成る。なお、化学的水分吸着剤73の水に対する吸着活性は、銅イオン交換したZSM-5型ゼオライト72の水に対する吸着活性よりも大きいものである。
 なお、ゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM-5型ゼオライト72の調整はつぎのような方法で行われる。
 まず、ZSM-5型ゼオライト72骨格中のシリカ対アルミナ比が8以上25以下であるナトリウム型ゼオライトへ銅イオン交換が行われる。この銅イオン交換は、従来から行われている既知の方法にて行うことができるが、塩素銅水溶液やアンミン酸銅水溶液など銅の可溶性塩の水溶液に浸漬する方法が一般的である。中でもプロピオン酸銅(II)や酢酸銅(II)などカルボキシラートを含むCu2+溶液を用いた方法や、硝酸銅(II)溶液を用いた方法で調整されたものは、窒素吸着活性が高くなる。
 銅イオン交換率は、イオン交換可能な量の少なくとも50(%)以上であることが望ましい。銅イオン交換後は、十分に推薦、乾燥後、低圧下にて適切な熱処理を行うことにより、銅イオン交換により導入されたCu2+がCu1+へと還元され、窒素吸着能を発現するものである。熱処理時の圧力は10(mPa)以下、好ましくは1(mPa)以下であり、温度は350(℃)以上、好ましくは500(℃)以上である。
 また、気体吸着材71の作製はつぎのような方法で行われる。
 熱処理されて窒素吸着活性となったゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM-5型ゼオライト72は、窒素や水、酸素に触れることなく、Arなどの不活性ガス雰囲気下で、化学的水分吸着剤73により周囲が覆われるように化学的水分吸着剤73と混合される。このとき、銅イオンを置換したZSM-5型ゼオライト72よりも水に対する活性度の大きい化学的水分吸着剤73を選択する。これらの水に対する活性度の差は、大きければ大きいほど良いが、実用的には2倍以上が好ましい。なお、ZSM-5型ゼオライトに銅一価イオンを担持させたものは有害性情報が無く、環境負荷も低いと考えられている。
 前記構成により、銅イオン交換したZSM-5型ゼオライト72の周囲を覆う化学的水分吸着剤73が、銅イオン交換したZSM-5型ゼオライト72よりも先に水蒸気(水分)と接触して、水蒸気(水分)を吸着固定化する。ここで、前記のとおり化学的水分吸着剤73は銅イオン交換したZSM-5型ゼオライト72よりも水に対する吸着活性が高いので、化学的水分吸着剤73で吸着されずに化学的水分吸着剤73の隙間を通過して銅イオン交換したZSM-5型ゼオライト72に到達する水蒸気(水分)の量が減少する。したがって、銅イオン交換したZSM-5型ゼオライト72が水蒸気(水分)により活性が失われにくくなることから、銅イオン交換したZSM-5型ゼオライト72の窒素吸着活性の低下を抑制することができる。このため、本実施の形態における気体吸着材71は、大容量の窒素吸着能力を備えている。
 [気体吸着材の実験例]
 まず、本実施の形態における気体吸着材71の実施例を説明する。
 窒素吸着能を持つシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM-5型ゼオライト72と、化学的水分吸着剤73として酸化カルシウムとを用意し、その水に対する活性度を測定した。なお、酸化カルシウムの水に対する活性度の測定方法としては、酸化カルシウムの試料25(g)を温水1(L)(BTB指示薬入り)の中に入れて攪拌しながら、4N塩酸水溶液を用いて中和滴定を行う。その後、10分間の間で消費した4N塩酸水溶液の量を活性度とした。その結果、酸化カルシウム(以下、説明の都合上、第1の酸化カルシウムと呼ぶ)の活性度は223(ml)であった。
 一方、銅イオン交換したZSM-5型ゼオライト72の活性度は、同様の測定では測定できないため、デシケータ中で湿度の変化を測定し、第1の酸化カルシウムの水に対する活性度と比較した。具体的には、第1の酸化カルシウムを95(%RH)になるよう調整したデシケータの中に入れて10分間放置した後、湿度は4(%RH)となった。一方、銅イオン交換したZSM-5型ゼオライト72を同様に95(%RH)になるよう調整したデシケータの中に入れて10分間放置した後、湿度は12(%)となった。
 ここで、第1の酸化カルシウムと銅イオン交換したZSM-5型ゼオライト72との混合比を9対1としてそれらを混合して得られた気体吸着材71を、グラスウール(ガラス繊維)などから成る芯材8とともに、ラミネートフィルムなどから成る外被材9に挿入し、チャンバー圧が1(Pa)になるまで真空排気することにより真空断熱材10(以下、説明の都合上、第1の真空断熱材10と呼ぶ)を作製した。このように作製された第1の真空断熱材10の熱伝導率は0.0017(W/mK)であった。この状態で100(℃)雰囲気に放置し、200日経過後の第1の真空断熱材10の熱伝導率を測定すると、0.0019(W/mK)であった。
 つぎに、本実施の形態における気体吸着材71の比較例を説明する。
 水に対する活性度が125(ml)である、実施例とは製法の異なる酸化カルシウム(以下、説明の都合上、第2の酸化カルシウムと呼ぶ)を準備して、実施例と同様にデシケータの中で10分間経過した後の湿度を測定したところ、湿度は27(%RH)であった。
 ここで、第2の酸化カルシウムと銅イオン交換したZSM-5型ゼオライト72との混合比を9対1としてそれらを混合して得られた気体吸着材を、グラスウール(ガラス繊維)などから成る芯材8とともに、ラミネートフィルムなどから成る外被材9に挿入し、チャンバー圧が1(Pa)になるまで真空排気することにより真空断熱材(以下、説明の都合上、第2の真空断熱材と呼ぶ)を作製した。この第2の真空断熱材の熱伝導率は0.0017(W/mK)であった。この状態で同様に、100(℃)雰囲気に放置し、200日後の第2の真空断熱材の熱伝導率を測定すると、0.0027(W/mK)であった。
 以上、実施例の第1の真空断熱材10と比較例の第2の真空断熱材との比較から、つぎのことが分かる。実施例では、第1の酸化カルシウムの方が銅イオン交換したZSM-5型ゼオライト72よりも水に対する活性度が大きく、この場合、200日後の第1の真空断熱材10の熱伝導率はその初期の熱伝導率からほとんど劣化していない。これ対して、比較例では、第2の酸化カルシウムの方が銅イオン交換したZSM-5型ゼオライト72よりも水に対する活性度が小さく、200日後の第2の真空断熱材の熱伝導率は0.001(W/mK)劣化している。この理由は、200日以内の範囲で、実施例の第1の真空断熱材10では外部から侵入する空気成分を吸着し続けているのに対し、比較例の第2の真空断熱材では外部から侵入する空気成分を吸着し続けることができなくなったからと考察される。
 (実施の形態3)
 [気体吸着デバイスの構成例]
 図7は、本発明の実施の形態3における気体吸着デバイスの模式図である。
 図7に示すように、本実施の形態における気体吸着デバイス7aは、実施の形態2における銅イオン交換したZSM-5型ゼオライト72と化学的水分吸着剤73とを具備した気体吸着材71と、を適度なガス透過性を有する厚さ15μmの低密度ポリエチレンフィルムの三方シール袋75内に充填し、この三方シール袋75の開口部をヒートシールよりパック(封止)して構成されている。なお、気体吸着デバイス7aは、図4に示されるように、グラスウール(ガラス繊維)などから成る芯材8とともに、ガスバリア性を有するラミネートフィルムなどから成る外被材9で覆われる。そして、外被材9の内部を減圧することにより真空断熱材10が形成される。
 前記構成によれば、気体吸着材71を三方シール袋75内に充填しているので、経過時間と共に侵入してくる水蒸気は濃度が薄く、その水蒸気のほとんどが化学的水分吸着剤73の方に選択的に吸着固定化される。したがって、銅イオン交換したZSM-5型ゼオライト72が長期に亘って高い窒素吸着活性を維持することができ、ひいては気体吸着材71を備えた真空断熱材10は長期間劣化しないものとなる。
 また、銅イオン交換したZSM-5型ゼオライト72は、気体吸着材71におけるゼオライト骨格中のシリカ対アルミナ比が8以上25以下であり、工業的真空排気プロセスでは除去しきれない窒素を吸着することができる。そして、この結果、真空断熱材10の断熱性能の向上を図ることができる。
 また、気体吸着材71が適度なガス透過性を有する厚さ15μmの低密度ポリエチレンフィルムの三方シール袋75内に気体吸着材71が充填されている。このため、残存していた水分が一気に気体吸着材71内へ流れ込むことがない。
 また、気体吸着材71を構成する化学的水分吸着剤73の水に対する活性度が銅イオン交換したZSM-5型ゼオライト72の水に対する活性度よりも大きい。このため、残存していた水分が化学的水分吸着剤73を通り抜けて銅イオン交換したZSM-5型ゼオライト72へ到達する水分がごく僅かとなり、銅イオン交換したZSM-5型ゼオライト72の窒素吸着能の低下を抑制できる。
 なお、三方シール袋75は、適度なガス透過度を有するシール袋であればよく、低密度ポリエチレンフィルムやポリプロピレンフィルムなどが使用可能である。又は、それらのフィルムを穴加工して微小のガスを穴から侵入するようガスバリア性を調整しても良い。又は、ポリエステル繊維とポリプロピレン繊維を加熱延展して形成された不織布、あるいはスパンボンド方式により造られた不織布が使用可能である。なお、残存する水分の量に応じてフィルムの選択が可能であり、水分の残存量が多い場合には水蒸気透過度の低い材料を選択し、水分の残存量が少ない場合には水蒸気透過度の高い材料を選択し、気体透過度はできる限り大きなものを選択することが好ましい。これらのフィルムのガスバリア性は、これらのフィルムの水蒸気透過度、及び窒素透過度によって決定される。ガスバリア性に合わせてこれらのフィルムの厚みを決めることもできる。
 また、化学的水分吸着剤73の配置方法は、外殻と接するように化学的水分吸着剤73を配置する方法や、芯材8の中間に配置する方法などが挙げられるが、これらの方法の中では芯材8の中間に配置する方が好ましい。
 [気体吸着デバイスの実験例]
 40(℃)、90(%RH)における低密度ポリエチレンフィルム(三方シール袋75)について、透湿度及び窒素透過度を測定したところ、透湿度は32(g/m2)であり、窒素透過度は4700(cc/m2・24H)であった。
 また、実施の形態2と同様の手順で本実施の形態における気体吸着デバイス7aを適用した真空断熱材10を作製した。そして、初期の真空断熱材10の熱伝導率を測定すると0.0017(W/mK)であり、100℃で200日後の熱伝導率も同様に0.0017(W/mK)であることがわかった。この理由は、実施の形態2と比較して、さらに銅イオン交換したZSM-5型ゼオライト72が劣化せずに安定した吸着能力を維持しているものと考察される。
 (実施の形態4)
 図8は本発明の実施の形態4における気体吸着デバイスの構成例を示す平面図である。図9は図8のA-A線断面図である。
 図8及び図9に示すように、本実施の形態における気体吸着デバイス7bは、銅イオン交換されたZSM-5型ゼオライトから成る気体吸着物質74と、細長い扁平な筒状であって気体吸着物質74を減圧状態で収納するアルミニウム製の収納容器81とを有する。
 収納容器81は、気体吸着物質74を収納する収納部80と、収納部80の両端に位置する封止部82とを有する。なお、収納部80の両端に位置する封止部82のうち、一方の封止部82aは、収納容器81を深絞り成形して有底筒状とすることで得られた底である。他方の封止部82bは、互いに対向する収納容器81の内面を接近させた狭窄部84を封止用ガラスにて封止したものである。なお 、後述の実施の形態5のとおり、収納部80の両端に位置する封止部82ともに、狭窄部84を形成して封止用ガラスにより封止してもい。
 また、収納容器81は、他方の封止部82bと収納部80との間に、互いに対向する収納容器81の内面同士が密着する密着部83を有している。なお、図9に示すように、気体吸着デバイス7bは、収納容器81の互いに対向する二つの扁平な面の両方が窪んでいる。具体的 には、底を成す密着部83と、密着部83の二つの扁平な面(底)それぞれから収納容器81の厚み方向に沿ってある傾きを持って立ち上がる縁部を形成する、封止部82b及び収納部80によって、前述の窪みが形成されている。あるいは、収納容器81の互いに対向する二つの扁平な面のいずれか一方が窪んでいてもよい。
 さらに、気体吸着デバイス7bは、収納容器81の内部空間を収納容器81の外部と連通させる(気体吸着デバイス7bを開封する)と、密着部83が膨らむように構成されている。
 以上のような気体吸着デバイス7bは、つぎのような製造方法で作製される。
 つまり、気体吸着デバイス7bの製造方法は、収納容器81内に気体吸着物質74を収納する工程と、外力により密着部83を形成しつつ狭窄部84を形成する工程と、他方の封止部82bとなる収納容器81の内面(狭窄部84)に封止用ガラスを配置する工程と、真空加熱炉に入れ熱処理を行う工程とを有する。特に、この熱処理を行う工程は、具体的には、気体吸着物質74を活性化する工程と、減圧下で封止用ガラスを溶融させる工程と、加熱炉を徐冷しながら封止用ガラスを固化させる工程と、収納容器を焼きなます工程とを有する。
 なお、前記製造方法において、収納容器81内外の気圧差により収納部80と狭窄部84側の他方の封止部82bとの間に密着部83ができるように、深絞り成形時の収納容器81の扁平度合いと収納容器81の厚みが調整される工程を有することが好ましい。
 また、前記製造方法において、収納容器81内に入れる気体吸着物質74の分量(体積)に対して、狭窄部84封止前における、一方の封止部82aと狭窄部84との間の収納容器81の容積を十分大きくするように調整する工程を有することが好ましい。
 なお、気体吸着効果の向上の観点からは、気体吸着物質74の分量は多い方がよい。しかしながら、真空加熱炉での熱処理では、収納容器81内の気体吸着物質74からガスが放出されるため、気体吸着物質74が多すぎると放出ガスにより内圧が上昇し、収納容器81の封止が困難になる。しかも、狭窄部84に配置した封止材が放出ガスの勢いによって変位し、狭窄部84を封止材によって適切に封止できなくなる可能性がある。従って、狭窄部84より内方の容積に占める気体吸着物質74の分量(換言すれば、収納部80と密着部83との寸法比)は、適切に設定する必要がある。実施の形態では、密着部83の長さと収納部80の長さとの比率として概ね1対1とした。
 さらに、前記製造方法において、真空加熱炉に入れてから、封止用ガラスを固化させ収納容器81の外圧を大気圧に戻すまでの間、収納容器81の長手方向が鉛直方向となり、且つ他方の封止部82bが一方の封止部82aよりも上方に位置するように、収納容器81を縦置きにする工程を有することが好ましい。
 前記製造方法により作製された気体吸着デバイス7bによれば、密着部83を有することによって他方の封止部82bを開封したときに収納部80に収納された粉状の気体吸着物質74が離散するのを防止することができるので、使用済み断熱箱体の廃棄時において真空断熱材10のリサイクル性が向上する。
 (実施の形態5)
 図10は本発明の実施の形態2における気体吸着デバイスの構成例を示す平面図である。図11は図10のB-B線断面図である。図12は図10のC-C線断面図である。
 図10から図12に示すように、本実施の形態における気体吸着デバイス7cは、銅イオン交換されたZSM-5型ゼオライトから成る気体吸着物質74と、細長い扁平な筒状で気体吸着物質74を減圧状態で収納する収納部80の両側を封止したアルミニウム製の収納容器81とを有する。
 収納部80の両端に位置する封止部82のうち一方の封止部82aは、互いに対向する収納容器81の内面を接近させて超音波溶接することで封止したものあり、他方の封止部82bは、実施の形態1と同様に、互いに対向する収納容器81の内面を接近させた狭窄部84を封止用ガラスにて封止したものである。
 両方の封止部82a,82bと収納部80との間には、それぞれ対向する収納容器81の内面同士が密着する密着部83a,83bを有している。実施の形態4と同様、図11に示すように、収納容器81の互いに対向する二つの扁平な面の両方が窪んでいる。また、図12に示すように、収納容器81の長手方向に垂直な面で密着部83a,83bを切断した場合の切断面が窪んでいる。さらに、気体吸着デバイス7bは、収納容器81の内部空間を収納容器81の外部と連通させる(気体吸着デバイス7bを開封する)と、密着部83a,83bが膨らむように構成されている。
 気体吸着デバイス7cは、つぎのような製造方法で作製される。まず、収納容器81の一端を超音波溶接で封止する。つぎに、超音波溶接で封止した一方の封止部82aと気体吸着物質74を収納する収納部80との間に密着部83aができるように、一方の封止部82aと収納部80との間の密着部83aにする部分を外力で密着させる。つぎに、収納容器81内に気体吸着物74を収納する。つぎに、他方の封止部82bを形成するための狭窄部84が形成される。つぎに、他方の封止部82bとなる収納容器81の内面に封止用ガラスを配置したものを真空加熱炉に入れて熱処理が行われる。なお、この気体吸着デバイス7cの熱処理の工程は、実施の形態4と同様に、気体吸着物質74を活性化する工程と、減圧下で封止用ガラスを溶融させる工程と、加熱炉を徐冷しながら封止用ガラスを固化させる工程と、収納容器を焼きなます工程とを有する。
 なお、収納容器81内外の気圧差により収納部80と狭窄部84側の他方の封止部82bとの間に密着部83bができるように、収納容器81の扁平度合いと収納容器81の厚みとを調整する工程を有することが好ましい。
 また、この調整の工程とともに、収納容器81内に入れる気体吸着物質74の分量(体積)に対して、超音波溶接で封止した一方の封止部82a側の密着部83aと狭窄部84との間の収納容器81の容積を十分大きくするよう調整する工程を有することが好ましい。
 また、真空加熱炉に入れてから、封止用ガラスを固化させ収納容器81の外圧を大気圧に戻すまでの間、収納容器81の長手方向が鉛直方向であって、且つ狭窄部84側の他方の封止部82bが超音波溶接で封止した一方の封止部82aより上に位置するように収納容器81を縦置きにする工程を有することが好ましい。
 前記製造方法により作製された気体吸着デバイス7cによれば、密着部83を有することによって他方の封止部82bを開封したときに収納部80に収納された粉状の気体吸着物質74が離散するのを防止することができるので、使用済み断熱箱体の廃棄時において真空断熱材10のリサイクル性が向上する。
 前記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、前記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 
 本発明の断熱箱体は、使用時では断熱箱体の断熱性能を長期に亘って維持でき、使用済み断熱箱体の廃棄時では断熱箱体から真空断熱材を回収し易いので、冷蔵庫や自動販売機、給湯容器、建造物用断熱材、自動車用断熱材、保冷/保温ボックスなどのような用途に適用できる
10…真空断熱材
11…接着剤
12…芯材部
2…外箱
3…内箱
4…発泡断熱材
5…回転式扉
6…水分吸着剤
7,7a,7b,7c…気体吸着デバイス
71…気体吸着材
72…銅イオン交換したZSM-5型ゼオライト
73…化学的水分吸着剤
74…気体吸着物質
75…三方シール袋
8…芯材
80…収納部
81…収納容器
82,82a,82b…封止部
83,83a,83b…密着部
84…狭窄部
9…外被材
100…冷蔵庫
20…冷蔵室
21…上段冷凍室
22…製氷室
23…野菜室
24…下段冷凍室
 

Claims (6)

  1.  外箱と、
     前記外箱内に前記外箱内面との間で断熱用の空間を配して収容された内箱と、
     前記断熱用の空間に配設された複数の真空断熱材と、
     前記断熱用の空間のうち前記複数の真空断熱材以外の空間に充填された発泡断熱材と、を有し、
     前記複数の真空断熱材は、芯材及び水分吸着剤を少なくとも有し、外被材で覆われた空間内に、該芯材及び該水分吸着剤を減圧密封して構成され、
     前記複数の真空断熱材のうち少なくとも面積が最も大きい真空断熱材は、前記芯材及び前記水分吸着剤に加えて窒素吸着性能及び水分吸着性能を有した気体吸着デバイスをさらに有し、前記外被材で覆われた空間内に、該芯材、該水分吸着剤、及び該気体吸着デバイスを減圧密封して構成されている、断熱箱体。
  2.  前記気体吸着デバイスは、窒素吸着性能及び水分吸着性能を有した粉末状の気体吸着物質と、該気体吸着物質を収納する収納容器とを有し、
     前記外被材で覆われた空間内に、前記収納容器と前記芯材とが互いに接着剤を介することなく減圧密封のみによって保持されている、請求項1に記載の断熱箱体。
  3.  前記真空断熱材は、前記外箱の内面もしくは前記内箱の外面に接着剤を介して接着され、
     前記外箱の内面又は前記内箱の外面における前記真空断熱材を接着する接着面と、前記真空断熱材の芯材部の縁から所定幅以上離れた前記真空断熱材の中央部と、が接着されないことにより、前記接着面と前記真空断熱材の中央部との間の隙間に前記発泡断熱材が入り込むことを防止すべく、前記真空断熱材の芯材部の縁に沿って前記真空断熱材の外周部が前記接着剤によって重点的に接着されている、請求項1又は2記載の断熱箱体。
  4.  前記接着剤は熱膨張型接着剤である、請求項3に記載の断熱箱体。
  5.  前記気体吸着デバイスは、窒素吸着性能及び水分吸着性能を有した気体吸着材と、該気体吸着材が内部に充填されたガス透過性を有するシール袋とを有し、
     前記気体吸着材は、
     ゼオライト骨格中のシリカ対アルミナ比が8以上25以下である銅イオン交換したZSM-5型ゼオライトと、
     前記銅イオン交換したZSM-5型ゼオライトの周囲を覆った、水に対する吸着活性が前記銅イオン交換したZSM-5型ゼオライトよりも大きい化学的水分吸着剤と、
     を含んで成る、請求項1に記載の断熱箱体。
  6.  前記気体吸着デバイスは、窒素吸着性能及び水分吸着性能を有した気体吸着物質と、細長い扁平な筒状で前記気体吸着物質を減圧状態で収納する収納部の両側を封止した金属製の収納容器とを有し、前記収納容器の少なくともどちらか一方の封止部と前記収納部との間に、対向する前記収納容器の内面同士が密着する密着部を有する、請求項1に記載の断熱箱体。
PCT/JP2012/000958 2011-02-14 2012-02-14 断熱箱体 WO2012111311A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12747650.5A EP2676714A1 (en) 2011-02-14 2012-02-14 Heat insulation box body
CN2012800088806A CN103384556A (zh) 2011-02-14 2012-02-14 隔热箱体
US13/983,504 US20130306655A1 (en) 2011-02-14 2012-02-14 Heat-insulating box

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-028214 2011-02-14
JP2011028214 2011-02-14
JP2011-087035 2011-04-11
JP2011087035A JP2012217942A (ja) 2011-04-11 2011-04-11 気体吸着材、及びそれを用いた真空断熱材
JP2011-192683 2011-09-05
JP2011192683A JP5899395B2 (ja) 2011-09-05 2011-09-05 断熱箱体

Publications (1)

Publication Number Publication Date
WO2012111311A1 true WO2012111311A1 (ja) 2012-08-23

Family

ID=46672255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000958 WO2012111311A1 (ja) 2011-02-14 2012-02-14 断熱箱体

Country Status (4)

Country Link
US (1) US20130306655A1 (ja)
EP (1) EP2676714A1 (ja)
CN (1) CN103384556A (ja)
WO (1) WO2012111311A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114843A (ja) * 2012-12-07 2014-06-26 Panasonic Corp 真空断熱材
AU2014276244B2 (en) * 2013-06-07 2016-05-19 Mitsubishi Electric Corporation Heat insulating box body, refrigerator, and device including heat insulating box body
US20160136612A1 (en) * 2014-11-13 2016-05-19 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
CN112282593A (zh) * 2013-03-04 2021-01-29 松下知识产权经营株式会社 多层玻璃和多层玻璃的制备方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8940084B2 (en) 2011-02-14 2015-01-27 Panasonic Corporation Gas adsorbing device and vacuum insulation panel provided with same
CN104203372B (zh) * 2012-03-21 2017-09-26 松下电器产业株式会社 气体吸附器件和收纳其的中空体
WO2014052448A1 (en) * 2012-09-25 2014-04-03 Minnesota Thermal Science, Llc Scheduled component retirement system and method for shipping container components
EP2904617B1 (en) 2012-10-05 2016-11-30 ABB Schweiz AG Apparatus containing a dielectric insulation gas comprising an organofluorine compound
CN104813415B (zh) * 2012-10-05 2017-05-10 Abb 技术有限公司 容纳包括有机氟化合物的介电绝缘气体的设备
CN105051442B (zh) 2013-04-23 2018-03-02 松下知识产权经营株式会社 包含气体吸附件的隔热体
CN106461148B (zh) * 2014-05-22 2019-07-09 松下知识产权经营株式会社 密闭容器、隔热体和气体吸附器件
WO2015186358A1 (ja) 2014-06-04 2015-12-10 パナソニックIpマネジメント株式会社 真空断熱体及びこれを用いた断熱容器、断熱壁
JP6646812B2 (ja) * 2014-06-24 2020-02-14 パナソニックIpマネジメント株式会社 気体吸着デバイス、およびそれを用いた真空断熱材
US20160169575A1 (en) * 2014-12-12 2016-06-16 Honeywell International Inc. Abs liners and cooling cabinets containing same
KR102487261B1 (ko) 2015-02-09 2023-01-13 삼성전자주식회사 진공단열재, 진공단열재의 제조방법 및 진공단열재를 포함하는 냉장고
CN106714960B (zh) * 2015-09-03 2019-07-23 松下知识产权经营株式会社 气体吸附件和包括气体吸附件的真空绝热件
US10783867B2 (en) * 2018-11-08 2020-09-22 Apple Inc. Acoustic filler including acoustically active beads and expandable filler
US11319138B2 (en) * 2018-11-20 2022-05-03 Simple Container Solutions, Inc. Pop-up liner
CN112824802A (zh) * 2019-11-21 2021-05-21 博西华电器(江苏)有限公司 隔热件及包括其的冰箱
CN111255981A (zh) * 2020-01-07 2020-06-09 福建赛特新材股份有限公司 一种保温容器的板材和保温容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116695A (ja) * 2002-09-27 2004-04-15 Nisshinbo Ind Inc 真空断熱ボード及び該真空断熱ボードを用いた断熱容器
JP2005315310A (ja) * 2004-04-28 2005-11-10 Hitachi Home & Life Solutions Inc 真空断熱パネル及び製造方法
WO2006080416A1 (ja) * 2005-01-28 2006-08-03 Matsushita Electric Industrial Co., Ltd. 断熱体
JP3811963B2 (ja) 1995-03-09 2006-08-23 株式会社日立製作所 冷蔵庫
JP2006242497A (ja) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd 断熱体および断熱体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5091233A (en) * 1989-12-18 1992-02-25 Whirlpool Corporation Getter structure for vacuum insulation panels
JP4797387B2 (ja) * 2005-01-28 2011-10-19 パナソニック株式会社 断熱体、及び冷凍・冷蔵機器もしくは冷熱機器
TWI389738B (zh) * 2005-09-09 2013-03-21 Taiyo Nippon Sanso Corp Cu-ZSM5沸石成形吸附劑、其活性化方法、溫度變化型吸附裝置以及氣體精製方法
KR101753414B1 (ko) * 2009-03-24 2017-07-19 파나소닉 주식회사 기체 흡착 디바이스의 제작 방법, 기체 흡착 디바이스, 및 기체 흡착 디바이스의 사용 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3811963B2 (ja) 1995-03-09 2006-08-23 株式会社日立製作所 冷蔵庫
JP2004116695A (ja) * 2002-09-27 2004-04-15 Nisshinbo Ind Inc 真空断熱ボード及び該真空断熱ボードを用いた断熱容器
JP2005315310A (ja) * 2004-04-28 2005-11-10 Hitachi Home & Life Solutions Inc 真空断熱パネル及び製造方法
WO2006080416A1 (ja) * 2005-01-28 2006-08-03 Matsushita Electric Industrial Co., Ltd. 断熱体
JP2006242497A (ja) * 2005-03-04 2006-09-14 Matsushita Electric Ind Co Ltd 断熱体および断熱体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2676714A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114843A (ja) * 2012-12-07 2014-06-26 Panasonic Corp 真空断熱材
CN112282593A (zh) * 2013-03-04 2021-01-29 松下知识产权经营株式会社 多层玻璃和多层玻璃的制备方法
AU2014276244B2 (en) * 2013-06-07 2016-05-19 Mitsubishi Electric Corporation Heat insulating box body, refrigerator, and device including heat insulating box body
US20160136612A1 (en) * 2014-11-13 2016-05-19 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same
US9901900B2 (en) * 2014-11-13 2018-02-27 Samsung Electronics Co., Ltd. Gas-adsorbing material and vacuum insulation material including the same

Also Published As

Publication number Publication date
EP2676714A4 (en) 2013-12-25
EP2676714A1 (en) 2013-12-25
US20130306655A1 (en) 2013-11-21
CN103384556A (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2012111311A1 (ja) 断熱箱体
AU2001222296B2 (en) Heat insulation box, and vacuum heat insulation material used therefor
WO2017098694A1 (ja) 真空断熱体、それを備える断熱機器、及び真空断熱体の製造方法
US7571582B2 (en) Vacuum heat insulator, method of manufacturing the same, and refrigerator using the same
KR101017776B1 (ko) 진공 단열재 및 이것을 이용한 냉장고
JP5198167B2 (ja) 真空断熱箱体
JP5492685B2 (ja) 真空断熱材及びそれを用いた冷蔵庫
EP2676715B1 (en) Gas adsorption device and vacuum heat insulating panel provided therewith
JP5899395B2 (ja) 断熱箱体
JP2005147591A (ja) 冷蔵庫
JP2007238141A (ja) 真空容器
JP5031232B2 (ja) 真空断熱材および真空断熱材を用いた断熱箱体
JP5571610B2 (ja) 真空断熱材の製造方法、真空断熱材及びこれを備えた冷蔵庫
JP2009287586A (ja) 真空断熱材
JP3549453B2 (ja) 冷蔵庫
JP2010096291A (ja) 真空断熱箱体
JP2013100912A (ja) 真空断熱体
JP2013040717A (ja) 真空断熱材及びそれを用いた冷蔵庫
JP2009287791A (ja) 真空断熱箱体
JP3527727B2 (ja) 真空断熱材及びその真空断熱材を用いた機器
JP2004218747A (ja) 真空断熱材
JP7474921B2 (ja) 真空断熱体及びそれを用いた断熱容器と断熱壁
JP2015001290A (ja) 真空断熱材及び冷蔵庫
JP2006177497A (ja) 真空断熱材、及び、その製造方法、並びに、その真空断熱材を用いた断熱箱体
JP2007107877A (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13983504

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004496

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2012747650

Country of ref document: EP