WO2012111270A1 - 高速インタフェース用コネクタ - Google Patents

高速インタフェース用コネクタ Download PDF

Info

Publication number
WO2012111270A1
WO2012111270A1 PCT/JP2012/000727 JP2012000727W WO2012111270A1 WO 2012111270 A1 WO2012111270 A1 WO 2012111270A1 JP 2012000727 W JP2012000727 W JP 2012000727W WO 2012111270 A1 WO2012111270 A1 WO 2012111270A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact terminal
memory card
pin
adjacent
contact
Prior art date
Application number
PCT/JP2012/000727
Other languages
English (en)
French (fr)
Inventor
寛 末永
穣 中村
福本 幸弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012524967A priority Critical patent/JP5068895B2/ja
Priority to CN2012800005470A priority patent/CN102763285A/zh
Priority to US13/574,863 priority patent/US8708749B2/en
Publication of WO2012111270A1 publication Critical patent/WO2012111270A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/646Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00 specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
    • H01R13/6461Means for preventing cross-talk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/70Coupling devices
    • H01R12/71Coupling devices for rigid printing circuits or like structures
    • H01R12/712Coupling devices for rigid printing circuits or like structures co-operating with the surface of the printed circuit or with a coupling device exclusively provided on the surface of the printed circuit

Definitions

  • the present invention relates to a high-speed interface connector for connecting a differential transmission system signal pin array. More specifically, the present invention relates to a memory card socket for connecting and removing a memory card having a differential transmission system signal pin arrangement, a USB cable connector for connecting a USB cable, and the like.
  • memory cards are widely used as storage media for photos and videos taken with digital still cameras and digital video cameras, and as storage media for various contents including photos and videos on mobile phones. . Further, it is also used as a bridge medium when moving or copying various contents stored in the electronic device (hereinafter referred to as a host device) to a personal computer.
  • a host device the electronic device
  • the memory card has a plurality of signal pins, power supply pins, and ground pins on its surface.
  • the inside of the memory card is composed of a printed circuit board, a controller LSI mounted on the printed circuit board, a flash memory, and the like.
  • the plurality of pins on the surface of the memory card are electrically connected to each terminal (signal terminal, power supply terminal, ground terminal) of the controller LSI via wiring formed on the printed circuit board.
  • the host device has a memory card socket, and when the memory card is inserted into the memory card socket, the host device and the memory card are electrically connected to read and write data.
  • the memory card socket is composed of a body part for holding the memory card, a cover shell, contact terminals, and the like.
  • the contact terminal is fixed to the body portion so that the memory card comes into contact with a plurality of pins provided on the surface of the memory card when the memory card is inserted into the memory card socket.
  • description of the component which is not related to this invention is abbreviate
  • An example of the memory card socket is disclosed in Patent Documents 1 and 2, for example.
  • Enhance the picture quality of photos and videos recorded with higher functionality of host devices, and the memory capacity of memory cards is also increasing.
  • the amount of data handled increases, the data transmission time between the host device and the memory card increases, and convenience decreases. Therefore, the memory card is also transferred between the host device and the memory card in accordance with the expansion of the storage capacity. The speed of data transmission is also being improved.
  • Conventional memory cards have adopted a single-ended transmission method as a signal transmission method with a host device, and the memory capacity of the memory card has been expanded by improving the transmission rate.
  • the single-ended transmission method is a transmission method that sends a 1-bit signal per signal line and is easily affected by external noise. Therefore, it was necessary to use a relatively large signal amplitude such as 3.3V or 1.8V. For this reason, in order to increase the transmission rate, that is, to improve the signal frequency, it is necessary to shorten the rise time of the signal. Even in the single-ended transmission method, the signal frequency has been improved and the signal rise time has been shortened. However, since the signal amplitude is large, the signal rise time has been shortened.
  • the differential transmission method is a method of transmitting a signal using a pair of signal lines, that is, two signal lines, and one of the two signal lines forming a pair has a signal having the same phase as the signal to be transmitted ( This is a system in which a normal-phase signal) is transmitted, and at the same time, a signal having a phase opposite to that of the signal to be transmitted (an anti-phase signal) is transmitted to the other, and a difference between them is detected on the receiving side.
  • the differential transmission method since the difference between the positive phase signal and the negative phase signal is detected on the receiving side, the amplitudes of the positive phase signal and the negative phase signal can be reduced. For this reason, since the rise time can be easily shortened, signal transmission can be performed at a higher speed than the single-ended transmission method.
  • the positive-phase signal and the negative-phase signal are arranged close to each other. Therefore, even if the positive-phase signal and the negative-phase signal are affected by external noise, the normal-phase signal is generally used. The external noise is uniformly superimposed on the reverse phase signal. For this reason, by taking the difference between the positive phase signal and the negative phase signal on the receiving side, the external noise uniformly superimposed on both is canceled out. Therefore, the differential transmission method is also affected by the external noise. It has the feature of being difficult.
  • both sides of the differential signal pair for differential transmission cannot be ground terminals.
  • the ground pin P7 (G) and the differential pin P8 as shown by Dif1 in FIG. (S +), P9 (S ⁇ ), and power supply pin P10 (V2) may be arranged in a pin arrangement.
  • the crosstalk superimposed from P7 (G) to P8 (S +) is stable potential pins having different potentials.
  • the differential signal quality is deteriorated by noise and crosstalk noise superimposed from P10 (V2) to P9 (S ⁇ ).
  • the above differential transmission method is not limited to memory cards and is used for various standards.
  • a standard of a connection cable for connecting devices for example, a differential transmission method is also used for a USB cable or the like. Therefore, the above problem also occurs between the connection between the board and the equipment and between the connection cable and the connector.
  • an object of the present invention is to provide a pin arrangement in which differential transmission pins P (S +) and P (S ⁇ ) are provided, and the left and right pins adjacent to the differential pair pins are stable potential pins having different potentials. It is a high-speed interface connector for connecting a differential transmission system signal pin array having a high-speed interface connector capable of suppressing deterioration of differential signal quality.
  • the object of the present invention is to provide differential transmission pins P (S +) and P (S ⁇ ) for high-speed signal transmission as shown in Dif1 of FIG.
  • a high-speed interface connector that suppresses the degradation of differential signal quality for memory cards, USB cables, etc. that have a pin arrangement in which the left and right pins adjacent to the differential pair pins are stable potential pins having different potentials. is there.
  • a high-speed interface connector includes a pair of differential transmission type signal pins adjacent to each other and two pairs sandwiching both sides of the pair of differential transmission type signal pins.
  • Differential transmission system signal pin array including a plurality of stable potential pins, wherein the two stable potential pins have different potentials, and are connected to a cable or memory card having a differential transmission system signal pin array.
  • An interface connector A differential transmission type first and second contact terminals connected to the pair of differential transmission type signal pins, respectively, and adjacent to each other; Third and fourth contact terminals sandwiching both sides of the first and second contact terminals, and the third contact terminal adjacent to the first contact terminal is connected to the two stable potential pins.
  • the fourth contact terminal connected to one of the two and adjacent to the second contact terminal has the same potential as the third contact terminal; and third and fourth contact terminals; including.
  • a fifth contact terminal connected to the other of the two stable potential pins may be further included.
  • the first and second pins adjacent to each other are differential transmission type signal pins, and the third and second pins adjacent to each other with both sides of the first and second pin pairs interposed therebetween.
  • the third pin is adjacent to the first pin, and is located on the opposite side of the first pin from the second pin
  • the fourth pin is Adjacent to the second pin, located opposite to the first pin with respect to the second pin
  • the third and fourth pins have a card pin arrangement that does not have the same potential as each other
  • the first and second differential transmission system signal pins of the memory card are connected to the first and second differential transmission system signal pins, respectively, and the differential transmission system first and second contact terminals adjacent to each other, Third and fourth contact terminals adjacent to each other across both sides of the first and second contact terminal pairs, wherein the third contact terminal is adjacent to the first contact terminal, The fourth contact terminal is adjacent to the
  • the third and fourth contact terminals located on the opposite side of the contact terminals; With The fourth contact terminal is connected to the fourth pin of the memory card, and the third contact terminal is not the third pin of the memory card but has the same stable potential as the fourth pin. It is connected to the connected fifth pin.
  • a memory card socket for a memory card in which the pins on both sides of the differential pin pair are not stable potential pins having the same potential is a contact terminal of the memory card socket connected to the memory card differential pin pair.
  • a pair of contact terminals adjacent to both sides of the pair can be set to the same stable potential.
  • the high-speed interface connector of the present invention in differential signal communication transmitted and received between a differential transmission method signal pin in which the pins adjacent to both sides of the differential pin pair are not the stable potential pin having the same potential and the host device.
  • crosstalk from two stable potential pins adjacent to both sides of a contact terminal pair transmitting a differential signal can be correlated. Accordingly, crosstalk having a correlation with each other is canceled at the receiving end of the differential signal, so that an effect of suppressing the quality deterioration of the differential signal is obtained.
  • FIG. 3 is an example of a memory card socket according to Embodiment 1 of the present invention corresponding to the memory card of FIG.
  • FIG. 3 is an example of a memory card socket of the present invention corresponding to the memory card of FIG.
  • FIGS. 4A to 4C are examples of the configuration of the contact terminal 224 in FIG. FIG.
  • FIG. 4 is another example of the memory card socket of the present invention corresponding to the memory card of FIG. 2, wherein (a) is a top view of the memory card socket, and the dotted line and broken line portions are portions hidden under the cover shell. It is a perspective view, (b) is a back view of a memory card socket, and (c) is a back view when a memory card is inserted. It is a schematic perspective view which shows the structure of the conventional USB connector. It is the front view seen from the cable connection surface (A) of the USB connector of FIG. It is the rear view seen from the back surface (B) of the USB connector of FIG.
  • (A) is a front view of the connection surface of a USB cable
  • (b) is a plan view of the USB cable
  • (c) is a cross-sectional view showing a cross-sectional structure of the USB cable.
  • (A) is a perspective view which shows the structure of the back side of the conventional USB connector
  • (b) is a perspective view which shows the structure of the back side of the USB connector which concerns on Embodiment 2.
  • the existing signal pin P (S) of the memory card is used for both single-ended transmission and differential transmission (hereinafter referred to as “pin service configuration”). ").
  • a memory card using this “pin combination configuration” is a memory card of Reference Example 1.
  • the controller LSI 2 in the memory card includes a single-end transmission I / O circuit 5 and a differential transmission I / O circuit 6 (the controller LSI 12 on the host device side has a similar configuration). ).
  • the single-end I / O circuit 5 and the differential transmission I / O circuit 6 include a wiring 4 on a printed circuit board in the memory card 1a, a contact terminal (not shown) of the memory card socket 11a, and a host device.
  • the wiring 14 on the printed circuit board is used.
  • the differential transmission method can perform signal transmission in the GHz order much faster than single-ended transmission. To achieve this, matching the characteristic impedance of the entire transmission line is required. This is more important than single-ended transmission.
  • the load capacitance component of the single-ended transmission I / O circuit 5 disturbs the impedance matching of the transmission line, and high-speed signal transmission by the differential transmission method is performed. It will interfere. For this reason, the “pin combined configuration” is not necessarily an optimal configuration for realizing high-speed signal transmission in the GHz order using the differential transmission method.
  • a new dedicated pin is added exclusively for differential transmission.
  • a memory card using this “differential pin addition configuration” is a memory card of Reference Example 2.
  • an additional pin arrangement as shown in the memory card 1b in FIG. 2 can be considered as a configuration example.
  • the differential pins P (S +) and P (S ⁇ ) are reduced in pin size, and the load capacitance component generated in the pin portion is reduced.
  • the impedance matching is important in high-speed differential transmission by suppressing both sides and enclosing both sides with a pin P (GND) or P (VDD2) having a stable potential.
  • a pin arrangement in which both ends of the differential pins P (S +) and P (S ⁇ ) are surrounded by stable potential pins is preferable from the viewpoint of impedance matching.
  • both ends of the differential pins P (S +) and P (S ⁇ ) are stable potential pins having different potentials (Dif1), crosstalk noise superimposed from P7 (G) to P8 (S +) and P10 ( There is a possibility that the differential signal quality is deteriorated by crosstalk noise superimposed from V2) to P9 (S ⁇ ).
  • FIGS. 3A to 3E the configurations shown in FIGS. 3A to 3E are considered as an example.
  • FIGS. 3A and 3B when the contact terminals arranged in contact with the pins of the memory card 1b are simply drawn out in the same manner as the pin arrangement of the memory card socket 11b, it is more than the pin size of the memory card 1b. Since the length of the contact terminal of the memory card socket is generally long, the above-described non-correlated crosstalk is remarkably generated in the contact terminal portion of the socket 11b.
  • FIG. 4A to 4E are schematic views showing the configuration of the memory card socket 400 according to the first embodiment of the present invention.
  • FIG. 4A is a top view of the memory card socket 400, and dotted and broken lines represent perspective views of a portion covered with the cover shell 310.
  • FIG. 4B is a back view of the memory card socket 400.
  • the upper part of FIG. 4C is a cross-sectional view of section A3-B3 in FIG. 4A, and the lower part is a cross-sectional view of section A3′-B3 ′ of FIG.
  • FIG. 4 (d) shows a case where a memory card 1b having a differential transmission pin for high-speed signal transmission and a right and left pin adjacent to the differential pair pin being a stable potential pin having a different potential is inserted.
  • FIG. 4E The upper part of FIG. 4E is a cross-sectional view of section A4-B4 in FIG. 4D, and the lower part is a cross-sectional view of section A4′-B4 ′ of FIG.
  • the memory card socket 400 shown in FIGS. 4A to 4E includes contact terminals 210 to 227, a body portion 420, a cover shell 410, a cover shell fixing terminal 430, and the like.
  • the contact terminals 210 to 227 are made of a conductive material and are in contact with the pins of the memory card 1b. Signal contacts, power supplies, and ground potentials between the memory card 1b and the host device on which the memory card socket 400 is mounted. Supply.
  • the body 420 is made of a non-conductive material such as a resin material, and serves to fix each contact terminal and hold the memory card 1b.
  • the cover shell 410 is made of a metal material or the like, constitutes an exterior portion of the memory card socket 400, and shields unnecessary electromagnetic radiation from the memory card 1b to the outside.
  • the cover shell fixing terminal 430 is a terminal for mounting the cover shell 410 on the printed circuit board of the host device.
  • the memory card socket 400 according to the first embodiment includes a differential transmission pin pair P8 (S +) and P9 (S ⁇ ), and two stable potential pins P7 (G) adjacent to them.
  • P10 (V2) is a memory card socket corresponding to the memory card 1b, which is a different potential pin.
  • 224 have contact shapes connected to stable potential pins P7 (G) and P11 (G) of the same potential provided in the memory card 1b.
  • the pin arrangement is as follows: ground pin P7 (G), differential pin P8 (S +), differential pin P9 (S ⁇ ), power supply Pin P10 (V2) and ground pin P11 (G). Therefore, in the memory card socket 400, the contact terminal 224 adjacent to the contact terminal 222 connected to the differential pin P9 (S ⁇ ) of the memory card 1b is not the power supply pin P10 (V2) of the memory card 1b but the ground pin. Connect to P11 (G).
  • the ground pin P11 (G) is a pin having a stable potential that is the same as that of the ground pin P7 (G).
  • the contact terminals 220 and 224 at both ends adjacent to the differential transmission contact terminals P8 (S +) and P9 (S ⁇ ) have the same stable potential. Therefore, even when a current such as power supply noise or a signal return current flows, a current having the same phase flows through the contact terminals 220 and 224. For this reason, in-phase crosstalk is superimposed on the differential transmission contact terminals 221, 222. However, the differential signal quality is not affected because the crosstalk cancels each other due to the advantages of the differential transmission method described above.
  • the stable potential pin P10 (V2) disposed beside the differential pin P9 (S ⁇ ) on the memory card 1b is connected to the contact terminal 223 of the memory card socket 400. Since the contact terminal 223 is connected to the pin P10 (V2) on the memory card 1b having a stable potential different from that of the contact terminals 220 and 224, the flowing current component is also the current component flowing to the contact terminals 220 and 224. There is no correlation. For this reason, in order to suppress crosstalk from the contact terminal 223 to the differential transmission contact terminals P8 (S +) and P9 (S ⁇ ), the contact terminal 223 is pulled out from the contact terminals 221 and 222 and the contact terminals 220 and 224. Pull out in a different direction. As a result, the influence of crosstalk caused by the contact terminal 223 can be suppressed.
  • the distance between the differential transmission contact terminals 222 and 224 is preferably equal to the distance between the differential transmission contact terminals 221 and 220. This can balance the coupling between the contact terminal 224 and the contact terminal 222 and the coupling between the contact terminal 220 and the contact terminal 221. As a result, the characteristic of the crosstalk noise from the contact 224 to the contact 222 and the characteristic of the crosstalk noise from the contact 220 to the contact 221 can be made equal, so that the common-mode noise canceling effect of the differential transmission method can be enhanced. It is.
  • the shape of the contact terminal 224 As the shape of the contact terminal 224, the shape shown in FIGS. 5A to 5C is desirable.
  • the contact terminal 224 in FIG. 5A is wider in the portion adjacent to and parallel to the contact terminal 222 in FIG. 4D than the contact terminal 220, and the resistance value of this portion can be lowered.
  • the host device and the stable potential pin P11 (G) of the memory card 1b can be connected with low impedance. Therefore, there is an effect of reducing a voltage drop when supplying power from the host device to the memory card 1b or supplying a ground potential.
  • 5B and 5C a slit or window hole is provided in the contact terminal, and the width of the portion that runs adjacent to the contact terminal 222 in FIG. 4D is approximately equal to the width of the other contact terminals.
  • the configuration is the same. With such a configuration, the contact pressure between the memory card 1b and the contact terminal generated when the card is inserted can be made equal to other contact terminals. Therefore, the reliability of connection between each pin of the memory card 1b and each contact terminal of the memory card socket 400 can be improved. Further, since the contact pressure of the contact terminal 224 can be made equal to that of the other contact terminals (suppressed to the same contact pressure), the pin generated when the contact terminal 224 contacts the pin P11 (G) of the memory card 1b. It also has the effect of suppressing surface deterioration (displacement).
  • contact terminals 224a and 224b as shown in FIGS. 6A, 6B, and 6C may be used.
  • the contact terminal 224a shown in FIG. 6A has a shape whose width is equal to that of the contact terminal 220 and the contact terminal 224b in a portion that is adjacent to and parallel to the contact terminal 222 of FIG.
  • the contact pressure between the memory card 1b and the contact terminal generated when the memory card is inserted can be made equal to that of the other contact terminals, so each pin of the memory card 1b and the memory card socket The reliability of connection with the 400 contact terminals can be improved.
  • the contact pressure of the contact terminals 224a and 224b can be made equal to that of the other contact terminals (suppressed to the same contact pressure), the contact terminals 224a and 224b are in contact with the pin P11 (G) of the memory card 1b. This also has the effect of suppressing deterioration (displacement) of the pin surface that occurs. Furthermore, since the contact terminals 224a and 224b are independent contact terminals, the number of contact points with the contact terminals at the stable potential pin P11 (G) of the memory card 1b can be increased. Therefore, the contact resistance between the stable potential pin P11 (G) and the contact terminal can be reduced, and the effect of reducing the voltage drop when the power is supplied from the host device to the memory card 1b or the ground potential is obtained. be able to.
  • the contact terminals 221 and 222 connected to the differential transmission pins P8 (s +) and P9 (s ⁇ ) of the memory card 1b are as symmetrical as possible.
  • the contact terminal 220 connected to the stable potential pin P7 (G) and the contact terminal 222 adjacent to the pin P11 (G) having the same potential as the stable potential pin P7 (G) are adjacent to the contact terminal 222.
  • the shapes of the parallel running portions be as symmetrical as possible.
  • the contact terminals 221 and 222 can balance the coupling from the stable potential contact terminals at both ends adjacent to each other. Therefore, the common-mode noise canceling effect of the differential transmission method can be enhanced, and the effect of maintaining the quality of the differential signal can be obtained.
  • the contact terminal 224 is preferably an h-shaped alphabet, and the width w2 is preferably equal to the width w1 of the contact terminal 220.
  • the contact terminals 224a and 224b shown in FIGS. 6A, 6B, and 6C are used instead of the contact terminals 224, the contact terminals 224a of the contact terminals 224a run adjacent to each other. The same effect can be obtained even if the width w2 of the portion is as symmetrical as possible with the width w1 of the contact terminal 220.
  • the contact terminals 221 and 222 connected to the differential transmission pins P8 (s +) and P9 (s ⁇ ) of the memory card 1b are as symmetrical as possible.
  • the shape of the parallel running portions be as symmetrical as possible (for example, in FIG. 4D, the width w1 and the width w2 are equal).
  • the distance between the differential transmission contact terminal 222 and the stable potential supply contact terminal 224 is made equal to the distance between the differential transmission contact terminal 221 and the stable potential supply contact terminal 220 (the width w3 and the width w4 are equal). It is desirable.
  • the coupling between the contact terminal 224 and the contact terminal 222 and the coupling between the contact terminal 220 and the contact terminal 221 can be further balanced. Can be further enhanced.
  • the same effect can be obtained by the following configuration. That is, in this memory card socket 400, the contact terminals 221 and 222 of the memory card socket 400 connected to the differential transmission pins P8 (s +) and P9 (s ⁇ ) of the memory card 1b are as symmetrical as possible. It is preferable that the width w1 and the width w2 are equal (for example, in FIG. 4D).
  • FIG. 7 is a schematic perspective view showing a configuration of a conventional USB connector 50.
  • FIG. 8 is a front view of the USB connector 50 of FIG. 7 as viewed from the cable connection surface (A).
  • FIG. 9 is a rear view of the USB connector 50 of FIG. 7 as viewed from the back (B).
  • 10A is a front view of the USB terminal 21 on the connection surface of the USB cable 20, and
  • FIG. 10B is a plan view of the vicinity of the end of the USB cable 20, and FIG.
  • FIG. 11A is a perspective view showing the configuration of the back side of the conventional USB connector 50
  • FIG. 11B is a perspective view showing the configuration of the back side of the USB connector 30 according to the second embodiment. is there.
  • the USB cable 20 includes a pair of differential transmission pins P (S +) and P (S ⁇ ), a ground potential G, a power supply potential V, as shown in the sectional view of the cable portion 23 in FIG.
  • the four lines are arranged at substantially equal distances in the sectional view. Therefore, in the state of the cable portion 23 of the USB cable 20, even if noise is applied to the differential transmission pins P (S +) or P (S ⁇ ) from the respective lines of the ground potential G and the power supply potential V, there is no difference. The noise is almost equally applied to each of the dynamic transmission pins P (S +) and P (S ⁇ ). Therefore, the noise can be canceled in the cable portion 23 of the USB cable 20.
  • the cable portion 23 has four wires, ie, a pair of differential transmission pins P (S +) and P (S ⁇ ), a ground potential G, and a power supply potential V, from the inside to the outside.
  • the inner shield 27a, the polyvinyl chloride jacket 27b, and the outer shield 27c are covered in this order.
  • a drain wire 28 is provided.
  • the USB terminal 24 for connecting to the connector at the end of the USB cable 20 has a rectangular shape from the circular cross-section cable portion 23 through the overmold portion 22 as shown in the plan view of FIG. It has an end covered with a shell 21. As shown in the front view of FIG. 10A, the end covered with the shell 21 is provided with an insulating portion 25 below, and a pair of differential transmission pins P on the insulating portion 25. (S +) and P (S ⁇ ), a terminal of the ground potential G and a terminal of the power supply potential V are arranged across the both sides. Further, a gap 26 is provided above the gap.
  • the conventional USB connector 50 is covered with a shell 51 and has a cable connection surface (A) and a back surface (B). In addition, it has an insulation part inside a cable connection surface (A).
  • an insulating portion 52 is disposed on the upper side, and a ground potential G of the USB terminal 24 and a differential transmission pin P ( Four contact terminals 63, 61, 62, 64 connected to the pins S +) and P (S ⁇ ) and the power supply potential V are arranged in a line.
  • the insulating part 52 above the USB connector 50 is accommodated in the gap part 26 on the USB terminal 24 side.
  • the insulating portions 25 and 52 are opposed to each other, and therefore cannot be inserted substantially. That is, the insulating portion 25 of the USB terminal 24 and the insulating portion 51 of the USB connector 50 are provided so that the direction in which the USB terminal 24 is inserted into the USB connector 50 is a fixed direction.
  • the ground potential G of the USB terminal 24 When the USB connector 50 is viewed from the back (B), as shown in FIG. 9, the ground potential G of the USB terminal 24, the differential transmission pins P (S +) and P (S ⁇ ), the power supply potential V, The ends of the four contact terminals 63, 61, 62, 64 connected to the respective pins are led downward from the connector 50.
  • the four contact terminals 63, 61, 62, 64 correspond to the ground potential G of the USB terminal 20, the differential transmission pins P (S +) and P (S ⁇ ), and the power supply potential V, respectively. Yes.
  • the potentials of the two third and fourth contact terminals 63 and 64 corresponding to the stable potential pins on both sides are different from each other.
  • the current component uncorrelated to the first and second contact terminals 61 and 62 corresponding to the differential signal pins is differentially detected as crosstalk noise in the USB connector 50 portion.
  • the non-correlated crosstalk noise cannot be canceled on the differential signal receiving side (differential receiver; not shown).
  • the fifth contact terminal 35 connected to the power supply potential V of the USB terminal 20 is a pair of first and second contact terminals 31 connected to the differential transmission pins P (S +) and P (S ⁇ ). , 32 are shortened to the outside of the fourth contact terminal 34 having the ground potential G to be taken out.
  • the fifth contact terminal 35 may be provided as necessary.
  • the interval w3 between the first contact terminal 31 and the third contact terminal 33 that run adjacent to each other is equal to the second contact terminal 32 and the fourth contact terminal 32. It is preferable that the contact terminal 34 is equal to the interval w4 between the parts that are adjacent to each other and run in parallel.
  • first contact terminal 31 and the second contact terminal 32 have a line-symmetric shape
  • the third contact terminal 33 is adjacent to the first contact terminal 31 and is parallel to each other.
  • the four contact terminals 34 are preferably line-symmetrical.
  • the third contact terminal 33 includes a portion running in parallel with the first contact terminal 31, and Of the third contact terminal 33, the shape of the parallel portion with the first contact terminal 31 is preferably a line-symmetric shape with the shape of the fourth contact terminal 34.
  • the distance w3 between the adjacent parallel running portion and the first contact terminal 31 is the second contact. It is equal to the interval w4 between the terminal 32 and the fourth contact terminal 34, and The width of the third contact terminal 33 in the adjacent parallel running portion is preferably equal to the width of the fourth contact terminal 34.
  • a high-speed interface connector includes a differential transmission pin pair and a differential transmission system signal pin array having a pin array in which the potentials of stable potential pins located adjacent to both sides thereof are different from each other, This is a high-speed interface connector for cables and the like.
  • the high-speed interface connector has two contact terminals on both sides adjacent to a pair of contact pins connected to a differential transmission pin of a differential transmission system signal pin array. Each pin has a characteristic of being connected to each pin, and is useful as a high-speed interface connector for high-speed differential transmission.
  • P14 (G) Card pin Dif1, Dif2 A portion showing a differential pin pair and stable potential pins at both ends thereof 20 USB cable 21 Shell 22 Overmolding portion 23 Cable portion 24 USB terminal 25 Insulating portion 26 Air gap portion 27a Internal shield 27b Polyvinyl chloride jacket 27 External shield 28 Drain wire 30 USB connector 31 First contact terminal 32 Second contact terminal 33 Third contact terminal 34 Fourth contact terminal 35 Fifth contact terminal 50 USB connector 51 Shell 52 Insulating part 61 First contact terminal 62 Second contact Terminal 63 Third contact terminal 64 Fourth contact terminal

Landscapes

  • Details Of Connecting Devices For Male And Female Coupling (AREA)

Abstract

 本発明の高速インタフェース用コネクタは、互いに隣接する一対の差動伝送方式の信号用ピンと、一対の差動伝送方式の信号用ピンの両側を挟む二本の安定電位ピンとを含む差動伝送方式信号ピン配列であって、二本の安定電位ピンは互いに異なる電位を有する、差動伝送方式信号ピン配列を有するケーブルもしくはメモリーカードを接続するための高速インタフェース用コネクタであって、一対の差動伝送方式の信号用ピンにそれぞれ接続し、互いに隣接する差動伝送方式の第一及び第二のコンタクト端子と、第1及び第2のコンタクト端子の両側を挟む第三及び第四のコンタクト端子であって、第一のコンタクト端子と隣接する第三のコンタクト端子は、二本の安定電位ピンのうちの一つと接続され、第二のコンタクト端子と隣接する第四のコンタクト端子は、第三のコンタクト端子と同じ電位を有する、第三及び第四のコンタクト端子と、を含む。

Description

高速インタフェース用コネクタ
 本願は、日本国に2011年2月14日に出願した特願2011-28303号の日本特許出願を優先権の基礎とするものであり、この日本特許出願の内容は、本願明細書の一部をなすものとしてここに挙げておく。
 本発明は、差動伝送方式信号ピン配列を接続するための高速インタフェース用コネクタに関する。本発明は、具体的には、差動伝送方式信号ピン配列を有するメモリーカードを挿抜自在に接続するためのメモリーカードソケット、USBケーブルを接続するためのUSBケーブル用コネクタ等に関する。
 現在、メモリーカードは、デジタルスチルカメラ、デジタルビデオカメラなどで撮影した写真、動画の保存用メディアとして、また携帯電話においては写真や動画を含めた様々なコンテンツの保存用メディアとして広く用いられている。また、上記電子機器(以降、ホスト機器と称する)で保存した様々なコンテンツをパーソナルコンピュータに移動もしくはコピーする際のブリッジメディアとしても用いられている。
 メモリーカードは、その表面に複数の信号ピン、及び電源ピン、グランドピンを具備している。また、メモリーカード内部は、プリント基板、及びそれに実装されたコントローラLSI、フラッシュメモリなどから構成される。メモリーカード表面の複数のピンは、プリント基板上に形成された配線を介してコントローラLSIの各端子(信号端子、電源端子、グランド端子)と電気的に接続されている。
 一方、ホスト機器は、メモリーカードソケットを具備しており、メモリーカードがメモリーカードソケットに挿入されることでホスト機器とメモリーカードとが電気的に接続され、データの読み書きが行われる。
 また、メモリーカードソケットは、メモリーカードを保持するためのボディ部、カバーシェル、コンタクト端子などから構成される。コンタクト端子は、メモリーカードが該メモリーカードソケットに挿入された際に、メモリーカードがその表面に具備した複数のピンと接触するようボディ部に固定されている。なお、本発明に関係しない構成部位の説明を省略する。メモリーカードソケットの一例は、例えば特許文献1、2などで開示されている。
特開2010-61474号公報 特開2004-71175号公報
 ホスト機器の高機能化で記録される写真や動画の高画質化が進んでおり、それに伴いメモリーカードの記憶容量の拡大も進んでいる。しかし、取り扱うデータ量が多くなるとホスト機器とメモリーカード間のデータ伝送時間が増加し、利便性が低下することから、メモリーカードについても、その記憶容量拡大に合わせてホスト機器-メモリーカード間で行うデータ伝送の速度向上も進められている。
 ホスト機器とメモリーカード間の伝送速度の向上に向けて、いくつかアプローチが考えられる。ひとつは、メモリーカードの既存の信号ピンを介してホスト機器と伝送する信号伝送方式の伝送レートを向上することである。これまでのメモリーカードはホスト機器との信号伝送方式として、シングルエンド伝送方式を採用してきており、その伝送レートを向上させることで、メモリーカードの記憶容量拡大に対応してきた。
 しかし、シングルエンド伝送方式は、信号線一本につき1ビットの信号を送る伝送方法であり、外来からのノイズの影響を受けやすい。したがって信号振幅を3.3Vや1.8Vなど比較的大きな信号振幅を使う必要があった。このため、伝送レートの高速化、すなわち信号周波数を向上するためには、信号の立ち上がり時間の短縮が必要である。シングルエンド伝送方式においても、これまで、信号周波数の向上、および信号の立ち上がり時間の短縮がなされてきたが、信号振幅が大きいため、信号の立ち上がり時間の短縮は限界にきている。
 ホスト機器とメモリーカード間の伝送速度の向上に対する別のアプローチとして、これまでのシングルエンド伝送方式ではなく、ケーブルを用いた機器間高速信号伝送に昨今広く用いられている差動伝送方式を導入することが挙げられる。差動伝送方式は1対の信号線、すなわち2本の信号線を使って信号伝送する方式であり、対をなす2本の信号線のうち、一方には伝送する信号と同じ位相の信号(正相信号)を伝送し、同時に他方には伝送する信号と逆位相(逆相)の信号(逆相信号)を伝送し、受信側でそれらの差を検出する方式である。差動伝送方式では、受信側において、正相信号と逆相信号の差を検知するため、正相信号、逆相信号のそれぞれの振幅を小さくすることができる。このため、立ち上がり時間の短縮が容易であることからシングルエンド伝送方式よりも高速な信号伝送が可能である。また、差動伝送方式では、正相信号、逆相信号の各配線を近接して配置するため、正相信号、逆相信号が外来ノイズの影響を受けたとしても、一般的に正相信号、逆相信号に均一に外来ノイズが重畳する。このため、受信側で正相信号と逆相信号との差を取ることで、両者に均一に重畳した外来ノイズは相殺されることから、差動伝送方式では外来ノイズに対しても影響を受けにくいという特徴を持つ。
 シングルエンド伝送方式を用いてホスト機器と信号伝送を行ってきたメモリーカードに差動伝送方式を導入する方法として、差動伝送専用に新たに専用ピンを追加する方法がある。既存のメモリーカードへの新規ピン追加の場合、新規追加ピンのための面積には制約がある。また、新規ピンを具備するメモリーカード側では、メモリーカードソケットに挿入したときに、既存の信号ピンに接続するメモリーカードソケットのコンタクト端子が、メモリーカード挿入途中に新規ピンと接触しても故障しないようなピン配置とする必要がある。あるいは、メモリーカードとして、メモリーカードソケットへの挿入途中に、新規ピンが、既存の信号ピンに接続するためのメモリーカードソケット側のコンタクト端子とは接触しないようなピン配置とする必要がある。
 一方、メモリーカード側では、差動伝送用の差動信号ペアの両側をグランド端子とすることができず、例えば、図2のDif1に示すような、グランドピンP7(G)、差動ピンP8(S+)、P9(S-)、電源ピンP10(V2)のピン配列となる場合がある。このように、差動信号ペアである差動ピンP(S+)、P(S-)の両端が異なる電位の安定電位ピンである場合、P7(G)からP8(S+)へ重畳するクロストークノイズと、P10(V2)からP9(S-)へ重畳するクロストークノイズにより差動信号品質が劣化する可能性がある。これは、差動ピンP8(S+)、P9(S-)の両側に位置する安定電位ピンP7(G)とP10(V2)とのそれぞれに流れる相関のない電流成分がクロストークノイズとして差動信号に重畳すると差動信号の受信側(差動レシーバ;図示省略)では、これらの相関のないクロストークノイズを相殺できないためである。
 上記差動伝送方式は、メモリーカードに限られず様々な規格に用いられている。機器同士を接続するための接続ケーブルの規格としては、例えば、USBケーブル等にも差動伝送方式が使用されている。したがって、上記問題点は、これらの基板と機材との接続や、接続ケーブルとコネクタとの間においても発生している。
 そこで、本発明の目的は、差動伝送用ピンP(S+)、P(S-)を具備し、かつ、その差動ペアピンと隣接する左右のピンが異なる電位の安定電位ピンであるピン配置を有する差動伝送方式信号ピン配列を接続する高速インタフェース用コネクタであって、差動信号品質の劣化を抑制することができる高速インタフェース用コネクタを提供することである。
 なお、さらに詳細には、本発明の目的は、上記の図2のDif1に示すような高速信号伝送向けの差動伝送用ピンP(S+)、P(S-)を具備し、かつ、その差動ペアピンの隣接する左右のピンが異なる電位の安定電位ピンであるピン配置を有するメモリーカード、USBケーブル等に対して、差動信号品質の劣化を抑制する高速インタフェース用コネクタを提供することである。
 従来の課題を解決するために、本発明に係る高速インタフェース用コネクタは、互いに隣接する一対の差動伝送方式の信号用ピンと、前記一対の差動伝送方式の信号用ピンの両側を挟む二本の安定電位ピンとを含む差動伝送方式信号ピン配列であって、前記二本の安定電位ピンは互いに異なる電位を有する、差動伝送方式信号ピン配列を有するケーブルもしくはメモリーカードに接続するための高速インタフェース用コネクタであって、
 前記一対の差動伝送方式の信号用ピンにそれぞれ接続し、互いに隣接する差動伝送方式の第一及び第二のコンタクト端子と、
 前記第1及び第2のコンタクト端子の両側を挟む第三及び第四のコンタクト端子であって、前記第一のコンタクト端子と隣接する前記第三のコンタクト端子は、前記二本の安定電位ピンのうちの一つと接続され、前記第二のコンタクト端子と隣接する前記第四のコンタクト端子は、前記第三のコンタクト端子と同じ電位を有する、第三及び第四のコンタクト端子と、
を含む。
 また、前記二本の安定電位ピンのうちのもう一方と接続された第五のコンタクト端子を、さらに含んでもよい。
 また、本発明のメモリーカードソケットは、互いに隣接する第一、第二のピンは差動伝送方式の信号用ピンであり、前記第一、第二のピン対の両側を挟んで隣接する第三、第四のピンのうち、前記第三のピンは前記第一のピンに隣接し、前記第一のピンに対して前記第二のピンとは反対側に位置し、前記第四のピンは前記第二のピンに隣接し、前記第二のピンに対して前記第一のピンとは反対側に位置し、前記第三、第四のピンは互いに同一の電位を有しないカードピン配列を有すると共に、前記第四のピンと同一の安定電位に接続された第五のピンを有する差動伝送方式のメモリーカードに対応するメモリーカードソケットであり、
 前記メモリーカードの前記第一、第二の差動伝送方式の信号用ピンにそれぞれ接続し、互いに隣接する差動伝送方式の第一及び第二のコンタクト端子と、
 前記第一及び第二のコンタクト端子対の両側を挟んで隣接する第三及び第四のコンタクト端子であって、前記第三のコンタクト端子は、前記第一のコンタクト端子に隣接し、前記第一のコンタクト端子に対して前記第二のコンタクト端子とは反対側に位置し、前記第四のコンタクト端子は、前記第二のコンタクト端子に隣接し、前記第二のコンタクト端子に対して前記第一のコンタクト端子とは反対側に位置する、第三及び第四のコンタクト端子と、
を備え、
 前記第四のコンタクト端子は、前記メモリーカードの前記第四のピンと接続され、前記第三のコンタクト端子は、前記メモリーカードの前記第三のピンではなく、前記第四のピンと同一の安定電位に接続された前記第五のピンに接続されていることを特徴とする。
 本発明に係るメモリーカードソケットの構成によって、差動ピンペアの両側のピンが同電位の安定電位ピンではないメモリーカードに対するメモリーカードソケットは、メモリーカードの差動ピンペアと接続するメモリーカードソケットのコンタクト端子対の両側に隣接するコンタクト端子対を同電位の安定電位とすることができる。
 本発明の高速インタフェース用コネクタによれば、差動ピンペアの両側に隣接するピンが同電位の安定電位ピンではない差動伝送方式信号ピンと、ホスト機器との間で送受信される差動信号通信において、高速インタフェース用コネクタによって、差動信号を伝送するコンタクト端子対の両側に隣接する2つの安定電位ピンからのクロストークを互いに相関をもつようにできる。従って差動信号の受信端において互いに相関のあるクロストークは相殺されるので差動信号の品質劣化を抑制する効果を得る。
シングルエンドインタフェースのメモリーカードへ、差動インタフェースを導入する場合の参考例1のメモリーカードの構成を示す概略図である。 シングルエンドインタフェースのメモリーカードへ、差動インタフェースを導入する場合の参考例2のメモリーカードの構成(本発明を実施する際に想定される構成)を示す概略図である。 図2のメモリーカードに対応する、本発明の実施の形態1に係るメモリーカードソケットの一例であって、(a)は、メモリーカードソケットの上面図であり、点線・破線部分はカバーシェルの下部に隠れた部分の透視図であり、(b)は、メモリーカードの裏面図であり、(c)は、(a)のA1-B1区間の断面図であり、(d)は、メモリーカードを挿入した場合の裏面図であり、(e)は、(d)のA2-B2区間の断面図である。 図2のメモリーカードに対応する本発明のメモリーカードソケットの一例であって、(a)は、メモリーカードソケットの上面図であり、点線・破線部分はカバーシェルの下部に隠れた部分の透視図であり、(b)は、メモリーカードソケットの裏面図であり、(c)は、(a)のA3-B3区間の断面図(図6(a)の同区間の断面図も兼ねる)であり、(d)は、メモリーカードを挿入した場合の裏面図であり、(e)は、(d)のA4-B4区間の断面図(図6(c)の同区間の断面図も兼ねる)である。 (a)~(c)は、図4のコンタクト端子224の構成の一例である。 図2のメモリーカードに対応する本願発明のメモリーカードソケットの別の例であって、(a)は、メモリーカードソケットの上面図であり、点線・破線部分はカバーシェルの下部に隠れた部分の透視図であり、(b)は、メモリーカードソケットの裏面図であり、(c)は、メモリーカードを挿入した場合の裏面図である。 従来のUSBコネクタの構成を示す概略斜視図である。 図7のUSBコネクタのケーブル接続面(A)から見た正面図である。 図7のUSBコネクタの背面(B)から見た背面図である。 (a)は、USBケーブルの接続面の正面図であり、(b)は、USBケーブルの平面図であり、(c)は、USBケーブルの断面構造を示す断面図である。 (a)は、従来のUSBコネクタの背面側の構成を示す斜視図であり、(b)は、実施の形態2に係るUSBコネクタの背面側の構成を示す斜視図である。
 以下、本発明の実施の形態に係る高速インタフェース用コネクタについて、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材には同一の符号を付している。
<メモリーカードについて>
 まず、差動伝送方式を導入したメモリーカードについて説明する。
 これまでシングルエンド伝送方式を用いてホスト機器と信号伝送を行ってきたメモリーカードに差動伝送方式を導入するには、2つの実現方法が考えられる。
 <参考例1>
 一つ目は、図1に示すように、メモリーカードの既存の信号ピンP(S)をシングルエンド伝送、及び差動伝送の両方の伝送方式で供用することである(以降、「ピン供用構成」と称する。)。この「ピン併用構成」を用いたメモリーカードを参考例1のメモリーカードとする。この「ピン併用構成」では、メモリーカード内のコントローラLSI2は、シングルエンド伝送用I/O回路5、及び差動伝送用I/O回路6を具備する(ホスト機器側のコントローラLSI12も同様の構成)。また、シングルエンド用I/O回路5と差動伝送用I/O回路6は、メモリーカード1a内のプリント基板上の配線4、メモリーカードソケット11aのコンタクト端子(図示せず)、及びホスト機器のプリント基板上の配線14を供用する構成となる。
 一方、差動伝送方式は、前述の通りシングルエンド伝送に比べはるかに高速なGHzオーダーの信号伝送を行うことが可能であるが、それを実現するには伝送線路全体として特性インピーダンスの整合を取ることがシングルエンド伝送の場合以上に重要となってくる。しかし、上記の「ピン供用構成」において差動伝送を行う場合、シングルエンド伝送用I/O回路5の負荷容量成分が伝送線路のインピーダンス整合を乱す要因となり、差動伝送方式による高速信号伝送を妨げてしまう。このため、「ピン併用構成」は、差動伝送方式を用いたGHzオーダーの高速信号伝送の実現に向けては必ずしも最適な構成とはいえない。
 <参考例2>
 差動伝送方式を、シングルエンド伝送方式を用いてホスト機器と信号伝送を行ってきたメモリーカードに導入するための2つ目の実現方法として、差動伝送専用に新たに専用ピンを追加する方法(以降、「差動ピン追加構成」と称する。)がある。この「差動ピン追加構成」を用いたメモリーカードを参考例2のメモリーカードとする。
 例えば、図1のメモリーカード1aに新設の差動ピンを追加する場合、図2のメモリーカード1bに示すような追加ピン配置が構成例として考えられる。図2のメモリーカード1bの新規追加ピン(2列目のピン列)において、差動ピンP(S+)、P(S-)はそのピンサイズを小さくし、ピン部分に発生する負荷容量成分を抑え、かつ、両側を安定電位のピンP(GND)またはP(VDD2)で囲うことで、高速差動伝送で重要なインピーダンス整合を図るものである。
 なお、S-ATA(Serial ATA)、PCI Expressなど、高速差動伝送インタフェースのコネクタ部分のピン配置は、差動ピンペアの両側にグランドピンを配置することが一般的である。しかし、本発明の背景のように、既存のメモリーカードへ新規ピンを追加する場合、新規追加ピンのための面積には制約がある。また新規ピンを具備するメモリーカードをメモリーカードソケットに挿入したときに、既存の信号ピンに接続するメモリーカードソケットのコンタクト端子が、メモリーカード挿入途中に新規追加ピンと接触しても故障しないようなピン配置とする必要がある。このため、差動信号ペアの両側をグランド端子とすることができず、例えば図2のDif1に示すような、グランドピンP7(G)、差動ピンP8(S+)、P9(S-)、電源ピンP10(V2)のピン配列になることも起こりうる。
 図2のメモリーカード1bの2列目のピン配列のように、差動ピンP(S+)、P(S-)の両端が安定電位のピンで囲まれるピン配置がインピーダンス整合の観点では好ましい。しかし、差動ピンP(S+)、P(S-)の両端が異なる電位の安定電位ピンである場合(Dif1)、P7(G)からP8(S+)へ重畳するクロストークノイズと、P10(V2)からP9(S-)へ重畳するクロストークノイズにより差動信号品質が劣化する可能性がある。これは、差動ピンP8(S+)、P9(S-)の両側に位置する安定電位ピンP7(G)とP10(V2)とのそれぞれに流れる相関のない電流成分がクロストークノイズとして差動信号に重畳すると差動信号の受信側(差動レシーバ;図示省略)では、それら相関のないクロストークノイズを相殺できないためである。
 ここで、図2のメモリーカードソケット11bとして、図3(a)~(e)に示すような構成が一例として考えられる。図3の各図に示すように、メモリーカード1bの各ピンに接触するコンタクト端子の配列を、メモリーカードソケット11bのピン配列と同じにして単純に引き出すと、メモリーカード1bでのピンサイズよりも、メモリーカードソケットのコンタクト端子の長さは一般的に長いので、前述の相関のないクロストークは、ソケット11bのコンタクト端子部分で顕著に発生する。
<メモリーカードソケットについて>
 次に、特に、参考例2の差動伝送方式を導入したメモリーカードを用いる場合のメモリーカードソケットについて説明する。
(実施の形態1)
 図4(a)~(e)は、本発明の実施形態1におけるメモリーカードソケット400の構成を示す概略図である。具体的には、図4(a)は、メモリーカードソケット400の上面図であり、点線および破線部はカバーシェル310で覆われている部分の透視図をあらわす。また図4(b)は、メモリーカードソケット400の裏面図である。図4(c)の上段は、図4(a)の区間A3-B3の断面図であり、下段は、図4(a)の区間A3’-B3’の断面図である。図4(d)は、高速信号伝送向けの差動伝送用ピンを具備し、かつ、その差動ペアピンの隣接する左右のピンが異なる電位の安定電位ピンであるメモリーカード1bを挿入した場合を示す概略図である。図4(e)の上段は、図4(d)の区間A4-B4の断面図であり、下段は、図4(d)の区間A4’-B4’の断面図である。
 図4(a)~(e)のメモリーカードソケット400は、コンタクト端子210~227、ボディ部420、カバーシェル410、カバーシェル固定端子430等によって構成される。
 コンタクト端子210~227は、導電性の材質からなり、メモリーカード1bのピンと接触し、メモリーカード1bと該メモリーカードソケット400が実装されるホスト機器の間での信号伝送、電源、及びグランド電位の供給を行う。
 ボディ部420は、樹脂材料などの非導電性材質からなり、各コンタクト端子を固定し、かつ、メモリーカード1bを保持する役割を果たす。
 カバーシェル410は、金属材質などからなり、メモリーカードソケット400の外装部分を構成し、メモリーカード1bから外部への不要電磁輻射をシールドする。
 カバーシェル固定端子430は、カバーシェル410をホスト機器のプリント基板に実装するための端子である。
 図4(d)を用いて本実施の形態1に係るメモリーカードソケット400の具体的内容を説明する。本実施の形態1に係るメモリーカードソケット400は、差動伝送用のピン対P8(S+)、P9(S-)を具備し、かつ、それらに隣接する2つの安定電位ピンP7(G)、P10(V2)が異なる電位ピンであるメモリーカード1bに対応するメモリーカードソケットである。また、メモリーカードソケット400の具備するコンタクト端子のうち、メモリーカード1bの差動ピン対P8(S+)、P9(S-)に接続されるコンタクト端子221,222に隣接する、両端のコンタクト端子220,224は、メモリーカード1bの具備する同電位の安定電位ピンP7(G)、P11(G)に接続するコンタクト形状を有する。
 本実施の形態で例示するメモリーカード1bでは、参考例2に示すように、そのピン配置が、グランドピンP7(G)、差動ピンP8(S+)、差動ピンP9(S-)、電源ピンP10(V2)、グランドピンP11(G)となっている。そこで、このメモリーカードソケット400では、メモリーカード1bの差動ピンP9(S-)に接続するコンタクト端子222に隣接するコンタクト端子224を、メモリーカード1bの電源ピンP10(V2)ではなく、グランドピンP11(G)に接続する。グランドピンP11(G)は、グランドピンP7(G)と同電位の安定電位を有するピンである。これにより差動伝送用コンタクト端子P8(S+)、P9(S-)に隣接する両端のコンタクト端子220、224は同電位の安定電位となる。従って、電源ノイズや信号のリターン電流などの電流が流れた場合にも、コンタクト端子220、224には同相の電流が流れる。そのため、差動伝送用コンタクト端子221,222には同相のクロストークが重畳するが、前述の差動伝送方式の利点により互いに相殺されるため差動信号品質に影響を与えることはない。
 一方、メモリーカード1b上で差動ピンP9(S-)の横に配置されている、安定電位ピンP10(V2)は、メモリーカードソケット400のコンタクト端子223と接続される。コンタクト端子223は、コンタクト端子220、224とは異なる電位の安定電位を有するメモリーカード1b上のピンP10(V2)に接続されるため、流れる電流成分もコンタクト端子220、224に流れる電流成分とは相関がない。このため、コンタクト端子223から差動伝送用コンタクト端子P8(S+)、P9(S-)へのクロストークを抑えるために、コンタクト端子223はコンタクト端子221,222及びコンタクト端子220、224の引き出し方向とは異なる方向に引き出す。これによって、コンタクト端子223によるクロストークの影響を抑えることができる。
 なお、差動伝送用コンタクト端子222と224の間隔を、差動伝送用のコンタクト端子221と220の間隔と等しくすることが望ましい。これは、コンタクト端子224とコンタクト端子222との結合と、コンタクト端子220とコンタクト端子221との結合とをバランス化することができる。その結果、コンタクト224からコンタクト222へのクロストークノイズの特性と、コンタクト220からコンタクト221へのクロストークノイズの特性を同等にできるので、差動伝送方式の同相ノイズ相殺効果を高めることができるからである。
 なお、コンタクト端子224の形状としては、図5(a)~(c)に示す形状が望ましい。
 図5(a)のコンタクト端子224は、図4(d)のコンタクト端子222と隣接して並走する部分の幅が、コンタクト端子220よりも広く、この部分の抵抗値を下げることができるため、ホスト機器とメモリーカード1bの安定電位ピンP11(G)を低インピーダンスで接続することができる。従って、ホスト機器からメモリーカード1bへの電源供給、もしくはグランド電位の供給の際の電圧降下を低減する効果がある。
 図5(b)、(c)は、コンタクト端子にスリットもしくは窓穴を設け、図4(d)のコンタクト端子222と隣接して並走する部分の幅は、概ね他のコンタクト端子の幅と同じとする構成である。このような構成にすることで、カード挿入時に発生するメモリーカード1bとコンタクト端子との接圧を、その他のコンタクト端子と同等にすることができる。そのため、メモリーカード1bの各ピンと、メモリーカードソケット400の各コンタクト端子との接続の信頼性を高めることができる。またコンタクト端子224の接圧をその他のコンタクト端子と同等にする(同程度の接圧に抑える)ことができるので、コンタクト端子224がメモリーカード1bのピンP11(G)と接触することで起こるピン表面の劣化(けずれ)を抑える効果も得る。
 また、図4のコンタクト端子224の代わりに、図6(a),(b),(c)に示すようなコンタクト端子224aおよび224bとしてもよい。図6(a)に示すコンタクト端子224aは、図4のコンタクト端子222と隣接して並走する部分において、その幅がコンタクト端子220やコンタクト端子224bと等しい形状である。このような形状にすることで、メモリーカード挿入時に発生するメモリーカード1bとコンタクト端子との接圧を、その他のコンタクト端子と同等にすることができるため、メモリーカード1bの各ピンと、メモリーカードソケット400の各コンタクト端子との接続の信頼性を高めることができる。また、コンタクト端子224a、224bの接圧をその他のコンタクト端子と同等にする(同程度の接圧に抑える)ことができるので、コンタクト端子224a、224bがメモリーカード1bのピンP11(G)と接触することで起こるピン表面の劣化(けずれ)を抑える効果も得る。さらに、コンタクト端子224a、224bが独立したコンタクト端子であるため、メモリーカード1bの安定電位ピンP11(G)におけるコンタクト端子との接触点を増やすことができる。したがって、安定電位ピンP11(G)とコンタクト端子との接触抵抗を軽減することができ、ホスト機器からメモリーカード1bへの電源供給、もしくはグランド電位の供給の際の電圧降下を低減する効果を得ることができる。
 また、本発明のソケット400において、メモリーカード1bの差動伝送用ピンP8(s+)、P9(s-)に接続するコンタクト端子221、222の形状ができるだけ線対称な形状とすることが好ましい。また、安定電位ピンP7(G)に接続するコンタクト端子220の形状と、安定電位ピンP7(G)と同電位のピンP11(G)に接続するコンタクト端子224のうちコンタクト端子222に隣接して並走する部分の形状ができるだけ線対称な形状とすることが望ましい。この構造によっても、コンタクト端子221,222が、それらの隣接する両端の安定電位のコンタクト端子からの結合のバランスをとることができる。したがって、差動伝送方式の同相ノイズ相殺効果を高め、差動信号の品質を維持する効果を得ることができる。
 例えば、コンタクト端子224を図5(b)に示すように、アルファベットのh型とし、幅w2を、コンタクト端子220の幅w1と等しくすることが好ましい。
 また、コンタクト端子224の代わりに、図6(a),(b),(c)に示すコンタクト端子224aおよび224bとした場合においても、コンタクト端子224aのうちコンタクト端子222に隣接して並走する部分の幅w2がコンタクト端子220の幅w1とできるだけ線対称な形状としても同様の効果を得ることができる。
 さらに、図4に示す本発明のメモリーカードソケット400において、メモリーカード1bの差動伝送用ピンP8(s+)、P9(s-)に接続するコンタクト端子221、222の形状ができるだけ線対称な形状であり、安定電位ピンP7(G)に接続するコンタクト端子220の形状と、安定電位ピンP7(G)と同電位のピンP11(G)に接続するコンタクト端子224のうちコンタクト端子222に隣接して並走する部分の形状ができるだけ線対称な形状である(例えば、図4(d)において、幅w1と幅w2が等しい)ことが好ましい。また、差動伝送用コンタクト端子222と安定電位供給用コンタクト端子224の間隔を、差動伝送用コンタクト端子221と安定電位供給用コンタクト端子220の間隔と等しくする(幅w3と幅w4が等しい)ことが望ましい。
 このようなコンタクト端子形状、間隔により、コンタクト端子224とコンタクト端子222の間の結合と、コンタクト端子220とコンタクト端子221の間の結合がよりバランス化できるので、差動伝送方式の同相ノイズ相殺効果をいっそう高めることができる。
 なお、図4に示すメモリーカードソケットのコンタクト端子224を、図6に示すコンタクト端子224a、224bに置き換えた場合も、以下の構成により同様の効果を得ることができる。すなわち、このメモリーカードソケット400では、メモリーカード1bの差動伝送用ピンP8(s+)、P9(s-)に接続するメモリーカードソケット400のコンタクト端子221、222の形状ができるだけ線対称な形状である(例えば、図4(d)において、幅w1と幅w2が等しい。)ことが好ましい。また、安定電位ピンP7(G)に接続するコンタクト端子220の形状と、安定電位ピンP7(G)と同電位のピンP11(G)に接続するコンタクト端子224aのうちコンタクト端子222に隣接して並走する部分の形状ができるだけ線対称な形状であることが好ましい。さらに、コンタクト端子222とコンタクト端子224aの間隔w4を、コンタクト端子221とコンタクト端子220の間隔w3と等しくすることで、差動伝送方式の同相ノイズ相殺効果をさらにいっそう高めることができる。
(実施の形態2)
 図7は、従来のUSBコネクタ50の構成を示す概略斜視図である。また、図8は、図7のUSBコネクタ50のケーブル接続面(A)から見た正面図である。図9は、図7のUSBコネクタ50の背面(B)から見た背面図である。さらに、図10(a)は、USBケーブル20の接続面のUSB端子21の正面図であり、図10(b)は、USBケーブル20の端部付近の平面図であり、図10(c)は、USBケーブル20のケーブル部分23の断面構造を示す断面図である。図11(a)は、従来のUSBコネクタ50の背面側の構成を示す斜視図であり、図11(b)は、実施の形態2に係るUSBコネクタ30の背面側の構成を示す斜視図である。
 USBケーブル20は、図10(c)のケーブル部分23の断面図に示すように、一対の差動伝送用ピンP(S+)及びP(S-)と、グランド電位Gと、電源電位Vと、の4線が断面図内でほぼ均等な距離に配置されている。このため、USBケーブル20のケーブル部分23の状態では、グランド電位G及び電源電位Vのそれぞれの線から差動伝送用ピンP(S+)又はP(S-)にノイズが乗ったとしても、差動伝送用ピンP(S+)及びP(S-)のそれぞれにほぼ同等にノイズが乗る。そのため、USBケーブル20のケーブル部分23では上記ノイズをキャンセルできる。なお、ケーブル部分23では、一対の差動伝送用ピンP(S+)及びP(S-)と、グランド電位Gと、電源電位Vと、の4線を内部に有し、内側から外側に向かって、内部シールド27a、ポリ塩化ビニルジャケット27b、外部シールド27cの順に覆われている。また、ドレインワイヤ28が設けられている。
 一方、USBケーブル20の端部でコネクタと接続するためのUSB端子24は、図10(b)の平面図に示されるように、円形断面のケーブル部分23からオーバモールド部22を経て矩形形状のシェル21に覆われた端部を有する。このシェル21に覆われた端部は、図10(a)の正面図に示されるように、下方には絶縁部25が設けられ、絶縁部25の上には一対の差動伝送用ピンP(S+)及びP(S-)と、その両側を挟んでグランド電位Gの端子と、電源電位Vの端子と、が配置されている。さらに、その上方には空隙部26が設けられている。
 従来のUSBコネクタ50は、図7の斜視図に示すように、周囲をシェル51で覆われ、ケーブル接続面(A)と、背面(B)と、を有する。なお、ケーブル接続面(A)の内側には、の絶縁部を有する。USBコネクタ50をケーブル接続面(A)からみた場合、図8に示されるように、上方には絶縁部52が配置され、下方にはUSB端子24のグランド電位G、差動伝送用ピンP(S+)及びP(S-)、電源電位V、の各ピンと接続される4つのコンタクト端子63、61、62、64が一列に配置されている。なお、USBコネクタ50の上方の絶縁部52は、USB端子24側の空隙部26に収納される。このため、USB端子24を反転させてUSBコネクタ50に差し込もうとした場合、それぞれの絶縁部25、52が相対することとなるため、実質的に差し込むことができない。つまり、USB端子24の絶縁部25とUSBコネクタ50の絶縁部51とは、USB端子24をUSBコネクタ50に差し込む方向を一定方向とするために設けられたものである。
 また、USBコネクタ50を背面(B)からみた場合、図9に示されるように、USB端子24のグランド電位G、差動伝送用ピンP(S+)及びP(S-)、電源電位V、の各ピンと接続される4つのコンタクト端子63、61、62、64の端部がコネクタ50から下方に導かれている。この場合、4つのコンタクト端子63、61、62、64は、USB端子20のグランド電位G、差動伝送用ピンP(S+)及びP(S-)、電源電位V、の各ピンと対応している。また、両側の安定電位のピンに対応する2つの第三及び第四のコンタクト端子63、64の電位は互いに異なっている。そのため、USBコネクタ50の部分で上記メモリーカードの場合と同様に、差動信号ピンに対応するそれぞれの第一及び第二のコンタクト端子61、62に相関のない電流成分がクロストークノイズとして差動信号に重畳すると、差動信号の受信側(差動レシーバ;図示省略)では、これらの相関のないクロストークノイズを相殺できないという問題が生じる。
 そこで、実施の形態2に係るUSBコネクタ30では、図11(a)の従来のUSBコネクタ50と対比すると明らかなように、図11(b)の斜視図に示すように、USB端子24の差動伝送用ピンP(S+)、P(S-)と接続する一対の第一及び第二のコンタクト端子31、32を挟む両側の2本の第三及び第四のコンタクト端子33、34として、左右両側共にグランド電位Gに対応するコンタクト端子33、34を配置している。これによって、USB端子24の差動伝送用ピンP(S+)、P(S-)と接続する一対の第一及び第二のコンタクト端子31、32の両側を挟む2つの安定電位の第三及び第四のコンタクト端子33、34を同じグランド電位とすることができる。そこで、同じグランド電位である2つの安定電位の第三及び第四のコンタクト端子33、34から一対の第一及び第二のコンタクト端子31、32にそれぞれ重畳するノイズについては、同相のノイズとなるためクロストークノイズとして除去することができる。
 なお、USB端子20の電源電位Vと接続される第五のコンタクト端子35は、差動伝送用ピンP(S+)、P(S-)と接続する一対の第一及び第二のコンタクト端子31、32と隣接する部分を短くするために、グランド電位Gの第四のコンタクト端子34よりさらに外側に曲げられて取り出される。この第五のコンタクト端子35は必要に応じて設ければよい。
 また、図11(b)に示すように、第一のコンタクト端子31と第三のコンタクト端子33とは、互いに隣接して並走する部分の間隔w3が、第二のコンタクト端子32と第四のコンタクト端子34とが互いに隣接して並走する部分の間隔w4に等しいことが好ましい。
 さらに、第一のコンタクト端子31と第二のコンタクト端子32とは線対称形状であると共に、第三のコンタクト端子33は、第一のコンタクト端子31と互いに隣接して並走する部分は、第四のコンタクト端子34と線対称形状であることが好ましい。
 また、第三のコンタクト端子33は、第一のコンタクト端子31と互いに隣接して並走している部分を具備すると共に、
 第三のコンタクト端子33のうち、第一のコンタクト端子31との並走部分の形状は、第四のコンタクト端子34の形状と線対称形状であることが好ましい。
 さらに、第三のコンタクト端子33のうち、第一のコンタクト端子31と互いに隣接して並走する部分において、該隣接並走部分と第一のコンタクト端子31との間隔w3は、第二のコンタクト端子32と第四のコンタクト端子34との間隔w4と等しいと共に、
 該隣接並走部分における第三のコンタクト端子33の幅は、第四のコンタクト端子34の幅と等しいことが好ましい。
 本発明に係る高速インタフェース用コネクタは、差動伝送用ピン対及び、その両側に隣接して位置する安定電位ピン同士の電位が異なるピン配列を有する差動伝送方式信号ピン配列を有するメモリーカード、ケーブル等に対応する高速インタフェース用コネクタである。該高速インタフェース用コネクタは、差動伝送方式信号ピン配列の差動伝送用ピンに接続するコンタクトピン対に隣接する両側2つのコンタクト端子は、差動伝送方式信号ピン配列上の同一電位の安定電位ピンにそれぞれ接続する特徴を有するものであり、高速差動伝送用の高速インタフェース用コネクタとして有用である。
 1a、1b メモリーカード
 2、12 コントローラLSI
 3 フラッシュメモリ
 4、14 基板配線
 5、15 シングルエンド用I/O回路
 6、16 差動伝送用I/O回路 10 ホスト機器
 11a、11b メモリーカードソケット
 110~127、210~227 メモリーカードソケットのコンタクト端子
 300、400 メモリーカードソケット
 310、410 カバーシェル
 320、420 ボディ部
 330、430 カバーシェル固定端子
 340、440 カバーシェルの窓穴
 P(P1(G)、P2(S)・・・P14(G)) カードピン
 Dif1、Dif2 差動ピンペア及びその両端の安定電位ピンを示す部分
 20 USBケーブル
 21 シェル
 22 オーバモールド部
 23 ケーブル部分
 24USB端子
 25 絶縁部
 26 空隙部
 27a 内部シールド
 27b ポリ塩化ビニルジャケット
 27c 外部シールド
 28 ドレインワイヤ
 30 USBコネクタ
 31 第一コンタクト端子
 32 第二コンタクト端子
 33 第三コンタクト端子
 34 第四コンタクト端子
 35 第五コンタクト端子
 50 USBコネクタ
 51 シェル
 52 絶縁部
 61 第一コンタクト端子
 62 第二コンタクト端子
 63 第三コンタクト端子
 64 第四コンタクト端子

Claims (17)

  1.  互いに隣接する一対の差動伝送方式の信号用ピンと、前記一対の差動伝送方式の信号用ピンの両側を挟む二本の安定電位ピンとを含む差動伝送方式信号ピン配列であって、前記二本の安定電位ピンは互いに異なる電位を有する、差動伝送方式信号ピン配列を有するケーブルもしくはメモリーカードを接続するための高速インタフェース用コネクタであって、
     前記一対の差動伝送方式の信号用ピンにそれぞれ接続し、互いに隣接する差動伝送方式の第一及び第二のコンタクト端子と、
     前記第1及び第2のコンタクト端子の両側を挟む第三及び第四のコンタクト端子であって、前記第一のコンタクト端子と隣接する前記第三のコンタクト端子は、前記二本の安定電位ピンのうちの一つと接続され、前記第二のコンタクト端子と隣接する前記第四のコンタクト端子は、前記第三のコンタクト端子と同じ電位を有する、第三及び第四のコンタクト端子と、
    を含む、高速インタフェース用コネクタ。
  2.  前記二本の安定電位ピンのうちのもう一方と接続された第五のコンタクト端子を、さらに含む、請求項1に記載の高速インタフェース用コネクタ。
  3.  前記第一のコンタクト端子と前記第三のコンタクト端子とは、互いに隣接して並走する部分の間隔が、前記第二のコンタクト端子と前記第四のコンタクト端子とが互いに隣接して並走する部分の間隔に等しいことを特徴とする請求項1に記載の高速インタフェース用コネクタ。
  4.  前記第一のコンタクト端子と前記第二のコンタクト端子とは線対称形状であると共に、前記第三のコンタクト端子は、前記第一のコンタクト端子と互いに隣接して並走する部分は、前記第四のコンタクト端子と線対称形状であることを特徴とする請求項1から3のいずれか一項に記載の高速インタフェース用コネクタ。
  5.  前記第三のコンタクト端子は、前記第一のコンタクト端子と互いに隣接して並走している部分を具備すると共に、
     前記第三のコンタクト端子のうち、前記第一のコンタクト端子との並走部分の形状は、前記第四のコンタクト端子の形状と線対称形状であることを特徴とする請求項1から3のいずれか一項に記載の高速インタフェース用コネクタ。
  6.  前記第三のコンタクト端子のうち、前記第一のコンタクト端子と互いに隣接して並走する部分において、該隣接並走部分と前記第一のコンタクト端子との間隔は、前記第二のコンタクト端子と前記第四のコンタクト端子との間隔と等しいと共に、
     該隣接並走部分における前記第三のコンタクト端子の幅は、前記第四のコンタクト端子の幅と等しいことを特徴とする請求項1から3のいずれか一項に記載の高速インタフェース用コネクタ。
  7.  前記差動伝送方式信号ピン配列がメモリーカードの差動伝送方式信号ピン配列である、請求項1から6のいずれか一項に記載の高速インタフェース用コネクタ。
  8.  互いに隣接する第一、第二のピンは差動伝送方式の信号用ピンであり、前記第一、第二のピン対の両側を挟む第三、第四のピンのうち、前記第三のピンは前記第一のピンに隣接し、前記第一のピンに対して前記第二のピンとは反対側に位置し、前記第四のピンは前記第二のピンに隣接し、前記第二のピンに対して前記第一のピンとは反対側に位置し、前記第三、第四のピンは互いに同一の電位を有しないカードピン配列を有すると共に、前記第四のピンと同一の安定電位に接続された第五のピンを有する差動伝送方式のメモリーカードに対応するメモリーカードソケットであり、
     前記メモリーカードの前記第一、第二の差動伝送方式の信号用ピンにそれぞれ接続し、互いに隣接する差動伝送方式の第一及び第二のコンタクト端子と、
     前記第一及び第二のコンタクト端子対の両側を挟む第三及び第四のコンタクト端子であって、前記第三のコンタクト端子は、前記第一のコンタクト端子に隣接し、前記第一のコンタクト端子に対して前記第二のコンタクト端子とは反対側に位置し、前記第四のコンタクト端子は、前記第二のコンタクト端子に隣接し、前記第二のコンタクト端子に対して前記第一のコンタクト端子とは反対側に位置する、第三及び第四のコンタクト端子と、
    を備え、
     前記第四のコンタクト端子は、前記メモリーカードの前記第四のピンと接続され、前記第三のコンタクト端子は、前記メモリーカードの前記第三のピンではなく、前記第四のピンと同一の安定電位に接続された前記第五のピンに接続されていることを特徴とするメモリーカードソケット。
  9.  前記第一のコンタクト端子と前記第三のコンタクト端子は、互いに隣接して並走する部分の間隔が、前記第二のコンタクト端子と前記第四のコンタクト端子とが互いに隣接して並走する部分の間隔に等しいことを特徴とする請求項8に記載のメモリーカードソケット。
  10.  前記第三のコンタクト端子は、前記第一のコンタクト端子と互いに隣接して並走している部分を具備すると共に、
     前記第三のコンタクト端子は、前記メモリーカードの前記第五のピンと接続する部分においては、前記第一のコンタクト端子との間隔を広げ、前記メモリーカードの前記第五のピンに接続する形状を有することを特徴とする請求項8又は9に記載のメモリーカードソケット。
  11.  前記第三のコンタクト端子の幅は、前記第一のコンタクト端子と互いに隣接して並走する部分においては、前記第四のコンタクト端子の幅よりも広いことを特徴とする請求項10に記載のメモリーカードソケット。
  12.  前記第三のコンタクト端子は、前記メモリーカードの前記第五のピンに接続する部分において、前記メモリーカードソケット上で前記第三のコンタクト端子を固定する方向を見たとき、前記第一のコンタクト端子側には角度を変えずに前記第一のコンタクト端子と並行して伸展する部分を別に具備することを特徴とする請求項10に記載のメモリーカードソケット。
  13.  前記第一のコンタクト端子と前記第二のコンタクト端子とは線対称形状であると共に、前記第三のコンタクト端子は、前記第一のコンタクト端子と互いに隣接して並走する部分は、前記第四のコンタクト端子と線対称形状であることを特徴とする請求項8から12のいずれか一項に記載のメモリーカードソケット。
  14.  前記第三のコンタクト端子のうち、前記第一のコンタクト端子との並走部分の形状は、前記第四のコンタクト端子の形状と線対称形状であると共に、
     前記第三のコンタクト端子は、前記メモリーカードの前記第五のピンに接続する部分において前記メモリーカードソケット上で前記第三のコンタクト端子を固定する方向を見たとき、前記第一のコンタクト端子側には角度を変えずに前記第一のコンタクト端子と並行して伸展する部分を別に具備することを特徴とする請求項13に記載のメモリーカードソケット。
  15.  前記第三のコンタクト端子は、前記第一のコンタクト端子と互いに隣接して並走している部分を具備すると共に、
     前記第三のコンタクト端子のうち、前記第一のコンタクト端子との並走部分の形状は、前記第四のコンタクト端子の形状と線対称形状であることを特徴とする請求項13に記載のメモリーカードソケット。
  16.  前記第三のコンタクト端子とは独立した第五のコンタクト端子をさらに備え、前記第五のコンタクト端子は、前記メモリーカードの前記第五のピンとも接続することを特徴とする請求項8から15のいずれか一項に記載のメモリーカードソケット。
  17.  前記第三のコンタクト端子のうち、前記第一のコンタクト端子と互いに隣接して並走する部分において、該隣接並走部分と前記第一のコンタクト端子との間隔は、前記第二のコンタクト端子と前記第四のコンタクト端子との間隔と等しいと共に、
     該隣接並走部分における前記第三のコンタクト端子の幅は、前記第四のコンタクト端子の幅と等しいことを特徴とする請求項11から16のいずれか一項に記載のメモリーカードソケット。
PCT/JP2012/000727 2011-02-14 2012-02-03 高速インタフェース用コネクタ WO2012111270A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012524967A JP5068895B2 (ja) 2011-02-14 2012-02-03 高速インタフェース用コネクタ
CN2012800005470A CN102763285A (zh) 2011-02-14 2012-02-03 高速接口用连接器
US13/574,863 US8708749B2 (en) 2011-02-14 2012-02-03 High-speed interface connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011028303 2011-02-14
JP2011-028303 2011-02-14

Publications (1)

Publication Number Publication Date
WO2012111270A1 true WO2012111270A1 (ja) 2012-08-23

Family

ID=46672217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000727 WO2012111270A1 (ja) 2011-02-14 2012-02-03 高速インタフェース用コネクタ

Country Status (4)

Country Link
US (1) US8708749B2 (ja)
JP (1) JP5068895B2 (ja)
CN (1) CN102763285A (ja)
WO (1) WO2012111270A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7292864B2 (ja) 2018-04-23 2023-06-19 キオクシア株式会社 半導体記憶装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071175A (ja) 2002-08-01 2004-03-04 Matsushita Electric Works Ltd メモリカード用コネクタ装置
JP2010061474A (ja) 2008-09-04 2010-03-18 Panasonic Electric Works Co Ltd メモリカードソケット
JP2010080416A (ja) * 2008-08-29 2010-04-08 Panasonic Electric Works Co Ltd メモリカードソケット
JP2011028303A (ja) 2004-05-17 2011-02-10 Ricoh Co Ltd 画像形成装置
JP2011146020A (ja) * 2009-12-14 2011-07-28 Toshiba Corp 半導体メモリカード

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775338B2 (ja) 2001-11-15 2006-05-17 松下電工株式会社 メモリカード用コネクタ装置及びその製造方法
US6981885B2 (en) * 2001-12-11 2006-01-03 Molex Incorporated Secure digital memory card socket
JP4799871B2 (ja) * 2005-01-13 2011-10-26 タイコエレクトロニクスジャパン合同会社 カードコネクタ
TW200627724A (en) * 2005-01-24 2006-08-01 Top Yang Technology Entpr Co Metallic sliding slot structure for an electrical connector
US20110145465A1 (en) 2009-12-14 2011-06-16 Kabushiki Kaisha Toshiba Semiconductor memory card

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071175A (ja) 2002-08-01 2004-03-04 Matsushita Electric Works Ltd メモリカード用コネクタ装置
JP2011028303A (ja) 2004-05-17 2011-02-10 Ricoh Co Ltd 画像形成装置
JP2010080416A (ja) * 2008-08-29 2010-04-08 Panasonic Electric Works Co Ltd メモリカードソケット
JP2010061474A (ja) 2008-09-04 2010-03-18 Panasonic Electric Works Co Ltd メモリカードソケット
JP2011146020A (ja) * 2009-12-14 2011-07-28 Toshiba Corp 半導体メモリカード

Also Published As

Publication number Publication date
JP5068895B2 (ja) 2012-11-07
CN102763285A (zh) 2012-10-31
US8708749B2 (en) 2014-04-29
JPWO2012111270A1 (ja) 2014-07-03
US20130045635A1 (en) 2013-02-21

Similar Documents

Publication Publication Date Title
KR101786934B1 (ko) 케이블 커넥터
US8696388B2 (en) Edge connector for shielded adapter
TWI581513B (zh) 卡緣連接器
TWI720416B (zh) 半導體記憶裝置
JP2023164817A (ja) 短縮された信号接点パッドを有するパドルカード
CN101194397A (zh) 电连接器
US9462679B2 (en) Attenuation reduction grounding pattern structure for connection pads of flexible circuit board
WO2006098312A1 (ja) 電気コネクタ
JP2017520896A (ja) プラグコネクタ及び構成要素
US9929511B2 (en) Shielded high density card connector
US10218127B2 (en) Paddle card and plug-cable assembly
US9112310B2 (en) Spark gap for high-speed cable connectors
JP2006202256A (ja) コンピュータ用インターフェイスカード
KR101741318B1 (ko) 전기 커넥터
EP3125656B1 (en) Electronic device and display unit
JP5068895B2 (ja) 高速インタフェース用コネクタ
US8920196B2 (en) Electrical connector for reducing high frequency crosstalk interferences
US20170294750A1 (en) High frequency electrical connector
US20110009010A1 (en) Connector component and connector device
US9426880B2 (en) Noise suppression assembly and electronic device having the same
CN113453415A (zh) 信号传输电路以及印刷电路板
US20140179162A1 (en) Apparatus for Differential Far-End Crosstalk Reduction
US20160172793A1 (en) Reducing inequality in unshielded line lengths
US9444165B2 (en) Pin arrangement and electronic assembly
TWI475769B (zh) 防電磁干擾之電連接器及其端子總成

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000547.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012524967

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2012735081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13574863

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12735081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12735081

Country of ref document: EP

Kind code of ref document: A1