WO2012109976A1 - α-倒捻子素在制备阿尔兹海默氏病药物中的应用 - Google Patents

α-倒捻子素在制备阿尔兹海默氏病药物中的应用 Download PDF

Info

Publication number
WO2012109976A1
WO2012109976A1 PCT/CN2012/071112 CN2012071112W WO2012109976A1 WO 2012109976 A1 WO2012109976 A1 WO 2012109976A1 CN 2012071112 W CN2012071112 W CN 2012071112W WO 2012109976 A1 WO2012109976 A1 WO 2012109976A1
Authority
WO
WIPO (PCT)
Prior art keywords
mangostin
disease
alzheimer
aggregation
concentration
Prior art date
Application number
PCT/CN2012/071112
Other languages
English (en)
French (fr)
Inventor
夏铮
Original Assignee
Xia Zheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xia Zheng filed Critical Xia Zheng
Priority to JP2013552826A priority Critical patent/JP5552575B2/ja
Priority to US13/985,413 priority patent/US20140080903A1/en
Priority to EP12746907.0A priority patent/EP2676665A4/en
Publication of WO2012109976A1 publication Critical patent/WO2012109976A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner

Definitions

  • the present invention relates to the field of pharmacology and chemical biology, and in particular to the use of ⁇ -mangostin as a ⁇ aggregation inhibitor in the preparation of a drug for Alzheimer's disease. Background technique
  • AD Alzheimer's disease
  • ⁇ aggregate deposition is an important pathological process in the development of Alzheimer's disease. With the accumulation of ⁇ aggregates, ⁇ oligomers with extremely strong neurotoxic effects, as well as zebra senile plaques, an important pathological marker of Alzheimer's disease, can be formed. Studies have shown that injection of aggregated ⁇ can induce Alzheimer's-like symptoms in mice, and positive inhibition by inhibiting the accumulation of ⁇ in preclinical (cell models, animal models) and clinical treatment studies. It inhibits the development of patients with Alzheimer's disease, improves pathological symptoms, and learns memory. Therefore, ⁇ aggregate deposition inhibitors have long been considered as a hope for the treatment of Alzheimer's disease, and the development of such inhibitors has become an important direction for Alzheimer's disease research.
  • ⁇ -mangostin is an extract of the native Asian yam (also known as scorpion scorpion, phoenix or sage), which is mainly found in mangosteen husks. synthesis.
  • Asian yam also known as scorpion scorpion, phoenix or sage
  • the structure of X- ⁇ ⁇ ⁇ is as follows:
  • X-mangostin inhibits acid sphingomyelinase at a certain working concentration, inhibits both topoisomerase I and guanidine, and is also a competitive antagonist of histamine HI receptor. , clinically used to treat allergic diseases caused by histamine release. There have been no reports on the use of ⁇ -mangostin for inhibiting ⁇ aggregation deposition and for the preparation of Alzheimer's disease drugs. Summary of the invention
  • the object of the present invention is to overcome the defects and deficiencies in the prior art and to provide a new use of X-mangosin in medicine, namely (X-mangostin in the preparation of Alzheimer's disease medicine) Applications.
  • the ⁇ -mangostin described in the present invention may be a natural extract or a synthetic chemical. By co-incubating ex-mangostin with ⁇ , it was found that it can significantly inhibit the aggregation deposition of ⁇ . Administration of (X-mangostin) before or after the formation of ⁇ oligomers can reduce the content of ⁇ oligomers. By administering ⁇ -mangostin in mammalian neuronal cells, it was found that (X-mangostin) It has neuroprotective effects, can effectively counteract the neurotoxic effects caused by ⁇ oligomers, enhance the normal physiological functions of mammalian neuronal cells, and maintain the normal cell morphology of mammalian neuronal cells.
  • the alpha-mangostin treatment is administered orally.
  • X-mangostin is used in humans ranging from 50 ng/kg body weight (50 ng/kg) to 200 ⁇ g/kg body weight (200 ⁇ ⁇ /13 ⁇ 4).
  • the preferred dose range is 500 ng/kg body weight (500 ng/ Kg) to 50 ⁇ g/kg body weight (5 ( ⁇ g/kg).
  • any formulation dosage range of the present disclosure suitable for humans can be referred to the following formula: Human dose - mouse dose / 12.
  • the (X-mangostin treatment drug of the present invention can also be administered by injection, including subcutaneous injection and intravenous injection.
  • the medicament of the present invention may be one of a tablet, a granule, a capsule, a powder injection, and may also be a suitable dosage form for slow and controlled release administration.
  • ⁇ -mangostin exhibits the property of inhibiting the accumulation of ⁇ , and also has neuroprotective effects, which can effectively counteract the neurotoxic effects caused by ⁇ oligomers and enhance the mammalian god.
  • the normal physiological function of the meta cells Through the normal physiological function of the meta cells, the normal cell morphology of mammalian neuronal cells is maintained, and the intervention of pathological processes of Alzheimer's disease and the improvement of pathological symptoms are realized. It provides a new approach to the treatment of Alzheimer's disease.
  • Alzheimer's disease is described in the present invention, such as ⁇ , ⁇ aggregation deposition, ⁇ oligomer, neuroprotection, neurotoxicity, improvement of learning and memory ability (evasion latency and swimming distance), and absorbance value, linear relationship Positive correlation, statistical significance, etc. are all terms commonly used in the scientific community. Therefore, these terms are used in the present invention as a scientific term in a general sense and are not intended to limit the scope of the invention in any way.
  • Figure 1 is a diagram of the docking model of ex-mangostin and ⁇ .
  • the phenolic hydroxyl group at the 3-position of X-mangostin and the phenolic hydroxyl group at the 6th and 7th positions form hydrogen with the aspartic acid (Asp23) at position 23 of the ⁇ and the lysine (Lysl6) at the 16th position, respectively.
  • the bond, in addition, ⁇ -mangostin also has a direct interaction with the phenylalanine at position 19 (Phel9) and the glutamic acid at position 22 (Glu22). The interaction is mainly ⁇ - ⁇ conjugate between benzene rings. And Van der Waals force.
  • Fig. 2 is a schematic diagram showing the ⁇ -helical conformation of ⁇ in combination with (X-mangostin).
  • Fig. 3 is a graph showing experimental results of inhibition of ⁇ aggregation deposition by various inhibitors.
  • the degree of ⁇ aggregation deposition is expressed by the fluorescent dye Thioflavin-T: The stronger the fluorescence intensity, the deeper the aggregation deposition.
  • Resveratrol, curcumin, and propidium iodide are reported inhibitors of ⁇ aggregation deposition.
  • 1 ⁇ molar concentration 1:1 incubation conditions (37 degrees Celsius)
  • X-mangostin inhibits ⁇ aggregation
  • the ability to deposit is more prominent than the known inhibitors described above, and the aggregated deposition of A ⁇ is almost completely suppressed within 24 hours.
  • Figure 4 is a linear relationship between the concentration of ⁇ oligomer and absorbance.
  • concentration of ⁇ oligomer was determined by enzyme-linked immunosorbent assay. Within a certain concentration range, the concentration of ⁇ oligomer is linear with the measured absorbance value (OD450), and the square of the coefficient of determination R is equal to 0.98.
  • Fig. 5 is a graph of (X-mangostin abundance of ⁇ oligomers.
  • (X-mangostin was added at the start of ⁇ incubation, and the formation of ⁇ oligomers was significantly inhibited, and the degree of inhibition was added to (X- The amount of scorpion scorpion is positively correlated.
  • Ex-mangostin is added to the formed ⁇ oligomer, which can destroy the oligomer state and restore it. In the body state, the degree of reduction of ⁇ oligomers is positively correlated with the amount of ex-mangostin added.
  • Figure 6 is a graph showing the results of the neuroprotective effect of a-mangostin.
  • the neurotoxic effect of ⁇ oligomers can be clearly reflected in the influence of nuclear cell size, cell membrane permeability, and line stereomembrane potential.
  • ⁇ -mangostin can restore the above functions and morphological indexes of neuronal cells to a certain extent, and the effect is the same as that of (X-mangostin is administered as a bell curve.
  • # indicates that the model group is compared with the normal group. ⁇ 0.05, * indicates that the ⁇ -mangostin administration group and the model group ⁇ 0.05, ** indicates that the ⁇ -mangostin administration group and the model group ⁇ 0.01.
  • Figure 7 is a graph showing the results of ct-mangostin in improving the learning and memory function of Alzheimer's disease model mice (SAM-P8).
  • SAM-P8 strain mouse is currently recognized as an animal model for evaluating the pharmacodynamics of Alzheimer's disease therapeutic drugs.
  • Significant symptoms of Alzheimer's disease can occur in a certain period of time (more than 6 months old), which is reflected in the behavioral water maze experiment.
  • the escape latency and swimming distance of the upper platform are significantly increased compared with normal mice. .
  • Ct-mangostin can significantly improve this symptom.
  • # indicates that the model group is 0.05 ⁇ 0.05 compared with the normal group
  • ## indicates that the model group is 0.01 ⁇ 0.01 compared with the normal group
  • * indicates that the ⁇ -mangostin administration group and the model group ⁇ 0.05
  • ** indicates ⁇ - ⁇ The scorpion sputum administration group and the model group ⁇ 0.01.
  • the present invention employs an 8-month-old SAM-P8 female mouse as an animal model.
  • the experimental procedures for all experimental mice were performed in strict accordance with the National Institute of Health Laboratory Animal Code, including feeding in a special sterile environment, temperature control at 23-25 degrees Celsius, humidity at 55 ⁇ 5%, interval 12 hours light, etc. .
  • mammalian neuronal cells were cultured from hippocampus neurons of SD rats born 15 days after birth.
  • the medium used for neuronal culture was a specialized neuron culture medium, including Neurobasa L 2% B27 and 1% glutamine. Amides, all commercially available, are used according to the manufacturer's instructions.
  • the invention adopts ⁇ -mangostin from plant extraction or chemical synthesis, and the source workshop has the GMP production qualification.
  • is a pure product ordered from Sigma Aldrich (Chinese company), the purity of high-performance liquid detection is >98%, and other materials involved are also commercially available sources, according to the use provided by the manufacturer. Ming use.
  • the concentration and dose of each experimental group were adjusted according to the model used.
  • the ⁇ -mangostin concentration was calibrated to the ⁇ concentration, configured in molar units, and compared to known ⁇ aggregation inhibitors.
  • the ⁇ -mangostin concentration is still configured in molar units and provides screening concentrations ranging from 50 pmol/L (50 pmol/L) to 500 nmol/L (500 nmol/L).
  • ct-mangostin concentration is conventionally configured using weight/animal weight.
  • the dose range is 3 orders of magnitude, divided into low, medium, and high, 1 microgram/kg body weight, 10 micrograms. / kg body weight and 100 micrograms / kg body weight, administered as oral op (solid granules).
  • Example 1 Computer Simulation (X-Mangostin and ⁇ Binding Model
  • the nuclear magnetic resonance NMR structure (PDB: 1BA4) of ⁇ was transferred from the protein structure database PDB to the molecular simulation software. After removing water molecules and other hybrid molecules used to obtain nuclear magnetic resonance experiments, and filling in the missing hydrogen atoms in the NMR experiment, the three-dimensional simulation structure of ⁇ was established by using the charge balance program and energy optimization program in the software. .
  • a two-dimensional simulation structure of X-mangostin was established in the molecular simulation software, and the three-dimensional simulation structure of the molecule was established by using the charge balance program and the energy optimization program in the software.
  • the three-dimensional simulation structure for removing ⁇ does not have a specific conformational region (positions 1 to 13), and the three-dimensional simulation of the molecular three-dimensional simulation structure of X-mangostin is docked to ⁇ using the automatic docking program in ⁇ software.
  • ex-mangostin was bound to the 16th to 23rd regions of the ⁇ surface.
  • This region is a region of polar amino acid concentration and is also a key beta corner region in which the ⁇ conformation is converted from a helix to a beta card.
  • X-mangostin is passed through the phenolic hydroxyl group at the 3 position on the molecular surface and the phenolic hydroxyl group at the 6th and 7th positions, respectively, with the aspartic acid (Asp23) at position 23 of the ⁇ and the lysine at the 16th position (Lysl6).
  • a hydrogen bond is formed.
  • a benzene ring on the parent oxonium of ct-mangostin forms a ⁇ - ⁇ conjugate with the phenylalanine (Phel9) at position 19 of ⁇ .
  • Phel9 phenylalanine
  • ex-mangostin mosaic In the key region of ⁇ conformational change, the a-helical conformation is stabilized or the ⁇ -hairpin conformation is changed to the ⁇ -helical conformation (as shown in Fig. 2), which is basically consistent with the ⁇ -helical conformation of ⁇ when unbound (RSMD value is 0.91 ⁇ °). , the combined free energy of the two is -68.76 kcal / mol.
  • Example 2 Determination by fluorescence kinetics (X-mangostin inhibits ⁇ aggregation deposition Dissolve 1 mg of ⁇ in 500 ⁇ l of hexafluoroisopropanol, leave it at room temperature for 120 minutes, intermittently shake, and gently dry hexafluoroisopropanol with high-purity nitrogen, then add 100 ⁇ l of dimethyl Sulfoxide, formulated into 2.3 mmol/L ⁇ stock solution, stored at -20 ° C.
  • the test procedure is set to: The instrument temperature is maintained at 37 degrees Celsius, the oscillation frequency is 240 rpm, the radius of 2 nm, the excitation wavelength is 446 nm, the emission wavelength is 485 nm, the detection bandwidth is 5 nm, and the detection frequency is /30 minutes. Fluorescence intensity and statistical mapping were recorded.
  • the experimental results are shown in Figure 3.
  • the fluorescence kinetics curves show the characteristics of latency, aggregation and plateau.
  • which was incubated alone, entered the aggregation period after incubation for 4 hours (the take-off point of the curve), and the corresponding fluorescence intensity was significantly improved, and no plateau occurred during the incubation at 24 hours.
  • ⁇ -aggregation inhibitors such as resveratrol and curcumin
  • the obtained product was diluted to a volume of 1 ⁇ mol/L of ⁇ oligomer, and the final concentration was 5 ⁇ m.
  • Molar/L, 2 ⁇ mol/L, 1 ⁇ mol/L, 0.5 ⁇ mol/L and 0.2 ⁇ mol/L (X-Mangosporin, incubate for 12 hours at 22 ° C, 500 rpm for 30 rpm. or Add final concentration before incubation 5 ⁇ mol/L, 2 ⁇ mol/L, 1 ⁇ mol/L, 0.5 ⁇ mol/L and 0.2 ⁇ mol/L (X-mangostin. Add micro-stirring in solution at 22 ° C, Stirring was carried out at 500 rpm for 48 hours.
  • the resulting solution was transferred to a 96-well microplate pre-coated with 100 ⁇ l of A ⁇ monoclonal antibody (6E10), incubated at 37 ° C for 1 hour, washed 3 times with washing buffer, and then added with 100 ⁇ l of oligomer specificity. Antibody (All). After washing the washing buffer 5 times, 100 ⁇ l of horseradish peroxidase-coupled goat anti-rabbit secondary antibody was added. After washing the washing buffer 5 times, color development was carried out for 15 minutes. After the color development is terminated, readings, statistics, plots, and calculations are performed on the microplate reader.
  • a ⁇ monoclonal antibody 6E10
  • Antibody All
  • SD rats which were born 15 days after birth, were anesthetized with ether to open the abdominal cavity, and the embryos were transferred to a sterile dish containing the anatomical solution.
  • Remove the embryonic head place it in a dish containing pre-cooled anatomical fluid, bend it straight with the ophthalmology, and straighten it from the two eyelids, fix the head, bend it along the sagittal suture of the head, go from After that, tear the meninges and skulls and remove the brain.
  • the hippocampus of the brain was placed in a dish containing pre-ice dissection fluid and cut with scissors sterilized with 75% ethanol.
  • the shredded tissue was transferred from the dish into a labeled 15 ml plastic centrifuge tube, allowing it to naturally settle to the bottom of the tube and aspirate the liquid in the tube.
  • Add 2 ml of 0.05% trypsin reverse the tube several times, and then digest it for 5 minutes in a 37 ° C incubator (take it every two minutes and shake it once) to stop the digestion, then blow it with a thin glass pipette to disperse the cells. . After standing for 5 minutes, a small amount of connective tissue precipitate was taken from the bottom of the centrifuge tube.
  • the supernatant was centrifuged, the supernatant was decanted, the precipitate was left, the precipitate was beaten loosely, and 2 ml of DMEM buffer containing 10% fetal calf serum was added thereto, and the precipitate was mixed with the culture solution by pipetting, and counted under a microscope of 0.1 ⁇ l. Dilute, seed plate and place in a 5 % carbon dioxide cell incubator, culture at 37 ° C. On the second day of planting, replace 1 ml of fresh neuronal culture medium.
  • the live cell dye stock solution in the high-content multi-toxicity test kit II is diluted to a working concentration.
  • the prepared live cell dye working solution was added to primary neuron cells cultured in a 96-well plate at a ratio of 50 ⁇ l/well, and incubated in a 37 ° C, 5% carbon dioxide incubator for 30 minutes. Gently discard the culture supernatant and add 37 ° C preheated fixative. Gently discard the supernatant and add 100 ⁇ l/well of washing solution. After discarding the supernatant, add 100 ⁇ l/well of nuclear dye and incubate at room temperature for 10 minutes in the dark. After washing with 100 ⁇ l/well of the washing solution, 200 ⁇ l/well of the washing solution was added. After sealing, the test is performed under a high-content machine. The results of the assay were analyzed using the Cell Health Profiling BioApplication program.
  • the experimental results are shown in Fig. 6.
  • the 1 ⁇ mol/L ⁇ oligomer can exert enormous toxic effects on primary neuronal cells. In addition to significantly changing the morphology of neuronal cells, it also directly affects the function of neuronal cells. . Specifically, it is reflected in the influence of nuclear cell size, cell membrane permeability, and line stereomembrane potential. Ex-mangostin is neuroprotective against the neurotoxicity of the ⁇ oligomer in a concentration-dependent (bell curve characteristic).
  • SAM-P8 mice were weighed and randomly divided into 5 groups, model group, (X-mangostin low, medium, Three groups of high (1 ⁇ g/kg body weight, 10 ⁇ g/kg body weight and 100 ⁇ g/kg body weight), positive control group, resveratrol 10 mg/kg body weight group.
  • the normal group used SAM-R1 mice. In the food, the administration was started on the third day after the grouping (to enter the age of 6 months) until the end of the experiment, and the normal group and the model group were given the same amount of food.
  • the SAM-P8 rats were subjected to the Morris water maze positioning navigation experiment after entering the age of 8 months.
  • the experimental water temperature was controlled at 22 ⁇ 0.5 degrees Celsius.
  • the experimental animals were placed in the backwater from the water inlet wall.
  • the computer automatically recorded the animal's self-injection point to find the trajectory of the platform within 100 seconds, and recorded the time taken by the animal to find the platform (ie, the escape latency). If the platform is not found within 100 seconds, it will be guided in a straight line to the platform and stand on the platform for 30 seconds. Tested twice a day, 6 hours apart, for 3 consecutive days. After the end of the navigation test, the platform was removed, and the platform was removed from the water inlet point.
  • the time of the first arrival at the original platform and the number of crossing the original platform was measured.
  • the experimental results are shown in Fig. 7.
  • the escape latency and swimming distance of the mice including the model group were gradually shortened as the training progressed, the escape evasion latency and swimming distance of the model group were significantly increased compared with the normal group. (P ⁇ 0.05 and ⁇ 0.01).
  • ⁇ -mangostin significantly shortened the escape latency and swimming distance, especially in the second day of the experiment, a-mangostin compared with resveratrol as a positive drug, has a clear advantage in shortening the escape latency.
  • the escape latency of the X-mangostin administration group was shortened to 46.16 ⁇ 5.51 seconds at 10 ⁇ g/kg body weight, which was statistically different (72 ⁇ 0.05) compared with the model group, but not compared with the normal group. Statistical differences.
  • resveratrol After entering the third day of the experiment, resveratrol also showed a good ability to improve learning and memory. Compared with the model group, there was a significant shortening in the escape latency and swimming distance, which was statistically significant.
  • Resveratrol has now entered clinical phase III and IV studies in the United States for the treatment of Alzheimer's disease, and its main pharmacological mechanism is defined as inhibition of ⁇ aggregation.
  • the SAM-P8 strain mice used in the experiment are currently recognized as an animal model for evaluating the pharmacodynamics of Alzheimer's disease treatment drugs. Therefore, (X-mangostin inhibits ⁇ aggregation, neuroprotection, and improvement of learning and memory ability, which are embodied in the specific examples, can be regarded as a therapeutic effect for regulating the pathological process of Alzheimer's disease.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Description

说明书
ct-倒捻子素在制备阿尔兹海默氏病药物中的应用 技术领域
本发明涉及药理学和化学生物学领域,具体涉及 α-倒捻子素作为 Αβ聚集抑 制剂在制备阿尔兹海默氏病药物中的应用。 背景技术
阿尔兹海默氏病 (Alzheimer's disease, AD) 是一种进行性发展的致死性神 经退行性疾病,临床表现为认知和记忆功能不断恶化,日常生活能力进行性减退, 并有各种神经精神症状和行为障碍。
Αβ聚集沉积是阿尔兹海默氏病发展的重要病理进程。 随着 Αβ聚集沉积的进 行, 可形成具有极强神经毒作用的 Αβ寡聚体, 以及阿尔兹海默氏病的重要病理 标志嗜银性老年斑。 已有研究表明, 注射聚集状态的 Αβ可诱发小鼠等发生阿尔 兹海默氏病样症状, 而通过抑制 Αβ的聚集沉积在临床前(细胞模型、动物模型) 及临床治疗研究中表现出积极的抑制阿尔兹海默氏病患者的病情发展、改善病理 症状、 学习记忆能力等作用。 因此, Αβ聚集沉积抑制剂一直被认为是治疗阿尔 兹海默氏病的希望, 开发此类抑制剂已成为阿尔兹海默氏病研究的重要方向。 α-倒捻子素(α-mangostin)是东南亚本土药山竹子 (又称为倒捻子、 凤果或 莽吉柿) 中的一种提取物, 主要存在于山竹子果壳中, 目前已可人工合成。 (X- 倒捻子素的结构式如下:
Figure imgf000002_0001
已有报道 (X-倒捻子素在一定工作浓度下可与酸性鞘磷脂酶有抑制作用,与拓 扑异构酶 I和 Π也均有抑制作用, 同时还是组胺 HI受体的竞争性拮抗剂, 临床 上用以治疗组胺释放所致过敏性疾病。 目前尚未有将 α-倒捻子素用于抑制 Αβ聚集沉积并应用于制备阿尔兹海默氏 病药物的相关报道。 发明内容
本发明的目的在于克服现有技术中存在的缺陷与不足,提供了 (X-倒捻子素在 医学上的一种新用途, 即 (X-倒捻子素在制备阿尔兹海默氏病药物中的应用。
本发明中所述的 α-倒捻子素可以是天然提取物, 也可以是人工合成化学品。 通过将 ex-倒捻子素与 Αβ进行共同孵育, 发现它可明显抑制 Αβ的聚集沉积。 在 Αβ寡聚体形成之前或形成之后给予 (X-倒捻子素, 都可使 Αβ寡聚体的含量减少。 通过在哺乳动物神经元细胞给予 α-倒捻子素, 发现(X-倒捻子素具有神经保护作 用, 能有效对抗由 Αβ寡聚体引起的神经毒作用, 增强哺乳动物神经元细胞的正 常生理功能, 维持哺乳动物神经元细胞的正常细胞形态。 实验结果表明, 反映细 胞功能的细胞膜通透性、线立体膜电位以及细胞核形态等指标都得到了相应的改 善。通过将 (X-倒捻子素包含于一种递送给哺乳动物的适宜药物制剂中、给予患有 阿尔兹海默氏病的哺乳动物, 可明显改善哺乳动物的学习记忆能力, 产生治疗阿 尔兹海默氏病症作用。
在一个优选的实施方式中, α-倒捻子素治疗药物通过口服给药。 (X-倒捻子素 用于人的剂量范围是 50 纳克 /公斤体重 (50ng/kg ) 至 200 微克 /公斤体重 (200μ§/1¾)。 优选剂量范围是 500纳克 /公斤体重 (500ng/kg) 至 50微克 /公斤 体重 (5(^g/kg)。 参考本发明的公开, 本领域技术人员会理解, 适合人的本公开 任何制剂剂量范围可参考以下公式: 人的剂量-鼠剂量 /12。 在低于组胺 HI受体 拮抗作用工作浓度 (一般 >10—6摩尔 /升) 情况下, (X-倒捻子素表现出了抑制 Αβ 聚集沉积的特性, 实现了对阿尔兹海默氏病病理进程的干预和病理症状的改善。
本发明的 (X-倒捻子素治疗药物还可以通过注射给药, 包括皮下注射和静脉 注射。
本发明的药物可以是片剂、颗粒剂、胶囊剂、粉针剂中的一种,还可以是缓、 控释给药的适宜剂型。
α-倒捻子素在全新工作浓度下, 表现出抑制 Αβ聚集沉积的特性, 同时还具 有神经保护作用, 能有效对抗由 Αβ寡聚体引起的神经毒作用, 增强哺乳动物神 经元细胞的正常生理功能, 维持哺乳动物神经元细胞的正常细胞形态, 实现了对 阿尔兹海默氏病病理进程的干预和病理症状的改善。为阿尔兹海默氏病的治疗提 供了一种新途径。
本发明中描述阿尔兹海默氏病的术语, 如 Αβ、 Αβ聚集沉积、 Αβ寡聚体、 神经保护作用、 神经毒作用、 改善学习记忆能力 (逃避潜伏期和游泳距离) 以及 吸光度值、 线性关系、 正相关、 统计学意义等等, 都是科学界普遍应用的术语。 因此, 这些术语在本发明中作为普遍意义上的科学术语, 并不以任何方式局限本 发明范围。 附图说明
下面结合附图对本发明的具体实施方式作进一步详细说明。
图 1是 ex-倒捻子素与 Αβ对接模型图。 其中, (X-倒捻子素 3位上的酚羟基和 6、 7位上的酚羟基分别与 Αβ第 23位的天冬氨酸 (Asp23 ) 及第 16位的赖氨酸 (Lysl6) 形成氢键, 此外 α-倒捻子素还与第 19位的苯丙氨酸(Phel9)和第 22 位的谷氨酸 (Glu22) 有直接的相互作用, 作用力主要为苯环间 π-π共轭和范德 华作用力。
图 2是与 (X-倒捻子素结合的 Αβ保持 α螺旋构象示意图。
图 3是各种抑制剂抑制 Αβ聚集沉积的实验结果图。 其中, Αβ聚集沉积程 度通过荧光染料硫磺素 T (Thioflavin-T)来表现: 荧光强度越强, 说明聚集沉积 程度越深。 白黎芦醇、 姜黄素、 碘化丙啶是已报道的 Αβ聚集沉积抑制剂, 在与 Αβ摩尔浓度 1 :1、 孵育条件(37摄氏度) 的情况下, (X-倒捻子素抑制 Αβ聚集沉 积的能力相比较上述已知抑制剂更为突出, 24小时内, Αβ的聚集沉积被几乎完 全抑制。
图 4是 Αβ寡聚体浓度与吸光度的线性关系图。 其中, Αβ寡聚体浓度采用 酶联免疫法测定。 在一定浓度范围内, Αβ 寡聚体浓度与所测定的吸光度值 (OD450) 成线性关系, 可决系数 R的平方值等于 0.98。
图 5是 (X-倒捻子素消减 Αβ寡聚体曲线图。 (X-倒捻子素在 Αβ开始孵育时加 入, 使 Αβ寡聚体的形成得到明显抑制, 抑制程度与所加入的 (X-倒捻子素量成正 相关。 ex-倒捻子素加至已形成的 Αβ寡聚体中, 可破坏寡聚体状态, 使其恢复单 体状态, Αβ寡聚体减少程度与所加入的 ex-倒捻子素量成正相关。
图 6是 a-倒捻子素的神经保护作用实验结果图。 其中, Αβ寡聚体的神经毒 作用可明显体现在对神经元细胞细胞核大小、细胞膜通透性、线立体膜电位等指 标的影响上。 α-倒捻子素可使神经元细胞上述功能、形态指标得以一定程度的恢 复, 其效果与 (X-倒捻子素的给药浓度呈现钟形曲线特点。 #表明模型组与正常组 相比 Ρ<0.05, *表示 α-倒捻子素给药组与模型组 Ρ<0.05, **表示 α-倒捻子素给药 组与模型组 Ρ<0.01。
图 7是 ct-倒捻子素改善阿尔兹海默氏病模型鼠 (SAM-P8 ) 的学习记忆功能 实验结果图。 其中, SAM-P8品系小鼠是目前公认的阿尔兹海默氏病治疗药物药 效学评价动物模型。 在培育一定时间 (6个月龄以上) 可出现明显的阿尔兹海默 氏病症状,体现在行为学水迷宫实验中, 上平台的逃避潜伏期时间和游泳距离都 较正常小鼠有明显的增加。 ct-倒捻子素可明显改善这种症状。 #表明模型组与正 常组相比 Ρ<0.05, ##表明模型组与正常组相比 Ρ<0.01, *表示 α-倒捻子素给药组 与模型组 Ρ<0.05, **表示 α-倒捻子素给药组与模型组 Ρ<0.01。 具体实施方式
提供以下实施例, 向本领域普通技术人员完全公开如何制备、 使用和评价发 明的治疗药物及方法, 但不局限本发明范围, 也不对本发明作任何限定。本发明 所提供的实施例, 努力使数据尽可能的保持准备 (例如数量、 浓度等等), 但允 许某些实验误差及变异。
实验材料和方法
本发明采用 8个月龄的 SAM-P8雌性小鼠为动物模型。 所有实验小鼠相关实 验程序严格按照美国国立卫生院实验动物守则中规定进行,包括伺养于特殊无菌 环境, 温度控制在 23-25摄氏度, 湿度制在 55±5%, 间隔 12小时光照等。
本实验采用哺乳动物神经元细胞由出生取孕 15天的 SD大鼠脑海马区域神经 元培养所得, 神经元培养所用培养基为专用的神经元培养液, 包括 NeurobasaL 2%B27和 1%谷氨酰胺, 均为商购来源, 按照生产厂家所提供的使用说明使用。
本发明采用 α-倒捻子素由植物提取或化学合成而得,其来源车间均具有 GMP 生产资质。 Αβ是从西格玛奥德里奇公司 (中国公司) 订购的纯品, 高效液相检 测纯度 >98%, 涉及的其他材料也均为商购来源, 按照生产厂家所提供的使用说 明使用。
各实验组的给药浓度、 剂量根据所使用的模型不同而进行相应调整。 在分子 实验中, α-倒捻子素浓度标定 Αβ浓度,以摩尔浓度单位进行配置,并与已知 Α β 聚集抑制剂进行比较。在细胞实验中, α-倒捻子素浓度依然采用摩尔浓度单位进 行配置, 所提供的筛选浓度范围从 50皮摩尔 /升 (50pmol/L ) 到 500纳摩尔尔 / 升(500nmol/L)。 动物实验中, 依照惯例, ct-倒捻子素浓度采用重量 /动物体重来 进行配置, 所提供的剂量范围跨 3个数量级, 分低、 中、 高三档, 分别为 1微克 /公斤体重、 10微克 /公斤体重和 100微克 /公斤体重, 以口服 o.p. (固体颗粒剂) 形式给药。 实施例 1 计算机模拟 (X-倒捻子素与 Αβ的结合模型
从蛋白质结构数据库 PDB中调入 Αβ^ο的核磁共振 NMR结构(PDB: 1BA4 ) 至分子模拟软件 ΜΟΕ中。 去除水分子和其他用以获取核磁共振实验时加入的杂 分子, 填入核磁共振实验时缺失的氢原子后, 利用 ΜΟΕ软件中的电荷平衡程序 和能量优化程序, 建立 Αβ^ο的三维模拟结构。
在分子模拟软件 ΜΟΕ中建立 (X-倒捻子素的二维模拟结构,利用 ΜΟΕ软件中 的电荷平衡程序和能量优化程序, 建立分子的三维模拟结构。
去除 Αβ^的三维模拟结构中不具有特定构象区域 (第 1至 13位),使用 ΜΟΕ 软件中的自动对接程序,将 (X-倒捻子素的分子三维模拟结构对接至 Αβ^ο的三维 模拟结构中, 选择 20个优先可能的结合模型。 进行电荷平衡和能量优化后, 获 取最优化的结合模型。
实验结果如图 1所示, ex-倒捻子素结合于 Αβ表面的第 16至 23位区域。该区 域是极性氨基酸集中区域, 也是 Αβ构象由 a螺旋转变成 β发卡的关键 β转角区 域。(X-倒捻子素通过其分子表面 3位上的酚羟基和 6、 7位上的酚羟基分别与 Αβ 第 23位的天冬氨酸(Asp23 )及第 16位的赖氨酸(Lysl6 )形成氢键。 ct-倒捻子 素的母核氧杂蒽上的一个苯环与 Αβ第 19位的苯丙氨酸(Phel9 )形成 π-π共轭。 通过这些结合, ex-倒捻子素镶嵌在 Αβ构象改变的关键区域, 稳定住 a螺旋构象 或使 β发卡构象向 α螺旋构象改变 (如图 2所示), 与未结合时 Αβ的 α螺旋构 象基本一致 (RSMD值为 0.91Α°), 两者的结合自由能是 -68.76千卡尔 /摩尔。 实施例 2 荧光动力学法测定 (X-倒捻子素抑制 Αβ聚集沉积 将 1毫克 Αβ溶于 500微升的六氟异丙醇中, 室温放置 120分钟, 间歇性震 荡, 用高纯氮轻柔的将六氟异丙醇吹干后, 加入 100微升的二甲基亚砜, 配制成 2.3毫摩尔 /升的 Αβ储备液, -20摄氏度保存。 将 Αβ储备液用二甲基亚砜进行稀 释后, 取 2微升加至 16微升的 0.215摩尔 /升、 ρΗ值 8.0的磷酸钠缓冲液中, 使 最终 100微升体系中 Αβ浓度为 25微摩尔 /升, 加入 2微升 25微摩尔 /升的 α-倒 捻子素或其他抑制剂或相应空白溶剂, 孵育 30分钟后加入 80微升含 10微摩尔 / 升硫磺素 Τ的 50毫摩尔 /升、 ρΗ8.5的甘氨酸-氢氧化钠溶液, 转移至荧光检测微 孔板中, 放置于多功能酶标仪上进行荧光动力学检测。检测程序设置为: 仪器温 度维持在 37摄氏度, 震荡频率 240转 /分钟、 2纳米半径, 激发光波长 446纳米、 发射光波长 485纳米, 检测带宽 5纳米, 检测频率次 /30分钟。 记录荧光强度、 统计作图。
实验结果如图 3所示, 荧光动力学曲线呈现出潜伏期、聚集期和平台期特征。 其中, 单独孵育的 Αβ, 在孵育至 4小时 (曲线的起飞点) 后进入聚集期, 相应 荧光强度获得明显提升, 并在孵育 24时内并未出现平台期。 加入如白藜芦醇、 姜黄素这些已进入国内外阿尔兹海默氏病临床治疗研究的 Αβ聚集抑制剂后, Αβ 聚集的潜伏期延长了 1-2小时, 在孵育至 5-6小时后进入聚集期, 孵育 15小时 左右进入至聚集的平台期, 最大荧光强度都较单独孵育的 Αβ有了明显的下降, 分别下降至 60%-50%。 碘化丙啶作用下, Αβ在孵育 24小时内出现了轻微的聚 集, 孵育 6小时后进入聚集期, 但 10小时后即达到平台期, 且最大荧光强度下 降至 10%作用。 (X-倒捻子素抑制 Αβ聚集的能力较碘化丙啶更为突出。 在 α-倒捻 子素作用下, Αβ在孵育的 24小时内没有出现明显的聚集期。 实施例 3 酶联免疫法测定 (X-倒捻子素消减 Αβ寡聚体
将 1毫克 Αβ溶于 500微升的六氟异丙醇, 室温静置。 取 100微升溶液转移 至干净的 1.5毫升离心管, 加入 900微升灭菌去离子水, 室温静置。 离心后, 取 上清转移至另一干净的 1.5毫升离心管中, 用高纯氮轻柔吹干六氟异丙醇。 随后 在溶液加入微搅拌子, 在 22 摄氏度、 500转 /分钟下进行搅拌、 孵育 48小时, 所得产物取一定体积稀释至 1微摩尔 /升的 Αβ寡聚体, 其中加入终浓度分别为 5 微摩尔 /升、 2微摩尔 /升、 1微摩尔 /升、 0.5微摩尔 /升和 0.2微摩尔 /升的(X-倒捻 子素, 在 22摄氏度、 500转 /分钟继续震荡孵育 12小时。或在孵育前加入终浓度 分别为 5微摩尔 /升、 2微摩尔 /升、 1微摩尔 /升、 0.5微摩尔 /升和 0.2微摩尔 /升 的 (X-倒捻子素。 在溶液加入微搅拌子, 在 22 摄氏度、 500转 /分钟下进行搅拌、 孵育 48小时。
将所得溶液转移至预先包被 100微升的 Αβ单克隆抗体(6E10) 的 96孔微孔 板, 37摄氏度孵育 1小时后用洗涤缓冲液洗涤 3次后, 加入 100微升寡聚体特 异性抗体 (All )。 洗涤缓冲液洗涤 5次后, 加入 100微升辣根过氧化物酶耦联 的羊抗兔二抗。 洗涤缓冲液洗涤 5次后, 显色 15分钟。 终止显色后, 在酶标仪 上进行读数、 统计、 作图和计算。
实验结果如图 4-图 5所示, Αβ寡聚体浓度 10—9至 10—6摩尔 /升范围内, 其浓 度值与酶联免疫法呈现的吸光度值成线性关系, 可决系数 R的平方值等于 0.98。 在此浓度范围内使用酶联免疫法测定 ex-倒捻子素消减 Αβ 寡聚体的作用科学可 行。 ex-倒捻子素可浓度依赖性的抑制、 逆转 Αβ寡聚体的形成。 其中, 当 a-倒捻 子素与 Αβ寡聚体摩尔比达到 5:1时, 即加入 5微摩尔 /升的 (X-倒捻子素, Αβ寡 聚体的生成减少至 14.15 ± 2.86%,同时使已形成的 Αβ寡聚体减少至原来的 39.58 ± 3.25%。 (X-倒捻子素抑制 Αβ寡聚体生成的半数有效浓度 IC50为 1.09 ± 0.54微摩 尔 /升, 而逆转 Αβ寡聚体的半数有效浓度 IC5Q为 1.59 ± 0.82微摩尔 /升。 实施例 4 高内涵分析 (X-倒捻子素的神经保护作用
出生取孕 15天的 SD大鼠, 将鼠用乙醚麻醉打开腹腔, 将胚胎移入盛有解剖 液的无菌平皿中。取出胚胎头, 放入盛有预冷解剖液的平皿中, 用眼科弯镊直镊 各一把, 直镊从两眼眶处进入, 固定头部, 弯镊沿头部矢状缝插入, 从前往后, 撕裂脑膜及头骨, 取出大脑。 取大脑海马放入盛有预冰解剖液的平皿中, 用经 75%乙醇消毒的剪刀剪碎。 将剪碎的组织从平皿中移入已标记的 15毫升塑料离 心管中,使其自然沉淀至管底,吸取管内液体。再加入 2毫升的 0.05%胰蛋白酶, 反转试管几次后, 放入 37摄氏度孵育箱消化 5分钟后 (每隔两分钟取出均匀摇 动一次)终止消化, 再用细口玻璃吸管吹打使细胞分散。 静置 5分钟, 吸取离心 管底部少量结缔组织沉淀。 将上清离心, 倾去上清, 留沉淀, 将沉淀拍打松散, 加入含 10%胎牛血清的 DMEM缓冲液 2毫升, 将沉淀与培养液吹打混匀, 吸取 0.1微升显微镜下计数。 稀释、 种板后置于 5 %二氧化碳的细胞培养箱, 37摄氏 度培养。 种植第 2天替换新鲜神经元培养液 1毫升。 将高内涵多毒性检测试剂盒 II中的活细胞染料储存液稀释至工作浓度。以 50 微升 /孔的比例将制备后的活细胞染料工作液加入至 96孔板培养的原代神经元细 胞中, 放置于 37摄氏度、 5%二氧化碳的培养箱中孵育 30分钟。 轻柔弃取培养 上清后加入 37摄氏度预热的固定液。轻柔弃取上清后加入 100微升 /孔的洗涤液 洗涤。弃取上清后加入 100微升 /孔的细胞核染料,室温避光孵育 10分钟。用 100 微升 /孔的涤液洗涤后, 加入 200微升 /孔的洗涤液。 封板后, 在高内涵机器下进 行检测。 检测后结果采用高内涵细胞健康性状程序 (Cell Health Profiling BioApplication ) 进行分析。
实验结果如图 6所示, 1微摩尔 /升的 Αβ寡聚体可对原代神经元细胞产生巨 大的毒性作用, 除明显改变神经元细胞的形态外, 还直接影响了神经元细胞的功 能。 具体体现在对神经元细胞细胞核大小、细胞膜通透性、 线立体膜电位等指标 的影响上。 ex-倒捻子素可浓度依赖性 (钟形曲线特征) 的对抗 Αβ寡聚体产生的 神经毒, 起到神经保护作用。 例如, 50纳摩尔 /升的 a-倒捻子素即可使神经元细 胞膜通透性由损伤时的 173.75± 6.82%下降到 107.75± 9.39%, 线立体膜电位由损 伤时的 70.25± 6.97%上升到 105.25± 5.84%, 相比较损伤模型组有显著性的统计 学差异 (Ρ <0.01), 相比较正常对照组没有统计学差异 (Ρ >0.05)。 实施例 5 水迷宫实验评价 (X-倒捻子素改善 SAM-P8鼠的学习记忆功能作用 将 SAM-P8鼠称重并随机分为 5组, 模型组、 (X-倒捻子素低、 中、 高 (1微 克 /公斤体重、 10微克 /公斤体重和 100微克 /公斤体重)三个剂量组、 阳性对照组 白藜芦醇 10毫克 /公斤体重 g组。 正常组采用 SAM-R1鼠。 药物混入食物中, 于 分组后第三天(进入 6月龄)开始给药直至实验结束, 正常组、 模型组给同等量 食物。
SAM-P8鼠进入 8月龄后进行 Morris水迷宫定位航行实验。 实验水温控制 在 22±0.5摄氏度, 将实验动物从入水点头壁背水放入, 计算机自动记录动物自 入水点在 100 秒内寻找平台的轨迹, 记录动物找到平台所用时间 (即逃避潜伏 期)。 若 100秒内未找到平台, 将引导其按直线方向游向平台并在平台上站立 30 秒。 每天测试 2次, 每次间隔 6小时, 连续测试 3天。 定位航行实验结束后, 间 隔 1天,撤去平台,将小鼠从一个入水点放入水中,测其第一次到达原平台时间、 穿越原平台的次数。 实验结果如图 7所示, 尽管随着训练的进行, 包括模型组在内的小鼠逃避潜 伏期及游泳路程都逐渐縮短,与正常组相比模型组的小鼠逃避潜伏期及游泳路程 还是明显增加 (P<0.05和 Ρ<0.01 )。 α-倒捻子素明显縮短了逃避潜伏期及游泳路 程, 特别是在第 2天的实验中, a-倒捻子素相比较作为阳性药物的白藜芦醇, 在 縮短逃避潜伏期作用中具有明显优势。 10微克 /公斤体重的 (X-倒捻子素给药组逃 避潜伏期縮短至 46.16± 5.51秒,相比较模型组的 72.17± 10.09秒具有统计学差异 (Ρ<0.05 ), 而与正常组相比较没有统计学差异。
进入第 3天的实验后, 白藜芦醇也表现出了很好的改善学习记忆的能力, 相 比较模型组在逃避潜伏期和游泳路程上都有了显著性的縮短, 具有统计学意义。
(X-倒捻子素的效果更为突出, 10微克 /公斤体重的 (X-倒捻子素给药组逃避潜伏期 分别縮短至 40.02士 4.16秒和 19.05士 3.27秒, 相比较模型组的 55.66士 5.51秒和 39.93± 4.12秒具有统计学差异(ΡΟ.05和 Ρ<0.01 ), 而与正常组相比较没有统计 学差异。 游泳距离也分别縮短至 438.78± 46.02厘米和 223.15± 31.29厘米, 相比 较模型组的 773.06± 65.54秒和 543.13± 56.72秒具有统计学差异(Ρ<0.01 ), 而与 正常组相比较没有统计学差异。
白藜芦醇目前已在美国进入治疗阿尔兹海默氏病的临床 III、 IV期研究, 其 主要药理作用机制被定义为针对 Αβ 聚集抑制作用。 同时, 实验中所采用的 SAM-P8品系小鼠是目前公认的阿尔兹海默氏病治疗药物药效学评价动物模型。 因此, (X-倒捻子素在具体实施例中体现的抑制 Αβ聚集、 神经保护作用以及改善 学习记忆能力等可视为调控阿尔兹海默氏病病理过程的治疗作用。

Claims

权利要求书
1 . ct-倒捻子素在制备阿尔兹海默氏病药物中的应用。
2. 如权利要求 1所述的应用, 其特征在于, 所述药物通过口服给药。
3. 如权利要求 2所述的应用, 其特征在于, 所述 ct-倒捻子素的单次服用剂 50ng/kg-20(^g/kg。
4. 如权利要求 3所述的应用, 其特征在于, 所述 ct-倒捻子素的单次服用剂 500ng/kg-5(^g/kg。
5. 如权利要求 1所述的应用, 其特征在于, 所述药物通过注射给药。
6. 如权利要求 1所述的应用, 其特征在于, 所述药物是片剂、 颗粒剂、 胶囊 粉针剂中的一种。
PCT/CN2012/071112 2011-02-18 2012-02-14 α-倒捻子素在制备阿尔兹海默氏病药物中的应用 WO2012109976A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013552826A JP5552575B2 (ja) 2011-02-18 2012-02-14 アルツハイマー病治療用医薬の製造におけるα−マンゴスチンの使用
US13/985,413 US20140080903A1 (en) 2011-02-18 2012-02-14 Application of alpha-mangostin in preparation of medicaments for alzheimer's disease
EP12746907.0A EP2676665A4 (en) 2011-02-18 2012-02-14 USE OF ALPHA-MANGOSTINE IN THE MANUFACTURE OF MEDICAMENTS FOR THE TREATMENT OF ALZHEIMER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110040746.1 2011-02-18
CN201110040746A CN102151258B (zh) 2011-02-18 2011-02-18 α-倒捻子素在制备阿尔兹海默氏病药物中的应用

Publications (1)

Publication Number Publication Date
WO2012109976A1 true WO2012109976A1 (zh) 2012-08-23

Family

ID=44433153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071112 WO2012109976A1 (zh) 2011-02-18 2012-02-14 α-倒捻子素在制备阿尔兹海默氏病药物中的应用

Country Status (5)

Country Link
US (1) US20140080903A1 (zh)
EP (1) EP2676665A4 (zh)
JP (1) JP5552575B2 (zh)
CN (1) CN102151258B (zh)
WO (1) WO2012109976A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151258B (zh) * 2011-02-18 2012-10-10 夏铮 α-倒捻子素在制备阿尔兹海默氏病药物中的应用
CN104434907A (zh) * 2013-09-25 2015-03-25 中国中医科学院医学实验中心 α-倒捻子素的药物新用途
US10568862B2 (en) 2014-02-26 2020-02-25 Deakin University Xanthone-rich plant extracts or compounds therefrom for modulating diseases of the central nervous system and related disorders
KR101621162B1 (ko) 2014-09-17 2016-05-23 동국대학교 산학협력단 알파-망고스틴을 유효성분으로 포함하는 신경교종 예방 또는 치료용 약학적 조성물
CN106176713A (zh) * 2016-08-24 2016-12-07 雷闽湘 α-山竹黄酮的新用途
CN109956952B (zh) * 2017-12-14 2020-11-13 浙江工业大学 α-楝子素衍生物及其制备方法与应用
CN110183459B (zh) * 2019-05-21 2020-11-13 浙江工业大学 α-倒捻子素衍生物及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093255A2 (en) * 2008-01-21 2009-07-30 Ganga Raju Gokaraju A new nutraceutical composition from garcinia mangostana
CN102151258A (zh) * 2011-02-18 2011-08-17 夏铮 α-倒捻子素在制备阿尔兹海默氏病药物中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140231B2 (ja) * 2004-04-08 2013-02-06 株式会社ロッテ IκBキナーゼ阻害剤
DE102004034683A1 (de) * 2004-07-17 2006-02-02 Boehringer Ingelheim Pharma Gmbh & Co. Kg Verfahren zur Isolierung von α-Mangostin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093255A2 (en) * 2008-01-21 2009-07-30 Ganga Raju Gokaraju A new nutraceutical composition from garcinia mangostana
CN102151258A (zh) * 2011-02-18 2011-08-17 夏铮 α-倒捻子素在制备阿尔兹海默氏病药物中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PEDRAZA-CHAVERR, J. ET AL.: "ROS scavenging capacity and neuroprotective effect of a-mangostin against 3-nitropropionic acid in cerebellar granule neurons.", EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY., vol. 61, no. 5, 2009, pages 491 - 501, XP026467663 *

Also Published As

Publication number Publication date
EP2676665A4 (en) 2014-09-24
EP2676665A1 (en) 2013-12-25
CN102151258B (zh) 2012-10-10
JP5552575B2 (ja) 2014-07-16
US20140080903A1 (en) 2014-03-20
CN102151258A (zh) 2011-08-17
JP2014505080A (ja) 2014-02-27

Similar Documents

Publication Publication Date Title
WO2012109976A1 (zh) α-倒捻子素在制备阿尔兹海默氏病药物中的应用
Kim et al. Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease
Jiang et al. Intricate connections between the microbiota and endometriosis
Liu et al. Extracellular vesicles derived from melatonin‐preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2
US20210261537A1 (en) Inhibitors of sarm1
Matsumoto et al. Attenuation of methamphetamine-induced effects through the antagonism of sigma (σ) receptors: Evidence from in vivo and in vitro studies
Zhu et al. Blood-brain barrier permeable chitosan oligosaccharides interfere with β-amyloid aggregation and alleviate β-amyloid protein mediated neurotoxicity and neuroinflammation in a dose-and degree of polymerization-dependent manner
Zhao et al. PAF receptor inhibition attenuates neuronal pyroptosis in cerebral ischemia/reperfusion injury
Ma et al. Chondroprotective and anti‐inflammatory effects of amurensin H by regulating TLR4/Syk/NF‐κB signals
García-Puga et al. Targeting myotonic dystrophy type 1 with metformin
Han et al. A class I HDAC inhibitor rescues synaptic damage and neuron loss in APP-transfected cells and APP/PS1 mice through the GRIP1/AMPA pathway
Lee et al. Discovery of Chemicals to Either Clear or Indicate Amyloid Aggregates by Targeting Memory‐Impairing Anti‐Parallel Aβ Dimers
CN111617066A (zh) Chalcomoracin及其同系物在制备治疗增生性玻璃体视网膜病变药物中的应用
Ciechanowska et al. Initiators of classical and lectin complement pathways are differently engaged after traumatic brain injury—time-dependent changes in the cortex, striatum, thalamus and hippocampus in a mouse model
Zhang et al. Rescue of cognitive deficits in APP/PS1 mice by accelerating the aggregation of β-amyloid peptide
Wang et al. Lactoferrin modification of berberine nanoliposomes enhances the neuroprotective effects in a mouse model of Alzheimer’s disease
Xu et al. Prostaglandin A1 inhibits the cognitive decline of APP/PS1 transgenic mice via PPARγ/ABCA1-dependent cholesterol efflux mechanisms
Iwasa et al. Bilberry anthocyanins neutralize the cytotoxicity of co-chaperonin GroES fibrillation intermediates
Liu et al. Ca2+ regulates autophagy through camkkβ/ampk/mtor signaling pathway in mechanical spinal cord injury: an in vitro study
CN101863962B (zh) 抑制beta分泌酶酶切作用的多肽及其应用
WO2019141256A1 (zh) 可利霉素或其活性成分的用途
Wu et al. Systemic Dendrimer-Peptide Therapies for Wet Age-Related Macular Degeneration
Xingchi et al. Effect of Palrnatine on lipopolysaccharide-induced acute lung injury by inhibiting activation of the Akt/NF‍-κB pathway
Jiang et al. Neuroprotective effect of a novel brain-derived peptide, HIBDAP, against oxygen-glucose deprivation through inhibition of apoptosis in PC12 cells
Huang et al. Microglial-Targeted nSMase2 Inhibitor Fails to Reduce Tau Propagation in PS19 Mice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012746907

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13985413

Country of ref document: US