WO2012109907A1 - Lsp保护的建立方法和节点 - Google Patents

Lsp保护的建立方法和节点 Download PDF

Info

Publication number
WO2012109907A1
WO2012109907A1 PCT/CN2011/080806 CN2011080806W WO2012109907A1 WO 2012109907 A1 WO2012109907 A1 WO 2012109907A1 CN 2011080806 W CN2011080806 W CN 2011080806W WO 2012109907 A1 WO2012109907 A1 WO 2012109907A1
Authority
WO
WIPO (PCT)
Prior art keywords
lsp
protection
node
parameters
setup message
Prior art date
Application number
PCT/CN2011/080806
Other languages
English (en)
French (fr)
Inventor
邓柱升
王志
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012109907A1 publication Critical patent/WO2012109907A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/28Routing or path finding of packets in data switching networks using route fault recovery

Definitions

  • BACKGROUND Multi-Protocol Label Switching is a system for fast packet switching and routing. It provides a way to map Internet Protocol (IP) addresses to simple A fixed-length tag for different packet forwarding and packet switching techniques. As a mature packet technology, MPLS has been widely used in carrier networks. Label Switched Path (LSP) is a packet forwarding path established by using the MPLS protocol.
  • LSR Label Switching Router
  • Protection switching is a method of recovering a link or node failure in the shortest amount of time. During the protection switching process, data is switched from the failed LSP to the protection LSP at the repair point.
  • the LSP 1 : 1 protection shown in Figure 1 consists of a working channel and a protection channel.
  • the working channel includes two symmetric reverse working LSPs
  • the protection channel includes two symmetric reverse protection LSPs.
  • the working LSP performs connectivity detection through operations, administration, and maintenance (0AM) to check whether the working LSP is working normally.
  • the protection LSP generally does not carry any data.
  • the LSP sink node detects the fault and reports the transmission to the source node, and the data transmission is quickly switched to the protection LSP to protect the network transmission. Since the protection LSP is established in advance by signaling before the failure occurs, the protection switching speed is usually faster. After the working LSP returns to normal, according to the recovery mode of the LSP 1 : 1 protection configuration, the data transmission can be switched back to the working LSP or kept on the protection LSP.
  • the LSP 1 : 1 protection between the node A and the node F shown in FIG. 1 is taken as an example.
  • the process is as follows: Establish A ⁇ B ⁇ C ⁇ F, And F ⁇ C ⁇ B ⁇ A two bidirectional symmetric LSPs (shown by solid lines in the figure), and then bind the two LSPs into working channels through management; also establish two protection LSPs A ⁇ D ⁇ E ⁇ F, F ⁇ E ⁇ D ⁇ A (shown by the dotted line in the figure) and the two LSPs are bound to the protection channel through management; the NMS manages the 0AM parameters and protection parameters of the working channel and the protection channel respectively by management; Finally, the work and protection are managed through management.
  • the channel is bound to an LSP 1 : 1 protection group.
  • the deployment mode requires the configuration of the 0AM parameters and the protection parameters after the establishment of the working LSP and the protection LSP.
  • the process is cumbersome and the configuration complexity is high, which greatly increases the operating cost of the operator. Summary of the invention
  • the technical problem to be solved by the embodiments of the present invention is to provide a method and a node for establishing an LSP protection, which can implement the configuration of the 0AM parameters and the protection parameters while the LSP protection is being established, thereby simplifying the steps of establishing the LSP and reducing the steps of establishing the LSP.
  • the complexity of the configuration is to provide a method and a node for establishing an LSP protection, which can implement the configuration of the 0AM parameters and the protection parameters while the LSP protection is being established, thereby simplifying the steps of establishing the LSP and reducing the steps of establishing the LSP.
  • the embodiment of the present invention adopts the following technical solutions:
  • a method for establishing LSP protection includes:
  • a receiving unit configured to receive an LSP setup message sent by the upstream node, where the LSP setup message carries operation, management, and maintenance parameter information and protection parameter information;
  • a configuration unit configured to configure the operation, management, and maintenance parameters and protection parameters.
  • the method for establishing the LSP protection of the present invention after receiving the LSP establishment message that carries the 0AM parameter and the protection parameter sent by the upstream node, configures the 0AM parameter and the protection parameter, and implements the LSP protection while establishing the 0AM parameter and the protection parameter.
  • the configuration simplifies the steps of establishing the LSP protection, reduces the complexity of the configuration, and reduces the operating cost.
  • FIG. 1 is a schematic diagram of establishing LSP 1:1 protection in a prior art protection switching
  • FIG. 2 is a flowchart of a method for establishing LSP protection according to an embodiment of the present invention
  • FIG. 3 is a flowchart of establishing an LSP in an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a node in an embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a specific implementation process of the present invention will be exemplified by way of examples. It is apparent that the embodiments described below are a part of the embodiments of the present invention, and not all of them. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the source node During the establishment of the LSP, the source node initiates an LSP establishment message through the protocol and allocates a downlink LSP label.
  • the message passing process relative to the node receiving the message, we refer to the node sending the message as the upstream node of the node receiving the message.
  • This embodiment provides a method for establishing LSP protection. As shown in FIG. 2, the method includes:
  • Step 101 Receive an LSP setup message sent by the upstream node, where the LSP setup message carries the 0AM parameter and the protection parameter.
  • the node in the link receives the LSP setup message sent by the upstream node.
  • the LSP setup message is used to establish a working LSP or a protection LSP.
  • the LSP setup message carries the 0AM parameter and the protection parameter, where the 0AM parameter includes the path.
  • Trail Termination Source Identifier (TTSI) and Fast Failure Detection Frequency (FFD Frequency) FFD Frequency is the frequency of packet transmission.
  • TTSI Trail Termination Source Identifier
  • FFD Frequency FFD Frequency
  • the LSP TTSI consists of the IP address of the node and the LSP ID, which is used to uniquely identify an LSP. Protection parameters include protection recovery type and waiting for recovery time.
  • Step 102 Configure the 0AM parameter and the protection parameter.
  • the node in the link when receiving the message for establishing the LSP sent by the upstream node, automatically reads the 0AM parameter and the protection parameter carried in the LSP setup message, and configures the 0AM parameter and the protection parameter, so as to simplify the LSP.
  • the steps to establish when receiving the message for establishing the LSP sent by the upstream node, automatically reads the 0AM parameter and the protection parameter carried in the LSP setup message, and configures the 0AM parameter and the protection parameter, so as to simplify the LSP.
  • the method is configured to send an LSP setup message carrying the 0AM parameter and the protection parameter, and the node in the link automatically configures the 0AM parameter and the security when receiving the LSP establishment message sent by the upstream node.
  • the parameters are protected, and the LSP protection is configured.
  • the 0AM parameters and the protection parameters are configured. This simplifies the LSP establishment procedure, reduces the complexity of the configuration, and greatly reduces the operator's operating costs.
  • the LSP 1:1 protection in the protection switching is taken as an example.
  • the protocol used for establishing the LSP is Resource Reservation Protocol-Traffic Engineering (RSVP-TE).
  • the Explicitly Routed Object (ERO) of the working channel can be determined in two ways: through management pre-setting; automatic calculation through routing information. After the explicit routing object of the working channel is determined, the IP of the node through which the working LSP passes is determined, and the two bidirectional symmetric working LSPs of the working channel are also determined, and the source node passes the RSVP-TE signaling according to the determined working LSP. Establish an uplink and downlink label forwarding table on all network nodes through which the LSP passes. In the present invention, the direction of the LSP starting from the source node is defined as the uplink direction, and the direction of the LSP returning to the source node is the downlink direction.
  • the source node A initiates an LSP setup message through the RSVP-TE protocol, and allocates a downlink LSP label from the source node A to the node B.
  • the label used to identify the downlink LSP is called a downlink LSP.
  • the label forwarding information base (LFIB) is set up in the source node A.
  • the LSP setup message is a PATH message, and the message carries the 0AM parameter and the protection parameter, and the source node A first The 0AM parameter and the protection parameter are automatically configured, and then the PATH message is forwarded to its downstream node, where the downstream LSP label from the source node A to the node B is carried by the upstream distribution label (Upstearm_Label) object in the PATH message.
  • Upstearm_Label upstream distribution label
  • the C-Type field is the LSP label type.
  • the C-Type value is 2, and the Class-Num value is 35.
  • the values of C-Type and Class-Num are used to identify the object type.
  • the Label field is the label of the downstream LSP assigned by the upstream node.
  • the source node A sends a PATH message to the node B according to the IP address of the next hop node (ie, the node B) in the ER0.
  • the PATH message initiated by the source node A carries the 0AM parameter and the protection parameter, where the 0AM parameter includes the TTSI and the FFD.
  • the 0AM parameter includes the TTSI and the FFD.
  • Frequency, LSP TTSI consists of the IP address of the node and the LSP ID, which is used to identify an LSP. Protection parameters include Protect recovery type and wait for recovery time.
  • the OBSI Sub-TLV format is as follows:
  • the TTSI field is set to the TTSI of the local node sent to the sink node;
  • the FFD Frequency Sub-TLV format is shown in the following table:
  • the Frequency field sets the frequency of sending FFD packets.
  • the protection recovery type and the waiting recovery time Sub-TLV format are shown in the following table:
  • the R field identifies the protection recovery type, and the protection recovery type is classified as recovery or non-recovery; the WTR interval field is set to wait for recovery time.
  • the node B After receiving the PATH message sent by the source node A and carrying the 0AM parameter and the protection parameter, the node B allocates the label of the downlink LSP from the node B to the node C and the uplink LSP label of the source node A to the node B, and establishes the downlink label of the node B. Forwarding the information table, and updating the Upsteam_Label object in the PATH message based on the assigned downlink LSP label of the Node B to the Node C, that is, the Label field in the Upstearm_Label object is the downlink LSP label of the Node B to the Node C, and then sending the PATH message to the node. 0.
  • the intermediate node may also perform configuration of the 0AM parameter and the protection parameter.
  • the node C allocates the label of the downlink LSP of the node C to the node and the uplink LSP label of the node B to the node C, and establishes the downlink label of the node C. Forwarding the information table, updating the Upsteam_Label object in the PATH message based on the downlink LSP label of the assigned Node C to the sink node F, and then transmitting the message to the sink node F.
  • the sink node F After receiving the PATH message carrying the 0AM parameter and the protection parameter sent by the upstream node A, the sink node F automatically configures the 0AM parameter and the protection parameter, and establishes the downlink of the sink node F according to the received downlink LSP label of the node C to the sink node F.
  • the LSP label forwarding information table, the establishment of the downlink LSP can be completed, and then the label of the uplink LSP of the node C to the sink node F is allocated, the uplink LSP label forwarding information table is established, the RESV message is generated, and the uplink LSP label of the node C to the sink node F is generated.
  • the 0AM parameter and the protection parameter in the RESV message may be the default and may be carried.
  • the specific content and format of the 0AM parameter and the protection parameter are the same as those in the above, and are not described here.
  • the Label object format is as follows. 0 1 2 3
  • the node C After receiving the RESV message sent by the sink node F and carrying the 0AM parameter and the protection parameter, the node C receives the uplink LSP label from the node C to the sink node F and the uplink LSP of the node B to the node C allocated by the node C itself.
  • the tag establishes an uplink LSP label forwarding table, and according to the uplink LSP label of the node B to the node C allocated by the node C, the node C updates the Label object in the RESV message, and the Label field in the SPLabel object is the uplink LSP of the node B to the node C.
  • the tag then sends a RESV message to node 8.
  • the node B After receiving the RESV message sent by the upstream node C and carrying the 0AM parameter and the protection parameter, the node B receives the uplink LSP label from the node B to the sink node C, and the uplink of the source node A to the node B allocated by the node B itself.
  • the LSP label, the Node B establishes an uplink LSP label forwarding information table, and updates the Label object in the RESV message based on the uplink LSP label of the source node A to the Node B allocated by the Node B.
  • the Label field in the SPLabel object is the uplink LSP label of A to B. And then send the RESV message to source node A.
  • the source node A After receiving the RESV message, the source node A establishes the uplink LSP label forwarding information table of the source node A according to the received uplink LSP label of the node A to the sink node B, and completes the establishment of the uplink LSP.
  • a two-way symmetric working LSP that is, a working channel
  • a working channel can be completed through a REVP-TE signaling interaction process.
  • the RESV message returned by the working channel during the establishment process also includes the REC0RD_R0UTE object, and the REC0RD_R0UTE object records the IP of the node through which the working LSP passes.
  • the explicit routing object of the protection channel corresponding to the working channel can be determined in two ways: by management pre-setting; the source node A calculates a path that does not coincide with the working channel according to the established working channel recorded by the REC0RD_R0UTE object. The path to protect the channel. After the explicit routing object of the protection channel is determined, the IP of the node through which the protection LSP passes is determined, and the two symmetric reverse protection LSPs of the protection channel are also determined. The source node establishes an uplink label forwarding table on all network nodes that the LSP passes through RSVP-TE signaling according to the determined protection LSP.
  • the specific establishment process and the parameter configuration process of the protection channel are similar to the process of establishing the working channel and the parameter configuration process, and are not described here.
  • the source node A associates the two into one protection group. At this point, the establishment of the LSP protection is completed.
  • the PATH message and the RESV message may also carry an ASSOCIATION object, which is used to associate the working LSP and the protection LSP protected by the LSP.
  • ASSOCIATION object The specific format of the ASSOCIATION object is as follows:
  • the Association Type field is set to Recovery, which means that the two specified channels are associated as a pair of LSP 1: 1 protection groups. Since the source node A determines the ID of the working LSP and the protection LSP before sending the LSP setup message, the Association Source field can be set to the IP working ID of the source node A, and the Association ID field is set to the protection channel in the PATH message of the working channel. ID of the corresponding LSP; set to the ID of the corresponding LSP of the working channel in the PATH message of the protection channel. In this way, when the protection channel is established, the working channel and the protection channel are automatically associated as a protection group. The RESV message is the same.
  • the source node when the working LSP or the protection LSP is established, the source node initiates the PATH message of the LSP through the RSVP-TE protocol, and sends the PATH message to the downstream node, and the sink node sends the PATH message to the upstream node.
  • the 0AM parameter and the protection parameter are automatically configured.
  • the 0AM parameter and the protection parameter are carried in the PATH message (or RESV message) by extending the Sub-TLV.
  • the LSP protection is configured at the same time as the related parameters are configured, which simplifies the LSP establishment procedure and reduces the complexity of the configuration.
  • the use of the Association object automatically associates the working channel and the protection channel into a protection group while the protection channel is established. It simplifies the steps of establishing LSP, reduces the complexity of configuration, and greatly reduces operating costs.
  • This embodiment provides a node, as shown in FIG. 4, including:
  • the receiving unit 401 is configured to receive an LSP setup message sent by the upstream node, where the LSP setup message carries the 0AM parameter information and the protection parameter information.
  • the configuration unit 402 is configured to configure the 0AM parameter and the protection parameter. Node of this embodiment
  • the method further includes: a sending unit 403, configured to send the LSP setup message to a downstream node.
  • the foregoing 0AM parameters include: a path termination source identifier and a fast failure detection frequency; and the protection parameters include: a protection recovery type and a waiting recovery time.
  • the LSP setup message also carries the ASS0ICIATI0N object.
  • the node of the embodiment After receiving the LSP establishment message carrying the 0AM parameter and the protection parameter sent by the upstream node, the node of the embodiment configures the 0AM parameter and the protection parameter, so that the LSP protection is established and the related parameters are configured, thereby simplifying the configuration.
  • the establishment of the LSP reduces the complexity of the configuration.
  • the use of the As soc ia t ion object enables the working channel and the protection channel to be automatically associated with one protection group while the protection channel is established.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

LSP保护的建立方法和节点
本申请要求于 2011年 2月 16日提交中国专利局、 申请号为 201110039076. 1、发明 名称为 "LSP保护的建立方法和节点" 的中国专利申请的优先权, 其全部内容通过引用 结合在本申请中。 技术领域 本发明涉及通信领域, 尤其涉及一种 LSP保护的建立方法和节点。 背景技术 多协议标签交换 (Multi-Protocol Label Switching , 简称 MPLS) 是一种用于快 速数据包交换和路由的体系, 它提供了一种方式, 将互联网协议 (Internet Protocol , IP) 地址映射为简单的具有固定长度的标签, 用于不同的包转发和包交换技术。 MPLS 作为一种成熟的分组技术, 已经在运营商网络中获得了广泛的应用。 标签交换路径 (Label Switched Path, 简称 LSP) 为使用 MPLS协议建立起来的分组转发路径, 由标 记分组源标签交换路由器(Label Switching Router,简称 LSR) 与目的标签交换路由器 之间的一系列标签交换路由器以及它们之间的链路构成。 在 MPLS的网络保护中, 针对 网络链路可能发生的故障情形,现有技术中通常有以下三种修复故障的方法:本地修复、 保护倒换、 快速重路由。 保护倒换是一种可以在最短时间内恢复链路或者结点故障的方 法。 在保护倒换过程中, 数据在修复点从发生故障的 LSP切换到保护 LSP上。
例如, 图 1所示的 LSP 1 : 1保护, 由工作通道和保护通道构成, 其中工作通道包括 两条对称反向的工作 LSP, 保护通道包括两条对称反向的保护 LSP。 数据传输过程中, 工作 LSP通过操作、 管理及维护 (Operations, Administration, and Maintenance, 简称 0AM) 进行连通性检测, 以检测工作 LSP当前是否工作正常。 工作 LSP正常时, 保 护 LSP—般不承载任何数据。 当工作 LSP发生了故障, LSP宿节点检测到故障并报告传 给源节点, 数据的传输就迅速地切换到保护 LSP上来, 从而实现对网络传输的保护。 因 为保护 LSP在故障发生之前就已经预先通过信令建立, 所以保护倒换的速度通常较快。 当工作 LSP恢复正常后, 根据 LSP 1 : 1保护配置的恢复模式, 数据的传输可以选择切换 回工作 LSP或保持在保护 LSP上。
目前, 现有技术在网络中建立 LSP 1 : 1保护时, 以图 1所示的建立节点 A与节点 F 之间的 LSP 1 : 1保护为例, 其过程大致如下: 首先通过信令协议分别建立 A→B→C→F、 及 F→C→B→A两条双向对称 LSP (图中实线所示), 然后通过管理将两条 LSP绑定为工 作通道; 同样建立两条保护 LSP A→D→E→F、 F→E→D→A (图中虚线所示) 并通过管理 将两条 LSP绑定为保护通道; 网管通过管理分别配置工作通道与保护通道的 0AM参数与 保护参数; 最后通过管理将工作与保护通道绑定为一个 LSP 1 : 1保护组。
显然,这种部署方式需要在完成工作 LSP和保护 LSP的建立之后再分别进行 0AM参 数和保护参数的配置, 过程烦琐, 配置复杂度较高, 大大增加了运营商的运营成本。 发明内容
本发明的实施例所要解决的技术问题在于提供一种 LSP保护的建立方法和节点, 能 够实现 LSP保护在建立的同时, 进行 0AM参数和保护参数的配置, 从而简化了 LSP的建立 步骤, 降低了配置的复杂程度。
为解决上述技术问题, 本发明的实施例采用如下技术方案:
一种 LSP保护的建立方法, 包括:
接收上游节点发送的 LSP建立消息, 所述 LSP建立消息携带有操作、 管理及维护参数 和保护参数;
配置所述操作、 管理及维护参数和保护参数。
一种节点, 包括:
接收单元, 用于接收上游节点发送的 LSP建立消息, 所述 LSP建立消息携带有操作、 管理及维护参数信息和保护参数信息;
配置单元, 用于配置所述操作、 管理及维护参数和保护参数。
本发明的 LSP保护的建立方法,在接收上游节点发送的携带有 0AM参数与保护参数的 LSP建立消息后, 配置 0AM参数与保护参数, 实现了 LSP保护在建立的同时, 进行 0AM参数 与保护参数的配置, 从而简化了 LSP保护的建立步骤, 降低了配置的复杂程度, 也降低 了运营成本。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现有 技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 1为现有技术保护交换中建立 LSP 1:1保护的示意图;
图 2为本发明实施例中 LSP保护的建立方法的流程图;
图 3为本发明实施例中建立 LSP的流程图;
图 4为本发明实施例中节点的结构示意图。 具体实施方式 下面通过实施例对本发明的具体实现过程进行举例说明。 显然, 下面所描述的实施 例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通 技术人员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的 范围。
下面结合附图对本发明实施例做详细描述。
实施例一
在建立 LSP的过程中, 源节点通过协议发起 LSP建立消息, 并分配下行的 LSP标签。 消息传递过程中, 相对于接收消息的节点, 我们称发送消息的节点为该接收消息的节点 的上游节点。
本实施例提供一种 LSP保护的建立方法, 如图 2所示, 该方法包括:
步骤 101、 接收上游节点发送的 LSP建立消息, LSP建立消息携带有 0AM参数和保护 参数。
链路中的节点接收上游节点发送的 LSP建立消息, 本实施例中, LSP建立消息用于建 立一条工作 LSP或者保护 LSP, LSP建立消息中携带有 0AM参数和保护参数, 其中, 0AM参 数包括路径终结源点标识 (Trail Termination Source Identifier, 简称 TTSI) 和快 速失效检测频率 (Fast Failure Detection Frequency , 简称 FFD Frequency) , FFD Frequency为报文发送频率。 LSP TTSI由节点的 IP地址和 LSP ID组成, 用于唯一标识一 条 LSP。 保护参数包括保护恢复类型和等待恢复时间。
步骤 102、 配置所述 0AM参数和保护参数。
对链路中的节点来说, 在接收到上游节点发送的建立 LSP的消息时, 自动读取 LSP建 立消息携带的 0AM参数和保护参数, 并配置该 0AM参数和保护参数, 以便于简化了 LSP的 建立步骤。
本实施例的 LSP保护的建立方法, 该方法通过发送携带有 0AM参数和保护参数 LSP建 立消息, 链路中的节点在接收到上游节点发送的 LSP建立消息时, 自动配置 0AM参数和保 护参数,实现了 LSP保护在建立的同时,进行 0AM参数和保护参数的配置,从而简化了 LSP 的建立步骤, 降低了配置的复杂程度, 大大降低了运营商的运营成本。 实施例二
本实施例中, 以保护倒换中的建立 LSP 1:1保护为例, 其中, 建立 LSP所采用的协议 为基于流量工程扩展的资源预留协议 (Resource Reservation Protocol-Traffic Engineering, RSVP-TE) 。 工作通道的显式路由对象 (Explicitly Routed Object, 简 称 ERO) 可以通过以下两种方式确定: 通过管理预先设置; 通过路由信息自动计算。 工 作通道的显式路由对象确定以后, 即确定了工作 LSP所经过的节点的 IP, 工作通道的两 条双向对称的工作 LSP也就确定了,源节点根据确定的工作 LSP通过 RSVP-TE信令在该 LSP 经过的所有网络节点上建立上、 下行标签转发表。 在本发明中, 将由源节点出发的 LSP 的方向定义为上行方向, 回到源节点的 LSP的方向为下行方向。
如图 3所示的建立 LSP的流程图中, 源节点 A通过 RSVP-TE协议发起 LSP建立消息, 并 分配源节点 A到节点 B的下行 LSP标签 (用于标识下行 LSP的标签称为下行 LSP标签) , 建 立源节点 A的下行 LSP标签转发信息表 (label forwarding information base, LFIB) , 本实施例中, LSP建立消息为 PATH消息, 该消息中携带有 0AM参数和保护参数, 源节点 A 首先自动配置 0AM参数和保护参数, 然后将 PATH消息转发给其下游节点, 其中, 源节点 A 到节点 B的下行 LSP标签由 PATH消息中的上游分配标签 (Upstearm_Label) 对象携带。
Ups team—Label对象的格式如下表所示:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Length 1 Class-Num (35) C-Type
Label
一 +一 +一
其中 C-Type字段为 LSP标签类型, 本实施例中 C-Type的取值是 2, Class-Num取值为 35。 C-Type与 Class-Num的取值用于标识对象类型。 Label字段为上游节点分配的下行 LSP 的标签。
源节点 A根据 ER0中的下一跳节点 (即节点 B) 的 IP将 PATH消息发送至节点 B, 源节点 A发起的 PATH消息中携带有 0AM参数和保护参数, 其中, 0AM参数包括 TTSI和 FFD Frequency,, LSP TTSI由节点的 IP地址和 LSP ID组成, 用于标识一条 LSP。 保护参数包括 保护恢复类型和等待恢复时间。 其中, 0AM参数和保护参数在 PATH消息中的携带是通过 扩展子类型长度值 (Sub-type-length-value, Sub-TLV) 来实现的, TTSI Sub-TLV格式 如下表所示:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
Type (3) (ΙΑΝΑ) 1 Length (4) TTSI
μ μ μ μ -
TTSI字段设置为发送给宿节点的本节点的 TTSI;
FFD Frequency Sub-TLV格式如下表所示:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+ -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I Type (4) (IANA) | Length |
+-+ -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I Frequency | Reserved (set to all 0 s ) |
+-+ -+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Frequency字段设置 FFD报文发送频率;
保护恢复类型和等待恢复时间 Sub-TLV格式如下表所示:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
-+-+-+-+-+-+-+-+-+-+ -+-+-+-+-+- -+-+-+-+-+-+- -+-+-+-+-+-+-+-+-+-+-
Type (x) (I ANA) 1 Length
-+-+-+-+-+-+-+-+-+-+ -+-+-+-+-+- -+-+-+-+-+-+- -+-+-+-+-+-+-+-+-+-+-
R Reserved (set to all 0s) WTR interval
sub TLVs
R字段标识保护恢复类型, 保护恢复类型分为恢复式或非恢复式; WTR interval字 段设置为等待恢复的时间。
节点 B接收到源节点 A发送的携带有 0AM参数和保护参数的 PATH消息后, 分配节点 B到 节点 C的下行 LSP的标签以及源节点 A到节点 B的上行 LSP标签, 建立节点 B的下行标签转发 信息表, 并基于分配的节点 B到节点 C的下行 LSP标签更新 PATH消息中的 Upsteam_Label对 象, 即 Upstearm_Label对象中的 Label字段为节点 B到节点 C的下行 LSP标签, 然后将 PATH 消息发送至节点0。 需要说明的是, 本发明实施例中, 除了源节点和宿节点之外, 中间 节点也可进行 0AM参数和保护参数的配置。
同样, 节点 C接收到上游节点 B发送的携带有 0AM参数和保护参数的 PATH消息后, 分 配节点 C到 F的下行 LSP的标签以及节点 B到节点 C的上行 LSP标签, 建立节点 C的下行标签 转发信息表, 基于分配的节点 C到宿节点 F的下行 LSP标签更新 PATH消息中的 Upsteam_Label对象, 然后将消息发送至宿节点 F。
宿节点 F接收到上游节点 A发送的携带有 0AM参数和保护参数的 PATH消息后, 自动配 置 0AM参数和保护参数, 根据接收到的节点 C到宿节点 F的下行 LSP标签建立宿节点 F的下 行 LSP标签转发信息表, 下行 LSP的建立即可完成, 然后分配节点 C到宿节点 F的上行 LSP 的标签, 建立上行 LSP标签转发信息表, 生成 RESV消息, 节点 C到宿节点 F的上行 LSP标签 由 RESV消息中的 Label对象携带, 然后宿节点 F将 RESV消息发送至节点0。 其中, RESV消 息中的 0AM参数和保护参数可缺省, 也可携带, 携带时 0AM参数和保护参数的具体内容、 格式同上文, 在此不再赘述。 Label对象格式如下, 0 1 2 3
0 1 2 3 4 5 6 7 6 9 0 1 2 3 4 5 6 7 B 9 0 1 2 3 4 5 6 7 0 9 0 1
, , ,
1 Laaa— Mum | 1 C-Type |
L>aleJ_ 1 其中 Class-Num取值为 16, C-Type取值为 1。
节点 C接收到宿节点 F发送的携带有 0AM参数和保护参数的 RESV消息后, 根据接收到 的节点 C到宿节点 F的上行 LSP标签、 以及节点 C自己分配的节点 B到节点 C的上行 LSP标签, 建立上行 LSP标签转发表, 并根据节点 C分配的节点 B到节点 C的上行 LSP标签, 节点 C更新 RESV消息中的 Label对象, SPLabel对象中的 Label字段为节点 B到节点 C的上行 LSP标签, 然后将 RESV消息发送至节点8。
节点 B接收到上游节点 C发送的携带有 0AM参数和保护参数的 RESV消息后, 根据接收 到的节点 B到宿节点 C的上行 LSP标签、 以及节点 B自己分配的源节点 A到节点 B的上行 LSP 标签, 节点 B建立上行 LSP标签转发信息表, 基于节点 B分配的源节点 A到节点 B的上行 LSP 标签更新 RESV消息中的 Label对象, SPLabel对象中的 Label字段为 A到 B的上行 LSP标签, 然后将 RESV消息发送至源节点 A。
源节点 A接收到 RESV消息后,根据接收到的节点 A到宿节点 B的上行 LSP标签建立源节 点 A的上行 LSP标签转发信息表, 即可完成上行 LSP的建立。
由此可见, 本实施例中, 通过一个 REVP-TE的信令交互过程即可完成一条双向对称 的工作 LSP, 即工作通道的建立。
工作通道建立完成后, 在源节点自动触发保护通道的建立。 工作通道在建立过程中 返回的 RESV消息中还包括 REC0RD_R0UTE对象, REC0RD_R0UTE对象记录了工作 LSP所经过 的节点的 IP。
与工作通道相对应的保护通道的显式路由对象可通过以下两种方式确定: 通过管理 预先设置; 源节点 A根据 REC0RD_R0UTE对象记录的已经建立好的工作通道计算出与工作 通道不重合的路径作为保护通道的路径。 保护通道的显式路由对象确定以后, 即确定了 保护 LSP所经过的节点的 IP, 保护通道的两条对称反向的保护 LSP也就确定了。 源节点根 据确定的保护 LSP通过 RSVP-TE信令在该 LSP经过的所有网络节点上建立上行标签转发 表。
保护通道的具体建立过程以及参数配置过程与上文的工作通道的建立过程以及参 数配置过程类似, 在此不再赘述。 工作通道和保护通道建立完成后, 源节点 A将两者关联为一个保护组, 至此, LSP保 护的建立就完成了。
进一步的, 在建立工作通道和保护通道的过程中, PATH消息和 RESV消息还可携带 ASSOCIATION对象, 用于关联 LSP保护的工作 LSP和保护 LSP, ASSOCIATION对象的具体格 式如下表所示:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
I Length | Class -Num ( 199 ) | C-Type (1) |
I Association Type | Association ID |
I IPv4 Association Source | 其中 Association Type字段设置为 Recovery, 此时所代表的含义为关联两个指定的 通道作为一对 LSP 1: 1保护组。 由于源节点 A在发送 LSP建立消息前工作 LSP和保护 LSP的 ID已确定, 因此 Association Source字段可设置为源节点 A的 IP工作 ID, Association ID 字段在工作通道的 PATH消息中设置为保护通道的 相应 LSP的 ID; 在保护通道的 PATH消息 中则设置为工作通道的相应 LSP的 ID。 这样, 在保护通道建立完成的同时, 也就自动将 工作通道和保护通道关联为一个保护组。 RESV消息同理。
本实施例的 LSP保护的建立方法, 在建立工作 LSP或者保护 LSP时, 源节点通过 RSVP-TE协议发起建立 LSP 的 PATH消息, 并将 PATH消息发送至下游节点, 宿节点在接收 上游节点发送的携带有 0AM参数和保护参数的 LSP建立消息后, 自动配置 0AM参数和保护 参数, 其中, 0AM参数和保护参数在 PATH消息 (或者 RESV消息) 中的携带是通过扩展 Sub-TLV来实现的,实现了 LSP保护在建立的同时,进行相关参数的配置,从而简化了 LSP 的建立步骤, 降低了配置的复杂程度。 Association对象的使用, 实现了在保护通道建 立完成的同时, 自动将工作通道和保护通道关联为一个保护组。 简化了 LSP的建立步骤, 降低了配置的复杂程度, 大大降低了运营成本。
本实施例提供一种节点, 如图 4所示, 包括:
接收单元 401, 用于接收上游节点发送的 LSP建立消息, LSP建立消息携带有 0AM参 数信息和保护参数信息; 配置单元 402, 用于配置 0AM参数和保护参数。 本实施例的节点 还包括: 发送单元 403, 用于将所述 LSP建立消息发送到下游节点。
其中, 上述的 0AM参数包括: 路径终结源点标识和快速失效检测频率; 保护参数包 括: 保护恢复类型和等待恢复时间。 LSP建立消息还携带有 ASS0ICIATI0N对象。
本实施例的 LSP的建立方法与上述实施例二完全相同, 在此不再赘述。
本实施例的节点,在接收上游节点发送的携带有 0AM参数和保护参数的 LSP建立消息 后, 配置 0AM参数和保护参数, 实现了 LSP保护在建立的同时, 进行相关参数的配置, 从 而简化了 LSP的建立步骤, 降低了配置的复杂程度。 As soc ia t ion对象的使用, 实现了在 保护通道建立完成的同时, 自动将工作通道和保护通道关联为一个保护组。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可以通过程 序指令相关的硬件来完成, 前述的程序可以存储于计算机可读取存储介质中, 该程序在 执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: R0M、 RAM, 磁碟或 者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明较佳的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变化或替 换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应该以权利要求的保 护范围为准。

Claims

权利要求
1、 一种 LSP保护的建立方法, 其特征在于, 包括:
接收上游节点发送的 LSP建立消息, 所述 LSP建立消息携带有操作、 管理及维护参数 和保护参数; 配置所述操作、 管理及维护参数和保护参数。
2、 根据权利要求 1所述的方法, 其特征在于, 在所述接收上游节点发送的 LSP建立 消息之后还包括:
将所述 LSP建立消息发送到下游节点, 所述 LSP建立消息携带有操作、 管理及维护参 数和保护参数。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述 LSP建立消息还携带有 ASS0ICIATI0N对象, 所述 ASS0ICIATI0N对象用于关联工作 LSP和保护 LSP。
4、 根据权利要求 1至 3任一项所述的方法, 其特征在于,
所述操作、 管理及维护参数包括: 路径终结源点标识和快速失效检测频率, 所述保护参数包括: 保护恢复类型和等待恢复时间。
5、 根据权利要求 1至 4任一项所述的方法, 其特征在于,
所述 LSP建立消息为 RSVP-TE协议消息。
6、 一种节点, 其特征在于, 包括:
接收单元, 用于接收上游节点发送的 LSP建立消息, 所述 LSP建立消息携带有操作、 管理及维护参数信息和保护参数信息;
配置单元, 用于配置所述操作、 管理及维护参数和保护参数。
7、 根据权利要求 6所述的节点, 其特征在于, 还包括:
发送单元, 用于将所述 LSP建立消息发送到下游节点。
8、 根据权利要求 6或 7所述的节点, 其特征在于, 所述 LSP建立消息还携带有 ASS0ICIATI0N对象, 所述 ASS0ICIATI0N对象用于关联工作 LSP和保护 LSP。
9、 根据权利要求 6至 8任一项所述的节点, 其特征在于,
所述操作、 管理及维护参数包括: 路径终结源点标识和快速失效检测频率, 所述保护参数包括: 保护恢复类型和等待恢复时间。
10、 根据权利要求 6至 9任一项所述的节点, 其特征在于,
所述 LSP建立消息为 RSVP-TE协议消息。
PCT/CN2011/080806 2011-02-16 2011-10-14 Lsp保护的建立方法和节点 WO2012109907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110039076.1 2011-02-16
CN201110039076.1A CN102136945B (zh) 2011-02-16 2011-02-16 Lsp保护的建立方法和节点

Publications (1)

Publication Number Publication Date
WO2012109907A1 true WO2012109907A1 (zh) 2012-08-23

Family

ID=44296606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080806 WO2012109907A1 (zh) 2011-02-16 2011-10-14 Lsp保护的建立方法和节点

Country Status (2)

Country Link
CN (1) CN102136945B (zh)
WO (1) WO2012109907A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136945B (zh) * 2011-02-16 2014-03-12 华为技术有限公司 Lsp保护的建立方法和节点
WO2013155675A1 (en) * 2012-04-18 2013-10-24 Telefonaktiebolaget L M Ericsson (Publ) System and method to send oam packets on redundancy paths

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192990A (zh) * 2006-11-30 2008-06-04 华为技术有限公司 一种mpls网络中实现快速重路由的方法及设备及系统
CN101471813A (zh) * 2007-12-29 2009-07-01 华为技术有限公司 一种实现跨域维护管理的配置方法、系统及设备
US20100118708A1 (en) * 2007-07-27 2010-05-13 Hao Long Method, system, and device for configuring operation, administration and maintenance properties
CN101964743A (zh) * 2009-07-24 2011-02-02 华为技术有限公司 多协议标签交换路径aps保护管理方法、设备及系统
CN102136945A (zh) * 2011-02-16 2011-07-27 华为技术有限公司 Lsp保护的建立方法和节点

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373401B1 (en) * 2001-12-31 2008-05-13 Nortel Networks Limited Label switched path OAM wrapper
CN1254054C (zh) * 2002-12-26 2006-04-26 华为技术有限公司 一种光网络中建立双向标签交换路径的方法
CN100514965C (zh) * 2005-06-08 2009-07-15 华为技术有限公司 一种标签交换路径连通性的检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192990A (zh) * 2006-11-30 2008-06-04 华为技术有限公司 一种mpls网络中实现快速重路由的方法及设备及系统
US20100118708A1 (en) * 2007-07-27 2010-05-13 Hao Long Method, system, and device for configuring operation, administration and maintenance properties
CN101471813A (zh) * 2007-12-29 2009-07-01 华为技术有限公司 一种实现跨域维护管理的配置方法、系统及设备
CN101964743A (zh) * 2009-07-24 2011-02-02 华为技术有限公司 多协议标签交换路径aps保护管理方法、设备及系统
CN102136945A (zh) * 2011-02-16 2011-07-27 华为技术有限公司 Lsp保护的建立方法和节点

Also Published As

Publication number Publication date
CN102136945A (zh) 2011-07-27
CN102136945B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
CN111865796B (zh) 用于网络业务的路径计算单元中央控制器(pcecc)
CN101141330B (zh) 一种为lsp隧道建立bfd检测的方法、系统及设备
EP2852104B1 (en) Method and device for establishing multi-protocol label switching traffic engineering tunnel
CN101150587B (zh) 一种多协议标签交换流量工程流量切换的方法、设备及系统
CN101335695B (zh) 点到多点标签交换路径的头节点保护方法、装置和设备
EP2866396B1 (en) Label switching path establishment method, data forwarding method and device
US20060062218A1 (en) Method for establishing session in label switch network and label switch node
JP2006211661A (ja) Mpls基盤のvpn提供装置及びvpn提供方法
US9246838B1 (en) Label switched path setup using fast reroute bypass tunnel
WO2008141567A1 (en) Multi-protocol label switching network flow switch method and equipment
WO2006017982A1 (fr) Procede de reacheminement dans le reseau multiprotocole a commutateur d'etiquettes
EP2541847B1 (en) Method and system for establishing an associated bidirectional label-switched path
KR20110050468A (ko) 트래픽 접속 및 연관된 모니터링 접속을 확립하기 위한 방법들
CA2742608A1 (en) Multicast and bidirectional unicast signaling in single root multipoint services using rsvp-te
KR101257678B1 (ko) 트래픽 접속 및 연관된 모니터링 접속을 확립하기 위한 방법들
EP2239956B1 (en) Method, apparatus and system for ip/optical convergence
WO2012088977A1 (zh) 一种lsp的建立方法、装置和系统
EP2627037B1 (en) Network configuration method
WO2009074057A1 (fr) Procede de protection de nœud de tete, systeme et dispositif pour le trajet de commutation d'etiquettes point a multipoint
KR102180201B1 (ko) 인터페이스 파라미터 동기 방법 및 장치
WO2012109907A1 (zh) Lsp保护的建立方法和节点
WO2013029499A1 (zh) 一种动态路由的实现方法和装置
CN106411751B (zh) 一种路径优化方法及装置
Ward et al. MPLS architectural considerations for a transport profile
WO2013026399A1 (zh) 建立p2mp ms-pw的方法、设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858947

Country of ref document: EP

Kind code of ref document: A1