WO2013029499A1 - 一种动态路由的实现方法和装置 - Google Patents

一种动态路由的实现方法和装置 Download PDF

Info

Publication number
WO2013029499A1
WO2013029499A1 PCT/CN2012/080557 CN2012080557W WO2013029499A1 WO 2013029499 A1 WO2013029499 A1 WO 2013029499A1 CN 2012080557 W CN2012080557 W CN 2012080557W WO 2013029499 A1 WO2013029499 A1 WO 2013029499A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
forwarding
communication network
dcn
forwarding nodes
Prior art date
Application number
PCT/CN2012/080557
Other languages
English (en)
French (fr)
Inventor
国辛纯
董杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013029499A1 publication Critical patent/WO2013029499A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for implementing dynamic routing. Background technique
  • MPLS-TP Multiple Protocol Label Switching Transport Profile
  • OAM Operation Administration Management
  • IETF Internet Engineering Task Force
  • IP Internet Protocol
  • MPLS-TP Internet Protocol
  • the MPLS-TP technology needs to support IP forwarding and non-IP forwarding.
  • the device interface in the non-IP forwarding scenario does not support IP forwarding. Therefore, for non-IP forwarding in MPLS-TP technology, the existing solution is to establish, manage, and maintain network paths using static management.
  • An aspect of the present invention provides a method and an apparatus for implementing dynamic routing to implement dynamic management and maintenance of an MPLS network and a path in a non-IP forwarding scenario.
  • An aspect of the present invention provides a method for implementing dynamic routing, where the method includes: establishing a data communication network DCN channel between two non-IP forwarding nodes, where the non-IP forwarding node does not support Internet Protocol IP packet forwarding.
  • An embodiment of the present invention provides an apparatus for implementing dynamic routing, where the apparatus includes: a channel establishment module, configured to establish a data communication network DCN channel between two non-IP forwarding nodes, where the non-IP forwarding node is not A node that supports Internet Protocol IP packet forwarding;
  • the routing protocol information delivery module is configured to transmit routing protocol information between the non-IP forwarding nodes by using a DCN channel established by the channel establishment module.
  • the implementation method of the dynamic routing provided by the above aspect of the present invention since the data communication network DCN channel is established between the non-IP forwarding nodes, the routing protocol information between the non-IP forwarding nodes is transmitted through the DCN channel. Therefore, compared with the prior art, the implementation method of the dynamic routing provided by the embodiment of the present invention does not depend on the IP path, that is, the non-IP forwarding node can also exchange routing information, thereby establishing a dynamic route. On the other hand, the implementation method of the dynamic routing provided by the embodiment of the present invention can reduce the configuration amount, can be applied to management and maintenance of a large-scale network, and make the use of the dynamic routing protocol and the signaling protocol more flexible. DRAWINGS
  • FIG. 1 is a schematic flowchart of a method for implementing dynamic routing according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a G-ACH and a package format thereof according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an apparatus for implementing dynamic routing according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an apparatus for implementing dynamic routing according to another embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an apparatus for implementing dynamic routing according to another embodiment of the present invention
  • FIG. 6 is a schematic diagram of another embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an apparatus for implementing dynamic routing according to another embodiment of the present invention.
  • An embodiment of the present invention provides a method for implementing dynamic routing, where the method includes: establishing a data communication network DCN channel between two non-IP forwarding nodes, where the non-IP forwarding node is a node that does not support Internet Protocol IP packet forwarding. Passing routing protocol information between the non-IP forwarding nodes through the DCN channel.
  • FIG. 1 it is a schematic flowchart of a method for implementing dynamic routing according to an embodiment of the present invention, which mainly includes the following steps:
  • DCN Data Communication Network
  • NMS Network Management System
  • Non-IP forwarding node refers to this in the MPLS-TP technology.
  • a kind of node this node has a data forwarding interface, but it does not support the forwarding of IP packets.
  • Non-IP forwarding nodes may not be directly adjacent nodes or may be nodes that span different networks. Since the non-IP forwarding node does not support 1?"3 ⁇ 4 text forwarding, the DCN channel is first established between the two non-IP forwarding nodes that wish to communicate.
  • the data communication network DCN channel is an in-band data communication network channel defined by the MPLS-TP based on the Generic Associate Channel Header (G-ACH), and the G- ACH is an extension of the Associate Channel Header (ACH) defined in RFC4385.
  • ACH is applied to the Pseudo-Wire (PW) layer. It is mainly used to transmit special packets such as OAM (Connectivity Detection BFD, Ping, etc.) in the in-band mode, for example, connectivity. Sex detection BFD, ping commands, etc.
  • OAM Connectivity Detection BFD, Ping, etc.
  • the MPLS-TP standard applies G-ACH to the MPLS-TP PW, Label Switching Path (LSP), and Segment layer.
  • LSP Label Switching Path
  • G-ACH The basic structure of the MPLS-TP standard G-ACH is basically the same as that of the ACH.
  • the channel type field of the ACH is extended, and the payload part is identified by a different value of the channel type field.
  • G-ACH and its encapsulation format are shown in Figure 2, where G-ACH is mainly composed of four parts, which means:
  • 0001 field used to identify that the current packet is a G-ACH packet, so that it is distinguished from the data packet (using the 0000 identifier);
  • Version field used to identify the version number of the current message
  • the non-IP forwarding node does not support the forwarding of the routing information, it is also impossible to forward the routing protocol information through the IP path.
  • the information of the Interior Gateway Protocols (IGP) established by the non-IP forwarding nodes includes Open Shortest Path First (OSPF) protocol information and an intermediate system-intermediate system.
  • OSPF Open Shortest Path First
  • IS-IS System-Intermediate System
  • RIP Routing Information Protocol
  • BGP Border Gateway Protocol
  • the routing protocol information between the non-IP forwarding nodes is transmitted through the DCN channel, because the data communication network DCN channel is established between the non-IP forwarding nodes. Therefore, compared with the prior art, the implementation method of the dynamic routing provided by the embodiment of the present invention does not depend on the IP forwarding path, that is, the non-IP forwarding node can also exchange routing information to establish dynamic routing. On the other hand, the implementation method of the dynamic routing provided by the embodiment of the present invention can reduce the configuration amount, can be applied to management and maintenance of a large-scale network, and make the use of the dynamic routing protocol and the signaling protocol more flexible.
  • a data communication network DCN channel is established between non-IP forwarding nodes based on a static Label Switching Path (LSP).
  • LSP path can be statically established in a management manner.
  • a data communication network DCN channel can be established between non-IP forwarding nodes through a network management system or a static configuration command.
  • the data communication network DCN channel includes a Management Communication Network (MCN) channel and a Signaling Communication Network (SCN) channel, wherein the MCN channel is identified by the MCC field in the Channel Type field for transmission management.
  • MCN Management Communication Network
  • SCN Signaling Communication Network
  • the signaling information, the SCN channel is identified by the SCC field in the Channel Type field, and is used to transmit control signaling information.
  • routing protocol information between the non-IP forwarding nodes may be transmitted through a signaling communication network SCN channel.
  • the respective routes are advertised, and the routing of the routes and the sharing of the routing information are performed.
  • dynamic routing is established between each non-IP forwarding node.
  • the non-IP forwarding node can transmit control signaling and establish a label-based forwarding entry. For example, the port can be searched out based on the destination address, and the label can be forwarded based on the label.
  • the method further includes: transmitting dynamic control signaling through the DCN channel, that is, between the non-IP forwarding nodes that establish the IP routing, Dynamic control signaling is performed through the DCN channel, for example, Label Distribution Protocol (LDP) signaling or Resource Engineering Protocol-Traffic Engineering (RSVP-TE) signaling based on traffic engineering extension.
  • LDP Label Distribution Protocol
  • RSVP-TE Resource Engineering Protocol-Traffic Engineering
  • a dynamic LSP forwarding path or a PW pseudowire is established.
  • the OMC, protection, and other signaling are transmitted on the established LSP path based on the DCN channel, and the path is dynamically managed and maintained.
  • the method may further include: transmitting a signaling protocol through the SCN channel of the signaling communication network, that is, using signaling on the dynamically established LSP path.
  • the communication network SCN channel transmits signaling protocols to maintain and manage paths such as path removal, optimization, and bandwidth adjustment.
  • FIG. 3 it is a schematic structural diagram of an apparatus for implementing dynamic routing according to an embodiment of the present invention.
  • the implementation device of the dynamic routing illustrated in FIG. 3 may be a node in a communication system, for example, a routing device or a network.
  • the network management system and the like, the apparatus may include a channel establishment module 301 and a routing protocol information delivery module 302, wherein:
  • the channel establishment module 301 is configured to establish a data communication network DCN channel between two non-IP forwarding nodes.
  • non-IP forwarding node refers to a node in the MPLS-TP technology.
  • the node has a data forwarding interface, but it does not support forwarding of Internet Protocol IP packets, and non-IP forwarding nodes. It may not be a directly adjacent node or may be a node that spans different networks. Since the non-IP forwarding node does not support ⁇ " ⁇ text forwarding, the channel establishment module 301 first establishes a DCN channel between two non-IP forwarding nodes that wish to communicate.
  • the data communication network DCN channel is an in-band data communication network channel defined by MPLS-TP based on G-ACH
  • G-ACH is an associated channel header defined for RFC4385 ( Associate Channel An extension of Header, ACH).
  • ACH is applied to the Pseudo-Wire (PW) layer. It is mainly used to transmit special packets such as OAM (Connectivity Detection BFD, Ping, etc.) in the in-band mode, for example, connectivity. Sex detection BFD, ping commands, etc.
  • OAM Connectivity Detection BFD, Ping, etc.
  • the MPLS-TP standard applies G-ACH to the MPLS-TP PW, Label Switching Path (LSP), and Segment layer.
  • LSP Label Switching Path
  • G-ACH The basic structure of the MPLS-TP standard G-ACH is basically the same as that of the ACH.
  • the channel type field of the ACH is extended, and the payload part is identified by a different value of the channel type field.
  • G-ACH and its encapsulation format are shown in Figure 2, where G-ACH is mainly composed of four parts, which means:
  • 0001 field used to identify that the current packet is a G-ACH packet, so that it is distinguished from the data packet (using the 0000 identifier);
  • Version field used to identify the version number of the current message
  • Reserve field This field is not currently used, reserved for future expansion;
  • the content of the packet identifies different packet types through different Channel Type fields, including Automatic Protection Switching (APS), Operation Administration Management ( ⁇ ), and signaling communication channels.
  • APS Automatic Protection Switching
  • Operation Administration Management
  • SCC Signaling communication Channel
  • SCC Sendaling communication Channel
  • MCC essay and management communication channel
  • the routing protocol information delivery module 302 is configured to transmit routing protocol information between the non-IP forwarding nodes by using a DCN channel established by the channel establishment module 301.
  • the routing protocol information delivery module 302 passes the routing protocol information between the non-IP forwarding nodes through the DCN channel established by the channel establishment module 301, for example, Interior Gateway Protocols (IGP) information, including the shortest opening. Open Shortest Path First (OSPF) protocol information, Intermediate System-Intermediate System (IS-IS) protocol information, Routing Information Protocol (RIP) information, and Border Gateway protocol (Border Gateway) Protocol, BGP) information and more.
  • OSPF Open Shortest Path First
  • IS-IS Intermediate System-Intermediate System
  • RIP Routing Information Protocol
  • Border Gateway Border Gateway protocol
  • each functional module is merely an example, and the actual application may be performed according to requirements, such as configuration requirements of corresponding hardware or convenience of implementation of software.
  • the function allocation is completed by different functional modules, that is, the internal structure of the dynamic routing implementation device is divided into different functional modules to complete all or part of the functions described above.
  • the corresponding functional modules in this embodiment may be implemented by corresponding hardware, or may be executed by corresponding hardware, for example, the foregoing channel establishment module may have the foregoing implementation in two Non-IP forwarding section
  • the hardware of the data communication network DCN channel between the points such as the channel builder, may also be a general processor or other hardware device capable of executing the corresponding computer program to perform the foregoing functions; and the routing protocol information delivery module as described above may be Having a function of performing the aforementioned DCN channel established by the channel establishment module (or channel builder) to transfer routing protocol information between the non-IP forwarding nodes, such as a routing protocol information transmitter, may also be capable of executing a corresponding computer
  • the general processor or other hardware device that programs to perform the aforementioned functions (the various described embodiments of the present specification can apply the above described principles).
  • the channel establishment module 301 of the example of FIG. 3 further includes a static path establishment unit 401, such as the implementation of the dynamic routing illustrated in FIG.
  • the static path establishing unit 401 is configured to establish a data communication network DCN channel between non-IP forwarding nodes based on a static Label Switching Path (LSP).
  • LSP Label Switching Path
  • a Label Switching Path can be statically established through management mode.
  • a data communication network DCN channel can be established between non-IP forwarding nodes through a network management system or a static configuration command. .
  • the data communication network DCN channel includes a Management Communication Network (MCN) channel and a Signaling Communication Network (SCN) channel, wherein the MCN channel is identified by the MCC field in the Channel Type field for transmission management.
  • MCN Management Communication Network
  • SCN Signaling Communication Network
  • the signaling information, the SCN channel is identified by the SCC field in the Channel Type field, and is used to transmit control signaling information.
  • the routing protocol information delivery module 302 illustrated in FIG. 3 further includes an information transmission unit 501, such as the dynamic routing implementation device illustrated in FIG.
  • the information transmission unit 501 is configured to transmit routing protocol information between the non-IP forwarding nodes through a signaling communication network SCN channel. Based on the established DCN channel between the non-IP forwarding nodes, the respective routes are advertised, and the routing of the routes and the sharing of the routing information are performed.
  • non-IP forwarding nodes can transmit control signaling and establish label-based forwarding entries. For example, you can find out the port and outbound labels based on the destination address, and forward the packets based on the labels.
  • the apparatus for implementing dynamic routing illustrated in FIG. 5 may further include a signaling protocol delivery module
  • the signaling protocol delivery module 601 is configured to transmit a signaling protocol through the SCN channel of the signaling communication network, that is, use a signaling communication network SCN channel to transmit a signaling protocol on the dynamically established LSP path, and perform path removal, optimization, and bandwidth adjustment. Maintenance and management of such paths.
  • the apparatus for implementing dynamic routing of any of the examples of Figures 3 through 6 may further include a dynamic control signaling delivery module 701, such as the dynamic routing implementation device illustrated in Figure 7.
  • the dynamic control signaling delivery module 701 is configured to transmit dynamic control signaling through the DCN channel, that is, to perform dynamic control signaling (for example, a label distribution protocol) through the DCN channel between non-IP forwarding nodes that establish IP routes.
  • dynamic control signaling for example, a label distribution protocol
  • LDP Label Distribution Protocol
  • RSVP-TE Resource Reservation Protocol
  • the LSP path is established based on the DCN channel pair. OAM, protection and other signaling, dynamic management and maintenance of the path.
  • the non-IP forwarding node is a node that does not support Internet Protocol IP packet forwarding;
  • the program may be stored in a computer readable storage medium, and the storage medium may be Including: only Read memory (ROM, Read Only Memory), random access memory (RAM), disk or optical disk.

Abstract

一种动态路由的实现方法,以实现在非 IP转发场景下的 MPLS网络和路径的动态管理、维护,所述方法包括:在两个非 IP转发节点之间建立数据通信网络 DCN通道,所述非 IP转发节点为不支持互联网协议 IP报文转发的节点;通过所述 DCN通道传递所述非 IP转发节点之间的路由协议信息。与现有技术相比,一方面,本发明实施例提供的动态路由的实现方法并不依赖于 IP路径,即,在非 IP转发节点之间也能够交互路由信息,从而建立动态路由,另一方面,本发明实施例提供的动态路由的实现方法可以减小配置量,能够适用于大规模的网络的管理和维护,使动态路由协议和信令协议的使用更加灵活。

Description

一种动态路由的实现方法和装置 本申请要求于 2011 年 8 月 29 日提交中国专利局、 申请号为 201110251211. 9 , 发明名称为 "一种动态路由的实现方法和装置" 的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种动态路由的实现方法和装置。 背景技术
多协议标签交换传输应用 ( Multiple Protocol Label Switching Transport Profile, MPLS-TP )是一种面向传输的 MPLS技术, 其基于现有的 MPLS技 术的基本架构和转发机制, 扩展了 MPLS面向传输的特性, 主要包括运营管 理维护 ( Operation Administration Management, OAM ) 、 保护、 控制和管 理等几个层面, 目前, 与 MPLS-TP相关的技术正在互联网工程任务组 ( Internet Engineering Task Force, IETF )被标准化。
现有的大部分控制协议本身是基于互联网协议( Internet Protocol, IP ) 分组的,一般通过在具有 IP能力的接口上进行 IP数据报文的交换和转发, 实 现控制协议的使用。 MPLS-TP技术需要支持 IP转发和非 IP转发两种场景, 而 非 IP转发场景下的设备接口不支持 IP转发。 因此,对于 MPLS-TP技术中的非 IP转发,现有的解决方案是使用静态管理方式实现网络路径的建立、管理和 维护。
然而, 对于中小规模的网络, 现有的静态管理方式勉强还能够实现网 络路径的建立、 管理和维护, 对于大规模的网络, 由于配置量很大, 管理 和维护也很复杂, 网络的灵活性也不佳。 发明内容
本发明一方面提供一种动态路由的实现方法和装置,以实现在非 IP转发 场景下的 MPLS网络和路径的动态管理、 维护。
本发明一方面提供一种动态路由的实现方法, 所述方法包括: 在两个非 IP转发节点之间建立数据通信网络 DCN通道,所述非 IP转发节 点为不支持互联网协议 IP报文转发的节点; 本发明一方面提供一种动态路由的实现装置, 所述装置包括: 通道建立模块, 用于在两个非 IP转发节点之间建立数据通信网络 DCN 通道, 所述非 IP转发节点为不支持互联网协议 IP报文转发的节点;
路由协议信息传递模块, 用于通过所述通道建立模块建立的 DCN通道 传递所述非 IP转发节点之间的路由协议信息。
从上述本发明一方面提供的动态路由的实现方法可知,由于在非 IP转发 节点之间建立了数据通信网络 DCN通道, 非 IP转发节点之间的路由协议信 息通过所述 DCN通道进行传递。 因此, 与现有技术相比, 一方面, 本发明 实施例提供的动态路由的实现方法并不依赖于 IP路径, 即, 在非 IP转发节点 之间也能够交互路由信息, 从而建立动态路由, 另一方面, 本发明实施例 提供的动态路由的实现方法可以减小配置量, 能够适用于大规模的网络的 管理和维护, 使动态路由协议和信令协议的使用更加灵活。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对现有技术或实 施例描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的 附图仅仅是本发明的一些实施例, 对于本领域技术人员来讲, 还可以如这 些附图获得其他的附图。 图 1是本发明实施例提供的一种动态路由的实现方法流程示意图; 图 2是本发明实施例提供的 G-ACH及其封装格式示意图;
图 3是本发明实施例提供的动态路由的实现装置结构示意图;
图 4是本发明另一实施例提供的动态路由的实现装置结构示意图; 图 5是本发明另一实施例提供的动态路由的实现装置结构示意图; 图 6是本发明另一实施例提供的动态路由的实现装置结构示意图; 图 7是本发明另一实施例提供的动态路由的实现装置结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域技术人员所获得的 所有其他实施例, 都属于本发明保护的范围。
本发明实施例提供一种动态路由的实现方法,该方法包括: 在两个非 IP 转发节点之间建立数据通信网络 DCN通道, 所述非 IP转发节点为不支持互 联网协议 IP报文转发的节点;通过所述 DCN通道传递所述非 IP转发节点之间 的路由协议信息。
请参阅附图 1 , 是本发明实施例提供的一种动态路由的实现方法流程示 意图, 主要包括步骤:
S101 , 在两个非 IP转发节点之间建立数据通信网络 ( Data Communication Network, DCN )通道。
在本发明实施例中, 可以是网络管理系统 ( Network Management System, NMS ), 希望进行通信的两个非 IP转发节点中的一个非 IP转发节点 或者其他通信主体,在两个非 IP转发节点之间建立数据通信网络通道,本发 明实施例对此不做限制。 所谓 "非 IP转发节点" 是指 MPLS-TP技术中的这 样一种节点, 这种节点具有数据转发接口, 但它不支持 IP报文的转发, 非 IP 转发节点可以不是直接相邻的节点或可以是跨越不同网络的节点。由于非 IP 转发节点不支持 1?"¾文转发, 因此, 首先在希望进行通信的两个非 IP转发节 点之间建立 DCN通道。
在本发明实施例中, 数据通信网络 DCN通道是 MPLS-TP基于通用关联 通道头 (Generic Associate Channel Header , G-ACH ) 定义的一种带内 ( in-band )数据通信网络通道, 而 G-ACH是对 RFC4385定义的关联通道头 ( Associate Channel Header , ACH ) 的一种扩展。 ACH应用于伪线 ( Presudo-Wire, PW )层面, 主要用于带内( in-band )的方式传输 OAM (连 通性检测 BFD、 Ping等)等管理信息之类的特殊报文, 例如, 连通性检测 BFD、 Ping命令等。 MPLS-TP标准将 G-ACH应用于 MPLS-TP的 PW、 标签交 换路径(Label Switching Path, LSP ) 以及段 ( Segment )层。
MPLS-TP标准的 G-ACH的基本结构与 ACH基本一致, 主要是对 ACH的 信道类型 ( Channel Type )字段进行了扩展, 通过信道类型 ( Channel Type ) 字段不同的值标识净荷 (payload ) 部分为传输的不同类型的特殊报文, G-ACH及其封装格式如附图 2所示, 其中 G-ACH主要由 4个部分组成, 说明 下:
0001字段: 用于标识当前报文是 G-ACH报文, 使其与数据报文(釆用 0000标识)相区分;
Version字段: 用于标识当前报文的版本号;
Reserve字段: 该字段目前没有使用, 预留至以后扩展使用; 报文内容, 通过不同的 Channel Type字段标识不同的报文类型, 包括自动保 护倒换( Automatic Protection Switching, APS )才艮文、运营管理维护( Operation Administration Management , OAM ) 才艮文、 信令通信通道 ( Signaling communication Channel , SCC ) 才艮文和管理通信通道 ( Management Communication Channel, MCC )才艮文等等。 由于非 IP转发节点不支持 ΙΡ· ^艮文转发, 因此, 也不可能通过 IP路径进行 路由协议信息的转发。在本发明实施例中,是通过非 IP转发节点之间建立的 议( Interior Gateway Protocols, IGP )信息, 包括开放最短路径优先( Open Shortest Path First, OSPF ) 协议信息、 中间系统-中间系统 ( Intermediate System-Intermediate System , IS-IS ) 协议信息、 路由信息协议 ( Routing Information Protocol , RIP )信息和边界网关协议 ( Border Gateway Protocol , BGP )信息等等。 当路由协议信息通过非 IP转发节点之间建立的 DCN通道 传递之后,各个非 IP转发节点就能共享路由信息,从而在各个节点之间建立 动态路由。
从上述本发明实施例提供的动态路由的实现方法可知,由于在非 IP转发 节点之间建立了数据通信网络 DCN通道, 非 IP转发节点之间的路由协议信 息通过所述 DCN通道进行传递。 因此, 与现有技术相比, 一方面, 本发明 实施例提供的动态路由的实现方法并不依赖于 IP转发路径, 即,在非 IP转发 节点之间也能够交互路由信息, 从而建立动态路由, 另一方面, 本发明实 施例提供的动态路由的实现方法可以减小配置量, 能够适用于大规模的网 络的管理和维护, 使动态路由协议和信令协议的使用更加灵活。
在本发明一个实施例中, 是基于静态的标签交换路径( Label Switching Path, LSP ), 在非 IP转发节点之间建立数据通信网络 DCN通道。 具体地, 可以通过管理方式静态建立 LSP路径, 例如, 可以通过网络管理系统 ( Network Management System )或者静态的配置命令在非 IP转发节点之间 建立数据通信网络 DCN通道。 数据通信网络 DCN通道包括管理通信网络 ( Management Communication Network , MCN ) 通道和信令通信网络 ( Signaling Communication Network, SCN )通道, 其中, MCN通道釆用 Channel Type 字段中的 MCC字段标识, 用于传输管理信令信息, SCN通道釆用 Channel Type字段中的 SCC字段标识, 用于传输控制信令信息。 在本发明实施例中, 可以通过信令通信网络 SCN通道传递所述非 IP转发节点之间的路由协议信 息。 在非 IP转发节点之间基于建立的 DCN通道, 发布各自的路由, 进行相 互之间路由的发布和路由信息的共享。 完成路由信息发布之后, 各个非 IP 转发节点之间建立了动态的路由。基于动态的路由,非 IP转发节点之间可以 传递控制信令, 建立基于标签的转发表项, 例如, 可以根据目的地址查找 出端口、 出标签, 基于标签进行报文的转发。
在本发明实施例中, 通过 DCN通道传递非 IP转发节点之间的路由协议 信息之后进一步包括: 通过 DCN通道传递动态的控制信令, 即, 在建立了 IP路由的非 IP转发节点之间, 通过 DCN通道运行动态的控制信令, 例如, 标 签分发协议( Label Distribution Protocol, LDP )信令或基于流量工程扩展的 资源予贞留协议 ( Resource Reservation Protocol-Traffic Engineering, RSVP-TE ) 信令, 建立动态的 LSP转发路径或 PW伪线; 同样地, 基于 DCN通道对建立 的 LSP路径传输 OAM、 保护等信令, 对路径进行动态管理和维护。
在本发明实施例中, 通过 DCN通道传递非 IP转发节点之间的路由协议 信息之后还可以包括: 通过信令通信网络 SCN通道传递信令协议, 即在动 态建立的 LSP路径上, 使用信令通信网络 SCN通道传递信令协议, 对路径进 行拆除、 优化和带宽调整等路径的维护和管理。
请参阅附图 3 , 是本发明实施例提供的动态路由的实现装置结构示意 图。 为了便于说明, 仅仅示出了与本发明实施例相关的部分。 附图 3示例的 动态路由的实现装置可以是通信系统中的一个节点, 例如, 路由设备或网 络管理系统等等, 该装置可以包括通道建立模块 301和路由协议信息传递模 块 302, 其中:
通道建立模块 301 , 用于在两个非 IP转发节点之间建立数据通信网络 DCN通道。
在本实施例中, 所谓 "非 IP转发节点" 是指 MPLS-TP技术中的这样一 种节点,这种节点具有数据转发接口,但它不支持互联网协议 IP报文的转发, 非 IP转发节点可以不是直接相邻的节点或可以是跨越不同网络的节点。由于 非 IP转发节点不支持 ^"^文转发, 因此, 首先通过通道建立模块 301在希望 进行通信的两个非 IP转发节点之间建立 DCN通道。
在本实施例中, 数据通信网络 DCN通道是 MPLS-TP基于 G-ACH定义的 一种带内 (in-band )数据通信网络通道, 而 G-ACH是对 RFC4385定义的关 联通道头( Associate Channel Header, ACH )的一种扩展。 ACH应用于伪线 ( Presudo-Wire, PW )层面, 主要用于带内( in-band )的方式传输 OAM (连 通性检测 BFD、 Ping等)等管理信息之类的特殊报文, 例如, 连通性检测 BFD、 Ping命令等。 MPLS-TP标准将 G-ACH应用于 MPLS-TP的 PW、 标签交 换路径(Label Switching Path, LSP ) 以及段 ( Segment )层。
MPLS-TP标准的 G-ACH的基本结构与 ACH基本一致, 主要是对 ACH的 信道类型 ( Channel Type )字段进行了扩展, 通过信道类型 ( Channel Type ) 字段不同的值标识净荷 (payload ) 部分为传输的不同类型的特殊报文, G-ACH及其封装格式如附图 2所示, 其中 G-ACH主要由 4个部分组成, 说明 下:
0001字段: 用于标识当前报文是 G-ACH报文, 使其与数据报文(釆用 0000标识)相区分;
Version字段: 用于标识当前报文的版本号;
Reserve字段: 该字段目前没有使用, 预留至以后扩展使用; 报文内容, 通过不同的 Channel Type字段标识不同的报文类型, 包括自动保 护倒换( Automatic Protection Switching, APS )才艮文、运营管理维护( Operation Administration Management , ΟΑΜ ) 才艮文、 信令通信通道 ( Signaling communication Channel , SCC ) 才艮文和管理通信通道 ( Management Communication Channel, MCC )才艮文等等。
路由协议信息传递模块 302 , 用于通过所述通道建立模块 301建立的 DCN通道传递所述非 IP转发节点之间的路由协议信息。
由于非 IP转发节点不支持 ΙΡ· ^艮文转发, 因此, 也不可能通过 IP路径进行 路由协议信息的转发。 在本实施例中, 路由协议信息传递模块 302通过通道 建立模块 301建立的 DCN通道传递非 IP转发节点之间的路由协议信息, 例 如, 内部网关协议( Interior Gateway Protocols , IGP )信息, 包括开放最短 路径优先( Open Shortest Path First, OSPF )协议信息、 中间系统-中间系统 ( Intermediate System-Intermediate System, IS-IS )协议信息、 路由信息协 议 ( Routing Information Protocol , RIP ) 信息和边界网关协议 ( Border Gateway Protocol, BGP )信息等等。 当路由协议信息通过非 IP转发节点之 间建立的 DCN通道传递之后, 各个非 IP转发节点就能共享路由信息, 从而 在各个节点之间建立动态路由。
需要说明的是, 以上动态路由的实现装置的实施方式中, 各功能模块 的划分仅是举例说明, 实际应用中可以根据需要, 例如相应硬件的配置要 求或者软件的实现的便利考虑, 而将上述功能分配由不同的功能模块完成, 即将所述动态路由的实现装置的内部结构划分成不同的功能模块, 以完成 以上描述的全部或者部分功能。 而且, 实际应用中, 本实施例中的相应的 功能模块可以是由相应的硬件实现, 也可以由相应的硬件执行相应的软件 完成, 例如, 前述的通道建立模块, 可以是具有执行前述在两个非 IP转发节 点之间建立数据通信网络 DCN通道的硬件, 例如通道建立器, 也可以是能 够执行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设 备; 再如前述的路由协议信息传递模块, 可以是具有执行前述通过所述通 道建立模块(或通道建立器)建立的 DCN通道传递所述非 IP转发节点之间 的路由协议信息功能的硬件, 例如路由协议信息传递器, 也可以是能够执 行相应计算机程序从而完成前述功能的一般处理器或者其他硬件设备(本 说明书提供的各个实施例都可应用上述描述原则 )。
附图 3示例的通道建立模块 301进一步包括静态路径建立单元 401 , 如附 图 4示例的动态路由的实现装置。 静态路径建立单元 401用于基于静态的标 签交换路径(Label Switching Path, LSP ), 在非 IP转发节点之间建立数据通 信网络 DCN通道。具体地,可以通过管理方式静态建立标签交换路径(Label Switching Path, LSP )„例如,可以通过网络管理系统(Network Management System )或者静态的配置命令在非 IP转发节点之间建立数据通信网络 DCN 通道。
数据通信网络 DCN通道包括管理通信网络 ( Management Communication Network , MCN ) 通道和信令通信网络 ( Signaling Communication Network, SCN )通道, 其中, MCN通道釆用 Channel Type 字段中的 MCC字段标识, 用于传输管理信令信息, SCN通道釆用 Channel Type字段中的 SCC字段标识, 用于传输控制信令信息。 附图 3示例的路由协 议信息传递模块 302进一步包括信息传输单元 501 , 如附图 5示例的动态路由 的实现装置。 信息传输单元 501用于通过信令通信网络 SCN通道传递所述非 IP转发节点之间的路由协议信息。 在非 IP转发节点之间基于建立的 DCN通 道, 发布各自的路由, 进行相互之间路由的发布和路由信息的共享。 完成 路由信息发布之后,各个非 IP转发节点之间建立了动态的路由。基于动态的 路由, 非 IP转发节点之间可以传递控制信令, 建立基于标签的转发表项, 例 如, 可以根据目的地址查找出端口、 出标签, 基于标签进行报文的转发。 附图 5示例的动态路由的实现装置可以进一步包括信令协议传递模块
601 , 如附图 6示例的动态路由的实现装置。 信令协议传递模块 601用于通过 信令通信网络 SCN通道传递信令协议, 即在动态建立的 LSP路径上, 使用信 令通信网络 SCN通道传递信令协议, 对路径进行拆除、 优化和带宽调整等 路径的维护和管理。
附图 3至附图 6任一示例的动态路由的实现装置可以进一步包括动态控 制信令传递模块 701 , 如附图 7示例的动态路由的实现装置。 动态控制信令 传递模块 701用于通过 DCN通道传递动态的控制信令, 即, 在建立了 IP路由 的非 IP转发节点之间, 通过 DCN通道运行动态的控制信令(例如, 标签分 发协议 (Label Distribution Protocol , LDP ) 或资源预留协议-流量工程 ( Resource Reservation Protocol- Traffic Engineer, RSVP-TE ) ), 建立动态的 LSP路径或 PW伪线; 同样地, 基于 DCN通道对建立的 LSP路径传输 OAM、 保护等信令, 对路径进行动态管理和维护。
需要说明的是, 上述装置各模块 /单元之间的信息交互、 执行过程等内 容, 由于与本发明方法实施例基于同一构思, 其带来的技术效果与本发明 方法实施例相同, 具体内容可参见本发明方法实施例中的叙述, 此处不再 赘述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分 步骤是可以通过程序来指令相关的硬件来完成, 比如以下各种方法的一种 或多种或全部:
在两个非 IP转发节点之间建立数据通信网络 DCN通道,所述非 IP转发节 点为不支持互联网协议 IP报文转发的节点; 该程序可以存储于一计算机可读存储介质中, 存储介质可以包括: 只 读存储器(ROM, Read Only Memory ), 随机存取存储器 ( RAM, Random Access Memory )、 磁盘或光盘等。
以上对本发明实施例提供的一种动态路由的实现方法和装置进行了详 以上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应用 范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的 限制。

Claims

权利要求
1、 一种动态路由的实现方法, 其特征在于, 所述方法包括: 在两个非 IP转发节点之间建立数据通信网络 DCN通道,所述非 IP转发节 点为不支持互联网协议 IP报文转发的节点;
2、如权利要求 1所述的方法, 其特征在于, 所述在两个非 IP转发节点之 间建立数据通信网络 DCN通道包括:
基于静态的标签交换路径 LSP,在非 IP转发节点之间建立数据通信网络 DCN通道。
3、 如权利要求 2所述的方法, 其特征在于, 所述基于静态的标签交换 路径 LSP, 在非 IP转发节点之间建立数据通信网络 DCN通道包括:
通过网络管理系统或者静态的配置命令在非 IP转发节点之间建立数据 通信网络 DCN通道。
4、 如权利要求 1至 3任意一项所述的方法, 其特征在于, 所述 DCN通道 包括信令通信网络 SCN通道; 括:
5、 如权利要求 4所述的方法, 其特征在于, 所述通过所述 DCN通道传 递所述非 IP转发节点之间的路由协议信息之后进一步包括:
通过所述 SCN通道传递信令协议。
6、 如权利要求 1至 5任意一项所述的方法, 其特征在于, 所述通过所述 通过所述 DCN通道传递动态的控制信令。
7、 一种动态路由的实现装置, 其特征在于, 所述装置包括: 通道建立模块, 用于在两个非 IP转发节点之间建立数据通信网络 DCN 通道, 所述非 IP转发节点为不支持互联网协议 IP报文转发的节点;
路由协议信息传递模块, 用于通过所述通道建立模块建立的 DCN通道 传递所述非 IP转发节点之间的路由协议信息。
8、 如权利要求 7所述的装置, 其特征在于, 所述通道建立模块包括静 态路径建立单元, 用于基于静态的标签交换路径 LSP, 在两个非 IP转发节点 之间建立数据通信网络 DCN通道。
9、 如权利要求 8所述的装置, 其特征在于, 所述静态路径建立单元具 体用于通过网络管理系统或者静态的配置命令在非 IP转发节点之间建立数 据通信网络 DCN通道。
10、 如权利要求 7所述的装置, 其特征在于, 所述 DCN通道包括信令通 信网络 SCN通道, 所述路由协议信息传递模块包括信令通信网络通道信息 传输单元;
所述信令通信网络通道信息传输单元, 用于通过所述 SCN通道传递所 述非 IP转发节点之间的路由协议信息。
11、 如权利要求 10所述的装置, 其特征在于, 所述装置进一步包括: 信令协议传递模块, 用于通过所述 SCN通道传递信令协议。
12、 如权利要求 7至 10任意一项所述的装置, 其特征在于, 所述装置进 一步包括:
动态控制信令传递模块,用于通过所述 DCN通道传递动态的控制信令。
PCT/CN2012/080557 2011-08-29 2012-08-24 一种动态路由的实现方法和装置 WO2013029499A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2011102512119A CN102957614A (zh) 2011-08-29 2011-08-29 一种动态路由的实现方法和装置
CN201110251211.9 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013029499A1 true WO2013029499A1 (zh) 2013-03-07

Family

ID=47755318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080557 WO2013029499A1 (zh) 2011-08-29 2012-08-24 一种动态路由的实现方法和装置

Country Status (2)

Country Link
CN (1) CN102957614A (zh)
WO (1) WO2013029499A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3437268A1 (en) * 2016-03-30 2019-02-06 IDAC Holdings, Inc. System and methods for supporting low mobility devices in next generation wireless network
US10291531B2 (en) * 2016-06-30 2019-05-14 Juniper Networks, Inc. Bandwidth management for resource reservation protocol LSPS and non-resource reservation protocol LSPS
CN108111416B (zh) * 2017-12-15 2020-10-23 盛科网络(苏州)有限公司 直接识别mpls内部封装报文的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984581A (zh) * 2010-11-04 2011-03-09 中兴通讯股份有限公司 一种数据通信网络的开通方法及系统
CN102136995A (zh) * 2010-08-09 2011-07-27 华为技术有限公司 Mpls与mpls-tp之间oam转换的方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136995A (zh) * 2010-08-09 2011-07-27 华为技术有限公司 Mpls与mpls-tp之间oam转换的方法及装置
CN101984581A (zh) * 2010-11-04 2011-03-09 中兴通讯股份有限公司 一种数据通信网络的开通方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT: "An In-Band Data Communication Network For the MPLS Transport Profile", January 2010 (2010-01-01), pages 2, Retrieved from the Internet <URL:http://tools.ietf.org/html/rfc5718.> *

Also Published As

Publication number Publication date
CN102957614A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
EP3295622B1 (en) Path computation element central controllers (pceccs) for network services
US9306855B2 (en) System and method for using label distribution protocol (LDP) in IPv6 networks
EP2747354B1 (en) Topology discovery, control channel establishment, and datapath provisioning within an aggregation network with centralized control
AU2011306508B2 (en) Method and apparatus to improve LDP convergence using hierarchical label stacking
US20160006614A1 (en) Source Routing Using Path Computation Elements
JP5209116B2 (ja) パケット交換網における擬似ワイヤの確立
US20060062218A1 (en) Method for establishing session in label switch network and label switch node
US9668160B2 (en) Topology discovery based on SCTP/X2 snooping
EP2735126B1 (en) Signaling a label switched path (lsp) tunneling model
EP3058777B1 (en) Topology discovery based on explicit signaling
WO2013029499A1 (zh) 一种动态路由的实现方法和装置
WO2012109860A1 (zh) 建立标签交换路径的方法、设备和系统
WO2012013060A1 (zh) 通过伪线传输业务的方法及装置
JP6017037B6 (ja) グレースフルリスタート対応のネイバのためにrsvp hello抑制を使用するシステムおよび方法
JP6017037B2 (ja) グレースフルリスタート対応のネイバのためにrsvphello抑制を使用するシステムおよび方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828460

Country of ref document: EP

Kind code of ref document: A1