WO2012108716A2 - 다중 송수신 포인트를 사용하는 무선 통신 시스템 - Google Patents

다중 송수신 포인트를 사용하는 무선 통신 시스템 Download PDF

Info

Publication number
WO2012108716A2
WO2012108716A2 PCT/KR2012/001001 KR2012001001W WO2012108716A2 WO 2012108716 A2 WO2012108716 A2 WO 2012108716A2 KR 2012001001 W KR2012001001 W KR 2012001001W WO 2012108716 A2 WO2012108716 A2 WO 2012108716A2
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmit
reference signal
point
terminal
Prior art date
Application number
PCT/KR2012/001001
Other languages
English (en)
French (fr)
Other versions
WO2012108716A3 (ko
Inventor
고영조
노태균
이희수
서방원
안재영
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to JP2013553367A priority Critical patent/JP2014505447A/ja
Priority to CN201280017159.3A priority patent/CN103563270A/zh
Priority to EP12744397.6A priority patent/EP2675078A4/en
Priority to US13/984,880 priority patent/US9560663B2/en
Priority to EP18184323.6A priority patent/EP3407506A1/en
Publication of WO2012108716A2 publication Critical patent/WO2012108716A2/ko
Publication of WO2012108716A3 publication Critical patent/WO2012108716A3/ko
Priority to US15/411,812 priority patent/US10292169B2/en
Priority to US16/370,870 priority patent/US11284406B2/en
Priority to US17/681,775 priority patent/US11812459B2/en
Priority to US18/386,972 priority patent/US20240064792A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0079Acquisition of downlink reference signals, e.g. detection of cell-ID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a wireless communication system using multiple transmission and reception points applicable to a wireless communication system having a plurality of transmission and reception points geographically separated from each other in a cell.
  • wireless communication systems are accelerating data rates.
  • the CoMP transmission / reception method represents a transmission / reception operation between two or more points (site, cell, base station, distributed antenna, etc.) and one or more terminals.
  • the CoMP transmission / reception method may be classified into uplink CoMP transmission and downlink CoMP transmission.
  • the uplink CoMP transmission is a transmission method in which a predetermined terminal transmits a signal to a plurality of points geographically separated from each other, and joint processing a signal received from the terminal at the plurality of points.
  • the UE does not need to know from which network node a signal is transmitted or what processing is performed on the received signal, and only needs to know what downlink signaling is provided in connection with the uplink transmission. . Therefore, uplink CoMP transmission can be introduced without major changes in the specification of the air interface.
  • Downlink CoMP transmission is a method in which a plurality of geographically separated points collaborate to transmit signals to one or more terminals.
  • the downlink CoMP category is jointly processed (JP: Joint Processing) and cooperative beamforming / Coordinated Scheduling (CB / CS: Coordinated Beamforming / Coordinated Scheduling), and Joint Processing (JP) again performs simultaneous PDSCH (Physical Downlink Shared CHannel) transmission at multiple points. Joint transmission) and a case of performing PDSCH transmission at one point are divided into dynamic point selection (DPS).
  • JP Joint Processing
  • DPS dynamic point selection
  • the dynamic point selection (DPS) method is a method of PDSCH transmission at one point in a CoMP cooperative set at a specific moment.
  • the transmission point may be dynamically changed and performance may be degraded due to a feedback delay.
  • the cooperative beamforming / cooperative scheduling (CB / CS) method is a method of transmitting data to a terminal only at a serving point at a specific moment, and is a passive method of avoiding interference between transmission points, and thus a large capacity increase can be expected.
  • No backhaul may be used when user scheduling / beamforming requires information exchange between base stations having different point-to-point cooperation corresponding to CoMP cooperation sets.
  • the above-described conventional standards have a problem that cannot be applied in a multi-point transmission environment in which a plurality of points belong to the same cell and have the same physical layer cell ID.
  • An object of the present invention for overcoming the above disadvantages is to wirelessly use multiple transmission / reception points to enable communication using a plurality of points in a network environment where a plurality of points belong to the same cell and have the same physical layer cell ID. It is to provide a communication system.
  • a wireless communication system using multiple transmission / reception points includes a first transmission / reception point and at least one second transmission / reception point belonging to the same cell.
  • the first transmission / reception point has a wider transmission area than the at least one second transmission / reception point, and the first transmission / reception point and the at least one second transmission / reception point have the same physical layer cell identity (Physical Cell Identity).
  • a downlink transmission signal is generated using the downlink transmission signal.
  • the first transmission / reception point may transmit a synchronization signal and a cell specific reference signal corresponding to the physical layer cell ID
  • the at least one second transmission / reception point may refer to the synchronization signal and the cell-specific reference by the first transmission / reception point.
  • the signal may not be transmitted using the radio resource used to transmit the signal.
  • the first transmit / receive point and the at least one second transmit / receive point transmit a CSI reference signal generated using the physical layer cell ID, and correspond to the setting of the CSI reference signal.
  • the mapping of the radio resources may be performed such that the first transmission / reception point and the at least one second transmission / reception point are different from each other.
  • the first transmit / receive point and the at least one second transmit / receive point generate a physical multicast channel (PMCH) or a multicast-broadcast single frequency network reference signal (MBSFN) by using the physical layer cell ID.
  • the resource may be used to transmit the PMCH or MBSFN reference signal.
  • the first transmission / reception point may include a physical broadcast channel (PBCH), a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), and a physical hybrid ARQ indicator channel (PHICH) generated using the physical layer cell ID.
  • PBCH physical broadcast channel
  • PCFICH physical control format indicator channel
  • PDCCH physical downlink control channel
  • PHICH physical hybrid ARQ indicator channel
  • a Positioning Reference Signal may be transmitted, and the at least one second transmission / reception point may use radio resources used by the first transmission / reception point to transmit the PBCH, PCFICH, PDCCH, PHICH, or Position Reference Signal. Can be configured not to transmit signals.
  • the first transmission / reception point and the at least one second transmission / reception point may simultaneously transmit at least one of the PBCH, PCFICH, PDCCH, PHICH and location reference signal using the same radio resource.
  • a wireless communication system using multiple transmission and reception points for achieving the object of the present invention, a base station, a first transmission and reception point belonging to the same cell operated by the base station and at least one second transmission and reception
  • the first transmit / receive point has a wider transmission area than the at least one second transmit / receive point
  • the first transmit / receive point and the at least one second transmit / receive point are allocated to a terminal.
  • a signal to be transmitted to the terminal is generated using the virtual cell ID.
  • the first transmit / receive point may transmit a Physical Downlink Shared Channel (PDSCH) generated using the virtual cell ID to the terminal, and the at least one second transmit / receive point may be transmitted by the terminal to a CSI RS.
  • PDSCH Physical Downlink Shared Channel
  • the UE-specific reference signal generated using the PDSCH and the virtual cell ID may be transmitted to the UE.
  • the first transmission / reception point and the at least one second transmission / reception point may use radio resources determined by using the virtual cell ID for radio resource mapping of a signal transmitted to an antenna port 5 to the terminal. .
  • the base station configures a cooperative point set composed of at least one transmit / receive point that performs cooperative transmission for the terminal based on the channel state information reported from the terminal, and at least one transmit / receive point included in the cooperative point set
  • the PDSCH generated using the virtual cell ID of the terminal may be transmitted to the terminal using the same radio resource, and a terminal specific reference signal for demodulation of the terminal may be simultaneously transmitted to the terminal.
  • a base station In addition, a wireless communication system using multiple transmission and reception points according to another aspect of the present invention for achieving the object of the present invention, a base station, a first transmission and reception point belonging to the same cell operated by the base station and at least one second
  • the base station includes a CSI reference including a channel state information reference signal transmitted by at least one transmission / reception point of the first transmission / reception point and the at least one transmission / reception point. At least one to be measured by the terminal based on the received measurement result after transmitting signal measurement information to the terminal and receiving a measurement result for the CSI reference signal corresponding to the CSI reference signal measurement information from the terminal
  • the CSI reference signal pattern is transmitted to the terminal.
  • a wireless communication system using multiple transmission and reception points for achieving the object of the present invention, a base station, a first transmission and reception point belonging to the same cell operated by the base station and at least one second
  • a wireless communication system having a transmission / reception point at least one terminal generates an uplink channel and a reference signal using different virtual cell IDs assigned from the base station, and then the first transmission / reception point and the at least one The transmission may be transmitted to at least one transmission / reception point of the second transmission / reception point.
  • each of the at least one terminal uses a different virtual cell ID assigned to each of the physical uplink shared channel (PUSCH), a physical uplink control channel (PUCCH), a demodulation reference signal (DM RS), and a sounding reference signal (SRS). At least one signal may be generated.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • DM RS demodulation reference signal
  • SRS sounding reference signal
  • a wireless communication system using multiple transmission / reception points in a communication environment in which a plurality of transmission / reception points belonging to the same cell have the same physical layer cell ID, physical channel transmission for downlink communication using a plurality of transmission / reception points
  • a method and a reference signal transmission method and a method of transmitting a physical channel and a reference signal by introducing a virtual cell ID, it is possible to efficiently transmit using a plurality of transmission and reception points while minimizing changes to existing standard specifications. do.
  • an uplink physical channel and a reference signal transmission method are provided by introducing a virtual cell ID for uplink communication using the plurality of transmission and reception points. By doing so, it is possible to improve uplink communication efficiency while minimizing changes to existing standard specifications.
  • FIG. 1 is a conceptual diagram illustrating a wireless communication system using multiple transmission / reception points according to an embodiment of the present invention.
  • FIG. 2 illustrates a downlink communication method of a wireless communication system using multiple transmission / reception points according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating an example of using a virtual cell ID in downlink transmission using multiple transmission / reception points according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a CSI reference signal based measurement process in a downlink communication method using multiple transmission / reception points according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a process of performing cooperative multi-point transmission in a downlink communication method using multiple transmission / reception points according to an embodiment of the present invention.
  • Terminals used in the present application include a mobile station (MS), a mobile terminal (MT), a user terminal, a user equipment (UE), a user terminal (UT), a wireless terminal, and an access terminal.
  • MS mobile station
  • MT mobile terminal
  • UE user equipment
  • UT user terminal
  • AT Subscriber Unit
  • SS Subscriber Station
  • WTRU Wireless Transmit / Receive Unit
  • Mobile Node Mobile or Other It may be referred to as terms.
  • the term 'base station' used in the present application generally refers to a fixed point for communicating with a terminal, and includes a base station, a Node-B, an eNode-B, and a BTS ( It may be called other terms such as Base Transceiver System, Access Point.
  • the 'point' or 'transmit and receive point' used in the present application is provided with at least one transmitting and receiving antenna, and a transmission and reception device capable of transmitting and receiving information with the base station connected to the base station and the optical fiber, microwave, etc.
  • a remote radio head RRH
  • RRU remote radio unit
  • a site a distributed antenna, or the like.
  • FIG. 1 is a conceptual diagram illustrating a wireless communication system using multiple transmission / reception points according to an embodiment of the present invention.
  • each transmission region 151 of each of the plurality of narrow transmission / reception points 150 may be arranged to be included in the transmission region 131 of the wide transmission / reception point 130, and the plurality of narrow transmission / reception points may be included. They may be connected wirelessly or by wire with the wide area transmission / reception point 130 to exchange control information and / or data.
  • the plurality of narrow transmit and receive points 150 and wide transmit and receive points 130 may be connected to the base station 110 through an optical fiber, a microwave, and the like to exchange information with the base station 110, and through the base station 110. Information may be exchanged with different transmission and reception points.
  • the second physical layer cell ID allocation method is a method of allocating the same physical layer cell ID to all transmission / reception points 130 and 150 belonging to the same cell, and the conventional 3GPP LTE or LTE-Advanced standard is the second method. Not applicable to
  • a downlink communication method for communication of transmission / reception points when all transmission / reception points belong to the same cell and are assigned the same cell ID, a downlink communication method for communication of transmission / reception points and Provides an uplink communication method.
  • the communication between the base station and the terminal in the embodiment of the present invention conforms to the 3GPP LTE-Advanced Release-10 standard.
  • FIG. 2 illustrates a downlink communication method of a wireless communication system using multiple transmission / reception points according to an embodiment of the present invention.
  • a downlink communication method using multiple transmission / reception points two methods of transmitting a synchronization signal and a cell-specific reference signal may be considered.
  • the cell specific reference signal is used for estimating the downlink channel by the terminal and demodulating the received signal based on the terminal.
  • a specific transmit / receive point (for example, a wide transmit / receive point) among transmit / receive points transmits a synchronization signal corresponding to a physical layer cell ID and a cell-specific reference signal using a transmit antenna provided by the transmit / receive point.
  • Transmit / receive points are a method in which the specific transmit / receive point does not transmit a signal using radio resources used to transmit a synchronization signal and a cell-specific reference signal.
  • the second method is a method in which all transmission and reception points simultaneously transmit a synchronization signal corresponding to a physical layer cell ID and a cell specific reference signal using the same radio resource.
  • the radio resource means a resource element of time-frequency space defined in 3GPP LTE and LTE-Advanced standard specifications.
  • Each transmission / reception point may transmit its own CSI reference signal (Channel State Information Reference Signal).
  • the CSI reference signal is a reference signal used by the UE to measure the quality of the downlink channel, and the configuration of the CSI reference signal transmitted by each transmission point and the mapping of the corresponding radio resource may be different.
  • the CSI reference signal sequence used by each transmitting / receiving point to transmit its own CSI reference signal may be generated using a physical layer cell ID.
  • Each transmission / reception point belonging to the same cell may transmit the PMCH using the same radio resource.
  • the PMCH refers to a physical channel used for a multicast-broadcast single frequency network (MBSFN) operation.
  • the PBCH is a physical channel used to transmit system information necessary for the UE to access a network.
  • two methods for transmitting a PBCH are provided. .
  • a wideband transmit / receive point transmits a PBCH.
  • the wideband transmit / receive point uses a physical layer cell ID as defined in the LTE and LTE-Advanced standards for generating a scrambling sequence for bit-level scrambling in PBCH transmission.
  • the at least one narrowband transmit / receive point does not transmit a signal by using radio resources used by the wideband transmit / receive point to transmit the PBCH.
  • the second method is a method in which all transmission / reception points belonging to the same cell simultaneously transmit the same PBCH using the same radio resource.
  • each transmission / reception point uses a physical layer cell ID as defined in the LTE and LTE-Advanced standards to generate a scrambling sequence for bit-by-bit scrambling during PBCH transmission.
  • the PCFICH is a downlink physical channel used to provide UEs with information necessary to decode a Physical Downlink Control Channel (PDCCH).
  • PDCCH Physical Downlink Control Channel
  • the PCFICH is used. Provides two ways to transfer.
  • the first method is a method in which a wide transmit / receive point transmits a PCFICH.
  • the wideband transmit / receive point uses a physical layer cell ID as defined in the LTE and LTE-Advanced standards for generating radio resource mapping for PCFICH transmission and scrambling sequence for bit-by-bit scrambling.
  • the at least one narrowband transmit / receive point does not transmit a signal using radio resources used by the wideband transmit / receive point to transmit the PCFICH.
  • the second method is a method in which all transmission / reception points belonging to the same cell simultaneously transmit the same PCFICH using the same radio resource.
  • each transmit / receive point uses a physical layer cell ID as defined in the LTE and LTE-Advanced standards to generate a scrambling sequence for bit-by-bit scrambling during PCFICH transmission.
  • the PDCCH includes information such as downlink control information such as scheduling assignment required for reception of a Physical Downlink Shared Channel (PDSCH) and information such as scheduling grant for transmitting a Physical Uplink Shared Channel (PUSCH) of the UE.
  • Downlink physical channel used for transmission is information such as downlink control information such as scheduling assignment required for reception of a Physical Downlink Shared Channel (PDSCH) and information such as scheduling grant for transmitting a Physical Uplink Shared Channel (PUSCH) of the UE.
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the downlink communication method using multiple transmission / reception points provides two methods of transmitting a PDCCH.
  • the first method is a method in which a wide transmit / receive point transmits a PDCCH.
  • the wideband transmit / receive point uses a physical layer cell ID as defined in the LTE and LTE-Advanced standards for generating a scrambling sequence for mapping a radio resource and generating bit-by-bit scrambling during PDCCH transmission.
  • the at least one narrowband transmit / receive point does not transmit a signal using radio resources that the wideband transmit / receive point uses to transmit the PDCCH.
  • each transmit / receive point uses a physical layer cell ID as defined in the LTE and LTE-Advanced standards to generate a scrambling sequence for bit-by-bit scrambling during PDCCH transmission.
  • the PHICH is a downlink physical channel used for transmitting a HARQ acknowledgment for informing the terminal whether to retransmit a transport block.
  • the downlink communication method using multiple transmission / reception points provides two methods for transmitting a PHICH.
  • the first method is a method in which a wide transmit / receive point transmits a PHICH.
  • the wideband transmit / receive point uses a physical layer cell ID as defined in the LTE and LTE-Advanced standards to generate a cell-specific scrambling sequence during PHICH transmission.
  • the at least one narrowband transmit / receive point does not transmit a signal using radio resources that the wideband transmit / receive point uses to transmit the PHICH.
  • the second method is a method in which all transmission / reception points belonging to the same cell simultaneously transmit the same PHICH using the same radio resource.
  • each transmit / receive point uses a physical layer cell ID as defined in the LTE and LTE-Advanced standards to generate a scrambling sequence for bit-by-bit scrambling during PHICH transmission.
  • the MBSFN Reference Signal is a reference signal used for the UE to measure a composite channel of each transmission / reception point for transmitting MBSFN data.
  • each transmission / reception point may transmit an MBSFN reference signal.
  • the radio resource and sequence used by each transmission / reception point for transmitting the MBSFN reference signal may be the same.
  • Positioning Reference Signal is a signal transmitted by a base station and / or transmission / reception points to effectively perform position estimation of a terminal.
  • the terminal measures its position reference signal and based on the measured value. By calculating and transmitting to the base station and / or the transmission and reception points, or by transmitting the information necessary to calculate the location of the terminal so that the base station and / or transmission and reception points to determine the location of the terminal.
  • the downlink communication method using multiple transmission / reception points provides two methods of transmitting a location reference signal.
  • each transmission / reception point uses a physical layer cell ID for the sequence generation of the location reference signal and the radio resource mapping of the location reference signal, as defined in the LTE-Advanced standard.
  • a plurality of transmit / receive points belong to the same cell for a terminal supporting LTE-Advanced Release-11 or later standard standard. Introduce a virtual cell ID.
  • a reference signal sequence used for a UE-specific reference signal is a pseudo random sequence, and an initialization value used for generating a pseudo random sequence is different depending on the physical layer cell ID. It is defined. Therefore, cells having different physical layer cell IDs use different pseudo random sequences as reference signal sequences. The reason why different cells generate different pseudo random sequences using different physical layer cell IDs is to alleviate inter-cell interference. In particular, in the case of the reference signals corresponding to antenna ports 7, 8, 9, 10, 11, 12, 13, 14, all cells use the same radio resource, thereby mitigating interference signals caused by reference signals transmitted from adjacent cells. It is necessary to use different reference signal sequences between adjacent cells.
  • each transmission and reception point in order for the transmission and reception points to use different reference signals, it is preferable to use different initialization values when each transmission and reception point generates a pseudo random sequence used for generating a UE-specific reference signal sequence.
  • FIG. 3 is a flowchart illustrating an example of using a virtual cell ID in downlink transmission using multiple transmission / reception points according to an embodiment of the present invention.
  • the base station 110 informs a virtual cell ID for each terminal 171, 173 (step S310).
  • the base station 110 generates a pseudo random sequence by applying the virtual cell ID instead of the physical layer cell ID to generate a reference signal sequence (step S320), and uses each of the terminals 171 and 173 using the generated reference signal sequence. After generating a unique reference signal of (S330), and transmits the unique reference signal of each of the generated terminal (171, 173) to the corresponding terminal (step S340).
  • the virtual cell ID may be assigned a different value for each terminal.
  • Each terminal 171 or 173 generates a reference signal sequence using the virtual cell ID assigned from the base station 110 (step S350), and detects the terminal specific reference signal using the generated reference signal sequence (step S360). ).
  • the base station may generate a pseudo random sequence by applying a virtual cell ID instead of a physical layer cell ID to generate a scrambling sequence used for bit scrambling of each codeword.
  • the UE generates the scrambling sequence using the virtual cell ID allocated from the base station and then performs PDSCH detection using the generated scrambling sequence.
  • the scrambling sequence used for the bit-by-bit scrambling of each codeword generates a pseudo random sequence using a physical layer cell ID to generate a scrambling sequence.
  • a terminal having been assigned a virtual cell ID generates a scrambling sequence using the virtual cell ID instead of the physical layer cell ID.
  • the scrambling sequence may be generated using the physical layer cell ID. For example, in the process of performing a random access to access the network, the terminal has not been assigned a virtual cell ID yet, so the base station applies the physical layer cell ID to the response and message transmission of the random access of the terminal. After the scrambling sequence is generated, bit-scrambling of the codeword coded using the generated scrambling sequence is performed.
  • the downlink communication method using multiple transmission / reception points provides two methods for transmitting a PDSCH.
  • the first method is a method in which a wide transmit / receive point transmits a PDSCH.
  • the UE demodulates the PDSCH received from the wideband transmit / receive point using a cell-specific reference signal (CRS) or a UE-specific reference signal (UE) according to a transmission mode.
  • CRS cell-specific reference signal
  • UE UE-specific reference signal
  • the at least one narrowband transmission / reception point is a transmission mode in which the terminal acquires channel estimation and channel quality indicator (CQI) information using a CSI reference signal (CSI-RS) and performs data demodulation using a terminal specific reference signal. If set, the PDSCH and the UE-specific reference signal may be transmitted to the corresponding UE.
  • CQI channel estimation and channel quality indicator
  • CSI-RS CSI reference signal
  • the at least one narrowband transmission / reception point does not transmit the PDSCH to the terminal when the terminal is set to a transmission mode in which the terminal acquires channel estimation and CQI information using a cell specific reference signal (CRS) and performs data demodulation. This is because the first method does not transmit the cell specific reference signal (CRS) to the terminal.
  • CRS cell specific reference signal
  • each transmit / receive point belonging to the same cell corresponds to each other.
  • the transmission mode is configured to acquire channel estimation and CQI information using cell-specific reference signals and perform data demodulation, all transmission / reception points belonging to the same cell transmit the same PDSCH to the UE at the same time.
  • Each transmission / reception point belonging to the same cell may transmit a UE-specific reference signal together with the PDSCH.
  • each transmitting / receiving point uses a virtual cell ID instead of a physical layer cell ID for radio resource mapping of a signal (for example, UE unique reference signal) transmitted to antenna port 5 to a terminal to which a virtual cell ID is allocated.
  • a signal for example, UE unique reference signal
  • each transmit / receive point generates and transmits a UE-specific reference signal sequence using a physical layer cell ID to a terminal that has not been assigned a virtual cell ID, and the received terminal generates a reference signal sequence generated using the physical layer cell ID. Detects the UE specific reference signal by using.
  • each transmission / reception point uses radio resources determined by using a physical layer cell ID for radio resource mapping for a signal transmitted to antenna port 5 to a terminal that has not been assigned a virtual cell ID.
  • each transmit / receive point belonging to the same cell may perform a function of PDCCH and PHICH defined in LTE or LTE-Advanced standard, respectively. Introduce the channel.
  • a new physical channel capable of performing the function of the PDCCH is referred to as RRH-PDCCH
  • a new physical channel capable of performing the PHICH function is referred to as RRH-PHICH.
  • Each transmit / receive point belonging to the same cell transmits the RRH-PDCCH and RRH-PHICH together with the UE-specific reference signal so that the UE can demodulate the RRH-PDCCH and RRH-PHICH.
  • the RRH-PDCCH and the RRH-PHICH may be transmitted using some of radio resources that can be used for PDSCH transmission.
  • each transmission / reception point may use a virtual cell ID for mapping RRH-PDCCH and RRH-PHICH to radio resources and generating a scrambling sequence for bit-by-bit scrambling.
  • a new reference signal is introduced to increase the positioning accuracy of the terminal.
  • the new reference signal is referred to as RRH-PRS.
  • a plurality of transmission and reception points belonging to the same cell may transmit the RRH-PRS for positioning of the terminal.
  • each transmission / reception point may use a virtual cell ID for sequence generation of RRH-PRS and radio resource mapping of RRH-PRS.
  • a CSI RS based measurement is performed.
  • FIG. 4 is a flowchart illustrating a CSI reference signal based measurement process in a downlink communication method using multiple transmission / reception points according to an embodiment of the present invention.
  • the base station 110 transmits CSI reference signal measurement information for each terminal (step S410).
  • the CSI reference signal measurement information may include configuration information corresponding to all or part of the CSI reference signals transmitted from each transmission / reception point, and the terminal 170 from the configuration information according to a predefined mapping rule. ) Is configured to know radio resource pattern information of time-frequency space of CSI reference signals.
  • the terminal 170 Upon receiving the information for measuring the CSI reference signal transmitted from the base station 110, the terminal 170 performs measurement on the CSI reference signals included in the CSI reference signal measurement information (step S420), and the measurement result is determined by the base station ( 110) (step S430).
  • the base station 110 determines the CSI reference signal pattern or the CSI reference signal patterns to be measured by the terminal 170 based on the measurement result received from the terminal 170 (step S440), and determines the determined CSI reference signal pattern or CSI reference.
  • the signal patterns are transmitted to the terminal 170 (step S450).
  • the terminal 170 acquires the CSI for link adaptation using the CSI reference signal pattern or the CSI reference signal patterns received from the base station 110 (step S460), and acquires the obtained CSI to the base station 110. Report (step S470).
  • the base station 110 performs link adaptation based on the CSI received from the terminal 170 (step S480).
  • a base station may perform cooperative multiple transmission / reception point transmission in which data or control information is transmitted to a terminal using a plurality of transmission / reception points.
  • a set of a plurality of transmission / reception points for performing cooperative transmission with respect to a terminal is referred to as a “cooperative point set”.
  • FIG. 5 is a flowchart illustrating a process of performing cooperative multi-point transmission in a downlink communication method using multiple transmission / reception points according to an embodiment of the present invention.
  • the base station 110 receives channel state information from each terminal 170 (step S510).
  • the plurality of transmission and reception points 151 and 153 included in the cooperative point set for performing the cooperative multiplex transmission and reception point transmission to the terminal 170 generate a transmission signal to transmit the same data to the terminal 170 using the same radio resource. Thereafter (step S530), the generated transmission signal and the terminal specific reference signal for demodulation of the terminal 170 are transmitted together to the terminal 170 (step S540).
  • a plurality of transmit / receive points performing cooperative multiple transmit / receive point transmissions must transmit the UE-specific reference signals at the same time and use the same reference signal sequence.
  • a plurality of transmit / receive points performing cooperative multiple transmit / receive point transmission transmit a PDSCH and a UE-specific reference signal sequence generated using a virtual cell ID informed by a base station.
  • Bit-scrambling sequence generation in PUCCH format 3 cell-specific Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol-based cyclic shift hopping (cell-specific cyclic shift hopping), cell-specific SC-FDMA symbolic scrambling
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the terminals supporting the LTE Release-8 / 9/10 standard Since the terminals supporting the LTE Release-8 / 9/10 standard generate signals according to the corresponding supporting standards, the terminals generate and transmit the signals using the same physical layer cell ID.
  • the resources used by the terminal may be reused according to the position of the terminal in order to increase the frequency utilization efficiency. That is, the terminals having relatively little influence of interference may transmit the above signals using the same resource.
  • the resources used by the terminal may be reused based on a transmission / reception point for receiving a signal transmitted from the terminal in order to spatially reuse the frequency resources to increase the frequency utilization efficiency.
  • a terminal provides a method of performing uplink transmission using a virtual cell ID.
  • the terminal is assigned a virtual cell ID from the base station, by applying the assigned virtual cell ID in place of the physical layer cell ID to apply some or all uplink channels and signals (for example, PUSCH, PUCCH, DM RS, SRS) Generate and transmit the generated signal.
  • uplink channels and signals for example, PUSCH, PUCCH, DM RS, SRS
  • terminals belonging to transmission / reception points adjacent to each other may use different virtual cell IDs to receive signals between transmission / reception points.
  • the effect of mitigating interference can be obtained.
  • the uplink communication method using multiple transmission / reception points according to an embodiment of the present invention described above may be introduced to the LTE-Advanced Release-11 standard standard or later standard standard, and to terminals supporting the standard standard. Can be applied.
  • the terminal that has not been assigned the virtual cell ID may generate the above-described channels and signals using the physical layer cell ID. .
  • the physical layer cell ID may be used for random access message transmission and PUCCH ACK / NAK transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

다중 송수신 포인트를 사용하는 무선 통신 시스템이 개시된다. 동일 셀에 속한 제1 송수신 포인트 및 적어도 하나의 제2 송수신 포인트를 구비한 무선 통신 시스템에서, 제1 송수신 포인트는 적어도 하나의 제2 송수신 포인트보다 더 넓은 전송 영역을 가지며, 제1 송수신 포인트 및 적어도 하나의 제2 송수신 포인트는 동일한 물리계층 셀 아이디 또는 단말별로 할당한 가상 셀 아이디를 이용하여 하향링크 전송 신호를 생성하고, 단말은 할당받은 가상 셀 아이디를 이용하여 상향링크 전송 신호를 생성한다.

Description

다중 송수신 포인트를 사용하는 무선 통신 시스템
본 발명은 무선 통신 시스템에 관한 것으로, 더욱 상세하게는 셀 내에 지리적으로 서로 떨어진 복수의 송수신 포인트를 구비한 무선 통신 시스템에 적용할 수 있는 다중 송수신 포인트를 사용하는 무선 통신 시스템에 관한 것이다.
무선 통신 시스템은 유선 통신 시스템과 더불어 데이터 전송률이 초고속화 되고 있다. 이와 같은 추세에 발맞추어 4세대 이동통신 시스템인 3GPP(3rd Generation Project Partnership) LTE(Long Term Evolution)-Advanced 시스템은 협력 다중 포인트(CoMP: Coordinated MultiPoint, 이하, 'CoMP'라 지칭함) 송수신 방법의 표준화를 추진하고 있다.
CoMP 송수신 방법은 두 개 이상의 포인트(사이트, 셀, 기지국, 분산안테나 등)와 하나 이상의 단말간의 송수신 동작을 나타내는 것으로, CoMP 송수신 방법은 상향링크 CoMP 전송과 하향링크 CoMP 전송으로 구분할 수 있다.
상향링크 CoMP 전송은 소정 단말이 서로 지리적으로 떨어진 복수의 포인트들로 신호를 전송하고, 복수의 포인트들에서는 단말로부터 수신된 신호를 공동 처리(joint processing)하는 전송 방법이다. 상향링크 CoMP 전송에서 단말은 어떤 네트워크 노드로부터 신호가 전송되었는지 또는 수신된 신호에 어떠한 처리가 이루어졌는지에 대해 인지할 필요가 없으며, 상향링크 전송과 관련되어 어떤 하향링크 시그널링이 제공되는지에 대해서만 알면 된다. 따라서, 상향링크 CoMP 전송은 무선 인터페이스의 규격에 큰 변화 없이 도입될 수 있다.
하향링크 CoMP 전송은 서로 지리적으로 떨어진 복수의 포인트들이 서로 협업적으로 하나 이상의 단말로 신호를 전송하는 방법으로, 3GPP TR 36.814에서는 하향링크 CoMP 카테고리를 공동 처리(JP: Joint Processing)와 협력 빔포밍/협력 스케줄링(CB/CS: Coordinated Beamforming/Coordinated Scheduling)으로 구분하고, Joint Processing(JP)은 다시 멀티 포인트(multiple points)에서 PDSCH(Physical Downlink Shared CHannel) 전송을 동시에 수행하는 경우를 공동 전송(JT: Joint Transmission), 하나의 포인트(one point)에서 PDSCH 전송을 수행하는 경우를 동적 포인트 선택(DPS: Dynamic Point Selection)으로 구분하고 있다.
공동 전송(JT)은 CoMP 협력 집합(CoMP cooperating set) 내의 각 전송 포인트에서 데이터 사용이 가능한 분산 안테나 개념으로, 무선 채널의 정보를 정확히 알아야 하며, 지연 및 예측 오류 등으로 인해 성능이 매우 유동적인 특징이 있다.
동적 포인트 선택(DPS) 방법은 특정 순간에 CoMP 협력 집합 내의 하나의 포인트에서 PDSCH 전송을 하는 방법으로, 전송 포인트는 동적으로 변화될 수 있고 피드백 지연으로 성능이 저하 될 수 있다.
협력 빔포밍/협력 스케줄링(CB/CS) 방법은 특정 순간에 서빙 포인트(serving point)에서만 데이터를 단말에 전송하는 방법으로, 전송 포인트간 간섭을 회피하는 수동적인 방법이기 때문에 큰 용량 증대를 기대할 수 없으며, 유저 스케줄링/빔포밍이 CoMP 협력 집합에 상응하는 포인트 간 협력이 서로 다른 기지국 간의 정보 교환을 필요로 하는 경우 백홀(backhaul)을 사용할 수 있다.
한편, 3GPP LTE 표준 규격 Release-8, Release-9 및 LTE-Advanced 표준 규격 Release-10 에서는 모든 전송 포인트들이 서로 다른 물리계층 셀 아이디(Physical Cell Identity)를 갖는 것이 일반적이다. 이에 따라 상기 표준 규격들에 상술한 바와 같은 다중 포인트를 이용한 전송 방식을 적용한다면 다중 포인트를 이용한 전송은 각 전송 포인트들이 독자적인 셀 영역(cell coverage)을 갖는 환경에서 수행된다고 볼 수 있다.
따라서, 상기한 종래의 표준 규격들은 복수의 포인트들이 동일한 셀에 속하고 동일한 물리계층 셀 아이디를 가지는 다중 포인트 전송 환경에서는 적용할 수 없는 문제가 있다.
상기한 바와 같은 단점을 극복하기 위한 본 발명의 목적은 복수의 포인트들이 동일한 셀에 속하고 동일한 물리계층 셀 아이디를 가지는 네트워크 환경에서 복수의 포인트들을 사용한 통신을 가능하게 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템을 제공하는 것이다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 일 측면에 따른 다중 송수신 포인트를 사용하는 무선 통신 시스템은, 동일 셀에 속한 제1 송수신 포인트 및 적어도 하나의 제2 송수신 포인트를 구비한 무선 통신 시스템에서, 상기 제1 송수신 포인트는 상기 적어도 하나의 제2 송수신 포인트보다 더 넓은 전송 영역을 가지며, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 동일한 물리계층 셀 아이디(Physical Cell Identity)를 이용하여 하향링크 전송 신호를 생성한다.
여기서, 상기 제1 송수신 포인트는 상기 물리계층 셀 아이디에 해당하는 동기 신호 및 셀 고유 참조 신호를 전송할 수 있고, 상기 적어도 하나의 제2 송수신 포인트는 상기 제1 송수신 포인트가 상기 동기 신호 및 셀 고유 참조 신호를 전송하는데 사용한 무선 자원을 이용하여 신호를 전송하지 않을 수 있다.
여기서, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 상기 물리계층 셀 아이디를 사용하여 생성한 CSI 참조 신호(Channel State Information Reference Signal)를 전송하되, 상기 CSI 참조 신호의 설정과 이에 상응하는 무선자원의 매핑은 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트가 서로 다르도록 수행할 수 있다.
여기서, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 상기 물리계층 셀 아이디를 이용하여 PMCH(Physica Multicast Channel) 또는 MBSFN 참조 신호(Muticast-Broadcast Single Frequency Network Reference Signal)를 생성하고 동일한 무선자원을 사용하여 PMCH 또는 MBSFN 참조 신호를 전송할 수 있다.
여기서, 상기 제1 송수신 포인트는 상기 물리계층 셀 아이디를 이용하여 생성한 PBCH(Physical Broadcast Channel), PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid ARQ Indicator Channel) 또는 위치 참조 신호(Positioning Reference Signal)를 전송할 수 있고, 상기 적어도 하나의 제2 송수신 포인트는 상기 제1 송수신 포인트가 상기 PBCH, PCFICH, PDCCH, PHICH 또는 위치 참조 신호를 전송하기 위해 사용하는 무선자원을 이용하여 신호를 전송하지 않도록 구성될 수 있다.
여기서, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 동일한 무선자원을 사용하여 동시에 상기 PBCH, PCFICH, PDCCH, PHICH 및 위치 참조 신호 중 적어도 하나를 전송할 수 있다.
또한, 본 발명의 목적을 달성하기 위한 본 발명의 다른 측면에 따른 다중 송수신 포인트를 사용하는 무선 통신 시스템은, 기지국, 상기 기지국이 운용하는 동일 셀에 속한 제1 송수신 포인트 및 적어도 하나의 제2 송수신 포인트를 구비한 무선 통신 시스템에서, 상기 제1 송수신 포인트는 상기 적어도 하나의 제2 송수신 포인트보다 더 넓은 전송 영역을 가지며, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 단말에게 할당된 가상 셀 아이디를 이용하여 상기 단말에 전송할 신호를 생성한다.
여기서, 상기 제1 송수신 포인트는 상기 가상 셀 아이디를 이용하여 생성한 PDSCH(Phsical Downlink Shared Channel)를 상기 단말에 전송할 수 있고, 상기 적어도 하나의 제2 송수신 포인트는 상기 단말이 CSI 참조 신호(Channel State Information Reference Signal) 및 단말 고유 참조 신호(UE-specific Reference Signal)를 사용하는 경우 상기 PDSCH 및 상기 가상 셀 아이디를 이용하여 생성한 상기 단말 고유 참조 신호를 상기 단말에 전송할 수 있다.
여기서, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 상기 단말이 셀 고유 참조 신호(Cell-specific Reference Signal)을 사용하는 경우 PDSCH를 동시에 상기 단말에 전송할 수 있다.
여기서, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 상기 단말에 안테나 포트(antenna port) 5로 전송되는 신호의 무선자원 매핑에 상기 가상 셀 아이디를 사용하여 결정된 무선자원을 사용할 수 있다.
여기서, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는, 상기 가상 셀 아이디를 사용하여 PDCCH 및 PHICH 기능을 각각 수행하는 물리 채널 및 위치 참조 신호를 생성할 수 있고, 상기 생성한 PDCCH 및 PHICH 기능을 각각 수행하는 물리 채널은 상기 제1 송수신 포인트가 PDSCH 전송에 사용할 수 있는 무선자원을 사용하여 전송할 수 있다.
상기 기지국은 상기 단말로부터 보고된 채널 상태 정보에 기초하여 상기 단말에 대한 협력 전송을 수행한 적어도 하나의 송수신 포인트로 구성된 협력 포인트 집합을 구성하고, 상기 협력 포인트 집합에 포함된 적어도 하나의 송수신 포인트는 상기 단말의 가상 셀 아이디를 이용하여 생성한 PDSCH를 동일한 무선 자원을 사용하여 상기 단말에 전송할 수 있고, 상기 단말의 복조를 위한 단말 고유 참조 신호를 상기 PDSCH와 동시에 상기 단말에 전송할 수 있다.
또한, 본 발명의 목적을 달성하기 위한 본 발명의 또 다른 측면에 따른 다중 송수신 포인트를 사용하는 무선 통신 시스템은, 기지국, 상기 기지국이 운용하는 동일 셀에 속한 제1 송수신 포인트 및 적어도 하나의 제2 송수신 포인트를 구비한 무선 통신 시스템에서, 상기 기지국은 상기 제1 송수신 포인트 및 상기 적어도 하나의 송수신 포인트들 중 적어도 하나의 송수신 포인트에서 전송하는 CSI 참조 신호(Channel State Information Reference Signal)가 포함된 CSI 참조 신호 측정 정보를 상기 단말에 전송하고, 상기 단말로부터 상기 CSI 참조 신호 측정 정보에 상응하는 CSI 참조 신호에 대한 측정 결과를 수신한 후, 수신한 상기 측정 결과에 기초하여 상기 단말이 측정해야 할 적어도 하나의 CSI 참조 신호 패턴을 상기 단말에 전송한다.
또한, 본 발명의 목적을 달성하기 위한 본 발명의 또 다른 측면에 따른 다중 송수신 포인트를 사용하는 무선 통신 시스템은, 기지국, 상기 기지국이 운용하는 동일 셀에 속한 제1 송수신 포인트 및 적어도 하나의 제2 송수신 포인트를 구비한 무선 통신 시스템에서, 적어도 하나의 단말이 상기 기지국으로부터 각각 할당받은 서로 다른 가상 셀 아이디를 이용하여 상향링크 채널 및 참조 신호를 생성한 후, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트 중 적어도 하나의 송수신 포인트에 전송할 수 있다.
여기서, 상기 적어도 하나의 단말 각각은 할당받은 서로 다른 가상 셀 아이디를 이용하여 PUSCH(Physical Uplink Shared Channel), PUCCH(Physical Uplink Control Channel), DM RS(Demodulation Reference Signal) 및 SRS(Sounding Reference Signal) 중 적어도 하나의 신호를 생성할 수 있다.
상술한 바와 같은 다중 송수신 포인트를 사용하는 무선 통신 시스템에 따르면, 동일한 셀 내에 속하는 복수의 송수신 포인트들이 동일한 물리계층 셀 아이디를 가지는 통신 환경에서, 복수의 송수신 포인트들을 이용한 하향링크 통신을 위한 물리채널 전송 방법 및 참조 신호 전송 방법을 제공하고, 가상 셀 아이디를 도입하여 물리 채널 및 참조 신호를 전송하는 방법을 제공함으로써, 기존의 표준 규격에 대한 변경을 최소화하면서 복수의 송수신 포인트들을 이용한 효율적인 전송을 가능하게 한다.
또한, 동일한 셀 내에 속하는 복수의 송수신 포인트들을 이용한 협력 전송 방법을 제공함으로써 하향링크 통신 효율을 향상시킬 수 있다.
또한, 동일한 셀 내에 속하는 복수의 송수신 포인트들이 동일한 물리계층 셀 아이디를 가지는 통신 환경에서, 복수의 송수신 포인트들을 이용한 상향링크 통신을 위해 가상 셀 아이디를 도입하여 상향링크 물리채널 및 참조신호 전송 방법을 제공함으로써, 기존의 표준 규격에 대한 변경을 최소화하면서 상향링크 통신 효율을 향상시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 무선 통신 시스템을 나타내는 개념도이다.
도 2는 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 무선 통신 시스템의 하향링크 통신 방법을 나타낸다.
도 3은 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 전송에서 가상 셀 아이디의 사용 예를 설명하기 위한 순서도이다.
도 4는 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법 중 CSI 참조 신호 기반 측정 과정을 나타내는 순서도이다.
도 5는 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서 협력 다중 포인트 전송을 수행하는 과정을 나타내는 순서도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 출원에서 사용하는 단말은 이동국(MS: Mobile Station), 이동 단말(MT: Mobile Terminal), 사용자 단말, 사용자 장비(UE: User Equipment), 사용자 터미널(UT: User Terminal), 무선 터미널, 액세스 터미널(AT), 가입자 유닛(Subscriber Unit), 가입자 스테이션(SS: Subscriber Station), 무선 기기(Wireless device), 무선 통신 디바이스, 무선송수신유닛(WTRU: Wireless Transmit/Receive Unit), 이동 노드, 모바일 또는 다른 용어들로 지칭될 수 있다.
또한, 본 출원에서 사용하는 '기지국은 일반적으로 단말과 통신하는 고정된 지점을 말하며, 베이스 스테이션(Base Station), 노드-B(Node-B), e노드-B(eNode-B), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
또한, 본 출원에서 사용하는 '포인트(point)'또는 '송수신 포인트'는 적어도 하나의 송신 및 수신 안테나를 구비하고, 기지국과 광섬유, 마이크로웨이브 등으로 연결되어 기지국과 정보를 주고 받을 수 있는 송수신 장치로, RRH(Remote Radio Head), RRU(Remote Radio Unit), 사이트, 분산 안테나 등으로 불릴 수 있다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 무선 통신 시스템을 나타내는 개념도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 무선 통신 시스템은 기지국(110), 광역 송수신 포인트(130) 및 협역 송수신 포인트(150)를 포함할 수 있고, 광역 송수신 포인트(130) 및 적어도 하나의 협역 송수신 포인트(150)는 기지국(110)이 운용하는 셀(111) 내에 위치할 수 있다. 광역 송수신 포인트(130)는 높은 전송 전력을 사용하여 넓은 전송 영역(coverage)(131)을 형성하며, 협역 송수신 포인트(150)는 광역 송수신 포인트(130)보다 낮은 전송 전력을 사용하여 광역 송수신 포인트(130)의 전송 영역(131) 보다 좁은 전송 영역(151)을 형성할 수 있다.
또한, 도 1에 도시한 바와 같이 복수의 협역 송수신 포인트(150) 각각의 전송 영역(151)은 광역 송수신 포인트(130)의 전송 영역(131)에 포함되도록 배치될 수 있고, 복수의 협역 송수신 포인트들은 광역 송수신 포인트(130)와 무선 또는 유선으로 연결되어 제어 정보 및/또는 데이터를 주고 받을 수 있다. 또한, 복수의 협역 송수신 포인트(150) 및 광역 송수신 포인트(130)는 기지국(110)과 광섬유, 마이크로웨이브 등을 통해 연결되어 기지국(110)과 정보를 주고 받을 수 있고, 기지국(110)을 통해 서로 다른 송수신 포인트들과 정보를 교환할 수도 있다.
도 1에 도시한 바와 같은 무선 통신 시스템에서 각 송수신 포인트들(130, 150)의 물리계층 셀 아이디(PCI: Physical Cell Identity) 할당 방식은 두 가지 방식을 고려할 수 있다.
첫 번째 물리계층 셀 아이디 할당 방식은, 모든 송수신 포인트들(130, 150)이 서로 다른 물리계층 셀 아이디를 가지도록 할당하는 방식으로, 각 송수신 포인트(130, 150)가 독자적인 셀 영역(cell coverage)을 구성하게 된다. 3GPP LTE Release-8, Release-9, LTE-Advanced Release-10 규격은 상기 첫 번째 방식에 적용되어 사용될 수 있다.
두 번째 물리계층 셀 아이디 할당 방식은, 동일한 셀에 속하는 모든 송수신 포인트들(130, 150)에 동일한 물리계층 셀 아이디를 할당하는 방식으로, 상기한 기존의 3GPP LTE 또는 LTE-Advanced 규격은 두 번째 방식에 적용할 수 없다.
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 무선 통신 시스템에서는 모든 송수신 포인트들이 동일한 셀에 속하고, 동일한 셀 아이디가 할당된 경우, 송수신 포인트들의 통신을 위한 하향링크(downlink) 통신 방법 및 상향링크(uplink) 통신 방법을 제공한다. 이하, 본 발명의 실시예에서 기지국과 단말의 통신은 3GPP LTE-Advanced Release-10 규격을 따르는 것으로 가정한다.
먼저, 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법을 설명한다.
도 2는 본 발명의 일 실시에에 따른 다중 송수신 포인트를 사용하는 무선 통신 시스템의 하향링크 통신 방법을 나타낸다.
이하, 도 2를 참조하여 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 무선 통신 시스템의 하향링크 통신 방법을 각각의 하향링크 물리채널 및 참조 신호 별로 상세하게 설명한다.
프레임 동기
본 발명의 일 실시예에 따른 다중 송수신 포인트를 이용한 하향링크 통신 방법에서는 모든 송수신 포인트들이 전송하는 라디오 프레임(radio frame)들이 서로 동기가 맞추어져 있다고 가정한다. 또한, 모든 라디오 프레임들의 동기가 맞추어져 있으므로, 라디오 프레임을 구성하는 서브프레임(subframe)과 OFDM 심볼(symbol)의 동기도 맞추어져 있는 것으로 가정한다.
동기 신호 및 셀 고유 참조 신호
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서 동기 신호(synchronization signal) 및 셀 고유 참조 신호(Cell-Specific Reference Signal)를 전송하는 방법은 크게 두 가지를 고려할 수 있다. 여기서, 셀 고유 참조 신호는 단말이 하향링크 채널을 추정하고 이에 기초하여 수신한 신호의 복조를 수행하기 위해 사용된다.
첫 번째 방법은, 송수신 포인트들 중 특정 송수신 포인트(예를 들면, 광역 송수신 포인트)가 자신이 구비한 송신 안테나를 사용하여 물리계층 셀 아이디에 해당하는 동기 신호와 셀 고유 참조 신호를 전송하고, 다른 송수신 포인트들(예를 들면, 협역 송수신 포인트들)은 상기 특정 송수신 포인트가 동기 신호와 셀 고유 참조 신호를 전송하는데 사용한 무선 자원들을 이용하여 신호를 전송하지 않는 방법이다.
두 번째 방법은, 모든 송수신 포인트들이 물리 계층 셀 아이디에 해당하는 동기 신호와 셀 고유 참조 신호를 동일한 무선 자원을 이용하여 동시에 전송하는 방법이다.
여기서, 무선 자원은 3GPP LTE 및 LTE-Advanced 표준 규격에 정의되어 있는 시간-주파수 공간의 자원 원소(Resource Element)를 의미한다.
CSI 참조 신호
각 송수신 포인트는 자신의 CSI 참조 신호(Channel State Information Reference Signal)를 전송할 수 있다. 여기서, CSI 참조 신호는 단말이 하향링크 채널의 품질을 측정하기 위해 사용하는 참조 신호로서, 각 송수신 포인트가 전송하는 CSI 참조 신호의 설정과 이에 상응하는 무선 자원의 매핑은 서로 다를 수 있다. 또한, 각 송수신 포인트가 자신의 CSI 참조 신호를 전송할 때 사용하는 CSI 참조 신호 시퀀스는 물리계층 셀 아이디를 사용하여 생성할 수 있다.
Physical Muticast Channel or PMCH
동일한 셀 내에 속하는 각 송수신 포인트는 모두 동일한 무선 자원을 사용하여 PMCH를 전송할 수 있다. 여기서, PMCH는 MBSFN(Multicast-Broadcast Single Frequency Network) 동작을 위해 사용되는 물리 채널을 의미한다.
Physical Broadcast Channel or PBCH
PBCH는 단말이 네트워크에 접속하는데 필요한 시스템 정보를 전송하기 위해 사용되는 물리채널로서, 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 PBCH를 전송하는 두 가지 방법을 제공한다.
첫 번째 방법은, 광역 송수신 포인트가 PBCH를 전송하는 방법이다. 여기서, 광역 송수신 포인트는 PBCH 전송시 비트 단위 스크램블링(bit-level scrambling)을 위한 스크램블링 시퀀스(scramble sequence)의 생성에 LTE 및 LTE-Advanced 표준 규격에 정의된 방식과 같이 물리계층 셀 아이디를 사용한다. 한편, 적어도 하나의 협역 송수신 포인트들은 광역 송수신 포인트가 PBCH를 전송하기 위해 사용하는 무선자원들을 이용하여 신호를 전송하지 않는다.
두 번째 방법은, 동일한 셀에 속한 모든 송수신 포인트들이 동시에 동일한 PBCH를 동일한 무선자원을 사용하여 전송하는 방법이다. 여기서, 각 송수신 포인트들은 PBCH 전송시 비트 단위 스크램블링을 위한 스크램블링 시퀀스의 생성에 LTE 및 LTE-Advanced 표준 규격에 정의된 방식과 같이 물리계층 셀 아이디를 사용한다.
Physical Control Format Indicator Channel or PCFICH
PCFICH는 단말들에게 PDCCH(Physical Downlink Control Channel)를 디코딩하는데 필요한 정보를 제공하기 위해 사용되는 하향링크 물리 채널로서, 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 PCFICH를 전송하는 두 가지 방법을 제공한다.
첫 번째 방법은, 광역 송수신 포인트가 PCFICH를 전송하는 방법이다. 여기서, 광역 송수신 포인트는 PCFICH 전송을 위한 무선 자원 매핑과 비트 단위 스크램블링을 위한 스크램블링 시퀀스의 생성에 LTE 및 LTE-Advanced 표준 규격에 정의된 방식과 같이 물리계층 셀 아이디를 사용한다. 한편, 적어도 하나의 협역 송수신 포인트들은 광역 송수신 포인트가 PCFICH를 전송하기 위해 사용하는 무선자원들을 이용하여 신호를 전송하지 않는다.
두 번째 방법은, 동일한 셀에 속한 모든 송수신 포인트들이 동시에 동일한 PCFICH를 동일한 무선자원을 사용하여 전송하는 방법이다. 여기서, 각 송수신 포인트들은 PCFICH 전송시 비트 단위 스크램블링을 위한 스크램블링 시퀀스의 생성에 LTE 및 LTE-Advanced 표준 규격에 정의된 방식과 같이 물리계층 셀 아이디를 사용한다.
Physical Downlink Control Channel or PDCCH
PDCCH는 단말이 PDSCH(Physical Downlink Shared Channel)의 수신에 필요한 스케줄링 할당(scheduling assignment) 등의 하향링크 제어정보와 단말의 PUSCH(Physical Uplink Shared Channel) 전송을 위한 스케줄링 승인(scheduling grant) 등의 정보를 전송하기 위해 사용되는 하향링크 물리채널이다.
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 PDCCH를 전송하는 두 가지 방법을 제공한다.
첫 번째 방법은, 광역 송수신 포인트가 PDCCH를 전송하는 방법이다. 여기서, 광역 송수신 포인트는 PDCCH 전송시 무선 자원의 매핑과 비트 단위 스크램블링을 위한 스크램블링 시퀀스의 생성에 LTE 및 LTE-Advanced 표준 규격에 정의된 방식과 같이 물리계층 셀 아이디를 사용한다. 한편, 적어도 하나의 협역 송수신 포인트들은 광역 송수신 포인트가 PDCCH를 전송하기 위해 사용하는 무선자원들을 이용하여 신호를 전송하지 않는다.
두 번째 방법은, 동일한 셀에 속한 모든 송수신 포인트들이 동시에 동일한 PDCCH를 동일한 무선자원을 사용하여 전송하는 방법이다. 여기서, 각 송수신 포인트들은 PDCCH 전송시 비트 단위 스크램블링을 위한 스크램블링 시퀀스의 생성에 LTE 및 LTE-Advanced 표준 규격에 정의된 방식과 같이 물리계층 셀 아이디를 사용한다.
Physical Hybrid ARQ Indicator Channel or PHICH
PHICH는 단말에게 전송 블록(transport block)의 재전송 수행 여부를 알려주기 위한 HARQ acknowledgement를 전송하기 위해 사용되는 하향링크 물리채널이다.
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 PHICH를 전송하는 두 가지 방법을 제공한다.
첫 번째 방법은, 광역 송수신 포인트가 PHICH를 전송하는 방법이다. 여기서, 광역 송수신 포인트는 PHICH 전송시 셀 고유 스크램블링 시퀀스(Cell-specific Scrambling Sequence) 생성에 LTE 및 LTE-Advanced 표준 규격에 정의된 방식과 같이 물리계층 셀 아이디를 사용한다. 한편, 적어도 하나의 협역 송수신 포인트들은 광역 송수신 포인트가 PHICH를 전송하기 위해 사용하는 무선자원들을 이용하여 신호를 전송하지 않는다.
두 번째 방법은, 동일한 셀에 속한 모든 송수신 포인트들이 동시에 동일한 PHICH를 동일한 무선자원을 사용하여 전송하는 방법이다. 여기서, 각 송수신 포인트들은 PHICH 전송시 비트 단위 스크램블링을 위한 스크램블링 시퀀스의 생성에 LTE 및 LTE-Advanced 표준 규격에 정의된 방식과 같이 물리계층 셀 아이디를 사용한다.
MBSFN 참조 신호
MBSFN 참조 신호(MBSFN Reference Signal)는 단말이 MBSFN 데이터를 전송하는 각 송수신 포인트들의 합성(composite) 채널을 측정하기 위해 사용되는 참조 신호이다. 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 각 송수신 포인트들이 MBSFN 참조 신호를 전송할 수 있다. 여기서, 각 송수신 포인트들이 MBSFN 참조 신호를 전송하는데 사용하는 무선 자원과 시퀀스는 동일할 수 있다.
위치 참조 신호
위치 참조 신호(PRS: Positioning Reference Signal)는 기지국 및/또는 송수신 포인트들이 단말의 위치 추정을 효과적으로 수행하기 위해 전송하는 신호로, 단말은 위치 참조 신호를 측정하고 측정된 값에 기초하여 자신의 위치를 계산하여 기지국 및/또는 송수신 포인트들에게 전송하거나, 단말의 위치를 계산하는데 필요한 정보를 전송함으로써 기지국 및/또는 송수신 포인트들이 단말의 위치를 판단하도록 한다.
본 발명의 일 실시예에 따른 다중 송수신 포인트들을 사용하는 하향링크 통신 방법에서는 위치 참조 신호를 전송하는 두 가지 방법을 제공한다.
첫 번째 방법은, 광역 송수신 포인트가 위치 참조 신호를 전송하는 방법이다. 여기서, 광역 송수신 포인트는 위치 참조 신호의 시퀀스 생성과 위치 참조 신호의 무선 자원 매핑에 LTE-Advanced 표준 규격에 정의된 방식과 같이 물리계층 셀 아이디를 사용한다. 한편, 적어도 하나의 협역 송수신 포인트들은 광역 송수신 포인트가 위치 참조 신호를 전송하기 위해 사용하는 무선자원들을 이용하여 신호를 전송하지 않는다.
두 번째 방법은, 동일한 셀에 속한 모든 송수신 포인트들이 동시에 동일한 위치 참조 신호를 동일한 무선자원을 사용하여 전송하는 방법이다. 여기서, 각 송수신 포인트들은 위치 참조 신호의 시퀀스 생성과 위치 참조 신호의 무선 자원 매핑에 LTE-Advanced 표준 규격에 정의된 방식과 같이 물리계층 셀 아이디를 사용한다.
가상 셀 아이디 도입
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 LTE-Advanced Release-11 또는 그 이후의 표준 규격을 지원하는 단말을 위해 복수의 송수신 포인트들이 동일한 셀에 속하는 네트워크 배치 환경에서 가상 셀 아이디를 도입한다.
LTE-Advanced Release-10 표준 규격에서는 단말 고유 참조 신호(UE-specific Reference Signal)에 사용되는 참조 신호 시퀀스는 의사 랜덤 시퀀스이고, 의사 랜덤 시퀀스 생성에 사용되는 초기화 값은 물리계층 셀 아이디에 따라 다른 것으로 정의하고 있다. 따라서, 물리계층 셀 아이디가 서로 다른 셀들은 서로 다른 의사 랜덤 시퀀스를 참조 신호 시퀀스로 사용하게 된다. 이와 같이 서로 다른 셀들이 서로 다른 물리계층 셀 아이디를 사용하여 서로 다른 의사 랜덤 시퀀스를 생성하도록 하는 이유는 셀간 간섭(Inter-Cell Interference)을 완화하기 위함이다. 특히, 안테나 포트 7, 8, 9, 10, 11, 12, 13, 14에 해당하는 참조 신호의 경우 모든 셀이 동일한 무선 자원을 사용하기 때문에 인접 셀들로부터 전송되는 참조 신호로 인한 간섭 신호를 완화하기 위해 인접 셀간에 서로 다른 참조 신호 시퀀스를 사용할 필요가 있다.
한편, 도 1에 도시한 바와 같이 다중 송수신 포인트를 사용하는 전송 환경에서 복수의 송수신 포인트들이 동일한 자원을 이용하여 서로 다른 데이터를 전송하는 경우, 서로 이웃하는 송수신 포인트들이 전송한 신호의 간섭을 완화하기 위하여 송수신 포인트들간에 서로 다른 참조 신호 시퀀스를 사용할 필요가 있다.
상기한 바와 같이 송수신 포인트들이 서로 다른 참조 신호를 사용하기 위해서는, 각 송수신 포인트가 단말 고유 참조 신호 시퀀스 생성에 사용되는 의사 랜덤 시퀀스를 생성할 때 서로 다른 초기화 값을 사용하는 것이 바람직하다.
도 3은 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 전송에서 가상 셀 아이디의 사용 예를 설명하기 위한 순서도이다.
도 3을 참조하면, 먼저 기지국(110)은 각 단말(171, 173)별로 가상 셀 아이디를 알려준다(단계 S310).
이후, 기지국(110)은 가상 셀 아이디를 물리계층 셀 아이디 대신 적용하여 의사 랜덤 시퀀스를 발생시켜 참조 신호 시퀀스를 생성하고(단계 S320), 생성한 참조 신호 시퀀스를 이용하여 각 단말(171, 173)의 고유 참조 신호를 생성한 후(단계 S330), 생성한 각 단말(171, 173)의 고유 참조 신호를 해당 단말에 전송한다(단계 S340). 여기서, 가상 셀 아이디는 단말별로 서로 다른 값이 할당될 수 있다.
각 단말(171, 173)은 기지국(110)으로부터 할당받은 가상 셀 아이디를 사용하여 참조 신호 시퀀스를 생성하고(단계 S350), 생성한 참조 신호 시퀀스를 이용하여 단말 고유 참조 신호를 검출한다(단계 S360).
PDSCH 전송의 경우, 기지국은 각 코드워드의 비트 단위 스크램블링에 사용하는 스크램블링 시퀀스를 생성하기 위해 물리계층 셀 아이디 대신 가상 셀 아이디를 적용하여 의사 랜덤 시퀀스를 생성할 수 있다. 이 경우 단말은 기지국으로부터 할당받은 가상 셀 아이디를 사용하여 스크램블링 시퀀스를 생성한 후 생성한 스크램블링 시퀀스를 이용하여 PDSCH 검출을 수행한다.
이하, 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서 가상 셀 아이디를 사용하는 방법을 보다 상세하게 설명한다.
Physical Downlink Shared Channel or PDSCH
LTE 또는 LTE-Advanced의 Release-8/9/10 표준 규격을 지원하는 단말의 경우, 각 코드워드의 비트 단위 스크램블링에 사용하는 스크램블링 시퀀스는 물리계층 셀 아이디를 사용하여 의사 랜덤 시퀀스를 발생시켜 스크램블링 시퀀스를 생성한다.
LTE-Advanced의 Release-11 및 그 이후의 표준 규격을 지원하는 단말의 경우, 가상 셀 아이디를 할당받은 단말에게는 물리계층 셀 아이디 대신 가상 셀 아이디를 사용하여 스크램블링 시퀀스를 생성한다.
또는 LTE-Advanced의 Release-11 및 그 이후의 표준 규격을 지원하는 단말이 가상 셀 아이디를 할당받지 못한 경우에는, 물리계층 셀 아이디를 사용하여 스크램블링 시퀀스를 생성할 수 있다. 예를 들어, 단말이 망에 접속하기 위해 랜덤 액세스를 수행하는 과정에서는 단말이 아직 가상 셀 아이디를 할당받지 못한 상태이므로, 기지국은 단말의 랜덤 액세스에 대한 응답 및 메시지 전송에 물리계층 셀 아이디를 적용하여 스크램블링 시퀀스를 생성한 후, 생성된 스크램블링 시퀀스를 이용하여 부호화된 코드워드의 비트 단위 스크램블링을 수행한다.
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 PDSCH를 전송하는 두 가지 방법을 제공한다.
첫 번째 방법은, 광역 송수신 포인트가 PDSCH를 전송하는 방법이다. 단말은 전송 모드(transmission mode)에 따라 셀 고유 참조 신호(CRS: Cell-specific Reference Signal)를 사용하거나 단말 고유 참조 신호(UE-specific Reference Signal)를 사용하여 광역 송수신 포인트로부터 수신한 PDSCH를 복조할 수 있다.
한편, 적어도 하나의 협역 송수신 포인트들은 단말이 CSI 참조 신호(CSI-RS)를 사용하여 채널 추정 및 CQI(Channel Quality Indicatior) 정보를 획득하고 단말 고유 참조 신호를 사용하여 데이터 복조를 수행하는 전송 모드로 설정된 경우에는 해당 단말에게 PDSCH와 단말 고유 참조 신호를 전송할 수 있다.
또는, 적어도 하나의 협역 송수신 포인트들은 단말이 셀 고유 참조 신호(CRS)를 사용하여 채널 추정 및 CQI 정보를 획득하고 데이터 복조를 수행하는 전송 모드로 설정된 경우에는 해당 단말에게 PDSCH를 전송하지 않는다. 이는 첫 번째 방법에서는 적어도 하나의 협역 송수신 포인트들이 단말에게 셀 고유 참조 신호(CRS)를 전송하지 않기 때문이다.
두 번째 방법은, 단말이 CSI 참조 신호를 사용하여 채널 추정과 CQI 정보를 획득하고, 단말 고유 참조 신호를 사용하여 데이터 복조를 수행하는 전송 모드로 설정된 경우, 동일한 셀에 속하는 각각의 송수신 포인트들이 해당 단말에게 PDSCH와 단말 고유 참조 신호를 전송하는 방법이다.
또는, 셀 고유 참조 신호를 사용하여 채널 추정과 CQI 정보를 획득하고 데이터 복조를 수행하는 전송 모드로 설정된 경우에는, 동일한 셀에 속하는 모든 송수신 포인트들이 동일한 PDSCH를 동시에 단말에게 전송한다.
단말 고유 참조 신호
동일한 셀에 속하는 각 송수신 포인트는 각각 PDSCH와 함께 단말 고유 참조 신호를 전송할 수 있다.
여기서, 각 송수신 포인트는 가상 셀 아이디를 할당한 단말에게는 물리계층 셀 아이디 대신 가상 셀 아이디를 사용하여 단말 고유 참조 신호 시퀀스를 생성하여 전송하고, 이를 수신한 단말은 할당 받은 가상 셀 아이디를 사용하여 생성한 참조 신호 시퀀스를 이용하여 단말 고유 참조 신호를 검출한다.
또한, 각 송수신 포인트는 가상 셀 아이디를 할당 한 단말에게는 물리계층 셀 아이디 대신 가상 셀 아이디를 사용하여 단말 고유 참조 신호 시퀀스를 생성하여 전송하고, 이를 수신한 단말은 가상 셀 아이디를 사용하여 참조 신호 시퀀스를 생성하여 단말 고유 참조 신호를 검출한다.
또한, 각 송수신 포인트는 가상 셀 아이디를 할당 한 단말에게는 안테나 포트(Antenna Port) 5로 전송되는 신호(예를 들면, 단말 고유 참조 신호)의 무선자원 매핑에 물리계층 셀 아이디 대신 가상 셀 아이디를 사용하여 결정된 무선자원들을 사용한다.
또는, 각 송수신 포인트는 가상 셀 아이디를 할당받지 않은 단말에게는 물리계층 셀 아이디를 사용하여 단말 고유 참조 신호 시퀀스를 생성하여 전송하고, 이를 수신한 단말은 물리계층 셀 아이디를 사용하여 생성한 레퍼런스 신호 시퀀스를 이용하여 단말 고유 참조 신호를 검출한다.
또한, 각 송수신 포인트는 가상 셀 아이디를 할당받지 않은 단말에게는 안테나 포트 5로 전송되는 신호에 대한 무선자원 매핑에 물리계층 셀 아이디를 사용하여 결정된 무선자원들을 사용한다.
RRH-PDCCH와 RRH-PHICH의 도입
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 동일한 셀에 속한 각 송수신 포인트가 LTE 또는 LTE-Advanced 표준 규격에 정의된 PDCCH 및 PHICH의 기능을 각각 수행할 수 있는 새로운 물리 채널을 도입한다.
본 발명의 일 실시예에서는 PDCCH의 기능을 수행할 수 있는 새로운 물리 채널을 RRH-PDCCH로 지칭하고, PHICH 기능을 수행할 수 있는 새로운 물리 채널을 RRH-PHICH라 지칭한다.
동일한 셀에 속한 각 송수신 포인트는 단말이 RRH-PDCCH와 RRH-PHICH를 복조할 수 있도록 RRH-PDCCH 및 RRH-PHICH와 단말 고유 참조 신호를 함께 전송한다. 여기서, RRH-PDCCH와 RRH-PHICH는 광역 송수신 포인트가 PDSCH 전송에 사용할 수 있는 무선자원들 중 일부를 사용하여 전송될 수 있다.
또한, 각 송수신 포인트는 RRH-PDCCH와 RRH-PHICH의 무선자원에의 매핑과 비트 단위 스크램블링을 위한 스크램블링 시퀀스 생성에 가상 셀 아이디를 사용할 수 있다.
RRH-PRS의 도입
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 단말의 위치확인 정확도를 높이기 위해 새로운 참조 신호를 도입한다. 본 발명에서는 상기한 새로운 참조 신호를 RRH-PRS로 지칭한다.
동일한 셀에 속하는 복수의 송수신 포인트는 단말의 위치 확인을 위해 RRH-PRS를 전송할 수 있다. 여기서, 각 송수신 포인트는 RRH-PRS의 시퀀스 생성과 RRH-PRS의 무선자원 매핑에 가상 셀 아이디를 사용할 수 있다.
CSI 참조 신호 기반 측정
본 발명의 일 실시에에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 CSI 참조 신호(CSI RS) 기반의 측정을 수행한다.
도 4는 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법 중 CSI 참조 신호 기반 측정 과정을 나타내는 순서도이다.
도 4를 참조하면, 먼저 기지국(110)은 단말 별로 CSI 참조 신호 측정 정보를 전송한다(단계 S410). 여기서, CSI 참조 신호 측정 정보에는 각 송수신 포인트들에서 전송하는 CSI 참조 신호들의 전체 또는 일부 CSI 참조 신호들에 해당하는 설정 정보가 포함될 수 있고, 미리 정의된 맵핑 규칙에 따라 상기 설정 정보로부터 단말(170)이 CSI 참조 신호들의 시간-주파수 공간의 무선자원 패턴 정보를 알 수 있도록 설정된다.
기지국(110)으로부터 전송된 CSI 참조 신호 측정을 위한 정보를 수신한 단말(170)은 CSI 참조 신호 측정 정보에 포함된 CSI 참조 신호들에 대해 측정을 수행하고(단계 S420), 측정 결과를 기지국(110)에 전송한다(단계 S430).
기지국(110)은 단말(170)로부터 수신한 측정 결과에 기초하여 단말(170)이 측정해야 할 CSI 참조 신호 패턴 또는 CSI 참조 신호 패턴들을 결정하고(단계 S440), 결정한 CSI 참조 신호 패턴 또는 CSI 참조 신호 패턴들을 단말(170)에게 전송한다(단계 S450).
단말(170)은 기지국(110)으로부터 수신한 CSI 참조 신호 패턴 또는 CSI 참조 신호 패턴들을 사용하여 링크 적응(Link Adaptation)을 위한 CSI를 획득하고(단계 S460), 획득한 CSI를 기지국(110)으로 보고한다(단계 S470).
기지국(110)은 단말(170)로부터 수신한 CSI에 기초하여 링크 적응을 수행한다(단계 S480).
복수 송수신 포인트의 협력전송
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서는 기지국이 복수의 송수신 포인트를 이용하여 단말에 데이터 또는 제어 정보를 전송하는 협력 다중 송수신 포인트 전송을 수행할 수 있다.
이하, 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서 단말에 대해 협력 전송을 수행하는 복수의 송수신 포인트들의 집합을 '협력 포인트 집합'이라고 지칭한다.
도 5는 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 하향링크 통신 방법에서 협력 다중 포인트 전송을 수행하는 과정을 나타내는 순서도이다.
먼저, 기지국(110)은 각 단말(170)로부터 채널 상태 정보를 수신한다(단계 S510).
이후, 기지국(110)은 수신한 채널 상태 정보에 기초하여 단말(170)에 대한 협력 다중 협력 다중 송수신 포인트 전송을 수행할 협력 포인트 집합을 결정한다(단계 S520). 즉, 협력 포인트 집합은 각 단말(170)의 채널 환경에 따라 단말(170)별로 다르게 설정될 수 있다.
단말(170)에 대해 협력 다중 송수신 포인트 전송을 수행하는 협력 포인트 집합에 포함된 복수의 송수신 포인트(151, 153)는 동일한 데이터를 동일한 무선자원을 사용하여 단말(170)에 전송할 전송 신호를 생성한 후(단계 S530), 생성한 전송 신호와 단말(170)의 복조를 위한 단말 고유 참조 신호를 함께 단말(170)에 전송한다(단계 S540).
여기서, 협력 다중 송수신 포인트 전송을 수행하는 복수의 송수신 포인트들은 상기 단말 고유 참조 신호도 동시에 전송해야 하며, 서로 동일한 참조 신호 시퀀스를 사용해야 한다. 이를 위해 협력 다중 송수신 포인트 전송을 수행하는 복수의 송수신 포인트들은 기지국이 단말에게 알려준 가상 셀 아이디를 사용하여 생성한 PDSCH와 단말 고유 참조 신호 시퀀스를 전송한다.
이하에서는, 모든 송수신 포인트들이 동일한 셀에 속하고, 동일한 셀 아이디가 할당된 경우의 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 상향링크 통신 방법을 설명한다.
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 상향링크 통신 방법에서 단말은 상향링크를 통해 PUSCH(Physical Uplink Shared Channel), PUCCH(Physical Uplink Control Channel), PRACH(Physical Random Access Channel), DM RS(Demodulation Reference Signal), SRS(Sounding Reference Signal)를 전송할 수 있다.
PUSCH, PUCCH, DM RS, SRS의 경우, LTE Release-8/9, LTE-Advanced Release-10 규격에 따르면 하기와 같은 기능을 위해 물리계층 셀 아이디를 사용하여 신호를 생성하게 된다.
- PUSCH의 스크램블링 시퀀스 생성
- PUCCH 포맷 1, 1a, 1b, 2, 2a, 2b의 셀 고유 심볼 단위 사이클릭 시프트 호핑(Cell-Specific Symbol-Level Cyclic Shift Hopping)
- PUCCH 포맷 3의 비트 단위 스크램블링 시퀀스 생성, 셀 고유 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심볼 단위 사이클릭 시프트 호핑 (Cell-Specific Cyclic Shift Hopping), 셀 고유 SC-FDMA 심볼 단위 스크램블링
- SRS와 DM RS의 베이스 시퀀스 호핑(Base-Sequence Hopping), 시퀀스 그룹 호핑(Sequence-Group Hopping)과 시퀀스 호핑(Sequence Hopping)
- PUSCH DM RS의 참조 신호 시퀀스 생성, 셀 고유 슬롯 단위 사이클릭 시프트 호핑(Cell-Specific Slot-Level Cyclic Shift Hopping)
- PUCCH DM RS의 셀 고유 사이클릭 시프트 호핑(Cell-Specific Symbol-Level Cyclic Shift Hopping)
LTE Release-8/9/10 규격을 지원하는 단말들은 해당 지원 규격에 따라 신호를 생성하므로 단말들이 같은 물리계층 셀 아이디를 사용하여 상기한 신호를 생성하여 전송하게 된다.
또한, 주파수 이용 효율을 높이기 위해 단말이 사용하는 자원을 단말의 위치에 따라서 재사용할 수도 있다. 즉, 상대적으로 간섭의 영향을 적게 미치는 단말들은 같은 자원을 사용하여 상기한 신호를 전송할 수 있다.
또는, 주파수 자원을 공간적으로 재사용하여 주파수 이용 효율을 높이기 위해 단말이 사용하는 자원을 단말로부터 전송된 신호를 수신하는 송수신 포인트를 기준으로 재사용할 수도 있다.
본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 상향링크 통신 방법에서는 단말이 가상 셀 아이디를 이용하여 상향링크 전송을 수행하는 방법을 제공한다.
구체적으로, 단말은 기지국으로부터 가상 셀 아이디를 할당받고, 할당받은 가상 셀 아이디를 물리계층 셀 아이디 대신 적용하여 일부 혹은 모든 상향링크 채널 및 신호(예를 들면, PUSCH, PUCCH, DM RS, SRS)를 생성하고, 생성한 신호를 전송한다.
상술한 바와 같이, 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 상향링크 통신 방법에서는 서로 인접한 송수신 포인트들에 속한 단말들이 서로 다른 가상 셀 아이디를 사용하게 함으로써 송수신 포인트들간의 수신 신호에 대한 간섭을 완화할 수 있는 효과를 얻을 수 있다.
또한, 상기한 바와 같은 상향링크 전송 방법을 통해 각각의 송수신 포인트들이 고유의 물리계층 셀 아이디를 갖는 셀을 형성하는 효과를 얻을 수 있다. 즉, 동일한 셀에 속하는 서로 다른 송수신 포인트에 속하는 단말들이 서로 다른 셀에 속하는 효과가 있다.
상술한 본 발명의 일 실시예에 따른 다중 송수신 포인트를 사용하는 상향링크 통신 방법은 LTE-Advanced Release-11 표준 규격 또는 그 이후의 표준 규격에 도입될 수 있고, 상기 표준 규격을 지원하는 단말들에게 적용될 수 있다.
다만, LTE-Advanced Release-11 표준 규격 또는 그 이후의 표준 규격을 지원하는 단말들 중에서 가상 셀 아이디를 할당받지 않은 단말의 경우에는 물리계층 셀 아이디를 사용하여 상기한 채널과 신호를 생성할 수 있다.
예를 들어, 단말이 셀에 초기 랜덤 액세스를 하는 경우에는 가상 셀 아이디를 할당받지 못한 상태이므로 랜덤 액세스 메시지 전송 및 PUCCH ACK/NAK 전송 등에 물리계층 셀 아이디를 사용할 수 있다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (15)

  1. 동일 셀에 속한 제1 송수신 포인트 및 적어도 하나의 제2 송수신 포인트를 구비한 무선 통신 시스템에 있어서,
    상기 제1 송수신 포인트는 상기 적어도 하나의 제2 송수신 포인트보다 더 넓은 전송 영역을 가지며, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 동일한 물리계층 셀 아이디(Physical Cell Identity)를 이용하여 하향링크 전송 신호를 생성하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  2. 청구항 1에 있어서,
    상기 제1 송수신 포인트는 상기 물리계층 셀 아이디에 해당하는 동기 신호 및 셀 고유 참조 신호를 전송하고, 상기 적어도 하나의 제2 송수신 포인트는 상기 제1 송수신 포인트가 상기 동기 신호 및 셀 고유 참조 신호를 전송하는데 사용한 무선 자원을 이용하여 신호를 전송하지 않는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  3. 청구항 1에 있어서,
    상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 상기 물리계층 셀 아이디를 사용하여 생성한 CSI 참조 신호(Channel State Information Reference Signal)를 전송하되, 상기 CSI 참조 신호의 설정과 상기 CSI 참조 신호의 설정에 상응하는 무선자원의 매핑은 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트가 서로 다른 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  4. 청구항 1에 있어서,
    상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 상기 물리계층 셀 아이디를 이용하여 PMCH(Physica Multicast Channel) 또는 MBSFN 참조 신호(Muticast-Broadcast Single Frequency Network Reference Signal)를 생성하고 동일한 무선자원을 사용하여 PMCH 또는 MBSFN 참조 신호를 전송하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  5. 청구항 1에 있어서,
    상기 제1 송수신 포인트는 상기 물리계층 셀 아이디를 이용하여 생성한 PBCH(Physical Broadcast Channel), PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid ARQ Indicator Channel) 또는 위치 참조 신호(Positioning Reference Signal)를 전송하고, 상기 적어도 하나의 제2 송수신 포인트는 상기 제1 송수신 포인트가 상기 PBCH, PCFICH, PDCCH, PHICH 또는 위치 참조 신호를 전송하기 위해 사용하는 무선자원을 이용하여 신호를 전송하지 않는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  6. 청구항 5에 있어서,
    상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 동일한 무선자원을 사용하여 동시에 상기 PBCH, PCFICH, PDCCH, PHICH 및 위치 참조 신호 중 적어도 하나를 전송하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  7. 기지국, 상기 기지국이 운용하는 동일 셀에 속한 제1 송수신 포인트 및 적어도 하나의 제2 송수신 포인트를 구비한 무선 통신 시스템에 있어서,
    상기 제1 송수신 포인트는 상기 적어도 하나의 제2 송수신 포인트보다 더 넓은 전송 영역을 가지며, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 단말에게 할당된 가상 셀 아이디를 이용하여 상기 단말에 전송할 신호를 생성하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  8. 청구항 7에 있어서,
    상기 제1 송수신 포인트는 상기 가상 셀 아이디를 이용하여 생성한 PDSCH(Phsical Downlink Shared Channel)를 상기 단말에 전송하고, 상기 적어도 하나의 제2 송수신 포인트는 상기 단말이 CSI 참조 신호(Channel State Information Reference Signal) 및 단말 고유 참조 신호(UE-specific Reference Signal)를 사용하는 경우 상기 PDSCH 및 상기 가상 셀 아이디를 이용하여 생성한 상기 단말 고유 참조 신호를 상기 단말에 전송하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  9. 청구항 8에 있어서,
    상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 상기 단말이 셀 고유 참조 신호(Cell-specific Reference Signal)를 사용하는 경우 PDSCH를 동시에 상기 단말에 전송하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  10. 청구항 8에 있어서,
    상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는 상기 단말에 안테나 포트(antenna port) 5로 전송되는 신호의 무선자원 매핑에 상기 가상 셀 아이디를 사용하여 결정된 무선자원을 사용하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  11. 청구항 7에 있어서,
    상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트는, 상기 가상 셀 아이디를 사용하여 PDCCH 및 PHICH 기능을 각각 수행하는 물리 채널 및 위치 참조 신호를 생성하고, 상기 생성한 PDCCH 및 PHICH 기능을 각각 수행하는 물리 채널은 상기 제1 송수신 포인트가 PDSCH 전송에 사용할 수 있는 무선자원을 사용하여 전송하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  12. 청구항 7에 있어서,
    상기 기지국은 상기 단말로부터 보고된 채널 상태 정보에 기초하여 상기 단말에 대한 협력 전송을 수행할 적어도 하나의 송수신 포인트로 구성된 협력 포인트 집합을 구성하고,
    상기 협력 포인트 집합에 포함된 적어도 하나의 송수신 포인트는 상기 단말의 가상 셀 아이디를 이용하여 생성한 PDSCH를 동일한 무선 자원을 사용하여 상기 단말에 전송하고, 상기 단말의 복조를 위한 단말 고유 참조 신호를 상기 PDSCH와 동시에 상기 단말에 전송하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  13. 기지국, 상기 기지국이 운용하는 동일 셀에 속한 제1 송수신 포인트 및 적어도 하나의 제2 송수신 포인트를 구비한 무선 통신 시스템에 있어서,
    상기 기지국은 상기 제1 송수신 포인트 및 상기 적어도 하나의 송수신 포인트들 중 적어도 하나의 송수신 포인트에서 전송하는 CSI 참조 신호(Channel State Information Reference Signal)가 포함된 CSI 참조 신호 측정 정보를 상기 단말에 전송하고, 상기 단말로부터 상기 CSI 참조 신호 측정 정보에 상응하는 CSI 참조 신호에 대한 측정 결과를 수신한 후, 수신한 상기 측정 결과에 기초하여 상기 단말이 측정해야 할 적어도 하나의 CSI 참조 신호 패턴을 상기 단말에 전송하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  14. 기지국, 상기 기지국이 운용하는 동일 셀에 속한 제1 송수신 포인트 및 적어도 하나의 제2 송수신 포인트를 구비한 무선 통신 시스템에 있어서,
    적어도 하나의 단말이 상기 기지국으로부터 각각 할당받은 서로 다른 가상 셀 아이디를 이용하여 상향링크 채널 및 참조 신호를 생성한 후, 상기 제1 송수신 포인트 및 상기 적어도 하나의 제2 송수신 포인트 중 적어도 하나의 송수신 포인트에 전송하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
  15. 청구항 14에 있어서,
    상기 적어도 하나의 단말 각각은 할당받은 서로 다른 가상 셀 아이디를 이용하여 PUSCH(Physical Uplink Shared Channel), PUCCH(Physical Uplink Control Channel), DM RS(Demodulation Reference Signal) 및 SRS(Sounding Reference Signal) 중 적어도 하나의 신호를 생성하는 것을 특징으로 하는 다중 송수신 포인트를 사용하는 무선 통신 시스템.
PCT/KR2012/001001 2011-02-11 2012-02-10 다중 송수신 포인트를 사용하는 무선 통신 시스템 WO2012108716A2 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2013553367A JP2014505447A (ja) 2011-02-11 2012-02-10 多重送受信ポイントを使用する無線通信システム
CN201280017159.3A CN103563270A (zh) 2011-02-11 2012-02-10 使用多传送和接收点的无线通信系统
EP12744397.6A EP2675078A4 (en) 2011-02-11 2012-02-10 Wireless communication system using multiple transmission and reception points
US13/984,880 US9560663B2 (en) 2011-02-11 2012-02-10 Wireless communication system using multiple transmission and reception points
EP18184323.6A EP3407506A1 (en) 2011-02-11 2012-02-10 Wireless communication system using multiple transmission and reception points
US15/411,812 US10292169B2 (en) 2011-02-11 2017-01-20 Wireless communication system using multiple transmission and reception points
US16/370,870 US11284406B2 (en) 2011-02-11 2019-03-29 Wireless communication system using multiple transmission and reception points
US17/681,775 US11812459B2 (en) 2011-02-11 2022-02-27 Wireless communication system using multiple transmission and reception points
US18/386,972 US20240064792A1 (en) 2011-02-11 2023-11-03 Wireless communication system using multiple transmission and reception points

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2011-0012547 2011-02-11
KR20110012547 2011-02-11
KR20110012798 2011-02-14
KR10-2011-0012798 2011-02-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/984,880 A-371-Of-International US9560663B2 (en) 2011-02-11 2012-02-10 Wireless communication system using multiple transmission and reception points
US15/411,812 Continuation US10292169B2 (en) 2011-02-11 2017-01-20 Wireless communication system using multiple transmission and reception points

Publications (2)

Publication Number Publication Date
WO2012108716A2 true WO2012108716A2 (ko) 2012-08-16
WO2012108716A3 WO2012108716A3 (ko) 2012-10-04

Family

ID=46639078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/001001 WO2012108716A2 (ko) 2011-02-11 2012-02-10 다중 송수신 포인트를 사용하는 무선 통신 시스템

Country Status (6)

Country Link
US (5) US9560663B2 (ko)
EP (2) EP2675078A4 (ko)
JP (3) JP2014505447A (ko)
KR (3) KR101856235B1 (ko)
CN (2) CN103563270A (ko)
WO (1) WO2012108716A2 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103929713A (zh) * 2013-01-15 2014-07-16 Zte维创通讯公司 通过确定无线设备的位置来操作异构无线网络
WO2014183641A1 (zh) * 2013-05-14 2014-11-20 华为技术有限公司 一种终端间的协作通信方法、设备及系统
WO2014190820A1 (zh) * 2013-05-31 2014-12-04 中兴通讯股份有限公司 一种虚拟多天线系统的信令传输方法、装置及系统
CN104662979A (zh) * 2012-09-20 2015-05-27 夏普株式会社 终端装置、基站装置、无线通信方法以及集成电路
KR20150118113A (ko) * 2013-02-18 2015-10-21 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송을 수행하는 방법 및 장치
JP2016506179A (ja) * 2012-12-27 2016-02-25 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムで高速スモールセルのスイッチングが可能なセル操作方法及び装置
CN105706520A (zh) * 2013-11-05 2016-06-22 Lg电子株式会社 用于具有双连接性的无线通信的方法和设备

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
KR101856235B1 (ko) * 2011-02-11 2018-05-10 한국전자통신연구원 다중 송수신 포인트를 사용하는 무선 통신 시스템
US9258718B2 (en) 2011-02-22 2016-02-09 Qualcomm Incorporated Positioning location for remote radio heads (RRH) with same physical cell identity (PCI)
CN103703734B (zh) * 2011-07-27 2019-03-19 Lg电子株式会社 在多节点系统中发送上行链路参考信号的方法和使用该方法的终端
US20130182680A1 (en) * 2012-01-18 2013-07-18 Electronics And Telecommunications Research Institute Method for machine type communication user equipment to connect to evolved node-b and apparatus employing the same
EP2830354A4 (en) * 2012-03-19 2015-04-01 Fujitsu Ltd RADIO COMMUNICATION PROCEDURE, RADIO COMMUNICATION SYSTEM, RADIO STATION AND WIRELESS DEVICE
US8838119B2 (en) 2012-06-26 2014-09-16 Futurewei Technologies, Inc. Method and system for dynamic cell configuration
KR101909043B1 (ko) * 2012-09-25 2018-10-17 삼성전자 주식회사 분산 안테나 시스템에서 간섭 측정 방법 및 장치
US11050468B2 (en) * 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
GB2509162B (en) * 2012-12-21 2018-09-26 Sony Corp Telecommunications apparatus and methods
KR102086752B1 (ko) * 2012-12-21 2020-03-09 주식회사 케이티 기지국, 측위 장치, 및 그의 측위 방법
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
RU2767777C2 (ru) 2013-03-15 2022-03-21 Риарден, Ллк Системы и способы радиочастотной калибровки с использованием принципа взаимности каналов в беспроводной связи с распределенным входом - распределенным выходом
FR3007617A1 (fr) * 2013-06-19 2014-12-26 France Telecom Dispositifs de fourniture d'informations de service pour une liaison par faisceau microondes
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US10349371B2 (en) 2014-06-23 2019-07-09 Lg Electronics Inc. Method for performing positioning in wireless communication system, and apparatus therefor
WO2016032265A1 (ko) * 2014-08-29 2016-03-03 엘지전자 주식회사 포지셔닝 지원을 위한 측정을 수행하는 방법 및 사용자기기와, 포지셔닝을 지원하는 방법 및 위치 서버와 포지셔닝을 지원하는 기지국
CN106160823B (zh) * 2015-04-03 2021-02-05 索尼公司 用于无线通信的装置和方法
WO2017124226A1 (zh) * 2016-01-18 2017-07-27 华为技术有限公司 一种随机接入方法及装置
JP6682898B2 (ja) 2016-02-17 2020-04-15 富士通株式会社 基地局、無線通信システムおよび基地局の処理方法
US10848281B2 (en) 2016-03-28 2020-11-24 Lg Electronics Inc. Coordinated transmission in unlicensed band
KR101997461B1 (ko) * 2016-05-10 2019-07-08 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말이 데이터 신호를 송수신하는 방법 및 이를 지원하는 장치
CN107734632B (zh) * 2016-08-12 2019-11-22 电信科学技术研究院 一种随机接入的方法、网络侧设备及终端
CN109804679A (zh) 2016-10-13 2019-05-24 Lg电子株式会社 在无线通信系统中由终端执行的侧链路同步信号发送方法以及使用该方法的终端
US11452132B2 (en) 2017-05-03 2022-09-20 Idac Holdings, Inc. Transmission adaptation and grant-free access
CN108988978B (zh) * 2017-06-01 2021-01-15 华为技术有限公司 扰码序列生成方法及装置
JP6894522B2 (ja) 2017-07-28 2021-06-30 エルジー エレクトロニクス インコーポレイティド 放送チャネルを送受信する方法及びそのための装置
US11283540B2 (en) * 2017-10-06 2022-03-22 Qualcomm Incorporated Cell-specific interleaving, rate-matching, and/or resource element mapping
WO2019079657A1 (en) * 2017-10-18 2019-04-25 Parallel Wireless, Inc. ARCHITECTURE OF VIRTUALIZED CELLS
US12040999B2 (en) * 2018-08-10 2024-07-16 Apple Inc. Sounding reference signal (SRS) transmission framework
CN111277377B (zh) 2018-12-27 2022-01-28 维沃移动通信有限公司 一种传输方法、终端、网络设备及计算机可读存储介质
US12028161B2 (en) * 2019-01-18 2024-07-02 Apple Inc. Methods for data repetition transmission for high reliable communication
US20220231809A1 (en) * 2019-05-02 2022-07-21 Lg Electronics Inc. Method for transmitting and receiving signals in wireless communication system, and device supporting same
CN110557731A (zh) * 2019-09-17 2019-12-10 中国水利水电科学研究院 一种水资源优化调度与配置信息的传输方法及系统
US11844120B2 (en) * 2020-04-22 2023-12-12 Qualcomm Incorporated Methods and apparatus for determining physical cell identification
US11581916B2 (en) * 2020-06-18 2023-02-14 Qualcomm Incorporated Wideband positioning reference signal processing via sub-nyquist sampling
KR20220003214A (ko) 2020-07-01 2022-01-10 임성택 면상 발열체와 히팅 케이블이 조합된 혼합 동파방지 시스템
KR20220003202A (ko) 2020-07-01 2022-01-10 임성택 교류 메탈 히터와 면상 발열체가 조합된 혼합 동파방지 시스템
US20230058859A1 (en) * 2021-08-17 2023-02-23 Qualcomm Incorporated Wireless transmission reception point (trp) information exchange

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070079431A1 (en) * 2003-06-04 2007-04-12 Mitch Junkins Ratcheted Toilet Seat and Lid
US20060023687A1 (en) * 2004-07-27 2006-02-02 Telefonaktiebolaget Lm Ericsson (Publ) Fast reliable downlink signaling to support enhanced uplink services in a communication system
JP4795046B2 (ja) * 2006-02-15 2011-10-19 株式会社エヌ・ティ・ティ・ドコモ 無線アクセスネットワーク装置及び周辺セル情報報知方法
US7873710B2 (en) * 2007-02-06 2011-01-18 5O9, Inc. Contextual data communication platform
CN101330318B (zh) * 2007-06-20 2012-06-13 中兴通讯股份有限公司 一种下行同步系统中辅同步信道序列的加扰和解扰方法
KR100921769B1 (ko) * 2007-07-12 2009-10-15 한국전자통신연구원 하향링크 프레임 생성 방법 및 셀 탐색 방법
US8289946B2 (en) * 2007-08-14 2012-10-16 Qualcomm Incorporated Reference signal generation in a wireless communication system
US8855007B2 (en) * 2007-11-19 2014-10-07 Qualcomm Incorporated Configuring an identifier for an access point
CN101534539A (zh) * 2008-03-11 2009-09-16 华为技术有限公司 一种快速小区搜索方法及装置
US7729237B2 (en) * 2008-03-17 2010-06-01 Lg Electronics Inc. Method of transmitting reference signal and transmitter using the same
US9544776B2 (en) 2008-03-25 2017-01-10 Qualcomm Incorporated Transmission and reception of dedicated reference signals
US8654623B2 (en) * 2008-06-25 2014-02-18 Qualcomm Incorporated Scrambling under an extended physical-layer cell identity space
KR100898009B1 (ko) 2008-10-07 2009-05-19 (주)씨앤드에스 마이크로 웨이브 더블유시디엠에이 이동통신망에서 단말기 측위 시스템과 그에 사용되는 중계기 보조 장치
WO2010068011A2 (en) * 2008-12-08 2010-06-17 Lg Electronics Inc. Method of transmitting and receiving physical downlink shared channel in wireless communication system
CN104243118B (zh) * 2008-12-26 2017-10-20 夏普株式会社 基站装置、移动台装置、通信系统以及通信方法
US8934417B2 (en) * 2009-03-16 2015-01-13 Google Technology Holdings LLC Resource allocation in wireless communication systems
NL1036914C2 (nl) * 2009-04-29 2010-11-01 Wouter Garot Verankeringsorgaan.
US9253651B2 (en) * 2009-05-01 2016-02-02 Qualcom Incorporated Transmission and detection of overhead channels and signals in a wireless network
US9264097B2 (en) * 2009-06-04 2016-02-16 Qualcomm Incorporated Interference mitigation for downlink in a wireless communication system
CN101925056B (zh) * 2009-06-10 2013-08-28 华为技术有限公司 用于加扰或解扰的扰码序列生成方法、装置及系统
US9014138B2 (en) * 2009-08-07 2015-04-21 Blackberry Limited System and method for a virtual carrier for multi-carrier and coordinated multi-point network operation
EP2464161B1 (en) * 2009-08-07 2022-11-02 Nec Corporation Wireless communication system, wireless communication method, radio station, control station, and program
US8300587B2 (en) 2009-08-17 2012-10-30 Nokia Corporation Initialization of reference signal scrambling
CA2775371C (en) * 2009-09-25 2018-03-13 Research In Motion Limited System and method for multi-carrier network operation
EP4307760A1 (en) * 2009-09-25 2024-01-17 BlackBerry Limited Multi-carrier network operation
EP3474621B1 (en) * 2009-09-25 2022-05-04 BlackBerry Limited System and method for multi-carrier network operation
CN105721132B (zh) * 2009-09-25 2019-03-26 黑莓有限公司 用于多载波网络操作的系统和方法
EP4221043A3 (en) 2009-09-28 2023-08-16 Samsung Electronics Co., Ltd. Extending physical downlink control channels
US20110217985A1 (en) * 2009-09-28 2011-09-08 Qualcomm Incorporated Predictive short-term channel quality reporting utilizing reference signals
US8923905B2 (en) * 2009-09-30 2014-12-30 Qualcomm Incorporated Scrambling sequence initialization for coordinated multi-point transmissions
BR112012007487A2 (pt) * 2009-10-01 2017-08-22 Interdigital Patent Holdings Inc Transmissão de dados de controle de uplink
KR101594631B1 (ko) * 2010-03-12 2016-02-17 삼성전자주식회사 일원화된 다중 기지국 시스템에서의 제어 시그널링 방법 및 장치
WO2012096476A2 (ko) * 2011-01-10 2012-07-19 엘지전자 주식회사 무선 통신 시스템에서 하향링크 참조 신호 송수신 방법 및 장치
KR101777424B1 (ko) * 2011-01-19 2017-09-12 엘지전자 주식회사 다중 노드 시스템에서 신호 수신 방법 및 장치
CN103430459A (zh) * 2011-02-07 2013-12-04 英特尔公司 来自多个基础设施节点的传送的共定相
CN107104777B (zh) * 2011-02-09 2020-05-01 瑞典爱立信有限公司 分层的异构小区部署中的参考符号资源的有效率的使用
CN103518415B (zh) * 2011-02-11 2017-05-24 交互数字专利控股公司 用于增强型控制信道的系统和方法
KR101856235B1 (ko) * 2011-02-11 2018-05-10 한국전자통신연구원 다중 송수신 포인트를 사용하는 무선 통신 시스템
US9426703B2 (en) * 2011-02-11 2016-08-23 Qualcomm Incorporated Cooperation and operation of macro node and remote radio head deployments in heterogeneous networks
US9258718B2 (en) * 2011-02-22 2016-02-09 Qualcomm Incorporated Positioning location for remote radio heads (RRH) with same physical cell identity (PCI)
KR101840642B1 (ko) * 2011-06-07 2018-03-21 한국전자통신연구원 분산 안테나 무선 통신 시스템 및 그 방법
US8995385B2 (en) * 2011-08-05 2015-03-31 Samsung Electronics Co., Ltd. Apparatus and method for UE-specific demodulation reference signal scrambling
MX2013010114A (es) * 2011-10-18 2013-10-03 Lg Electronics Inc Metodo y aparato de indicacion de celda primaria para desmodulacion de canal de control mejorada.
EP2817912B1 (en) * 2012-02-20 2020-09-16 LG Electronics Inc. Method and apparatus for transmitting uplink signal in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9503225B2 (en) 2012-09-20 2016-11-22 Sharp Kabushiki Kaisha Terminal, base station, wireless communication method, and integrated circuit
CN104662979A (zh) * 2012-09-20 2015-05-27 夏普株式会社 终端装置、基站装置、无线通信方法以及集成电路
EP2900026A4 (en) * 2012-09-20 2016-04-27 Sharp Kk TERMINAL, BASE STATION, WIRELESS COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
JP2016506179A (ja) * 2012-12-27 2016-02-25 サムスン エレクトロニクス カンパニー リミテッド 無線通信システムで高速スモールセルのスイッチングが可能なセル操作方法及び装置
US9295023B2 (en) 2013-01-15 2016-03-22 Zte Wistron Telecom Ab Operation of a heterogeneous wireless network by determining location of a wireless device
CN103929713B (zh) * 2013-01-15 2017-05-17 Zte维创通讯公司 通过确定无线设备的位置来操作异构无线网络的方法及装置
JP2014138424A (ja) * 2013-01-15 2014-07-28 Zte Wistron Telecom Ab 無線デバイスの位置を判定することによる異種無線ネットワークの運用
CN103929713A (zh) * 2013-01-15 2014-07-16 Zte维创通讯公司 通过确定无线设备的位置来操作异构无线网络
KR20150118113A (ko) * 2013-02-18 2015-10-21 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송을 수행하는 방법 및 장치
JP2016507202A (ja) * 2013-02-18 2016-03-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるデータ送信を行う方法及び装置
EP2957132A4 (en) * 2013-02-18 2016-09-14 Lg Electronics Inc METHOD AND APPARATUS FOR IMPLEMENTING DATA TRANSMISSION IN WIRELESS COMMUNICATION SYSTEM
US9538456B2 (en) 2013-02-18 2017-01-03 Lg Electronics Inc. Method and apparatus for performing data transmission in wireless communication system
KR102125968B1 (ko) * 2013-02-18 2020-06-24 엘지전자 주식회사 무선 통신 시스템에서 데이터 전송을 수행하는 방법 및 장치
WO2014183641A1 (zh) * 2013-05-14 2014-11-20 华为技术有限公司 一种终端间的协作通信方法、设备及系统
US9544038B2 (en) 2013-05-31 2017-01-10 Zte Corporation Method, device and system for signalling transmission of virtual multi-antenna system
WO2014190820A1 (zh) * 2013-05-31 2014-12-04 中兴通讯股份有限公司 一种虚拟多天线系统的信令传输方法、装置及系统
CN105706520A (zh) * 2013-11-05 2016-06-22 Lg电子株式会社 用于具有双连接性的无线通信的方法和设备

Also Published As

Publication number Publication date
US10292169B2 (en) 2019-05-14
EP3407506A1 (en) 2018-11-28
US11284406B2 (en) 2022-03-22
US11812459B2 (en) 2023-11-07
KR101740465B1 (ko) 2017-05-26
CN105827386A (zh) 2016-08-03
US20190230672A1 (en) 2019-07-25
EP2675078A4 (en) 2018-02-28
CN105827386B (zh) 2019-07-12
KR101938222B1 (ko) 2019-01-14
CN103563270A (zh) 2014-02-05
JP2015181292A (ja) 2015-10-15
KR20120092523A (ko) 2012-08-21
JP2017038388A (ja) 2017-02-16
JP2014505447A (ja) 2014-02-27
KR101856235B1 (ko) 2018-05-10
KR20160075401A (ko) 2016-06-29
KR20180048515A (ko) 2018-05-10
US20130315195A1 (en) 2013-11-28
US9560663B2 (en) 2017-01-31
US20220183016A1 (en) 2022-06-09
EP2675078A2 (en) 2013-12-18
JP6219474B2 (ja) 2017-10-25
US20240064792A1 (en) 2024-02-22
US20170134111A1 (en) 2017-05-11
WO2012108716A3 (ko) 2012-10-04

Similar Documents

Publication Publication Date Title
WO2012108716A2 (ko) 다중 송수신 포인트를 사용하는 무선 통신 시스템
WO2017034182A1 (ko) 무선 통신 시스템에서 위치 결정을 위한 참조 신호 수신 또는 전송 방법 및 이를 위한 장치
WO2016032218A2 (ko) 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
WO2016144028A1 (ko) 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
WO2018164452A1 (ko) 무선 통신 시스템에서 하향링크 신호를 수신 또는 전송하기 위한 방법 및 이를 위한 장치
WO2016099079A1 (ko) 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
WO2014046499A1 (en) Method and apparatus for transmitting and receiving channel state information in a wireless communication system
WO2013176480A1 (en) Reference signal measurement method and apparatus for use in wireless communication system including plural base stations with distributed antennas
WO2013151392A1 (en) Method and apparatus for transmitting/receiving channels in mobile communication system supporting massive mimo
WO2014133280A1 (en) Method and apparatus for transmitting and receiving feedback information in mobile communication system using multiple antennas
WO2012020963A2 (en) Method and base station for transmitting downlink signal and method and equipment for receiving downlink signal
WO2013151395A1 (ko) 하향링크 데이터 수신 방법 및 이를 이용한 무선기기
WO2018128340A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2015065087A1 (en) Apparatus and method for cancelling inter-cell interference in communication system
WO2016024731A1 (ko) 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
WO2016129908A1 (ko) 무선 통신 시스템에서 참조 신호 수신 방법 및 이를 위한 장치
WO2011119005A2 (en) Method and base station for receiving reference signal, and method and user equipment for receiving reference signal
WO2012015238A2 (ko) 다중 노드 시스템에서 기지국이 노드를 반정적으로 단말에 할당하는 방법 및 장치
WO2015115828A1 (en) Method and equipment for processing interference signals
WO2018012774A1 (ko) 무선 통신 시스템에서 송수신 방법 및 이를 위한 장치
WO2018199681A1 (ko) 무선 통신 시스템에서 채널 및 간섭 측정을 위한 방법 및 이를 위한 장치
WO2014038857A1 (en) Transmitting configuration information of interference measurement resource, and measuring interference
WO2016163770A1 (ko) 무선 통신 시스템에서 위치 결정을 위한 참조 신호 측정, 또는 위치 결정을 위한 방법 및 이를 위한 장치
WO2018203624A1 (ko) 무선 통신 시스템에서 참조 신호를 수신하기 위한 방법 및 이를 위한 장치
WO2012093759A1 (ko) 다중 분산 노드 시스템에서 노드 선택 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744397

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012744397

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013553367

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13984880

Country of ref document: US