WO2012108349A1 - 基地局装置、移動局装置、通信システム、送信方法、受信方法および通信方法 - Google Patents

基地局装置、移動局装置、通信システム、送信方法、受信方法および通信方法 Download PDF

Info

Publication number
WO2012108349A1
WO2012108349A1 PCT/JP2012/052490 JP2012052490W WO2012108349A1 WO 2012108349 A1 WO2012108349 A1 WO 2012108349A1 JP 2012052490 W JP2012052490 W JP 2012052490W WO 2012108349 A1 WO2012108349 A1 WO 2012108349A1
Authority
WO
WIPO (PCT)
Prior art keywords
station apparatus
base station
cell
mobile station
reference signal
Prior art date
Application number
PCT/JP2012/052490
Other languages
English (en)
French (fr)
Inventor
貴司 吉本
寿之 示沢
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/984,201 priority Critical patent/US9713123B2/en
Priority to EA201391151A priority patent/EA027257B1/ru
Priority to CA2826790A priority patent/CA2826790C/en
Priority to AU2012215902A priority patent/AU2012215902B2/en
Priority to CN201280008239.2A priority patent/CN103348727B/zh
Priority to EP12744960.1A priority patent/EP2675212B1/en
Priority to NZ615281A priority patent/NZ615281B2/en
Priority to BR112013020109A priority patent/BR112013020109B8/pt
Priority to KR1020137023497A priority patent/KR101872554B1/ko
Publication of WO2012108349A1 publication Critical patent/WO2012108349A1/ja
Priority to IL227885A priority patent/IL227885A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0056Inter-base station aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to a base station device, a mobile station device, a communication system, a transmission method, a reception method, and a communication method.
  • 3GPP ThreeGPP (Third Generation Partnership Project) in due WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), LTE-A (LTE-Advanced), WiMAX according to IEEE (The Institute of Electrical and Electronics engineers) (Worldwide Interoperability for Microwave In a wireless communication system such as (Access), a part of a range (cell) in which a base station apparatus (eNB; eNodeB) can connect to a mobile station apparatus (terminal, UE (User Equipment)) While overlapped, by a cellular structure providing a plurality of base station apparatus, it can expand the communication area.
  • a base station apparatus eNB; eNodeB
  • UE User Equipment
  • Non-Patent Document 1 In this cellular configuration, in order to improve the frequency use efficiency of the cell, as shown in Non-Patent Document 1 described later, (i) the same frequency is repeatedly used in each cell, (ii) several hundred m
  • base station devices (picocell, femtocell, Home eNodeB) having various cell radii are overlapped in whole or part with the macrocell. Heterogeneous networks are being considered.
  • FIG. 22 is a schematic diagram illustrating an example of a downlink radio communication system in which base station apparatuses having different cell radii are arranged.
  • Base station apparatus 1000-2 is arranged with one-cell frequency repetition so that cell 1000-2a (for example, pico cell) overlaps cell 1000-1a (macro cell) of base station apparatus 1000-1.
  • the mobile station apparatus is preferably controlled to be wirelessly connected to a base station apparatus that can receive a signal with a larger received electric field strength.
  • the mobile station device 2000-1 is wirelessly connected to the base station device 1000-1 (r11), and the mobile station devices 2000-2 and 2000-3 are wirelessly connected to the base station device 1000-2 (r21). And r23).
  • the pico cell is arranged so as to have an inclusive relationship around the cell edge of the macro cell (area where electric field strength is weak)
  • the mobile station device 2000-3 existing at the cell edge of the macro cell is connected to the pico cell, so that the mobile station device The received signal power can be improved.
  • the mobile station device 2000-2 in FIG. 22 is wirelessly connected to the base station device 1000-2 that can receive a signal with a large received electric field strength (r21), but the distance from the base station device 1000-1 is also short.
  • the mobile station apparatus 2000-2 receives the inter-cell interference r12 from the base station apparatus 1000-1 by the signal transmitted by the base station apparatus 1000-1 using the same resource. Therefore, the transmission throughput in mobile station apparatus 2000-2 decreases, and the frequency utilization efficiency in base station apparatus 1000-2 decreases.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a base station apparatus and a mobile station that can efficiently reduce or suppress inter-cell interference in a wireless communication system constituting a heterogeneous network.
  • An apparatus, a communication system, and a communication method are provided.
  • a base station apparatus is a base station apparatus that communicates with a mobile station apparatus, and is different from the base station apparatus. Control information related to the cell-specific reference signal, including information on the number of ports of the cell-specific reference signal specific to the cell ID of the base station device, is notified to the mobile station device.
  • a base station apparatus is the base station apparatus according to (1) above, wherein the cell-specific reference signal is set with a resource element arranged based on the cell ID. .
  • a base station apparatus is the base station apparatus according to (1), wherein the control information related to the cell-specific reference signal is a subframe in which the cell-specific reference signal is arranged. Further information.
  • a base station apparatus is the base station apparatus according to (1) above, wherein the control information related to the cell-specific reference signal further includes power information for the cell-specific reference signal.
  • a base station apparatus is the base station apparatus according to (1), wherein control information related to the cell-specific reference signal is transmitted from the mobile station apparatus for the cell-specific reference signal. It further includes information on the necessity of processing.
  • the base station apparatus is the base station apparatus according to (1) above, and the control information related to the cell-specific reference signal is notified to the mobile station apparatus as specific information. .
  • a mobile station apparatus is a mobile station apparatus that communicates with a base station apparatus, and is a cell-specific reference signal specific to a cell ID of a base station apparatus different from the base station apparatus. Control information related to the cell-specific reference signal including information on the number of ports is received from the base station apparatus.
  • a mobile station apparatus is the mobile station apparatus according to (7) described above, and performs processing on the cell-specific reference signal based on control information on the cell-specific reference signal.
  • a communication system is a communication system in which a base station apparatus and a mobile station apparatus communicate with each other, and the base station apparatus is a base station apparatus different from the base station apparatus.
  • the mobile station apparatus is notified of control information related to the cell specific reference signal including information on the number of ports of the cell specific reference signal specific to the cell ID, and the mobile station apparatus transmits control information related to the cell specific reference signal. And received from the base station apparatus.
  • a communication method is a communication method of a base station apparatus that communicates with a mobile station apparatus, and is unique to a cell ID of a base station apparatus different from the base station apparatus. Control information related to the cell-specific reference signal including information on the number of ports of the reference signal is notified to the mobile station apparatus.
  • a communication method is a communication method for a mobile station apparatus that communicates with a base station apparatus, and is unique to a cell ID of a base station apparatus different from the base station apparatus. Control information regarding the cell-specific reference signal including information on the number of ports of the reference signal is received from the base station apparatus.
  • a communication method is a communication method of a communication system in which a base station device and a mobile station device communicate with each other, and the base station device is a base other than the base station device.
  • Control information related to the cell specific reference signal including information on the number of ports of the cell specific reference signal specific to the cell ID of the station device is notified to the mobile station device, and the mobile station device relates to the cell specific reference signal Control information is received from the base station apparatus.
  • An integrated circuit is an integrated circuit of a base station apparatus that communicates with a mobile station apparatus, and is unique to a cell ID of a base station apparatus different from the base station apparatus
  • the mobile station apparatus has a function of notifying the mobile station apparatus of control information related to the cell-specific reference signal, including information on the number of reference signal ports.
  • An integrated circuit is an integrated circuit of a mobile station apparatus that communicates with a base station apparatus, and is unique to a cell ID of a base station apparatus different from the base station apparatus It has a function of receiving, from the base station apparatus, control information related to the cell-specific reference signal including information on the number of reference signal ports.
  • inter-cell interference can be efficiently reduced or suppressed in a wireless communication system that forms a heterogeneous network.
  • FIG. 3 is a schematic block diagram illustrating a configuration of a mobile station device 200-u in the wireless communication system according to the first embodiment of the present invention. It is the schematic which shows the structure of the interference removal part 206 which concerns on the 1st Embodiment of this invention.
  • FIG. 5 is a reception flowchart of the mobile station apparatus in the wireless communication system according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating reception of subframes transmitted by the mobile station device 200-2 by the base station device 100-1 and the base station device 100-2.
  • 6 is a downlink transmission frame format of the base station apparatus 100-1 in the wireless communication system according to the second embodiment of the present invention. It is an example of the downlink control signal which concerns on the 3rd Embodiment of this invention. It is an example of the downlink control signal of the base station apparatus which concerns on the 4th Embodiment of this invention. It is the modulation system and coding rate for the index of MCS information. It is a sub-frame structure with respect to the index of transmission format information.
  • a wireless communication system in each embodiment to be described later of the present invention includes a plurality of base station devices (transmitting device, cell, transmission point, transmitting antenna group, transmitting antenna port group, component carrier, eNodeB) and a plurality of mobile station devices ( A terminal, a terminal device, a mobile terminal, a reception point, a reception terminal, a reception device, a reception antenna group, a reception antenna port group, and a UE (User Equipment).
  • the transmission power of each base station device may be different.
  • Each embodiment of the present invention to be described later includes OFDM (Orthogonal Frequency Division Multiplexing), MC-CDMA (Multi Carrier-Code Division Multiple Access), and SC-FDMA (Single Carrier-Frequency-Freq). It can be applied to multi-carrier transmission such as Discrete Fourier Transform-spread-OFDM) and single carrier transmission.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 1 is a schematic diagram illustrating an example of a downlink radio communication system in which a plurality of base station apparatuses having different cell radii according to the first embodiment of the present invention are arranged.
  • the cell 100-2a (eg, pico cell, first base station device) overlaps with the cell 100-1a (macro cell, second base station device) of the base station device 100-1. In this manner, the cells are arranged with one cell frequency repetition.
  • the base station apparatuses are connected by a backhaul line 10 (for example, X2 interface) using an optical fiber, an Internet line, a wireless line, or the like.
  • the mobile station device 200-1 is wirelessly connected to the base station device 100-1 (r11), and the mobile station devices 200-2 and 200-3 are wirelessly connected to the base station device 100-2 (r21 and r23).
  • downlink signals in LTE downlink shared channel (PDSCH; Physical Downlink Shared Channel), downlink control channel (PDCCH; Physical Downlink Control Channel), synchronization signal (SS; Synchronization Channel; Physical Broadcastcast Channel), cell-specific reference signal (CRS; Cell-specific Reference Signal), channel state measurement reference signal (CSI-RS; Channel State Information-Reference signal), demodulation reference signal (DMS reference signal) Reference Signal), a paging signal (Paging), such as SIB (System Information Block) corresponds.
  • SIB System Information Block
  • the downlink shared channel is a channel for transmitting information data and the like.
  • the downlink control channel includes the coding rate and modulation multi-level number (MCS) applied to the downlink shared channel information data, the number of layers (number of ranks, number of spatial multiplexing), schedule information (resource allocation) Information) to the mobile station apparatus.
  • MCS modulation multi-level number
  • the synchronization signal is a signal for the mobile station apparatus to establish and follow cell search, frame synchronization, and symbol synchronization.
  • Examples of the synchronization signal include a primary synchronization signal (PSS; Primary Synchronization Signal) and a secondary synchronization signal (SSS; Secondary Synchronization Signal).
  • PSS is a data sequence that can detect the symbol timing and the cell ID, for example, an orthogonal sequence such as a Zadoff-Chu sequence.
  • the cell ID is an ID assigned to each cell corresponding to the base station apparatus (transmitting apparatus 100).
  • the cell ID is a clue that the mobile station apparatus (receiving apparatus 200) identifies the cell, that is, the base station apparatus (transmitting apparatus 100).
  • the SSS is a data series that can detect frame timing, for example, an M series.
  • the cell-specific reference signal is a known signal for measuring the propagation path conditions of the base station apparatus and the mobile station apparatus.
  • the mobile station apparatus performs reception power (RSRP; Reference Signal Received Power) measurement of the cell using the cell-specific reference signal and notifies the base station apparatus.
  • RSRP Reference Signal Received Power
  • the base station apparatus can perform selection and handover of a cell connected to the mobile station apparatus using the received power measurement result.
  • the reference signal for transmission path condition measurement is a known signal for measuring the propagation path conditions of the base station apparatus and the mobile station apparatus, and is used for generating feedback information that the mobile station apparatus transmits to the base station apparatus. is there.
  • the feedback information includes CQI (Channel Quality Indicator), PMI (Precoding Matrix Index), RI (Rank Indicator), and the like.
  • CQI is information generated in consideration of propagation path estimation and the like estimated by the transmission path condition measurement reference signal, and indicates a coding rate and a modulation scheme in which the mobile station apparatus can maintain a predetermined reception quality.
  • Information is information indicating a precoding matrix suitable for the mobile station apparatus generated in consideration of the propagation path estimation estimated from the transmission path condition measurement reference signal.
  • the RI is information indicating the number of layers suitable for the mobile station apparatus generated in consideration of the propagation path estimation estimated by the transmission path condition measurement reference signal.
  • the demodulation reference signal is a signal for measuring a propagation path condition between the base station apparatus and the mobile station apparatus, and is used when demodulating a downlink shared channel or the like.
  • the paging signal (Paging) performs call control.
  • SIB is system information transmitted in the downlink.
  • the broadcast channel (PBCH) is a system control channel broadcast over the entire cell.
  • FIG. 2 is a schematic block diagram showing the configuration of the base station apparatus in the wireless communication system according to the first embodiment of the present invention.
  • the base station apparatus 100- ⁇ includes a receiving unit 122 and a control signal detecting unit 123.
  • a reception antenna unit 121 is connected to the reception unit 122.
  • the base station apparatus 100- ⁇ receives a signal including a control signal transmitted from the mobile station apparatus 200-u via the uplink via the reception antenna unit 121.
  • the receiving unit 122 (i) down-converts the control signal or the like to a frequency band capable of digital signal processing such as signal detection processing, (ii) performs filtering processing to remove spurious, and (iii) performs filtering processing.
  • the signal is converted from an analog signal to a digital signal (Analog to Digital conversion).
  • the control signal detection unit 123 performs demodulation processing, decoding processing, and the like on the control signal output from the reception unit 122.
  • the control signal is detected from an uplink control channel (PUCCH: Physical Uplink Control Channel) and / or an uplink shared channel (PUSCH: Physical Uplink Shared Channel). Then, the upper layer 102 acquires feedback information included in the control signal input from the control signal detection unit 123.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the upper layer 102 outputs information data to the symbol generation unit 103-u and outputs control data to the control signal generation unit 104 based on the feedback information.
  • the upper layer is a layer of functions higher than the physical layer (Physical Layer) among the layers of communication functions defined in the OSI reference model, for example, a data link layer, a network layer, and the like.
  • the base station apparatus performs scheduling of data modulation symbols, control signals, reference signals, etc. for each mobile station apparatus based on the feedback information, and outputs to the resource mapping unit 106 based on the scheduling information.
  • Scheduling information refers to information about resource elements or resource blocks in which data modulation symbols, control signals, and reference signals are arranged.
  • the resource element is a minimum unit for arranging a signal composed of one subcarrier and one OFDM symbol.
  • a resource block is a unit of resources in which a plurality of resource elements are collected, and is a minimum unit of resources allocated to each mobile station apparatus.
  • the resource block may be a resource composed of 12 subcarriers and 7 OFDM symbols.
  • the upper layer 102 transmits downlink transmission of the base station apparatus to the upper layer of another base station apparatus (for example, an adjacent base station or a macro cell or a pico cell in a heterogeneous network) through the backhaul line 10 in FIG. Notify information about.
  • the information related to the downlink transmission includes information on a downlink subframe format to be described later.
  • the information regarding the downlink transmission includes, for example, arrangement information between a normal subframe and a subframe in which resource mapping is limited, a cell ID, the number of CRS ports, and the like.
  • the higher layer 102 also notifies other parameters necessary for each part of the base station device 100- ⁇ to perform its function.
  • the symbol generation unit 103-u generates a data modulation symbol from the information data input from the upper layer 102. This data modulation symbol corresponds to, for example, a downlink shared channel.
  • the symbol generation unit 103-u includes a coding unit 111 and a modulation unit 112.
  • the encoding unit 111 performs error correction encoding processing (turbo code, convolutional code, low density parity check code: LDPC (Low Density Parity Check) code, etc.) on the information data, and outputs encoded bits.
  • error correction encoding processing turbo code, convolutional code, low density parity check code: LDPC (Low Density Parity Check) code, etc.
  • the information data is preferably subjected to error detection coding in the upper layer for error detection on the reception side such as cyclic redundancy check (CRC).
  • the encoding unit 111 may include a rate matching processing unit for adjusting the coding rate (coding rate) to the data transmission rate. In the rate matching processing unit, for example, puncture processing for deleting some data, repetition processing for repeating some data, or provisional data (for example, zero value) is inserted into some data. Processing such as padding processing is performed.
  • encoding section 111 may interleave the generated encoded bits and output the interlea
  • the modulation unit 112 performs modulation mapping on the coded bits input from the coding unit 111 to generate a data modulation symbol.
  • the modulation process performed by the modulation unit 112 is, for example, BPSK (Binary Phase Shift Keying; two-phase phase modulation), QPSK (Quadrature Phase Shift Keying; four-phase phase modulation), 16QAM (16 Quadrature Amplitude Modulation value). Or 64QAM (64 Quadrade Amplitude Modulation; 64-value quadrature amplitude modulation).
  • Modulation section 112 outputs the generated data modulation symbol to resource mapping section 106. Note that modulation section 112 may interleave the generated data modulation symbols and output the interleaved data modulation symbols to resource mapping section 106. Further, modulation section 112 may precode the generated data modulation symbol and output the precoded data modulation symbol to resource mapping section 106.
  • the control signal generation unit 104 generates control signals by performing error correction coding and modulation mapping on the control data output from the upper layer 102.
  • the control signal corresponds to a downlink control channel (PDCCH), a broadcast channel (PBCH), a synchronization signal (PSS, SSS), a paging signal (Paging), SIB-1, and the like.
  • the control signal can also be precoded.
  • the control signal includes information on whether or not the mobile station apparatus needs to be canceled and information on the cell to be canceled (details will be described later).
  • the reference signal generation unit 105 generates a reference signal (pilot signal) that can estimate the propagation path between the base station apparatus and the mobile station apparatus.
  • the reference signal corresponds to a cell-specific reference signal (CRS), a transmission path condition measurement reference signal (CSI-RS), or the like.
  • the code sequence constituting the reference signal is preferably an orthogonal sequence, for example, a Hadamard code or a CAZAC (Constant Amplitude Zero Auto-Correlation) sequence.
  • the demodulation reference signal (DM-RS) is multiplexed with the data modulation symbol before precoding in the modulation unit 112.
  • the resource mapping unit 106 maps the data modulation symbol, control signal, and reference signal to resource elements based on the scheduling information notified from the higher layer 102 (hereinafter referred to as resource mapping).
  • the scheduling information is information indicating the arrangement of each signal based on a transmission frame format described later, for example.
  • the IDFT unit 107 converts the frequency domain signal into a time domain signal by performing an inverse discrete Fourier transform (IDFT) on the frequency domain signal output from the resource mapping unit 106.
  • the IDFT unit 107 outputs the converted time domain signal to the GI insertion unit 108.
  • the IDFT unit 107 executes a function of converting a frequency domain signal into a time domain signal, but is not limited to this, and may execute, for example, an inverse fast Fourier transform (IFFT; Inverse Fast Fourier Transform). .
  • IFFT inverse fast Fourier transform
  • IFFT Inverse Fast Fourier Transform
  • the GI insertion unit 108 adds an GI to the time domain signal input from the IDFT unit 107 to generate an OFDM symbol.
  • the GI insertion unit 108 uses the time domain signal as an effective symbol and prepends a part of the latter half thereof as an effective symbol as GI.
  • An effective symbol to which this GI is added is an OFDM symbol.
  • the GI insertion unit 108 outputs the generated OFDM symbol to the transmission unit 109.
  • the mobile station apparatus 200-u can remove distortion caused by a delay path having a delay time shorter than the GI length.
  • the GI length that is, the number of sample points is 144 (6.7 ⁇ s).
  • the signal s l (t) of the l-th OFDM symbol output from the GI insertion unit 108 is expressed by the following equation.
  • T f is the FFT interval length.
  • TG is the GI length.
  • N f is the number of IDFT points.
  • C k, l is a data modulation symbol, control signal, or reference signal assigned to the k-th subcarrier of the l-th OFDM symbol.
  • the delta f is the sub-carrier interval. For example, in LTE, N f is 2048 and ⁇ f is 15 kHz.
  • the transmission unit 109 performs D / A (Digital-to-Analog) conversion of the OFDM symbol input from the GI insertion unit 108 to generate an analog signal, and band-limits the generated analog signal by filtering processing. To generate a band-limited signal. Transmitting section 109 upconverts the generated band limited signal to a radio frequency band to generate a carrier band OFDM signal, and transmits the generated carrier band OFDM signal from transmitting antenna section 101-n to mobile station apparatus 200-u as a radio wave. Send.
  • transmission from a plurality of transmission antennas may be diversity transmission or MIMO (Multiple Input Multiple Output) transmission.
  • FIG. 3 is a downlink transmission frame format of the base station apparatus 100-1 in the wireless communication system according to the first embodiment of the present invention.
  • One frame is composed of ten types of subframes including a normal subframe and a resource mapping limited subframe (also referred to as a limited subframe).
  • the resource mapping restriction subframe includes MBSFN (Multicast / Broadcast over Single Frequency Network) or ABS (Almost Blank Subframe).
  • a normal subframe refers to a subframe in which information data, control data, and a reference signal transmitted from the base station apparatus 100-1 can be resource-mapped based on the scheduling information.
  • resource mapping of a downlink shared channel, a downlink control channel, a synchronization signal, a broadcast channel, a cell-specific reference signal, a channel state measurement reference signal, a paging signal, SIB-1, etc. Can do.
  • the resource mapping restriction subframe is a subframe that restricts resource mapping only to a predetermined signal transmitted by the base station apparatus 100-1.
  • an MBSFN subframe or an ABS is used as the resource mapping limited subframe.
  • the MBSFN subframe is a subframe prepared for sending a broadcast signal or a multicast signal.
  • the MBSFN subframe does not transmit a cell-specific reference signal (CRS) set for each cell in the data area (PDSCH) on the assumption that data is simultaneously transmitted from a plurality of cells. Therefore, the mobile station device 200-u does not measure CRS in the MBSFN subframe. Therefore, the base station apparatus 100-1 can stop transmission of information data without being noticed by the mobile station apparatus 200-u.
  • CRSs in the PDCCH and the PDCCH region are transmitted, and other data regions and CRSs in the data region are not transmitted.
  • the ABS is a subframe that can transmit only a synchronization signal, a broadcast channel, a cell-specific reference signal, a transmission path condition measurement reference signal, a paging signal, and SIB-1. That is, resource mapping of the downlink shared channel and the downlink control channel is limited.
  • the MBSFN subframe and the ABS can be set simultaneously. In such a subframe, only the CRS of the PDCCH region is transmitted, and the CRS of the PDCCH, the data region, and the data region is not transmitted.
  • multicast refers to transmitting the same information data signal to a large number of specific mobile station apparatuses
  • broadcast refers to transmitting the same information data signal to a large number of unspecified mobile station apparatuses.
  • the first, second, sixth and seventh subframes are set as resource mapping limited subframes, and the other subframes (outlined portions) are set as normal subframes. It is an example. Moreover, the case where the 2nd and 7th subframes are set as MBSFN subframes and the 1st and 6th subframes are set as ABSs among the resource mapping limited subframes is shown.
  • the setting (ratio) of the normal subframe and the resource mapping limited subframe can be varied based on the number of mobile station apparatuses connected to each base station apparatus. Further, the index of the subframe to which the resource mapping limited subframe is allocated can be defined in advance by a table or the like according to the ratio of the normal subframe and the resource mapping limited subframe.
  • FIG. 3 shows an example in which the SSS is mapped to the sixth OFDM symbol (upward-slashed portion) and the PSS is mapped to the seventh OFDM symbol (upward-shaded portion) as the synchronization signal.
  • the synchronization signal is resource-mapped into the first subframe and the sixth subframe.
  • the downlink transmission frame format of base station apparatus 100-1 as shown in FIG. 3 can be set in units of 40 subframes.
  • the base station apparatus 100-1 notifies the base station apparatus 100-2 via the backhaul line 10 of information related to the downlink transmission frame format of the set base station apparatus 100-1 (transmission frame format information).
  • transmission frame format information can be 40-bit bitmap format information with a normal subframe being “1” and a resource mapping limited subframe being “0”.
  • the transmission frame format information includes information that recommends that the base station device 100-1 restricts RLM (Radio Link Monitoring) / RRM (Radio Resource Management) measurement to the base station device 100-2. can do.
  • RLM Radio Link Monitoring
  • RRM Radio Resource Management
  • FIG. 4 is a conceptual diagram showing an example of a subframe format according to the first embodiment of the present invention.
  • the example shown in FIG. 4 is an example when the base station apparatus 100- ⁇ transmits using one antenna port.
  • FIG. 4 shows a format of the first subframe and the sixth subframe in FIG.
  • the PSS is the seventh OFDM symbol, and is arranged in a resource element composed of 63 subcarriers (frequency bands) in the middle of the system band (upwardly hatched portion).
  • SSS is the sixth OFDM symbol, and is arranged in a resource element composed of 63 subcarriers (frequency bands) in the middle of the system band (the diagonally shaded portion on the left).
  • Data modulation symbols and reference signals are assigned in units of resource block pairs (thick lines) composed of two resource blocks.
  • Each resource block pair is composed of 168 resource elements that occupy a frequency indicated by 12 subcarriers and a time indicated by 14 OFDM symbols.
  • control signals for example, PDCCH
  • the remaining 11 to 13 OFDM symbol regions are regions where data modulation symbols such as PDSCH are mainly arranged.
  • the cell-specific reference signal is arranged in a predetermined resource element constituting each resource block (filled portion). In the cell-specific reference signal, the allocated resource elements are cyclically shifted in the frequency direction based on the cell ID of the base station apparatus 100- ⁇ .
  • base station apparatus 100-1 performs scheduling for resource mapping of PDSCH and PDCCH to only normal frames in mobile station apparatus 200-1 while considering feedback information.
  • resource mapping section 106 performs resource mapping based on the scheduling information
  • base station apparatus 100-1 transmits PDSCH and PDCCH to mobile station apparatus 200-1 using only normal frames.
  • a white portion where the PDCCH or the like is subjected to resource mapping can be set not to place a signal.
  • the resource mapping limited subframe it is possible to reduce inter-cell interference with the mobile station apparatus connected to the base station apparatus 100-2.
  • FIG. 5 is a conceptual diagram showing another example of the subframe format according to the first embodiment of the present invention.
  • the example shown in FIG. 5 is an example when the base station device 100- ⁇ transmits using two antennas (antenna ports).
  • the horizontal direction indicates time and the vertical direction indicates frequency.
  • the cell-specific reference signal is arranged in a predetermined resource element constituting each resource block (filled portion).
  • the reference signal transmitted from one of the two antennas is resource-mapped to resource element 0.
  • a cell-specific reference signal transmitted from the other antenna of the two antennas is resource-mapped to resource element 1.
  • the resource block of FIG. 5 arranged in the resource block in the subframe format of FIG. 4 is the subframe format of the base station apparatus 100- ⁇ .
  • FIG. 6 is a conceptual diagram showing another example of the subframe format according to the present embodiment.
  • the example shown in FIG. 6 is an example when the base station apparatus 100- ⁇ transmits using four antennas.
  • the horizontal direction indicates time and the vertical direction indicates frequency.
  • the cell-specific reference signal is arranged in a predetermined resource element constituting each resource block (filled portion).
  • a cell-specific reference signal transmitted from one of the four antennas is resource-mapped to resource element 0.
  • a cell-specific reference signal transmitted from another one of the four antennas is resource-mapped to resource element 1.
  • a cell-specific reference signal transmitted from another one of the four antennas is resource-mapped to resource element 2.
  • a cell-specific reference signal transmitted from another one of the four antennas is resource-mapped to the resource element 3.
  • the number of reference signals increases or decreases based on the number of transmission antennas and the number of layers of base station apparatus 100- ⁇ .
  • FIG. 7 is a downlink transmission frame format of the base station apparatus 100-2 in the wireless communication system according to the first embodiment of the present invention.
  • One frame is composed of 10 normal subframes.
  • the format of each subframe is the same as that in FIG. 4 except that the arrangement of the cell-specific reference signal is cyclically shifted based on the cell ID.
  • the base station device 100-2 transmits control data (transmission) related to the downlink of the base station device 100-2 obtained through the backhaul line 10.
  • Resource mapping such as PDSCH and PDCCH is performed using frame format information, cell ID, number of CRS ports, and the like.
  • the base station device 100-2 transmits the mobile station device 200-2 to any of the subframes (shaded portions in FIG. 7) that the base station device 100-1 transmits at the same time as the resource mapping limited subframe. It is preferable to perform resource mapping of PDSCH and PDCCH transmitted to a mobile station apparatus that is expected to have large interference from the base station apparatus 100-1. Also, the base station apparatus 100-2 transmits PDSCH and PDCCH to be transmitted to a mobile station apparatus that is expected to have low interference from the base station apparatus 100-1 such as the mobile station apparatus 200-3, and other subframes. Resource mapping can be performed on any of the included subframes and any of the subframes transmitted at the same time.
  • the base station device 100-2 includes the mobile station device 200-2 and the subframe (shaded portion in FIG. 7) that the base station device 100-1 sets as the resource mapping limited subframe.
  • PDSCH and PDCCH to be transmitted to mobile station apparatus 200-3 are subjected to resource mapping, and resource mapping is not performed to other subframes.
  • the mobile station apparatus connected to the base station apparatus 100-2 can reduce inter-cell interference received from the transmission signal of the base station apparatus 100-1.
  • the base station apparatus 100- A CRS of 1 when the mobile station apparatus is mapped to a subframe transmitted at the same time as the ABS among the resource mapping limited subframes of the base station apparatus 100-1, the base station apparatus 100- A CRS of 1 will cause interference. In that case, it is preferable that the mobile station apparatus cancels the CRS of the base station apparatus 100-1.
  • the CRS of base station apparatus 100-1 interferes with the mobile station apparatus. Will give. In that case, it is preferable that the mobile station apparatus cancels the CRS of the base station apparatus 100-1.
  • the base station device 100 A CRS of -1 gives no interference. In that case, it is preferable that the mobile station apparatus does not cancel the CRS of the base station apparatus 100-1.
  • the CRS of the base station apparatus 100-1 is included in the control signal in the downlink of the mobile station apparatus connected to the base station apparatus 100-2.
  • Information on interference cancellation processing with respect to (interference cancellation information) is included.
  • the control signal includes PDCCH, RRC (Radio Resource Control: radio resource control) signaling, and the like.
  • RRC signaling is a control signal included in PBCH and PDSCH, and is quasi-static (semi-static) signaling that has a larger amount of information that can be transmitted and has a lower update (transmission) frequency than PDCCH.
  • the mobile station apparatus that has received the notification of the interference cancellation process “necessary” performs a process of canceling the inter-cell interference for a predetermined period after the notification (details of the cancel process in the mobile station apparatus will be described later).
  • the base station apparatus 100-2 reserves an area indicating information on the presence / absence of 1-bit interference cancellation in PDCCH or RRC signaling, canceling processing “unnecessary” by “0”, canceling processing by “1” Notify “necessary”.
  • the mobile station apparatus cancels the CRS of the base station apparatus 100-1 for the PDSCH scheduled (mapped) in the subframe. To process.
  • the cancellation process “necessary” is set by the RRC signaling, the mobile station apparatus performs the CRS of the base station apparatus 100-1 with respect to the PDSCH scheduled (mapped) in the meantime until the interference cancellation information is updated. Cancel processing.
  • Base station apparatus 100-2 transmits information data to the mobile station apparatus using a subframe corresponding to ABS or a subframe corresponding to a normal subframe among resource mapping limited subframes of base station apparatus 100-1 If so, information indicating the necessity of cancellation is notified. On the other hand, when transmitting information data to the mobile station apparatus using a subframe corresponding to the MBSFN subframe among the resource mapping limited subframes of the base station apparatus 100-1, the base station apparatus 100-2 indicates that cancellation is not necessary. Notify information.
  • the base station apparatus 100-2 uses the subframe corresponding to the ABS or the subframe corresponding to the normal subframe among the resource mapping limited subframes of the base station apparatus 100-1.
  • Information data is transmitted to the mobile station, and information indicating the necessity of cancellation is notified when the information data is equal to or greater than a predetermined MCS.
  • base station apparatus 100-1 transmits a predetermined number or more of cell-specific reference signals in a subframe corresponding to an ABS or a normal subframe among resource mapping limited subframes
  • base station apparatus 100 -2 notifies information indicating that cancellation is necessary.
  • whether cancellation is necessary is determined based on the mode of the transmission frame format.
  • base station apparatus 100-1 transmits a signal in a transmission frame format mode including a resource mapping restriction subframe
  • base station apparatus 100-2 notifies information indicating that cancellation is necessary. Note that the number of reference signals and the mode of the transmission frame format can be shared between base station apparatuses using the backhaul line 10.
  • the above criteria can be performed only by the base station apparatus 100-2 for a mobile station apparatus that is expected to have a large amount of CRS interference from the base station apparatus 100-1. That is, the base station apparatus 100-2 notifies the mobile station apparatus that is expected to have low interference due to CRS from the base station apparatus 100-1 with information indicating that cancellation is unnecessary without applying the above criteria. May be.
  • cell information for performing interference cancellation processing is included in the control signal in the downlink.
  • the control signal include PDCCH and RRC (Radio Resource Control) signaling.
  • the cell information includes a cell ID, the number of CRS ports, CRS power information (including a power ratio with a data signal, etc.), and the like.
  • base station apparatus 100-2 reserves an area indicating cell information for performing interference cancellation processing on PDCCH, and notifies cell information of a transmission source of a signal for performing cancellation processing.
  • base station apparatus 100-2 reserves an area indicating cell information for performing interference cancellation processing in RRC signaling and notifies cell information of a transmission source of a signal for performing cancellation processing in advance.
  • base station apparatus 100-2 uses mobile station apparatus 200-2 and / or mobile station apparatus 200 based on control signals such as the cell ID of base station apparatus 100-1, the number of CRS ports, and CRS power information. -3.
  • the mobile station apparatus can specify or estimate the CRS resource elements and values to which the base station apparatus performs resource mapping based on the cell ID and the number of CRS ports. As a result, the mobile station apparatus can perform processing for canceling the cell-specific reference signal.
  • the RRC signaling may be transmitted by PBCH or transmitted by PDSCH.
  • the base station apparatus 100-2 When the base station apparatus 100-2 notifies the control signal in the downlink using the RRC signaling transmitted by the PBCH of the necessity of the interference cancellation process or the cell information to be subjected to the interference cancellation process, the base station apparatus 100-2 transmits the information to Cell-Specific ( It can be notified as cell-specific information. Also, when the base station apparatus 100-2 notifies the control signal in the downlink using the RRC signaling transmitted by the PDSCH of the necessity of the interference cancellation process or the cell information for performing the interference cancellation process, the base station apparatus 100-2 transmits the information to the UE- Notification can be made as specific information (specific to the mobile station apparatus).
  • FIG. 8 is a transmission flowchart of the base station device 100-2 in the wireless communication system according to the first embodiment of the present invention.
  • the base station apparatus 100-2 acquires information related to downlink transmission of the adjacent base station apparatus (base station apparatus 100-1) through the backhaul line 10 (S101).
  • the information related to downlink transmission includes information related to the transmission frame format.
  • base station apparatus 100-2 determines whether or not the subframe transmitted by base station apparatus 100-1 is MBSFN, based on the information related to downlink transmission (S102).
  • a control signal for notifying is generated (S103).
  • the base station apparatus 100-2 transmits the control signal and data signal (PDSCH or the like) to the mobile station apparatus (S105), and ends the process.
  • the control signal to the mobile station apparatus may include information such as cell information and the number of CRS ports.
  • the mobile station apparatus 200-u includes a reception antenna unit 201, a reception unit 202, a propagation path estimation unit 203, a GI removal unit 204, a DFT unit 205, an interference removal unit 206, a propagation path compensation unit 207, a demodulation unit 208, and a decoding unit 209. , Upper layer 210, control signal detection section 211, transmission antenna section 221, control signal generation section 222, and transmission section 223.
  • the reception antenna unit 201 receives the OFDM signal in the carrier band propagated as a radio wave from the base station apparatus 100-2, and outputs the received OFDM signal in the carrier band to the reception unit 202. At this time, an OFDM signal in the carrier band transmitted by the base station apparatus 100-1 is also received, resulting in inter-cell interference.
  • the receiving unit 202 down-converts the OFDM signal input from the receiving antenna unit 202 to a frequency band where digital signal processing is possible, and further performs filtering processing on the down-converted signal to remove unnecessary components (Spurious). .
  • the reception unit 202 converts the filtered signal from an analog signal to a digital signal (A / D; Analog-to-Digital), and converts the converted digital signal into a propagation path estimation unit 203, a GI removal unit 204, and a control signal. Output to the detector 211.
  • the propagation path estimation unit 203 performs propagation path estimation using a reference signal included in the signal output from the reception unit 202, and generates a propagation path estimation value. Then, the propagation path estimation unit 203 notifies the propagation path estimation value to the interference removal unit 206, the propagation path compensation unit 207, and the upper layer 210.
  • the propagation path estimated value is, for example, a transfer function or an impulse response.
  • the control signal detection unit 211 detects a control signal (PDCCH, RRC signaling, etc.) included in the signal output from the reception unit 202. Then, when the control signal detection unit 211 extracts information on MCS, precoding matrix, and number of layers applied to information data included in the control signal, the control signal detection unit 211 converts the extracted information into a demodulation unit 208, a decoding unit 209 is notified. In addition, the control signal detection unit 211 extracts information on necessity of cancellation processing in the mobile station apparatus included in the control signal, cell information of the transmission source of the signal to be canceled, and extracts the extracted information from the interference removal unit 206. Notify
  • the GI removal unit 204 removes the GI from the signal output from the reception unit 202 and outputs the removed signal to the DFT unit 205.
  • the DFT unit 205 performs a discrete Fourier transform (DFT: Discrete Fourier Transform) that converts the signal from which the GI has been input from the GI removal unit 204 into a frequency domain signal from the time domain signal, and the frequency obtained by the conversion The area signal is output to the interference removal unit 206.
  • DFT discrete Fourier transform
  • FFT Fast Fourier Transform
  • the interference removal unit 206 (i) based on the necessity of cancellation processing in the mobile station apparatus and / or cell information of the transmission source of the signal to be canceled, (ii) propagation path estimation value input from the propagation path estimation unit 203 Is used to remove the interference component from the signal input from the DFT unit 205. Specifically, the interference removal unit 206 removes a known signal such as CRS transmitted from the base station apparatus related to the notified cell ID from the frequency domain signal input from the DFT unit 205 (details will be described later).
  • the channel compensator 207 is based on a channel estimation value input from the channel estimator 203, such as ZF (Zero Forcing) equalization, MMSE (Minimum Mean Square Error) equalization, etc. Is used to calculate a weighting factor for correcting, for example, channel distortion due to fading.
  • the propagation path compensation unit 207 performs propagation path compensation by multiplying the frequency domain signal input from the interference removal unit 206 by this weight coefficient.
  • Demodulation section 208 performs demodulation processing on the signal (data modulation symbol) after propagation path compensation input from propagation path compensation section 207.
  • the demodulation process may be either a hard decision (calculation of a coded bit sequence) or a soft decision (calculation of a coded bit LLR).
  • the decoding unit 209 calculates information data transmitted to itself by performing error correction decoding processing on the encoded bit sequence (or encoded bit LLR) after demodulation output from the demodulation unit 208, The calculated information data is output to the upper layer 210.
  • This error correction decoding processing method is a method corresponding to error correction coding such as turbo coding and convolution coding performed by the transmission apparatus 100 as a transmission source.
  • the error correction decoding process may be either hard decision or soft decision.
  • decoding section 209 performs deinterleaving processing corresponding to the interleaving on the input coded bit sequence before performing error correction decoding processing. . Then, the decoding unit 209 performs error correction decoding processing on the signal that has been subjected to deinterleaving processing.
  • the control signal generator 222 generates a control signal for transmitting feedback information (including CQI, RI, and PMI) to the base station apparatus.
  • the feedback information is determined by the upper layer 210 based on the channel estimation value calculated by the channel estimation unit 203.
  • the control signal generator 222 performs error correction coding and modulation mapping on the control data indicating the feedback information, and generates a control signal.
  • PUCCH corresponds to the control signal.
  • the signal including the control signal output from the control signal generation unit 222 is up-converted by the transmission unit 223 to a frequency band that can be transmitted in the downlink, and is transmitted to the base station apparatus via the transmission antenna unit 221.
  • FIG. 10 is a schematic diagram illustrating a configuration of the interference removal unit 206 according to the first embodiment.
  • the interference removal unit 206 includes a transmission signal replica generation unit 241, an interference replica generation unit 242, and a subtraction unit 243.
  • the transmission signal replica generation unit 241 generates a replica of a known signal (transmission signal replica) such as a reference signal (for example, CRS) and a control signal when a control signal indicating “cancel” of the canceller process is input.
  • the transmission signal replica is generated based on “cell information of a transmission source of a signal to be canceled” included in the control signal.
  • the mobile station apparatus 200-2 and / or the mobile station apparatus 200-3 receives a canceller process “necessary” from the base station apparatus 100-2 and a base station apparatus 100-1 as a transmission source of a signal to be canceled.
  • a replica of a known signal (CRS, PSS, SSS, etc.) is generated based on the downlink transmission frame format (FIGS. 3 and 4) of the base station apparatus 100-1.
  • the mobile station apparatus 200-2 and / or the mobile station apparatus 200-3 generates a replica of a known signal in the resource mapping limited subframe.
  • the interference replica generation unit 242 generates an interference replica by multiplying the transmission signal replica by a propagation path estimation value.
  • the subtraction unit 243 subtracts the interference replica from the frequency domain signal output from the DFT unit 205, and then outputs the signal to the propagation path compensation unit 207.
  • the k-th subcarrier signal R k, l ⁇ of the l- th OFDM symbol output from the subtracting unit 243 is expressed by the following equation.
  • R k, l is a signal of the k-th subcarrier of the l-th OFDM symbol in the resource mapping restricted frame output from the DFT unit 205.
  • R k, l ⁇ is an interference replica in the resource mapping limited frame, and is expressed by the following equation.
  • the notations “R ⁇ ” and “R ⁇ ” mean those in which “ ⁇ ” and “ ⁇ ” are written on the letter “R”, respectively, as shown in the formula (2). . These notations also apply to “s ⁇ ”, “c ⁇ ”, and “H ⁇ ” described later.
  • H k, l ⁇ is a transfer function of the kth subcarrier of the lth OFDM symbol estimated by the propagation path estimation unit 203.
  • s l, k ⁇ are transmission signal replicas of the k-th subcarrier of the l-th OFDM symbol generated by the transmission signal replica generation unit 241.
  • s k, l ⁇ is a replica configured with a known signal for a resource element to which a known signal (CRS, PSS, SSS, etc.) is mapped, and 0 (null) for other resource elements.
  • C RS ⁇ is a reference signal generated by the transmission signal replica generation unit 241.
  • the transmission signal replica generation unit 241 generates an interference replica in which a replica of the known signal is assigned to a resource element in which the known signal is arranged and 0 is assigned to other resource blocks in other OFDM symbols. .
  • transmission signal replica generation section 241 when there are a plurality of antennas, generates an interference replica based on the subframe format transmitted from each antenna port.
  • FIG. 11 is a reception flowchart of the mobile station apparatus in the wireless communication system according to the first embodiment of the present invention.
  • the mobile station device 200-u detects a control signal related to interference cancellation processing included in the transmission signal of the base station device 100-2 (S201), and determines whether or not interference cancellation processing is necessary based on the detected control signal. (S202).
  • the mobile station apparatus 200-u detects the interference cancellation process “necessary” (the flag relating to the interference cancellation process is “1”) (YES in S202)
  • the mobile station apparatus 200-u transmits a known signal (such as CRS) at a predetermined timing.
  • a known signal such as CRS
  • Data signal detection processing to which interference cancellation processing is applied is performed (S204).
  • the mobile station apparatus 200-u detects the interference cancellation process “unnecessary” (the flag regarding the interference cancellation process is “0”) (NO in S202)
  • the mobile station apparatus 200-u performs the data signal detection process without applying the interference cancellation process.
  • Perform (S203) The timing for performing the interference cancellation process, that is, the subframe for performing the interference cancellation process may be determined in advance, or may be notified from the base station apparatus to the mobile station apparatus. Further, the information on the arrangement of the known signals can be determined from information such as cell information and the number of CRS ports included in the control signal.
  • FIG. 12 is a diagram showing reception of subframes transmitted by the mobile station apparatus 200-2 by the base station apparatus 100-1 and the base station apparatus 100-2.
  • the mobile station apparatus 200-2 in FIG. 1 receives a signal (inter-cell interference) transmitted from the base station apparatus 100-1 in the transmission frame format 251 and a signal transmitted from the base station apparatus 100-2 in the transmission frame format 252. Will be received.
  • the base station apparatus 100-1 (i) is addressed to the mobile station apparatus connected to the base station apparatus in the subframe N (the mobile station apparatus 200- in FIG. 1).
  • the base station apparatus 100-2 performs the mobile station apparatus only in the subframe (shaded part of the transmission frame format 252) transmitted at the timing when the subframe A is transmitted.
  • a data signal to be transmitted is assigned to 200-2.
  • the base station device 100-2 transmits the subframe A and the subframe N to the mobile station device 200-2 at a timing at which the subframe A and the subframe N are transmitted. Information indicating that it is necessary (possible) to perform processing (cancellation processing) for removing a predetermined control signal (CRS) transmitted from base station apparatus 100-1 is notified. In addition, the base station apparatus 100-2 transmits a predetermined control signal transmitted from the base station apparatus 100-1 in a subframe transmitted to the mobile station apparatus 200-2 at a timing when the subframe M is transmitted. Information indicating that it is not necessary (impossible) to perform (CRS) removal processing (cancellation processing) is notified.
  • the base station apparatus 100-1 varies the number of transmission antennas or the number of layers according to the propagation path condition, the QoS (Quality of Service) of the transmission signal, and the like. Also, the number of cell-specific reference signals arranged in the subframe varies depending on the number of transmission antennas or the number of layers. As a result, the amount of inter-cell interference received from the base station apparatus 100-1 also differs. For example, when the number of antennas is 1 (FIG. 4), 8 reference signals are mapped per resource block. In the case of 2 antennas (FIG. 5), 16 reference signals are mapped per resource block. In the case of 4 antennas (FIG. 6), 24 reference signals are mapped per resource block.
  • mobile station apparatus 200- connected to a pico cell, femto cell, etc. base station apparatus 100-2). 2 is not affected by the number of predetermined known signals arranged in the subframe A by the macro cell (base station apparatus 100-1), and can further reduce the inter-cell interference received from the macro cell.
  • the present invention is not limited to this.
  • the first embodiment of the present invention can be applied even when canceling PSS and SSS synchronization signals.
  • the base station apparatus notifies the mobile station apparatus of the cell ID or the subframe number (including information indicating the subframe to which the synchronization signal is mapped) by RRC signaling.
  • a base station apparatus transmits in another downlink transmission format in a downlink radio communication system in which base station apparatuses having different cell radii are arranged.
  • the base station apparatus 100- ⁇ and mobile station apparatus 200-u according to the second embodiment of the present invention have the same configurations as the base station apparatus 100- ⁇ and mobile station apparatus 200-u according to the first embodiment.
  • control signals for reporting control information related to cancellation processing to the mobile station apparatus generated by the upper layer 102 and the control signal generation unit 104 are different.
  • differences from the first embodiment will be mainly described.
  • FIG. 13 is a downlink transmission frame format of the base station apparatus 100-1 in the wireless communication system according to the second embodiment of the present invention.
  • the upper part of FIG. 13 shows a downlink transmission frame format when a signal is transmitted to mobile station apparatus 200-1 to which base station apparatus 100-1 is connected.
  • 13 includes 10 subframes including a normal subframe, an ABS, and an MBSFN subframe (Multimedia Broadcast multiservice single Frequency Network Subframe).
  • MBSFN subframe Multimedia Broadcast multiservice single Frequency Network Subframe
  • a normal subframe is composed of CRS (filled portion in the figure), PDCCH (horizontal stripe portion in the figure), and PDSCH (white portion in the figure) (subframe index # 1, Subframe index # 3, subframe index # 4, subframe index # 5, and subframe index # 9).
  • control signals (SSS (upwardly hatched portion in the figure), PSS (upwardly hatched portion in the figure), etc.) are arranged (for example, the upper sub-stage in FIG. 13).
  • Frame # 5 ).
  • the lower part of FIG. 13 shows a downlink transmission frame format when signals are transmitted to mobile station apparatus 200-2 and mobile station apparatus 200-3 to which base station apparatus 100-2 is connected.
  • the lower part of FIG. 13 includes 10 normal subframes.
  • a normal subframe is basically composed of CRS (filled portion in the figure), PDCCH (horizontal stripe portion in the figure), and PDSCH (outlined portion in the figure).
  • control signals (SSS (upwardly hatched portion in the figure), PSS (upwardly hatched portion in the figure), PBCH (lattice portion in the figure), etc.) are arranged.
  • SSS upwardly hatched portion in the figure
  • PSS upwardly hatched portion in the figure
  • PBCH larier portion in the figure
  • the control signal generation unit 104 of the base station apparatus 100-2 considers the transmission format of the base station apparatus 100-1 shown in the upper part of FIG. Information regarding necessity of cancellation in the mobile station apparatus and / or cell to be canceled is included.
  • the information indicating whether cancellation is necessary is as follows: (i) a cancellation process “unnecessary” is notified in a subframe in which the MBSFN subframe of the base station apparatus 100-1 is transmitted; and (ii) the base station apparatus 100 The cancel process “necessary” is notified in a subframe in which a normal subframe of ⁇ 1 and / or an ABS subframe is transmitted.
  • the base station apparatus 100-2 reserves an area indicating information on presence / absence of 1-bit interference cancellation in PDCCH or RRC signaling, and cancels “unnecessary” by “0” and cancel processing “necessary” by “1”. ".
  • the information indicating the necessity of cancellation notifies the arrangement of the normal subframe, MBSFN subframe, and normal subframe of base station apparatus 100-1.
  • the base station apparatus 100-2 reserves an area indicating information on presence / absence of 2-bit interference cancellation in PDCCH or RRC signaling, and “01” indicates a normal subframe, “10” indicates an MBSFN subframe, 11 ”to notify the ABS.
  • a cancellation process is performed on the subframe, and then a demodulation process, a decoding process, and the like are performed.
  • the mobile station apparatus 200-2 and / or the mobile station apparatus 200-3 obtains the information “10” indicating the necessity of cancellation, the demodulation process is not performed on the subframe without performing the cancellation process. Perform decryption processing. Note that information regarding the cell to be canceled is notified in the same manner as in the first embodiment.
  • a macro cell (base station apparatus 100-1) transmits a signal in a transmission format composed of a plurality of types of subframes, a pico cell, a femto
  • the cell (base station apparatus 100-2) can set the necessity of cancellation according to the number of known signals such as a cell-specific reference signal.
  • the mobile station apparatus connected to the pico cell and the femto cell can remove known signals such as reference signals and control signals based on the information indicating the necessity of cancellation, it is affected by the number of known signals. In addition, the inter-cell interference received from the macro cell can be further reduced.
  • the third embodiment of the present invention another notification method is described for control related to cancellation processing of a mobile station apparatus in a downlink radio communication system in which base station apparatuses having different cell radii are arranged.
  • the base station apparatus 100- ⁇ and mobile station apparatus 200-u according to the third embodiment of the present invention have the same configurations as the base station apparatus 100- ⁇ and mobile station apparatus 200-u according to the first embodiment.
  • control signals for reporting control information related to cancellation processing to the mobile station apparatus generated by the upper layer 102 and the control signal generation unit 104 are different.
  • differences from the first embodiment will be mainly described.
  • the downlink control signal according to the third embodiment of the present invention includes information indicating a subframe in which the mobile station apparatus performs cancellation processing.
  • the control signal corresponds to PDCCH and RRC signaling.
  • FIG. 14 is an example of a downlink control signal according to the third embodiment of the present invention.
  • the control signal includes subframe information (bitmap) on which the mobile station device 200-u performs the cancellation process.
  • FIG. 14 shows an example in which 10 bits are assigned to the control signal as subframe information to be canceled. “1” indicates a cancel process “necessary”, and “0” indicates a cancel process “unnecessary”. In the example of FIG. 14, it is notified that cancel processing is performed on the first, second, sixth, and seventh subframes among the ten subframes constituting the frame.
  • the interference removal unit 206 When the mobile station apparatus 200-u receives the control signal including the subframe information for performing the cancellation process, the interference removal unit 206 performs interference on the subframe indicated as “necessary” for the cancellation process based on the information. A removal process (cancellation process) is performed.
  • the downlink control signal according to the third embodiment of the present invention includes cell information on which the mobile station apparatus performs cancellation processing.
  • the control signal corresponds to PDCCH and RRC signaling.
  • FIG. 14 shows an example in which 8 bits are assigned as cell information to the control signal. That is, a maximum of 256 cell IDs can be notified. In FIG. 14, it is notified that the cell ID of the base station apparatus that performs the cancellation process is 1.
  • the mobile station apparatus 200-u extracts the cell ID of the base station apparatus that performs the cancellation process from the control signal in the control signal detection unit 211. Information about the resource element in which the CRS of the base station apparatus that performs the cancellation process is arranged is obtained.
  • the interference cancellation unit 206 performs CRS interference cancellation processing in the subframe indicated as “necessary” for cancellation processing, based on information on the resource element in which the CRS of the base station apparatus that performs the cancellation processing is arranged.
  • the downlink control signal according to the third embodiment of the present invention includes information on the number of layers of the signal for which the mobile station apparatus performs the cancellation process.
  • the control signal corresponds to PDCCH and RRC signaling.
  • FIG. 14 shows an example in which 4 bits are assigned to the control signal as information regarding the number of layers. That is, a maximum of 16 layers can be notified. In FIG. 14, it is notified that the number of layers of the transmission signal of the base station apparatus that performs the cancellation process is one.
  • the control signal detection unit 211 extracts the layer number information, Information about resource elements in which CRSs of signals transmitted by the number of layers are arranged is obtained. Then, the interference cancellation unit 206 performs CRS interference cancellation processing in the subframe indicated as “necessary” for cancellation processing, based on information on the resource element in which the CRS of the base station apparatus that performs the cancellation processing is arranged.
  • the same control signal is used to notify the subframe information to be canceled, the cell information, and the number of layers of the subframe to be canceled.
  • different control signals are used for notification.
  • the RRC signaling may be transmitted by PBCH or transmitted by PDSCH.
  • the information can be notified to Cell-Specific.
  • the information can be notified to UE-Specific.
  • the mobile station apparatus can notify the mobile station apparatus of the presence or absence of cancellation processing for each subframe. Thereby, the mobile station apparatus can perform an interference cancellation process at a highly accurate timing.
  • the fourth embodiment of the present invention another notification method is described for control related to cancellation processing of a mobile station apparatus in a downlink radio communication system in which base station apparatuses having different cell radii are arranged.
  • the base station apparatus 100- ⁇ and mobile station apparatus 200-u according to the fourth embodiment of the present invention have the same configurations as the base station apparatus 100- ⁇ and mobile station apparatus 200-u according to the first embodiment.
  • the control signal including the control information related to the cancellation processing generated by the upper layer 102 and the control signal generation unit 104 of the base station device 100- ⁇ is different.
  • differences from the first embodiment will be mainly described.
  • FIG. 15 is an example of the downlink control signal of the base station apparatus according to the fourth embodiment of the present invention.
  • the downlink control signal corresponds to PDCCH or the like.
  • the downlink control signal according to the fourth embodiment of the present invention includes information indicating MCS information.
  • FIG. 15 shows an example in which 4 bits are allocated as an area indicating MCS information.
  • FIG. 16 shows a modulation scheme and a coding rate for an index of MCS information (Index). That is, the MCS information in FIG. 15 indicates Index 3 in FIG.
  • PDSCH data signal
  • the downlink control signal according to the fourth embodiment of the present invention includes transmission format information.
  • Base station apparatus 100-2 assigns a data signal (PDSCH) based on the transmission format information of base station apparatus 100-1.
  • FIG. 15 shows an example in which 2 bits are allocated as an area indicating transmission format information.
  • FIG. 17 shows a subframe configuration for an index of transmission format information. That is, the transmission format information in FIG. 15 indicates Index 2 in FIG.
  • the same control signal is used to notify the subframe information to be canceled, the cell information, and the number of layers of the subframe to be canceled. However, different control signals are used for notification. Also good.
  • the mobile station apparatus 200-u extracts MCS information and transmission format information from the control signal transmitted by the base station apparatus 100-2, and determines whether or not cancellation processing is necessary based on a canceller necessity determination table.
  • FIG. 18 is an example of a canceller necessity determination table held by the mobile station apparatus according to the fourth embodiment of the present invention.
  • the control signal detection unit 211 determines that the canceller process is “unnecessary” when the transmission format information index is 0, or when the transmission format information index is 1 and the MCS information index is 0 to 6. When the transmission format information index is 1 and the MCS information index is 7 to 15, the control signal detection unit 211 determines that the canceller process is “necessary” and notifies the interference removal unit 206 of the determination.
  • the control signal detection unit 211 of the mobile station apparatus 200-u extracts MCS information and transmission format information from the control signal included in the transmission signal of the base station apparatus 100-2 (S301), and identifies the index of the transmission format information (S302). When the index of the transmission format information is 0 (YES in S302), the mobile station apparatus 200-u performs the data signal detection process based on the MCS information without applying the interference cancellation process (S303).
  • the mobile station apparatus 200-u identifies the index of the MCS information (S304).
  • the mobile station apparatus 200-u performs the data signal detection process based on the MCS information without applying the interference cancellation process (S305).
  • mobile station apparatus 200-u cancels interference with a known signal (such as CRS) transmitted by base station apparatus 100-1 using ABS based on the transmission format information.
  • a known signal such as CRS
  • data signal detection processing is performed based on the MCS information (S306).
  • the resource element in which the known signal for performing the canceller process is arranged can be determined from information such as cell information and the number of CRS ports included in the control signal.
  • the mobile station apparatus can implicitly (implicitly) determine whether or not cancellation processing is necessary from MCS information and transmission format information. Thereby, it is not necessary to add a new control signal for determining whether canceller processing is necessary, and it is possible to suppress a decrease in frequency utilization efficiency due to an increase in the control signal.
  • the necessity of cancellation processing is implicitly (implicitly) determined from the MCS information and the transmission format information, but other control information (for example, RI, PMI, etc.) is determined. Therefore, it may be implicitly determined whether or not cancellation processing is necessary.
  • a base station apparatus 100- ⁇ and a mobile station apparatus 200-u according to the fifth embodiment of the present invention have the same configurations as the base station apparatus 100- ⁇ and the mobile station apparatus 200-u according to the first embodiment.
  • the generation method of the feedback information generated by the upper layer 102 and the control signal generation unit 104 of the mobile station apparatus 200-u is different.
  • differences from the first embodiment will be mainly described.
  • FIG. 20 is a sequence diagram illustrating a connection and control processing flow between the base station apparatus and the mobile station apparatus in the wireless communication system according to the fifth embodiment of the present invention.
  • the base station apparatus 100-1 notifies the peripheral base station apparatus 100-2 of information related to downlink transmission of the base station apparatus through the backhaul line 10 of FIG. 1 (S401).
  • the information related to downlink transmission includes transmission format information such as arrangement of normal subframes and / or resource mapping limited subframes, cell IDs, the number of CRS ports, and the like.
  • the base station device 100-2 generates a control signal including control information related to cancellation processing based on the information related to downlink transmission (S402), and transmits the control signal to the mobile station device 200-2 (S403).
  • the control information related to the cancellation process includes information related to the necessity of the interference cancellation process, cell information for performing the interference cancellation process, and the like. Note that the signaling described in the first to fourth embodiments can be applied to the signaling of control information related to the cancellation process.
  • the mobile station apparatus 200-2 generates feedback information based on the control information related to the cancellation process (S404), and notifies the base station apparatus 100-2 (S405).
  • FIG. 21 is a flowchart showing generation of feedback information in the fifth embodiment of the present invention.
  • the control signal detection unit 211 of the mobile station apparatus 200-2 extracts control information related to the interference cancellation process from the downlink control signal transmitted by the base station apparatus 100-1, and obtains the necessity information of the interference cancellation process (501). ).
  • the interference cancellation process “necessary” is notified (YES in S502)
  • the mobile station apparatus 200-2 considers the application of the interference cancellation process in addition to the propagation path status, and feedback such as CQI and RI. Information is set (S504).
  • the mobile station apparatus 200-2 sets feedback information such as CQI and RI based on the propagation path condition (S503). Then, the mobile station device 200-2 notifies the set feedback information to the base station device 100-2 (S505).
  • the propagation path condition is estimated from a reference signal such as CRS transmitted from base station apparatus 100-2.
  • the base station apparatus 100-2 sets the MCS, the number of layers, etc. of the data signal to be transmitted to the mobile station apparatus 202-2 based on the feedback information, and performs the encoding process based on the parameters.
  • a PDSCH subjected to modulation processing, precoding processing, etc. is generated (S406).
  • the base station apparatus 100-2 further generates a downlink control signal (PDCCH) for notifying the MCS, the number of layers, etc. (S406). Then, the base station apparatus 100-2 transmits the PDSCH and PDCCH to the mobile station apparatus 200-2 (S407).
  • PDCH downlink control signal
  • the mobile station device 200-2 Upon receiving the PDSCH and PDCCH, the mobile station device 200-2 applies interference cancellation processing based on information such as the MCS and the number of layers of the PDCCH, and detects the PDSCH detection processing (demodulation processing, decoding processing, etc.) ) Is performed (S408).
  • the mobile station apparatus generates feedback information in consideration of necessity of application of interference cancellation processing in addition to the propagation path condition.
  • the base station apparatus transmits a data signal addressed to the mobile station apparatus based on the feedback information.
  • the base station apparatus 100-2 can set the MCS and the number of layers (the number of spatial multiplexing) capable of high-speed transmission of data signals, so that the frequency utilization efficiency can be improved.
  • a program for realizing the functions of all or part of the base station apparatus in FIG. 2 or all or part of the terminal apparatus in FIG. 9 is recorded on a computer-readable recording medium. Processing of each unit may be performed by reading a recorded program into a computer system and executing the program.
  • the “computer system” includes an OS and hardware such as peripheral devices.
  • the “computer system” includes a homepage providing environment (or display environment) if a WWW (World Wide Web) system is used.
  • a WWW World Wide Web
  • Computer-readable recording medium means a portable medium such as a flexible disk, a magneto-optical disk, a ROM (Read Only Memory), a CD (Compact Disc) -ROM, or a hard disk built in a computer system. Refers to the device. Furthermore, the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory in a computer system serving as a server or a client in that case, and a program that holds a program for a certain period of time are also included. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the functions of all or part of the base station apparatus in FIG. 2 and all or part of the terminal apparatus in FIG. 9 may be integrated and realized in an integrated circuit.
  • Each functional block of the base station device and the terminal device may be individually chipped, or a part or all of them may be integrated into a chip.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology can also be used.
  • a base station apparatus is a base station apparatus in a wireless communication system in which a base station apparatus and a mobile station apparatus communicate with each other, and the other base station apparatus transmitted by another base station apparatus The mobile station apparatus is notified to cancel the reference signal unique to the mobile station apparatus.
  • a base station apparatus is a base station apparatus in a wireless communication system in which a plurality of base station apparatuses having different cell radii are arranged, and the base station apparatus includes the wireless communication apparatus.
  • An upper layer that schedules an information data signal, a control signal, and a reference signal in accordance with a transmission frame format composed of a plurality of types of subframes transmitted from another base station device to the mobile station device in the system, and based on the scheduling
  • a resource mapping unit that maps the information data signal, the control signal, and the reference signal to subframe resources, and a transmission unit that transmits a subframe including the information data signal, the control signal, and the reference signal to a mobile station apparatus.
  • the control signal indicates whether or not cancellation processing in the mobile station device is necessary. To information is included.
  • a base station apparatus is the base station apparatus according to (2) above, wherein the information indicating whether the cancellation processing is necessary is a type of a subframe constituting the transmission frame format Information for notifying a subframe for which cancellation processing is performed.
  • the base station apparatus is the base station apparatus according to (3) described above, wherein the subframe for performing the cancellation process is canceled based on a reference signal included in the subframe. Necessity of processing is set.
  • a base station apparatus is the base station apparatus according to (2), wherein the transmission frame format includes a limited subframe including only a predetermined reference signal or a control signal, information It is composed of a normal subframe consisting of a data signal, a control signal, and a reference signal, and information indicating whether or not the cancellation processing is necessary is for a subframe transmitted by the transmitter at a timing when the limited subframe is transmitted. This is information notifying that cancellation processing is to be performed.
  • a base station apparatus is the base station apparatus according to (5), wherein the limited subframe is an MBSFN subframe that transmits a multicast signal or a broadcast signal, or a specific movement. It consists of ABS subframes that transmit information data signals to the station apparatus.
  • the base station apparatus is the base station apparatus of (2) above, wherein the information indicating whether or not cancellation processing is required indicates whether or not cancellation processing is required for each subframe. It is included in the control signal as a bitmap.
  • a base station apparatus is the base station apparatus according to (2), in which the upper layer transmits a transmission frame of the other base station apparatus from the other base station apparatus. Receive format notifications.
  • a mobile station apparatus is a mobile station apparatus in a wireless communication system in which a plurality of base station apparatuses having different cell radii are arranged, and the mobile station apparatus includes the base station A reception unit that receives a subframe transmitted by the apparatus, a control signal extraction unit that extracts a control signal from the subframe, and an interference removal unit that performs a cancellation process on the subframe, and the interference removal unit includes: Cancel processing is performed according to a transmission frame format composed of a plurality of types of subframes transmitted by other base station apparatuses in the wireless communication system other than the base station apparatus.
  • a base station apparatus is the base station apparatus according to (9) above, wherein the interference removal unit removes a reference signal transmitted by the other base station apparatus.
  • a base station apparatus is the base station apparatus according to (9) above, and the subframe transmitted by the base station apparatus includes information indicating whether cancellation processing is necessary or not. Including a control signal, the control signal detection unit extracts information indicating whether cancellation processing is necessary from the subframe, and the interference removal unit performs the cancellation processing based on information indicating whether cancellation processing is necessary .
  • a base station apparatus is the base station apparatus according to (9), wherein a control signal including information on an information data signal is included in a subframe transmitted by the base station apparatus.
  • the control signal detector extracts information related to the information data signal from the subframe, and the interference canceller performs the cancellation process based on the information related to the information data signal.
  • a base station apparatus is the base station apparatus according to (9), in which the control signal control signal detection unit modulates and encodes an information data signal from the subframe. Information on the rate is extracted, and the interference removal unit performs the cancellation process when the predetermined modulation scheme and coding rate are obtained.
  • a radio communication system is a radio communication system in which a plurality of base station apparatuses having different cell radii are arranged, and the base station apparatus An upper layer that schedules an information data signal, a control signal, and a reference signal according to a transmission frame format composed of a plurality of types of subframes that the base station device transmits to the mobile station device, and information data based on the scheduling
  • a resource mapping unit that maps a signal, a control signal, and a reference signal to a resource of a subframe; and a transmission unit that transmits a subframe including the information data signal, the control signal, and the reference signal to a mobile station device
  • a mobile station apparatus includes: a receiving unit that receives a subframe transmitted by the base station apparatus; A control signal extracting unit that extracts a control signal from the subframe, and a transmission frame format configured by a plurality of types of subframes transmitted by the other base station apparatus other than the base station apparatus, And an interference removing unit that performs
  • a transmission method is a transmission method of a base station apparatus in a wireless communication system in which a plurality of base station apparatuses having different cell radii are arranged, and the base station apparatus Scheduling an information data signal, a control signal, and a reference signal according to a transmission frame format composed of a plurality of types of subframes transmitted from another base station device to a mobile station device in a wireless communication system; And a step of mapping the information data signal, the control signal and the reference signal to a resource of a subframe, and a step of transmitting a subframe comprising the information data signal, the control signal and the reference signal to a mobile station apparatus.
  • the control signal indicates whether or not cancellation processing is required in the mobile station device. Information is included.
  • a reception method is a reception method of a mobile station apparatus in a wireless communication system in which a plurality of base station apparatuses having different cell radii are arranged, and the mobile station apparatus A step of receiving a subframe transmitted by a base station apparatus, a step of extracting a control signal from the subframe, and a step of performing a cancellation process on the subframe, wherein the step of performing the cancellation process includes: Cancel processing is performed according to a transmission frame format composed of a plurality of types of subframes transmitted by other base station apparatuses other than the base station apparatus.
  • a radio communication system is a communication method of a radio communication system in which a plurality of base station apparatuses having different cell radii are arranged, wherein the base station apparatus is the radio communication system.
  • the present invention is preferably used for a radio base station apparatus, a radio terminal apparatus, a radio communication system, and a radio communication method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ヘテロジーニアスネットワークを構成する無線通信システムにおいて、効率的にセル間干渉を軽減又は抑圧する。基地局装置と移動局装置とが通信を行う無線通信システムにおいて、基地局装置は、基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、セル固有参照信号に関する制御情報を、移動局装置に通知する。

Description

基地局装置、移動局装置、通信システム、送信方法、受信方法および通信方法
 本発明は、基地局装置、移動局装置、通信システム、送信方法、受信方法および通信方法に関する。
 3GPP(Third Generation Partnership Project)によるWCDMA(Wideband Code Division Multiple Access)、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、IEEE(The Institute of Electrical and Electronics engineers)によるWiMAX(Worldwide Interoperability for Microwave Access)等のような無線通信システムでは、基地局装置(eNB;eNodeB)が移動局装置(端末、UE(User Equipment))と接続可能な範囲(セル)を、その一部を重複させながら、基地局装置を複数配置するセルラー構成とすることにより、通信エリアを拡大しうる。
 このセルラー構成において、セルの周波数利用効率を向上させるために、後述する非特許文献1に示すように、(i)各セルで同一周波数を繰返して利用したりすること、(ii)数百mから十数kmのセル半径をもつ基地局装置(マクロセル)に加え、様々なセル半径をもつ基地局装置(ピコセル、フェムトセル、Home eNodeB)をその範囲がマクロセルと全部或いは一部を重複するように配置するヘテロジーニアスなネットワークが検討されている。
 図22は、異なるセル半径の基地局装置を配置した下りリンクにおける無線通信システムの一例を示す概略図である。基地局装置1000-2は、そのセル1000-2a(例えば、ピコセル)が基地局装置1000-1のセル1000-1a(マクロセル)と重複するように1セル周波数繰返しで配置されている。移動局装置は、より大きな受信電界強度で信号を受信できる基地局装置と無線接続するように制御されることが好ましい。図22では、移動局装置2000-1は基地局装置1000-1と無線接続し(r11)、移動局装置2000-2及び2000-3は基地局装置1000-2と無線接続している(r21及びr23)。また、ピコセルをマクロセルのセルエッジ周辺(電界強度が弱い領域)に包含関係になるように配置する場合、マクロセルのセルエッジに存在する移動局装置2000-3をピコセルと接続させることにより、その移動局装置の受信信号電力を向上させることができる。
 このように、ヘテロジーニアスなネットワークを構築することにより、マクロセルがカバーするエリア内におけるネットワーク側から見たトータルの周波数利用効率を向上させることが可能となる。
3rd Generation Partnership Project;Technical Specification Group Radio Access Network; Further Advancements for E-UTRA Physical Layer Aspects (Release 9)、3GPP TR36.814 v9.0.0.(2010-03) <URL:http://www.3gpp.org/ftp/Specs/html-info/36814.htm>
 しかしながら、ヘテロジーニアスなネットワークにおいて、ピコセルに接続している移動局装置がピコセルのセルエッジ領域に位置する場合に、マクロセルからの干渉(セル間干渉、Inter-cell Interference)により伝送効率が低下するという問題がある。図22の移動局装置2000-2は、大きな受信電界強度で信号を受信できる基地局装置1000-2と無線接続するが(r21)、基地局装置1000-1からの距離も近い。基地局装置1000-1が同じリソースを用いて送信する信号により、移動局装置2000-2は、基地局装置1000-1によるセル間干渉r12を受けることになる。そのため、移動局装置2000-2における伝送スループットは低下し、基地局装置1000-2における周波数利用効率が低下することになる。
 本発明は、上記問題を鑑みてなされたものであり、その目的は、ヘテロジーニアスネットワークを構成する無線通信システムにおいて、効率的にセル間干渉を軽減又は抑圧することができる基地局装置、移動局装置、通信システム及び通信方法を提供することにある。
 (1)この発明は上述した課題を解決するためになされたもので、本発明の一態様による基地局装置は、移動局装置と通信する基地局装置であって、前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記移動局装置に通知する。
 (2)また、本発明の一態様による基地局装置は、上記(1)の基地局装置であって、前記セル固有参照信号は、前記セルIDに基づいて配置されるリソースエレメントが設定される。
 (3)また、本発明の一態様による基地局装置は、上記(1)の基地局装置であって、前記セル固有参照信号に関する制御情報は、前記セル固有参照信号が配置されるサブフレームの情報をさらに含む。
 (4)また、本発明の一態様による基地局装置は、上記(1)の基地局装置であって、前記セル固有参照信号に関する制御情報は、前記セル固有参照信号に対する電力情報をさらに含む。
 (5)また、本発明の一態様による基地局装置は、上記(1)の基地局装置であって、前記セル固有参照信号に関する制御情報は、前記セル固有参照信号に対する前記移動局装置での処理の要否に関する情報をさらに含む。
 (6)また、本発明の一態様による基地局装置は、上記(1)の基地局装置であって、前記セル固有参照信号に関する制御情報は、前記移動局装置に固有の情報として通知される。
 (7)また、本発明の一態様による移動局装置は、基地局装置と通信する移動局装置であって、前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記基地局装置から受信する。
 (8)また、本発明の一態様による移動局装置は、上記(7)の移動局装置であって、前記セル固有参照信号に関する制御情報に基づいて、前記セル固有参照信号に対する処理を行う。
 (9)また、本発明の一態様による通信システムは、基地局装置と移動局装置とが通信する通信システムであって、前記基地局装置は、前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記移動局装置に通知し、前記移動局装置は、前記セル固有参照信号に関する制御情報を、前記基地局装置から受信する。
 (10)また、本発明の一態様による通信方法は、移動局装置と通信する基地局装置の通信方法であって、前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記移動局装置に通知する。
 (11)また、本発明の一態様による通信方法は、基地局装置と通信する移動局装置の通信方法であって、前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記基地局装置から受信する。
 (12)また、本発明の一態様による通信方法は、基地局装置と移動局装置とが通信する通信システムの通信方法であって、前記基地局装置は、前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記移動局装置に通知し、前記移動局装置は、前記セル固有参照信号に関する制御情報を、前記基地局装置から受信する。
 (13)また、本発明の一態様による集積回路は、移動局装置と通信する基地局装置の集積回路であって、前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記移動局装置に通知する機能を有する。
 (14)また、本発明の一態様による集積回路は、基地局装置と通信する移動局装置の集積回路であって、前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記基地局装置から受信する機能を有する。
 この発明によれば、ヘテロジーニアスネットワークを構成する無線通信システムにおいて、効率的にセル間干渉を軽減又は抑圧することができる。
本発明の第1の実施形態における異なるセル半径の複数の基地局装置を配置した下りリンクにおける無線通信システムの一例を示す概略図である。 本発明の第1の実施形態に係る無線通信システムにおける基地局装置の構成を示す概略ブロック図である。 本発明の第1の実施形態に係る無線通信システムにおける基地局装置100-1の下りリンクの送信フレームフォーマットである。 実施形態に係るサブフレームフォーマットの一例を示す概念図である。図4に示す例は、基地局装置100-αが1個のアンテナにより送信する場合の一例である。 本発明の第1の実施形態に係るサブフレームフォーマットの別の一例を示す概念図である。 本発明の第1の実施形態に係るサブフレームフォーマットの別の一例を示す概念図である。 本発明の第1の実施形態に係る無線通信システムにおける基地局装置100-2の下りリンクの送信フレームフォーマットである。 本発明の第1の実施形態に係る無線通信システムにおける基地局装置100-2の送信フローチャートである。 本発明の第1の実施形態に係る無線通信システムにおける移動局装置200-uの構成を示す概略ブロック図である。 本発明の第1の実施形態に係る干渉除去部206の構成を示す概略図である。 本発明の第1の実施形態に係る無線通信システムにおける移動局装置の受信フローチャートである。 移動局装置200-2が基地局装置100-1および基地局装置100-2により送信されるサブフレームの受信を示した図である。 本発明の第2の実施形態に係る無線通信システムにおける基地局装置100-1の下りリンクの送信フレームフォーマットである。 本発明の第3の実施形態に係る下りリンク制御信号の一例である。 本発明の第4の実施形態に係る基地局装置の下りリンク制御信号の一例である。 MCS情報のインデックスに対する変調方式及び符号化率である。 送信フォーマット情報のインデックスに対するサブフレーム構成である。 本発明の第4の実施形態に係る移動局装置が保持するキャンセラの要否判断テーブルの一例である。 本発明の第4の実施形態に係る無線通信システムにおける移動局装置がキャンセラの適否を判断するフローチャートである。 本発明の無線通信システムにおける基地局装置と移動局装置間での接続及び制御処理フローを示すシーケンス図である。 本発明の第5の実施形態におけるフィードバック情報の生成を示すフローチャートである。 異なるセル半径の基地局装置を配置した下りリンクにおける無線通信システムの一例を示す概略図である。
 本発明の後述する各実施形態における無線通信システムは、複数の基地局装置(送信装置、セル、送信点、送信アンテナ群、送信アンテナポート群、コンポーネントキャリア、eNodeB)と、複数の移動局装置(端末、端末装置、移動端末、受信点、受信端末、受信装置、受信アンテナ群、受信アンテナポート群、UE:User Equipment)とを備える。各基地局装置の送信電力は異なっていてもよい。
 本発明の後述する各実施形態は、OFDM(Orthogonal Frequency Division Multiplexing)、MC-CDMA(Multi Carrier-Code Division Multiple Access)、SC-FDMA(Single Carrier-Freqeuncy Division Multiple Access)、DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM)等のマルチキャリア伝送やシングルキャリア伝送において適用可能である。
 以下では、無線通信システムの下りリンクにおいて、OFDM(Orthogonal Frequency Division Multiplexing)伝送を適用した場合で説明する。上りリンクにおいては、基地局装置が移動局装置からの制御信号を認識できれば、伝送方式は問わない。
 (第1の実施形態)
 以下、本発明の第1の実施形態について説明する。
 図1は、本発明の第1の実施形態における異なるセル半径の複数の基地局装置を配置した下りリンクにおける無線通信システムの一例を示す概略図である。
 基地局装置100-2は、そのセル100-2a(例えば、ピコセル、第1の基地局装置)が基地局装置100-1のセル100-1a(マクロセル、第2の基地局装置)と重複するように1セル周波数繰返しで配置されている。基地局装置間は、光ファイバやインターネット回線または無線回線等を用いたバックホール回線10(例えば、X2インターフェース)により接続されている。
 また、移動局装置200-1は基地局装置100-1と無線接続し(r11)、移動局装置200-2及び200-3は基地局装置100-2と無線接続している(r21及びr23)。例えば、LTEにおける下りリンクの信号として、下りリンク共有チャネル(PDSCH;Physical Downlink Shared Channel)、下りリンク制御チャネル(PDCCH;Physical Downlink Control Channel)、同期信号(SS;Synchronization Signal)、報知チャネル(PBCH;Physical Broadcast Channel)、セル固有参照信号(CRS;Cell-specific Reference Signal)、伝送路状況測定用参照信号(CSI-RS;Channel State Information-Reference signal)、復調用参照信号(DMRS;Demodulation Reference Signal)、ページング信号(Paging)、SIB(System Information Block)などが該当する。
 下りリンク共有チャネルは、情報データなどを送信するためのチャネルである。下りリンク制御チャネルは、下りリンク共有チャネルの情報データに施された符号化率及び変調多値数(MCS;Modulation and Coding Scheme)、レイヤ数(ランク数、空間多重数)、スケジュール情報(リソース割り当て情報)などを移動局装置に通知する制御信号である。
 同期信号は、移動局装置がセルサーチ、フレーム同期、シンボル同期を確立、追従するための信号である。同期信号としては、例えば、プライマリ同期信号(PSS;Primary Synchronization Signal)及びセカンダリ同期信号(SSS;Secondary Synchronization Singal)がある。PSSは、シンボルタイミングを検出でき、かつセルIDを検出できるデータ系列、例えば、Zadoff-Chu系列などの直交系列である。セルIDとは、基地局装置(送信装置100)に対応する個々のセルに割り当てられたIDである。セルIDは、移動局装置(受信装置200)がセル、即ち基地局装置(送信装置100)を識別する手掛りとなる。SSSは、フレームタイミングを検出できるデータ系列であり、例えば、M系列である。
 セル固有参照信号は、基地局装置と移動局装置の伝搬路状況を測定するための既知信号である。移動局装置は、前記セル固有参照信号を用いて、そのセルの受信電力(RSRP;Reference Signal Received Power)測定などを行い、基地局装置へ通知する。例えば、基地局装置は、その受信電力測定結果を用いて、その移動局装置が接続するセルの選択やハンドオーバを行うことができる。
 伝送路状況測定用参照信号は、基地局装置と移動局装置の伝搬路状況を測定するための既知信号であって、移動局装置が基地局装置へ送信するフィードバック情報の生成に用いられるものである。フィードバック情報は、CQI(Channel Quality Indicator)、PMI(Precoding Matrix Index)、RI(RankIndicator)などが該当する。CQIは、前記伝送路状況測定用参照信号により推定した伝搬路推定等を考慮して生成された情報であり、移動局装置が予め規定された受信品質を維持できる符号化率および変調方式を示す情報である。PMIは、前記伝送路状況測定用参照信号により推定した伝搬路推定等を考慮して生成された移動局装置が好適なプレコーディング行列を示す情報である。RIは、前記伝送路状況測定用参照信号により推定した伝搬路推定等を考慮して生成された移動局装置が好適なレイヤ数を示す情報である。
 復調用参照信号は、基地局装置と移動局装置との伝搬路状況を測定するための信号であって、下りリンク共有チャネルなどを復調する際に用いられるものである。ページング信号(Paging)は、呼び出し制御を行うものである。SIBは、下りリンクにおいて送信されるシステム情報である。報知チャネル(PBCH)は、セル全域にわたって報知されるシステム制御用のチャネルである。
 図2は、本発明の第1の実施形態に係る無線通信システムにおける基地局装置の構成を示す概略ブロック図である。
 基地局装置100-α(α=1、2)は、上位レイヤ102、シンボル生成部103-u(uは基地局装置と接続する移動局装置の数)、制御信号生成部104、参照信号生成部105、リソースマッピング部106、IDFT部107、GI挿入部108、送信部109を含んで構成される。送信部109には、N本の送信アンテナ部101-n(n=1、・・・、N)が接続されている。また、基地局装置100-αは、受信部122、制御信号検出部123を含んで構成される。受信部122には、受信アンテナ部121が接続されている。なお、上記基地局装置100-αの一部あるいは全部をチップ化して集積回路となる場合、各機能ブロックに対して制御を行なうチップ制御回路(図には未記載)を有する。
 基地局装置100-αは、受信アンテナ部121を介して、移動局装置200-uが上りリンクで送信した制御信号を含む信号を受信する。受信部122は、(i)前記制御信号等を信号検出処理などのディジタル信号処理が可能な周波数帯へダウンコンバートし、(ii)さらにスプリアスを除去するフィルタリング処理を行ない、(iii)フィルタリング処理した信号をアナログ信号からディジタル信号に変換(Analog to Disital変換)を行なう。
 制御信号検出部123は、前記受信部122が出力した制御信号に対して復調処理、復号処理などを行なう。前記制御信号は、上りリンク制御チャネル(PUCCH;Physical Uplink Control Channel)および/または上りリンク共有チャネル(PUSCH;Physical Uplink Shared Channel)などから検出される。そして、上位レイヤ102は、前記制御信号検出部123から入力された前記制御信号に含まれるフィードバック情報を取得する。
 上位レイヤ102は、前記フィードバック情報に基づき、シンボル生成部103-uに情報データを出力し、制御信号生成部104に制御データを出力する。ここで、上位レイヤとは、OSI参照モデルで定義された通信機能の階層のうち、物理層(Physical Layer)よりも上位の機能の階層、例えば、データリンク層、ネットワーク層等である。また、基地局装置は、前記フィードバック情報に基づき、移動局装置毎にデータ変調シンボル、制御信号、参照信号等のスケジューリングを行い、そのスケジューリング情報に基づいてリソースマッピング部106に出力する。スケジューリング情報とは、データ変調シンボル、制御信号、参照信号を配置するリソースエレメントまたはリソースブロックに関する情報をいう。リソースエレメントとは、1つのサブキャリアと1つのOFDMシンボルから成る信号を配置する最小単位をいう。リソースブロックとは、複数のリソースエレメントを纏めたリソースの単位であり、移動局装置毎に割り当てるリソースの最小単位である。例えば、リソースブロックは、12個のサブキャリアと7個のOFDMシンボルから成るリソースとすることができる。
 また、上位レイヤ102は、他の基地局装置(例えば、隣接基地局や、ヘテロジーニアスネットワークにおけるマクロセルやピコセル)の上位レイヤに、図1のバックホール回線10を通して、当該基地局装置の下りリンク送信に関する情報を通知する。前記下りリンク送信に関する情報には、後述する下りリンクサブフレームフォーマットの情報も含まれる。また、当該下りリンク送信に関する情報は、例えば、通常サブフレームとリソースマッピングが制限されるサブフレームとの配置情報、セルID、CRSポート数などを含む。なお、上位レイヤ102は、基地局装置100-αを構成する各部位が、機能を発揮するために必要なその他のパラメータも通知する。
 シンボル生成部103-uは、上位レイヤ102から入力された情報データからデータ変調シンボルを生成する。このデータ変調シンボルは、例えば、下りリンク共有チャネル等に該当する。シンボル生成部103-uは、符号部111と変調部112を含んで構成される。
 符号部111は、前記情報データに対して誤り訂正符号化処理(ターボ符号、畳み込み符号、低密度パリティ検査符号:LDPC(Low Density Parity Check)符号、など)を行い、符号化ビットを出力する。なお、前記情報データは、上位レイヤにおいて、巡回冗長検査(CRC:Cyclic Redundancy Check)などの受信側において誤り検出をするための誤り検出符号化されていることが好ましい。また、符号部111は、符号化率(コーディングレート)をデータ伝送レートに合わせるためのレートマッチング処理部を備えていてもよい。レートマッチング処理部では、例えば、一部のデータを削除するパンクチャ(Puncture)処理、一部のデータを反復するリペティション(Repetition)処理、又は一部に仮のデータ(例えばゼロ値)を挿入するパディング(Padding)処理等の処理を行う。また、符号部111は、生成した符号化ビットをインターリーブし、インターリーブした符号化ビットを変調部112に出力してもよい。
 変調部112は、符号部111から入力された符号化ビットを変調マッピングし、データ変調シンボルを生成する。変調部112が行う変調処理は、例えば、BPSK(Binary Phase Shift Keying;2相位相変調)、QPSK(Quadrature Phase Shif Keying;4相位相変調)、16QAM(16 Quadrature Amplitude Modulation;16値直交振幅変調)又は64QAM(64 Quadradure Amplitude Modulation;64値直交振幅変調)である。変調部112は、生成したデータ変調シンボルをリソースマッピング部106に出力する。なお、変調部112は、生成したデータ変調シンボルをインターリーブし、インターリーブしたデータ変調シンボルをリソースマッピング部106に出力してもよい。また、変調部112は、生成したデータ変調シンボルにプレコーディングし、プレコーディングしたデータ変調シンボルをリソースマッピング部106に出力してもよい。
 制御信号生成部104は、上位レイヤ102が出力する制御データを誤り訂正符号化および変調マッピングして、制御信号を生成する。前記制御信号は、下りリンク制御チャネル(PDCCH)、報知チャネル(PBCH)、同期信号(PSS、SSS)、ページング信号(Paging)、SIB-1などが該当する。前記制御信号は、プレコーディングを施すこともできる。本発明の第1の実施形態では、制御信号に、移動局装置におけるキャンセルの要否、キャンセルするセルに関する情報が含まれる(詳細は後述)。
 参照信号生成部105は、基地局装置と移動局装置間との伝搬路を推定できる参照信号(パイロット信号)を生成する。前記参照信号は、セル固有参照信号(CRS)、伝送路状況測定用参照信号(CSI-RS)などが該当する。前記参照信号を構成する符号系列は、直交系列、例えば、アダマール符号又はCAZAC(Constant Amplitude Zero Auto-Correlation)系列であることが好ましい。また、図示しないが、復調用参照信号(DM-RS)は、変調部112におけるプレコーディングを行う前のデータ変調シンボルに対して、多重される。
 リソースマッピング部106は、前記上位レイヤ102から通知されるスケジューリング情報に基づいて、前記データ変調シンボル、制御信号、参照信号とをリソースエレメントにマッピングする(以降、リソースマッピングと呼ぶ。)。スケジューリング情報は、例えば、後述する送信フレームフォーマットに基づいた各信号の配置を示す情報である。
 IDFT部107は、前記リソースマッピング部106が出力する周波数領域信号に対して、逆離散フーリエ変換(IDFT;Inverse Discrete Fourier Transform)を行うことにより、当該周波数領域信号を時間領域信号に変換する。IDFT部107は、変換した時間領域信号をGI挿入部108に出力する。IDFT部107は、周波数領域信号を時間領域信号に変換する機能を実行するが、これに限定されず、例えば、逆高速フーリエ変換(IFFT;Inverse Fast Fourier Transform)を実行するものであってもよい。
 GI挿入部108は、IDFT部107から入力された時間領域信号にGIを付加してOFDMシンボルを生成する。GI挿入部108は、その時間領域信号を有効シンボルとし、その後半の一部を有効シンボルにGIとして前置する。このGIを付加した有効シンボルが、OFDMシンボルである。GI挿入部108は、生成したOFDMシンボルを送信部109に出力する。このOFDMシンボルを用いることにより、移動局装置200-uは、GI長よりも短い遅延時間の遅延パスによる歪を除去することができる。例えば、LTEでは、GI長、即ちサンプルポイント数は144(6.7μs)である。
 GI挿入部108が出力する第l番目のOFDMシンボルの信号s(t)は、次式で表される。
Figure JPOXMLDOC01-appb-M000001
 但し、lT≦t<(l+1)T、Tは、OFDMシンボル長(T=T+T)である。TはFFT区間長である。TはGI長である。NはIDFTポイント数である。Ck,lは、第l番目のOFDMシンボルの第kサブキャリアに割り当てられたデータ変調シンボル、制御信号又は参照信号である。Δはサブキャリア間隔である。例えば、LTEでは、Nは2048、Δは15kHzである。
 送信部109は、GI挿入部108から入力されたOFDMシンボルをD/A(Digital-to-Analog;ディジタル/アナログ)変換してアナログ信号を生成し、生成したアナログ信号をフィルタリング処理により帯域制限して帯域制限信号を生成する。送信部109は、生成した帯域制限信号を無線周波数帯域にアップコンバートして搬送帯域OFDM信号を生成し、送信アンテナ部101-nから生成した搬送帯域OFDM信号を電波として移動局装置200-uに送信する。なお、基地局装置100-αにおいて、複数の送信アンテナからの送信は、ダイバーシチ(Diversity)送信又はMIMO(Multiple Input Multiple Output)伝送を行ってもよい。
 図3は、本発明の第1の実施形態に係る無線通信システムにおける基地局装置100-1の下りリンクの送信フレームフォーマットである。1つのフレームは通常サブフレーム(Normal Subframe)及びリソースマッピング制限サブフレーム(制限サブフレームとも呼ぶ。)を含む10個の複数種類のサブフレームから構成される。リソースマッピング制限サブフレームは、MBSFN(Multicast/Broadcast over Single Frequency Network)またはABS(Almost Blank Subframe)などがある。
 通常のサブフレームとは、前記スケジューリング情報に基づいて、基地局装置100-1が送信する情報データ、制御データ、参照信号をリソースマッピングすることができるサブフレームをいう。通常のサブフレームには、例えば、下りリンク共有チャネル、下りリンク制御チャネル、同期信号、報知チャネル、セル固有参照信号、伝送路状況測定用参照信号、ページング信号、SIB-1などをリソースマッピングすることができる。
 一方、リソースマッピング制限サブフレームは、基地局装置100-1が送信する所定の信号のみにリソースマッピングを制限するサブフレームである。本実施形態では、リソースマッピング制限サブフレームとして、MBSFNサブフレームまたはABSが用いられる。
 MBSFNサブフレームは、ブロードキャスト信号又はマルチキャスト信号を送付するために用意されたサブフレームである。MBSFNサブフレームは、複数セルから同時にデータを送信することを想定して、データ領域(PDSCH)にセル毎に設定されているセル固有参照信号(CRS)を送信しない。そのため、移動局装置200-uはそのMBSFNサブフレームにおいてCRSを測定しない。それゆえ、基地局装置100-1は移動局装置200-uに気付かれずに情報データの送信を止めることができる。例えば、MBSFNサブフレームでは、PDCCHおよびPDCCH領域のCRSが送信され、それ以外のデータ領域およびデータ領域のCRSは送信されない。また、ABSは、同期信号、報知チャネル、セル固有参照信号、伝送路状況測定用参照信号、ページング信号、SIB-1のみ送信することができるサブフレームである。すなわち、下りリンク共有チャネル、下りリンク制御チャネルのリソースマッピングは制限される。なお、MBSFNサブフレームとABSとは同時に設定されることができる。そのようなサブフレームでは、PDCCH領域のCRSのみが送信され、PDCCH、データ領域およびデータ領域のCRSは送信されない。なお、マルチキャストとは、特定多数の移動局装置に同じ情報データ信号を送信することであり、ブロードキャストとは、不特定多数の移動局装置に同じ情報データ信号を送信することである。
 図3のフレームフォーマットでは、1番目、2番目、6番目及び7番目のサブフレーム(網掛け部分)をリソースマッピング制限サブフレーム、その他のサブフレーム(白抜き部)を通常サブフレームと設定した場合の例である。また、リソースマッピング制限サブフレームのうち、2番目及び7番目のサブフレームがMBSFNサブフレームに、1番目及び6番目のサブフレームがABSに設定された場合を示す。送信フレームにおいて、通常サブフレームとリソースマッピング制限サブフレームとの設定(割合)は、各基地局装置が接続している移動局装置の数等に基づいて、可変することができる。また、リソースマッピング制限サブフレームを割り当てるサブフレームのインデックスは、通常サブフレームとリソースマッピング制限サブフレームの割合に応じて、テーブル等により予め規定しておくこともできる。
 1つのサブフレームは、14個のOFDMシンボルから構成される。図3では、同期信号として、6番目のOFDMシンボル(左上がり斜線部分)にSSSを、7番目のOFDMシンボル(右上がり斜線部分)にPSSをマッピングするリソースとした例である。また、前記同期信号は、1番目のサブフレームと6番目のサブフレームにリソースマッピングされる。
 また、図3に示すような基地局装置100-1の下りリンクの送信フレームフォーマットは、40サブフレームを単位として設定することができる。基地局装置100-1は、設定した基地局装置100-1の下りリンクの送信フレームフォーマットに関する情報(送信フレームフォーマット情報)を、基地局装置100-2にバックホール回線10を通じて通知する。例えば、送信フレームフォーマット情報は、通常のサブフレームを「1」とし、リソースマッピング制限サブフレームを「0」として、40ビットのビットマップ形式の情報とすることができる。さらに、送信フレームフォーマット情報は、基地局装置100-1が基地局装置100-2に対してRLM(Radio Link Monitoring)/RRM(Radio Resource Management)測定を制限することを推奨する情報を追加または変更することができる。
 図4は、本発明の第1の実施形態に係るサブフレームフォーマットの一例を示す概念図である。図4に示す例は、基地局装置100-αが1個のアンテナポートにより送信する場合の一例である。
 図4において、横方向は時刻を、縦方向は周波数を示す。図4は、図3における第1番目のサブフレーム及び第6サブフレームのフォーマットを示す。PSSは、第7番目のOFDMシンボルであって、システム帯域の中間の63個のサブキャリア(周波数帯域)から構成されるリソースエレメントに配置されている(右上がり斜線部分)。SSSは、第6番目のOFDMシンボルであって、システム帯域の中間の63個のサブキャリア(周波数帯域)から構成されるリソースエレメントに配置されている(左斜め斜線部分)。
 データ変調シンボル及び参照信号は、2つのリソースブロックで構成されるリソースブロックペア(太線)を単位として割り当てられる。各リソースブロックペアは、12個のサブキャリアで示される周波数及び14個のOFDMシンボルで示される時刻を占める168個のリソースエレメントから構成される。各リソースブロックペアを構成する14個のOFDMシンボルのうち、最初の1~3個の領域に主に制御信号、例えばPDCCHが配置される。残りの11~13個のOFDMシンボルの領域は、主にデータ変調シンボル、例えばPDSCHが配置される領域である。セル固有参照信号は、各リソースブロックを構成する所定のリソースエレメントに配置される(塗潰し部分)。なお、セル固有参照信号は、基地局装置100-αのセルIDに基づいて、配置されるリソースエレメントがサイクリックに周波数方向にシフトする。
 図4で示したサブフレームフォーマットにおいて、基地局装置100-1は、フィードバック情報を考慮しながら、移動局装置200-1にPDSCH、PDCCHを通常フレームのみにリソースマッピングするスケジューリングを行う。そして、リソースマッピング部106は、そのスケジューリング情報に基づいて、リソースマッピングを行う場合、基地局装置100-1は、PDSCH、PDCCHを通常フレームのみを用いて、移動局装置200-1に送信することができる。一方、リソースマッピング制限サブフレームにおいて、PDCCHなどがリソースマッピングされる白抜き部分は、信号を配置しないように設定することができる。これにより、リソースマッピング制限サブフレームでは、基地局装置100-2に接続している移動局装置に対するセル間干渉を軽減することができる。
 図5は、本発明の第1の実施形態に係るサブフレームフォーマットの別の一例を示す概念図である。図5に示す例は、基地局装置100-αが2個のアンテナ(アンテナポート)により送信する場合の一例である。図5において、横方向は時刻を、縦方向は周波数を示す。セル固有参照信号は、各リソースブロックを構成する所定のリソースエレメントに配置される(塗潰し部分)。図5において、2個のアンテナのうち一方のアンテナから送信される参照信号はリソースエレメント0にリソースマッピングされる。また、2個のアンテナのうち他方のアンテナから送信されるセル固有参照信号はリソースエレメント1にリソースマッピングされる。そして、図5のリソースブロックを図4のサブフレームフォーマットにおけるリソースブロックに配置したものが、基地局装置100-αのサブフレームフォーマットとなる。
 図6は、本実施形態に係るサブフレームフォーマットの別の一例を示す概念図である。図6に示す例は、基地局装置100-αが4個のアンテナにより送信する場合の一例である。図6において、横方向は時刻を、縦方向は周波数を示す。セル固有参照信号は、各リソースブロックを構成する所定のリソースエレメントに配置される(塗潰し部分)。図6において、4個のアンテナのうち1つのアンテナから送信されるセル固有参照信号はリソースエレメント0にリソースマッピングされる。また、4個のアンテナのうち別の1つのアンテナから送信されるセル固有参照信号はリソースエレメント1にリソースマッピングされる。また、4個のアンテナのうち別の1つのアンテナから送信されるセル固有参照信号はリソースエレメント2にリソースマッピングされる。また、4個のアンテナのうち別の1つのアンテナから送信されるセル固有参照信号はリソースエレメント3にリソースマッピングされる。図6のリソースブロックを図4のサブフレームフォーマットにおけるリソースブロックに配置したものが、基地局装置100-αのサブフレームフォーマットとなる。以上のように、参照信号は、基地局装置100-αの送信アンテナ数、レイヤ数に基づいて、その数が増減する。
 図7は、本発明の第1の実施形態に係る無線通信システムにおける基地局装置100-2の下りリンクの送信フレームフォーマットである。1つのフレームは10個の通常サブフレームで構成される。各サブフレームのフォーマットは、セルIDに基づいて、セル固有参照信号の配置がサイクリックシフトすることを除いて、図4と同様のフォーマットとなる。
 基地局装置100-2は、移動局装置200-2及び移動局装置200-3から得たフィードバック情報に加え、バックホール回線10を通じて得た基地局装置100-2の下りリンクに関する制御データ(送信フレームフォーマット情報、セルID、CRSポート数など)を用いて、PDSCH、PDCCHなどのリソースマッピングを行う。
 例えば、基地局装置100-2は、基地局装置100-1がリソースマッピング制限サブフレームと同時刻に送信するサブフレーム(図7の網掛け部分)のいずれかに、移動局装置200-2のような基地局装置100-1からの干渉が大きいと見込まれる移動局装置に送信するPDSCH、PDCCHをリソースマッピングすることが好ましい。また、基地局装置100-2は、移動局装置200-3のような基地局装置100-1からの干渉が小さいと見込まれる移動局装置に送信するPDSCH、PDCCHを、それ以外のサブフレームを含む全てのサブフレームと同時刻に送信されるサブフレームのいずれかにリソースマッピングすることができる。別の例では、基地局装置100-2は、基地局装置100-1がリソースマッピング制限サブフレームとして設定しているサブフレーム(図7の網掛け部分)には、移動局装置200-2及び移動局装置200-3に送信するPDSCH、PDCCHをリソースマッピングし、それ以外のサブフレームにリソースマッピングしない。このようなスケジューリングを行うにより、基地局装置100-2に接続する移動局装置は、基地局装置100-1の送信信号から受けるセル間干渉を軽減することができる。
 ここで、移動局装置が基地局装置100-1のリソースマッピング制限サブフレームのうちABSと同時刻に送信されるサブフレームにマッピングされる場合、その移動局装置に対して、基地局装置100-1のCRSは干渉を与えることなる。その場合は、その移動局装置は基地局装置100-1のCRSをキャンセル処理することが好ましい。また、移動局装置が基地局装置100-1の通常サブフレームと同時刻に送信されるサブフレームにマッピングされる場合、その移動局装置に対して、基地局装置100-1のCRSは干渉を与えることなる。その場合は、その移動局装置は基地局装置100-1のCRSをキャンセル処理することが好ましい。なお、移動局装置が基地局装置100-1のリソースマッピング制限サブフレームのうちMBSFNサブフレームと同時刻に送信されるサブフレームにマッピングされる場合、その移動局装置に対して、基地局装置100-1のCRSは干渉を与えない。その場合は、その移動局装置は基地局装置100-1のCRSをキャンセル処理しないことが好ましい。
 本発明の第1の実施形態では、そのような課題を解決するために、基地局装置100-2に接続している移動局装置の下りリンクにおける制御信号に、基地局装置100-1のCRSに対する干渉キャンセル処理に関する情報(干渉キャンセル情報)を含めている。例えば、前記制御信号として、PDCCH、RRC(Radio Resource Control:無線リソース制御)シグナリングなどがある。RRCシグナリングは、PBCH、PDSCHに含まれている制御信号であり、PDCCHと比較して、送信できる情報量が多く、更新(送信)頻度の低い準静的(セミスタティック)なシグナリングである。
 干渉キャンセル処理「要」の通知を受けた移動局装置は、当該通知後、所定の期間、セル間干渉をキャンセルする処理を行う(移動局装置でのキャンセル処理の詳細は後述する。)。一態様として、基地局装置100-2は、PDCCH又はRRCシグナリングに1ビットの干渉キャンセルの有無に関する情報を示す領域を確保し、「0」によりキャンセル処理「不要」を、「1」によりキャンセル処理「要」を通知する。
 具体的には、PDCCHによりキャンセル処理「要」が設定された場合、移動局装置は、そのサブフレーム内にスケジュール(マッピング)されているPDSCHに対して、基地局装置100-1のCRSをキャンセル処理する。RRCシグナリングによりキャンセル処理「要」が設定された場合、移動局装置は、その干渉キャンセル情報が更新されるまで、その間にスケジュール(マッピング)されるPDSCHに対して、基地局装置100-1のCRSをキャンセル処理する。
 干渉キャンセルの要否は、例えば、以下の判断基準により行われる。基地局装置100-2は、基地局装置100-1のリソースマッピング制限サブフレームのうちABSに相当するサブフレーム、または、通常サブフレームに相当するサブフレームを用いて移動局装置に情報データを送信する場合、キャンセル要を示す情報を通知する。一方、基地局装置100-2は、基地局装置100-1のリソースマッピング制限サブフレームのうちMBSFNサブフレームに相当するサブフレームを用いて移動局装置に情報データを送信する場合、キャンセル不要を示す情報を通知する。
 別の例では、基地局装置100-2は、基地局装置100-1のリソースマッピング制限サブフレームのうちABSに相当するサブフレーム、または、通常サブフレームに相当するサブフレームを用いて移動局装置に情報データを送信し、さらに当該情報データが所定のMCS以上である場合にキャンセル要を示す情報を通知する。さらに別の例では、基地局装置100-1がリソースマッピング制限サブフレームのうちABS、または、通常サブフレームに相当するサブフレームにおいて所定数以上のセル固有参照信号を送信する場合、基地局装置100-2は、キャンセル要を示す情報を通知する。さらに別の例では、無線通信システムにおいて、送信フレームフォーマットのモードに基づいて、キャンセル要否を判断する。すなわち、基地局装置100-1がリソースマッピング制限サブフレームを含む送信フレームフォーマットのモードで信号を送信する場合、基地局装置100-2は、キャンセル要を示す情報を通知する。なお、上記参照信号の数、送信フレームフォーマットのモードは、バックホール回線10を用いて、基地局装置間で共有することができる。
 なお、以上の判断基準は、基地局装置100-2が、基地局装置100-1からのCRSによる干渉が大きいと見込まれる移動局装置に対してだけ行うことができる。すなわち、基地局装置100-2は、基地局装置100-1からのCRSによる干渉が小さいと見込まれる移動局装置に対して、以上の判断基準は適用せず、キャンセル不要を示す情報を通知してもよい。
 また、本発明の第1の実施形態では、下りリンクにおける制御信号に干渉キャンセル処理を行うセル情報が含まれる。前記制御信号として、PDCCH、RRC(Radio Resource Control:無線リソース制御)シグナリングなどがある。また、前記セル情報とは、セルID、CRSポート数、CRSの電力情報(データ信号との電力比なども含まれる)などが該当する。一態様として、基地局装置100-2は、PDCCHに干渉キャンセル処理を行うセル情報を示す領域を確保し、キャンセル処理を行う信号の送信元のセル情報を通知する。別の一態様として、基地局装置100-2は、RRCシグナリングに干渉キャンセル処理を行うセル情報を示す領域を確保し、キャンセル処理を行う信号の送信元のセル情報を予め通知する。
 図1では、基地局装置100-2は、基地局装置100-1のセルID、CRSポート数、CRSの電力情報などを制御信号により、移動局装置200-2、及び/又は移動局装置200-3に通知する。移動局装置は、前記セルID、CRSポート数により、当該基地局装置がリソースマッピングしたCRSのリソースエレメントおよび値を特定または推定することができる。これにより、移動局装置は、当該セル固有参照信号をキャンセルする処理が可能となる。なお、前記RRCシグナリングは、PBCHにより送信されるものでも、PDSCHにより送信されるものでもよい。
 基地局装置100-2は、PBCHにより送信されるRRCシグナリングを用いて下りリンクにおける制御信号に干渉キャンセル処理の要否又は干渉キャンセル処理を行うセル情報を通知する場合、当該情報をCell-Specific(セル固有)な情報として通知することができる。また、基地局装置100-2は、PDSCHにより送信されるRRCシグナリングを用いて下りリンクにおける制御信号に干渉キャンセル処理の要否又は干渉キャンセル処理を行うセル情報を通知する場合、当該情報をUE-Specific(移動局装置固有)な情報として通知することができる。
 図8は、本発明の第1の実施形態に係る無線通信システムにおける基地局装置100-2の送信フローチャートである。
 基地局装置100-2は、バックホール回線10を通して、隣接基地局装置(基地局装置100-1)の下りリンク送信に関する情報を取得する(S101)。前記下りリンク送信に関する情報には、送信フレームフォーマットに関する情報が含まれる。
 次に、基地局装置100-2は、前記下りリンク送信に関する情報に基づいて、基地局装置100-1が送信するサブフレームがMBSFNであるか否かを判断する(S102)。ここで、MBSFNでないと判断した場合(S101においてNO)、基地局装置100-2は、移動局装置200-u(図1の場合、u=2、および/または3)にキャンセル処理「要」を通知するための制御信号を生成する(S104)。
 一方、MBSFNであると判断した場合(S101においてYES)、基地局装置100-2は、移動局装置200-u(図1の場合、u=2、および/または3)にキャンセル処理「不要」を通知するための制御信号を生成する(S103)。そして、基地局装置100-2は、前記制御信号及びデータ信号(PDSCHなど)を移動局装置に送信(S105)して処理を終了する。なお、移動局装置への前記制御信号には、セル情報、CRSポート数などの情報を含んでもよい。
 次に、本発明の第1の実施形態に係る移動局装置の構成について説明する。
 図9は、本発明の第1の実施形態に係る無線通信システムにおける移動局装置200-u(図1においては、u=1~3)の構成を示す概略ブロック図である。移動局装置200-uは、受信アンテナ部201、受信部202、伝搬路推定部203、GI除去部204、DFT部205、干渉除去部206、伝搬路補償部207、復調部208、復号部209、上位レイヤ210、制御信号検出部211、送信アンテナ部221、制御信号生成部222、送信部223を含んで構成される。
 受信アンテナ部201は、基地局装置100-2から電波として伝搬された搬送帯域におけるOFDM信号を受信し、受信した搬送帯域におけるOFDM信号を受信部202に出力する。このとき、基地局装置100-1が送信する搬送帯域におけるOFDM信号も受信することになり、セル間干渉となる。
 受信部202は、受信アンテナ部202から入力されたOFDM信号をディジタル信号処理が可能な周波数帯域にダウンコンバートし、ダウンコンバートした信号を更にフィルタリング処理を行って不要成分(スプリアス;Spurious)を除去する。受信部202は、フィルタリング処理を行った信号をアナログ信号からディジタル信号に(A/D;Analog-to-Digital)変換し、変換したディジタル信号を伝搬路推定部203、GI除去部204及び制御信号検出部211に出力する。
 伝搬路推定部203は、受信部202が出力した信号に含まれる参照信号を用いて、伝搬路推定を行い、伝搬路推定値を生成する。そして、伝搬路推定部203は、前記伝搬路推定値を、干渉除去部206、伝搬路補償部207及び上位レイヤ210に通知する。前記伝搬路推定値は、例えば、伝達関数、インパルス応答などである。
 制御信号検出部211は、受信部202が出力した信号に含まれる制御信号(PDCCH、RRCシグナリングなど)の検出を行う。そして、前記制御信号検出部211は、制御信号に含まれる情報データなどに施されているMCS、プレコーディング行列、レイヤ数の情報を抽出すると、当該抽出された情報を、復調部208、復号部209に通知する。また、前記制御信号検出部211は、制御信号に含まれる移動局装置におけるキャンセル処理の要否情報、キャンセル処理する信号の送信元のセル情報を抽出し、当該抽出された情報を干渉除去部206に通知する。
 GI除去部204は、受信部202から出力される信号からGIを除去し、除去された信号をDFT部205に出力する。
 DFT部205は、GI除去部204から入力されたGIが除去された信号を時間領域信号から周波数領域信号に変換する離散フーリエ変換(DFT:Discrete Fourier Transform)を行い、当該変換により得られた周波数領域信号を干渉除去部206に出力する。なお、DFT部205は、信号を時間領域から周波数領域に変換できれば、DFTに限らず、他の方法、例えば、高速フーリエ変換(FFT:Fast Fourier Transform)等を行ってもよい。
 干渉除去部206は、(i)移動局装置におけるキャンセル処理の要否および/またはキャンセル処理する信号の送信元のセル情報に基づき、(ii)伝搬路推定部203から入力された伝搬路推定値を用いて、DFT部205から入力された信号から、干渉成分を除去する処理を行う。具体的には、干渉除去部206は、DFT部205から入力された周波数領域信号から、通知されたセルIDに係る基地局装置が送信したCRSなどの既知信号を除去する(詳細は後述)。
 伝搬路補償部207は、伝搬路推定部203から入力された伝搬路推定値に基づきZF(Zero Forcing;ゼロフォーシング)等化、MMSE(Minimum Mean Square Error;最小平均二乗誤差)等化などの方式を用いて、例えばフェージングによる伝搬路歪を補正する重み係数を算出する。伝搬路補償部207は、この重み係数を干渉除去部206から入力された周波数領域信号に乗算して伝搬路補償を行う。
 復調部208は、伝搬路補償部207から入力された伝搬路補償後の信号(データ変調シンボル)に対して復調処理を行う。前記復調処理は、硬判定(符号化ビット系列の算出)、軟判定(符号化ビットLLRの算出)のどちらでもよい。
 復号部209は、復調部208が出力する復調後の符号化ビット系列(又は、符号化ビットLLR)に対して誤り訂正復号処理を行うことによって、自己宛に送信された情報データを算出し、当該算出された情報データを上位レイヤ210に出力する。この誤り訂正復号処理の方式は、送信元である送信装置100が行ったターボ符号化、畳み込み符号化などの誤り訂正符号化に対応する方式である。誤り訂正復号処理は、硬判定、軟判定どちらでもよい。なお、基地局装置が、インターリーブしたデータ変調シンボルを送信する場合には、復号部209は、誤り訂正復号処理を行う前に、入力された符号化ビット系列をインターリーブに対応するデインターリーブ処理を行う。そして、復号部209は、デインターリーブ処理が行われた信号に対して誤り訂正復号処理を行う。
 制御信号生成部222は、フィードバック情報(CQI、RI、PMIが含まれる)を基地局装置に送信するための制御信号を生成する。前記フィードバック情報は、上位レイヤ210が、伝搬路推定部203で算出した伝搬路推定値に基づいて、決定する。
 制御信号生成部222は、前記フィードバック情報を示す制御データを誤り訂正符号化、変調マッピングし、制御信号を生成する。制御信号として、例えば、PUCCHなどが該当する。前記制御信号生成部222が出力する制御信号を含む信号は、送信部223で、下りリンクにおいて送信可能な周波数帯にアップコンバートされ、送信アンテナ部221を介して、基地局装置に送信される。
 次に、第1の実施形態に係る干渉除去部206の構成及び機能について説明する。
 図10は、第1の実施形態に係る干渉除去部206の構成を示す概略図である。干渉除去部206は、送信信号レプリカ生成部241、干渉レプリカ生成部242及び減算部243を含んで構成される。送信信号レプリカ生成部241は、キャンセラ処理「要」を示す制御信号が入力されると、参照信号(例えば、CRS)、制御信号などの既知信号のレプリカ(送信信号レプリカ)を生成する。前記送信信号レプリカは、前記制御信号に含まれる「キャンセル処理する信号の送信元のセル情報」に基づいて生成される。
 図1においては、移動局装置200-2及び/又は移動局装置200-3は、基地局装置100-2からキャンセラ処理「要」、及びキャンセル処理する信号の送信元として基地局装置100-1のセル情報」の通知を受けると、基地局装置100-1の下りリンク送信フレームフォーマット(図3、図4)に基づいて、既知信号(CRS、PSS、SSSなど)のレプリカを生成する。特に、移動局装置200-2及び/又は移動局装置200-3は、リソースマッピング制限サブフレームにおける既知信号のレプリカを生成する。
 干渉レプリカ生成部242は、前記送信信号レプリカに伝搬路推定値を乗算することで、干渉レプリカを生成する。
 減算部243は、DFT部205から出力される周波数領域の信号から前記干渉レプリカを減算後、当該信号を伝搬路補償部207に出力する。減算部243が出力する第lOFDMシンボルの第kサブキャリアの信号Rk、l~は次式で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、Rk、lは、DFT部205が出力するリソースマッピング制限フレームにおける第lOFDMシンボルの第kサブキャリアの信号である。Rk、l^は、リソースマッピング制限フレームにおける干渉レプリカであり、次式で表される。なお、「R^」、「R~」という表記は、式(2)に表わされているように文字「R」の上に各々「^」、「~」が記載されたものを意味する。これらの表記は、後述する「s^」、「c^」、「H^」でも同様である。
Figure JPOXMLDOC01-appb-M000003
 ここで、Hk、l^は、伝搬路推定部203が推定した第lOFDMシンボルの第kサブキャリアの伝達関数である。sl、k^は、送信信号レプリカ生成部241が生成した第lOFDMシンボルの第kサブキャリアの送信信号レプリカである。sk、l^は、既知信号(CRS、PSS、SSSなど)がマッピングされているリソースエレメントには当該既知信号で、それ以外のリソースエレメントには0(ヌル)で構成されたレプリカである。
 例えば、図4のサブフレームフォーマットを有するリソースマッピング制限フレームにおいて、第1番目と第8番目のOFDMシンボルの送信信号レプリカsk、l^、(l=1、8の場合)は次式となる。
Figure JPOXMLDOC01-appb-M000004
 ここで、m=0、1、…、2(M-1)、(Mはリソースブロックの数)CRS^は、送信信号レプリカ生成部241が生成する参照信号である。
 送信信号レプリカ生成部241は、他のOFDMシンボルにおいても、既知信号が配置されているリソースエレメントに、当該既知信号のレプリカを割り当て、それ以外のリソースブロックには0を割り当てた干渉レプリカを生成する。また、送信信号レプリカ生成部241は、アンテナ数が複数の場合においては、各アンテナポートから送信されるサブフレームフォーマットに基づいて、干渉レプリカを生成する。
 例えば、2本のアンテナを有する基地局装置100-1が図5に示すフォーマットで送信している場合、第1番目、5番目、第8番目及び第12番目のOFDMシンボルの送信信号レプリカsk、l^、(l=1、5、8、12の場合)は次式となる。
Figure JPOXMLDOC01-appb-M000005
 図11は、本発明の第1の実施形態に係る無線通信システムにおける移動局装置の受信フローチャートである。当該移動局装置を、図1においては、移動局装置200-u(u=2および/または3が該当)とする。移動局装置200-uは、基地局装置100-2の送信信号に含まれる干渉キャンセル処理に関する制御信号を検出し(S201)、当該検出された制御信号に基づいて干渉キャンセル処理の要否を判断する(S202)。ここで、移動局装置200-uは、干渉キャンセル処理「要」(干渉キャンセル処理に関するフラグが「1」)を検出した場合(S202においてYES)、所定のタイミングで、既知信号(CRSなど)の干渉キャンセル処理を適用したデータ信号検出処理を行う(S204)。一方、移動局装置200-uは、干渉キャンセル処理「不要」(干渉キャンセル処理に関するフラグが「0」)を検出した場合(S202においてNO)、干渉キャンセル処理を適用せず、データ信号検出処理を行う(S203)。前記干渉キャンセル処理を行うタイミング、すなわち、干渉キャンセル処理を行うサブフレームは、予め決めておいてもよいし、基地局装置から移動局装置へ通知してもよい。また、前記既知信号の配置に関する情報は、前記制御信号に含まれるセル情報、CRSポート数などの情報から判断することもできる。
 図12は、移動局装置200-2が基地局装置100-1および基地局装置100-2により送信されるサブフレームの受信を示した図である。図1における移動局装置200-2は、基地局装置100-1から送信フレームフォーマット251で送信された信号(セル間干渉)と、基地局装置100-2から送信フレームフォーマット252で送信された信号とを受信することになる。ここで、本発明の第1の実施形態では、基地局装置100-1は、(i)サブフレームNには、当該基地局装置と接続する移動局装置宛(図1における移動局装置200-1)のデータ信号(例えば、PDSCH)及び制御信号(PDCCH、CRS、SSS,PSS、など)を割り当て、(ii)サブフレームAおよびサブフレームM(リソースマッピング制限サブフレーム、塗潰し部)には、所定の制御信号(CRS、SSS,PSS、など)のみ割り当てる。また、本発明の第1の実施形態では、基地局装置100-2は、前記サブフレームAが送信されるタイミングに送信するサブフレーム(送信フレームフォーマット252の網掛け部分)にのみ、移動局装置200-2に送信するデータ信号を割り当てる。これにより、マクロセル(基地局装置100-1)がピコセル、フェムトセル(基地局装置100-2)に接続する移動局装置200-2に与えるセル間干渉を軽減することができる。
 さらに、本発明の第1の実施形態では、基地局装置100-2は、移動局装置200-2に対して、前記サブフレームAおよびサブフレームNが送信されるタイミングに送信するサブフレームにおいて、基地局装置100-1から送信される所定の制御信号(CRS)を除去する処理(キャンセル処理)を行うことが必要(可能)であることを示す情報を通知する。また、基地局装置100-2は、移動局装置200-2に対して、前記サブフレームMが送信されるタイミングに送信するサブフレームにおいて、基地局装置100-1から送信される所定の制御信号(CRS)を除去する処理(キャンセル処理)を行うことが不要(不可能)であることを示す情報を通知する。
 基地局装置100-1は、伝搬路状況、送信信号のQoS(Quality of Service)などにより、送信アンテナ数又はレイヤ数を可変する。また、送信アンテナ数又はレイヤ数に応じて、サブフレームに配置されるセル固有参照信号の数も異なる。その結果、基地局装置100-1から受けるセル間干渉量も異なる。例えば、アンテナ数1の場合(図4)、リソースブロック当たり8個の参照信号がマッピングされる。アンテナ数2の場合(図5)、リソースブロック当たり16の参照信号がマッピングされる。アンテナ数4の場合(図6)、リソースブロック当たり24の参照信号がマッピングされる。
 本発明の第1の実施形態によれば、参照信号、制御信号などの既知信号を除去することができるから、ピコセル、フェムトセルなど(基地局装置100-2)に接続する移動局装置200-2は、マクロセル(基地局装置100-1)がサブフレームAに配置した所定の既知信号の数に影響されず、マクロセルから受けるセル間干渉をさらに軽減することができる。
 なお、以上の説明では、移動局装置がCRSをキャンセル処理する場合を説明したが、これに限るものではない。例えば、PSS、SSSの同期信号をキャンセル処理する場合でも、本発明の第1の実施形態を適用することができる。具体的には、基地局装置は、移動局装置に対して、RRCシグナリングにより、セルIDまたはサブフレーム番号(同期信号がマッピングされるサブフレームを示す情報も含む)を通知する。
 (第2の実施形態)
 本発明の第2の実施形態では、異なるセル半径の基地局装置を配置した下りリンクにおける無線通信システムにおいて、基地局装置が別の下りリンク送信フォーマットで送信する場合について説明される。本発明の第2の実施形態に係る基地局装置100-α及び移動局装置200-uは、第1の実施形態に係る基地局装置100-α及び移動局装置200-uと同様の構成を有するが、上位レイヤ102及び制御信号生成部104で生成される移動局装置へのキャンセル処理に関する制御情報を通知する制御信号が異なる。以下、第1の実施形態と異なる点について、主に説明する。
 図13は、本発明の第2の実施形態に係る無線通信システムにおける基地局装置100-1の下りリンクの送信フレームフォーマットである。図13の上段は、基地局装置100-1が接続している移動局装置200-1へ信号を送信する場合の下りリンク送信フレームフォーマットである。図13の上段は、通常サブフレーム、ABS、及びMBSFNサブフレーム(Multimedia Broadcast multicast service Single Frequency Network Subframe)を含む10個のサブフレームから構成される。
 通常サブフレームは、原則、CRS(図中の塗り潰し部)、PDCCH(図中の横縞部)及びPDSCH(図中の白抜き部)から構成される(図13の上段のサブフレームインデックス#1、サブフレームインデックス#3、サブフレームインデックス#4、サブフレームインデックス#5及びサブフレームインデックス#9)。ただし、所定のサブフレームには、加えて制御信号(SSS(図中の左上がり斜線部分)、PSS(図中の右上がり斜線部分)など)が配置される(例えば、図13の上段のサブフレーム#5)。
 ABSには、CRS及び/又は所定の制御信号(SSS、PSS、PBCH(図中の格子部分)など)のみが配置される(図13の上段のサブフレームインデックス#0)。MBSFNサブフレームには、CRSが配置される(図13の上段のサブフレームインデックス#2、ブフレームインデックス#6、ブフレームインデックス#7及びサブフレームインデックス#8)。MBSFNサブフレームは、通常サブフレーム及びABSよりCRSの配置数が少ない。ここで、本発明の第2の実施形態では、ABS及びMBSFNサブフレームには、ABS及びMBSFNサブフレームについて上記配置される信号以外(例えば、PDSCH)は配置されない(図中の網掛け部)。
 図13の下段は、基地局装置100-2が接続している移動局装置200-2及び移動局装置200-3へ信号を送信する場合の下りリンク送信フレームフォーマットである。図13の下段は、10個の通常サブフレームから構成される。通常サブフレームは、原則、CRS(図中の塗り潰し部)、PDCCH(図中の横縞部)及びPDSCH(図中の白抜き部)から構成される。ただし、所定のサブフレームには、加えて制御信号(SSS(図中の左上がり斜線部分)、PSS(図中の右上がり斜線部分)、PBCH(図中の格子部分)など)が配置される(例えば、図13の下段のサブフレーム#0及びサブフレーム#5)。
 本発明の第2の実施形態に係る基地局装置100-2の制御信号生成部104は、図13上段に示した基地局装置100-1の送信フォーマットを考慮して、生成する制御信号に、移動局装置におけるキャンセルの要否および/またはキャンセルするセルに関する情報を含める。
 一態様として、前記キャンセルの要否を示す情報は、(i)基地局装置100-1のMBSFNサブフレームが送信されるサブフレームではキャンセル処理「不要」を通知し、(ii)基地局装置100-1の通常サブフレームおよび/またはABSサブフレームが送信されるサブフレームではキャンセル処理「要」を通知する。基地局装置100-2は、例えば、PDCCH又はRRCシグナリングに1ビットの干渉キャンセルの有無に関する情報を示す領域を確保し、「0」によりキャンセル処理「不要」を、「1」によりキャンセル処理「要」を通知する。
 前記キャンセルの要否を示す情報を含む制御信号を受信した移動局装置200-2及び/又は移動局装置200-3は、前記キャンセルの要否を示す情報に基づいて、各サブフレームに対してキャンセル処理を行うことになる。
 別の態様として、キャンセルの要否を示す情報は、基地局装置100-1の通常サブフレーム、MBSFNサブフレーム、通常サブフレームの配置を通知する。基地局装置100-2は、例えば、PDCCH又はRRCシグナリングに2ビットの干渉キャンセルの有無に関する情報を示す領域を確保し、「01」により通常サブフレームを、「10」によりMBSFNサブフレームを、「11」によりABSを通知する。
 前記キャンセルの要否を示す情報を含む制御信号を受信した移動局装置200-2及び/又は移動局装置200-3は、前記キャンセルの要否を示す情報「01」および/または「11」を取得すると、当該サブフレームに対してキャンセル処理を行い、その後、復調処理、復号処理などを行う。
 一方、移動局装置200-2及び/又は移動局装置200-3は、前記キャンセルの要否を示す情報「10」を取得すると、当該サブフレームに対してはキャンセル処理を行うことなく、復調処理、復号処理などを行う。なお、キャンセルするセルに関する情報は、第1の実施形態と同様に通知される。
 以上のように、本発明の第2の実施形態によれば、マクロセル(基地局装置100-1)が複数の種類のサブフレームから構成される送信フォーマットで信号を送信する場合において、ピコセル、フェムトセル(基地局装置100-2)は、セル固有参照信号などの既知信号の数に応じてキャンセルの要否を設定できる。
 そして、ピコセル、フェムトセルに接続する移動局装置は、前記キャンセルの要否を示す情報に基づいて、参照信号、制御信号などの既知信号を除去することができるため、既知信号の数に影響されず、マクロセルから受けるセル間干渉をさらに軽減することができる。
 (第3の実施形態)
 本発明の第3の実施形態では、異なるセル半径の基地局装置を配置した下りリンクにおける無線通信システムにおいて、移動局装置のキャンセル処理に関する制御について、別の通知方法が説明される。本発明の第3の実施形態に係る基地局装置100-α及び移動局装置200-uは、第1の実施形態に係る基地局装置100-α及び移動局装置200-uと同様の構成を有するが、上位レイヤ102及び制御信号生成部104で生成される移動局装置へのキャンセル処理に関する制御情報を通知する制御信号が異なる。以下、第1の実施形態と異なる点について、主に説明する。
 本発明の第3の実施形態に係る下りリンク制御信号には、移動局装置がキャンセル処理を行うサブフレームを示す情報が含まれる。前記制御信号として、PDCCH、RRCシグナリングが該当する。
 図14は、本発明の第3の実施形態に係る下りリンク制御信号の一例である。制御信号には、移動局装置200-uがキャンセル処理を行うサブフレーム情報(ビットマップ)が含まれる。図14では、制御信号に、キャンセル処理を行うサブフレーム情報として、10ビットが割り当てられている場合の例である。「1」はキャンセル処理「要」を示し、「0」はキャンセル処理「不要」を示す。図14の例では、フレームを構成する10個のサブフレームのうち、1番目、2番目、6番目及び7番目のサブフレームに対してキャンセル処理を行う旨を通知している。移動局装置200-uは、キャンセル処理を行うサブフレーム情報を含む制御信号を受信すると、干渉除去部206は、当該情報に基づき、キャンセル処理「要」と示されたサブフレームに対して、干渉除去処理(キャンセル処理)を行う。
 また、本発明の第3の実施形態に係る下りリンク制御信号には、移動局装置がキャンセル処理を行うセル情報が含まれる。前記制御信号として、PDCCH、RRCシグナリングが該当する。図14では、制御信号に、セル情報として、8ビットが割り当てられている場合の例である。すなわち、最大256個のセルIDを通知できる。図14では、キャンセル処理を行う基地局装置のセルIDが1ある旨を通知している。移動局装置200-uは、キャンセル処理を行う基地局装置のセルIDを含む制御信号を受信すると、制御信号検出部211において、制御信号からキャンセル処理を行う基地局装置のセルIDを抽出し、キャンセル処理を行う基地局装置のCRSが配置されているリソースエレメントに関する情報を得る。そして、干渉除去部206は、キャンセル処理を行う基地局装置のCRSが配置されているリソースエレメントに関する情報に基づき、キャンセル処理「要」と示されたサブフレームにおけるCRSの干渉除去処理を行う。
 また、本発明の第3の実施形態に係る下りリンク制御信号には、移動局装置がキャンセル処理を行う信号のレイヤ数に関する情報が含まれる。前記制御信号として、PDCCH、RRCシグナリングが該当する。図14は、制御信号に、レイヤ数に関する情報として、4ビットが割り当てられている場合の例である。すなわち、最大16個のレイヤを通知できる。図14では、キャンセル処理を行う基地局装置の送信信号のレイヤ数が1ある旨を通知している。移動局装置200-uは、キャンセル処理を行う基地局装置の送信信号のレイヤ数が1である旨の情報を含む制御信号を受信すると、制御信号検出部211はレイヤ数情報を抽出し、当該レイヤ数で送信される信号のCRSが配置されているリソースエレメントに関する情報を得る。そして、干渉除去部206は、キャンセル処理を行う基地局装置のCRSが配置されているリソースエレメントに関する情報に基づき、キャンセル処理「要」と示されたサブフレームにおけるCRSの干渉除去処理を行う。
 なお、図14では、同一の制御信号を用いて、キャンセル処理を行うサブフレーム情報、セル情報及びキャンセル処理を行うサブフレームのレイヤ数を通知しているが、異なる制御信号を用いて通知してもよい。また、前記RRCシグナリングは、PBCHにより送信されるものでも、PDSCHにより送信されるものでもよい。PBCHにより送信されるRRCシグナリングを用いて下りリンクにおける制御信号に干渉キャンセル処理の要否又は干渉キャンセル処理行うセル情報を通知する場合、当該情報をCell-Specificに通知することができる。また、PDSCHにより送信されるRRCシグナリングを用いて下りリンクにおける制御信号に干渉キャンセル処理の要否又は干渉キャンセル処理行うセル情報を通知する場合、当該情報をUE-Specificに通知することができる。
 以上のように、本発明の第3の実施形態によれば、サブフレーム毎に、キャンセル処理の有無を移動局装置に通知することができる。これにより、移動局装置は、高精度なタイミングで干渉キャンセル処理を行うことができる。
 (第4の実施形態)
 本発明の第4の実施形態では、異なるセル半径の基地局装置を配置した下りリンクにおける無線通信システムにおいて、移動局装置のキャンセル処理に関する制御について、別の通知方法が説明される。本発明の第4の実施形態に係る基地局装置100-α及び移動局装置200-uは、第1の実施形態に係る基地局装置100-α及び移動局装置200-uと同様の構成を有するが、基地局装置100-αの上位レイヤ102及び制御信号生成部104が生成するキャンセル処理に関する制御情報を含む制御信号が異なる。以下、第1の実施形態と異なる点について、主に説明する。
 図15は、本発明の第4の実施形態に係る基地局装置の下りリンク制御信号の一例である。前記下りリンク制御信号は、PDCCHなどが該当する。本発明の第4の実施形態に係る下りリンク制御信号には、MCS情報を示す情報が含まれる。図15では、MCS情報を示す領域として4ビット割り当てた例である。
 図16は、MCS情報のインデックス(Index)に対する変調方式(Modulation scheme)及び符号化率(Coding Rate)である。すなわち、図15のMCS情報は、図16におけるIndex 3を示している。基地局装置100-2は、データ信号(PDSCH)を、図15及び図16で設定したMCS情報に基づいて、データ変調し、移動局装置200-u(図1では、u=2、3)に送信する。
 また、本発明の第4の実施形態に係る下りリンク制御信号には、送信フォーマット情報が含まれる。基地局装置100-2は、基地局装置100-1の送信フォーマット情報に基づいて、データ信号(PDSCH)の割当てを行う。図15では、送信フォーマット情報を示す領域として2ビット割り当てた例である。
 図17は、送信フォーマット情報のインデックスに対するサブフレーム構成である。すなわち、図15の送信フォーマット情報は、図17におけるIndex 2を示している。基地局装置100-2は、送信フォーマット情報のIndexが2の場合、移動局装置200-u(図1では、u=2、3)宛のデータ信号(PDSCH)を第1番目、第2番目及び第6番目のサブフレームに割り当てる。なお、図14では、同一の制御信号を用いて、キャンセル処理を行うサブフレーム情報、セル情報及びキャンセル処理を行うサブフレームのレイヤ数を通知しているが、異なる制御信号を用いて通知してもよい。
 次に、本発明の第4の実施形態に係る移動局装置の動作について説明する。移動局装置200-uは、基地局装置100-2が送信した制御信号からMCS情報及び送信フォーマット情報を抽出し、キャンセラの要否判断テーブルに基づいて、キャンセル処理の要否を判断する。
 図18は本発明の第4の実施形態に係る移動局装置が保持するキャンセラの要否判断テーブルの一例である。制御信号検出部211は、送信フォーマット情報のインデックスが0の場合又は送信フォーマット情報のインデックスが1かつMCS情報のインデックスが0~6の場合、キャンセラ処理「不要」と判断する。制御信号検出部211は、送信フォーマット情報のインデックスが1かつMCS情報のインデックスが7~15の場合、キャンセラ処理「要」と判断し、干渉除去部206に通知する。
 図19は、本発明の第4の実施形態に係る無線通信システムにおける移動局装置がキャンセラの適否を判断するフローチャートである。図19においては、移動局装置200-u(u=2および/または3が該当)とする。
 移動局装置200-uの制御信号検出部211は、基地局装置100-2の送信信号に含まれる制御信号から、MCS情報及び送信フォーマット情報を抽出し(S301)、送信フォーマット情報のインデックスを識別する(S302)。送信フォーマット情報のインデックスが0の場合(S302においてYES)、移動局装置200-uは、干渉キャンセル処理を適用せず、MCS情報に基づいて、データ信号検出処理を行う(S303)。
 送信フォーマット情報のインデックスが0でない場合(S302においてNO)、移動局装置200-uは、MCS情報のインデックスを識別する(S304)。MCS情報のインデックスが0~6の場合(S304においてYES)、移動局装置200-uは、干渉キャンセル処理を適用せず、MCS情報に基づいて、データ信号検出処理を行う(S305)。
 MCS情報のインデックスが0~6でない場合(S304においてNO)、移動局装置200-uは、送信フォーマット情報に基づき、ABSで基地局装置100-1が送信した既知信号(CRSなど)に対する干渉キャンセル処理を行った後、MCS情報に基づいて、データ信号検出処理を行う(S306)。なお、前記キャンセラ処理を行う既知信号が配置されたリソースエレメントは、前記制御信号に含まれるセル情報、CRSポート数などの情報から判断することもできる。
 以上のように、本発明の第4の実施形態によれば、移動局装置は、MCS情報及び送信フォーマット情報から、黙示的に(インプリシットに)、キャンセル処理の要否を判断することできる。これにより、キャンセラ処理の要否を判断するための新たな制御信号を加える必要なく、制御信号の増加による周波数利用効率の低下を抑えることができる。
 なお、本発明の実施形態では、MCS情報及び送信フォーマット情報から、黙示的に(インプリシットに)、キャンセル処理の要否を判断しているが、その他の制御情報(例えば、RI、PMIなど)から、黙示的にキャンセル処理の要否を判断するようにしてもよい。
 (第5の実施形態)
 本発明の第5の実施形態では、異なるセル半径の基地局装置を配置した下りリンクにおける無線通信システムにおいて、キャンセル処理機能を有する移動局装置のフィードバック情報生成が説明される。
 本発明の第5の実施形態に係る基地局装置100-α及び移動局装置200-uは、第1の実施形態係る基地局装置100-α及び移動局装置200-uと同様の構成を有するが、移動局装置200-uの上位レイヤ102及び制御信号生成部104で生成されるフィードバック情報の生成方法が異なる。以下、第1の実施形態と異なる点について、主に説明する。
 図20は、本発明の第5の実施形態の無線通信システムにおける基地局装置と移動局装置間での接続及び制御処理フローを示すシーケンス図である。基地局装置100-1は、周辺の基地局装置100-2に、図1のバックホール回線10を通して、当該基地局装置の下りリンク送信に関する情報を通知する(S401)。前記下りリンク送信に関する情報には、通常サブフレームおよび/またはリソースマッピング制限サブフレームの配置などの送信フォーマット情報、セルID、CRSポート数などが含まれている。
 基地局装置100-2は、上記下りリンク送信に関する情報に基づいて、キャンセル処理に関する制御情報を含む制御信号を生成し(S402)、移動局装置200-2に送信する(S403)。前記キャンセル処理に関する制御情報には、干渉キャンセル処理の要否に関する情報、干渉キャンセル処理行うセル情報などが含まれる。なお、前記キャンセル処理に関する制御情報のシグナリングには、第1の実施形態乃至第4の実施形態に記載のシグナリングを適用することができる。移動局装置200-2は、前記キャンセル処理に関する制御情報に基づいて、フィードバック情報を生成し(S404)、基地局装置100-2に通知する(S405)。
 図21は、本発明の第5の実施形態におけるフィードバック情報の生成を示すフローチャートである。移動局装置200-2の制御信号検出部211は、基地局装置100-1が送信する下りリンク制御信号から、干渉キャンセル処理に関する制御情報を抽出し、干渉キャンセル処理の要否情報を得る(501)。そして、干渉キャンセル処理「要」が通知されると(S502においてYES)、移動局装置200-2は、伝搬路状況に加えて、干渉キャンセル処理の適用を考慮して、CQI、RIなどのフィードバック情報を設定する(S504)。
 一方、干渉キャンセル処理「要」が通知されると(S502においてYES)、移動局装置200-2は、伝搬路状況に基づいて、CQI、RIなどのフィードバック情報を設定する(S503)。そして、移動局装置200-2は、基地局装置100-2に前記設定したフィードバック情報の通知を行う(S505)。なお、前記伝搬路状況は、基地局装置100-2から送信されるCRSなどの参照信号から推定される。
 図20に戻り、基地局装置100-2は、前記フィードバック情報に基づいて、移動局装置202-2へ送信するデータ信号のMCS,レイヤ数など設定し、当該パラメータに基づいて、符号化処理、変調処理、プレコーディング処理などを行ったPDSCHを生成する(S406)。基地局装置100-2は、さらに、前記MCS、レイヤ数などを通知する下りリンク制御信号(PDCCH)を生成する(S406)。そして、基地局装置100-2は、前記PDSCH及びPDCCHを移動局装置200-2に送信する(S407)。
 移動局装置200-2は、前記PDSCH及びPDCCHを受信すると、前記PDCCHの前記MCS、レイヤ数などの情報に基づき、干渉キャンセル処理を適用して、前記PDSCHの検出処理(復調処理、復号処理など)を行う(S408)。
 以上のように、本発明の第5の実施形態によれば、移動局装置は、伝搬路状況に加えて、干渉キャンセル処理適用の要否を考慮して、フィードバック情報を生成する。基地局装置は、前記フィードバック情報に基づいて、移動局装置宛にデータ信号を送信する。
 これにより、基地局装置100-2は、データ信号を高速伝送が可能なMCS,レイヤ数(空間多重数)に設定できるから、周波数利用効率の向上を図ることができる。
 なお、図2における基地局装置の全部または一部、あるいは図9における端末装置の全部または一部との機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWW(World Wide Web)システムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM(Read Only Memory)、CD(Compact Disc)-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
 また、図2における基地局装置の全部または一部と、図9における端末装置の全部または一部との機能を集積回路に集約して実現してもよい。基地局装置、及び端末装置の各機能ブロックは個別にチップ化してもよいし、一部、又は全部を集積してチップ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、又は汎用プロセッサで実現しても良い。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。
 以上、この発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 <付記>
 (1)本発明の一態様による基地局装置は、基地局装置と移動局装置が通信を行う無線通信システムにおける基地局装置であって、他の基地局装置が送出する前記他の基地局装置に固有の参照信号をキャンセルすることを、前記移動局装置に通知する。
 (2)また、本発明の一態様による基地局装置は、異なるセル半径を有する複数の基地局装置が配置される無線通信システムにおける基地局装置であって、前記基地局装置は、前記無線通信システムにおける他の基地局装置が移動局装置に送信する複数種類のサブフレームから構成される送信フレームフォーマットに応じて、情報データ信号、制御信号及び参照信号をスケジューリングする上位レイヤと、前記スケジューリングに基づいて、情報データ信号、制御信号及び参照信号をサブフレームのリソースにマッピングするリソースマッピング部と、前記情報データ信号、前記制御信号及び前記参照信号からなるサブフレームを移動局装置に送信する送信部とを備え、前記制御信号には、前記移動局装置におけるキャンセル処理の要否を示す情報が含まれる。
 (3)また、本発明の一態様による基地局装置は、上記(2)の基地局装置であって、前記キャンセル処理の要否を示す情報は、前記送信フレームフォーマットを構成するサブフレームの種類に基づいて、キャンセル処理を行うサブフレームを通知する情報を含む。
 (4)また、本発明の一態様による基地局装置は、上記(3)の基地局装置であって、前記キャンセル処理を行うサブフレームは、当該サブフレームに含まれる参照信号に基づいて、キャンセル処理の要否を設定している。
 (5)また、本発明の一態様による基地局装置は、上記(2)の基地局装置であって、前記送信フレームフォーマットは、所定の参照信号又は制御信号のみからなる制限サブフレームと、情報データ信号、制御信号及び参照信号からなる通常サブフレームとで構成され、前記キャンセル処理の要否を示す情報は、前記制限サブフレームが送信されるタイミングで前記送信部が送信するサブフレームに対してキャンセル処理する旨を通知する情報である。
 (6)また、本発明の一態様による基地局装置は、上記(5)の基地局装置であって、前記制限サブフレームは、マルチキャスト信号あるいはブロードキャスト信号を送信するMBSFNサブフレーム、または特定の移動局装置に情報データ信号を送信するABSサブフレームで構成される。
 (7)また、本発明の一態様による基地局装置は、上記(2)の基地局装置であって、前記キャンセル処理の要否を示す情報は、サブフレーム毎にキャンセル処理の要否を示すビットマップとして制御信号に含まれている。
 (8)また、本発明の一態様による基地局装置は、上記(2)の基地局装置であって、前記上位レイヤは、前記他の基地局装置から、当該他の基地局装置の送信フレームフォーマットの通知を受ける。
 (9)また、本発明の一態様による移動局装置は、異なるセル半径を有する複数の基地局装置が配置される無線通信システムにおける移動局装置であって、前記移動局装置は、前記基地局装置が送信したサブフレームを受信する受信部と前記サブフレームから制御信号を抽出する制御信号抽出部と、前記サブフレームに対してキャンセル処理を行う干渉除去部とを備え、前記干渉除去部は、前記基地局装置以外の前記無線通信システムにおける他の基地局装置が送信する複数種類のサブフレームから構成される送信フレームフォーマットに応じて、キャンセル処理を行う。
 (10)また、本発明の一態様による基地局装置は、上記(9)の基地局装置であって、前記干渉除去部は、前記他の基地局装置が送信する参照信号を除去する。
 (11)また、本発明の一態様による基地局装置は、上記(9)の基地局装置であって、前記基地局装置が送信したサブフレームには、キャンセル処理の要否を示す情報を含む制御信号を含み、前記制御信号検出部は前記サブフレームからキャンセル処理の要否を示す情報を抽出し、前記干渉除去部は前記キャンセル処理の要否を示す情報に基づいて、前記キャンセル処理を行う。
 (12)また、本発明の一態様による基地局装置は、上記(9)の基地局装置であって、前記基地局装置が送信したサブフレームには、情報データ信号に関する情報を含む制御信号が含まれ、前記制御信号検出部は前記サブフレームから情報データ信号に関する情報を抽出し、前記干渉除去部は前記情報データ信号に関する情報に基づいて、前記キャンセル処理を行う。
 (13)また、本発明の一態様による基地局装置は、上記(9)の基地局装置であって、前記制御信号制御信号検出部は、前記サブフレームから情報データ信号の変調方式及び符号化率に関する情報を抽出し、前記干渉除去部は所定の前記変調方式及び符号化率である場合、前記キャンセル処理を行う。
 (14)また、本発明の一態様による無線通信システムは、異なるセル半径を有する複数の基地局装置が配置される無線通信システムであって、前記基地局装置は、前記無線通信システムにおける他の基地局装置が移動局装置に送信する複数種類のサブフレームから構成される送信フレームフォーマットに応じて、情報データ信号、制御信号及び参照信号をスケジューリングする上位レイヤと、前記スケジューリングに基づいて、情報データ信号、制御信号及び参照信号をサブフレームのリソースにマッピングするリソースマッピング部と、前記情報データ信号、前記制御信号及び前記参照信号からなるサブフレームを移動局装置に送信する送信部とを備え、前記移動局装置は、前記基地局装置が送信したサブフレームを受信する受信部と、前記サブフレームから制御信号を抽出する制御信号抽出部と、前記基地局装置以外の前記他の基地局装置が送信する複数種類のサブフレームから構成される送信フレームフォーマットに応じて、前記サブフレームに対してキャンセル処理を行う干渉除去部とを備える。
 (15)また、本発明の一態様による送信方法は、異なるセル半径を有する複数の基地局装置が配置される無線通信システムにおける基地局装置の送信方法であって、前記基地局装置は、前記無線通信システムにおける他の基地局装置が移動局装置に送信する複数種類のサブフレームから構成される送信フレームフォーマットに応じて、情報データ信号、制御信号及び参照信号をスケジューリングするステップと、前記スケジューリングに基づいて、情報データ信号、制御信号及び参照信号をサブフレームのリソースにマッピングするステップと、前記情報データ信号、前記制御信号及び前記参照信号からなるサブフレームを移動局装置に送信するステップとを備え、前記制御信号には、前記移動局装置におけるキャンセル処理の要否を示す情報が含まれる。
 (16)また、本発明の一態様による受信方法は、異なるセル半径を有する複数の基地局装置が配置される無線通信システムにおける移動局装置の受信方法であって、前記移動局装置は、前記基地局装置が送信したサブフレームを受信するステップと前記サブフレームから制御信号を抽出するステップと、前記サブフレームに対してキャンセル処理を行うステップとを有し、前記キャンセル処理を行うステップは、前記基地局装置以外の他の基地局装置が送信する複数種類のサブフレームから構成される送信フレームフォーマットに応じて、キャンセル処理を行う。
 (17)また、本発明の一態様による無線通信システムは、異なるセル半径を有する複数の基地局装置が配置される無線通信システムの通信方法であって、前記基地局装置は、前記無線通信システムにおける他の基地局装置が移動局装置に送信する複数種類のサブフレームから構成される送信フレームフォーマットに応じて、情報データ信号、制御信号及び参照信号をスケジューリングするステップと、前記スケジューリングに基づいて、情報データ信号、制御信号及び参照信号をサブフレームのリソースにマッピングするステップと、前記情報データ信号、前記制御信号及び前記参照信号からなるサブフレームを移動局装置に送信するステップとを備え、前記移動局装置は、前記基地局装置が送信したサブフレームを受信するステップと、前記サブフレームから制御信号を抽出するステップと、前記基地局装置以外の他の基地局装置が送信する複数種類のサブフレームから構成される送信フレームフォーマットに応じて、前記サブフレームに対してキャンセル処理を行うステップとを備える。
 本発明は、無線基地局装置や無線端末装置や無線通信システムや無線通信方法に用いることが好適である。
 100-1,100-2 基地局装置、200-1,200-2,200-3 移動局装置、101 送信アンテナ部、102 上位レイヤ、103 シンボル生成部、104 制御信号生成部、105 参照信号生成部、106 リソースマッピング部、107 IDFT部、108 GI挿入部、109 送信部、111 符号部、112 変調部、121 受信アンテナ部、122 受信部、123 制御信号検出部、201 受信アンテナ部、202 受信部、203 伝搬路推定部、204 GI除去部、205 DFT部、206 干渉除去部、207 伝搬路補償部、208 復調部、209 復号部、210 上位レイヤ、211 制御信号検出部、221 送信アンテナ部、222 送信部、223 制御信号生成部、241 送信信号レプリカ部、242 干渉レプリカ部、243 減算部、251,252 送信フレームフォーマット、1000-1,1000-2 基地局装置、2000-1,2000-2,2000-3 移動局装置。

Claims (15)

  1.  移動局装置と通信する基地局装置であって、
     前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記移動局装置に通知する、基地局装置。
  2.  前記セル固有参照信号は、前記セルIDに基づいて配置されるリソースエレメントが設定される、請求項1に記載の基地局装置。
  3.  前記セル固有参照信号に関する制御情報は、前記セル固有参照信号が配置されるサブフレームの情報をさらに含む、請求項1に記載の基地局装置。
  4.  前記セル固有参照信号に関する制御情報は、前記セル固有参照信号に対する電力情報をさらに含む、請求項1に記載の基地局装置。
  5.  前記セル固有参照信号に関する制御情報は、前記移動局装置において前記セル固有参照信号により生じる干渉に対する処理の要否に関する情報をさらに含む、請求項1に記載の基地局装置。
  6.  前記セル固有参照信号に関する制御情報は、前記移動局装置に固有の情報として通知される、請求項1に記載の基地局装置。
  7.  基地局装置と通信する移動局装置であって、
     前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記基地局装置から受信する、移動局装置。
  8.  前記セル固有参照信号に関する制御情報に基づいて、前記セル固有参照信号により生じる干渉に対する処理を行う、請求項7に記載の移動局装置。
  9.  前記セル固有参照信号に関する制御情報に基づいて、前記基地局装置と前記移動局装置との伝搬路状況に関して前記基地局装置に通知するフィードバック情報を生成する、請求項7に記載の移動局装置。
  10.  基地局装置と移動局装置とが通信する通信システムであって、
     前記基地局装置は、前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記移動局装置に通知し、
     前記移動局装置は、前記セル固有参照信号に関する制御情報を、前記基地局装置から受信する、通信システム。
  11.  移動局装置と通信する基地局装置の通信方法であって、
     前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記移動局装置に通知する、通信方法。
  12.  基地局装置と通信する移動局装置の通信方法であって、
     前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記基地局装置から受信する、通信方法。
  13.  基地局装置と移動局装置とが通信する通信システムの通信方法であって、
     前記基地局装置は、前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記移動局装置に通知し、
     前記移動局装置は、前記セル固有参照信号に関する制御情報を、前記基地局装置から受信する、通信方法。
  14.  移動局装置と通信する基地局装置の集積回路であって、
     前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記移動局装置に通知する機能を有する、集積回路。
  15.  基地局装置と通信する移動局装置の集積回路であって、
     前記基地局装置とは別の基地局装置のセルIDに固有のセル固有参照信号のポート数の情報を含む、前記セル固有参照信号に関する制御情報を、前記基地局装置から受信する機能を有する、集積回路。
PCT/JP2012/052490 2011-02-10 2012-02-03 基地局装置、移動局装置、通信システム、送信方法、受信方法および通信方法 WO2012108349A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US13/984,201 US9713123B2 (en) 2011-02-10 2012-02-03 Base station device, mobile station device, communication system, transmission method, reception method, and communication method
EA201391151A EA027257B1 (ru) 2011-02-10 2012-02-03 Базовая станция, мобильная станция, система связи, способ передачи, способ приема и способ связи
CA2826790A CA2826790C (en) 2011-02-10 2012-02-03 Base station device, mobile station device, communication system, transmission method, reception method, and communication method
AU2012215902A AU2012215902B2 (en) 2011-02-10 2012-02-03 Base station apparatus, mobile station apparatus, communication system, transmission method, reception method and communication method
CN201280008239.2A CN103348727B (zh) 2011-02-10 2012-02-03 基站装置、移动台装置、通信系统、发送方法、接收方法以及通信方法
EP12744960.1A EP2675212B1 (en) 2011-02-10 2012-02-03 Base station apparatus, mobile station apparatus, communication system, transmission method, reception method and communication method
NZ615281A NZ615281B2 (en) 2011-02-10 2012-02-03 Base station device, mobile station device, communication system, transmission method, reception method, and communication method
BR112013020109A BR112013020109B8 (pt) 2011-02-10 2012-02-03 Dispositivo de estação base, dispositivo de estação móvel, método de transmissão, método de recepção, circuito de transmissão e circuito de recepção
KR1020137023497A KR101872554B1 (ko) 2011-02-10 2012-02-03 기지국 장치, 이동국 장치, 통신 시스템, 송신 방법, 수신 방법 및 통신 방법
IL227885A IL227885A (en) 2011-02-10 2013-08-08 Base Station Device, Mobile Station Device, Communication System, Broadcasting Method, Reception Method and Communication Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011027076A JP5383725B2 (ja) 2011-02-10 2011-02-10 基地局装置、移動局装置、送信方法、受信方法、および集積回路
JP2011-027076 2011-02-10

Publications (1)

Publication Number Publication Date
WO2012108349A1 true WO2012108349A1 (ja) 2012-08-16

Family

ID=46638565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052490 WO2012108349A1 (ja) 2011-02-10 2012-02-03 基地局装置、移動局装置、通信システム、送信方法、受信方法および通信方法

Country Status (13)

Country Link
US (1) US9713123B2 (ja)
EP (1) EP2675212B1 (ja)
JP (1) JP5383725B2 (ja)
KR (1) KR101872554B1 (ja)
CN (1) CN103348727B (ja)
AU (1) AU2012215902B2 (ja)
BR (1) BR112013020109B8 (ja)
CA (1) CA2826790C (ja)
EA (1) EA027257B1 (ja)
IL (1) IL227885A (ja)
MY (1) MY166361A (ja)
TW (1) TWI473475B (ja)
WO (1) WO2012108349A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083927A1 (ja) * 2012-11-28 2014-06-05 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
WO2014129947A1 (en) * 2013-02-25 2014-08-28 Telefonaktiebolaget L M Ericsson (Publ) Initiating network assistance for interference cancellation in a wireless network
WO2015096042A1 (zh) * 2013-12-24 2015-07-02 华为技术有限公司 一种获取干扰值的方法及装置
US20150372777A1 (en) * 2013-01-31 2015-12-24 Ntt Docomo, Inc. User apparatus, base station, interference reducing method and interference reducing control information notification method
JP2016171578A (ja) * 2011-09-20 2016-09-23 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてリンク品質を測定する方法及びこのための装置
CN112787746A (zh) * 2013-06-11 2021-05-11 德州仪器公司 用于网络辅助式干扰消除及抑制的网络信令

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5511955B2 (ja) 2010-06-16 2014-06-04 パナソニック株式会社 基地局装置、通信方法及び集積回路
CN103024751B (zh) * 2011-09-26 2016-01-27 华为技术有限公司 干扰控制方法和设备
CN103096395A (zh) * 2011-11-04 2013-05-08 上海贝尔股份有限公司 一种基站中用于指示用户终端进行干扰减轻的方法
CN103220803A (zh) * 2012-01-19 2013-07-24 上海贝尔股份有限公司 进行小区参考信号干扰消除的方法
WO2013133599A1 (ko) * 2012-03-05 2013-09-12 엘지전자 주식회사 무선 통신 시스템에서 신호 수신 방법 및 장치
WO2014046889A1 (en) * 2012-09-18 2014-03-27 Marvell World Trade Ltd. Method and system for detecting synchronization signals in a mobile communications protocol
WO2014136620A1 (ja) * 2013-03-06 2014-09-12 シャープ株式会社 端末装置、基地局装置、通信システム、受信方法、送信方法及び通信方法
JP6094995B2 (ja) * 2013-03-13 2017-03-15 三菱電機株式会社 セルサーチ装置およびセルサーチ方法
CN105075159B (zh) * 2013-03-22 2018-04-10 Lg电子株式会社 在无线通信系统中执行干扰协调的方法和设备
CN105191174B (zh) * 2013-03-27 2019-09-03 Lg电子株式会社 在无线通信系统中消除干扰的方法以及使用该方法的装置
US10448351B2 (en) * 2013-04-02 2019-10-15 Qualcomm Incorporated Employing neighboring cell assistance information for interference mitigation
US20140301272A1 (en) * 2013-04-05 2014-10-09 Qualcomm Incorporated Common reference signal interference cancellation triggering in homogeneous networks
KR102295820B1 (ko) 2013-06-19 2021-08-31 엘지전자 주식회사 무선 통신 시스템에서 간섭 제거를 위한 방법 및 이를 위한 장치
WO2015008475A1 (ja) * 2013-07-17 2015-01-22 日本電気株式会社 無線制御システム、通信装置、無線リソース制御方法及び記憶媒体
CN105766049A (zh) * 2013-09-27 2016-07-13 诺基亚通信公司 用于网络辅助的干扰消除和抑制的信令设计
JP5860018B2 (ja) * 2013-09-30 2016-02-16 シャープ株式会社 基地局装置、移動局装置、通信方法および集積回路
US10420086B2 (en) * 2014-03-20 2019-09-17 Sharp Kabushiki Kaisha Terminal device and integrated circuit
AU2015232526B2 (en) * 2014-03-20 2019-05-02 Sharp Kabushiki Kaisha Terminal apparatus and base station apparatus
CN103973352B (zh) * 2014-05-16 2017-09-26 西安电子科技大学 宏小区多用户mimo系统下行异构网络的干扰抑制方法
CN105207705A (zh) 2014-06-23 2015-12-30 北京三星通信技术研究有限公司 有源天线系统中的参考信号收发方法及设备
CN106576008A (zh) * 2014-08-07 2017-04-19 夏普株式会社 基站装置、终端装置以及集成电路
WO2016019556A1 (zh) 2014-08-07 2016-02-11 华为技术有限公司 一种干扰消除方法及设备
KR102450241B1 (ko) 2014-09-02 2022-10-04 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 동기 신호 전송 방법 및 장치
KR102381574B1 (ko) 2014-12-18 2022-04-01 삼성전자 주식회사 직교 주파수 분할 다중 방식을 사용하는 셀룰러 통신 시스템의 하향 링크에서 네트워크를 이용해 간섭을 제거하는 방법 및 장치
EP3073693B1 (en) * 2015-03-24 2020-07-22 Panasonic Intellectual Property Corporation of America PDSCH precoding adaptation for LTE in unlicensed bands
CN106160823B (zh) * 2015-04-03 2021-02-05 索尼公司 用于无线通信的装置和方法
CN106487488A (zh) * 2015-08-25 2017-03-08 电信科学技术研究院 控制信令的发送、接收方法、网络设备及接收设备
US10594426B2 (en) * 2015-10-05 2020-03-17 Telefonaktiebolaget Lm Ericsson (Publ) Communication device, network node, method and computer program
MX2018009197A (es) * 2016-02-03 2018-11-09 Sony Corp Dispositivo terminal, dispositivo de estacion base y metodo de comunicacion.
US11057837B2 (en) * 2016-03-15 2021-07-06 Qualcomm Incorporated Downlink power adjustment in narrowband wireless communications
CN115133963A (zh) * 2016-05-11 2022-09-30 三菱电机株式会社 通信系统、通信终端装置以及基站
JP6938546B2 (ja) * 2016-05-26 2021-09-22 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 基準信号の伝送方法、ネットワーク設備及び端末設備
US10212679B1 (en) * 2016-07-22 2019-02-19 Mbit Wireless, Inc. Method and apparatus for delay spread estimation
US10756785B2 (en) * 2016-09-29 2020-08-25 Nokia Technologies Oy Flexible reference signal design
JP6817562B2 (ja) * 2016-10-18 2021-01-20 パナソニックIpマネジメント株式会社 端末及び通信方法
CN109891763B (zh) * 2016-11-11 2022-05-13 日本电信电话株式会社 无线通信系统和无线通信方法
WO2018151637A1 (en) * 2017-02-17 2018-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Sidelink resource signaling
EP3602937A1 (en) * 2017-05-05 2020-02-05 Sony Corporation Communications device, infrastrcuture equipment and methods
WO2019088890A1 (en) * 2017-11-06 2019-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Channel estimation
FI128778B (en) * 2019-05-22 2020-12-15 Nokia Solutions & Networks Oy Telecommunication equipment and methods
US20230032276A1 (en) * 2021-07-30 2023-02-02 Apple Inc. Interference cancellation in dynamic spectrum sharing
JP7362848B1 (ja) 2022-07-15 2023-10-17 ソフトバンク株式会社 干渉抑圧装置、衛星地上局、システム、方法及びプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010019019A2 (en) * 2008-08-14 2010-02-18 Samsung Electronics Co., Ltd. Method and apparatus for supporting multiple reference signals in ofdma communication systems
WO2010025268A1 (en) * 2008-08-28 2010-03-04 Qualcomm Incorporated Methods and apparatus of adapting number of advertised transmit antenna ports
WO2010032791A1 (ja) * 2008-09-22 2010-03-25 シャープ株式会社 基地局装置、端末装置、それらを備えた無線通信システムおよびその基地局に実行させるプログラム
WO2010062238A1 (en) * 2008-11-03 2010-06-03 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for performing cell measurements in a cellular communication system having multiple antenna ports

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675537B2 (en) * 2008-04-07 2014-03-18 Qualcomm Incorporated Method and apparatus for using MBSFN subframes to send unicast information
US8687545B2 (en) * 2008-08-11 2014-04-01 Qualcomm Incorporated Anchor carrier in a multiple carrier wireless communication system
US8559354B2 (en) * 2009-02-26 2013-10-15 Lg Electronics Inc. Method and apparatus of transmitting data in MBSFN subframe in wireless communication system
US8369206B2 (en) * 2009-03-25 2013-02-05 Samsung Electronics Co., Ltd Cell-specific shifting of reference signals in multi-stream transmissions
US8780688B2 (en) * 2009-04-27 2014-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus in a wireless communication system
US8712399B2 (en) * 2009-05-06 2014-04-29 Texas Instruments Incorporated Coordinated multi-point transmission in a cellular network
CN101932100A (zh) * 2009-06-19 2010-12-29 大唐移动通信设备有限公司 eNB之间协调中继链路资源配置的方法和eNB
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
CN101827053B (zh) * 2010-02-08 2012-11-14 清华大学 抑制小区间干扰的方法
US8305987B2 (en) * 2010-02-12 2012-11-06 Research In Motion Limited Reference signal for a coordinated multi-point network implementation
US9136997B2 (en) * 2010-05-04 2015-09-15 Qualcomm Incorporated Methods and apparatuses for using channel state information reference signals
US9485749B2 (en) * 2010-11-10 2016-11-01 Google Technology Holdings LLC Idle state interference mitigation in wireless communication network
US20120122472A1 (en) * 2010-11-12 2012-05-17 Motorola Mobility, Inc. Positioning Reference Signal Assistance Data Signaling for Enhanced Interference Coordination in a Wireless Communication Network
WO2012096476A2 (ko) * 2011-01-10 2012-07-19 엘지전자 주식회사 무선 통신 시스템에서 하향링크 참조 신호 송수신 방법 및 장치
US9276709B2 (en) * 2011-11-08 2016-03-01 Futurewei Technologies, Inc. System and method for interference management in cellular networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010019019A2 (en) * 2008-08-14 2010-02-18 Samsung Electronics Co., Ltd. Method and apparatus for supporting multiple reference signals in ofdma communication systems
WO2010025268A1 (en) * 2008-08-28 2010-03-04 Qualcomm Incorporated Methods and apparatus of adapting number of advertised transmit antenna ports
WO2010032791A1 (ja) * 2008-09-22 2010-03-25 シャープ株式会社 基地局装置、端末装置、それらを備えた無線通信システムおよびその基地局に実行させるプログラム
WO2010062238A1 (en) * 2008-11-03 2010-06-03 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for performing cell measurements in a cellular communication system having multiple antenna ports

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"LS on feICIC", 3GPP TSG-RAN1#67, 2011.11, 10 April 2012 (2012-04-10), XP050562557, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_ 67/Docs/R1-114468.zip> *
See also references of EP2675212A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171578A (ja) * 2011-09-20 2016-09-23 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてリンク品質を測定する方法及びこのための装置
WO2014083927A1 (ja) * 2012-11-28 2014-06-05 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
US9532260B2 (en) 2013-01-17 2016-12-27 Telefonaktiebolaget Lm Ericsson (Publ) Initiating network assistance in a wireless network
US20150372777A1 (en) * 2013-01-31 2015-12-24 Ntt Docomo, Inc. User apparatus, base station, interference reducing method and interference reducing control information notification method
US10425180B2 (en) * 2013-01-31 2019-09-24 Ntt Docomo, Inc. User apparatus, base station, interference reducing method and interference reducing control information notification method
WO2014129947A1 (en) * 2013-02-25 2014-08-28 Telefonaktiebolaget L M Ericsson (Publ) Initiating network assistance for interference cancellation in a wireless network
CN112787746A (zh) * 2013-06-11 2021-05-11 德州仪器公司 用于网络辅助式干扰消除及抑制的网络信令
US11916657B2 (en) 2013-06-11 2024-02-27 Texas Instruments Incorporated Network signaling for network-assisted interference cancellation and suppression
WO2015096042A1 (zh) * 2013-12-24 2015-07-02 华为技术有限公司 一种获取干扰值的方法及装置

Also Published As

Publication number Publication date
EP2675212A1 (en) 2013-12-18
JP5383725B2 (ja) 2014-01-08
KR20140052957A (ko) 2014-05-07
BR112013020109A2 (pt) 2020-08-04
BR112013020109B8 (pt) 2022-06-14
CA2826790A1 (en) 2012-08-16
AU2012215902B2 (en) 2016-09-15
US9713123B2 (en) 2017-07-18
KR101872554B1 (ko) 2018-06-28
IL227885A0 (en) 2013-09-30
IL227885A (en) 2016-07-31
EP2675212A4 (en) 2015-11-25
TWI473475B (zh) 2015-02-11
AU2012215902A1 (en) 2013-09-26
EA027257B1 (ru) 2017-07-31
TW201240400A (en) 2012-10-01
EA201391151A1 (ru) 2014-02-28
NZ615281A (en) 2015-06-26
CN103348727B (zh) 2017-07-18
BR112013020109B1 (pt) 2022-05-10
MY166361A (en) 2018-06-25
JP2012169738A (ja) 2012-09-06
EP2675212B1 (en) 2018-08-15
US20130315191A1 (en) 2013-11-28
CN103348727A (zh) 2013-10-09
CA2826790C (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5383725B2 (ja) 基地局装置、移動局装置、送信方法、受信方法、および集積回路
RU2600569C2 (ru) Способ и устройство для передачи информации о состоянии канала в беспроводной системе связи
JP5711277B2 (ja) 複数アンテナをサポートする無線通信システムにおいてチャネル状態情報参照信号の設定情報を提供する方法及び装置
JP5271373B2 (ja) 基地局、端末、通信システム、通信方法、および集積回路
US9331763B2 (en) Communication system, communication method, base station apparatus, and mobile station apparatus
JP6373369B2 (ja) Fdr送信を支援する無線接続システムにおいて信号送受信方法及び装置
EP2767129A1 (en) System and method for interference management in cellular networks
US8699618B2 (en) Method for generating plurality of DM-RS sequences, communication terminal device using same, and base station using same
JP2012124859A (ja) 通信システム、基地局装置、通信方法、及び通信プログラム
US20140086201A1 (en) User terminal, radio base station, downlink control channel receiving method and mobile communication system
US20150171941A1 (en) Communication system, communication method, base station device, and mobile station device
JP6093120B2 (ja) 移動局装置、基地局装置及び通信方法
JP5725676B2 (ja) 基地局、端末、通信システム、通信方法、および集積回路
JP5860018B2 (ja) 基地局装置、移動局装置、通信方法および集積回路
JP5844620B2 (ja) 通信装置及び通信方法
NZ615281B2 (en) Base station device, mobile station device, communication system, transmission method, reception method, and communication method
JP2013106249A (ja) 通信システム、通信方法、基地局装置及び移動局装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744960

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2826790

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13984201

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137023497

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012744960

Country of ref document: EP

Ref document number: 201391151

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2012215902

Country of ref document: AU

Date of ref document: 20120203

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013020109

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013020109

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130807