WO2012108217A1 - Method of manufacturing organic electroluminescence element - Google Patents

Method of manufacturing organic electroluminescence element Download PDF

Info

Publication number
WO2012108217A1
WO2012108217A1 PCT/JP2012/050117 JP2012050117W WO2012108217A1 WO 2012108217 A1 WO2012108217 A1 WO 2012108217A1 JP 2012050117 W JP2012050117 W JP 2012050117W WO 2012108217 A1 WO2012108217 A1 WO 2012108217A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
electrode
organic
layer
substrate
Prior art date
Application number
PCT/JP2012/050117
Other languages
French (fr)
Japanese (ja)
Inventor
成記 森田
純一 長瀬
良平 垣内
伸和 根岸
孝洋 中井
直子 市枝
聖彦 渡邊
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2012108217A1 publication Critical patent/WO2012108217A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a method for producing an organic electroluminescence element that can be produced at low cost.
  • Organic electroluminescence (hereinafter referred to as "EL") light-emitting devices which are expected as next-generation low-power-consumption light-emitting devices, can emit light of various colors derived from organic light-emitting materials. Therefore, it attracts attention as a display for a TV or the like.
  • EL Organic electroluminescence
  • An organic EL element used in such an organic EL light emitting device is a thin film element compared to an inorganic EL element, and also has a feature of being a surface light emitting element. It is expected to be used in a wide range of applications such as backlights for liquid crystal displays, light-emitting parts for display decoration, and digital signage.
  • Patent Document 1 applies a resin to a sheet-like substrate to form a predetermined mask, forms a desired thin film on the entire surface of the sheet-like substrate including the mask, and then peels off the mask. A thin film pattern of an organic EL element is formed. For this reason, when manufacturing an organic EL element continuously, there is a concern that a volatile component such as a solvent contained in a resin mask may adversely affect the organic EL element, and an apparatus for applying the resin and the resin A device or the like for curing is required separately. Further, when a mask is formed by applying a resin, the peripheral edge of the opening of the mask is formed on a gentle inclined surface.
  • the thin film is formed on a continuous surface from the sheet-like substrate exposed from the mask opening to the top of the mask.
  • the film is peeled off, not only the thin film formed on the mask but also the necessary part of the thin film formed on the sheet-like substrate in the mask opening is peeled off together, and the accuracy of forming the thin film pattern is lowered. The problem of, has arisen.
  • Patent Document 2 uses a strip-shaped metal mask that travels, and first patterns an organic EL layer on a metal transfer substrate that travels synchronously, and then applies the patterned organic EL layer to the substrate. The image is transferred onto the substrate.
  • This method requires a large-scale device for running the mask and the transfer substrate, and the metal transfer substrate contacts the substrate, which may damage the substrate.
  • it is necessary to align the metal transfer substrate with the substrate each time there is a problem that efficient continuous production cannot be performed.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a method for producing an organic EL element that can be continuously produced at low cost.
  • the method for producing an organic EL device of the present invention includes a step of conveying a sheet-like substrate by roll-to-roll, a step of forming a first electrode on the upper side of the sheet-like substrate, and the first electrode.
  • the step of forming the second electrode the step of forming an organic EL layer on the organic EL layer and the step of forming a second electrode having a predetermined pattern on the organic EL layer using a mask.
  • a flexible film having an adhesive surface and an opening corresponding to the predetermined pattern, wherein the second electrode forming material is formed in the opening in a state where the mask is bonded to a sheet-like substrate on which the organic EL layer is formed.
  • the first gist is that the second electrode having a predetermined pattern is formed by peeling the mask after vapor deposition on the organic EL layer through the roll toro.
  • the organic EL layer forming material and the second electrode are formed in a state where the same flexible film having an adhesive surface and an opening corresponding to a predetermined pattern is commonly used and the mask is bonded to a sheet-like substrate. After vapor-depositing the material on the first electrode in this order through the opening, the mask is removed to remove the organic EL layer having a predetermined pattern and the same pattern as the organic
  • the present inventors have repeated research on forming a thin film pattern continuously by a roll-to-roll process instead of forming a thin film pattern in order to efficiently manufacture an organic EL element at a low cost. .
  • a flexible film having a sheet-like adhesive surface provided with an opening corresponding to the predetermined pattern is used as a mask.
  • the electrode formation scheduled portion is aligned, and the adhesive surface of the mask is used to bond to the substrate on which the organic EL layer is formed, and the second electrode forming material is deposited on the organic EL layer through the opening of the mask.
  • the organic EL element is not adversely affected by volatilization of the solvent and the like, and once the alignment is performed, each alignment is unnecessary, so An organic EL element can be manufactured at low cost.
  • the second electrode forming material is deposited through the mask and the second electrode is formed, the second electrode is formed discontinuously due to the step between the portion exposed from the opening and the portion on the mask. . Accordingly, in the mask peeling process, the second electrode formed on the mask can be peeled together with the second electrode formed on the portion exposed from the opening of the mask, and the second electrode having a predetermined pattern can be peeled off together. It has been found that two electrodes can be easily and accurately formed, and the present invention has been achieved.
  • the manufacturing method of the organic EL element of the present invention uses a flexible film having a sheet-like adhesive surface provided with an opening corresponding to the predetermined pattern as a mask for forming the second electrode having the predetermined pattern. Then, the opening and the second electrode formation planned portion of the substrate are aligned and bonded to the substrate on which the organic EL layer is formed using the adhesive surface of the mask, and in this state, the second electrode forming material is attached to the opening. After vapor deposition on the organic EL layer via the mask, the mask is peeled off to form. For this reason, when forming the 2nd electrode which has a predetermined pattern, a large-scale apparatus becomes unnecessary and cost reduction is aimed at.
  • the second electrode having a predetermined pattern can be formed quickly because each alignment is unnecessary.
  • the second electrode forming material is deposited using the mask, the second electrode becomes discontinuous due to a step between the portion exposed from the opening of the mask and the portion on the mask. For this reason, the second electrode formed on the mask can be peeled together with the second electrode formed on the mask, and the second electrode having a predetermined pattern can be formed easily and accurately. it can.
  • a flexible film having an adhesive surface and having an opening corresponding to a predetermined pattern is used as a mask, and the mask is bonded to a sheet-like substrate.
  • an organic EL layer having a predetermined pattern is formed by peeling the mask after the EL layer forming material is deposited on the first electrode through the opening, the efficiency is continuously increased. Since an organic EL layer having a predetermined pattern can be formed well, the productivity of the organic EL element is improved, and a lower cost production can be realized.
  • a step of transporting the sheet-like substrate by roll-to-roll a step of forming the first electrode on the upper side of the sheet-like substrate, and forming an organic EL layer having a predetermined pattern on the first electrode using a mask
  • a step of forming a second electrode having the same pattern as the organic EL layer using a mask on the organic EL layer and forming the organic EL layer and the second electrode.
  • the same flexible film having an adhesive surface and having an opening corresponding to a predetermined pattern is commonly used as the mask, and the organic EL layer forming material is bonded to the sheet-like substrate.
  • the mask is peeled off to form an organic EL having a predetermined pattern.
  • the second electrode having the same pattern as that is formed that is, when forming the organic EL layer having the predetermined pattern and the second electrode having the same pattern in the roll-to-roll process.
  • the opening and the organic EL layer and the second electrode formation scheduled portion of the sheet-like substrate are aligned, Bonding to the sheet-like substrate using the adhesive surface, and the organic EL layer forming material and the second electrode forming material from above the mask bonding surface through the opening of the mask in this order.
  • the mask After vapor deposition on the electrode, the mask is peeled off to form an organic EL layer having a predetermined pattern and a second pattern having the same pattern.
  • forming a mask may for only performed each time bonding and peeling to the substrate, thereby enabling more rapid production.
  • the amount of mask used can be reduced, it is possible to realize lower-cost manufacturing.
  • FIG. 2A is a plan view of an organic EL element obtained by an embodiment of the present invention
  • FIG. (A) is explanatory drawing of the said embodiment
  • (b) is the BB sectional drawing.
  • (A) is explanatory drawing of the said embodiment
  • (b) is the CC sectional drawing.
  • (A) is explanatory drawing of the said embodiment,
  • (b) is the DD sectional drawing.
  • (A) is explanatory drawing of the said embodiment, (b) is the EE sectional drawing.
  • (A) is explanatory drawing of the said embodiment, (b) is the HH sectional drawing.
  • (A) is explanatory drawing of the said embodiment, (b) is the II sectional drawing. It is explanatory drawing of the said embodiment.
  • (A) is explanatory drawing of other embodiment of this invention, (b) is the JJ sectional drawing.
  • (A) is explanatory drawing of said other embodiment, (b) is the KK sectional drawing.
  • (A) is explanatory drawing of said other embodiment, (b) is the LL sectional drawing.
  • (A) is explanatory drawing of said other embodiment, (b) is the OO sectional drawing. It is explanatory drawing of said other embodiment.
  • (A) is explanatory drawing of further another embodiment of this invention, (b) is the PP sectional drawing.
  • (A) is explanatory drawing of the said further another embodiment, (b) is the QQ sectional drawing.
  • (A) is an explanatory view of still another embodiment, and (b) is an RR cross-sectional view thereof.
  • (A) is explanatory drawing of the said further another embodiment, (b) is the SS sectional drawing.
  • (A) is an explanatory view of still another embodiment, and (b) is a TT cross-sectional view thereof.
  • the organic EL element 1 has a top emission structure in which an insulating layer 3, a first electrode 4, an organic EL layer 5, and a second electrode 6 are laminated on a substrate 2 in this order.
  • 1A and 1B each part is schematically shown, and is different from an actual size or the like (the same applies to the following drawings).
  • the manufacturing method in this embodiment (hereinafter referred to as “the first manufacturing method of the present invention”) is summarized as follows.
  • the organic EL element 1 is manufactured by a roll-to-roll process
  • the second electrode having a predetermined pattern is attached to the adhesive surface.
  • a sheet-like flexible film having a predetermined opening pattern is used as a mask, and after the second electrode forming material is deposited on the mask, the mask is peeled off to form.
  • the first production method of the present invention will be described in detail.
  • a stainless steel (SUS) sheet-like (width 300 mm ⁇ thickness 50 ⁇ m ⁇ length 140 m) substrate 2 is wound around a supply roll at one end and wound around a take-up roll at a roll-to-roll process.
  • Preparation for manufacturing the organic EL element 1 is performed.
  • an insulating resin is applied to the entire surface of the substrate 2, and FIG. 2 (a) and its BB cross-sectional view are shown.
  • an insulating layer 3 is formed.
  • indium zinc oxide IZO
  • a first electrode 4 formation scheduled layer is patterned by etching, and FIG.
  • FIG. 3B which is a sectional view taken along the line CC, the first electrode 4 (thickness 90 nm) is formed.
  • an adhesive layer is provided on one surface, and an opening 9 having the same shape as a portion where the organic EL layer 5 is to be formed (see FIG. 6) is continuously provided by punching.
  • a flexible film (E-MASK RP300, manufactured by Nitto Denko Corporation) is prepared and adjusted so that the organic EL layer 5 formation planned portion of the substrate 2 and the opening 9 of the mask 8 coincide with each other.
  • a mask 8 is bonded to the substrate 2 on which the first electrode 4 is formed, as shown in FIG. 4A and FIG. 4B which is a DD sectional view thereof.
  • FIG. 5 (a) and FIG. 5 (b) which is a cross-sectional view taken along the line EE
  • the organic EL layer forming material is vacuum applied to the substrate 2 to which the mask 8 is bonded.
  • the organic EL layer 5 is formed by vapor deposition.
  • the mask 8 is wound off while being peeled off, so that the organic EL layer 5 is formed only at a predetermined portion, as shown in FIG. 6A and FIG.
  • the mask 10 has an adhesive layer on one surface, and has a sheet-like flexible film (E ⁇ ) in which openings 11 having the same shape as the second electrode 6 formation scheduled portion are continuously provided by punching.
  • MASK RP300 manufactured by Nitto Denko Corporation
  • MASK RP300 is prepared and adjusted so that the second electrode 6 formation scheduled portion (see FIG. 9) of the substrate 2 and the opening 11 of the mask 10 are aligned with each other.
  • a mask 10 is bonded to the substrate 2 on which the organic EL layer 5 is formed, as shown in FIG. 7A and FIG.
  • FIG. 8A and FIG. 8B which is a cross-sectional view taken along the line HH
  • the second electrode forming material is vacuum applied to the substrate 2 to which the mask 10 is bonded.
  • the second electrode 6 is formed by vapor deposition. Thereafter, the second electrode 6 is formed only at a predetermined portion, as shown in FIG. 9A and its II sectional view, FIG.
  • the organic EL element 1 can be obtained by cutting it into a predetermined size (see FIGS. 1A and 1B).
  • the organic EL layer 5 and the second electrode 6 are patterned using the masks 8 and 10 made of a sheet-like flexible film when the organic EL element is manufactured by roll-to-roll, Separately, various apparatuses for patterning are not required. Moreover, since it is the masks 8 and 10 which consist of a flexible film that touches the board
  • the sheet-like masks 8 and 10 are bonded to the sheet-like substrate 2, it is not necessary to perform alignment each time.
  • the thin film of the organic EL layer 5 and the second electrode 6 is discontinuous due to a step between the portions exposed from the openings 9 and 11 of the masks 8 and 10 and the upper portion of the mask. Therefore, when the masks 8 and 10 are peeled off, the organic EL layer 5 and the second electrode 6 formed in the portions exposed from the openings 9 and 11 of the masks 8 and 10 are not peeled off.
  • the organic EL layer 5 and the second electrode 6 having a predetermined pattern with high accuracy can be formed.
  • the productivity of an organic EL element improves and manufacture at lower cost can be implement
  • the second electrode is formed with high accuracy and no positional deviation or the like occurs, when the sheet-like substrate 2 on which each layer has been formed is cut into a predetermined size, the second electrode is formed in addition to the portion to be formed. A short circuit due to the contact between the second electrode 6 and the substrate 2 due to the formation of the electrode 6 does not occur.
  • SUS is used as the sheet-like substrate 2, but not limited to this, alloys such as 36 alloy and 42 alloy, copper (Cu), nickel, iron, aluminum (Al), titanium, and the like.
  • a single-layer or multilayer resin film made of a metal film, an aromatic polyamide film, a polyimide resin film, an aramid film, a polyester film, or the like, a laminate of a metal film and a resin film, or the like can be used.
  • an insulating resin is applied to the entire surface of the substrate 2 to form the insulating layer 3 (thickness 4 nm), but the surface roughness (Ra) of the substrate 2 is small. If the substrate 2 is an insulating substrate or the like, the insulating layer 3 is not necessarily formed. However, it is preferable to form the insulating layer 3 in terms of ensuring the smoothness of the surface of the substrate 2.
  • IZO is used as the first electrode 4, but in addition, materials used as various electrodes such as indium tin oxide (ITO) and germanium zinc oxide (GZO) are used. it can. Further, the thickness thereof is preferably in the range of 10 nm to 500 nm, more preferably in the range of 50 nm to 300 nm in terms of conductivity. Furthermore, it is also possible to form by using vacuum deposition as another vapor deposition means instead of sputtering. However, it is preferable to use sputtering in terms of accuracy and process simplification.
  • the insulating layer 3 is provided directly on the substrate 2, but a reflective layer may be provided between the substrate 2 and the insulating layer 3.
  • the reflective layer can be provided, for example, by forming an Ag-based alloy (APC) containing silver (Ag), Al, chromium, molybdenum, palladium, and Cu in a single layer or multiple layers.
  • APC Ag-based alloy
  • the thickness should be sufficient to reflect light sufficiently, but is preferably in the range of 10 nm to 500 nm, more preferably in the range of 50 nm to 300 nm.
  • a reflective layer is provided between the substrate 2 and the first electrode 4.
  • a flexible film based on polyester resin (E-MASK RP300, manufactured by Nitto Denko Corporation) is used as the masks 8 and 10, but it is also easy to punch the openings. From the viewpoint of high properties, lightness, and flexibility, those based on polyolefin resins and polyimide resins are preferably used.
  • the adhesive strength of the adhesive surfaces of the masks 8 and 10 is preferably in the range of 5 N / m to 100 N / m, and more preferably in the range of 10 N / m to 60 N / m.
  • the thicknesses of the masks 8 and 10 are both preferably in the range of 10 ⁇ m to 400 ⁇ m, particularly preferably in the range of 20 ⁇ m to 300 ⁇ m. If the thickness is too thin, the masks 8 and 10 may be torn or torn at the time of peeling. On the other hand, if the thickness is too thick, the supply roll and the take-up roll will become meaningless in size and increase the manufacturing cost. Because it is. Further, the size of the masks 8 and 10 is preferably equal to or slightly smaller than that of the substrate 2. If the size is too small, it will be necessary to prepare many masks, align them each time, and add them together, which tends to make it difficult to operate the roll-to-roll process continuously. is there.
  • the substrate 2 is wound up to perform the next step.
  • the masks 8 and 10 are wound up without being peeled off. Also good.
  • the masks 8 and 10 serve as spacers and the organic EL layer 5 can be wound without contacting the substrate 2, the risk of scratches due to winding deviation or the like can be reduced.
  • the masks 8 and 10 may be peeled off when the substrate 2 is unwound, and then processed in the next step.
  • vacuum evaporation is used as the vapor deposition means when the organic EL layer 5 and the second electrode 6 are formed.
  • vapor deposition means sputtering or EB vapor deposition (electron beam vapor deposition) is used. Etc. may be used.
  • vacuum deposition is preferably used from the viewpoint of efficiency.
  • the thickness is preferably in the range of 5 nm to 200 nm, more preferably in the range of 8 nm to 150 nm. That is, if the thickness is too thin, there is a tendency not to act as an electrode, conversely, if it is too thick, it is continuously formed up to the inner peripheral wall surface of the opening 11 of the mask 10, and when the mask 10 is peeled off, This is because there is a possibility that even a necessary part may be peeled off together.
  • vacuum vapor deposition instead of vacuum vapor deposition, sputtering can be used as another vapor deposition means. However, it is preferable to use vacuum vapor deposition from the viewpoint of little damage to the organic EL layer 5.
  • FIGS. 11 to 17 show a manufacturing method according to the second embodiment of the present invention (hereinafter referred to as “the second manufacturing method of the present invention”).
  • the second electrode 6 having a predetermined pattern is formed without patterning the organic EL layer 5 in the first manufacturing method of the present invention
  • FIG. The organic EL element 12 shown in FIG. 11B which is a cross section of ⁇ J, is manufactured.
  • the same components as those in the first manufacturing method of the present invention are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 12A and FIG. 12B which is a KK sectional view thereof
  • the insulating layer 3 and the first electrode 4 are formed on the substrate 2. Are formed in this order.
  • FIG. 13A and FIG. 13B which is an LL sectional view thereof
  • an organic EL layer forming material is vacuum-deposited on the substrate 2, and the organic EL layer 5 is formed on almost the entire surface of the substrate 2.
  • the mask 10 has an adhesive layer on one surface, and the opening 11 having the same shape as the second electrode 6 formation scheduled portion (see FIG. 16) is continuously provided by punching.
  • a flexible film (E-MASK RP300, manufactured by Nitto Denko Corporation) is prepared and adjusted so that the second electrode 6 formation planned portion of the substrate 2 and the opening 11 of the mask 10 are aligned with each other.
  • FIG. 14A and FIG. 14B which is a MM cross-sectional view thereof, a mask 10 is bonded to the substrate 2 on which the organic EL layer 5 is formed.
  • a second electrode forming material is vacuum-deposited on the substrate 2 from above the mask 10, and as shown in FIG. 15A and its NN cross-sectional view, FIG. 6 is formed. Thereafter, the second electrode 6 is formed only at a predetermined portion, as shown in FIG. 16A and its OO cross-sectional view, FIG. The Thereafter, as shown in FIG. 17, the organic EL element 12 (FIGS. 11A and 11B) can be obtained by cutting into a predetermined size.
  • the second manufacturing method of the present invention in addition to the effects obtained by the first manufacturing method of the present invention, it is not necessary to pattern the organic EL layer 5, so that the low-cost organic EL element 12 can be formed more quickly. Can be manufactured.
  • FIGS. 18 to 24 show a manufacturing method according to a third embodiment of the present invention (hereinafter referred to as “third manufacturing method of the present invention”).
  • the third manufacturing method of the present invention in the first manufacturing method of the present invention, the mask used for forming the organic EL layer 5 having a predetermined pattern is not peeled off after the organic EL layer forming material is vacuum-deposited.
  • An organic EL element in which a second electrode 6 having the same pattern as the organic EL layer 5 is formed so as to be peeled off after the second electrode forming material is vacuum-deposited after being vacuum-deposited. 13 [see FIG. 18 (a) and FIG. 18 (b) which is a cross-sectional view taken along the line PP thereof].
  • the same components as those in the first or second manufacturing method of the present invention are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 19A and FIG. 19B which is a QQ sectional view thereof
  • the insulating layer 3 and the first electrode 4 are formed on the substrate 2.
  • a sheet-like mask 14 flexible film E-MASK RP300, which is provided with openings 15 having the same shape as the organic EL layer 5 and the second electrode 6 formation scheduled portion (see FIG. 23) continuously by punching. Nitto Denko Co., Ltd.
  • FIG. 20B which is an RR sectional view thereof
  • the mask 14 is bonded to the substrate 2 on which the first electrodes 4 are formed.
  • FIG. 21 (a) and FIG. 21 (b) which is an SS cross-sectional view
  • an organic EL layer forming material is vacuum-deposited on the substrate 2 from above the mask 14, and the mask 14
  • the second electrode forming material is vacuum-deposited as shown in FIG. 22A and FIG. 22B, which is a TT cross-sectional view, continuously from above the mask 14 without peeling off the organic layer.
  • the EL layer 5 and the second electrode 6 are formed.
  • the mask 14 is wound off while being peeled off, and the organic EL layer 5 and the second electrode 6 are to be formed, as shown in FIG.
  • the organic EL element 13 can be obtained by cutting it into a predetermined size.
  • the third manufacturing method of the present invention in addition to the effects obtained by the first manufacturing method of the present invention, it is not necessary to peel off the mask after the organic EL layer 5 is formed.
  • the organic EL element 13 can be manufactured.
  • the organic EL layer 5 and the second electrode 6 having a predetermined pattern are formed, since the mask to be used is made common, it is possible to realize manufacture at a lower cost.
  • Example 1 When manufacturing an organic EL element by a roll-to-roll process, a SUS substrate 2 having a width of 20 mm, a length of 140 m, and a thickness of 50 ⁇ m is prepared, and this one end is wound around a supply roll. The other end was wound around a take-up roll. Then, while continuously feeding the substrate 2, an insulating acrylic resin (JEM-477, manufactured by JSR) was applied to the surface of the substrate 2 to form an insulating layer 3 (thickness 4 ⁇ m). On top of that, IZO (thickness 20 nm) was sputtered and patterned by etching to form the first electrode 4.
  • JEM-477 insulating acrylic resin
  • the organic EL layer 5 having a predetermined pattern was peeled off.
  • the organic EL layer 5 is formed while aligning a flexible film (E-MASK RP300, manufactured by Nitto Denko Corporation) provided with an opening 11 corresponding to the portion where the second electrode 6 is to be formed as the mask 10.
  • the second electrode 6 having a predetermined pattern is bonded to the substrate 2 and evaporated from above the mask 10 by vapor deposition of Al (thickness 10 nm) in a vacuum of 10 ⁇ 4 Pa. Formed. This was cut into a size of 30 mm in length to obtain the target organic EL device.
  • Example 2 A target organic EL device was obtained in the same manner as in Example 1 except that the organic EL layer 5 was formed on almost the entire surface of the substrate 2 without patterning.
  • Example 3 After the organic EL layer 5 is formed, Al (thickness 10 nm) is deposited on the mask 8 in a vacuum of 10 ⁇ 4 Pa without peeling off the mask 8, and then peeled off while winding the mask 8.
  • the target organic EL device was obtained in the same manner as in Example 1 except that the organic EL layer 5 having a predetermined pattern and the second electrode 6 having the same pattern were formed.
  • a shadow mask (thickness 50 ⁇ m) made of SUS304 is used instead of the mask 8 made of a flexible film, and the second electrode having a predetermined pattern is further formed by using a mask made of a flexible film.
  • a target organic EL device was obtained in the same manner as in Example 1 except that a shadow mask (thickness: 50 ⁇ m) made of SUS304 was used instead of 10.
  • the method for producing an organic EL element of the present invention is suitable as a method for quickly and efficiently producing an organic EL element used for lighting equipment, a backlight of a liquid crystal display, a light emitting component for display decoration, digital signage, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a method of manufacturing an organic electroluminescence (to be called EL hereafter) element such that manufacturing can be executed continuously and at low cost, said method being configured such that, in the manufacturing of organic electroluminescence elements in a roll-to-roll manner, a mask comprising a sheet-like flexible film having an adhesion face and a prescribed opening pattern is laminated onto a sheet-like substrate, and a second-electrode forming material is formed onto the mask by vapor deposition, after which the mask is peeled off to form a second electrode having a prescribed pattern.

Description

有機エレクトロルミネッセンス素子の製法Manufacturing method of organic electroluminescence device
 本発明は、低コストで製造できる有機エレクトロルミネッセンス素子の製法に関するものである。 The present invention relates to a method for producing an organic electroluminescence element that can be produced at low cost.
 次世代の低消費電力の発光装置として期待されている有機エレクトロルミネッセンス(以下「EL」とする)発光装置は、有機発光材料に由来する多彩な色彩の発光が得られ、また、自発光素子からなるため、TV等のディスプレイ用としても注目されている。 Organic electroluminescence (hereinafter referred to as "EL") light-emitting devices, which are expected as next-generation low-power-consumption light-emitting devices, can emit light of various colors derived from organic light-emitting materials. Therefore, it attracts attention as a display for a TV or the like.
 このような有機EL発光装置に用いられる有機EL素子は、無機EL素子に比べると薄膜素子であり、また、面発光素子であるという特徴を有しているため、この特徴を活かした照明機器、液晶ディスプレイのバックライト、展示デコレーション用の発光部品やデジタルサイネージ等の広い範囲での用途が期待されている。 An organic EL element used in such an organic EL light emitting device is a thin film element compared to an inorganic EL element, and also has a feature of being a surface light emitting element. It is expected to be used in a wide range of applications such as backlights for liquid crystal displays, light-emitting parts for display decoration, and digital signage.
 一方、有機EL素子は生産性が悪いため、コストが高いという問題がある。したがって、有機EL素子の製造を低コスト化するために、フレキシブル性を有する基板を用い、ロールトゥロールプロセスによる効率的な製法の検討がなされている(例えば、特許文献1,2参照。)。 On the other hand, organic EL devices have a problem of high cost due to poor productivity. Therefore, in order to reduce the cost of manufacturing the organic EL element, an efficient manufacturing method using a roll-to-roll process using a flexible substrate has been studied (see, for example, Patent Documents 1 and 2).
特開2002-367774号公報JP 2002-367774 A 特開2003-173870号公報JP 2003-173870 A
 しかしながら、特許文献1に記載の製法は、シート状基板に樹脂を塗布して所定のマスクを形成し、このマスクを含むシート状基板の全面に所望の薄膜を形成した後、マスクを剥離して有機EL素子の薄膜パターンを形成している。このため、連続的に有機EL素子の製造を行うと、樹脂製のマスクに含まれる溶媒等の揮発成分による有機EL素子への悪影響が懸念されるとともに、樹脂を塗布するための装置やこの樹脂を硬化させるための装置等が別途必要になる。また、樹脂を塗布することによってマスクを形成すると、マスクの開口部の周縁がなだらかな傾斜面に形成されてしまう。そのため、上記マスクの上から真空蒸着やスパッタリング等により薄膜を形成すると、薄膜はマスク開口部から露呈しているシート状基板からマスクの上まで一続きの連続面に形成されることになり、マスクを剥離する際に、マスクの上に形成された薄膜だけでなく、マスク開口部内の、シート状基板上に形成された必要部分の薄膜も一緒に剥離されて、薄膜パターン形成の精度が低下する、という問題が生じている。 However, the manufacturing method described in Patent Document 1 applies a resin to a sheet-like substrate to form a predetermined mask, forms a desired thin film on the entire surface of the sheet-like substrate including the mask, and then peels off the mask. A thin film pattern of an organic EL element is formed. For this reason, when manufacturing an organic EL element continuously, there is a concern that a volatile component such as a solvent contained in a resin mask may adversely affect the organic EL element, and an apparatus for applying the resin and the resin A device or the like for curing is required separately. Further, when a mask is formed by applying a resin, the peripheral edge of the opening of the mask is formed on a gentle inclined surface. Therefore, when a thin film is formed from above the mask by vacuum deposition or sputtering, the thin film is formed on a continuous surface from the sheet-like substrate exposed from the mask opening to the top of the mask. When the film is peeled off, not only the thin film formed on the mask but also the necessary part of the thin film formed on the sheet-like substrate in the mask opening is peeled off together, and the accuracy of forming the thin film pattern is lowered. The problem of, has arisen.
 また、特許文献2に記載の製法は、走行する帯状の金属製のマスクを用い、まず、同期走行する金属製の転写基板に有機EL層をパターニングし、つぎにこのパターニングされた有機EL層を基板上に転写するようにしている。この方法では、マスクや転写基板を走行させるための大掛かりな装置が必要になるとともに、金属製の転写基板が基板に接するため、基板がダメージを受ける可能性がある。また、金属製の転写基板と基板との位置合わせを、都度行う必要があるため、効率よく連続製造ができないという問題もある。 The manufacturing method described in Patent Document 2 uses a strip-shaped metal mask that travels, and first patterns an organic EL layer on a metal transfer substrate that travels synchronously, and then applies the patterned organic EL layer to the substrate. The image is transferred onto the substrate. This method requires a large-scale device for running the mask and the transfer substrate, and the metal transfer substrate contacts the substrate, which may damage the substrate. In addition, since it is necessary to align the metal transfer substrate with the substrate each time, there is a problem that efficient continuous production cannot be performed.
 本発明は、このような事情に鑑みなされたもので、低コストで連続的に製造できる、有機EL素子の製法の提供をその目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a method for producing an organic EL element that can be continuously produced at low cost.
 上記目的を達成するため、本発明の有機EL素子の製法は、ロールトゥロールによりシート状基板を搬送する工程と、上記シート状基板の上側に第1電極を形成する工程と、上記第1電極上に有機EL層を形成する工程と、上記有機EL層上にマスクを用いて所定パターンを有する第2電極を形成する工程とを有し、上記第2電極を形成する工程において、上記マスクは粘着面を有し上記所定パターンに対応する開口部を有するフレキシブルフィルムであり、上記マスクを上記有機EL層が形成されたシート状基板に貼り合せた状態で、第2電極形成材料を上記開口部を介して上記有機EL層上に蒸着した後、上記マスクを剥離することにより、所定パターンを有する第2電極を形成するようにしたことを第1の要旨とし、ロールトゥロールによりシート状基板を搬送する工程と、上記シート状基板の上側に第1電極を形成する工程と、上記第1電極上にマスクを用いて所定パターンを有する有機EL層を形成する工程と、上記有機EL層上にマスクを用いて上記有機EL層と同一パターンを有する第2電極を形成する工程とを有し、上記有機EL層を形成する工程および第2電極を形成する工程において、上記マスクとして粘着面を有し所定パターンに対応する開口部を有する同一のフレキシブルフィルムを共通に用い、上記マスクをシート状の基板に対して貼り合せた状態で、有機EL層形成材料および第2電極形成材料を上記開口部を介してこの順で上記第1電極上に蒸着した後、上記マスクを剥離することにより、所定パターンを有する有機EL層およびこれと同一パターンを有する第2電極を形成することを第2の要旨とする。 In order to achieve the above object, the method for producing an organic EL device of the present invention includes a step of conveying a sheet-like substrate by roll-to-roll, a step of forming a first electrode on the upper side of the sheet-like substrate, and the first electrode. In the step of forming the second electrode, the step of forming an organic EL layer on the organic EL layer and the step of forming a second electrode having a predetermined pattern on the organic EL layer using a mask. A flexible film having an adhesive surface and an opening corresponding to the predetermined pattern, wherein the second electrode forming material is formed in the opening in a state where the mask is bonded to a sheet-like substrate on which the organic EL layer is formed. The first gist is that the second electrode having a predetermined pattern is formed by peeling the mask after vapor deposition on the organic EL layer through the roll toro. A step of transporting the sheet-like substrate, a step of forming a first electrode on the upper side of the sheet-like substrate, a step of forming an organic EL layer having a predetermined pattern on the first electrode using a mask, Forming a second electrode having the same pattern as the organic EL layer by using a mask on the organic EL layer, and in the step of forming the organic EL layer and the step of forming the second electrode, the mask The organic EL layer forming material and the second electrode are formed in a state where the same flexible film having an adhesive surface and an opening corresponding to a predetermined pattern is commonly used and the mask is bonded to a sheet-like substrate. After vapor-depositing the material on the first electrode in this order through the opening, the mask is removed to remove the organic EL layer having a predetermined pattern and the same pattern as the organic EL layer. Forming a second electrode having a down a second aspect.
 すなわち、本発明者らは、有機EL素子を効率よく低コストで製造するため、薄膜パターンを枚葉式で形成するのではなく、ロールトゥロールプロセスで連続的に形成することについて研究を重ねた。そして、上記プロセスにおいて、薄膜パターンの形成に用いるマスクに注目し、さらに研究を重ねた。その結果、上記所定パターンを有する第2電極を形成する際、上記所定パターンに対応する開口部が設けられたシート状の粘着面を有するフレキシブルフィルムをマスクに用い、その開口部と基板の第2電極形成予定部分とを位置合わせし、マスクの粘着面を利用し有機EL層が形成された基板に貼り合せ、第2電極形成材料を上記マスクの開口部を介して有機EL層上に蒸着した後、上記マスクを剥離して形成すると、有機EL素子に対し溶媒等の揮発による悪影響を与えることがなく、また、一度位置合わせを行った後は、都度の位置合わせが不用なため、迅速に低コストで有機EL素子を製造できる。しかも、上記マスクを介して第2電極形成材料を蒸着し、第2電極を形成すると、第2電極は開口部から露呈している部分とマスク上の部分との段差によって非連続に形成される。したがって、マスク剥離工程において、マスクの開口部から露呈している部分に形成された第2電極はそのままで、マスク上に形成された第2電極をマスクごと一緒に剥離でき、所定パターンを有する第2電極を、簡単に、しかも正確に形成できることを見い出し、本発明に到達した。 That is, the present inventors have repeated research on forming a thin film pattern continuously by a roll-to-roll process instead of forming a thin film pattern in order to efficiently manufacture an organic EL element at a low cost. . In the above process, we focused on the mask used to form the thin film pattern, and further researched it. As a result, when the second electrode having the predetermined pattern is formed, a flexible film having a sheet-like adhesive surface provided with an opening corresponding to the predetermined pattern is used as a mask. The electrode formation scheduled portion is aligned, and the adhesive surface of the mask is used to bond to the substrate on which the organic EL layer is formed, and the second electrode forming material is deposited on the organic EL layer through the opening of the mask. Later, when the mask is peeled off, the organic EL element is not adversely affected by volatilization of the solvent and the like, and once the alignment is performed, each alignment is unnecessary, so An organic EL element can be manufactured at low cost. Moreover, when the second electrode forming material is deposited through the mask and the second electrode is formed, the second electrode is formed discontinuously due to the step between the portion exposed from the opening and the portion on the mask. . Accordingly, in the mask peeling process, the second electrode formed on the mask can be peeled together with the second electrode formed on the portion exposed from the opening of the mask, and the second electrode having a predetermined pattern can be peeled off together. It has been found that two electrodes can be easily and accurately formed, and the present invention has been achieved.
 このように、本発明の有機EL素子の製法は、所定パターンを有する第2電極の形成を、マスクとして上記所定パターンに対応する開口部が設けられたシート状の粘着面を有するフレキシブルフィルムを用い、その開口部と基板の第2電極形成予定部分とを位置合わせし、マスクの粘着面を利用し有機EL層が形成された基板に貼り合せ、その状態で第2電極形成材料を上記開口部を介して上記有機EL層上に蒸着した後、上記マスクを剥離して形成するようにしている。このため、所定パターンを有する第2電極の形成に際し、大掛かりな装置が不用となり、コストの低減が図られている。また、マスクからの有機溶媒等の揮発による悪影響を受けることがない。そして、基板に金属製の転写基板やマスクが接することによる、基板ダメージが発生しない。さらに、マスクと基板とを位置合わせして貼り合せた後は、都度のアライメントが不要であるため、迅速に所定パターンを有する第2電極を形成できる。そして、上記マスクを用いて第2電極形成材料を蒸着すると、第2電極はマスクの開口部から露呈している部分とマスク上の部分との段差によって非連続となる。このため、マスクの開口部に形成された第2電極はそのままで、マスク上に形成された第2電極をマスクごと一緒に剥離でき、所定パターンを有する第2電極を、簡単に、正確に形成できる。 Thus, the manufacturing method of the organic EL element of the present invention uses a flexible film having a sheet-like adhesive surface provided with an opening corresponding to the predetermined pattern as a mask for forming the second electrode having the predetermined pattern. Then, the opening and the second electrode formation planned portion of the substrate are aligned and bonded to the substrate on which the organic EL layer is formed using the adhesive surface of the mask, and in this state, the second electrode forming material is attached to the opening. After vapor deposition on the organic EL layer via the mask, the mask is peeled off to form. For this reason, when forming the 2nd electrode which has a predetermined pattern, a large-scale apparatus becomes unnecessary and cost reduction is aimed at. Further, there is no adverse effect due to volatilization of the organic solvent or the like from the mask. Further, no substrate damage occurs due to the metal transfer substrate or mask coming into contact with the substrate. Furthermore, after the mask and the substrate are aligned and bonded, the second electrode having a predetermined pattern can be formed quickly because each alignment is unnecessary. When the second electrode forming material is deposited using the mask, the second electrode becomes discontinuous due to a step between the portion exposed from the opening of the mask and the portion on the mask. For this reason, the second electrode formed on the mask can be peeled together with the second electrode formed on the mask, and the second electrode having a predetermined pattern can be formed easily and accurately. it can.
 そして、上記有機EL層を形成する工程において、マスクとして粘着面を有し所定パターンに対応する開口部を有するフレキシブルフィルムを用い、上記マスクをシート状の基板に対して貼り合せた状態で、有機EL層形成材料を上記開口部を介して上記第1電極上に蒸着した後、上記マスクを剥離することにより、所定パターンを有する有機EL層を形成するようにした場合には、連続的に効率よく所定パターンを有する有機EL層を形成できるため、有機EL素子の生産性が向上し、より低コストの製造を実現できる。 In the step of forming the organic EL layer, a flexible film having an adhesive surface and having an opening corresponding to a predetermined pattern is used as a mask, and the mask is bonded to a sheet-like substrate. When an organic EL layer having a predetermined pattern is formed by peeling the mask after the EL layer forming material is deposited on the first electrode through the opening, the efficiency is continuously increased. Since an organic EL layer having a predetermined pattern can be formed well, the productivity of the organic EL element is improved, and a lower cost production can be realized.
 また、ロールトゥロールによりシート状基板を搬送する工程と、上記シート状基板の上側に第1電極を形成する工程と、上記第1電極上にマスクを用いて所定パターンを有する有機EL層を形成する工程と、上記有機EL層上にマスクを用いて上記有機EL層と同一パターンを有する第2電極を形成する工程とを有し、上記有機EL層を形成する工程および第2電極を形成する工程において、上記マスクとして粘着面を有し所定パターンに対応する開口部を有する同一のフレキシブルフィルムを共通に用い、上記マスクをシート状の基板に対して貼り合せた状態で、有機EL層形成材料および第2電極形成材料を上記開口部を介してこの順で上記第1電極上に蒸着した後、上記マスクを剥離することにより、所定パターンを有する有機EL層およびこれと同一パターンを有する第2電極を形成するようにした場合、すなわち、ロールトゥロールプロセスにおいて、上記所定パターンを有する有機EL層およびこれと同一パターンを有する第2電極を形成する場合に、上記所定パターンに対応する開口部が設けられたシート状のフレキシブルフィルムをマスクとして用い、その開口部とシート状の基板の有機EL層および第2電極形成予定部分とを位置合わせした状態で、上記粘着面を利用しシート状の基板に対して貼り合せ、そのマスク貼り合せ面の上から、有機EL層形成材料および第2電極形成材料を上記マスクの開口部を介してこの順で上記第1電極上に蒸着した後、上記マスクを剥離することにより、所定パターンを有する有機EL層とこれと同一パターンを有する第2電極を形成するようにすると、マスクの形成、基板に対する貼り合せおよびその剥離をそれぞれ一度行うだけでよいため、より迅速な製造が可能となる。また、マスクの使用量を低減させることができるため、より低コストの製造を実現できる。 Also, a step of transporting the sheet-like substrate by roll-to-roll, a step of forming the first electrode on the upper side of the sheet-like substrate, and forming an organic EL layer having a predetermined pattern on the first electrode using a mask And a step of forming a second electrode having the same pattern as the organic EL layer using a mask on the organic EL layer, and forming the organic EL layer and the second electrode. In the process, the same flexible film having an adhesive surface and having an opening corresponding to a predetermined pattern is commonly used as the mask, and the organic EL layer forming material is bonded to the sheet-like substrate. Then, after depositing the second electrode forming material on the first electrode in this order through the opening, the mask is peeled off to form an organic EL having a predetermined pattern. When the second electrode having the same pattern as that is formed, that is, when forming the organic EL layer having the predetermined pattern and the second electrode having the same pattern in the roll-to-roll process, Using the sheet-like flexible film provided with the opening corresponding to the predetermined pattern as a mask, the opening and the organic EL layer and the second electrode formation scheduled portion of the sheet-like substrate are aligned, Bonding to the sheet-like substrate using the adhesive surface, and the organic EL layer forming material and the second electrode forming material from above the mask bonding surface through the opening of the mask in this order. After vapor deposition on the electrode, the mask is peeled off to form an organic EL layer having a predetermined pattern and a second pattern having the same pattern. When so as to form a pole, forming a mask may for only performed each time bonding and peeling to the substrate, thereby enabling more rapid production. In addition, since the amount of mask used can be reduced, it is possible to realize lower-cost manufacturing.
(a)は本発明の一実施の形態によって得られる有機EL素子の平面図、(b)はそのA-A断面図である。FIG. 2A is a plan view of an organic EL element obtained by an embodiment of the present invention, and FIG. (a)は上記実施の形態の説明図、(b)はそのB-B断面図である。(A) is explanatory drawing of the said embodiment, (b) is the BB sectional drawing. (a)は上記実施の形態の説明図、(b)はそのC-C断面図である。(A) is explanatory drawing of the said embodiment, (b) is the CC sectional drawing. (a)は上記実施の形態の説明図、(b)はそのD-D断面図である。(A) is explanatory drawing of the said embodiment, (b) is the DD sectional drawing. (a)は上記実施の形態の説明図、(b)はそのE-E断面図である。(A) is explanatory drawing of the said embodiment, (b) is the EE sectional drawing. (a)は上記実施の形態の説明図、(b)はそのF-F断面図である。(A) is explanatory drawing of the said embodiment, (b) is the FF sectional drawing. (a)は上記実施の形態の説明図、(b)はそのG-G断面図である。(A) is explanatory drawing of the said embodiment, (b) is the GG sectional drawing. (a)は上記実施の形態の説明図、(b)はそのH-H断面図である。(A) is explanatory drawing of the said embodiment, (b) is the HH sectional drawing. (a)は上記実施の形態の説明図、(b)はそのI-I断面図である。(A) is explanatory drawing of the said embodiment, (b) is the II sectional drawing. 上記実施の形態の説明図である。It is explanatory drawing of the said embodiment. (a)は本発明の他の実施の形態の説明図、(b)はそのJ-J断面図である。(A) is explanatory drawing of other embodiment of this invention, (b) is the JJ sectional drawing. (a)は上記他の実施の形態の説明図、(b)はそのK-K断面図である。(A) is explanatory drawing of said other embodiment, (b) is the KK sectional drawing. (a)は上記他の実施の形態の説明図、(b)はそのL-L断面図である。(A) is explanatory drawing of said other embodiment, (b) is the LL sectional drawing. (a)は上記他の実施の形態の説明図、(b)はそのM-M断面図である。(A) is explanatory drawing of said other embodiment, (b) is the MM sectional drawing. (a)は上記他の実施の形態の説明図、(b)はそのN-N断面図である。(A) is explanatory drawing of the said other embodiment, (b) is the NN sectional drawing. (a)は上記他の実施の形態の説明図、(b)はそのO-O断面図である。(A) is explanatory drawing of said other embodiment, (b) is the OO sectional drawing. 上記他の実施の形態の説明図である。It is explanatory drawing of said other embodiment. (a)は本発明のさらに他の実施の形態の説明図、(b)はそのP-P断面図である。(A) is explanatory drawing of further another embodiment of this invention, (b) is the PP sectional drawing. (a)は上記さらに他の実施の形態の説明図、(b)はそのQ-Q断面図である。(A) is explanatory drawing of the said further another embodiment, (b) is the QQ sectional drawing. (a)は上記さらに他の実施の形態の説明図、(b)はそのR-R断面図である。(A) is an explanatory view of still another embodiment, and (b) is an RR cross-sectional view thereof. (a)は上記さらに他の実施の形態の説明図、(b)はそのS-S断面図である。(A) is explanatory drawing of the said further another embodiment, (b) is the SS sectional drawing. (a)は上記さらに他の実施の形態の説明図、(b)はそのT-T断面図である。(A) is an explanatory view of still another embodiment, and (b) is a TT cross-sectional view thereof. (a)は上記さらに他の実施の形態の説明図、(b)はそのU-U断面図である。(A) is explanatory drawing of the said further another embodiment, (b) is the U sectional drawing. 上記さらに他の実施の形態の説明図である。It is explanatory drawing of the said further another embodiment.
 つぎに、本発明を実施するための形態について説明する。 Next, a mode for carrying out the present invention will be described.
 本発明の第1の実施の形態によって得られる有機EL素子1を、図1(a)およびそのA-A断面図である図1(b)に示す。上記有機EL素子1は、基板2上に、絶縁層3、第1電極4、有機EL層5、第2電極6がこの順に積層され、トップエミッション構造を有している。なお、図1(a),(b)において、各部分は模式的に示したものであり、実際の大きさ等とは異なっている(以下の図においても同じ)。 An organic EL element 1 obtained by the first embodiment of the present invention is shown in FIG. 1 (a) and FIG. The organic EL element 1 has a top emission structure in which an insulating layer 3, a first electrode 4, an organic EL layer 5, and a second electrode 6 are laminated on a substrate 2 in this order. 1A and 1B, each part is schematically shown, and is different from an actual size or the like (the same applies to the following drawings).
 この実施の形態における製法(以下「本発明の第1の製法」という)は、要約すると、ロールトゥロールプロセスにより有機EL素子1を製造するのに際し、所定パターンを有する第2電極を、粘着面および所定の開口パターンを有するシート状のフレキシブルフィルムをマスクとして用い、上記マスクの上から第2電極形成材料を蒸着した後、上記マスクを剥離して形成することを特徴とするものである。以下に本発明の第1の製法について詳細に説明する。 The manufacturing method in this embodiment (hereinafter referred to as “the first manufacturing method of the present invention”) is summarized as follows. When the organic EL element 1 is manufactured by a roll-to-roll process, the second electrode having a predetermined pattern is attached to the adhesive surface. In addition, a sheet-like flexible film having a predetermined opening pattern is used as a mask, and after the second electrode forming material is deposited on the mask, the mask is peeled off to form. Hereinafter, the first production method of the present invention will be described in detail.
 まず、ステンレス(SUS)製のシート状(幅300mm×厚み50μm×長さ140m)基板2を、その一端を供給ロールに巻き回し、他方の端を巻き取りロールに巻き回し、ロールトゥロールプロセスで有機EL素子1を製造する準備を行う。そして、上記基板2を供給ロールから巻き取りロールに連続的に送りながら、この基板2の表面の全面に絶縁性を有する樹脂を塗布し、図2(a)およびそのB-B断面図である図2(b)に示すように、絶縁層3(厚み4nm)を形成する。ついで、酸化インジウム亜鉛(IZO)を絶縁層3の上にスパッタリングして第1電極4形成予定層を形成し、この第1電極4形成予定層をエッチングによりパターニングして、図3(a)およびそのC-C断面図である図3(b)に示すように、第1電極4(厚み90nm)を形成する。 First, a stainless steel (SUS) sheet-like (width 300 mm × thickness 50 μm × length 140 m) substrate 2 is wound around a supply roll at one end and wound around a take-up roll at a roll-to-roll process. Preparation for manufacturing the organic EL element 1 is performed. Then, while continuously feeding the substrate 2 from the supply roll to the take-up roll, an insulating resin is applied to the entire surface of the substrate 2, and FIG. 2 (a) and its BB cross-sectional view are shown. As shown in FIG. 2B, an insulating layer 3 (thickness 4 nm) is formed. Next, indium zinc oxide (IZO) is sputtered onto the insulating layer 3 to form a first electrode 4 formation scheduled layer, and this first electrode 4 formation planned layer is patterned by etching, and FIG. As shown in FIG. 3B, which is a sectional view taken along the line CC, the first electrode 4 (thickness 90 nm) is formed.
 つぎに、マスク8として、一方の面に粘着層を有し、有機EL層5形成予定部分(図6参照)と同一形状の開口部9が、打ち抜き加工により連続的に設けられたシート状のフレキシブルフィルム(E-MASK RP300、日東電工社製)を準備し、基板2の有機EL層5形成予定部分と、上記マスク8の開口部9とが一致するように調整し、マスク8が有する粘着層を利用して、図4(a)およびそのD-D断面図である図4(b)に示すように、上記第1電極4が形成された基板2に対しマスク8を貼り合せる。 Next, as a mask 8, an adhesive layer is provided on one surface, and an opening 9 having the same shape as a portion where the organic EL layer 5 is to be formed (see FIG. 6) is continuously provided by punching. A flexible film (E-MASK RP300, manufactured by Nitto Denko Corporation) is prepared and adjusted so that the organic EL layer 5 formation planned portion of the substrate 2 and the opening 9 of the mask 8 coincide with each other. Using the layer, a mask 8 is bonded to the substrate 2 on which the first electrode 4 is formed, as shown in FIG. 4A and FIG. 4B which is a DD sectional view thereof.
 そして、上記マスク8が貼り合わされた基板2に対し、図5(a)およびそのE-E断面図である図5(b)に示すように、マスク8の上から有機EL層形成材料を真空蒸着し、有機EL層5を形成する。その後、上記マスク8を剥離しながら巻き取ることで、図6(a)およびそのF-F断面図である図6(b)に示すように、所定の部分にのみ有機EL層5が形成される。 Then, as shown in FIG. 5 (a) and FIG. 5 (b) which is a cross-sectional view taken along the line EE, the organic EL layer forming material is vacuum applied to the substrate 2 to which the mask 8 is bonded. The organic EL layer 5 is formed by vapor deposition. Thereafter, the mask 8 is wound off while being peeled off, so that the organic EL layer 5 is formed only at a predetermined portion, as shown in FIG. 6A and FIG. The
 つづいて、マスク10として、一方の面に粘着層を有し、第2電極6形成予定部分と同一形状の開口部11が、打ち抜き加工により連続的に設けられたシート状のフレキシブルフィルム(E-MASK RP300、日東電工社製)を準備し、基板2の第2電極6形成予定部分(図9参照)と、上記マスク10の開口部11とが一致するように調整し、マスク10が有する粘着層を利用して、図7(a)およびそのG-G断面図である図7(b)に示すように、有機EL層5が形成された基板2に対しマスク10を貼り合せる。 Subsequently, the mask 10 has an adhesive layer on one surface, and has a sheet-like flexible film (E−) in which openings 11 having the same shape as the second electrode 6 formation scheduled portion are continuously provided by punching. MASK RP300 (manufactured by Nitto Denko Corporation) is prepared and adjusted so that the second electrode 6 formation scheduled portion (see FIG. 9) of the substrate 2 and the opening 11 of the mask 10 are aligned with each other. Using the layer, a mask 10 is bonded to the substrate 2 on which the organic EL layer 5 is formed, as shown in FIG. 7A and FIG.
 そして、上記マスク10が貼り合わされた基板2に対し、図8(a)およびそのH-H断面図である図8(b)に示すように、マスク10の上から第2電極形成材料を真空蒸着し、第2電極6を形成する。その後、上記マスク10を剥離しながら巻き取ることで、図9(a)およびそのI-I断面図である図9(b)に示すように、所定の部分にのみ第2電極6が形成される。これを、図10に示すように、所定のサイズに切断することにより、上記有機EL素子1を得ることができる〔図1(a),(b)参照〕。 Then, as shown in FIG. 8A and FIG. 8B, which is a cross-sectional view taken along the line HH, the second electrode forming material is vacuum applied to the substrate 2 to which the mask 10 is bonded. The second electrode 6 is formed by vapor deposition. Thereafter, the second electrode 6 is formed only at a predetermined portion, as shown in FIG. 9A and its II sectional view, FIG. The As shown in FIG. 10, the organic EL element 1 can be obtained by cutting it into a predetermined size (see FIGS. 1A and 1B).
 この方法によれば、有機EL素子をロールトゥロールで製造するに際し、有機EL層5および第2電極6のパターニングを、シート状のフレキシブルフィルムからなるマスク8,10を用いて行っているため、別途、パターニングを行うための各種の装置を必要としない。また、各層が積層された基板2に接するのが、フレキシブルフィルムからなるマスク8,10であるため、基板2およびこれに積層された各層は金属製の転写基板やマスクが接する場合に比べて、ダメージを受けにくい。そして、真空蒸着装置内において、マスク8,10から溶剤等の成分が揮発しないため、有機EL素子1が溶剤等による悪影響を受けることがない。さらに、シート状の基板2に対し、シート状のマスク8,10貼り合せて用いるため、都度のアライメントが不要となる。そして、このマスク8,10を用いると、有機EL層5および第2電極6の薄膜がマスク8,10の開口部9,11から露呈している部分とマスク上部分との段差により非連続に形成されるため、マスク8,10を剥離する際に、マスク8,10の開口部9,11から露呈している部分に形成される有機EL層5および第2電極6まで剥離することがなく、精度よく所定パターンを有する有機EL層5および第2電極6を形成することができる。そして、所定パターンを有する有機EL層5および第2電極6を連続的に効率よく形成できるため、有機EL素子の生産性が向上し、より低コストでの製造を実現することができる。また、第2電極が精度よく形成され、その位置ずれ等が発生しないため、各層が形成された後のシート状の基板2を所定の大きさに切断する際に、形成予定部分以外に第2電極6が形成されることに起因する、第2電極6と基板2とが接触することによる短絡が生じない。 According to this method, since the organic EL layer 5 and the second electrode 6 are patterned using the masks 8 and 10 made of a sheet-like flexible film when the organic EL element is manufactured by roll-to-roll, Separately, various apparatuses for patterning are not required. Moreover, since it is the masks 8 and 10 which consist of a flexible film that touches the board | substrate 2 with which each layer was laminated | stacked, compared with the case where the board | substrate 2 and each layer laminated | stacked on this contact metal transfer boards and masks, Less susceptible to damage. And since components, such as a solvent, do not volatilize from the masks 8 and 10 in a vacuum evaporation system, the organic EL element 1 does not receive a bad influence by a solvent. Further, since the sheet- like masks 8 and 10 are bonded to the sheet-like substrate 2, it is not necessary to perform alignment each time. When the masks 8 and 10 are used, the thin film of the organic EL layer 5 and the second electrode 6 is discontinuous due to a step between the portions exposed from the openings 9 and 11 of the masks 8 and 10 and the upper portion of the mask. Therefore, when the masks 8 and 10 are peeled off, the organic EL layer 5 and the second electrode 6 formed in the portions exposed from the openings 9 and 11 of the masks 8 and 10 are not peeled off. The organic EL layer 5 and the second electrode 6 having a predetermined pattern with high accuracy can be formed. And since the organic EL layer 5 and the 2nd electrode 6 which have a predetermined pattern can be formed continuously and efficiently, the productivity of an organic EL element improves and manufacture at lower cost can be implement | achieved. In addition, since the second electrode is formed with high accuracy and no positional deviation or the like occurs, when the sheet-like substrate 2 on which each layer has been formed is cut into a predetermined size, the second electrode is formed in addition to the portion to be formed. A short circuit due to the contact between the second electrode 6 and the substrate 2 due to the formation of the electrode 6 does not occur.
 上記の形態において、シート状の基板2として、SUSを用いているが、これに限らず、36アロイ、42アロイ等の合金、銅(Cu)、ニッケル、鉄、アルミニウム(Al)、チタン等の金属フィルムや、芳香族ポリアミドフィルム、ポリイミド樹脂フィルム、アラミドフィルム、ポリエステルフィルム等からなる単層もしくは多層の樹脂フィルムや、金属フィルムと樹脂フィルムとの積層体等を用いることができる。なかでも、有機EL層5が発する熱を効率よく分散でき、強度が高い点で、SUS、Al等の金属フィルムを用いることが好ましい。 In the above embodiment, SUS is used as the sheet-like substrate 2, but not limited to this, alloys such as 36 alloy and 42 alloy, copper (Cu), nickel, iron, aluminum (Al), titanium, and the like. A single-layer or multilayer resin film made of a metal film, an aromatic polyamide film, a polyimide resin film, an aramid film, a polyester film, or the like, a laminate of a metal film and a resin film, or the like can be used. Especially, it is preferable to use metal films, such as SUS and Al, from the point which can disperse | distribute the heat | fever which the organic EL layer 5 emits efficiently, and has high intensity | strength.
 また、上記の形態においては、基板2の表面の全面に絶縁性を有する樹脂を塗布し、絶縁層3(厚み4nm)を形成しているが、基板2の表面粗さ(Ra)が小さいときや、基板2が絶縁性基板等である場合には、必ずしも絶縁層3を形成する必要はない。しかし、絶縁層3を形成すると、基板2表面の平滑性が担保される点で好ましい。 In the above embodiment, an insulating resin is applied to the entire surface of the substrate 2 to form the insulating layer 3 (thickness 4 nm), but the surface roughness (Ra) of the substrate 2 is small. If the substrate 2 is an insulating substrate or the like, the insulating layer 3 is not necessarily formed. However, it is preferable to form the insulating layer 3 in terms of ensuring the smoothness of the surface of the substrate 2.
 そして、上記の形態においては、第1電極4として、IZOを用いているが、そのほかにも、酸化インジウム錫(ITO)、酸化ゲルマニウム亜鉛(GZO)等の各種電極として用いられる材料を用いることができる。また、その厚みは、導電性の点において、10nm~500nmの範囲にあることが好ましく、さらに好ましくは50nm~300nmの範囲である。さらに、スパッタリングの代わりに、他の蒸着手段として、真空蒸着を用いて形成することも可能である。しかし、スパッタリングを用いることが、精度、工程の簡便化の点から好ましい。 In the above embodiment, IZO is used as the first electrode 4, but in addition, materials used as various electrodes such as indium tin oxide (ITO) and germanium zinc oxide (GZO) are used. it can. Further, the thickness thereof is preferably in the range of 10 nm to 500 nm, more preferably in the range of 50 nm to 300 nm in terms of conductivity. Furthermore, it is also possible to form by using vacuum deposition as another vapor deposition means instead of sputtering. However, it is preferable to use sputtering in terms of accuracy and process simplification.
 また、上記の形態では、基板2上に直接、絶縁層3を設けているが、基板2と絶縁層3との間に、反射層を設けてもよい。この場合、基板2の性質に関係なく、反射層によってより有効に光を反射できるため、トップエミッション型素子の場合において、より多くの光を第2電極6側から取り出すことができる。反射層は、例えば、銀(Ag)、Al、クロム、モリブデン、パラジウムおよびCuを含有するAg系合金(APC)等を、単層または複層に形成することによって設けることができる。その厚みは、光を充分に反射するだけの厚みがあればよいが、10nm~500nmの範囲にあることが好ましく、より好ましくは50nm~300nmの範囲である。なお、絶縁層3を設けない場合には、基板2と第1電極4との間に反射層が設けられる。 In the above embodiment, the insulating layer 3 is provided directly on the substrate 2, but a reflective layer may be provided between the substrate 2 and the insulating layer 3. In this case, the light can be more effectively reflected by the reflective layer regardless of the nature of the substrate 2, so that more light can be extracted from the second electrode 6 side in the case of the top emission type element. The reflective layer can be provided, for example, by forming an Ag-based alloy (APC) containing silver (Ag), Al, chromium, molybdenum, palladium, and Cu in a single layer or multiple layers. The thickness should be sufficient to reflect light sufficiently, but is preferably in the range of 10 nm to 500 nm, more preferably in the range of 50 nm to 300 nm. When the insulating layer 3 is not provided, a reflective layer is provided between the substrate 2 and the first electrode 4.
 そして、上記の形態では、マスク8,10として、ポリエステル系樹脂をベースとするフレキシブルフィルム(E-MASK RP300、日東電工社製)を用いているが、その他にも、開口部の打ち抜き加工の容易性、軽量性、柔軟性のそれぞれが高い点から、ポリオレフィン系樹脂、ポリイミド系樹脂をベースとするものが好ましく用いられる。また、マスク8,10が有する粘着面の粘着力は、ともに5N/m~100N/mの範囲にあることが好ましく、さらに好ましくは、10N/m~60N/mの範囲である。粘着力が低すぎると、プロセス中に剥がれてしまうおそれがあり、逆に、高すぎると、マスク8,10を剥離する際に基板1を変形させる可能性があるためである。そして、このマスク8,10の厚みは、ともに10μm~400μmの範囲にあることが好ましく、特に好ましくは20μm~300μmの範囲である。厚みが薄すぎると、剥離時にマスク8,10が破れたり、裂けたりするおそれがあり、逆に厚すぎると、供給ロールおよび巻き取りロールが意味なく大型化し、製造コストの上昇を招く傾向がみられるためである。また、マスク8,10のサイズは、基板2と同等かやや小さい程度が好ましい。サイズが小さすぎると、マスクを多数準備し、これをその都度位置合わせの上、継ぎ足して貼り合せる必要が生じ、ロールトゥロールプロセスを連続的に運転するのが困難になる傾向がみられるためである。 In the above embodiment, a flexible film based on polyester resin (E-MASK RP300, manufactured by Nitto Denko Corporation) is used as the masks 8 and 10, but it is also easy to punch the openings. From the viewpoint of high properties, lightness, and flexibility, those based on polyolefin resins and polyimide resins are preferably used. The adhesive strength of the adhesive surfaces of the masks 8 and 10 is preferably in the range of 5 N / m to 100 N / m, and more preferably in the range of 10 N / m to 60 N / m. This is because if the adhesive strength is too low, it may be peeled off during the process, and conversely if too high, the substrate 1 may be deformed when the masks 8 and 10 are peeled off. The thicknesses of the masks 8 and 10 are both preferably in the range of 10 μm to 400 μm, particularly preferably in the range of 20 μm to 300 μm. If the thickness is too thin, the masks 8 and 10 may be torn or torn at the time of peeling. On the other hand, if the thickness is too thick, the supply roll and the take-up roll will become meaningless in size and increase the manufacturing cost. Because it is. Further, the size of the masks 8 and 10 is preferably equal to or slightly smaller than that of the substrate 2. If the size is too small, it will be necessary to prepare many masks, align them each time, and add them together, which tends to make it difficult to operate the roll-to-roll process continuously. is there.
 さらに、上記の形態では、マスク8,10を剥離した後に、次の工程を行うため基板2の巻き取りを行っているが、マスク8,10を剥離せずに基板2を巻き取るようにしてもよい。この場合、マスク8,10がスペーサーの役目を果たし、有機EL層5が基板2に接触することなく巻き取れるため、巻きずれ等により傷が入るリスクを減らすことができる。なお、マスク8,10を剥離せずに巻き取った場合には、基板2の巻き出しの際に、マスク8,10を剥離し、その後に次の工程での処理を行えばよい。 Further, in the above embodiment, after the masks 8 and 10 are peeled off, the substrate 2 is wound up to perform the next step. However, the masks 8 and 10 are wound up without being peeled off. Also good. In this case, since the masks 8 and 10 serve as spacers and the organic EL layer 5 can be wound without contacting the substrate 2, the risk of scratches due to winding deviation or the like can be reduced. When the masks 8 and 10 are taken up without being peeled off, the masks 8 and 10 may be peeled off when the substrate 2 is unwound, and then processed in the next step.
 また、上記の形態では、有機EL層5および第2電極6の形成の際、蒸着手段として、いずれも真空蒸着を用いているが、他の蒸着手段として、スパッタリングやEB蒸着(電子線蒸着)等を用いてもよい。しかし、効率の点から、真空蒸着が好ましく用いられる。 In the above embodiment, vacuum evaporation is used as the vapor deposition means when the organic EL layer 5 and the second electrode 6 are formed. However, as other vapor deposition means, sputtering or EB vapor deposition (electron beam vapor deposition) is used. Etc. may be used. However, vacuum deposition is preferably used from the viewpoint of efficiency.
 そして、上記の形態では、第2電極6として、Alを用いているが、そのほかにも、Ag、マグネシウム、これらの合金等の各種電極として用いられる材料を用いることができる。また、その厚みは、5nm~200nmの範囲にあることが好ましく、さらに好ましくは8nm~150nmの範囲である。すなわち、厚みが薄すぎると、電極として作用しない傾向がみられ、逆に、厚すぎると、上記マスク10の開口部11の内周壁面にまで連続的に形成され、マスク10剥離の際に、必要な部分まで一緒に剥離されるおそれがあるためである。さらに、真空蒸着の代わりに、他の蒸着手段として、スパッタリングを用いることも可能である。しかし、真空蒸着を用いることが、有機EL層5へ与えるダメージが少ない点から好ましい。 In the above embodiment, Al is used as the second electrode 6, but in addition, materials used as various electrodes such as Ag, magnesium, and alloys thereof can be used. Further, the thickness is preferably in the range of 5 nm to 200 nm, more preferably in the range of 8 nm to 150 nm. That is, if the thickness is too thin, there is a tendency not to act as an electrode, conversely, if it is too thick, it is continuously formed up to the inner peripheral wall surface of the opening 11 of the mask 10, and when the mask 10 is peeled off, This is because there is a possibility that even a necessary part may be peeled off together. Furthermore, instead of vacuum vapor deposition, sputtering can be used as another vapor deposition means. However, it is preferable to use vacuum vapor deposition from the viewpoint of little damage to the organic EL layer 5.
 つぎに、図11~図17に、本発明の第2の実施の形態である製法(以下「本発明の第2の製法」という)を示す。本発明の第2の製法では、本発明の第1の製法において、有機EL層5のパターニングをせずに、所定パターンを有する第2電極6を形成して、図11(a)およびそのJ-J断面図である図11(b)に示す有機EL素子12を製造している。なお、本発明の第2の製法では、本発明の第1の製法と同一構成部分については同一符号を付してその説明は省略している。 Next, FIGS. 11 to 17 show a manufacturing method according to the second embodiment of the present invention (hereinafter referred to as “the second manufacturing method of the present invention”). In the second manufacturing method of the present invention, the second electrode 6 having a predetermined pattern is formed without patterning the organic EL layer 5 in the first manufacturing method of the present invention, and FIG. The organic EL element 12 shown in FIG. 11B, which is a cross section of −J, is manufactured. In the second manufacturing method of the present invention, the same components as those in the first manufacturing method of the present invention are denoted by the same reference numerals and description thereof is omitted.
 すなわち、本発明の第1の製法と同様にして、図12(a)およびそのK-K断面図である図12(b)に示すように、基板2上に絶縁層3と第1電極4とをこの順で形成する。そして、図13(a)およびそのL-L断面図である図13(b)に示すように、有機EL層形成材料を基板2に対し真空蒸着し、基板2のほぼ全面に有機EL層5を形成する。 That is, in the same manner as the first manufacturing method of the present invention, as shown in FIG. 12A and FIG. 12B which is a KK sectional view thereof, the insulating layer 3 and the first electrode 4 are formed on the substrate 2. Are formed in this order. Then, as shown in FIG. 13A and FIG. 13B which is an LL sectional view thereof, an organic EL layer forming material is vacuum-deposited on the substrate 2, and the organic EL layer 5 is formed on almost the entire surface of the substrate 2. Form.
 つぎに、マスク10として、一方の面に粘着層を有し、第2電極6形成予定部分(図16参照)と同一形状の開口部11が、打ち抜き加工により連続的に設けられたシート状のフレキシブルフィルム(E-MASK RP300、日東電工社製)を準備し、基板2の第2電極6形成予定部分と、上記マスク10の開口部11とが一致するように調整し、マスク10が有する粘着層を利用して、図14(a)およびそのM-M断面図である図14(b)に示すように、上記有機EL層5までが形成された基板2に対しマスク10を貼り合せる。 Next, the mask 10 has an adhesive layer on one surface, and the opening 11 having the same shape as the second electrode 6 formation scheduled portion (see FIG. 16) is continuously provided by punching. A flexible film (E-MASK RP300, manufactured by Nitto Denko Corporation) is prepared and adjusted so that the second electrode 6 formation planned portion of the substrate 2 and the opening 11 of the mask 10 are aligned with each other. Using the layer, as shown in FIG. 14A and FIG. 14B, which is a MM cross-sectional view thereof, a mask 10 is bonded to the substrate 2 on which the organic EL layer 5 is formed.
 そして、上記基板2に対し、マスク10の上から第2電極形成材料を真空蒸着し、図15(a)およびそのN-N断面図である図15(b)に示すように、第2電極6を形成する。その後、上記マスク10を剥離しながら巻き取ることで、図16(a)およびそのO-O断面図である図16(b)に示すように、所定の部分にのみ第2電極6が形成される。その後、これを、図17に示すように、所定のサイズに切断することにより、上記有機EL素子12〔図11(a),(b)〕を得ることができる。 Then, a second electrode forming material is vacuum-deposited on the substrate 2 from above the mask 10, and as shown in FIG. 15A and its NN cross-sectional view, FIG. 6 is formed. Thereafter, the second electrode 6 is formed only at a predetermined portion, as shown in FIG. 16A and its OO cross-sectional view, FIG. The Thereafter, as shown in FIG. 17, the organic EL element 12 (FIGS. 11A and 11B) can be obtained by cutting into a predetermined size.
 この本発明の第2の製法によれば、本発明の第1の製法で得られる効果に加えて、有機EL層5をパターニングする必要がないため、より迅速に低コストの有機EL素子12を製造することができる。 According to the second manufacturing method of the present invention, in addition to the effects obtained by the first manufacturing method of the present invention, it is not necessary to pattern the organic EL layer 5, so that the low-cost organic EL element 12 can be formed more quickly. Can be manufactured.
 さらに、図18~図24に、本発明の第3の実施の形態である製法(以下「本発明の第3の製法」という)を示す。本発明の第3の製法では、本発明の第1の製法において、所定パターンを有する有機EL層5を形成する際に用いるマスクを、有機EL層形成材料を真空蒸着した後に剥離せず、第2電極形成材料を真空蒸着する際に援用し、第2電極形成材料を真空蒸着した後に剥離するようにして、有機EL層5と同一のパターンを有する第2電極6が形成される有機EL素子13〔図18(a)およびそのP-P断面図である図18(b)参照〕を製造している。なお、本発明の第3の製法でも、本発明の第1または第2の製法と同一構成部分については同一符号を付してその説明は省略している。 Further, FIGS. 18 to 24 show a manufacturing method according to a third embodiment of the present invention (hereinafter referred to as “third manufacturing method of the present invention”). In the third manufacturing method of the present invention, in the first manufacturing method of the present invention, the mask used for forming the organic EL layer 5 having a predetermined pattern is not peeled off after the organic EL layer forming material is vacuum-deposited. An organic EL element in which a second electrode 6 having the same pattern as the organic EL layer 5 is formed so as to be peeled off after the second electrode forming material is vacuum-deposited after being vacuum-deposited. 13 [see FIG. 18 (a) and FIG. 18 (b) which is a cross-sectional view taken along the line PP thereof]. In the third manufacturing method of the present invention, the same components as those in the first or second manufacturing method of the present invention are denoted by the same reference numerals and description thereof is omitted.
 すなわち、本発明の第1の製法と同様にして、図19(a)およびそのQ-Q断面図である図19(b)に示すように、基板2上に絶縁層3と第1電極4とをこの順で形成する。そして、有機EL層5および第2電極6形成予定部分(図23参照)と同一形状の開口部15が、打ち抜き加工により連続的に設けられたシート状のマスク14(フレキシブルフィルムE-MASK RP300、日東電工社製)を準備し、基板2の有機EL層5および第2電極6形成予定分と、上記マスク14の開口部15とが一致するように調整し、マスク14が有する粘着層を利用して、図20(a)およびそのR-R断面図である図20(b)に示すように、第1電極4までが形成された基板2に対しマスク14を貼り合せる。そして、図21(a)およびそのS-S断面図である図21(b)に示すように、上記基板2に対し、マスク14の上から有機EL層形成材料を真空蒸着し、上記マスク14を剥離せずに、このマスク14の上から続けて、図22(a)およびそのT-T断面図である図22(b)に示すように、第2電極形成材料を真空蒸着し、有機EL層5および第2電極6を形成する。その後、上記マスク14を剥離しながら巻き取り、図23(a)およびそのU-U断面図である図23(b)に示すように、上記有機EL層5および第2電極6形成予定部分にのみ有機EL層5および第2電極6が形成された、所定パターンを有する有機EL層5およびこれと同一のパターンを有する第2電極6を形成する。これを、図24に示すように、所定のサイズに切断することにより、上記有機EL素子13〔図18(a),(b)参照〕を得ることができる。 That is, in the same manner as in the first manufacturing method of the present invention, as shown in FIG. 19A and FIG. 19B which is a QQ sectional view thereof, the insulating layer 3 and the first electrode 4 are formed on the substrate 2. Are formed in this order. Then, a sheet-like mask 14 (flexible film E-MASK RP300, which is provided with openings 15 having the same shape as the organic EL layer 5 and the second electrode 6 formation scheduled portion (see FIG. 23) continuously by punching. Nitto Denko Co., Ltd.) is prepared and adjusted so that the organic EL layer 5 and the second electrode 6 scheduled to be formed on the substrate 2 coincide with the opening 15 of the mask 14, and the adhesive layer of the mask 14 is used. Then, as shown in FIG. 20A and FIG. 20B which is an RR sectional view thereof, the mask 14 is bonded to the substrate 2 on which the first electrodes 4 are formed. Then, as shown in FIG. 21 (a) and FIG. 21 (b) which is an SS cross-sectional view, an organic EL layer forming material is vacuum-deposited on the substrate 2 from above the mask 14, and the mask 14 The second electrode forming material is vacuum-deposited as shown in FIG. 22A and FIG. 22B, which is a TT cross-sectional view, continuously from above the mask 14 without peeling off the organic layer. The EL layer 5 and the second electrode 6 are formed. Thereafter, the mask 14 is wound off while being peeled off, and the organic EL layer 5 and the second electrode 6 are to be formed, as shown in FIG. 23 (a) and FIG. Only the organic EL layer 5 and the second electrode 6 are formed, and the organic EL layer 5 having a predetermined pattern and the second electrode 6 having the same pattern are formed. As shown in FIG. 24, the organic EL element 13 (see FIGS. 18A and 18B) can be obtained by cutting it into a predetermined size.
 この本発明の第3の製法によれば、本発明の第1の製法で得られる効果に加えて、有機EL層5を形成した後にマスクを剥離する必要がないため、より迅速に効率的に有機EL素子13を製造することができる。また、所定パターンを有する有機EL層5および第2電極6を形成するにも関わらず、用いるマスクを共通化しているため、より低コストでの製造を実現できる。 According to the third manufacturing method of the present invention, in addition to the effects obtained by the first manufacturing method of the present invention, it is not necessary to peel off the mask after the organic EL layer 5 is formed. The organic EL element 13 can be manufactured. In addition, although the organic EL layer 5 and the second electrode 6 having a predetermined pattern are formed, since the mask to be used is made common, it is possible to realize manufacture at a lower cost.
 つぎに、実施例について、比較例と併せて説明する。ただし、本発明はこれに限定されるものではない。 Next, examples will be described together with comparative examples. However, the present invention is not limited to this.
〔実施例1〕
 ロールトゥロールプロセスにより有機EL素子を製造するに際し、幅が20mm、長さが140m、厚み50μmのフレキシブル性を持たせたSUS製の基板2を用意し、この一端側を供給ロールに巻き回し、他端側を巻き取りロールに巻き回した。そして、上記基板2を連続的に送りながら、この基板2の表面に、絶縁性を有するアクリル系樹脂(JEM-477、JSR社製)を塗布し、絶縁層3(厚み4μm)を形成した。その上に、IZO(厚み20nm)をスパッタリングし、エッチングによりパターニングして第1電極4を形成した。第1電極4まで形成した基板2に対し、マスク8として、有機EL層5形成予定部に対応する開口部9を設けたフレキシブルフィルム(E-MASK RP300、日東電工社製)を位置合わせしながら貼り合せ、このマスク8の上から、10-4Paの真空で銅フタロシアニン(CuPc)25nm/N,N’-ジフェニル-N-N-ビス(1-ナフチル)-1,1’-ビフェニル)-4,4’-ジアミン(NPB)45nm/8-キノリノールアルミニウム錯体(Alq3)60nm/フッ化リチウム(LiF)0.5nmを、0.1nm/secの速度で蒸着した後、上記マスク8を巻き取りながら剥離し、所定パターンを有する有機EL層5を形成した。つぎに、マスク10として、第2電極6形成予定部に対応する開口部11を設けたフレキシブルフィルム(E-MASK RP300、日東電工社製)を位置合わせしながら、上記有機EL層5までが形成された基板2に貼り合せ、このマスク10の上から、10-4Paの真空でAl(厚み10nm)を蒸着した後、上記マスク10を巻き取りながら剥離し、所定パターンを有する第2電極6を形成した。これを長さ30mmのサイズで切断して、目的とする有機EL素子を得た。
[Example 1]
When manufacturing an organic EL element by a roll-to-roll process, a SUS substrate 2 having a width of 20 mm, a length of 140 m, and a thickness of 50 μm is prepared, and this one end is wound around a supply roll. The other end was wound around a take-up roll. Then, while continuously feeding the substrate 2, an insulating acrylic resin (JEM-477, manufactured by JSR) was applied to the surface of the substrate 2 to form an insulating layer 3 (thickness 4 μm). On top of that, IZO (thickness 20 nm) was sputtered and patterned by etching to form the first electrode 4. While aligning a flexible film (E-MASK RP300, manufactured by Nitto Denko Corp.) having an opening 9 corresponding to a portion where the organic EL layer 5 is to be formed as a mask 8 with respect to the substrate 2 formed up to the first electrode 4 From above the mask 8, copper phthalocyanine (CuPc) 25 nm / N, N'-diphenyl-NN-bis (1-naphthyl) -1,1'-biphenyl)-in a vacuum of 10 -4 Pa 4,4′-diamine (NPB) 45 nm / 8-quinolinol aluminum complex (Alq3) 60 nm / lithium fluoride (LiF) 0.5 nm was deposited at a rate of 0.1 nm / sec, and then the mask 8 was wound up. The organic EL layer 5 having a predetermined pattern was peeled off. Next, the organic EL layer 5 is formed while aligning a flexible film (E-MASK RP300, manufactured by Nitto Denko Corporation) provided with an opening 11 corresponding to the portion where the second electrode 6 is to be formed as the mask 10. The second electrode 6 having a predetermined pattern is bonded to the substrate 2 and evaporated from above the mask 10 by vapor deposition of Al (thickness 10 nm) in a vacuum of 10 −4 Pa. Formed. This was cut into a size of 30 mm in length to obtain the target organic EL device.
〔実施例2〕
 有機EL層5をパターニングせずに、基板2に対しほぼ全面に形成した他は、実施例1と同様にして、目的とする有機EL素子を得た。
[Example 2]
A target organic EL device was obtained in the same manner as in Example 1 except that the organic EL layer 5 was formed on almost the entire surface of the substrate 2 without patterning.
〔実施例3〕
 有機EL層5を形成した後、マスク8を剥離せずに続けてそのマスク8の上から10-4Paの真空でAl(厚み10nm)を蒸着した後、マスク8を巻き取りながら剥離して、所定パターンを有する有機EL層5およびこれと同一のパターンを有する第2電極6を形成した他は、実施例1と同様にして、目的とする有機EL素子を得た。
Example 3
After the organic EL layer 5 is formed, Al (thickness 10 nm) is deposited on the mask 8 in a vacuum of 10 −4 Pa without peeling off the mask 8, and then peeled off while winding the mask 8. The target organic EL device was obtained in the same manner as in Example 1 except that the organic EL layer 5 having a predetermined pattern and the second electrode 6 having the same pattern were formed.
〔比較例1〕
 所定パターンを有する有機EL層5の形成を、フレキシブルフィルムからなるマスク8に代えてSUS304製のシャドウマスク(厚み50μm)を用い、さらに所定パターンを有する第2電極の形成を、フレキシブルフィルムからなるマスク10に代えて、SUS304製のシャドウマスク(厚み50μm)を用いて行った他は、実施例1と同様にして、目的とする有機EL素子を得た。
[Comparative Example 1]
For the formation of the organic EL layer 5 having a predetermined pattern, a shadow mask (thickness 50 μm) made of SUS304 is used instead of the mask 8 made of a flexible film, and the second electrode having a predetermined pattern is further formed by using a mask made of a flexible film. A target organic EL device was obtained in the same manner as in Example 1 except that a shadow mask (thickness: 50 μm) made of SUS304 was used instead of 10.
 得られたこれらの実施例1~3、比較例1の有機EL素子について、第1電極と第2電極との間に10mA/cm2の電流を印加し、その素子特性(発光効率)を有機EL発光効率測定装置(EL-3000、プレサイスゲージ社製)にて測定した。その結果、実施例1~3品は、1cd/Aの発光効率が得られた。比較例1品は、短絡を起こし、発光しなかった。 With respect to the organic EL elements of Examples 1 to 3 and Comparative Example 1 thus obtained, a current of 10 mA / cm 2 was applied between the first electrode and the second electrode, and the element characteristics (luminous efficiency) were determined as organic. It was measured with an EL luminous efficiency measuring device (EL-3000, manufactured by Precise Gauge). As a result, the products of Examples 1 to 3 had a light emission efficiency of 1 cd / A. The product of Comparative Example 1 caused a short circuit and did not emit light.
 上記の結果より、実施例1~3品はいずれも、ロールトゥロールプロセスで連続的に製造することができ、しかも優れた素子特性を有していることがわかる。一方、比較例1品は、ロールトゥロールプロセスで製造できるものの、実施例品と同様の連続製造を行うと、短絡を起こし発光しなかった。これは、金属製のシャドウマスクとの接触によって、各層に微細な傷が発生したことに起因するためであると思われる。 From the above results, it can be seen that all the products of Examples 1 to 3 can be continuously produced by a roll-to-roll process and have excellent device characteristics. On the other hand, although the product of Comparative Example 1 can be produced by a roll-to-roll process, when the same continuous production as that of the Example product was performed, a short circuit occurred and no light was emitted. This seems to be because fine scratches were generated in each layer due to contact with a metal shadow mask.
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。 In the above embodiments, specific forms in the present invention have been described. However, the above embodiments are merely examples and are not construed as limiting. Various modifications apparent to those skilled in the art are contemplated to be within the scope of this invention.
 本発明の有機EL素子の製法は、照明機器、液晶ディスプレイのバックライト、展示デコレーション用の発光部品やデジタルサイネージ等に用いられる有機EL素子を迅速に効率よく製造する方法として適している。 The method for producing an organic EL element of the present invention is suitable as a method for quickly and efficiently producing an organic EL element used for lighting equipment, a backlight of a liquid crystal display, a light emitting component for display decoration, digital signage, and the like.

Claims (3)

  1.  ロールトゥロールによりシート状基板を搬送する工程と、上記シート状基板の上側に第1電極を形成する工程と、上記第1電極上に有機エレクトロルミネッセンス層を形成する工程と、上記有機エレクトロルミネッセンス層上にマスクを用いて所定パターンを有する第2電極を形成する工程とを有し、上記第2電極を形成する工程において、上記マスクは粘着面を有し上記所定パターンに対応する開口部を有するフレキシブルフィルムであり、上記マスクを上記有機エレクトロルミネッセンス層が形成されたシート状基板に貼り合せた状態で、第2電極形成材料を上記開口部を介して上記有機エレクトロルミネッセンス層上に蒸着した後、上記マスクを剥離することにより、所定パターンを有する第2電極を形成することを特徴とする有機エレクトロルミネッセンス素子の製法。 A step of conveying a sheet-like substrate by roll-to-roll, a step of forming a first electrode on the upper side of the sheet-like substrate, a step of forming an organic electroluminescence layer on the first electrode, and the organic electroluminescence layer Forming a second electrode having a predetermined pattern using a mask, and in the step of forming the second electrode, the mask has an adhesive surface and has an opening corresponding to the predetermined pattern. After the second electrode forming material is vapor-deposited on the organic electroluminescent layer through the opening, in a state of being a flexible film and the mask being bonded to the sheet-like substrate on which the organic electroluminescent layer is formed, A second electrode having a predetermined pattern is formed by peeling the mask. Direct Russia preparation of the luminescence element.
  2.  上記有機エレクトロルミネッセンス層を形成する工程において、マスクとして粘着面を有し所定パターンに対応する開口部を有するフレキシブルフィルムを用い、上記マスクをシート状の基板に対して貼り合せた状態で、有機エレクトロルミネッセンス層形成材料を上記開口部を介して上記第1電極上に蒸着した後、上記マスクを剥離することにより、所定パターンを有する有機エレクトロルミネッセンス層を形成するようにした請求項1記載の有機エレクトロルミネッセンス素子の製法。 In the step of forming the organic electroluminescent layer, a flexible film having an adhesive surface and having an opening corresponding to a predetermined pattern is used as a mask, and the mask is bonded to a sheet-like substrate. 2. The organic electroluminescence layer according to claim 1, wherein a luminescent layer forming material is deposited on the first electrode through the opening and then the mask is peeled to form an organic electroluminescence layer having a predetermined pattern. Manufacturing method of luminescence element.
  3.  ロールトゥロールによりシート状基板を搬送する工程と、上記シート状基板の上側に第1電極を形成する工程と、上記第1電極上にマスクを用いて所定パターンを有する有機エレクトロルミネッセンス層を形成する工程と、上記有機エレクトロルミネッセンス層上にマスクを用いて上記有機エレクトロルミネッセンス層と同一パターンを有する第2電極を形成する工程とを有し、上記有機エレクトロルミネッセンス層を形成する工程および第2電極を形成する工程において、上記マスクとして粘着面を有し所定パターンに対応する開口部を有する同一のフレキシブルフィルムを共通に用い、上記マスクをシート状の基板に対して貼り合せた状態で、有機エレクトロルミネッセンス層形成材料および第2電極形成材料を上記開口部を介してこの順で上記第1電極上に蒸着した後、上記マスクを剥離することにより、所定パターンを有する有機エレクトロルミネッセンス層およびこれと同一パターンを有する第2電極を形成することを特徴とする有機エレクトロルミネッセンス素子の製法。 A step of conveying the sheet-like substrate by roll-to-roll, a step of forming the first electrode on the upper side of the sheet-like substrate, and an organic electroluminescence layer having a predetermined pattern using a mask on the first electrode Forming a second electrode having the same pattern as the organic electroluminescence layer using a mask on the organic electroluminescence layer, and forming the organic electroluminescence layer and the second electrode. In the forming step, the same flexible film having an adhesive surface and an opening corresponding to a predetermined pattern is commonly used as the mask, and the organic electroluminescence is bonded to the sheet-like substrate. The layer forming material and the second electrode forming material are fed through the opening. An organic electroluminescence device comprising: an organic electroluminescence layer having a predetermined pattern and a second electrode having the same pattern by peeling off the mask after sequentially depositing on the first electrode The manufacturing method.
PCT/JP2012/050117 2011-02-08 2012-01-05 Method of manufacturing organic electroluminescence element WO2012108217A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-025370 2011-02-08
JP2011025370A JP2012164581A (en) 2011-02-08 2011-02-08 Method for manufacturing organic electroluminescent element

Publications (1)

Publication Number Publication Date
WO2012108217A1 true WO2012108217A1 (en) 2012-08-16

Family

ID=46638437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050117 WO2012108217A1 (en) 2011-02-08 2012-01-05 Method of manufacturing organic electroluminescence element

Country Status (2)

Country Link
JP (1) JP2012164581A (en)
WO (1) WO2012108217A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160142776A (en) * 2015-06-03 2016-12-13 닛토덴코 가부시키가이샤 Masking pressure-sensitive adhesive tape
JP2017073308A (en) * 2015-10-08 2017-04-13 住友化学株式会社 Organic electronic element manufacturing method and organic electronic element
EP3016170B1 (en) * 2013-08-19 2021-12-08 LG Display Co., Ltd. Laminate having organic mask and method for manufacturing organic electroluminescent device using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005361A1 (en) * 2000-07-12 2002-01-17 3M Innovative Properties Company Encapsulated organic electronic devices and method for making same
JP2002367774A (en) * 2001-06-04 2002-12-20 Sony Corp Thin-film pattern forming method and thin-film pattern forming device
JP2003173870A (en) * 2001-12-04 2003-06-20 Sony Corp Manufacturing device and manufacturing method of organic electroluminescent element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002005361A1 (en) * 2000-07-12 2002-01-17 3M Innovative Properties Company Encapsulated organic electronic devices and method for making same
JP2002367774A (en) * 2001-06-04 2002-12-20 Sony Corp Thin-film pattern forming method and thin-film pattern forming device
JP2003173870A (en) * 2001-12-04 2003-06-20 Sony Corp Manufacturing device and manufacturing method of organic electroluminescent element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3016170B1 (en) * 2013-08-19 2021-12-08 LG Display Co., Ltd. Laminate having organic mask and method for manufacturing organic electroluminescent device using same
KR20160142776A (en) * 2015-06-03 2016-12-13 닛토덴코 가부시키가이샤 Masking pressure-sensitive adhesive tape
JP2016222863A (en) * 2015-06-03 2016-12-28 日東電工株式会社 Adhesive tape for masking
US10858552B2 (en) 2015-06-03 2020-12-08 Nitto Denko Corporation Masking pressure-sensitive adhesive tape
KR102627197B1 (en) * 2015-06-03 2024-01-22 닛토덴코 가부시키가이샤 Masking pressure-sensitive adhesive tape
JP2017073308A (en) * 2015-10-08 2017-04-13 住友化学株式会社 Organic electronic element manufacturing method and organic electronic element
CN108141937A (en) * 2015-10-08 2018-06-08 住友化学株式会社 The manufacturing method and organic electronic element of organic electronic element
EP3361831A4 (en) * 2015-10-08 2019-07-03 Sumitomo Chemical Company, Limited Organic electronic element manufacturing method and organic electronic element
US10651430B2 (en) 2015-10-08 2020-05-12 Sumitomo Chemical Company, Limited Organic electronic element manufacturing method and organic electronic element
CN108141937B (en) * 2015-10-08 2020-05-22 住友化学株式会社 Method for manufacturing organic electronic element

Also Published As

Publication number Publication date
JP2012164581A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP6343026B2 (en) LAMINATED FOR SEALING, ORGANIC LIGHT EMITTING DEVICE AND METHOD FOR PRODUCING THEM
TWI523295B (en) Organic light emitting device comprising flexible substrate and method for preparing thereof
JP5854746B2 (en) Top emission type organic electroluminescence light emitting device and manufacturing method thereof
US8791490B2 (en) Organic light-emitting diode, contact arrangement and method for producing an organic light-emitting diode
CN102222684B (en) Organic electroluminescent display and manufacture method thereof
EP2592672B1 (en) Organic light-emitting device and method for manufacturing same
JP2012238555A (en) Method for manufacturing organic el element, device for manufacturing the organic el element, and organic el element
TW200526068A (en) Segmented organic light emitting device
KR102185577B1 (en) OLED substrate and its manufacturing method
JP4288732B2 (en) Method of manufacturing transfer body for manufacturing light emitting element
JP4253883B2 (en) Method for manufacturing light emitting device
CN101471427A (en) Organic light emitting diode and method for manufacturing the same
WO2012108217A1 (en) Method of manufacturing organic electroluminescence element
KR20120127285A (en) Method and apparatus for manufacturing organic el device, and organic el device
US20180190948A1 (en) Lighting apparatus using organic light emitting device and method of fabricating thereof
JP6234984B2 (en) Manufacturing method of organic light emitting diode
JP2012182005A (en) Method for manufacturing organic electroluminescent element
WO2017000326A1 (en) Method for manufacturing flexible oled display device
JP2008171993A (en) Organic electroluminescent element, light source for optical communication, and lighting apparatus
WO2007049427A1 (en) Process and apparatus for producing organic electroluminescent element
KR20130066965A (en) Organic light emitting diode and manufacturing method thereof
JP2002313585A (en) Organic led and method of manufacturing it
US10707437B2 (en) Top-emitting OLED device, method of manufacturing the same, and display panel
WO2012098936A1 (en) Top-emission type organic electroluminescent element and method for manufacturing same
KR20110015930A (en) Transcripting device in using thermal transfer process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745329

Country of ref document: EP

Kind code of ref document: A1