WO2012108072A1 - Composition for forming silica-containing coating film for inkjet applications, method for forming silica-containing coating film, semiconductor device, and solar cell system - Google Patents

Composition for forming silica-containing coating film for inkjet applications, method for forming silica-containing coating film, semiconductor device, and solar cell system Download PDF

Info

Publication number
WO2012108072A1
WO2012108072A1 PCT/JP2011/069198 JP2011069198W WO2012108072A1 WO 2012108072 A1 WO2012108072 A1 WO 2012108072A1 JP 2011069198 W JP2011069198 W JP 2011069198W WO 2012108072 A1 WO2012108072 A1 WO 2012108072A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiling point
solvent
silica
mass ratio
content
Prior art date
Application number
PCT/JP2011/069198
Other languages
French (fr)
Japanese (ja)
Inventor
貴浩 吉川
悠平 岡田
治彰 桜井
恭 神代
格 山浦
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2012556748A priority Critical patent/JPWO2012108072A1/en
Publication of WO2012108072A1 publication Critical patent/WO2012108072A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents

Definitions

  • the present invention relates to a silica-based film forming composition for inkjet, a method for forming a silica film, a semiconductor device, and a solar cell system.
  • Silica-based coatings are applied in various fields because they are excellent in insulation, heat resistance, transparency, wear resistance, and the like.
  • it is used as an insulation film between wires, element isolation films and mask materials from the viewpoint of insulation, heat resistance, and barrier properties.
  • insulation, heat resistance, and transparency are used in liquid crystal devices. From the viewpoint of performance, it is applied as a protective film of the element.
  • a gas phase growth method and a coating method are known as general methods for obtaining a silica-based film.
  • the gas layer growth method is widely applied and has a feature that a dense silica film can be obtained.
  • the coating method has features such that film formation can be performed with a relatively simple apparatus and film formation on a large-sized substrate is relatively easy. Examples of the coating method include spin coating, spraying, dipping, roll coating, and screen printing.
  • Patent Document 1 An inkjet method has been studied as a method for easily and inexpensively forming a pattern. Since the inkjet method can form a desired pattern at a desired position, it is not necessary to form a silica film on the entire surface of the substrate unlike the photolithography method, and the amount of material to be used can be greatly reduced. There is a big merit in terms of environment.
  • Patent Documents 2 and 3 As a method for obtaining an ink jet-compatible silica-based film forming composition, a sol-gel method using alkoxysilane as a raw material is known (Patent Documents 2 and 3).
  • Patent Document 2 when ethanol or water is used as a solvent, or as described in Patent Document 3, a solvent at 100 ° C. or less may occupy 70 to 90% by weight of the entire composition. In such a case, if the non-ejection and ejection operations are repeated in ink jet drawing, nozzle clogging is likely to occur. In mass production, since such discharge and non-discharge are repeated, the conventional silica-based film-forming composition is not yet sufficient for practical use.
  • the silica-based film forming composition for ink jet is required to have a characteristic that the pattern at the time of drawing is difficult to bleed when the pattern is drawn using the composition.
  • the nozzle tip of the silica-based film forming composition for ink jet It is necessary to satisfy both the non-drying property and the quick drying property at the time of pattern drawing. However, it is very difficult to satisfy these conflicting characteristics.
  • the present invention provides a silica-based film-forming composition for inkjet that can be ejected without causing clogging of inkjet nozzles even when the operations of non-ejection and ejection are repeated, and the pattern at the time of drawing is difficult to bleed, and the composition
  • An object of the present invention is to provide a method for forming a silica-based film using a product, a semiconductor device, and a solar cell system.
  • the present invention provides a silica-based film-forming composition for inkjet as described in the following (1) and (2), a method for forming a silica-based film as described in (3) below, (4) And the solar cell system described in the following (5).
  • the silica-type film formation composition for inkjets which satisfies the relationship represented by the following conditions A, B, or C.
  • Condition A When the boiling point of the first solvent is 80 to 100 ° C., the mass ratio is 0.3 to 0.5.
  • Condition B When the boiling point of the first solvent is 100 to 130 ° C., the mass ratio is 0.4 to 0.6.
  • Condition C When the boiling point of the first solvent is 130 to 160 ° C., the mass ratio is 0.5 to 0.7.
  • R 1 n SiX 4-n (I) [Wherein R 1 represents an organic group having 1 to 20 carbon atoms, X represents a hydrolyzable group, and n represents an integer of 0 to 2.
  • n 2
  • a plurality of R 1 may be the same or different
  • n 0 to 2
  • a plurality of X 1 may be the same or different.
  • a semiconductor device comprising a substrate and a silica-based coating film having a pattern formed on the substrate by the method described in (3).
  • (5) A solar cell system comprising the semiconductor device according to (4).
  • a silica-based film-forming composition for inkjet that can be ejected without causing clogging of inkjet nozzles even when the operations of non-ejection and ejection are repeated, and the pattern at the time of drawing is difficult to bleed, and A method for forming a silica-based film using the composition, a semiconductor device, and a solar cell system are provided.
  • a mixed solvent containing a first solvent that is a low-boiling component and a second solvent that is a high-boiling component is used as the solvent for the silica-based film-forming composition for inkjet. This is very important.
  • the non-drying property at the nozzle tip is achieved at a high level mainly by the action of the second solvent, and the quick drying property at the time of drawing is mainly achieved by the action of the first solvent.
  • the solvent contained in the ink-jet silica-based film forming composition of the present invention is such that the mass ratio of the content of the first solvent to the total content of the first solvent and the second solvent is the above-mentioned conditions A to C. One of the above is satisfied. This is based on the knowledge of the present inventors that these conditions are suitable from the viewpoint of compatibility between non-drying at the nozzle tip of the silica-based film-forming composition for inkjet and quick drying at the time of pattern drawing. It is.
  • the effect that the pattern at the time of drawing hardly bleeds is also due to the fact that the silica-based film-forming composition for inkjet contains a surface conditioner. Accordingly, it is considered that bleeding of the drawing pattern is suppressed by controlling the wettability to the substrate and the fluidity of the silica-based resin. More specifically, the bleeding of the drawing pattern is caused by a local increase in ink viscosity or surface due to non-uniform wetting (repelling, etc.) of the ink on the coated object or non-uniform evaporation of the solvent of the ink during ejection. It is thought to be caused by a change in tension.
  • the surface conditioner in the present invention is (1) a compound having the action of uniformizing the surface tension of the coating film in the drying process and improving the wettability to the coating object, and (2) evaporation of the solvent from the coating film surface.
  • the silica-based film-forming composition for inkjet contains the following components (a) to (c).
  • condition A When the boiling point of the first solvent is 80 to 100 ° C., the mass ratio is 0.3 to 0.5.
  • Condition B When the boiling point of the first solvent is 100 to 130 ° C., the mass ratio is 0.4 to 0.6.
  • Condition C When the boiling point of the first solvent is 130 to 160 ° C., the mass ratio is 0.5 to 0.7. (C) Surface conditioner.
  • (A) Component Silicon compound
  • the silica-based film-forming composition for ink jet according to this embodiment has a silicon compound obtained by hydrolysis and polycondensation of the compound represented by the general formula (I) as an essential component. .
  • hydrolysis / polycondensation means that the compound represented by the general formula (I) is hydrolyzed, condensed while dehydrating (H 2 O), and polymerized. To do.
  • Examples of X in the general formula (I) include an alkoxy group, a halogen atom, an acetoxy group, an isocyanate group, and a hydroxyl group, and among these, an alkoxy group is preferable.
  • alkoxysilane examples include tetraalkoxysilane represented by the following general formula (I-1), trialkoxysilane represented by the following general formula (I-2), and the following general formula (I Dialkoxysilane represented by -3).
  • An alkoxysilane may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Si (OR 2 ) 4 (I-1) Wherein R 2 may be the same or different and each independently represents an alkyl group.
  • R 3 Si (OR 4 ) 3 (I-2) [Wherein R 3 represents an alkyl group or a phenyl group, the phenyl group may have a substituent, and R 4 may be the same or different, and each independently represents an alkyl group. ]
  • R 5 2 Si (OR 6 ) 2 (I-3) [In the formula, R 5 may be the same or different, each independently represents an alkyl group or a phenyl group, the phenyl group may have a substituent, and R 6 may be the same or different, Each independently represents an alkyl group. ]
  • the number of carbon atoms of the alkoxy group R (R 2 , R 4 and R 6 ) is not particularly limited, Usually, it has 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms from the viewpoint of availability. Further, R (R 2 , R 4, and R 6 ) of the alkoxy group may be one in which a part of hydrogen atoms is substituted with fluorine.
  • Examples of the tetraalkoxysilane represented by the general formula (I-1) include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, and tetrabutoxysilane. Of these, tetraethoxysilane is preferably used in terms of reactivity and reaction by-products.
  • trialkoxysilanes represented by the general formula (I-2) include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-iso-propoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane.
  • methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, and phenyltriethoxysilane are preferably used in terms of reactivity and reaction by-products.
  • dialkoxysilanes represented by the general formula (I-3) include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysilane, dimethyldi-iso-propoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, and diethyldiethoxysilane.
  • the alkoxysilanes represented by the general formula (I-1), general formula (I-2) and general formula (I-3) may be used alone or in combination of two or more. Also good.
  • the alkoxysilanes represented by the general formula (I-1), general formula (I-2) and general formula (I-3) are used in combination of two or more, the mixing ratio is not particularly limited.
  • the general formula (I -1) The molar amount M 2 of the trialkoxysilane represented by the general formula (I-2) and the dialkoxy represented by the general formula (I-3) relative to the molar amount M 1 of the tetraalkoxysilane represented by -1)
  • the ratio (M 2 + M 3 ) / M 1 of the total amount of the silane molar amount M 3 is preferably 0.1 or more, more preferably 0.5 or more, and 0.8 or more. Highly preferred. From the viewpoint of good wettability with the base substrate, (M 2 + M 3 ) / M 1 is preferably 4.0 or less, more preferably 2.5 or less, and 1.5 or less. It is very preferable that
  • the component (b) may be used as a solvent, or a solvent other than the component (b) may be used.
  • Solvents used for hydrolysis and polycondensation of alkoxysilane include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-propyl ketone, methyl-n-butyl ketone, methyl-iso-butyl ketone, methyl-n- Pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, dipropyl ketone, di-iso-butyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, ⁇ -butyrolactone Ketone solvents such as ⁇ -val
  • the solvent when a solvent other than the component (b) is used when hydrolyzing and polycondensing the alkoxysilane, the solvent is removed by distillation after the reaction, and the resulting siloxane resin is used as a silica-based film-forming composition for inkjet. It can be used for the preparation of products.
  • the amount of the solvent when the general formula (I-1), the general formula (I-2), and the general formulas to (I-3) are hydrolyzed and polycondensed using the above-mentioned solvent is determined depending on the uniformity of the reaction. Therefore, it is preferable that the SiO 2 equivalent concentration be in the range of 5% by mass to 35% by mass, the lower limit being 10% by mass or more, and the upper limit being 30% by mass or less. .
  • a catalyst when hydrolyzing and polycondensing alkoxysilane, a catalyst can be added to shorten the reaction time and make the reaction uniform.
  • the catalyst include an acid catalyst, an alkali catalyst, a metal chelate compound, and the like, but it is preferable to use an acid catalyst from the viewpoint of ensuring the stability of the resulting silica-based film-forming composition for inkjet.
  • Examples of the acid catalyst include organic acids and inorganic acids.
  • organic acids include formic acid, maleic acid, fumaric acid, phthalic acid, malonic acid, succinic acid, tartaric acid, malic acid, lactic acid, citric acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid , Octanoic acid, nonanoic acid, decanoic acid, oxalic acid, adipic acid, sebacic acid, butyric acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzenesulfonic acid, benzoic acid, p-aminobenzoic acid, p- Examples include toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid and trifluoroethanesulfonic acid.
  • inorganic acids examples include hydrochloric acid, phosphoric acid, nitric acid, boric acid, sulfuric acid, and hydrofluoric acid.
  • maleic acid as the organic acid and nitric acid as the inorganic acid.
  • the amount of catalyst used can be appropriately selected according to the type and amount of alkoxysilane, the type of catalyst, and the like.
  • a tetraalkoxysilane represented by the general formula (I-1), a trialkoxysilane represented by the general formula (I-2), and a dialkoxysilane represented by the general formula (I-3) are used in combination.
  • an acid catalyst is used as the catalyst, the molar ratio of the tetraalkoxysilane represented by the general formula (I-1) to the total number of moles of the alkoxysilane is represented by A and the trioxide represented by the general formula (I-2).
  • the amount (molar ratio) of the acid catalyst used is [(4A + 3B + 2C) / 3000] to [
  • the range of (4A + 3B + 2C) / 10] is preferable, and the range of [(4A + 3B + 2C) / 3000] to [(4A + 3B + 2C) / 100] is more preferable.
  • the amount of water to be used can be appropriately selected according to the type and amount of the alkoxysilane used.
  • a tetraalkoxysilane represented by general formula (I-1), a trialkoxysilane represented by general formula (I-2), and a dialkoxysilane represented by general formula (I-3) are used in combination.
  • the molar ratio of the tetraalkoxysilane represented by the general formula (I-1) to the total number of moles of alkoxysilane is A
  • the molar ratio of the trialkoxysilane represented by the general formula (I-2) is B
  • the amount of water (molar ratio) is preferably in the range of [(4A + 3B + 2C) / 2] to [(4A + 3B + 2C) ⁇ 2]
  • the range of [(4A + 3B + 2C) / 2] to [4A + 3B + 2C) ⁇ 1] is more preferable.
  • the weight average molecular weight (Mw) of the silicon compound as component (a) is preferably from 500 to 20000, more preferably from 500 to 10,000, from the viewpoints of solubility in a solvent and inkjet discharge properties.
  • Mw weight average molecular weight
  • the weight average molecular weight is measured by gel permeation chromatography (hereinafter referred to as “GPC”) and converted using a standard polystyrene calibration curve.
  • the weight average molecular weight (Mw) can be measured, for example, by GPC under the following conditions.
  • Sample 10 ⁇ L of silica-based film forming composition for inkjet Standard polystyrene: Standard polystyrene manufactured by Tosoh Corporation (molecular weight: 190000, 17900, 9100, 2980, 578, 474, 370, 266)
  • Detector manufactured by Hitachi, Ltd., RI-monitor, trade name “L-3000” Integrator: Hitachi, Ltd., GPC integrator, product name “D-2200”
  • Pump Hitachi, Ltd., trade name “L-6000”
  • Degassing device Showa Denko Co., Ltd., trade name "Shodex DEGAS” Column: manufactured by Hitachi Chemical Co., Ltd., trade names “GL-R440”, “GL-R430”, “GL-R420” are used in this order and are used Eluent: Tetrahydrofur
  • the content of the component (a) in the silica-based film-forming composition for inkjet is preferably 5 to 35% by mass, and more preferably 5 to 30% by mass. If the content of the component (a) is 5% by mass or more, the film thickness of the silica-based film to be formed is not too thin and has an appropriate thickness. The possibility of being necessary can be reduced. Thereby, it becomes easy to suppress the increase in process time and the occurrence of bleeding of the drawing pattern due to the overlapping drawing. On the other hand, if content of (a) component is 35 mass% or less, there exists a tendency which can make the storage stability of the silica-type film forming composition for inkjets favorable.
  • (B) Component Solvent
  • the component (b) according to the present embodiment contains a first solvent having a boiling point of 80 to 160 ° C. and a second solvent having a boiling point of 180 to 230 ° C. content (hereinafter, “C 1" hereinafter.) and the content of the second solvent (hereinafter, “C 2" hereinafter.) the total amount of (C 1 + C 2) of the C 1 to the weight ratio C 1 / (C 1 + C 2 ) is a mixed solvent that satisfies the relationship represented by the following conditions A, B, or C.
  • “boiling point” means a boiling point at normal pressure.
  • Condition A When the boiling point of the first solvent is 80 to 100 ° C., 0.3 ⁇ C 1 / (C 1 + C 2 ) ⁇ 0.5.
  • Condition B When the boiling point of the first solvent is 100 to 130 ° C., 0.4 ⁇ C 1 / (C 1 + C 2 ) ⁇ 0.6.
  • Condition C 0.5 ⁇ C 1 / (C 1 + C 2 ⁇ 0.7 when the boiling point of the first solvent is 130 to 160 ° C.
  • the first solvent is not particularly limited as long as the boiling point is in the range of 80 to 160 ° C.
  • the 1st solvent contained in a composition may be 1 type, or 2 or more types.
  • Examples of the first solvent having a boiling point of 80 to 100 ° C. satisfying the condition (A) include 1-propanol, 2-propanol, 2-butanol and the like. Among these solvents, 2-propanol is preferably used because of compatibility with the resulting siloxane resin and the second solvent.
  • Examples of the first solvent having a boiling point of 100 to 130 ° C. satisfying the condition (B) include butyl acetate, isobutyl acetate, propylene glycol monomethyl ether and the like.
  • the boiling point of the first solvent in the condition (B) is preferably 110 to 130 ° C.
  • isobutyl acetate is preferably used because of compatibility with the resulting siloxane resin and the second solvent.
  • Examples of the first solvent having a boiling point of 130 to 160 ° C. satisfying the condition (C) include propylene glycol monopropyl ether, ethyl lactate and cyclohexanone.
  • the boiling point of the first solvent in the condition (C) is preferably 140 to 160 ° C.
  • the second solvent has a boiling point of 180 ° C. to 230 ° C., preferably 180 ° C. to 200 ° C. There is no particular limitation as long as the boiling point is within such a range.
  • the second solvent ⁇ -butyrolactone, ethers and glycols can be used, and examples thereof include dipropylene glycol monomethyl ether and propylene glycol.
  • the second solvent contained in the composition may be one type or two or more types.
  • the mass ratio C 1 / (C 1 + C 2 ) satisfies the relationship represented by the above condition A, condition B, or condition C according to the boiling point of the first solvent. Therefore, it is possible to achieve both non-drying at the nozzle tip when discharging the composition and quick drying at the time of pattern drawing, and the ink jet nozzles will not be clogged even when non-discharge and discharge operations are repeated, and at the time of drawing The pattern can be hard to spread.
  • Component (c) is a surface conditioner.
  • a surface conditioner When the composition contains a surface conditioner, it is possible to control the wettability of the ink to the substrate surface and the cross-sectional shape of the pattern, which is effective in preventing the pattern from bleeding.
  • a commercially available compound as a surface conditioner can be used without particular limitation. Specifically, a fluorine-based surface conditioner, a silicone-based surface conditioner, a nonionic surface conditioner, and the like can be used. Can be used. Of these, the use of a silicone-based surface conditioner is particularly effective in suppressing pattern bleeding.
  • the content of the component (c) is preferably 0.1% by mass or more and more preferably 0.2% by mass or more with respect to the component (a). Moreover, 1.0 mass% or less is preferable with respect to (a) component, and, as for content of (c) component, 0.8 mass% or less is more preferable.
  • (c) component may be used individually by 1 type or in combination of 2 or more types.
  • the method for forming a silica-based film according to the present embodiment includes a step of forming a drawing pattern film by discharging the composition onto a substrate by an inkjet method to form a drawing pattern film, and a step of precuring the drawing pattern film. And a step of curing the drawing pattern film to obtain a silica-based film having a pattern.
  • Pattern drawing by the inkjet method can be performed using an inkjet apparatus.
  • Ink jet devices are generally roughly classified into two types, a continuous type (continuous discharge type) and an on-demand type.
  • the continuous type is a system in which ink is always ejected continuously even when a pattern is not drawn on a substrate.
  • On-demand type is a method of drawing a pattern on a substrate by ejecting ink in a necessary amount when necessary.
  • the on-demand type includes an inkjet apparatus using a piezoelectric element that deforms when a voltage is applied, and a thermal inkjet apparatus that discharges using bubbles generated by heating.
  • the silica-based film-forming composition for inkjet according to the present embodiment may basically use either method, but it is preferable to use an inkjet device using a piezo element from the viewpoint of suppressing ink composition change. .
  • the substrate on which the pattern is drawn may be drawn while being heated in the range of 50 to 100 ° C.
  • the quick drying property of the ink on the substrate can be further improved, and the disorder of the drawing pattern can be prevented.
  • a step of precuring the drawing pattern film may be provided before the step of curing the drawing pattern film.
  • the polycondensation reaction of the siloxane resin in the drawing pattern film is accelerated and the organic solvent is heated with a hot plate or the like at the first stage baking: 80 to 140 ° C. and the second stage baking: 180 to 250 ° C. You may perform drying in steps.
  • the first stage and the second stage bake may be further multistaged. By the multi-stage baking, the siloxane resin is uniformly cured, and it is possible to prevent the drawing pattern from being disturbed due to the thermal convection when the solvent is removed.
  • Step of curing drawing pattern film> the final curing is performed, for example, by baking the drawing pattern film (which may not be precured) at a heating temperature of 350 to 1000 ° C. If the heating temperature for final curing is 350 ° C. or higher, sufficient curing is easily achieved, and if it is 1000 ° C. or lower, the substrate is unlikely to be adversely affected.
  • the heating time for the final curing is preferably 2 to 60 minutes, more preferably 2 to 30 minutes. If this heating time is 60 minutes or less, the amount of heat input will not increase excessively, and thus the deterioration of the substrate will be suppressed gradually.
  • a heat treatment device such as a quartz tube furnace, other furnaces, a hot plate, rapid thermal annealing (RTA), UV irradiation annealing, EB irradiation annealing, or the like can be used.
  • the atmosphere of the gas at the time of final curing may be either an inert gas atmosphere such as nitrogen, argon or helium, or an active gas atmosphere such as oxygen or ozone, as long as the substrate is not adversely affected.
  • the use of the silica-based film forming composition for inkjet according to the present embodiment and the method for forming the silica-based film is not particularly limited, but for example, it can be used for a device including an insulating film such as a semiconductor device (element) or a multilayer wiring board. Can be mentioned. More specifically, in a semiconductor device, it can be used as a surface protective film (passivation film), a buffer coat film, an interlayer insulating film, a diffusion prevention film, and the like. On the other hand, in a multilayer wiring board, it can be suitably used as an interlayer insulating film.
  • the semiconductor device of this embodiment includes a substrate and a silica-based film having a predetermined pattern formed on the substrate by the method for forming a silica-based film.
  • Such semiconductor devices include, for example, individual semiconductors such as diodes, transistors, compound semiconductors, thermistors, varistors, thyristors, DRAMs (Dynamic Random Access Memory), SRAMs (Static Random Access Memory), EPROMs.
  • Theoretical circuit elements such as ASIC, integrated circuit elements such as compound semiconductors represented by MMIC (monolithic microwave integrated circuit), hybrid integrated circuits (hybrid IC) , Light emitting diodes, and a photoelectric conversion element such as a charge coupled device.
  • MMIC monolithic microwave integrated circuit
  • hybrid integrated circuits hybrid integrated circuits
  • Light emitting diodes and a photoelectric conversion element such as a charge coupled device.
  • examples of the multilayer wiring board include a high-density wiring board such as MCM.
  • the solar cell system of this embodiment includes the semiconductor device.
  • the photoelectric conversion element is a semiconductor device used in a solar cell system, and has been actively developed due to the influence of recent environmental problems.
  • a typical photoelectric conversion element includes a semiconductor Si wafer in which an impurity called a dopant is diffused to form a pn junction.
  • an element in which a non-diffusion region and a diffusion region of a dopant are mixed on one Si wafer is sometimes produced in order to increase the efficiency of the solar cell. In such a case, it is necessary to form a diffusion prevention mask in the non-diffusion region.
  • a diffusion prevention mask has been obtained by patterning a silica-based film formed by CVD or the like by a photolithography method.
  • the silica-based film forming composition for inkjet according to the present embodiment is used, a silica-based film patterned by inkjet can be obtained, which is useful because the number of steps and the necessary materials can be reduced.
  • the silica-based coating according to this embodiment can be used for applications such as liquid crystal parts, optical waveguides, and photoresists, but the usage is not limited to this.
  • the siloxane resin solid content concentration of the silicon compound A at this time was 60% by mass.
  • the siloxane resin solid content concentration of the silicon compound B at this time was 60% by mass.
  • silicon compound C was obtained by adding tetraethylene glycol dimethyl ether until the total amount of the silicon compound solution reached 100 g. At this time, the siloxane resin solid content concentration of the silicon compound C was 60% by mass.
  • Example 1 To the silicon compound A, 0.3 g of Dispalon 1711 (trade name, manufactured by Enomoto Kasei Co., Ltd., registered trade name) is added and stirred to the silicon compound A, and 2-propanol (boiling point 82 ° C.) is added to 17. 2g was added. At this time, the mass ratio of the 2-propanol content to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%.
  • Silica-based film-forming composition A-1 was produced.
  • Example 2 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of 2-propanol (boiling point 82 ° C.) was added. At this time, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition A-2 was prepared.
  • Example 3 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of 2-propanol (boiling point 82 ° C.) was added. At this point, the mass ratio of the 2-propanol content to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition A-3 was produced.
  • Example 4 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 17.2 g of 1-propanol (boiling point 97 ° C.) was added. At this time, the mass ratio of the content of 1-propanol to the total content of 1-propanol (boiling point 97 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%.
  • Silica-based film forming composition A-4 was prepared.
  • Example 5 To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 17.2 g of 2-propanol (boiling point 82 ° C.) was added. At this point, the mass ratio of the 2-propanol content to the total content of 2-propanol (boiling point 82 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%.
  • Silica-based film forming composition A-5 was produced.
  • Example 6 To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of 2-propanol (boiling point 82 ° C.) was added. At this time, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition A-6 was produced.
  • Example 7 To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 17.2 g of 1-propanol (boiling point 97 ° C.) was added. At this time, the mass ratio of the content of 1-propanol to the total content of 1-propanol (boiling point 97 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%.
  • Silica-based film forming composition A-7 was produced.
  • Example 8 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 10.0 g of 2-propanol (boiling point 82 ° C.) was added. At this point, the mass ratio of the 2-propanol content to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.2. Moreover, the siloxane resin solid content concentration at this time was 55%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.2 until the siloxane resin solid content concentration becomes 20% is added to the inkjet.
  • a silica-based film-forming composition a-1 was produced.
  • Example 9 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of 2-propanol (boiling point 82 ° C.) was added. At this time, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.6. At this time, the siloxane resin solid content concentration was 38%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition a-2 was prepared.
  • Example 11 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 17.2 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of isobutyl acetate (boiling point 118 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%.
  • Silica-based film forming composition a-4 was prepared.
  • Example 12 To the silicon compound C, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of 2-propanol (boiling point 82 ° C.) was added. At this time, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and tetraethylene glycol dimethyl ether (boiling point 273 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition a-5 was produced.
  • Example 13 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of the content of isobutyl acetate (boiling point 118 ° C.) and the content of dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling point solvent to the total content of the high-boiling point component and the low-boiling point component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition B-1 was produced.
  • Example 14 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of the content of isobutyl acetate (boiling point 118 ° C.) and the content of dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition B-2 was prepared.
  • Example 15 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of isobutyl acetate (boiling point 118 ° C.) was added. At this point, the mass ratio of the content of isobutyl acetate to the total content of isobutyl acetate (boiling point 118 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.6. At this time, the siloxane resin solid content concentration was 38%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition B-3 was prepared.
  • Example 16 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of butyl acetate (boiling point 126 ° C.) was added. At this time, the mass ratio of the content of butyl acetate to the total content of butyl acetate (boiling point 126 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%.
  • siloxane resin solid content concentration reaches 20%
  • a mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.4 is added, and the silica for inkjet A system film-forming composition B-4 was prepared.
  • Example 17 To the silicon compound B, 0.3 g of Dispalon 1711 (Tsubakimoto Kasei), a silicone-based surface conditioner, was added and stirred, and 26.7 g of isobutyl acetate (boiling point 118 ° C.) was added. At this point, the mass ratio of the isobutyl acetate content to the total content of isobutyl acetate (boiling point 118 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition B-5 was produced.
  • Example 18 To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of isobutyl acetate (boiling point 118 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.6. At this time, the siloxane resin solid content concentration was 38%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition B-6 was produced.
  • Example 19 To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of butyl acetate (boiling point 126 ° C.) was added. At this time, the mass ratio of the content of butyl acetate to the total content of butyl acetate (boiling point 126 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition B-7 was produced.
  • Example 20 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 17.2 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of isobutyl acetate (boiling point 118 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%.
  • a silica-based film-forming composition b-1 was produced.
  • Example 21 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 93.5 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of the content of isobutyl acetate (boiling point 118 ° C.) and the content of dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.7. Moreover, the siloxane resin solid content concentration at this time was 31%.
  • this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film forming composition b-2 was produced.
  • Example 22 40.0 g of isobutyl acetate (boiling point 118 ° C.) was added to the silicon compound A. At this time, the mass ratio of the content of isobutyl acetate to the total content of the content of isobutyl acetate (boiling point 118 ° C.) and the content of dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film-forming composition b-3 was produced.
  • Example 23 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of 2-propanol (boiling point 82 ° C.) was added. At this time, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.6. At this time, the siloxane resin solid content concentration was 38%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film-forming composition b-4 was produced.
  • Example 24 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this point, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.4. Met. At this time, the siloxane resin solid content concentration was 47%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film-forming composition b-5 was produced.
  • Example 25 To the silicon compound C, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of isobutyl acetate (boiling point 118 ° C.) was added. At this point, the mass ratio of the isobutyl acetate content to the total content of isobutyl acetate (boiling point 118 ° C.) content and tetraethylene glycol dimethyl ether (boiling point 273 ° C.) content was 0.6. At this time, the siloxane resin solid content concentration was 38%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film-forming composition b-6 was produced.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 until the siloxane resin solid content concentration becomes 20% is added, and the silica for inkjet A system film-forming composition C-1 was produced.
  • Example 27 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this time, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.6. Met. At this time, the siloxane resin solid content concentration was 38%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film-forming composition C-2 was produced.
  • Example 28 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 93.5 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this point, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.7. Met. Moreover, the siloxane resin solid content concentration at this time was 31%.
  • this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition C-3 was prepared.
  • Example 29 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of cyclohexanone (boiling point 156 ° C.) was added. At this time, the mass ratio of the content of cyclohexanone to the total content of cyclohexanone (boiling point 156 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition C-4 was produced.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition C-5 was produced.
  • Example 31 To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 93.5 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this time, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.7. . Moreover, the siloxane resin solid content concentration at this time was 31%.
  • this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition C-6 was produced.
  • Example 32 To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of cyclohexanone (boiling point 156 ° C.) was added. At this time, the mass ratio of the content of cyclohexanone to the total content of cyclohexanone (boiling point 156 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%.
  • Silica-based film forming composition C-7 was produced.
  • Example 33 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this point, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.4. Met. At this time, the siloxane resin solid content concentration was 47%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film forming composition c-1 was prepared.
  • Example 34 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 160.0 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this time, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.8. Met. Moreover, the siloxane resin solid content concentration at this time was 23%.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.8 is added until the solid content of the siloxane resin reaches 20%.
  • a silica-based film forming composition c-2 was prepared.
  • this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film forming composition c-3 was produced.
  • Example 36 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 93.5 g of 2-propanol (boiling point 82 ° C.) was added. At this point, the mass ratio of the 2-propanol content to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.7. Moreover, the siloxane resin solid content concentration at this time was 31%.
  • this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film forming composition c-4 was prepared.
  • Example 37 To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 93.5 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of the content of isobutyl acetate (boiling point 118 ° C.) and the content of dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.7. Moreover, the siloxane resin solid content concentration at this time was 31%.
  • this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film-forming composition c-5 was produced.
  • this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%.
  • a silica-based film forming composition c-6 was prepared.
  • ⁇ Clogging evaluation B Ink (silica-based film formation for each inkjet) in the order of discharge (3 minutes), non-discharge (10 minutes), discharge (30 seconds), non-discharge (10 minutes), discharge (30 seconds) at room temperature (23 ° C.) It was determined whether or not the ink was discharged without clogging the nozzles when the discharge and non-discharge of the composition were repeated.
  • the bleeding of the drawing pattern was evaluated as follows. First, using a NanoPrinter-1100 Standard inkjet ejector, ink (each silica-based film-forming composition for inkjet) was ejected, and a predetermined pattern was drawn on a mirror-Si wafer heated to 70 ° C. At this time, the drawing conditions of the apparatus were set to “width 800 ⁇ m, length 20000 ⁇ m, film thickness 1.2 ⁇ m”.
  • Tables 1 to 6 show the compositions of the ink-jet silica-based film forming compositions of Experimental Examples 1 to 38 and the evaluation results.

Abstract

The present invention relates to a composition for forming a silica-containing coating film for inkjet applications, which comprises a silicon compound produced by the hydrolysis/condensation of a compound represented by general formula (I), a solvent and a surface-controlling agent, wherein the solvent comprises a first solvent having a boiling point of 80-160˚C and a second solvent having a boiling point of 180-230˚C and the ratio of the content of the first solvent relative to the total content of the first and second solvents is 0.3-0.7 by mass. In the formula, R1 represents an organic group having 1-20 carbon atoms; X represents a hydrolysable group; and n represents an integer of 0-2. R1 nSiX4-n … (I)

Description

インクジェット用シリカ系被膜形成組成物、シリカ系被膜の形成方法、半導体デバイス及び太陽電池システムSilica-based film forming composition for inkjet, method for forming silica-based film, semiconductor device, and solar cell system
 本発明は、インクジェット用シリカ系被膜形成組成物、シリカ被膜の形成方法、半導体デバイス及び太陽電池システムに関する。 The present invention relates to a silica-based film forming composition for inkjet, a method for forming a silica film, a semiconductor device, and a solar cell system.
 シリカ系被膜は、絶縁性、耐熱性、透明性、耐磨耗性等に優れていることから、様々な分野で適用されている。例えば、半導体デバイスにおいては、絶縁性、耐熱性、バリア性の点から、配線間の絶縁膜用途、素子分離膜やマスク材として適用されており、液晶デバイスにおいては、絶縁性・耐熱性・透明性の点から、素子の保護膜等として適用されている。 Silica-based coatings are applied in various fields because they are excellent in insulation, heat resistance, transparency, wear resistance, and the like. For example, in semiconductor devices, it is used as an insulation film between wires, element isolation films and mask materials from the viewpoint of insulation, heat resistance, and barrier properties. In liquid crystal devices, insulation, heat resistance, and transparency are used. From the viewpoint of performance, it is applied as a protective film of the element.
 従来、シリカ系被膜を得る一般的な方法として、気層成長法及び塗布法が知られている。半導体分野では、気層成長法が広く適応されており、緻密なシリカ膜が得られる等の特長がある。しかし、特殊な装置が必要であること、近年の処理基材の大型化に伴う装置コストの増大等の課題がある。一方、塗布法は比較的簡便な装置で成膜でき、大型基材への成膜も比較的容易である等の特長がある。塗布法にはスピンコート法、スプレー法、浸漬法、ロールコート法、スクリーン印刷法等が挙げられる。 Conventionally, a gas phase growth method and a coating method are known as general methods for obtaining a silica-based film. In the semiconductor field, the gas layer growth method is widely applied and has a feature that a dense silica film can be obtained. However, there are problems such as the need for a special apparatus and an increase in apparatus cost associated with the recent increase in size of the processing substrate. On the other hand, the coating method has features such that film formation can be performed with a relatively simple apparatus and film formation on a large-sized substrate is relatively easy. Examples of the coating method include spin coating, spraying, dipping, roll coating, and screen printing.
 ところで、パターン化されたシリカ系被膜を形成する方法としては、フォトリソグラフィー法が主流となっている。しかし、フォトリソグラフィー法によるパターン化は、工程が複雑であり、コスト的に高いという欠点がある。そこで、近年、簡便に安くパターンを形成できる手法としてインクジェット法が検討されている(特許文献1)。インクジェット法は、所望のパターンを所望の位置に形成可能であることから、フォトリソグラフィー法のように基板全面にシリカ被膜を形成する必要がなく、使用する材料量を大きく削減できるため、コスト的にも環境的にも大きなメリットがある。 By the way, as a method for forming a patterned silica-based film, a photolithography method has become the mainstream. However, patterning by the photolithography method has a drawback that the process is complicated and the cost is high. Therefore, in recent years, an inkjet method has been studied as a method for easily and inexpensively forming a pattern (Patent Document 1). Since the inkjet method can form a desired pattern at a desired position, it is not necessary to form a silica film on the entire surface of the substrate unlike the photolithography method, and the amount of material to be used can be greatly reduced. There is a big merit in terms of environment.
 インクジェット対応のシリカ系被膜形成組成物を得る方法としては、アルコキシシランを原料としたゾルーゲル法が知られている(特許文献2、3)。 As a method for obtaining an ink jet-compatible silica-based film forming composition, a sol-gel method using alkoxysilane as a raw material is known (Patent Documents 2 and 3).
特開2001-279134号公報JP 2001-279134 A 特開2009-239983号公報JP 2009-239983 A 特開2009-253127号公報JP 2009-253127 A
 しかし、特許文献2に記載されているように、溶媒としてエタノール若しくは水を用いる場合、又は、特許文献3に記載されているように100℃以下の溶媒が組成全体の70~90重量%占めるような場合には、インクジェット描画で未吐出と吐出の操作を繰り返すと、ノズル目詰まりを引き起こしやすい。量産時においては、このような吐出と未吐出が繰り返されるため、前記従来のシリカ系被膜形成組成物は、実用に供し得るものとしては未だ充分ではない。 However, as described in Patent Document 2, when ethanol or water is used as a solvent, or as described in Patent Document 3, a solvent at 100 ° C. or less may occupy 70 to 90% by weight of the entire composition. In such a case, if the non-ejection and ejection operations are repeated in ink jet drawing, nozzle clogging is likely to occur. In mass production, since such discharge and non-discharge are repeated, the conventional silica-based film-forming composition is not yet sufficient for practical use.
 さらに、インクジェット対応のシリカ系被膜形成組成物には、これを用いてパターンを描画したときに、描画時のパターンが滲みにくいという特性が要求される。ここで、未吐出と吐出の操作を繰り返してもインクジェットノズルの目詰まりを起こさず、その一方で、描画時のパターンを滲みにくくするためには、インクジェット用シリカ系被膜形成組成物のノズル先端部での非乾燥性とパターン描画時の即乾性の両立が必要となる。しかし、これらの相反する特性を満足することは非常に困難である。 Furthermore, the silica-based film forming composition for ink jet is required to have a characteristic that the pattern at the time of drawing is difficult to bleed when the pattern is drawn using the composition. Here, in order to prevent clogging of the ink jet nozzles even when the operations of non-ejection and ejection are repeated, on the other hand, in order to make it difficult for the pattern during drawing to bleed, the nozzle tip of the silica-based film forming composition for ink jet It is necessary to satisfy both the non-drying property and the quick drying property at the time of pattern drawing. However, it is very difficult to satisfy these conflicting characteristics.
 本発明は、未吐出と吐出の操作を繰り返してもインクジェットノズルの目詰まりを起こすことなく吐出することができ、かつ、描画時のパターンが滲みにくいインクジェット用シリカ系被膜形成組成物、並びに当該組成物を用いたシリカ系被膜の形成方法、半導体デバイス及び太陽電池システムを提供することを目的とする。 The present invention provides a silica-based film-forming composition for inkjet that can be ejected without causing clogging of inkjet nozzles even when the operations of non-ejection and ejection are repeated, and the pattern at the time of drawing is difficult to bleed, and the composition An object of the present invention is to provide a method for forming a silica-based film using a product, a semiconductor device, and a solar cell system.
 前記課題を解決するために、本発明は、下記(1)及び(2)に記載のインクジェット用シリカ系被膜形成組成物、下記(3)に記載のシリカ系被膜の形成方法、下記(4)に記載の半導体デバイス並びに下記(5)に記載の太陽電池システムを提供する。
(1)下記一般式(I)で表される化合物を加水分解・重縮合(加水分解縮合)して得られるケイ素化合物と、溶媒と、表面調整剤と、を含有し、溶媒は、沸点が80~160℃である第1の溶媒及び沸点が180~230℃である第2の溶媒を含み、第1の溶媒及び第2の溶媒の合計含有量に対する第1の溶媒の含有量の質量比が、下記条件A、B又はCで表される関係を満足するインクジェット用シリカ系被膜形成組成物。
  条件A:第1の溶媒の沸点が80~100℃の場合、前記質量比が0.3~0.5である。
  条件B:第1の溶媒の沸点が100~130℃の場合、前記質量比が0.4~0.6である。
  条件C:第1の溶媒の沸点が130~160℃の場合、前記質量比が0.5~0.7である。
 R SiX4-n …(I)
[式中、Rは炭素数1~20の有機基を示し、Xは加水分解性基を示し、nは0~2の整数を示す。ただし、nが2のとき、複数存在するRは同一でも異なっていてもよく、nが0~2のとき、複数存在するXは同一でも異なっていてもよい。]
(2)表面調整剤がシリコーン系表面調整剤である、(1)記載の組成物。
(3)インクジェット法により、(1)又(2)に記載の組成物を基板上に吐出してパターン描画を行い、描画パターン膜を形成する工程と、描画パターン膜を硬化させてパターンを有するシリカ系被膜を得る工程と、を備えるシリカ系被膜の形成方法。
(4)基板と、(3)に記載の方法により基板上に形成された、パターンを有するシリカ系被膜と、を備える半導体デバイス。
(5)(4)に記載の半導体デバイスを備える太陽電池システム。
In order to solve the above-mentioned problems, the present invention provides a silica-based film-forming composition for inkjet as described in the following (1) and (2), a method for forming a silica-based film as described in (3) below, (4) And the solar cell system described in the following (5).
(1) A silicon compound obtained by hydrolysis / polycondensation (hydrolysis condensation) of a compound represented by the following general formula (I), a solvent, and a surface conditioner, the solvent having a boiling point A mass ratio of the content of the first solvent to the total content of the first solvent and the second solvent, the first solvent having a temperature of 80 to 160 ° C. and the second solvent having a boiling point of 180 to 230 ° C. However, the silica-type film formation composition for inkjets which satisfies the relationship represented by the following conditions A, B, or C.
Condition A: When the boiling point of the first solvent is 80 to 100 ° C., the mass ratio is 0.3 to 0.5.
Condition B: When the boiling point of the first solvent is 100 to 130 ° C., the mass ratio is 0.4 to 0.6.
Condition C: When the boiling point of the first solvent is 130 to 160 ° C., the mass ratio is 0.5 to 0.7.
R 1 n SiX 4-n (I)
[Wherein R 1 represents an organic group having 1 to 20 carbon atoms, X represents a hydrolyzable group, and n represents an integer of 0 to 2. However, when n is 2, a plurality of R 1 may be the same or different, and when n is 0 to 2, a plurality of X 1 may be the same or different. ]
(2) The composition according to (1), wherein the surface conditioner is a silicone-based surface conditioner.
(3) A process of forming a drawing pattern film by discharging the composition described in (1) or (2) onto a substrate by an inkjet method, and forming a drawing pattern film, and having a pattern by curing the drawing pattern film And a step of obtaining a silica-based film.
(4) A semiconductor device comprising a substrate and a silica-based coating film having a pattern formed on the substrate by the method described in (3).
(5) A solar cell system comprising the semiconductor device according to (4).
 本発明によれば、未吐出と吐出の操作を繰り返してもインクジェットノズルの目詰まりを起こすことなく吐出することができ、かつ、描画時のパターンが滲みにくいインクジェット用シリカ系被膜形成組成物、並びに当該組成物を用いたシリカ系被膜の形成方法、半導体デバイス及び太陽電池システムが提供される。 According to the present invention, a silica-based film-forming composition for inkjet that can be ejected without causing clogging of inkjet nozzles even when the operations of non-ejection and ejection are repeated, and the pattern at the time of drawing is difficult to bleed, and A method for forming a silica-based film using the composition, a semiconductor device, and a solar cell system are provided.
 なお、本発明によって前記の効果が奏される理由について、本発明者らは以下のように推察する。 In addition, the present inventors guess as follows about the reason why the above-described effects are exhibited by the present invention.
 すなわち、未吐出と吐出の操作を繰り返してもインクジェットノズルの目詰まりを起こさず且つ描画時のパターンを滲みにくくするためには、インクジェット用シリカ系被膜形成組成物のノズル先端部での非乾燥性とパターン描画時の即乾性の両立が必要となる。この相反する特性を満足するためには、インクジェット用シリカ系被膜形成組成物の溶媒として、低沸点成分である第1の溶媒と高沸点成分である第2の溶媒とを含有する混合溶媒を用いることが重要である。そして、この混合溶媒において、第1の溶媒と第2の溶媒の合計含有量に対する第1の溶媒の含有量の質量比が特定の数値範囲になるようにそれぞれの含有量を調整することが極めて重要である。これにより、主として第2の溶媒の作用によりノズル先での非乾燥性が、また、主として第1の溶媒の作用により描画時の即乾性が、それぞれ高水準で達成されるものと考えられる。なお、本発明のインクジェット用シリカ系被膜形成組成物に含有される溶媒は、第1の溶媒及び第2の溶媒の合計含有量に対する第1の溶媒の含有量の質量比が上記条件A~Cのいずれか一つを満たすものである。これは、インクジェット用シリカ系被膜形成組成物のノズル先端部での非乾燥性とパターン描画時の即乾性の両立の点から、これらの条件が好適であるという本発明者らの知見に基づくものである。 In other words, in order to prevent clogging of the inkjet nozzles even when the non-ejection and ejection operations are repeated and to prevent the pattern at the time of drawing from bleeding, the non-drying property at the nozzle tip of the inkjet silica-based film forming composition And quick drying at the time of pattern drawing are required. In order to satisfy these contradictory characteristics, a mixed solvent containing a first solvent that is a low-boiling component and a second solvent that is a high-boiling component is used as the solvent for the silica-based film-forming composition for inkjet. This is very important. And in this mixed solvent, it is extremely possible to adjust each content so that the mass ratio of the content of the first solvent to the total content of the first solvent and the second solvent falls within a specific numerical range. is important. Thereby, it is considered that the non-drying property at the nozzle tip is achieved at a high level mainly by the action of the second solvent, and the quick drying property at the time of drawing is mainly achieved by the action of the first solvent. The solvent contained in the ink-jet silica-based film forming composition of the present invention is such that the mass ratio of the content of the first solvent to the total content of the first solvent and the second solvent is the above-mentioned conditions A to C. One of the above is satisfied. This is based on the knowledge of the present inventors that these conditions are suitable from the viewpoint of compatibility between non-drying at the nozzle tip of the silica-based film-forming composition for inkjet and quick drying at the time of pattern drawing. It is.
 さらに、描画時のパターンが滲みにくいという効果が奏されるのは、インクジェット用シリカ系被膜形成組成物が表面調整剤を含有することも一因であると考えられる。これにより、基板への濡れ性やシリカ系樹脂の流動性が制御されることによって、描画パターンの滲みが抑制されると考えられる。より具体的には、描画パターンの滲みは、インクの被塗布物への濡れ不均一性(ハジキ等)や、吐出時のインクの溶媒蒸発の不均一性による、局所的なインク粘度増大や表面張力変化によって引き起こされると考えられる。そこで、本発明における表面調整剤とは、(1)乾燥過程の塗膜の表面張力を均一化し、被塗物への濡れを改良する作用を有する化合物、(2)塗膜表面から溶剤の蒸発を均一化し、局所的な粘度増大や表面張力変化を小さくする作用を有する化合物、から選択される少なくとも一種の化合物として定義される。 Furthermore, it is considered that the effect that the pattern at the time of drawing hardly bleeds is also due to the fact that the silica-based film-forming composition for inkjet contains a surface conditioner. Accordingly, it is considered that bleeding of the drawing pattern is suppressed by controlling the wettability to the substrate and the fluidity of the silica-based resin. More specifically, the bleeding of the drawing pattern is caused by a local increase in ink viscosity or surface due to non-uniform wetting (repelling, etc.) of the ink on the coated object or non-uniform evaporation of the solvent of the ink during ejection. It is thought to be caused by a change in tension. Therefore, the surface conditioner in the present invention is (1) a compound having the action of uniformizing the surface tension of the coating film in the drying process and improving the wettability to the coating object, and (2) evaporation of the solvent from the coating film surface. Is defined as at least one compound selected from compounds having the effect of homogenizing and reducing local viscosity increase and surface tension change.
 以下、本発明の好適な実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
[インクジェット用シリカ系被膜形成組成物]
 本実施形態に係るインクジェット用シリカ系被膜形成組成物は、下記の(a)~(c)成分を含有する。
(a)下記一般式(I)で表される化合物を加水分解・重縮合して得られるケイ素化合物
 R SiX4-n …(I)
[式中、Rは炭素数1~20の有機基を示し、Xは加水分解性基を示し、nは0~2の整数を示す。ただし、nが2のとき、複数存在するRは同一でも異なっていてもよく、nが0~2のとき、複数存在するXは同一でも異なっていてもよい。]
(b)沸点が80~160℃である第1の溶媒及び沸点が180~230℃である第2の溶媒を含有し、第1の溶媒及び第2の溶媒の合計含有量に対する第1の溶媒の含有量の質量比が、下記条件A、B又はCで表される関係を満足する溶媒。
  条件A:第1の溶媒の沸点が80~100℃の場合、前記質量比が0.3~0.5である。
  条件B:第1の溶媒の沸点が100~130℃の場合、前記質量比が0.4~0.6である。
  条件C:第1の溶媒の沸点が130~160℃の場合、前記質量比が0.5~0.7である。
(c)表面調整剤。
[Silica-based film-forming composition for inkjet]
The silica-based film-forming composition for inkjet according to this embodiment contains the following components (a) to (c).
(A) Silicon compound obtained by hydrolysis and polycondensation of a compound represented by the following general formula (I) R 1 n SiX 4-n (I)
[Wherein R 1 represents an organic group having 1 to 20 carbon atoms, X represents a hydrolyzable group, and n represents an integer of 0 to 2. However, when n is 2, a plurality of R 1 may be the same or different, and when n is 0 to 2, a plurality of X 1 may be the same or different. ]
(B) a first solvent having a boiling point of 80 to 160 ° C. and a second solvent having a boiling point of 180 to 230 ° C., the first solvent with respect to the total content of the first solvent and the second solvent The solvent in which the mass ratio of the content satisfies the relationship represented by the following conditions A, B, or C.
Condition A: When the boiling point of the first solvent is 80 to 100 ° C., the mass ratio is 0.3 to 0.5.
Condition B: When the boiling point of the first solvent is 100 to 130 ° C., the mass ratio is 0.4 to 0.6.
Condition C: When the boiling point of the first solvent is 130 to 160 ° C., the mass ratio is 0.5 to 0.7.
(C) Surface conditioner.
 以下、(a)成分、(b)成分及び(c)成分のそれぞれについて詳述する。 Hereinafter, each of the component (a), the component (b), and the component (c) will be described in detail.
(a)成分:ケイ素化合物
 本実施形態に係るインクジェット用シリカ系被膜形成組成物は、前記一般式(I)で表される化合物を加水分解・重縮合して得られるケイ素化合物を必須成分とする。
(A) Component: Silicon compound The silica-based film-forming composition for ink jet according to this embodiment has a silicon compound obtained by hydrolysis and polycondensation of the compound represented by the general formula (I) as an essential component. .
 なお、本明細書において、前記「加水分解・重縮合」とは、前記一般式(I)で表される化合物を加水分解し、脱水(HO)しながら縮合して重合することを意味する。 In the present specification, the “hydrolysis / polycondensation” means that the compound represented by the general formula (I) is hydrolyzed, condensed while dehydrating (H 2 O), and polymerized. To do.
 前記一般式(I)のXとしては、例えば、アルコキシ基、ハロゲン原子、アセトキシ基、イソシアネート基及びヒドロキシル基が挙げられ、中でもアルコキシ基とすることが好ましい。Xをアルコキシ基とすることにより、得られるケイ素化合物の液状安定性や得られる組成物中のハロゲン濃度を抑制することが可能となる。 Examples of X in the general formula (I) include an alkoxy group, a halogen atom, an acetoxy group, an isocyanate group, and a hydroxyl group, and among these, an alkoxy group is preferable. By making X an alkoxy group, the liquid stability of the resulting silicon compound and the halogen concentration in the resulting composition can be suppressed.
 Xがアルコキシ基である場合、アルコキシシランとしては、下記一般式(I-1)で表されるテトラアルコキシシラン、下記一般式(I-2)で表されるトリアルコキシシラン、下記一般式(I-3)で表されるジアルコキシシラン等が挙げられる。アルコキシシランは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 Si(OR …(I-1)
[式中、Rは同一でも異なっていてもよく、それぞれ独立にアルキル基を示す。]
 RSi(OR …(I-2)
[式中、Rはアルキル基又はフェニル基を示し、フェニル基は置換基を有していてもよく、Rは同一でも異なっていてもよく、それぞれ独立にアルキル基を示す。]
 R Si(OR …(I-3)
[式中、Rは同一でも異なっていてもよく、それぞれ独立にアルキル基又はフェニル基を示し、フェニル基は置換基を有していてもよく、Rは同一でも異なっていてもよく、それぞれ独立にアルキル基を示す。]
When X is an alkoxy group, examples of the alkoxysilane include tetraalkoxysilane represented by the following general formula (I-1), trialkoxysilane represented by the following general formula (I-2), and the following general formula (I Dialkoxysilane represented by -3). An alkoxysilane may be used individually by 1 type, and may be used in combination of 2 or more type.
Si (OR 2 ) 4 (I-1)
[Wherein R 2 may be the same or different and each independently represents an alkyl group. ]
R 3 Si (OR 4 ) 3 (I-2)
[Wherein R 3 represents an alkyl group or a phenyl group, the phenyl group may have a substituent, and R 4 may be the same or different, and each independently represents an alkyl group. ]
R 5 2 Si (OR 6 ) 2 (I-3)
[In the formula, R 5 may be the same or different, each independently represents an alkyl group or a phenyl group, the phenyl group may have a substituent, and R 6 may be the same or different, Each independently represents an alkyl group. ]
 前記一般式(I-1)、一般式(I-2)及び一般式(I-3)において、アルコキシ基のR(R、R及びR)の炭素数は特に制限はないが、通常炭素数1~10であり、入手容易性の点から、炭素数1~5が好ましく、炭素数1~3がより好ましい。また、アルコキシ基のR(R、R及びR)は、水素原子の一部がフッ素に置換されたものであってもよい。 In the general formula (I-1), general formula (I-2) and general formula (I-3), the number of carbon atoms of the alkoxy group R (R 2 , R 4 and R 6 ) is not particularly limited, Usually, it has 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, more preferably 1 to 3 carbon atoms from the viewpoint of availability. Further, R (R 2 , R 4, and R 6 ) of the alkoxy group may be one in which a part of hydrogen atoms is substituted with fluorine.
 一般式(I-1)で表されるテトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトラ-iso-プロポキシシラン、テトラブトキシシラン等が挙げられる。中でも反応性や反応副生成物の点から、テトラエトキシシランを用いることが好ましい。 Examples of the tetraalkoxysilane represented by the general formula (I-1) include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetra-iso-propoxysilane, and tetrabutoxysilane. Of these, tetraethoxysilane is preferably used in terms of reactivity and reaction by-products.
 一般式(I-2)で表されるトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロポキシシラン、メチルトリ-iso-プロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリ-n-プロポキシシラン、エチルトリ-iso-プロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリ-n-プロポキシシラン、プロピルトリ-iso-プロポキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリ-n-プロポキシシラン、ブチルトリ-iso-プロポキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリ-n-プロポキシシラン、フェニルトリ-iso-プロポキシシラン等が挙げられる。中でも反応性や反応副生成物の点から、メチルトリエトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、フェニルトリエトキシシランを用いることが好ましい。 Examples of trialkoxysilanes represented by the general formula (I-2) include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-propoxysilane, methyltri-iso-propoxysilane, ethyltrimethoxysilane, and ethyltriethoxysilane. , Ethyltri-n-propoxysilane, ethyltri-iso-propoxysilane, propyltrimethoxysilane, propyltriethoxysilane, propyltri-n-propoxysilane, propyltri-iso-propoxysilane, butyltrimethoxysilane, butyltriethoxysilane Butyltri-n-propoxysilane, butyltri-iso-propoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltri-n-propoxysilane, phenyltri iso- propoxysilane, and the like. Of these, methyltriethoxysilane, ethyltriethoxysilane, propyltriethoxysilane, and phenyltriethoxysilane are preferably used in terms of reactivity and reaction by-products.
 一般式(I-3)で表されるジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ-n-プロポキシシラン、ジメチルジ-iso-プロポキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジ-n-プロポキシシラン、ジエチルジ-iso-プロポキシシラン、ジ-n-プロピルジメトキシシラン、ジ-n-プロピルジエトキシシラン、ジ-n-プロピルジ-n-プロポキシシラン、ジ-n-プロピルジ-iso-プロポキシシラン、ジ-iso-プロピルジメトキシシラン、ジ-iso-プロピルジエトキシシラン、ジ-iso-プロピルジ-n-プロポキシシラン、ジ-iso-プロピルジ-iso-プロポキシシラン、ジ-n-ブチルジメトキシシラン、ジ-n-ブチルジエトキシシラン、ジ-n-ブチルジ-n-プロポキシシラン、ジ-n-ブチルジ-iso-プロポキシシラン、ジ-sec-ブチルジメトキシシラン、ジ-sec-ブチルジエトキシシラン、ジ-sec-ブチルジ-n-プロポキシシラン、ジ-sec-ブチルジ-iso-プロポキシシラン、ジ-tert-ブチルジメトキシシラン、ジ-tert-ブチルジエトキシシラン、ジ-tert-ブチルジ-n-プロポキシシラン、ジ-tert-ブチルジ-iso-プロポキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジ-n-プロポキシシラン、ジフェニルジ-iso-プロポキシシラン等が挙げられる。 Examples of dialkoxysilanes represented by the general formula (I-3) include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-propoxysilane, dimethyldi-iso-propoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, and diethyldiethoxysilane. -N-propoxysilane, diethyldi-iso-propoxysilane, di-n-propyldimethoxysilane, di-n-propyldiethoxysilane, di-n-propyldi-n-propoxysilane, di-n-propyldi-iso-propoxy Silane, di-iso-propyldimethoxysilane, di-iso-propyldiethoxysilane, di-iso-propyldi-n-propoxysilane, di-iso-propyldi-iso-propoxysilane, di-n-butyldimethoxysilane, di n-butyldiethoxysilane, di-n-butyldi-n-propoxysilane, di-n-butyldi-iso-propoxysilane, di-sec-butyldimethoxysilane, di-sec-butyldiethoxysilane, di-sec- Butyldi-n-propoxysilane, di-sec-butyldi-iso-propoxysilane, di-tert-butyldimethoxysilane, di-tert-butyldiethoxysilane, di-tert-butyldi-n-propoxysilane, di-tert- Examples include butyldi-iso-propoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, diphenyldi-n-propoxysilane, diphenyldi-iso-propoxysilane, and the like.
 前記一般式(I-1)、一般式(I-2)及び一般式(I-3)で表されるアルコキシシランは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。前記一般式(I-1)、一般式(I-2)及び一般式(I-3)で表されるアルコキシシランを2種以上を組み合わせて用いる場合、混合比は特に限定されない。ただし、インクジェット用シリカ系被膜形成組成物の室温下での安定性(粘度安定性)が確保しやすいこと、及びインクジェット後に得られるシリカ系被膜の耐クラック性が向上することから、一般式(I-1)で表されるテトラアルコキシシランのモル量Mに対する、一般式(I-2)で表されるトリアルコキシシランのモル量M及び一般式(I-3)で表されるジアルコキシシランのモル量Mの合計量の比(M+M)/Mが0.1以上であることが好ましく、0.5以上であることがより好ましく、0.8以上であることが極めて好ましい。また、下地基板との濡れ性が良好である観点で、(M+M)/Mが4.0以下であることが好ましく、2.5以下であることがより好ましく、1.5以下であることが極めて好ましい。 The alkoxysilanes represented by the general formula (I-1), general formula (I-2) and general formula (I-3) may be used alone or in combination of two or more. Also good. When the alkoxysilanes represented by the general formula (I-1), general formula (I-2) and general formula (I-3) are used in combination of two or more, the mixing ratio is not particularly limited. However, since it is easy to ensure the stability (viscosity stability) of the silica-based film forming composition for inkjet at room temperature and the crack resistance of the silica-based film obtained after inkjet is improved, the general formula (I -1) The molar amount M 2 of the trialkoxysilane represented by the general formula (I-2) and the dialkoxy represented by the general formula (I-3) relative to the molar amount M 1 of the tetraalkoxysilane represented by -1) The ratio (M 2 + M 3 ) / M 1 of the total amount of the silane molar amount M 3 is preferably 0.1 or more, more preferably 0.5 or more, and 0.8 or more. Highly preferred. From the viewpoint of good wettability with the base substrate, (M 2 + M 3 ) / M 1 is preferably 4.0 or less, more preferably 2.5 or less, and 1.5 or less. It is very preferable that
 アルコキシシランを加水分解・重縮合する際には、(b)成分を溶媒として用いてもよく、又は、(b)成分以外の溶媒を用いてもよい。アルコキシシランを加水分解・重縮合する際に用いる溶媒としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-iso-プロピルケトン、メチル-n-ブチルケトン、メチル-iso-ブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ-iso-ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、γ-ブチロラクトン、γ-バレロラクトン等のケトン系溶媒;
ジエチルエーテル、メチルエチルエーテル、メチルプロピルエーテル、ジ-iso-プロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン等のエーテル系溶媒;
エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル系溶媒;
エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチルモノ-n-プロピルエーテル、ジエチレングリコールメチルモノ-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチルモノ-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチルモノ-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチルモノ-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラジエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチルモノ-n-ブチルエーテル、ジエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチルモノ-n-ヘキシルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチルモノ-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチルモノ-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチルモノ-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチルモノ-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラジプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチルモノ-n-ブチルエーテル、テトラプロピレングリコールメチルモノ-n-ヘキシルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル等のアルキレングリコールジアルキルエーテル系溶媒;
エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコール-n-ブチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールエチルエーテルアセテート等のアルキレングリコールアルキルエーテルアセテート系溶媒;
酢酸メチル、酢酸エチル、酢酸プロピル、酢酸iso-プロピル、酢酸ブチル、酢酸iso-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸iso-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル等のエステル系溶媒;
N―メチルピロリジノン、N―エチルピロリジノン、N―プロピルピロリジノン、N―ブチルピロリジノン、N―ヘキシルピロリジノン、N―シクロヘキシルピロリジノン等のピロリジノン系溶媒;
メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール(iso-ブタノール)、2-ブタノール(sec-ブタノール)、2-メチルー2ープロパノール(tert-ブタノール)、1-ペンタノール、2-ペンタノール、2-メチルブタノール、2-ペンタノール、2-メチル-2-ブタノール(tert-ペンタノール)、3-メトキシブタノール、1-ヘキサノール、2-メチルペンタノール、2-ヘキサノール、2-エチルブタノール、2-ヘプタノール、1-オクタノール、2-エチルヘキサノール、2-オクタノール、1-ノニルアルコール、1-デカノール、2-ウンデシルアルコール、トリメチルノニルアルコール、2-テトラデシルアルコール、2-ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール等のアルコール系溶媒;
エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のグリコール系溶媒;
アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルスルホキシドなどが挙げられる。これらは1種類を単独で又は2種類以上を組み合わせて使用される。
When the alkoxysilane is hydrolyzed and polycondensed, the component (b) may be used as a solvent, or a solvent other than the component (b) may be used. Solvents used for hydrolysis and polycondensation of alkoxysilane include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-propyl ketone, methyl-n-butyl ketone, methyl-iso-butyl ketone, methyl-n- Pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, dipropyl ketone, di-iso-butyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, γ-butyrolactone Ketone solvents such as γ-valerolactone;
Ether solvents such as diethyl ether, methyl ethyl ether, methyl propyl ether, di-iso-propyl ether, tetrahydrofuran, methyl tetrahydrofuran, dioxane, dimethyl dioxane;
Ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono-n-hexyl ether, ethoxytriglycol, tetraethylene glycol mono-n Alkylene glycol monoalkyl ether solvents such as butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether;
Ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl mono-n-propyl ether, diethylene glycol methyl mono-n- Butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, diethylene glycol methyl mono-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol Tyl mono-n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol methyl mono-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetradiethylene glycol methyl ethyl ether, tetraethylene glycol methyl mono-n -Butyl ether, diethylene glycol di-n-butyl ether, tetraethylene glycol methyl mono-n-hexyl ether, tetraethylene glycol di-n-butyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol Dibutyl ether, dipropylene glycol dimethyl ether Dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether, dipropylene glycol methyl mono-n-butyl ether, dipropylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl mono- n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl mono-n-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl mono-n- Hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether Alkylene glycol dialkyl ether solvents such as ter, tetradipropylene glycol methyl ethyl ether, tetrapropylene glycol methyl mono-n-butyl ether, tetrapropylene glycol methyl mono-n-hexyl ether, tetrapropylene glycol di-n-butyl ether;
Ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol methyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol-n-butyl ether acetate, propylene glycol methyl ether acetate Alkylene glycol alkyl ether acetate solvents such as propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, dipropylene glycol methyl ether acetate, dipropylene glycol ethyl ether acetate;
Methyl acetate, ethyl acetate, propyl acetate, iso-propyl acetate, butyl acetate, iso-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methyl pentyl acetate, 2-acetate Ethylbutyl, 2-ethylhexyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, nonyl acetate, methyl acetoacetate, ethyl acetoacetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-n-butyl ether, dipropylene acetate Glycol monomethyl ether, acetic acid dipropylene glycol monoethyl ether, diacetic acid glycol, methoxytriglycol acetate, ethyl propionate, propionate n-buty , Propionic acid iso- amyl, diethyl oxalate, oxalate, di -n- butyl, methyl lactate, ethyl lactate, n- butyl, ester solvents such as lactic acid n- amyl
Pyrrolidinone solvents such as N-methylpyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone;
Methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol (iso-butanol), 2-butanol (sec-butanol), 2-methyl-2-propanol (tert-butanol), 1 -Pentanol, 2-pentanol, 2-methylbutanol, 2-pentanol, 2-methyl-2-butanol (tert-pentanol), 3-methoxybutanol, 1-hexanol, 2-methylpentanol, 2- Hexanol, 2-ethylbutanol, 2-heptanol, 1-octanol, 2-ethylhexanol, 2-octanol, 1-nonyl alcohol, 1-decanol, 2-undecyl alcohol, trimethylnonyl alcohol, 2-tetradecyl alcohol, 2 -Heptade Alcohol, phenol, cyclohexanol, methylcyclohexanol, alcohol solvents such as benzyl alcohol;
Glycol solvents such as ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol;
Acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylsulfoxide and the like can be mentioned. These are used singly or in combination of two or more.
 なお、アルコキシシランを加水分解・重縮合する際に(b)成分以外の溶媒を用いた場合には、反応後に留去等によって溶媒を除去し、得られるシロキサン樹脂をインクジェット用シリカ系被膜形成組成物の調製に供することができる。 In addition, when a solvent other than the component (b) is used when hydrolyzing and polycondensing the alkoxysilane, the solvent is removed by distillation after the reaction, and the resulting siloxane resin is used as a silica-based film-forming composition for inkjet. It can be used for the preparation of products.
 前記の溶媒を用いて一般式(I-1)、一般式(I-2)及び一般式~(I-3)を加水分解・重縮合する際の溶媒量は、反応の均一性等の点から、SiO換算濃度が5質量%~35質量%の範囲になるようにすることが好ましく、下限としては10質量%以上の範囲が、上限としては30質量%以下の範囲が、それぞれより好ましい。 The amount of the solvent when the general formula (I-1), the general formula (I-2), and the general formulas to (I-3) are hydrolyzed and polycondensed using the above-mentioned solvent is determined depending on the uniformity of the reaction. Therefore, it is preferable that the SiO 2 equivalent concentration be in the range of 5% by mass to 35% by mass, the lower limit being 10% by mass or more, and the upper limit being 30% by mass or less. .
 また、アルコキシシランを加水分解・重縮合する際、反応時間の短縮、反応の均一化のため、触媒を添加することができる。触媒としては、酸触媒、アルカリ触媒、金属キレート化合物等が挙げられるが、得られるインクジェット用シリカ系被膜形成組成物の安定性確保の点から、酸触媒を用いることが好ましい。 In addition, when hydrolyzing and polycondensing alkoxysilane, a catalyst can be added to shorten the reaction time and make the reaction uniform. Examples of the catalyst include an acid catalyst, an alkali catalyst, a metal chelate compound, and the like, but it is preferable to use an acid catalyst from the viewpoint of ensuring the stability of the resulting silica-based film-forming composition for inkjet.
 酸触媒としては、例えば、有機酸及び無機酸が挙げられる。有機酸としては、例えば、蟻酸、マレイン酸、フマル酸、フタル酸、マロン酸、コハク酸、酒石酸、リンゴ酸、乳酸、クエン酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、アジピン酸、セバシン酸、酪酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、ベンゼンスルホン酸、安息香酸、p-アミノ安息香酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルフォン酸及びトリフルオロエタンスルフォン酸が挙げられる。無機酸としては、例えば、塩酸、燐酸、硝酸、ホウ酸、硫酸及びフッ酸が挙げられる。これらの中で特に有機酸としてはマレイン酸、無機酸としては硝酸を用いることが好ましい。これらは1種類を単独で又は2種類以上を組み合わせて使用することができる。 Examples of the acid catalyst include organic acids and inorganic acids. Examples of organic acids include formic acid, maleic acid, fumaric acid, phthalic acid, malonic acid, succinic acid, tartaric acid, malic acid, lactic acid, citric acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid , Octanoic acid, nonanoic acid, decanoic acid, oxalic acid, adipic acid, sebacic acid, butyric acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzenesulfonic acid, benzoic acid, p-aminobenzoic acid, p- Examples include toluenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid and trifluoroethanesulfonic acid. Examples of inorganic acids include hydrochloric acid, phosphoric acid, nitric acid, boric acid, sulfuric acid, and hydrofluoric acid. Among these, it is particularly preferable to use maleic acid as the organic acid and nitric acid as the inorganic acid. These can be used alone or in combination of two or more.
 触媒の使用量は、アルコキシシランの種類及び使用量、触媒の種類等に応じて適宜選定することができる。例えば、一般式(I-1)で表されるテトラアルコキシシラン、一般式(I-2)で表されるトリアルコキシシラン及び一般式(I-3)で表されるジアルコキシシランを組み合わせて用い、かつ、触媒として酸触媒を用いる場合、アルコキシシランの総モル数に対する一般式(I-1)で表されるテトラアルコキシシランのモル比率をA、一般式(I-2)で表されるトリアルコキシシランのモル比率をB、一般式(I-3)で表されるジアルコキシシランのモル比率をCとすると、酸触媒の使用量(モル比率)は、[(4A+3B+2C)/3000]~[(4A+3B+2C)/10]の範囲が好ましく、[(4A+3B+2C)/3000]~[(4A+3B+2C)/100]の範囲が更に好ましい。酸触媒の使用量を前記の範囲内とすることで、反応を充分に進行させることができ、また、反応が進行しすぎてゲル化する現象を抑制することができる。 The amount of catalyst used can be appropriately selected according to the type and amount of alkoxysilane, the type of catalyst, and the like. For example, a tetraalkoxysilane represented by the general formula (I-1), a trialkoxysilane represented by the general formula (I-2), and a dialkoxysilane represented by the general formula (I-3) are used in combination. When an acid catalyst is used as the catalyst, the molar ratio of the tetraalkoxysilane represented by the general formula (I-1) to the total number of moles of the alkoxysilane is represented by A and the trioxide represented by the general formula (I-2). When the molar ratio of alkoxysilane is B and the molar ratio of dialkoxysilane represented by the general formula (I-3) is C, the amount (molar ratio) of the acid catalyst used is [(4A + 3B + 2C) / 3000] to [ The range of (4A + 3B + 2C) / 10] is preferable, and the range of [(4A + 3B + 2C) / 3000] to [(4A + 3B + 2C) / 100] is more preferable. By making the usage-amount of an acid catalyst into the said range, reaction can fully advance and the phenomenon which gelatinizes because reaction advances too much can be suppressed.
 また、アルコキシシランを加水分解・重縮合させる際、使用する水の量は、アルコキシシランの種類及び使用量等に応じて適宜選定することができる。例えば、一般式(I-1)で表されるテトラアルコキシシラン、一般式(I-2)で表されるトリアルコキシシラン及び一般式(I-3)で表されるジアルコキシシランを組み合わせて用いる場合、アルコキシシランの総モル数に対する一般式(I-1)で表されるテトラアルコキシシランのモル比率をA、一般式(I-2)で表されるトリアルコキシシランのモル比率をB、一般式(I-3)で表されるジアルコキシシランのモル比率をCとすると、水の量(モル比率)は、[(4A+3B+2C)/2]~[(4A+3B+2C)×2]の範囲が好ましく、[(4A+3B+2C)/2]~[4A+3B+2C)×1]の範囲が更に好ましい。水の量を前記の範囲内とすることで、反応を充分に進行させることができ、また、反応が進行しすぎてゲル化する現象を抑制することができる。 In addition, when the alkoxysilane is hydrolyzed / polycondensed, the amount of water to be used can be appropriately selected according to the type and amount of the alkoxysilane used. For example, a tetraalkoxysilane represented by general formula (I-1), a trialkoxysilane represented by general formula (I-2), and a dialkoxysilane represented by general formula (I-3) are used in combination. In this case, the molar ratio of the tetraalkoxysilane represented by the general formula (I-1) to the total number of moles of alkoxysilane is A, the molar ratio of the trialkoxysilane represented by the general formula (I-2) is B, When the molar ratio of the dialkoxysilane represented by the formula (I-3) is C, the amount of water (molar ratio) is preferably in the range of [(4A + 3B + 2C) / 2] to [(4A + 3B + 2C) × 2] The range of [(4A + 3B + 2C) / 2] to [4A + 3B + 2C) × 1] is more preferable. By setting the amount of water within the above range, the reaction can be sufficiently advanced, and the phenomenon of gelation due to excessive progress of the reaction can be suppressed.
 (a)成分であるケイ素化合物の重量平均分子量(Mw)は、溶媒への溶解性、インクジェット吐出性等の観点から、500~20000であることが好ましく、500~10000であるとより好ましい。当該重量平均分子量が前記範囲内であると、シリカ系被膜の成膜性と、ケイ素化合物と溶媒との相溶性とを高水準で達成できる。なお、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、「GPC」と言う。)により測定され且つ標準ポリスチレンの検量線を使用して換算されたものである。 The weight average molecular weight (Mw) of the silicon compound as component (a) is preferably from 500 to 20000, more preferably from 500 to 10,000, from the viewpoints of solubility in a solvent and inkjet discharge properties. When the weight average molecular weight is within the above range, the film-formability of the silica-based film and the compatibility between the silicon compound and the solvent can be achieved at a high level. In the present specification, the weight average molecular weight is measured by gel permeation chromatography (hereinafter referred to as “GPC”) and converted using a standard polystyrene calibration curve.
 <重量平均分子量の測定>
 重量平均分子量(Mw)は、例えば、以下の条件によるGPCにより測定することができる。
(条件)
 試料:インクジェット用シリカ系被膜形成組成物 10μL
 標準ポリスチレン:東ソー株式会社製標準ポリスチレン(分子量;190000、17900、9100、2980、578、474、370、266)
 検出器:株式会社日立製作所製、RI-モニター、商品名「L-3000」
 インテグレーター:株式会社日立製作所製、GPCインテグレーター、商品名「D-2200」
 ポンプ:株式会社日立製作所製、商品名「L-6000」
 デガス装置:昭和電工株式会社製、商品名「Shodex DEGAS」
 カラム:日立化成工業株式会社製、商品名「GL-R440」、「GL-R430」、「GL-R420」をこの順番で連結して使用
 溶離液:テトラヒドロフラン(THF)
 測定温度:23℃
 流速:1.75mL/分
 測定時間:45分
<Measurement of weight average molecular weight>
The weight average molecular weight (Mw) can be measured, for example, by GPC under the following conditions.
(conditions)
Sample: 10 μL of silica-based film forming composition for inkjet
Standard polystyrene: Standard polystyrene manufactured by Tosoh Corporation (molecular weight: 190000, 17900, 9100, 2980, 578, 474, 370, 266)
Detector: manufactured by Hitachi, Ltd., RI-monitor, trade name “L-3000”
Integrator: Hitachi, Ltd., GPC integrator, product name “D-2200”
Pump: Hitachi, Ltd., trade name “L-6000”
Degassing device: Showa Denko Co., Ltd., trade name "Shodex DEGAS"
Column: manufactured by Hitachi Chemical Co., Ltd., trade names “GL-R440”, “GL-R430”, “GL-R420” are used in this order and are used Eluent: Tetrahydrofuran (THF)
Measurement temperature: 23 ° C
Flow rate: 1.75 mL / min Measurement time: 45 minutes
 本実施形態において、インクジェット用シリカ系被膜形成組成物中の(a)成分の含有量は、5~35質量%であることが好ましく、5~30質量%であることがより好ましい。(a)成分の含有量が5質量%以上であれば、形成されるシリカ系被膜の膜厚が薄過ぎず適度な厚さとなるため、所望の膜厚を得るために複数回の重ね描画が必要となる可能性を低減できる。これにより、プロセス時間の増大や重ね描画による描画パターンの滲み発生を抑制しやすくなる。一方、(a)成分の含有量が35質量%以下であれば、インクジェット用シリカ系被膜形成組成物の保管安定性を良好にすることができる傾向がある。 In this embodiment, the content of the component (a) in the silica-based film-forming composition for inkjet is preferably 5 to 35% by mass, and more preferably 5 to 30% by mass. If the content of the component (a) is 5% by mass or more, the film thickness of the silica-based film to be formed is not too thin and has an appropriate thickness. The possibility of being necessary can be reduced. Thereby, it becomes easy to suppress the increase in process time and the occurrence of bleeding of the drawing pattern due to the overlapping drawing. On the other hand, if content of (a) component is 35 mass% or less, there exists a tendency which can make the storage stability of the silica-type film forming composition for inkjets favorable.
(b)成分:溶媒
 本実施形態に係る(b)成分は、沸点が80~160℃である第1の溶媒及び沸点が180~230℃である第2の溶媒を含有し、第1の溶媒の含有量(以下、「C」という。)及び第2の溶媒の含有量(以下、「C」という。)の合計含有量(C+C)に対するCの質量比C/(C+C)が、下記条件A、B又はCで表される関係を満足する混合溶媒である。なお、本明細書において、「沸点」とは常圧での沸点を意味する。
  条件A:第1の溶媒の沸点が80~100℃の場合、0.3≦C/(C+C)≦0.5。
  条件B:第1の溶媒の沸点が100~130℃の場合、0.4≦C/(C+C)≦0.6。
  条件C:第1の溶媒の沸点が130~160℃の場合、0.5≦C/(C+C≦0.7。
(B) Component: Solvent The component (b) according to the present embodiment contains a first solvent having a boiling point of 80 to 160 ° C. and a second solvent having a boiling point of 180 to 230 ° C. content (hereinafter, "C 1" hereinafter.) and the content of the second solvent (hereinafter, "C 2" hereinafter.) the total amount of (C 1 + C 2) of the C 1 to the weight ratio C 1 / (C 1 + C 2 ) is a mixed solvent that satisfies the relationship represented by the following conditions A, B, or C. In the present specification, “boiling point” means a boiling point at normal pressure.
Condition A: When the boiling point of the first solvent is 80 to 100 ° C., 0.3 ≦ C 1 / (C 1 + C 2 ) ≦ 0.5.
Condition B: When the boiling point of the first solvent is 100 to 130 ° C., 0.4 ≦ C 1 / (C 1 + C 2 ) ≦ 0.6.
Condition C: 0.5 ≦ C 1 / (C 1 + C 2 ≦ 0.7 when the boiling point of the first solvent is 130 to 160 ° C.
 第1の溶媒は、沸点が80~160℃の範囲内であれば、特に制限はない。また、組成物に含まれる第1の溶媒は、1種又は2種以上のいずれであってもよい。 The first solvent is not particularly limited as long as the boiling point is in the range of 80 to 160 ° C. Moreover, the 1st solvent contained in a composition may be 1 type, or 2 or more types.
 条件(A)を満足する沸点が80~100℃である第1の溶媒としては、1-プロパノール、2-プロパノール、2-ブタノール等が挙げられる。これらの溶媒の中で、得られるシロキサン樹脂及び第2溶媒との相溶性から、2-プロパノールを用いることが好ましい。 Examples of the first solvent having a boiling point of 80 to 100 ° C. satisfying the condition (A) include 1-propanol, 2-propanol, 2-butanol and the like. Among these solvents, 2-propanol is preferably used because of compatibility with the resulting siloxane resin and the second solvent.
 条件を(B)を満足する沸点が100~130℃である第1の溶媒としては、酢酸ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルなどが挙げられる。条件(B)における第1の溶媒の沸点は、110~130℃であることが好ましい。これらの溶媒の中で、得られるシロキサン樹脂及び第2溶媒との相溶性から、酢酸イソブチルを用いることが好ましい。 Examples of the first solvent having a boiling point of 100 to 130 ° C. satisfying the condition (B) include butyl acetate, isobutyl acetate, propylene glycol monomethyl ether and the like. The boiling point of the first solvent in the condition (B) is preferably 110 to 130 ° C. Among these solvents, isobutyl acetate is preferably used because of compatibility with the resulting siloxane resin and the second solvent.
 条件を(C)を満足する沸点が130~160℃である第1の溶媒としては、プロピレングリコールモノプロピルエーテル、乳酸エチル、シクロヘキサノンなどが挙げられる。条件(C)における第1の溶媒の沸点は、140~160℃であることが好ましい。これらの溶媒の中で、得られるシロキサン樹脂及び第2溶媒との相溶性から、プロピレングリコールモノプロピルエーテルを用いることが好ましい。 Examples of the first solvent having a boiling point of 130 to 160 ° C. satisfying the condition (C) include propylene glycol monopropyl ether, ethyl lactate and cyclohexanone. The boiling point of the first solvent in the condition (C) is preferably 140 to 160 ° C. Among these solvents, it is preferable to use propylene glycol monopropyl ether because of compatibility with the resulting siloxane resin and the second solvent.
 第2の溶媒は、沸点が180℃~230℃であるが、180℃~200℃であることが好ましい。沸点がこのような範囲内であれば、特に制限はない。第2の溶媒としては、γ-ブチロラクトンやエーテル類及びグリコール類を用いることができ、例えば、ジプロピレングリコールモノメチルエーテルやプロピレングリコールが挙げられる。なお、組成物に含まれる第2の溶媒は、1種又は2種以上のいずれであってもよい。 The second solvent has a boiling point of 180 ° C. to 230 ° C., preferably 180 ° C. to 200 ° C. There is no particular limitation as long as the boiling point is within such a range. As the second solvent, γ-butyrolactone, ethers and glycols can be used, and examples thereof include dipropylene glycol monomethyl ether and propylene glycol. The second solvent contained in the composition may be one type or two or more types.
 本実施形態に係る組成物において、質量比C/(C+C)が、第1の溶媒の沸点に応じて、上述の条件A、条件B又は条件Cで表される関係を満足することで、組成物を吐出する際のノズル先端部での非乾燥性とパターン描画時の即乾性を両立でき、未吐出と吐出の操作を繰り返してもインクジェットノズルの目詰まりを起こさず且つ描画時のパターンを滲みにくくできる。 In the composition according to the present embodiment, the mass ratio C 1 / (C 1 + C 2 ) satisfies the relationship represented by the above condition A, condition B, or condition C according to the boiling point of the first solvent. Therefore, it is possible to achieve both non-drying at the nozzle tip when discharging the composition and quick drying at the time of pattern drawing, and the ink jet nozzles will not be clogged even when non-discharge and discharge operations are repeated, and at the time of drawing The pattern can be hard to spread.
(c)成分:表面調整剤
 本実施形態に係る(c)成分は表面調整剤である。組成物が表面調整剤を含有することによって、インクの基板表面への濡れ性制御及びパターンの断面形状制御が可能となり、パターンの滲み防止に有効となる。(c)成分としては、表面調整剤として市販されている化合物を特に制限なく使用することができ、具体的には、フッ素系表面調整剤、シリコーン系表面調整剤、ノニオン系表面調整剤等を用いることができる。中でも、特にシリコーン系表面調整剤を用いることがパターン滲みを抑制する上で効果的である。
(C) Component: Surface Conditioner Component (c) according to this embodiment is a surface conditioner. When the composition contains a surface conditioner, it is possible to control the wettability of the ink to the substrate surface and the cross-sectional shape of the pattern, which is effective in preventing the pattern from bleeding. As the component (c), a commercially available compound as a surface conditioner can be used without particular limitation. Specifically, a fluorine-based surface conditioner, a silicone-based surface conditioner, a nonionic surface conditioner, and the like can be used. Can be used. Of these, the use of a silicone-based surface conditioner is particularly effective in suppressing pattern bleeding.
 (c)成分の含有量は、(a)成分に対して、0.1質量%以上が好ましく、0.2質量%以上がより好ましい。また、(c)成分の含有量は、(a)成分に対して、1.0質量%以下が好ましく、0.8質量%以下がより好ましい。なお、(c)成分は、1種を単独で又は2種類以上を組み合わせて用いてもよい。 The content of the component (c) is preferably 0.1% by mass or more and more preferably 0.2% by mass or more with respect to the component (a). Moreover, 1.0 mass% or less is preferable with respect to (a) component, and, as for content of (c) component, 0.8 mass% or less is more preferable. In addition, (c) component may be used individually by 1 type or in combination of 2 or more types.
[シリカ系被膜の形成方法]
 本実施形態に係るシリカ系被膜の形成方法は、インクジェット法により、前記の組成物を基板上に吐出してパターン描画を行い描画パターン膜を形成する工程と、描画パターン膜を予備硬化させる工程と、描画パターン膜を硬化させてパターンを有するシリカ系被膜を得る工程と、を備える。
[Method of forming silica-based film]
The method for forming a silica-based film according to the present embodiment includes a step of forming a drawing pattern film by discharging the composition onto a substrate by an inkjet method to form a drawing pattern film, and a step of precuring the drawing pattern film. And a step of curing the drawing pattern film to obtain a silica-based film having a pattern.
<描画パターン膜を形成する工程>
 インクジェット法によるパターン描画は、インクジェット装置を用いて行うことができる。インクジェット装置は、一般的にコンティニュアス型(連続吐出型)とオンデマンド型の2種類の型式に大別されるが、本実施形態においてはオンデマンド型を用いることが好ましい。コンティニュアス型は、基板上にパターンを描画しないときであってもインクは常に連続して吐出する方式である。一方、オンデマンド型は、必要な時に必要な量だけインクを吐出し、基板上にパターンを描画する方式である。
<Process for forming drawing pattern film>
Pattern drawing by the inkjet method can be performed using an inkjet apparatus. Ink jet devices are generally roughly classified into two types, a continuous type (continuous discharge type) and an on-demand type. In this embodiment, it is preferable to use an on-demand type. The continuous type is a system in which ink is always ejected continuously even when a pattern is not drawn on a substrate. On-demand type, on the other hand, is a method of drawing a pattern on a substrate by ejecting ink in a necessary amount when necessary.
 オンデマンド型には、電圧を加えると変形するピエゾ素子を用いたインクジェット装置と加熱によって生じる気泡を利用して吐出するサーマル方式のインクジェット装置がある。本実施形態のインクジェット用シリカ系被膜形成組成物は、基本的にはどちらの方式を用いても構わないが、インクの組成変化を抑制する点からピエゾ素子を用いたインクジェット装置を用いることが好ましい。 The on-demand type includes an inkjet apparatus using a piezoelectric element that deforms when a voltage is applied, and a thermal inkjet apparatus that discharges using bubbles generated by heating. The silica-based film-forming composition for inkjet according to the present embodiment may basically use either method, but it is preferable to use an inkjet device using a piezo element from the viewpoint of suppressing ink composition change. .
 インクジェット法にてパターン描画する際に、パターンが描画される基板を50~100℃の範囲で加熱しながら描画してもよい。基板加熱によって、基板上でのインクの即乾性を更に向上でき、描画パターンの乱れを防止できる。 When the pattern is drawn by the inkjet method, the substrate on which the pattern is drawn may be drawn while being heated in the range of 50 to 100 ° C. By heating the substrate, the quick drying property of the ink on the substrate can be further improved, and the disorder of the drawing pattern can be prevented.
<描画パターン膜を予備硬化させる工程>
 本実施形態においては、描画パターン膜を硬化させる工程の前に、描画パターン膜を予備硬化させる工程を備えていてもよい。予備硬化させる際には、一段目ベイク:80~140℃、二段目ベイク:180~250℃の温度のホットプレート等にて、描画パターン膜中のシロキサン樹脂の重縮合反応促進と有機溶媒の乾燥とを段階的に行ってもよい。また、前記一段目、二段目ベイク内をさらに多段化してもよい。多段ベイクによって、シロキサン樹脂は均一に硬化され、溶媒除去時の熱対流に伴う描画パターンの乱れが防止できる。
<Step of precuring the drawing pattern film>
In the present embodiment, a step of precuring the drawing pattern film may be provided before the step of curing the drawing pattern film. When pre-curing, the polycondensation reaction of the siloxane resin in the drawing pattern film is accelerated and the organic solvent is heated with a hot plate or the like at the first stage baking: 80 to 140 ° C. and the second stage baking: 180 to 250 ° C. You may perform drying in steps. Further, the first stage and the second stage bake may be further multistaged. By the multi-stage baking, the siloxane resin is uniformly cured, and it is possible to prevent the drawing pattern from being disturbed due to the thermal convection when the solvent is removed.
<描画パターン膜を硬化させる工程>
 本工程において、最終硬化は、例えば、描画パターン膜(予備硬化していなくてもよい)を、350~1000℃の加熱温度で焼成して行う。なお、最終硬化の加熱温度が350℃以上であれば、充分な硬化が達成され易く、1000℃以下であれば、基板に悪影響が生じ難い。
<Step of curing drawing pattern film>
In this step, the final curing is performed, for example, by baking the drawing pattern film (which may not be precured) at a heating temperature of 350 to 1000 ° C. If the heating temperature for final curing is 350 ° C. or higher, sufficient curing is easily achieved, and if it is 1000 ° C. or lower, the substrate is unlikely to be adversely affected.
 最終硬化の際の加熱時間は、2~60分が好ましく、2~30分であるとより好ましい。この加熱時間が60分以下であれば、入熱量が過度に増大することがないため、徐々に基板の劣化が生じてしまうことが抑制される。また、加熱装置としては、石英チューブ炉、その他の炉、ホットプレート、ラピッドサーマルアニール(RTA)、UV照射アニール、EB照射アニール等の加熱処理装置を用いることができる。 The heating time for the final curing is preferably 2 to 60 minutes, more preferably 2 to 30 minutes. If this heating time is 60 minutes or less, the amount of heat input will not increase excessively, and thus the deterioration of the substrate will be suppressed gradually. Further, as the heating device, a heat treatment device such as a quartz tube furnace, other furnaces, a hot plate, rapid thermal annealing (RTA), UV irradiation annealing, EB irradiation annealing, or the like can be used.
 最終硬化時のガスの雰囲気は、基板に悪影響を及ぼさなければ、窒素、アルゴン、ヘリウム等の不活性ガスの雰囲気下でも、酸素やオゾン等の活性ガスの雰囲気下のどちらであってもよい。 The atmosphere of the gas at the time of final curing may be either an inert gas atmosphere such as nitrogen, argon or helium, or an active gas atmosphere such as oxygen or ozone, as long as the substrate is not adversely affected.
 本実施形態に係るインクジェット用シリカ系被膜形成組成物及びシリカ系被膜の形成方法の用途は特に制限されないが、例えば、半導体デバイス(素子)や多層配線板等の絶縁膜を備えるデバイスへの使用が挙げられる。さらに具体的には、半導体デバイスにおいては、表面保護膜(パッシベーション膜)、バッファーコート膜、層間絶縁膜、拡散防止膜等として使用することができる。一方、多層配線板においては、層間絶縁膜として好適に使用することができる。 The use of the silica-based film forming composition for inkjet according to the present embodiment and the method for forming the silica-based film is not particularly limited, but for example, it can be used for a device including an insulating film such as a semiconductor device (element) or a multilayer wiring board. Can be mentioned. More specifically, in a semiconductor device, it can be used as a surface protective film (passivation film), a buffer coat film, an interlayer insulating film, a diffusion prevention film, and the like. On the other hand, in a multilayer wiring board, it can be suitably used as an interlayer insulating film.
[半導体デバイス]
 本実施形態の半導体デバイスは、基板と、前記シリカ系被膜の形成方法により基板上に形成された、所定のパターンを有するシリカ系被膜と、を備えている。このような半導体デバイスとしては、例えば、ダイオード、トランジスタ、化合物半導体、サーミスタ、バリスタ、サイリスタ等の個別半導体、DRAM(ダイナミック・ランダム・アクセス・メモリー)、SRAM(スタティック・ランダム・アクセス・メモリー)、EPROM(イレイザブル・プログラマブル・リード・オンリー・メモリー)、マスクROM(マスク・リード・オンリー・メモリー)、EEPROM(エレクトリカル・イレイザブル・プログラマブル・リード・オンリー・メモリー)、フラッシュメモリー等の記憶素子、マイクロプロセッサー、DSP、ASIC等の理論回路素子、MMIC(モノリシック・マイクロウェーブ集積回路)に代表される化合物半導体等の集積回路素子、混成集積回路(ハイブリッドIC)、発光ダイオード、電荷結合素子等の光電変換素子が挙げられる。
[Semiconductor devices]
The semiconductor device of this embodiment includes a substrate and a silica-based film having a predetermined pattern formed on the substrate by the method for forming a silica-based film. Such semiconductor devices include, for example, individual semiconductors such as diodes, transistors, compound semiconductors, thermistors, varistors, thyristors, DRAMs (Dynamic Random Access Memory), SRAMs (Static Random Access Memory), EPROMs. (Eraseable Programmable Read Only Memory), Mask ROM (Mask Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), Flash Memory and Other Memory Elements, Microprocessor, DSP , Theoretical circuit elements such as ASIC, integrated circuit elements such as compound semiconductors represented by MMIC (monolithic microwave integrated circuit), hybrid integrated circuits (hybrid IC) , Light emitting diodes, and a photoelectric conversion element such as a charge coupled device.
 また、多層配線板としては、例えば、MCM等の高密度配線板が挙げられる。 Also, examples of the multilayer wiring board include a high-density wiring board such as MCM.
[太陽電池システム]
 本実施形態の太陽電池システムは、前記半導体デバイスを備えている。前述の半導体デバイスの中で、光電変換素子は太陽電池システムに使用される半導体デバイスであり、昨今の環境問題の影響もあって開発が活発になされている。代表的な光電変換素子としては、半導体のSiウェハにドーパントと呼ばれる不純物を拡散させて、p-n接合を形成したものが挙げられる。このような光電変換素子においては、太陽電池の高効率化のため、ドーパントの非拡散領域と拡散領域が1枚のSiウェハ上に混在するような素子を作製する場合がある。そのような場合、非拡散領域に拡散防止マスクを形成する必要が生じる。これまで、拡散防止マスクはCVD等で形成したシリカ系被膜をフォトリソグラフィー法でパターン化して得ていた。しかし、本実施形態のインクジェット用シリカ系被膜形成組成物を用いれば、インクジェットによってパターン化したシリカ系被膜を得ることができ、工程数の削減や必要材料の削減が可能なため、有用である。
[Solar cell system]
The solar cell system of this embodiment includes the semiconductor device. Among the semiconductor devices described above, the photoelectric conversion element is a semiconductor device used in a solar cell system, and has been actively developed due to the influence of recent environmental problems. A typical photoelectric conversion element includes a semiconductor Si wafer in which an impurity called a dopant is diffused to form a pn junction. In such a photoelectric conversion element, there is a case where an element in which a non-diffusion region and a diffusion region of a dopant are mixed on one Si wafer is sometimes produced in order to increase the efficiency of the solar cell. In such a case, it is necessary to form a diffusion prevention mask in the non-diffusion region. Up to now, a diffusion prevention mask has been obtained by patterning a silica-based film formed by CVD or the like by a photolithography method. However, if the silica-based film forming composition for inkjet according to the present embodiment is used, a silica-based film patterned by inkjet can be obtained, which is useful because the number of steps and the necessary materials can be reduced.
 また、本実施形態に係るシリカ系被膜は、液晶用部品、光導波路、フォトレジスト等の用途としても使用することができるが、使用用途はこの限りではない。 The silica-based coating according to this embodiment can be used for applications such as liquid crystal parts, optical waveguides, and photoresists, but the usage is not limited to this.
 以下、実験例に基づき本発明をさらに具体的に説明するが、本発明は以下の実験例に何ら制限されるものではない。 Hereinafter, the present invention will be described more specifically based on experimental examples, but the present invention is not limited to the following experimental examples.
(ケイ素化合物Aの調製)
 テトラエトキシシラン66.2gと、フェニルトリエトキシシラン76.1gとを、ジプロピレングリコールモノメチルエーテル(沸点188℃)21.3gに溶解させた溶液中に、マレイン酸0.4gを溶解させた水36.0gを攪拌下で10分間かけて滴下し、10時間反応させて200gのケイ素化合物溶液を得た。このとき、テトラエトキシシランのモル量Mに対するフェニルトリエトキシシランのモル量Mの比M/Mは1.0であった。その後、エバポレータを用いて、前記ケイ素化合物溶液全量が95g以下になるまで、減圧留去した。その後、ケイ素化合物溶液全量が100gになるまでジプロピレングリコールモノメチルエーテルを加えてケイ素化合物Aを得た。この時点でのケイ素化合物Aのシロキサン樹脂固形分濃度は60質量%であった。
(Preparation of silicon compound A)
Water 36 in which 0.4 g of maleic acid was dissolved in a solution in which 66.2 g of tetraethoxysilane and 76.1 g of phenyltriethoxysilane were dissolved in 21.3 g of dipropylene glycol monomethyl ether (boiling point 188 ° C.) 0.0 g was added dropwise over 10 minutes under stirring and reacted for 10 hours to obtain 200 g of a silicon compound solution. At this time, the ratio M 2 / M 1 of the molar amount M 2 of phenyltriethoxysilane to the molar amount M 1 of tetraethoxysilane was 1.0. Then, it distilled off under reduced pressure using the evaporator until the said silicon compound solution whole quantity became 95 g or less. Thereafter, dipropylene glycol monomethyl ether was added until the total amount of the silicon compound solution reached 100 g to obtain silicon compound A. The siloxane resin solid content concentration of the silicon compound A at this time was 60% by mass.
(ケイ素化合物Bの調製)
 テトラエトキシシラン66.2gと、フェニルトリエトキシシラン76.1gとを、トリエチレングリコールジメチルエーテル(沸点216℃)21.3gに溶解させた溶液中に、マレイン酸0.4gを溶解させた水36.0gを攪拌下で10分間かけて滴下し、10時間反応させて200gのケイ素化合物溶液を得た。このとき、テトラエトキシシランのモル量Mに対するフェニルトリエトキシシランのモル量Mの比M/Mは1.0であった。その後、エバポレータを用いて、前記ケイ素化合物溶液全量が95g以下になるまで、減圧留去した。その後、ケイ素化合物溶液全量が100gになるまでトリエチレングリコールジメチルエーテルを加えてケイ素化合物Bを得た。この時点でのケイ素化合物Bのシロキサン樹脂固形分濃度は60質量%であった。
(Preparation of silicon compound B)
Water in which 0.4 g of maleic acid is dissolved in a solution in which 66.2 g of tetraethoxysilane and 76.1 g of phenyltriethoxysilane are dissolved in 21.3 g of triethylene glycol dimethyl ether (boiling point 216 ° C.) 36. 0 g was added dropwise over 10 minutes under stirring and reacted for 10 hours to obtain 200 g of a silicon compound solution. At this time, the ratio M 2 / M 1 of the molar amount M 2 of phenyltriethoxysilane to the molar amount M 1 of tetraethoxysilane was 1.0. Then, it distilled off under reduced pressure using the evaporator until the said silicon compound solution whole quantity became 95 g or less. Thereafter, triethylene glycol dimethyl ether was added until the total amount of the silicon compound solution reached 100 g to obtain silicon compound B. The siloxane resin solid content concentration of the silicon compound B at this time was 60% by mass.
(ケイ素化合物Cの調製)
 テトラエトキシシラン66.2gと、フェニルトリエトキシシラン76.1gとを、テトラエチレングリコールジメチルエーテル(沸点273℃)21.3gに溶解させた溶液中に、マレイン酸0.4gを溶解させた水36.0gを攪拌下で10分間かけて滴下し、10時間反応させて200gのケイ素化合物溶液を得た。このとき、テトラエトキシシランのモル量Mに対するフェニルトリエトキシシランのモル量Mの比M/Mは1.0であった。その後、エバポレータを用いて、前記ケイ素化合物溶液全量が95g以下になるまで、減圧留去した。その後、ケイ素化合物溶液全量が100gになるまでテトラエチレングリコールジメチルエーテルを加えてケイ素化合物Cを得た。この時点でのケイ素化合物Cのシロキサン樹脂固形分濃度は60質量%であった。
(Preparation of silicon compound C)
Water in which 0.4 g of maleic acid was dissolved in a solution in which 66.2 g of tetraethoxysilane and 76.1 g of phenyltriethoxysilane were dissolved in 21.3 g of tetraethylene glycol dimethyl ether (boiling point 273 ° C.) 0 g was added dropwise over 10 minutes under stirring and reacted for 10 hours to obtain 200 g of a silicon compound solution. At this time, the ratio M 2 / M 1 of the molar amount M 2 of phenyltriethoxysilane to the molar amount M 1 of tetraethoxysilane was 1.0. Then, it distilled off under reduced pressure using the evaporator until the said silicon compound solution whole quantity became 95 g or less. Thereafter, silicon compound C was obtained by adding tetraethylene glycol dimethyl ether until the total amount of the silicon compound solution reached 100 g. At this time, the siloxane resin solid content concentration of the silicon compound C was 60% by mass.
[実験例1]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711(楠本化成株式会社製、商品名。ディスパロンは登録商標)を0.3g添加・攪拌し、2-プロパノール(沸点82℃)を17.2g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する2-プロパノールの含有量の質量比は0.3であった。また、この時点でのシロキサン樹脂固形分濃度は51%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.3であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物A-1を作製した。
[Experimental Example 1]
To the silicon compound A, 0.3 g of Dispalon 1711 (trade name, manufactured by Enomoto Kasei Co., Ltd., registered trade name) is added and stirred to the silicon compound A, and 2-propanol (boiling point 82 ° C.) is added to 17. 2g was added. At this time, the mass ratio of the 2-propanol content to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%. Silica-based film-forming composition A-1 was produced.
[実験例2]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、2-プロパノール(沸点82℃)を26.7g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する2-プロパノールの含有量の質量比は0.4であった。また、この時点でのシロキサン樹脂固形分濃度は47%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.4であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物A-2を作製した。
[Experiment 2]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of 2-propanol (boiling point 82 ° C.) was added. At this time, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition A-2 was prepared.
[実験例3]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、2-プロパノール(沸点82℃)を40.0g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する2-プロパノールの含有量の質量比は0.5であった。また、この時点でのシロキサン樹脂固形分濃度は43%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.5であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物A-3を作製した。
[Experiment 3]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of 2-propanol (boiling point 82 ° C.) was added. At this point, the mass ratio of the 2-propanol content to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition A-3 was produced.
[実験例4]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、1-プロパノール(沸点97℃)を17.2g添加した。この時点で、1-プロパノール(沸点97℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する1-プロパノールの含有量の質量比は0.3であった。また、この時点でのシロキサン樹脂固形分濃度は51%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.3であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物A-4を作製した。
[Experimental Example 4]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 17.2 g of 1-propanol (boiling point 97 ° C.) was added. At this time, the mass ratio of the content of 1-propanol to the total content of 1-propanol (boiling point 97 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%. Silica-based film forming composition A-4 was prepared.
[実験例5]
 前記ケイ素化合物Bに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、2-プロパノール(沸点82℃)を17.2g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とジメチルトリグリコール(沸点216℃)の含有量の合計量に対する2-プロパノールの含有量の質量比は0.3であった。また、この時点でのシロキサン樹脂固形分濃度は51%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.3であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物A-5を作製した。
[Experimental Example 5]
To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 17.2 g of 2-propanol (boiling point 82 ° C.) was added. At this point, the mass ratio of the 2-propanol content to the total content of 2-propanol (boiling point 82 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%. Silica-based film forming composition A-5 was produced.
[実験例6]
 前記ケイ素化合物Bに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、2-プロパノール(沸点82℃)を40.0g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とジメチルトリグリコール(沸点216℃)の含有量の合計量に対する2-プロパノールの含有量の質量比は0.5であった。また、この時点でのシロキサン樹脂固形分濃度は43%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.5であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物A-6を作製した。
[Experimental Example 6]
To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of 2-propanol (boiling point 82 ° C.) was added. At this time, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition A-6 was produced.
[実験例7]
 前記ケイ素化合物Bに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、1-プロパノール(沸点97℃)を17.2g添加した。この時点で、1-プロパノール(沸点97℃)の含有量とジメチルトリグリコール(沸点216℃)の含有量の合計量に対する1-プロパノールの含有量の質量比は0.3であった。また、この時点でのシロキサン樹脂固形分濃度は51%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.3であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物A-7を作製した。
[Experimental Example 7]
To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 17.2 g of 1-propanol (boiling point 97 ° C.) was added. At this time, the mass ratio of the content of 1-propanol to the total content of 1-propanol (boiling point 97 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%. Silica-based film forming composition A-7 was produced.
[実験例8]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、2-プロパノール(沸点82℃)を10.0g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する2-プロパノールの含有量の質量比は0.2であった。また、この時点でのシロキサン樹脂固形分濃度は55%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.2であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物a-1を作製した。
[Experimental Example 8]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 10.0 g of 2-propanol (boiling point 82 ° C.) was added. At this point, the mass ratio of the 2-propanol content to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.2. Moreover, the siloxane resin solid content concentration at this time was 55%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.2 until the siloxane resin solid content concentration becomes 20% is added to the inkjet. A silica-based film-forming composition a-1 was produced.
[実験例9]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、2-プロパノール(沸点82℃)を60.0g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する2-プロパノールの含有量の質量比は0.6であった。また、この時点でのシロキサン樹脂固形分濃度は38%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.6であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物a-2を作製した。
[Experimental Example 9]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of 2-propanol (boiling point 82 ° C.) was added. At this time, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.6. At this time, the siloxane resin solid content concentration was 38%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition a-2 was prepared.
[実験例10]
 前記ケイ素化合物Aに、2-プロパノール(沸点82℃)を26.7g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量対する2-プロパノールの含有量の質量比は0.4であった。また、この時点でのシロキサン樹脂固形分濃度は47%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.4であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物a-3を作製した。
[Experimental Example 10]
To the silicon compound A, 26.7 g of 2-propanol (boiling point 82 ° C.) was added. At this point, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition a-3 was prepared.
[実験例11]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸イソブチル(沸点118℃)を17.2g添加した。この時点で、酢酸イソブチル(沸点118℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.3であった。また、この時点でのシロキサン樹脂固形分濃度は51%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.3であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物a-4を作製した。
[Experimental Example 11]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 17.2 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of isobutyl acetate (boiling point 118 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%. Silica-based film forming composition a-4 was prepared.
[実験例12]
 前記ケイ素化合物Cに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、2-プロパノール(沸点82℃)を40.0g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とテトラエチレングリコールジメチルエーテル(沸点273℃)の含有量の合計量に対する2-プロパノールの含有量の質量比は0.5であった。また、この時点でのシロキサン樹脂固形分濃度は43%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.5であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物a-5を作製した。
[Experimental example 12]
To the silicon compound C, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of 2-propanol (boiling point 82 ° C.) was added. At this time, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and tetraethylene glycol dimethyl ether (boiling point 273 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition a-5 was produced.
[実験例13]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸イソブチル(沸点118℃)を26.7g添加した。この時点で、酢酸イソブチル(沸点118℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.4であった。また、この時点でのシロキサン樹脂固形分濃度は47%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点溶媒の含有量の質量比が0.4であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物B-1を作製した。
[Experimental Example 13]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of the content of isobutyl acetate (boiling point 118 ° C.) and the content of dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling point solvent to the total content of the high-boiling point component and the low-boiling point component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition B-1 was produced.
[実験例14]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸イソブチル(沸点118℃)を40.0g添加した。この時点で、酢酸イソブチル(沸点118℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.5であった。また、この時点でのシロキサン樹脂固形分濃度は43%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.5であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物B-2を作製した。
[Experimental Example 14]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of the content of isobutyl acetate (boiling point 118 ° C.) and the content of dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition B-2 was prepared.
[実験例15]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸イソブチル(沸点118℃)を60.0g添加した。この時点で、酢酸イソブチル(沸点118℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.6であった。また、この時点でのシロキサン樹脂固形分濃度は38%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.6であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物B-3を作製した。
[Experimental Example 15]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of isobutyl acetate (boiling point 118 ° C.) was added. At this point, the mass ratio of the content of isobutyl acetate to the total content of isobutyl acetate (boiling point 118 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.6. At this time, the siloxane resin solid content concentration was 38%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition B-3 was prepared.
[実験例16]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸ブチル(沸点126℃)を26.7g添加した。この時点で、酢酸ブチル(沸点126℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する酢酸ブチルの含有量の質量比は0.4であった。また、この時点でのシロキサン樹脂固形分濃度は47%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.4である混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物B-4を作製した。
[Experimental Example 16]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of butyl acetate (boiling point 126 ° C.) was added. At this time, the mass ratio of the content of butyl acetate to the total content of butyl acetate (boiling point 126 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%. Therefore, until the siloxane resin solid content concentration reaches 20%, a mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.4 is added, and the silica for inkjet A system film-forming composition B-4 was prepared.
[実験例17]
 前記ケイ素化合物Bに、シリコーン系表面調整剤であるディスパロン1711(楠本化成)を0.3g添加・攪拌し、酢酸イソブチル(沸点118℃)を26.7g添加した。この時点で、酢酸イソブチル(沸点118℃)の含有量とジメチルトリグリコール(沸点216℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.4であった。また、この時点でのシロキサン樹脂固形分濃度は47%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.4であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物B-5を作製した。
[Experimental Example 17]
To the silicon compound B, 0.3 g of Dispalon 1711 (Tsubakimoto Kasei), a silicone-based surface conditioner, was added and stirred, and 26.7 g of isobutyl acetate (boiling point 118 ° C.) was added. At this point, the mass ratio of the isobutyl acetate content to the total content of isobutyl acetate (boiling point 118 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition B-5 was produced.
[実験例18]
 前記ケイ素化合物Bに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸イソブチル(沸点118℃)を60.0g添加した。この時点で、酢酸イソブチル(沸点118℃)の含有量とジメチルトリグリコール(沸点216℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.6であった。また、この時点でのシロキサン樹脂固形分濃度は38%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.6であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物B-6を作製した。
[Experiment 18]
To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of isobutyl acetate (boiling point 118 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.6. At this time, the siloxane resin solid content concentration was 38%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition B-6 was produced.
[実験例19]
 前記ケイ素化合物Bに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸ブチル(沸点126℃)を26.7g添加した。この時点で、酢酸ブチル(沸点126℃)の含有量とジメチルトリグリコール(沸点216℃)の含有量の合計量に対する酢酸ブチルの含有量の質量比は0.4であった。また、この時点でのシロキサン樹脂固形分濃度は47%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.4であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物B-7を作製した。
[Experimental Example 19]
To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of butyl acetate (boiling point 126 ° C.) was added. At this time, the mass ratio of the content of butyl acetate to the total content of butyl acetate (boiling point 126 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.4. At this time, the siloxane resin solid content concentration was 47%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition B-7 was produced.
[実験例20]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸イソブチル(沸点118℃)を17.2g添加した。この時点で、酢酸イソブチル(沸点118℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.3であった。また、この時点でのシロキサン樹脂固形分濃度は51%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.3であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物b-1を作製した。
[Experiment 20]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 17.2 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of isobutyl acetate (boiling point 118 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.3. Moreover, the siloxane resin solid content concentration at this time was 51%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.3 is added until the solid content concentration of the siloxane resin is 20%. A silica-based film-forming composition b-1 was produced.
[実験例21]
 上記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸イソブチル(沸点118℃)を93.5g添加した。この時点で、酢酸イソブチル(沸点118℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.7であった。また、この時点でのシロキサン樹脂固形分濃度は31%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.7であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物b-2を作製した。
[Experiment 21]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 93.5 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of the content of isobutyl acetate (boiling point 118 ° C.) and the content of dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.7. Moreover, the siloxane resin solid content concentration at this time was 31%. Therefore, this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film forming composition b-2 was produced.
[実験例22]
 前記ケイ素化合物Aに、酢酸イソブチル(沸点118℃)を40.0g添加した。この時点で、酢酸イソブチル(沸点118℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.5であった。また、この時点でのシロキサン樹脂固形分濃度は43%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.5であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物b-3を作製した。
[Experimental example 22]
40.0 g of isobutyl acetate (boiling point 118 ° C.) was added to the silicon compound A. At this time, the mass ratio of the content of isobutyl acetate to the total content of the content of isobutyl acetate (boiling point 118 ° C.) and the content of dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film-forming composition b-3 was produced.
[実験例23]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、2-プロパノール(沸点82℃)を60.0g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する2-プロパノールの含有量の質量比は0.6であった。また、この時点でのシロキサン樹脂固形分濃度は38%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.6であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物b-4を作製した。
[Experimental example 23]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of 2-propanol (boiling point 82 ° C.) was added. At this time, the mass ratio of the content of 2-propanol to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.6. At this time, the siloxane resin solid content concentration was 38%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film-forming composition b-4 was produced.
[実験例24]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、プロピレングリコールモノプロピルエーテル(沸点150℃)を26.7g添加した。この時点で、プロピレングリコールモノプロピルエーテル(沸点150℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対するプロピレングリコールモノプロピルエーテルの含有量の質量比は0.4であった。また、この時点でのシロキサン樹脂固形分濃度は47%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.4であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物b-5を作製した。
[Experimental example 24]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this point, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.4. Met. At this time, the siloxane resin solid content concentration was 47%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film-forming composition b-5 was produced.
[実験例25]
 前記ケイ素化合物Cに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸イソブチル(沸点118℃)を60.0g添加した。この時点で、酢酸イソブチル(沸点118℃)含有量とテトラエチレングリコールジメチルエーテル(沸点273℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.6であった。また、この時点でのシロキサン樹脂固形分濃度は38%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.6であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物b-6を作製した。
[Experiment 25]
To the silicon compound C, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of isobutyl acetate (boiling point 118 ° C.) was added. At this point, the mass ratio of the isobutyl acetate content to the total content of isobutyl acetate (boiling point 118 ° C.) content and tetraethylene glycol dimethyl ether (boiling point 273 ° C.) content was 0.6. At this time, the siloxane resin solid content concentration was 38%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film-forming composition b-6 was produced.
[実験例26]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、プロピレングリコールモノプロピルエーテル(沸点150℃)を40.0g添加した。この時点で、プロピレングリコールモノプロピルエーテル(沸点150℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対するプロピレングリコールモノプロピルエーテルの含有量の質量比は0.5であった。また、この時点でのシロキサン樹脂固形分濃度は43%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.5であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物C-1を作製した。
[Experiment 26]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this time, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.5. Met. Moreover, the siloxane resin solid content concentration at this time was 43%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 until the siloxane resin solid content concentration becomes 20% is added, and the silica for inkjet A system film-forming composition C-1 was produced.
[実験例27]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、プロピレングリコールモノプロピルエーテル(沸点150℃)を60.0g添加した。この時点で、プロピレングリコールモノプロピルエーテル(沸点150℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対するプロピレングリコールモノプロピルエーテルの含有量の質量比は0.6であった。また、この時点でのシロキサン樹脂固形分濃度は38%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.6であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物C-2を作製した。
[Experiment 27]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 60.0 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this time, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.6. Met. At this time, the siloxane resin solid content concentration was 38%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.6 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film-forming composition C-2 was produced.
[実験例28]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、プロピレングリコールモノプロピルエーテル(沸点150℃)を93.5g添加した。この時点で、プロピレングリコールモノプロピルエーテル(沸点150℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対するプロピレングリコールモノプロピルエーテルの含有量の質量比は0.7であった。また、この時点でのシロキサン樹脂固形分濃度は31%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.7であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物C-3を作製した。
[Experiment 28]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 93.5 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this point, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.7. Met. Moreover, the siloxane resin solid content concentration at this time was 31%. Therefore, this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition C-3 was prepared.
[実験例29]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、シクロヘキサノン(沸点156℃)を40.0g添加した。この時点で、シクロヘキサノン(沸点156℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対するシクロヘキサノンの含有量の質量比は0.5であった。また、この時点でのシロキサン樹脂固形分濃度は43%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.5であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物C-4を作製した。
[Experimental example 29]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of cyclohexanone (boiling point 156 ° C.) was added. At this time, the mass ratio of the content of cyclohexanone to the total content of cyclohexanone (boiling point 156 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition C-4 was produced.
[実験例30]
 前記ケイ素化合物Bに、シリコーン系表面調整剤であるディスパロン1711(楠本化成)を0.3g添加・攪拌し、プロピレングリコールモノプロピルエーテル(沸点150℃)を40.0g添加した。この時点で、プロピレングリコールモノプロピルエーテル(沸点150℃)の含有量とジメチルトリグリコール(沸点216℃)の含有量の合計量に対するプロピレングリコールモノプロピルエーテルの含有量の質量比は0.5であった。また、この時点でのシロキサン樹脂固形分濃度は43%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.5であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物C-5を作製した。
[Experiment 30]
To the silicon compound B, 0.3 g of Dispalon 1711 (Tsubakimoto Kasei) which is a silicone surface conditioner was added and stirred, and 40.0 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this time, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.5. It was. Moreover, the siloxane resin solid content concentration at this time was 43%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition C-5 was produced.
[実験例31]
 前記ケイ素化合物Bに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、プロピレングリコールモノプロピルエーテル(沸点150℃)を93.5g添加した。この時点で、プロピレングリコールモノプロピルエーテル(沸点150℃)含有量とジメチルトリグリコール(沸点216℃)の含有量の合計量に対するプロピレングリコールモノプロピルエーテルの含有量の質量比は0.7であった。また、この時点でのシロキサン樹脂固形分濃度は31%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.7であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物C-6を作製した。
[Experimental example 31]
To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 93.5 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this time, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.7. . Moreover, the siloxane resin solid content concentration at this time was 31%. Therefore, this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition C-6 was produced.
[実験例32]
 前記ケイ素化合物Bに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、シクロヘキサノン(沸点156℃)を40.0g添加した。この時点で、シクロヘキサノン(沸点156℃)含有量とジメチルトリグリコール(沸点216℃)の含有量の合計量に対するシクロヘキサノンの含有量の質量比は0.5であった。また、この時点でのシロキサン樹脂固形分濃度は43%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.5であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物C-7を作製した。
[Experiment 32]
To the silicon compound B, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 40.0 g of cyclohexanone (boiling point 156 ° C.) was added. At this time, the mass ratio of the content of cyclohexanone to the total content of cyclohexanone (boiling point 156 ° C.) and dimethyltriglycol (boiling point 216 ° C.) was 0.5. Moreover, the siloxane resin solid content concentration at this time was 43%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.5 is added until the solid content concentration of the siloxane resin reaches 20%. Silica-based film forming composition C-7 was produced.
[実験例33]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、プロピレングリコールモノプロピルエーテル(沸点150℃)を26.7g添加した。この時点で、プロピレングリコールモノプロピルエーテル(沸点150℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対するプロピレングリコールモノプロピルエーテルの含有量の質量比は0.4であった。また、この時点でのシロキサン樹脂固形分濃度は47%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.4であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物c-1を作製した。
[Experimental Example 33]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 26.7 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this point, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.4. Met. At this time, the siloxane resin solid content concentration was 47%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film forming composition c-1 was prepared.
[実験例34]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、プロピレングリコールモノプロピルエーテル(沸点150℃)を160.0g添加した。この時点で、プロピレングリコールモノプロピルエーテル(沸点150℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対するプロピレングリコールモノプロピルエーテルの含有量の質量比は0.8であった。また、この時点でのシロキサン樹脂固形分濃度は23%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.8であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物c-2を作製した。
[Experimental example 34]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 160.0 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this time, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.8. Met. Moreover, the siloxane resin solid content concentration at this time was 23%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.8 is added until the solid content of the siloxane resin reaches 20%. A silica-based film forming composition c-2 was prepared.
[実験例35]
 前記ケイ素化合物Aに、プロピレングリコールモノプロピルエーテル(沸点150℃)を26.7g添加した。この時点で、プロピレングリコールモノプロピルエーテル(沸点150℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対するプロピレングリコールモノプロピルエーテルの含有量の質量比は0.4であった。また、この時点でのシロキサン樹脂固形分濃度は47%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.4であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物c-3を作製した。
[Experimental Example 35]
To the silicon compound A, 26.7 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this point, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) is 0.4. Met. At this time, the siloxane resin solid content concentration was 47%. Therefore, this mixed solvent in which the mass ratio of the content of the low-boiling component to the total content of the high-boiling component and the low-boiling component is 0.4 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film forming composition c-3 was produced.
[実験例36]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、2-プロパノール(沸点82℃)を93.5g添加した。この時点で、2-プロパノール(沸点82℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する2-プロパノールの含有量の質量比は0.7であった。また、この時点でのシロキサン樹脂固形分濃度は31%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.7であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物c-4を作製した。
[Experimental Example 36]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 93.5 g of 2-propanol (boiling point 82 ° C.) was added. At this point, the mass ratio of the 2-propanol content to the total content of 2-propanol (boiling point 82 ° C.) and dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.7. Moreover, the siloxane resin solid content concentration at this time was 31%. Therefore, this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film forming composition c-4 was prepared.
[実験例37]
 前記ケイ素化合物Aに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、酢酸イソブチル(沸点118℃)を93.5g添加した。この時点で、酢酸イソブチル(沸点118℃)の含有量とジプロピレングリコールモノメチルエーテル(沸点188℃)の含有量の合計量に対する酢酸イソブチルの含有量の質量比は0.7であった。また、この時点でのシロキサン樹脂固形分濃度は31%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.7であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物c-5を作製した。
[Experiment 37]
To the silicon compound A, 0.3 g of Dispalon 1711 which is a silicone surface conditioner was added and stirred, and 93.5 g of isobutyl acetate (boiling point 118 ° C.) was added. At this time, the mass ratio of the content of isobutyl acetate to the total content of the content of isobutyl acetate (boiling point 118 ° C.) and the content of dipropylene glycol monomethyl ether (boiling point 188 ° C.) was 0.7. Moreover, the siloxane resin solid content concentration at this time was 31%. Therefore, this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film-forming composition c-5 was produced.
[実験例38]
 前記ケイ素化合物Cに、シリコーン系表面調整剤であるディスパロン1711を0.3g添加・攪拌し、プロピレングリコールモノプロピルエーテル(沸点150℃)を93.5g添加した。この時点で、プロピレングリコールモノプロピルエーテル(沸点150℃)の含有量とテトラエチレングリコールジメチルエーテル(沸点273℃)の含有量の合計量に対するプロピレングリコールモノプロピルエーテルの含有量の質量比は0.7であった。また、この時点でのシロキサン樹脂固形分濃度は31%であった。そこで、シロキサン樹脂固形分濃度が20%になるまで、高沸点成分と低沸点成分の合計含有量に対する低沸点成分の含有量の質量比が0.7であるこの混合溶媒を添加し、インクジェット用シリカ系被膜形成組成物c-6を作製した。
[Experiment 38]
To the silicon compound C, 0.3 g of Dispalon 1711 which is a silicone-based surface conditioner was added and stirred, and 93.5 g of propylene glycol monopropyl ether (boiling point 150 ° C.) was added. At this time, the mass ratio of the content of propylene glycol monopropyl ether to the total content of propylene glycol monopropyl ether (boiling point 150 ° C.) and tetraethylene glycol dimethyl ether (boiling point 273 ° C.) is 0.7. there were. Moreover, the siloxane resin solid content concentration at this time was 31%. Therefore, this mixed solvent in which the mass ratio of the content of the low boiling point component to the total content of the high boiling point component and the low boiling point component is 0.7 is added until the solid content concentration of the siloxane resin reaches 20%. A silica-based film forming composition c-6 was prepared.
 このようにして得られた実験例1~38のインクジェット用シリカ系被膜形成組成物について、以下の評価を実施した。 The following evaluations were carried out on the silica-based film-forming compositions for ink jets of Experimental Examples 1 to 38 thus obtained.
[再吐出時のノズル目詰まり評価]
 再吐出時のノズル目詰まり評価においては、(株)マイクロジェット社製のNanoPrinter-1100 Standardのインクジェット吐出機を用いた。
<目詰まり評価A>
 室温(23℃)下で吐出(3分)、未吐出(20分)、吐出(30秒)、未吐出(20分)、吐出(30秒)の順序でインク(各インクジェット用シリカ系被膜形成組成物)の吐出と未吐出を繰り返した際に、ノズル目詰まりすることなくインクが吐出されているかどうかを判定した。
<目詰まり評価B>
 室温(23℃)下で吐出(3分)、未吐出(10分)、吐出(30秒)、未吐出(10分)、吐出(30秒)の順序でインク(各インクジェット用シリカ系被膜形成組成物)の吐出と未吐出を繰り返した際に、ノズル目詰まりすることなくインクが吐出されているかどうかを判定した。
<目詰まり評価C>
 室温(23℃)下で吐出(3分)、未吐出(5分)、吐出(30秒)、未吐出(5分)、吐出(30秒)の順序でインク(各インクジェット用シリカ系被膜形成組成物)の吐出と未吐出を繰り返した際に、ノズル目詰まりすることなくインクが吐出されているかどうかを判定した。
[Evaluation of nozzle clogging during re-discharge]
For evaluation of nozzle clogging at the time of re-discharge, a NanoPrinter-1100 Standard inkjet discharge machine manufactured by Microjet Co., Ltd. was used.
<Clogging evaluation A>
Discharge at room temperature (23 ° C) (3 minutes), non-discharge (20 minutes), discharge (30 seconds), non-discharge (20 minutes), discharge (30 seconds) It was determined whether or not the ink was discharged without clogging the nozzles when the discharge and non-discharge of the composition were repeated.
<Clogging evaluation B>
Ink (silica-based film formation for each inkjet) in the order of discharge (3 minutes), non-discharge (10 minutes), discharge (30 seconds), non-discharge (10 minutes), discharge (30 seconds) at room temperature (23 ° C.) It was determined whether or not the ink was discharged without clogging the nozzles when the discharge and non-discharge of the composition were repeated.
<Clogging evaluation C>
At room temperature (23 ° C), discharge (3 minutes), non-discharge (5 minutes), discharge (30 seconds), non-discharge (5 minutes), discharge (30 seconds) in the order of ink (silica-based film formation for each inkjet) It was determined whether or not the ink was discharged without clogging the nozzles when the discharge and non-discharge of the composition were repeated.
[描画パターンの滲みの評価]
 描画パターンの滲みは以下のようにして評価した。まず、NanoPrinter-1100 Standardのインクジェット吐出機を用いてインク(各インクジェット用シリカ系被膜形成組成物)を吐出し、70℃に加熱した鏡面Siウェハ上に所定のパターンを描画した。この時、装置の描画条件を「幅800μm、長さ20000μm、膜厚1.2μm」に設定した。そして、描画したパターン実寸法幅が、前記800μmの120%である960μm以下である場合をA評価、前記800μmの125%である1000μm以下である場合をB評価、前記800μmの130%である1040μm以下である場合をC評価、1040μmを超える場合をD評価として滲みの評価を行った。
[Evaluation of bleeding of drawing pattern]
The bleeding of the drawing pattern was evaluated as follows. First, using a NanoPrinter-1100 Standard inkjet ejector, ink (each silica-based film-forming composition for inkjet) was ejected, and a predetermined pattern was drawn on a mirror-Si wafer heated to 70 ° C. At this time, the drawing conditions of the apparatus were set to “width 800 μm, length 20000 μm, film thickness 1.2 μm”. Then, when the drawn pattern actual dimension width is 960 μm or less, which is 120% of the 800 μm, A evaluation, B evaluation when the drawn pattern actual dimension width is 1000 μm or less which is 125% of the 800 μm, 1040 μm which is 130% of the 800 μm Bleeding was evaluated by C evaluation for the following cases and D evaluation for cases exceeding 1040 μm.
 実験例1~38のインクジェット用シリカ系被膜形成組成物の組成、並びに前記の評価結果を、表1~表6に示す。 Tables 1 to 6 show the compositions of the ink-jet silica-based film forming compositions of Experimental Examples 1 to 38 and the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (5)

  1.  下記一般式(I)で表される化合物を加水分解縮合して得られるケイ素化合物と、溶媒と、表面調整剤と、を含有し、
     前記溶媒は、沸点が80~160℃である第1の溶媒及び沸点が180~230℃である第2の溶媒を含み、
     前記第1の溶媒及び前記第2の溶媒の合計含有量に対する前記第1の溶媒の含有量の質量比が、下記条件A、B又はCで表される関係を満足する、インクジェット用シリカ系被膜形成組成物。
      条件A:前記第1の溶媒の沸点が80~100℃の場合、前記質量比が0.3~0.5である。
      条件B:前記第1の溶媒の沸点が100~130℃の場合、前記質量比が0.4~0.6である。
      条件C:前記第1の溶媒の沸点が130~160℃の場合、前記質量比が0.5~0.7である。
     R SiX4-n …(I)
    [式中、Rは炭素数1~20の有機基を示し、Xは加水分解性基を示し、nは0~2の整数を示す。ただし、nが2のとき、複数存在するRは同一でも異なっていてもよく、nが0~2のとき、複数存在するXは同一でも異なっていてもよい。]
    Containing a silicon compound obtained by hydrolytic condensation of a compound represented by the following general formula (I), a solvent, and a surface conditioner,
    The solvent includes a first solvent having a boiling point of 80 to 160 ° C. and a second solvent having a boiling point of 180 to 230 ° C.,
    A silica-based coating film for inkjet, wherein the mass ratio of the content of the first solvent to the total content of the first solvent and the second solvent satisfies the relationship represented by the following conditions A, B, or C: Forming composition.
    Condition A: When the boiling point of the first solvent is 80 to 100 ° C., the mass ratio is 0.3 to 0.5.
    Condition B: When the boiling point of the first solvent is 100 to 130 ° C., the mass ratio is 0.4 to 0.6.
    Condition C: When the boiling point of the first solvent is 130 to 160 ° C., the mass ratio is 0.5 to 0.7.
    R 1 n SiX 4-n (I)
    [Wherein R 1 represents an organic group having 1 to 20 carbon atoms, X represents a hydrolyzable group, and n represents an integer of 0 to 2. However, when n is 2, a plurality of R 1 may be the same or different, and when n is 0 to 2, a plurality of X 1 may be the same or different. ]
  2.  前記表面調整剤がシリコーン系表面調整剤である、請求項1記載の組成物。 The composition according to claim 1, wherein the surface conditioner is a silicone-based surface conditioner.
  3.  インクジェット法により、請求項1又は2に記載の組成物を基板上に吐出してパターン描画を行い描画パターン膜を形成する工程と、
     前記描画パターン膜を硬化させてパターンを有するシリカ系被膜を得る工程と、
    を備えるシリカ系被膜の形成方法。
    A step of ejecting the composition according to claim 1 or 2 onto a substrate by an ink jet method to perform pattern drawing to form a drawing pattern film; and
    Curing the drawing pattern film to obtain a silica-based film having a pattern;
    A method for forming a silica-based film.
  4.  基板と、請求項3に記載の方法により前記基板上に形成されたパターンを有するシリカ系被膜と、を備える半導体デバイス。 A semiconductor device comprising: a substrate; and a silica-based film having a pattern formed on the substrate by the method according to claim 3.
  5.  請求項4に記載の半導体デバイスを備える太陽電池システム。 A solar cell system comprising the semiconductor device according to claim 4.
PCT/JP2011/069198 2011-02-07 2011-08-25 Composition for forming silica-containing coating film for inkjet applications, method for forming silica-containing coating film, semiconductor device, and solar cell system WO2012108072A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012556748A JPWO2012108072A1 (en) 2011-02-07 2011-08-25 Silica-based film forming composition for inkjet, method for forming silica-based film, semiconductor device, and solar cell system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-024323 2011-02-07
JP2011024319 2011-02-07
JP2011-024319 2011-02-07
JP2011024328 2011-02-07
JP2011024323 2011-02-07
JP2011-024328 2011-10-24

Publications (1)

Publication Number Publication Date
WO2012108072A1 true WO2012108072A1 (en) 2012-08-16

Family

ID=46638306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069198 WO2012108072A1 (en) 2011-02-07 2011-08-25 Composition for forming silica-containing coating film for inkjet applications, method for forming silica-containing coating film, semiconductor device, and solar cell system

Country Status (3)

Country Link
JP (1) JPWO2012108072A1 (en)
TW (1) TW201233737A (en)
WO (1) WO2012108072A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329707A (en) * 1996-06-12 1997-12-22 Toray Ind Inc Production of color filter, and color filter
JPH1048619A (en) * 1996-08-06 1998-02-20 Toray Ind Inc Production of liquid crystal display device and liquid crystal display device
JP2002361906A (en) * 2001-06-13 2002-12-18 Matsushita Electric Ind Co Ltd Ink-jet recorder
JP2003246948A (en) * 2002-02-26 2003-09-05 Matsushita Electric Ind Co Ltd Ink for ink jet recording, ink cartridge and recording device
WO2009125787A1 (en) * 2008-04-09 2009-10-15 東京応化工業株式会社 Diffusing agent composition for ink-jet, and method for production of electrode or solar battery using the composition
JP2011000766A (en) * 2009-06-17 2011-01-06 Tokyo Ohka Kogyo Co Ltd Nano-imprinting composition and pattern formation method
JP2011119341A (en) * 2009-12-01 2011-06-16 Sharp Corp Method of forming diffusion-preventive mask, and method of manufacturing solar cell using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09329707A (en) * 1996-06-12 1997-12-22 Toray Ind Inc Production of color filter, and color filter
JPH1048619A (en) * 1996-08-06 1998-02-20 Toray Ind Inc Production of liquid crystal display device and liquid crystal display device
JP2002361906A (en) * 2001-06-13 2002-12-18 Matsushita Electric Ind Co Ltd Ink-jet recorder
JP2003246948A (en) * 2002-02-26 2003-09-05 Matsushita Electric Ind Co Ltd Ink for ink jet recording, ink cartridge and recording device
WO2009125787A1 (en) * 2008-04-09 2009-10-15 東京応化工業株式会社 Diffusing agent composition for ink-jet, and method for production of electrode or solar battery using the composition
JP2011000766A (en) * 2009-06-17 2011-01-06 Tokyo Ohka Kogyo Co Ltd Nano-imprinting composition and pattern formation method
JP2011119341A (en) * 2009-12-01 2011-06-16 Sharp Corp Method of forming diffusion-preventive mask, and method of manufacturing solar cell using the same

Also Published As

Publication number Publication date
JPWO2012108072A1 (en) 2014-07-03
TW201233737A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
KR100709644B1 (en) Silica-based Film, Process for Forming the Same, Composition for Forming Insulating Film of Semiconductor Device, Wiring Structure and Semiconductor Device
KR100912566B1 (en) Film, silica film and method of forming the same, composition for forming silica film, and electronic part
JP3674041B2 (en) Composition for forming silica-based film, silica-based film and method for forming the same, and electronic component including silica-based film
US20040188846A1 (en) Porous film, composition and manufacturing method, interlayer dielectric film, and semiconductor device
US6235101B1 (en) Composition for film formation and film
JP3966026B2 (en) Silica-based film forming composition, silica-based film and method for producing the same, and electronic component
WO2012144291A1 (en) Silica-coating-forming composition for use with inkjets, method for forming silica coating, semiconductor device, and solar-cell system
WO2012144292A1 (en) Silica-coating-forming composition for use with inkjets, method for forming silica coating, semiconductor device, and solar-cell system
JP2003171616A (en) Silica-based film forming composition, method of manufacturing silica-based film, and electronic part
JP2006183029A (en) Silica-based coating film-forming composition, method for forming silica-based coating film, the resultant silica-based coating film, and electronic component
JP5143335B2 (en) Composition for forming silica-based film, silica-based film and method for forming the same, and electronic component provided with silica-based film
JP4110796B2 (en) Composition for forming silica-based film, method for producing silica-based film, and electronic component
JP2014132044A (en) Composition for forming silica-based film for inkjet, method for forming silica-based film, semiconductor device and solar cell system
JP5143334B2 (en) Composition for forming silica-based film, silica-based film and method for forming the same, and electronic component provided with silica-based film
JP2006183028A (en) Silica-based coating film-forming composition, method for forming silica-based coating film, the resultant silica-based coating film, and electronic component
WO2012108072A1 (en) Composition for forming silica-containing coating film for inkjet applications, method for forming silica-containing coating film, semiconductor device, and solar cell system
JP2005136429A (en) Silica coat formation composition, silica coat and its formation method, and electronic component having silica coat
JP2004277508A (en) Silica film-forming composition, silica film, its forming method and electronic part having silica film
JP2005105281A (en) Silicious film-forming composition, silicious film and its forming method, and electronic part having silicious film
JP2005042118A (en) Composition for forming silica-based coating film, manufacturing method for silica-based coating film, and electronic part
JP2005105283A (en) Silicious film-forming composition, silicious film and its forming method, and electronic part having silicious film
JP2005105282A (en) Silicious film-forming composition, silicious film and its forming method, and electronic part having silicious film
JP2007291167A (en) Composition for forming silica-based coating film, method for producing silica-based coating film and electronic component
JP2011006539A (en) Coating silica-based film forming composition, silica-based film using the same, and semiconductor device using the film
JP2006055700A (en) Method for forming silica based hardened coating film, liquid for improving silica based hardened coating film, silica based hardened coating film and electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556748

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858148

Country of ref document: EP

Kind code of ref document: A1