WO2012108008A1 - Membrane air diffuser - Google Patents

Membrane air diffuser Download PDF

Info

Publication number
WO2012108008A1
WO2012108008A1 PCT/JP2011/052685 JP2011052685W WO2012108008A1 WO 2012108008 A1 WO2012108008 A1 WO 2012108008A1 JP 2011052685 W JP2011052685 W JP 2011052685W WO 2012108008 A1 WO2012108008 A1 WO 2012108008A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
air
membrane
pore
pore portion
Prior art date
Application number
PCT/JP2011/052685
Other languages
French (fr)
Japanese (ja)
Inventor
久人 辻川
克行 保科
義雄 北川
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Priority to CN201180045608.0A priority Critical patent/CN103118991B/en
Priority to PCT/JP2011/052685 priority patent/WO2012108008A1/en
Publication of WO2012108008A1 publication Critical patent/WO2012108008A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23124Diffusers consisting of flexible porous or perforated material, e.g. fabric
    • B01F23/231243Diffusers consisting of flexible porous or perforated material, e.g. fabric comprising foam-like gas outlets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/201Perforated, resilient plastic diffusers, e.g. membranes, sheets, foils, tubes, hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • B01F23/231231Diffusers consisting of rigid porous or perforated material the outlets being in the form of perforations
    • B01F23/231232Diffusers consisting of rigid porous or perforated material the outlets being in the form of perforations in the form of slits or cut-out openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23124Diffusers consisting of flexible porous or perforated material, e.g. fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23124Diffusers consisting of flexible porous or perforated material, e.g. fabric
    • B01F23/231241Diffusers consisting of flexible porous or perforated material, e.g. fabric the outlets being in the form of perforations
    • B01F23/231242Diffusers consisting of flexible porous or perforated material, e.g. fabric the outlets being in the form of perforations in the form of slits or cut-out openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231262Diffusers characterised by the shape of the diffuser element having disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231264Diffusers characterised by the shape of the diffuser element being in the form of plates, flat beams, flat membranes or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0422Numerical values of angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a membrane-type air diffuser installed in a tank of a sewage treatment facility or the like, and relates to a technique for performing air diffusion for biological treatment or stirring.
  • this type of membrane diffuser includes, for example, those shown in FIGS.
  • a rectangular diffuser membrane 252 is mounted on the upper surface of a rectangular base plate 251, and an air supply port 253 is provided at a predetermined position.
  • An air supply unit is provided between the base plate 251 and the diffuser membrane 252. 254 is formed.
  • the air supply port 253 communicates with the air supply unit 254.
  • the diffuser film 252 is a synthetic resin film or synthetic rubber film provided with a large number of slits 255 (pores), and the periphery of the diffuser film 252 is fixed to the base plate 251 by a fixing part 256.
  • Each slit 255 is a slit elongated in the longitudinal direction A of the diffuser membrane 252 and is parallel to the longitudinal direction A.
  • the aeration film 252 receives the water pressure in the tank and is pressed against the upper surface of the base plate 251. At this time, the diffuser membrane 252 does not expand and the slit 255 is closed.
  • the air diffusion film 252 receives the pressure of the compressed air from the longitudinal direction A. It expands into a mountain shape.
  • the slit 255 opens in the short direction B, and the air in the air supply unit 254 passes through the slit 255 and becomes a bubble 258, from the inner side to the outer side of the diffuser membrane 252. To erupt.
  • the slit 255 is used when the air supply amount supplied to the air supply unit 254 is small and the air volume is small. There is a problem that the bubbles generated from the bubbles and bubbles generated from the adjacent slits 255 are combined and coarsened, and the oxygen transfer efficiency is lowered.
  • the present invention can suppress an increase in the initial pressure loss and the pressure loss, and it is possible to prevent a decrease in oxygen transfer efficiency by dispersing bubbles uniformly when the air volume is small.
  • An object of the present invention is to provide a membrane diffuser capable of preventing the propagation of cracks.
  • a plurality of pores are formed in a diffuser membrane, At the time of air diffusion, the air diffuser film expands in a mountain shape by the pressure of the air supplied to the air diffuser film, and the pores open.
  • a membrane-type air diffuser that closes the pores when the air diffuser is not expanded when the air diffuser stops,
  • the diffuser membrane is formed by arranging a plurality of first pores and second pores that are more difficult to open than the first pores, A second pore portion is located between adjacent first pore portions.
  • the aeration membrane expands in a mountain shape due to the pressure of the air supplied to the aeration membrane, and a tensile force is generated in the aeration membrane.
  • This tensile force serves as a force for opening the first pore portion and the second pore portion.
  • the second pore portion is harder to open than the first pore portion, air is diffused with a small air volume.
  • the first pore portion is opened before the second pore portion, and most of the air supplied to the diffuser membrane passes through the opened first pore portion and becomes air bubbles from the inside of the diffuser membrane. While being ejected to the outside, there are hardly any bubbles ejected to the outside through the second pore part that is difficult to open.
  • the air supplied to the diffuser membrane passes through the first pore portion and the second pore portion, and is blown out from the inside of the diffuser membrane to the outside.
  • the bubbles are mainly ejected from the first pore portion.
  • the number of the second pore portions that eject the air bubbles increases, so that the initial pressure loss and the pressure loss increase. Can be suppressed.
  • the first air hole is a hole that is long in a predetermined direction of the air diffuser,
  • the direction in which the first pore part opens coincides with the direction of the tensile force generated in the diffuser film when the diffuser film expands in a mountain shape
  • the second pore portion is a hole that is long in a direction inclined with respect to the first pore portion.
  • the aeration membrane expands in a mountain shape due to the pressure of the air supplied to the aeration membrane, and a tensile force is generated in the aeration membrane.
  • This tensile force is a force for opening the first pore portion and the second pore portion.
  • the opening direction of the first pore portion coincides with the direction of the tensile force, but the second pore portion is Since it inclines with respect to the 1st pore part, the direction which the 2nd pore part opens, and the direction of tensile force do not correspond. Thereby, it becomes difficult for the 2nd pore part to open compared with the 1st pore part.
  • a plurality of pores are formed in the diffuser membrane, When diffused, the diffused film expands in a mountain shape when viewed from the longitudinal direction due to the pressure of the air supplied to the diffused film, and the pores open, A membrane-type air diffuser that closes the pores when the air diffuser is not expanded when the air diffuser stops, A plurality of first pore portions and second pore portions are respectively arranged in the longitudinal direction and the short direction of the diffuser membrane, The first pore portion is a long hole in the longitudinal direction of the diffuser membrane, The second pore portion is a long hole in a direction inclined with respect to the longitudinal direction of the diffuser membrane, A second pore portion is located between adjacent first pore portions.
  • the diffuser membrane expands in a mountain shape when viewed from the longitudinal direction due to the pressure of the air supplied to the diffuser membrane (that is, the cross-sectional shape orthogonal to the longitudinal direction of the diffuser membrane is a mountain shape) And a tensile force in the short direction is generated in the diffuser membrane.
  • This tensile force is a force for opening the first pore portion and the second pore portion.
  • the opening direction of the first pore portion coincides with the direction of the tensile force, but the second pore portion is Since it inclines with respect to the longitudinal direction, the direction in which the second pore portion opens and the direction of the tensile force do not match. Thereby, it becomes difficult for the 2nd pore part to open compared with the 1st pore part.
  • the first pore portion is opened before the second pore portion, and most of the air supplied to the diffuser membrane passes through the opened first pore portion, and bubbles
  • the air bubbles are ejected from the inside to the outside of the diffuser membrane, whereas there are almost no air bubbles ejected to the outside through the second pore portion that is difficult to open.
  • the air supplied to the diffuser membrane passes through the first pore portion and the second pore portion, and is blown out from the inside of the diffuser membrane to the outside.
  • the bubbles are mainly ejected from the first pore portion.
  • the number of the second pore portions that eject the air bubbles increases, so that the initial pressure loss and the pressure loss increase. Can be suppressed.
  • a plurality of pores are formed in the diffuser membrane, When air diffuses, the pores open when the air diffuser expands into a mountain shape due to the pressure of the air supplied to the air diffuser.
  • a membrane-type air diffuser that closes the pores when the air diffuser is not expanded when the air diffuser stops,
  • a plurality of first pore portions and second pore portions are arranged in concentric circles on the diffuser membrane, The first pore portion is a hole long in the circumferential direction of the diffuser membrane, The second pore portion is a hole long in a direction inclined with respect to the circumferential direction of the diffuser membrane, A second pore portion is located between adjacent first pore portions.
  • the aeration membrane expands in a mountain shape due to the pressure of the air supplied to the aeration membrane, and a tensile force is generated in the aeration membrane.
  • This tensile force is a force for opening the first pore portion and the second pore portion.
  • the opening direction of the first pore portion coincides with the direction of the tensile force, but the second pore portion is Since it inclines with respect to the 1st pore part, the direction which the 2nd pore part opens, and the direction of tensile force do not correspond. Thereby, it becomes difficult for the 2nd pore part to open compared with the 1st pore part.
  • the first pore portion is opened before the second pore portion, and most of the air supplied to the diffuser membrane passes through the opened first pore portion, and bubbles
  • the air bubbles are ejected from the inside to the outside of the diffuser membrane, whereas there are almost no air bubbles ejected to the outside through the second pore portion that is difficult to open.
  • the air supplied to the diffuser membrane passes through the first pore portion and the second pore portion, and is blown out from the inside of the diffuser membrane to the outside.
  • the bubbles are mainly ejected from the first pore portion.
  • the number of the second pore portions that eject the air bubbles increases, so that the initial pressure loss and the pressure loss increase. Can be suppressed.
  • the second pore portion is a long hole in a direction inclined at an angle of 5 ° to 25 ° with respect to the first pore portion.
  • the membrane type air diffuser has a third pore portion formed adjacent to at least one of the longitudinal direction of the first pore portion or the second pore portion,
  • the third pore portion is a hole that is long in a direction substantially perpendicular to the first pore portion.
  • the membrane-type air diffuser in the seventh invention is formed by arranging a plurality of first and third pore portions in the air diffuser film, At the time of air diffusion, the first pore part is opened by the air diffusion film expanding in a mountain shape by the pressure of the air supplied to the air diffusion film, When the aeration is stopped, the first pore portion is closed in a state where the aeration film is not expanded, The third pore portion is formed at a position adjacent to at least one of the longitudinal directions of the first pore portion, The third pore portion is a hole that is long in the direction intersecting the first pore portion.
  • the air diffusion film expands in a mountain shape by the pressure of the air supplied to the air diffusion film, and the first pore portion is opened by the tensile force generated in the air diffusion film.
  • the supplied air passes through the first pore portion, becomes a bubble, and is ejected from the inside to the outside of the diffuser membrane.
  • the third pore portion is a hole that is long in a direction intersecting the first pore portion, even if a crack occurs at the end portion of the first pore portion due to the tensile force, When reaching the third pore portion from the end portion of the pore portion, it does not proceed further from there. Therefore, the crack can be prevented from propagating from the first pore portion to the adjacent first pore portion.
  • the supply of air to the aeration film is interrupted, the aeration film does not expand, and the first and second pores are closed.
  • the third pore portion is a hole that is long in a direction substantially perpendicular to the first pore portion.
  • the first pore portion is opened, and the supplied air passes through the first pore portion and becomes a bubble to be ejected from the inside of the diffuser membrane to the outside.
  • the third pore portion is a hole that is long in a direction substantially orthogonal to the first pore portion, even if a crack occurs at the end portion of the first pore portion, this crack is not generated in the first pore portion.
  • this crack is not generated in the first pore portion.
  • the third pore portion is closed, and there are almost no bubbles ejected to the outside through the third pore portion.
  • the membrane diffuser in the ninth invention is formed by arranging a plurality of first and third pores on the diffuser membrane,
  • the first pore portion is a long hole in the longitudinal direction of the diffuser membrane
  • the third pore portion is a hole that is long in the short direction of the diffuser membrane, and is formed at a position adjacent to at least one of the first pore portions in the longitudinal direction of the diffuser membrane,
  • the air diffusion film expands in a mountain shape by the pressure of the air supplied to the air diffusion film, and the first pore portion opens in the short direction,
  • the first pore portion is closed in a state where the aeration film is not expanded.
  • the air diffuser film expands in a mountain shape due to the pressure of the air supplied to the air diffuser film, and the first pore portion is short in the short direction due to the short direction tensile force generated in the air diffuser film. Open to. The supplied air passes through the first pore portion, becomes a bubble, and is ejected from the inside to the outside of the diffuser membrane.
  • the second pore portion is closed, and there are almost no bubbles ejected to the outside through the second pore portion.
  • the supply of air to the aeration film is interrupted, the aeration film does not expand, and the first and second pores are closed.
  • the membrane-type air diffuser in the tenth aspect of the present invention is formed by arranging a plurality of first and third pore portions concentrically on the air diffuser membrane,
  • the first pore portion is a hole long in the circumferential direction of the diffuser membrane
  • the third pore portion is a hole that is long in the radial direction of the diffuser membrane, and is formed at a position adjacent to at least one of the first pore portions in the circumferential direction of the diffuser membrane,
  • the air diffusion film expands in a mountain shape by the pressure of the air supplied to the air diffusion film, and the first pore portion opens in the radial direction,
  • the first pore portion is closed in a state where the aeration film is not expanded.
  • the air diffusion film expands in a mountain shape by the pressure of the air supplied to the air diffusion film, and the first pore portion opens in the radial direction by the radial tensile force generated in the air diffusion film. .
  • the supplied air passes through the first pore portion, becomes a bubble, and is ejected from the inside to the outside of the diffuser membrane.
  • the crack can be prevented from propagating from the first pore portion to the adjacent first pore portion in the circumferential direction of the diffuser membrane.
  • the third pore portion is closed, and there are almost no bubbles ejected to the outside through the third pore portion.
  • the supply of air to the aeration film is cut off, the aeration film does not expand, and the first and third pores are closed.
  • the membrane-type air diffuser according to the eleventh aspect of the present invention is such that a plurality of second pore portions that are long in the direction inclined at an angle of 5 ° to 25 ° with respect to the first pore portion are formed on the diffuser membrane.
  • the air diffuser film expands in a mountain shape due to the pressure of the air supplied to the air diffuser film, and the tensile force generated in the air diffuser film leads to the second pore part.
  • the first pore portion opens.
  • the supplied air passes through the opened first pore portion and becomes a bubble and is ejected from the inside to the outside of the diffuser membrane, whereas the bubble that is ejected to the outside through the second pore portion that is difficult to open There is almost no.
  • the second pore portion is easily opened as the air supply amount is increased, and the number of the second pore portions ejecting bubbles is increased. For this reason, the air supplied to the diffuser membrane passes through the first pore portion and the second pore portion, and is blown out from the inside of the diffuser membrane to the outside.
  • the bubbles are mainly ejected from the first pore portion.
  • the number of the second pore portions that eject the air bubbles increases, so that the initial pressure loss and the pressure loss increase. Can be suppressed.
  • the present invention it is possible to suppress an increase in the initial pressure loss and the pressure loss, and it is possible to prevent a decrease in oxygen transfer efficiency by dispersing and generating bubbles uniformly when the air volume is small. Is possible. Moreover, propagation of cracks can be prevented.
  • FIG. 2 is an SS arrow view in FIG. 1 and shows a state during an aeration operation. It is a top view which shows the arrangement pattern of the slit of a membrane type air diffuser.
  • FIG. 4 is an enlarged plan view of the slit of the membrane-type air diffuser, where (a) shows a state in which the first to third slits are closed, and (b) shows a state in which the first and second slits are opened and the third slit is closed. It shows the state.
  • FIG. 4 is an enlarged plan view of the slit of the membrane-type air diffuser, where (a) shows a state in which the first to third slits are closed, and (b) shows a state in which the first and second slits are opened and the third slit is closed. It shows the state.
  • FIG 3 is an enlarged cross-sectional view of the first and second slits of the membrane-type air diffuser, in which (a) is a state where the first and second slits are closed, and (b) is a state where the first slit is opened and the second slit is opened. (C) shows a state in which the first and second slits are open. It is a figure for demonstrating the general relational expression of the maximum stress which generate
  • the graph (a) shows the relationship between the membrane surface ventilation rate and the number of foam slits
  • the graph (b) shows the membrane surface ventilation rate and the ratio of the first to third slits in all the foam slits. This shows the relationship. It is a graph which shows the relationship between the inclination-angle of a 2nd slit, and the ratio of the number of the 2nd slit to foam when the number of the 1st slit to foam is set to 100.
  • FIG. FIG. 5 is a plan view showing an arrangement pattern in which slit directions are arranged at random, which is in proportion to the first embodiment. It is a top view which shows the arrangement pattern of the slit of the membrane type air diffuser in the 2nd Embodiment of this invention.
  • FIG. 14 is an SS arrow view in FIG. 13. It is a top view which shows the arrangement pattern of the slit of a membrane type air diffuser. It is a top view of the membrane type air diffuser in the 6th Embodiment of this invention.
  • FIG. 17 is an SS arrow view in FIG. 16.
  • FIG. 19 is a view taken along the line SS in FIG. 18 and shows a state during the aeration operation. It is a top view which shows the arrangement pattern of the slit of a membrane type air diffuser.
  • FIG. 4 is an enlarged plan view of the slit of the membrane diffuser, where (a) shows a state where the first and third slits are closed, and (b) shows a state where the first slit is open and the third slit is closed. Indicates.
  • FIG. 1 It is an expanded sectional view of the 1st slit of a membrane type diffuser, (a) shows the state where the 1st slit is closed, and (b) shows the state where the 1st slit is opened. It is a figure for demonstrating the general relational expression of the maximum stress which generate
  • FIG. 4 is an enlarged plan view of the slit of the membrane-type air diffuser, where (a) shows a state in which the first to third slits are closed, and (b) shows a state in which the first and second slits are opened and the third slit is closed. It shows the state.
  • the graph (a) shows the relationship between the membrane surface ventilation rate and the number of foam slits, and the graph (b) shows the membrane surface ventilation rate and the ratio of the first to third slits in all the foam slits. This shows the relationship.
  • FIG. 29 is an SS arrow view in FIG. 28. It is a top view which shows the arrangement pattern of the slit of a membrane type air diffuser. It is a top view of the membrane type air diffusion apparatus in the 10th Embodiment of this invention.
  • FIG. 32 is an SS arrow view in FIG. 31. It is a perspective view of the conventional membrane type diffuser.
  • reference numeral 1 denotes a membrane-type air diffuser installed in an aeration tank such as a sewage treatment facility.
  • the membrane diffuser 1 includes a rectangular base plate 2 made of plastic or metal, and a rectangular (an example of a shape that is long in one direction) attached to the upper surface of the base plate 2.
  • the air diffusion membrane 3 has elasticity, and is made of, for example, rubber such as EPDM or silicon, or resin such as polyurethane.
  • the periphery of the diffuser membrane 3 is fixed to the base plate 2 by a fixing portion 6 (for example, a caulking member), and an air supply portion 4 is formed between the base plate 2 and the diffuser membrane 3. Further, a short cylindrical air supply port 5 is provided at one end portion in the longitudinal direction A (an example of a predetermined direction) of the diffuser membrane 3. The air supply port 5 communicates with the air supply unit 4 and is connected to an air supply source (not shown).
  • the diffuser membrane 3 may have, for example, the following properties (1) to (3). * Properties (1) Material: Rubber (EPDM), Hardness (A): 50-70, Thickness (mm): 1-3 * Properties (2) Material: Rubber (silicon), Hardness (A): 35-55, Thickness (mm): 1-3 * Properties (3) Material: Resin (Polyurethane), Hardness (A): 70-98, Thickness (mm): 0.3-1
  • Properties of the air diffusing membrane 3 are examples, and are not limited to these, and can be appropriately changed and optimized according to the conditions to be used.
  • the air diffusion film 3 expands in a mountain shape when viewed from the longitudinal direction A by the pressure of the air supplied to the air diffusion film 3.
  • the diffuser membrane 3 does not have a mountain shape when viewed from the longitudinal direction A, but most regions excluding both ends of the diffuser membrane 3. Since the diffuser membrane 3 expands in a mountain shape when viewed from the longitudinal direction A, the two ends of the diffuser membrane 3 are excluded here.
  • a plurality of first to third slits 8 to 10 are formed in the diffuser membrane 3.
  • the first slit 8 is an elongated hole (slit) in the longitudinal direction A, and is parallel to the longitudinal direction A.
  • the second slit 9 is an elongated hole (slit) in a direction inclined at a predetermined inclination angle ⁇ with respect to the longitudinal direction A (that is, the first slit 8).
  • the predetermined inclination angle ⁇ is set to 13 ° (acute angle).
  • the third slit 10 is a hole (slit) elongated in the short direction B and is orthogonal to the longitudinal direction A (that is, the first slit 8).
  • the first to third slits 8 to 10 are arranged in a predetermined arrangement pattern in the longitudinal direction A and the short direction B. That is, a plurality of first slits 8 are formed at predetermined intervals in the longitudinal direction A, and the second slits 9 are located between the first slits 8 adjacent in the longitudinal direction A. Further, the third slit 10 is located between the first slit 8 and the second slit 9 adjacent in the longitudinal direction A, and is located between the first slits 8 adjacent in the longitudinal direction A, As a result, the first slit 8 and the second slit 9 are adjacent to each other. The second slit 9 is also located between the first slits 8 adjacent in the short direction B.
  • air of a predetermined pressure is supplied from the air supply source (not shown) through the air supply port 5 to the membrane-type air diffuser 1, so that air is supplied from the air supply port 5 as shown by the solid line in FIG.
  • the diffuser membrane 3 expands in a mountain shape when viewed from the longitudinal direction A by the pressure of air supplied to the supply unit 4, and a tensile force F in the short direction B is generated in the diffuser membrane 3.
  • the tensile force F is a force for opening the first slit 8 and the second slit 9.
  • the direction in which the first slit 8 opens and the direction of the tensile force F coincide with each other.
  • the second slit 9 is inclined at the inclination angle ⁇ , the direction in which the second slit 9 opens and the direction of the tensile force F do not match. That is, the first slit 8 is opened by the tensile force F, while the second slit 9 is opened by the Fcos ⁇ force F ′, which is smaller than the tensile force F. For this reason, the second slit 9 becomes harder to open than the first slit 8 as the inclination angle ⁇ increases.
  • the first slit 8 opens before the second slit 9, and most of the air supplied to the air supply unit 4 is While passing through the opened first slit 8 and forming bubbles 13 from the inside of the diffuser membrane 3 to the outside, almost no bubbles are ejected to the outside through the second slit 9 that is difficult to open.
  • the air pressure of the air supply unit 4 increases as the amount of air supplied to the air supply unit 4 increases, and the second slit 9 It becomes easy to open, and the number of the second slits 9 for ejecting bubbles increases. For this reason, as shown in FIG.5 (c), the air of the air supply part 4 passes the 1st slit 8 and the 2nd slit 9, becomes the bubble 13, and is ejected from the inner side of the diffuser film 3 to the outer side.
  • the bubbles 13 are mainly ejected from the first slit 8, but as the air volume increases, the number of the second slits 9 that eject the air bubbles 13 increases, so that the initial pressure loss and pressure loss are increased. Can be suppressed.
  • the first slit 8 when the air is diffused, the first slit 8 is opened by the tensile force F in the short direction B acting on the first slit 8, and the first slit 8 is opened by this tensile force F. Even if a crack 12 occurs at the end of the first slit, the crack 12 does not advance further from the end of the first slit 8 until it reaches the third slit 10. Therefore, the crack 12 can be prevented from propagating from the first slit 8 to the adjacent first slit 8 in the longitudinal direction A.
  • the maximum stress ⁇ max increases as the radius ⁇ at the tip of the notch 15 decreases.
  • the radius ⁇ at the tip is very small, so that the crack 12 gradually grows due to the stress concentration.
  • the third slit 10 has a notch with a very large radius ⁇ at the tip. Can be considered.
  • the maximum stress ⁇ max obtained by the above formula becomes very small, and the stress concentration hardly occurs in the third slit 10, thereby preventing the propagation of the crack 12 in the third slit 10.
  • the third slit 10 is closed. There is almost no air jetted from the air supply unit 4 through the third slit 10 to the outside.
  • the supply of air to the aeration film 3 is interrupted, and the aeration film 3 receives water pressure as shown in the phantom line of FIG. 2 and FIG. It will be in the state pressed against. At this time, the diffuser membrane 3 does not expand, and the first to third slits 8 to 10 are closed.
  • the graph of FIG. 7 is an example of measurement data of the number of foam slits by air volume, and among these, the graph of FIG. 7A shows the relationship between the membrane surface ventilation rate and the number of foam slits.
  • the graph of FIG. 7B shows the relationship between the membrane surface air flow rate and the ratio of the first to third slits 8 to 10 occupying in all the foaming slits.
  • the membrane surface air flow rate indicates the air flow rate of air passing through the diffuser membrane 3 per hour and per m 2, and from the membrane surface air flow rate M1 to the membrane surface air flow rate M4. It has increased to become. It should be noted that the smaller the amount of air supplied to the membrane-type air diffuser 1, the smaller the air flow rate on the membrane surface, and the greater the air flow rate, the greater the air flow rate on the membrane surface.
  • the number of foam slits is the number of first slits 8 that ejected bubbles from among the 100 first slits 8 and the number of second slits 9 that ejected bubbles from among the 100 second slits 9.
  • the number and the number of the third slits 10 from which the bubbles are jetted out of the 100 third slits 10 are shown.
  • the ratio occupied in all the foam slits is the first to the second of the total number of foam slits for each membrane surface air flow rate M1 to M4 in the graph of FIG. 7 (a).
  • the ratio of the three slits 8 to 10 is shown.
  • the diffuser membrane 3 at this time is made of polyurethane resin (hardness 85A) and has a thickness of 0.6 mm, and the lengths of the first to third slits 8 to 10 are about 0.4 mm.
  • the inclination angle ⁇ of the second slit 9 is set to the optimum value of 13 ° based on the relationship shown in the graph of FIG. 8, it is not limited to 13 ° but is in the range of 5 ° to 25 °. An angle of 10 ° to 15 ° is more preferable.
  • FIG. 9 shows an example of the diffuser membrane 3 in which the orientations of the slits 18 are randomly arranged.
  • the smaller the inclination angle ⁇ with respect to the longitudinal direction A the easier the slit 15 opens.
  • the ratio of the slits 15 having the small inclination angle ⁇ decreases, there is a problem that the pressure loss increases.
  • the air is foamed from the slit 15 having a larger inclination angle ⁇ , which increases the pressure loss.
  • the third slit 10 is formed at the most effective angle of 90 ° with respect to the longitudinal direction A, but it is about 70 ° to 110 °. You may form in the angle within the range.
  • two types of second slits 9 and 11 (an example of the second pore portion) having different inclination angles ⁇ between the first slits 8 adjacent in the longitudinal direction A. ) May be formed.
  • the inclination angle ⁇ of one second slit 9 is set to 13 °
  • the inclination angle ⁇ of the other second slit 11 is set to 6 °.
  • one second slit 9 is harder to open than the other second slit 11, and the other second slit 11 is harder to open than the first slit 8. Therefore, when the air is diffused with a small air volume, the first slit 8 is opened before the second slits 9 and 11, and most of the air supplied to the air supply unit 4 passes through the opened first slit 8. Erupted through. Further, when the air volume is increased from the small air volume to the large air volume, the other second slit 11 is easily opened after the first slit 8, and the number of the other second slits 11 ejecting bubbles is increased. Then, when the air volume further increases, one of the second slits 9 is easily opened, and the number of one of the second slits 9 for ejecting bubbles increases.
  • the inclination angle ⁇ of the other second slit 11 is set to 6 °, but is not limited to 6 ° and is set to an angle in the range of 5 ° to 20 °. May be.
  • the shapes of the base plate 2 and the diffuser membrane 3 are rectangular. However, the shape is not limited to the rectangle, and the fifth embodiment. As shown in FIGS. 13 to 15, the shape of the base plate 2 and the diffuser membrane 3 may be circular.
  • the short tubular air supply port 5 is provided at the center of the base plate 2, the upper end of the air supply port 5 communicates with the air supply unit 4, and the lower end of the air supply port 5 is connected to the air supply tube 21 and communicates therewith. ing.
  • the air diffusion film 3 expands in a mountain shape when viewed from the radial direction R by the pressure of the air supplied to the air diffusion film 3.
  • a plurality of first to third slits 8 to 10 are formed in the diffuser membrane 3.
  • the first slit 8 is a hole (slit) elongated in the circumferential direction C of the diffuser membrane 3.
  • the second slit 9 is a hole (slit) elongated in a direction inclined at a predetermined inclination angle ⁇ with respect to the circumferential direction C (that is, the first slit 8).
  • the predetermined inclination angle ⁇ is set to 13 ° (acute angle).
  • the third slit 10 is a hole (slit) elongated in the radial direction R of the diffuser membrane 3 and is orthogonal to the circumferential direction C.
  • the first to third slits 8 to 10 are arranged in a plurality of concentric circles in a predetermined arrangement pattern. That is, a plurality of first slits 8 are formed at predetermined intervals in the circumferential direction C, and the second slits 9 are located between the first slits 8 adjacent in the circumferential direction C. Further, the third slit 10 is located between the first slit 8 and the second slit 9 adjacent in the circumferential direction C, and is positioned between the first slits 8 adjacent in the circumferential direction C. Yes.
  • air of a predetermined pressure is supplied from the air supply pipe 21 through the air supply port 5 to the membrane-type air diffuser 1, so that the air supply port 5 supplies the air supply unit 4 as shown by the solid line in FIG. 14.
  • the diffuser membrane 3 expands in a mountain shape when viewed from the radial direction R by the pressure of the supplied air, and a tensile force F in the radial direction R is generated in the diffuser membrane 3.
  • the tensile force F is a force for opening the first slit 8 and the second slit 9.
  • the direction in which the first slit 8 opens coincides with the direction of the tensile force F.
  • the second slit 9 is inclined at an inclination angle ⁇ , the direction in which the second slit 9 opens and the direction of the tensile force F do not match.
  • the second slit 9 becomes harder to open than the first slit 8 as the inclination angle ⁇ increases.
  • the first slit 8 is opened before the second slit 9, and most of the air supplied to the air supply unit 4 passes through the opened first slit 8, While it becomes a bubble and is ejected from the inside of the diffuser film 3 to the outside, there are almost no bubbles that are ejected to the outside through the second slit 9 that is difficult to open.
  • the air pressure of the air supply unit 4 increases as the amount of air supplied to the air supply unit 4 increases, and the second slit 9 It becomes easy to open, and the number of the second slits 9 for ejecting bubbles increases. For this reason, the air of the air supply part 4 passes the 1st slit 8 and the 2nd slit 9, becomes a bubble, and is ejected from the inner side of the diffuser film 3 to the outer side.
  • the first slit 8 is opened by the tensile force F in the radial direction R acting on the first slit 8, but even if a crack 12 occurs at the end of the first slit 8 due to this tensile force F.
  • the crack 12 reaches the third slit 10 from the end of the first slit 8, the crack 12 does not advance further from there. Therefore, the crack 12 can be prevented from propagating from the first slit 8 to the adjacent first slit 8 in the circumferential direction C.
  • the aeration film 3 receives a water pressure and is pressed against the upper surface of the base plate 2. At this time, the diffuser membrane 3 does not expand, and the first to third slits 8 to 10 are closed.
  • the shape of the base plate 2 and the diffuser membrane 3 is circular, but it may be a regular polygon such as a square.
  • the membrane diffuser 1 is provided with the diffuser film 3 on the upper surface of the base plate 2.
  • a rectangular diffuser film 3 may be provided on the upper surface of the rectangular bag 25.
  • the bag-like body 25 is made of an air-impermeable sheet-like member and has an air supply part 4 inside.
  • An air supply port 5 is provided on one outer edge of the bag-like body 25. The air supply port 5 communicates with the air supply unit 4 and is connected to an air supply source (not shown).
  • the diffuser film 3 is attached to the diffuser opening 26 formed on the upper surface of the bag 25 and covers the diffuser opening 26. As in the first embodiment, a large number of first to third slits 8 to 10 are formed in the diffuser membrane 3. At the time of air diffusion, as shown by the solid line in FIG. 17, the air diffusion film 3 is mountain-shaped when viewed from the longitudinal direction A due to the pressure of air supplied from the air supply port 5 to the air supply unit 4 in the bag-like body 25. Inflates.
  • the bag 25 and the diffuser membrane 3 are rectangular, but may be circular.
  • the slit arrangement pattern in the longitudinal direction A is set to “X, Z, Y, Z, X, Z, Y, Z, X.
  • the arrangement pattern of the slits in the circumferential direction C is “X ⁇ Z ⁇ Y ⁇ Z ⁇ X ⁇ Z ⁇ Y ⁇ Z ⁇ X.
  • the present invention is not limited to this arrangement pattern.
  • Pattern (1) X, Y, X, Y, X, Y, X ...
  • Pattern (2) X, X, Y, X, X, Y, X, X, Y, X ...
  • Pattern (3) X, Y, Y ', X, Y, Y', X, Y, Y ', X ...
  • Pattern (4) X, Y, X, Y ', X, Y, X, Y', X ...
  • the slits 8 to 11 are exaggerated and enlarged as compared with actual ones for easy understanding, but in actuality, the slits 8 to 11 have a minute size.
  • the length of each of the slits 8 to 11 is preferably set in the range of 0.2 mm to 1 mm, more preferably in the range of 0.4 mm to 0.6 mm.
  • the actual number of slits 8 to 11 is larger than the number depicted in FIGS.
  • the first slit 8 and the second slit 9 may have the same length or different lengths.
  • the first slit 8 is parallel to the longitudinal direction A.
  • the first slit 8 may be slightly inclined with respect to the longitudinal direction A.
  • the second slit 9 can be set to be more difficult to open than the first slit 8.
  • an embodiment in which the first slit 8 is inclined by 3 ° with respect to the longitudinal direction A and the second slit 9 is inclined by 15 ° with respect to the longitudinal direction A can be considered.
  • these can be suitably adjusted according to the material of the diffuser film 3, and the length of a slit.
  • the second slit 9 is more difficult to open than the first slit 8 by providing an angle between the first slit 8 and the second slit 9.
  • the second slit 9 can be set to be more difficult to open than the first slit 8.
  • the second slit 9 is set to be harder to open than the first slit 8.
  • the diffuser membrane 3 has a rectangular or circular shape.
  • an elliptical shape an elliptical shape in which both ends are formed in an arc shape, an L shape, A square shape, a rhombus shape, etc. may be sufficient.
  • 101 is a membrane type air diffuser installed in an aeration tank such as a sewage treatment facility.
  • This membrane-type air diffuser 101 includes a rectangular base plate 102 made of plastic, metal, or the like, and a rectangular air diffuser membrane 103 attached to the upper surface of the base plate 102.
  • the air diffusion membrane 103 has elasticity, and is made of, for example, rubber such as EPDM or silicon, or resin such as polyurethane.
  • the periphery of the diffuser membrane 103 is fixed to the base plate 102 by a fixing unit 106 (for example, a caulking member), and an air supply unit 104 is formed between the base plate 102 and the diffuser membrane 103. Further, a short cylindrical air supply port 105 is provided at one end in the longitudinal direction A of the diffuser membrane 103. The air supply port 105 communicates with the air supply unit 104 and is connected to an air supply source (not shown).
  • a fixing unit 106 for example, a caulking member
  • the diffuser membrane 103 for example, the following properties (1) to (3) can be used.
  • the properties of the air diffusing membrane 103 are examples, and are not limited to these, and can be appropriately changed and optimized according to the conditions to be used.
  • the air diffusion film 103 expands in a mountain shape when viewed from the longitudinal direction A due to the pressure of the air supplied to the air diffusion film 103.
  • both ends in the longitudinal direction A of the diffuser membrane 103 are fixed to the base plate 102, it does not have a mountain shape when viewed from the longitudinal direction A, but most regions excluding both ends of the diffuser membrane 103. Since the diffuser membrane 103 expands in a mountain shape when viewed from the longitudinal direction A, the two ends of the diffuser membrane 103 are excluded here.
  • first and third slits 108 and 109 are formed in the diffuser membrane 103.
  • the first slit 108 is an elongated hole (slit) in the longitudinal direction A, and is parallel to the longitudinal direction A.
  • the third slit 109 is a hole (slit) that is elongated in the lateral direction B, and is orthogonal to the longitudinal direction A.
  • a plurality of first and third slits 108 and 109 are arranged in a predetermined arrangement pattern in the longitudinal direction A and the transverse direction B. That is, a plurality of the first slits 108 are formed at predetermined intervals in the longitudinal direction A, and the third slits are disposed between the first slits 108 adjacent in the longitudinal direction A (an example of positions adjacent to at least one of the first slits 108). A slit 109 is located. In addition, a plurality of first slits 108 are formed at predetermined intervals also in the short direction B, and the third slits 109 are located between adjacent first slits 108 in the short direction B.
  • air of a predetermined pressure is supplied from the air supply source (not shown) through the air supply port 105 to the membrane type air diffuser 101 so that the air is supplied from the air supply port 105 as shown by the solid line in FIG.
  • the diffuser membrane 103 expands in a mountain shape when viewed from the longitudinal direction A due to the pressure of the air supplied to the supply unit 104, and a tensile force F in the short direction B is generated in the diffuser membrane 103.
  • the first slit 108 is opened in the short direction B by the tensile force F.
  • the air supplied to the air supply unit 104 passes through the first slit 108, becomes a bubble 113, and is ejected from the inside of the diffuser membrane 103 to the outside.
  • the maximum stress ⁇ max increases as the radius ⁇ at the tip of the notch 115 decreases.
  • the radius ⁇ at the tip is very small, and the crack 112 gradually grows due to the stress concentration.
  • the maximum stress ⁇ max obtained by the above formula becomes very small, and the stress concentration hardly occurs in the third slit 109, whereby the propagation of the crack 112 in the third slit 109 can be prevented.
  • the diffuser film 103 that expands in a mountain shape mainly generates a tensile force F in the short direction B and hardly generates a force in the longitudinal direction A.
  • the third slit 109 remains closed, and almost no air is ejected from the air supply unit 104 through the third slit 109 to the outside.
  • the aeration film 103 receives water pressure and is pressed against the upper surface of the base plate 102. Become. At this time, the diffuser membrane 103 does not expand, and the first and second slits 8 and 9 are closed.
  • the diffuser membrane 103 has a predetermined inclination angle ⁇ with respect to the longitudinal direction A in addition to the first and third slits 108 and 109.
  • a plurality of second slits 110 (an example of a second pore portion) that are elongated holes are formed in the direction inclined at.
  • the predetermined inclination angle ⁇ is set to 13 ° (acute angle).
  • the second slit 110 is located between the first slits 108 adjacent in the longitudinal direction A.
  • the third slit 109 is located between the first slit 108 and the second slit 110 adjacent in the longitudinal direction A, and is located between the first slits 108 adjacent in the longitudinal direction A.
  • the tensile force F in the short direction B generated in the diffuser film 103 that has expanded in a mountain shape serves as a force for opening the first slit 108 and the second slit 110.
  • the direction in which the first slit 108 opens coincides with the direction of the tensile force F.
  • the second slit 110 is inclined at the inclination angle ⁇ , the direction in which the second slit 110 opens and the tensile force F Does not match the direction. That is, the first slit 108 is opened with the tensile force F, while the second slit 110 is opened with the force F ′ of Fcos ⁇ , which is smaller than the tensile force F. For this reason, as the inclination angle ⁇ increases, the second slit 110 becomes harder to open than the first slit 108.
  • the second slit 110 is located between the adjacent first slits 108, the interval D between the first slits 108 is enlarged, and the bubbles ejected from the first slit 108 and the neighboring first slits 108 are increased. Bonding with the ejected bubbles can be prevented. Thereby, at the time of a small air volume, bubbles can be dispersed and generated uniformly, and a decrease in oxygen transfer efficiency can be prevented.
  • the air supply of the air supply unit 104 increases as the amount of air supplied to the air supply unit 104 increases, and the second slit 110 It becomes easy to open, and the number of the second slits 110 for ejecting bubbles increases.
  • the air of the air supply part 104 passes through the 1st slit 108 and the 2nd slit 110, and is ejected from the inner side of the diffuser film 103 to the outer side as a bubble.
  • the bubbles are mainly ejected from the first slit 108 at a small air volume.
  • the number of the second slits 110 that eject the air bubbles increases. The rise can be suppressed.
  • the graph of FIG. 26 is an example of measurement data of the number of foam slits by air volume, and among these, the graph of FIG. 26A shows the relationship between the membrane surface air flow rate and the number of foam slits.
  • the graph of FIG. 26 (b) shows the relationship between the air flow rate on the membrane surface and the ratio of the first to third slits 108 to 110 in the total foaming slits.
  • the membrane surface ventilation rate indicates the ventilation rate of air passing through the diffuser membrane 103 per hour and per 1 m 2, and from the membrane surface ventilation rate M1 to the membrane surface ventilation rate M4. It has increased to become. It should be noted that the smaller the amount of air supplied to the membrane type air diffuser 101, the smaller the air flow rate on the membrane surface, and the greater the air volume, the greater the air flow rate on the membrane surface.
  • the number of foam slits is the number of first slits 108 that ejected bubbles from among the 100 first slits 108 and the number of third slits 109 that ejected bubbles from among the 100 third slits 109.
  • the number and the number of second slits 110 from which bubbles are ejected out of 100 second slits 110 are shown.
  • the ratio occupied in all the foaming slits is the first to the second of the total number of foaming slits for each membrane surface air flow rate M1 to M4 in the graph of FIG.
  • the ratio occupied by the three slits 108 to 110 is shown.
  • the diffuser membrane 103 at this time is made of polyurethane resin (hardness 85A) and has a thickness of 0.6 mm, and the lengths of the first to third slits 108 to 110 are about 0.4 mm.
  • the inclination angle ⁇ of the second slit 110 is set to the optimum value of 13 ° based on the relationship shown in the graph of FIG. 27, but is not limited to 13 ° and is in the range of 5 ° to 25 °. An angle of 10 ° to 15 ° is more preferable.
  • the third slit 109 is formed at the most effective angle of 90 ° with respect to the longitudinal direction A, but it is within the range of about 70 ° to 110 °. You may form at an angle.
  • the first slit 108 is parallel to the longitudinal direction A.
  • the first slit 108 may be slightly inclined with respect to the longitudinal direction A.
  • the shapes of the base plate 102 and the diffuser membrane 103 are rectangular. However, the shape is not limited to a rectangle, and FIGS. 28 to 30 show the ninth embodiment. As shown, the shape of the base plate 102 and the diffuser membrane 103 may be circular.
  • the short tubular air supply port 105 is provided at the center of the base plate 102, the upper end of the air supply port 105 communicates with the air supply unit 104, and the lower end of the air supply port 105 communicates with the air supply tube 121. ing.
  • first and third slits 108 and 109 are formed concentrically on the diffuser membrane 103.
  • first slit 108 is a hole (slit) elongated in the circumferential direction C of the diffuser membrane 103.
  • the third slit 109 is a hole (slit) elongated in the radial direction R of the diffuser membrane 103 and is orthogonal to the circumferential direction C.
  • a plurality of first and third slits 108 and 109 are arranged in a predetermined arrangement pattern in the circumferential direction C and the radial direction R.
  • a plurality of first slits 108 are formed at predetermined intervals in the circumferential direction C, and between the first slits 108 adjacent in the circumferential direction C (an example of a position adjacent to at least one of the first slits 108).
  • a third slit 109 is located.
  • the air diffusion film 103 is mountain-shaped when viewed from the radial direction R due to the pressure of air supplied from the air supply pipe 121 through the air supply port 105 to the air supply unit 104.
  • the tensile force F in the radial direction R is generated in the diffuser membrane 103, and the first slit 108 is opened in the radial direction R by the tensile force F.
  • the air supplied to the air supply unit 104 passes through the first slit 108 and becomes a bubble, and is ejected from the inside of the diffuser membrane 103 to the outside.
  • the third slit 109 is closed. There is almost no air jetted from the air supply unit 104 to the outside through the third slit 109.
  • the supply of air to the aeration film 103 is interrupted, and the aeration film 103 is pressed against the upper surface of the base plate 102 under water pressure. At this time, the diffuser membrane 103 does not expand, and the first and third slits 108 and 109 are closed.
  • the first and third slits 108 and 109 are formed in the diffuser membrane 103.
  • the first to third slits 108 to 110 may be formed.
  • bubbles can be dispersed and uniformly generated when the air volume is small, and it is possible to prevent a decrease in oxygen transfer efficiency. An increase in pressure loss and initial pressure loss can be suppressed.
  • the shape of the base plate 102 and the diffuser membrane 103 is circular, but it may be a regular polygon such as a square.
  • the membrane diffuser 101 is provided with the diffuser film 103 on the upper surface of the base plate 102.
  • a rectangular diffuser film 103 may be provided on the upper surface of the rectangular bag-shaped body 125.
  • the bag-like body 125 is made of an air-impermeable sheet-like member and has an air supply unit 104 inside.
  • An air supply port 105 is provided on one outer edge of the bag-like body 125, and the air supply port 105 communicates with the air supply unit 104 and is connected to an air supply source (not shown).
  • the diffuser membrane 103 is attached to the diffuser opening 126 formed on the upper surface of the bag-like body 125 and covers the diffuser opening 126.
  • the diffuser membrane 103 is formed with first and third slits 108 and 109.
  • the air diffusion film 103 is mountain-shaped when viewed from the longitudinal direction A due to the pressure of the air supplied from the air supply port 105 to the air supply unit 104 in the bag-like body 125. Inflates.
  • the bag-like body 125 and the diffuser membrane 103 are rectangular, but they may be circular.
  • first to third slits 108 to 110 similar to those in the eighth embodiment may be formed in the diffuser membrane 103.
  • the slits 108 to 110 are exaggerated and enlarged as compared with actual ones for easy understanding, but in actuality, the slits 108 to 110 have a minute size.
  • the length of each of the slits 108 to 110 is preferably set in the range of 0.2 mm to 1 mm, more preferably in the range of 0.4 mm to 0.6 mm.
  • the actual number of the slits 108 to 110 is larger than the number depicted in FIGS. Further, the first slit 108 and the third slit 109 may have the same length, or may have different lengths.
  • the shape of the diffuser membrane 103 is rectangular or circular.
  • an elliptical shape, an oval shape in which both ends are formed in an arc shape, an L shape, A square shape, a rhombus shape, etc. may be sufficient.

Abstract

A membrane air diffuser in which air hole parts are opened by the expansion of an air diffusion membrane (3) in a mountain shape when viewed in a longitudinal direction (A) by the pressure of air supplied to the air diffusion membrane (3) when air is diffused, wherein a plurality of first air hole parts (8) and a plurality of second air hole parts (9) are formed while being arranged in the longitudinal direction (A) and the lateral direction (B) of the air diffusion membrane (3), the first air hole parts (8) are each a hole that is longer in the longitudinal direction (A) of the air diffusion membrane (3), the second air hole parts (9) are each a hole that is longer in the direction inclined with respect to the longitudinal direction (A) of the air diffusion membrane (3), and the second air hole parts (9) are each located between the first air hole parts (8) adjacent to each other in the longitudinal direction (A) and/or the lateral direction (B).

Description

メンブレン式散気装置Membrane diffuser
 本発明は、下水処理施設等の槽内に設置されるメンブレン式散気装置に関し、生物処理又は攪拌のために散気を行なう技術に係るものである。 The present invention relates to a membrane-type air diffuser installed in a tank of a sewage treatment facility or the like, and relates to a technique for performing air diffusion for biological treatment or stirring.
 従来、この種のメンブレン式散気装置には、例えば図33~図35に示すものがある。これは長方形状のベースプレート251の上面に長方形状の散気膜252が装着され、所定位置に給気口253が設けられたものであり、ベースプレート251と散気膜252との間に空気供給部254が形成されている。給気口253は空気供給部254に連通している。 Conventionally, this type of membrane diffuser includes, for example, those shown in FIGS. In this example, a rectangular diffuser membrane 252 is mounted on the upper surface of a rectangular base plate 251, and an air supply port 253 is provided at a predetermined position. An air supply unit is provided between the base plate 251 and the diffuser membrane 252. 254 is formed. The air supply port 253 communicates with the air supply unit 254.
 散気膜252は合成樹脂膜または合成ゴム膜に多数のスリット255(気孔部)を設けたものであり、散気膜252の周囲が固定部256によってベースプレート251に固定されている。各スリット255は、散気膜252の長手方向Aに細長いスリットであり、上記長手方向Aに対して平行である。 The diffuser film 252 is a synthetic resin film or synthetic rubber film provided with a large number of slits 255 (pores), and the periphery of the diffuser film 252 is fixed to the base plate 251 by a fixing part 256. Each slit 255 is a slit elongated in the longitudinal direction A of the diffuser membrane 252 and is parallel to the longitudinal direction A.
 図34(a)に示すように、散気停止時には、散気膜252が槽内の水圧を受けてベースプレート251の上面に押し付けられた状態となる。この際、散気膜252は膨張せず、スリット255は閉じている。 As shown in FIG. 34 (a), when the aeration is stopped, the aeration film 252 receives the water pressure in the tank and is pressed against the upper surface of the base plate 251. At this time, the diffuser membrane 252 does not expand and the slit 255 is closed.
 また、散気時には、圧縮空気が給気口253から空気供給部254に供給され、図34(b)に示すように、散気膜252が、圧縮空気の圧力を受けて、長手方向Aから見て山形状に膨張する。このように散気膜252が膨張した際、スリット255が短手方向Bに開き、空気供給部254内の空気は、スリット255を通り、気泡258となって、散気膜252の内側から外側へ噴出する。 Further, at the time of air diffusion, compressed air is supplied from the air supply port 253 to the air supply unit 254, and as shown in FIG. 34 (b), the air diffusion film 252 receives the pressure of the compressed air from the longitudinal direction A. It expands into a mountain shape. When the diffuser membrane 252 expands in this way, the slit 255 opens in the short direction B, and the air in the air supply unit 254 passes through the slit 255 and becomes a bubble 258, from the inner side to the outer side of the diffuser membrane 252. To erupt.
 上記のように散気膜252に多数のスリット255を形成した散気装置については、例えば下記特許文献1の日本国公開特許公報に記載されている。 As described above, an air diffuser in which a large number of slits 255 are formed in the air diffuser membrane 252 is described in, for example, Japanese Patent Publication No.
特開2007-777JP2007-777
 しかしながら上記の従来形式では、図35に示すように、長手方向Aにおける各スリット255間の間隔Dを短く設定すると、空気供給部254に供給される空気供給量が少ない小風量時において、スリット255から発生した気泡とその隣のスリット255から発生した気泡とが結合して粗大化し、酸素移動効率が低下するといった問題があった。 However, in the above-described conventional format, as shown in FIG. 35, when the interval D between the slits 255 in the longitudinal direction A is set short, the slit 255 is used when the air supply amount supplied to the air supply unit 254 is small and the air volume is small. There is a problem that the bubbles generated from the bubbles and bubbles generated from the adjacent slits 255 are combined and coarsened, and the oxygen transfer efficiency is lowered.
 尚、気泡が粗大化すると、気泡の体積に対する表面積の比率が低下するため、気液接触面積が減少するとともに浮力が増大して浮上時間が短くなり、これにより、酸素が溶解し難くなって酸素移動効率が低下する。 Note that when the bubbles become coarse, the ratio of the surface area to the volume of the bubbles decreases, so the gas-liquid contact area decreases and the buoyancy increases and the ascent time is shortened. Movement efficiency decreases.
 この対策として、上記各スリット255間の間隔Dを長く設定して、気泡同士の結合を抑制することが考えられるが、この場合、散気膜252の単位面積当たりのスリット255の個数が減少してしまう。したがって、風量を上記小風量から大風量に増やして散気を行う場合、スリット255の個数が不足し、初期圧力損失および圧力損失の上昇が増大するといった問題があった。 As a countermeasure against this, it is conceivable to set the interval D between the slits 255 long to suppress the coupling between the bubbles. In this case, the number of slits 255 per unit area of the diffuser membrane 252 decreases. End up. Therefore, when the air volume is increased from the small air volume to the large air volume, there is a problem that the number of slits 255 is insufficient and the initial pressure loss and the increase in pressure loss are increased.
 また、散気時、図34(b)に示すように、散気膜252が長手方向Aから見て山形状に膨張した際、スリット255に短手方向Bの引張力Fが作用してスリット255が短手方向Bに開くが、図35に示すように、この引張力Fによってスリット255の端部に亀裂257が発生し、この亀裂257が長手方向Aにおける隣のスリット255まで伝播し、隣り同士のスリット255が亀裂257を介して繋がってしまうといった問題がある。 In addition, when air diffuses, as shown in FIG. 34 (b), when the air diffuser film 252 expands in a mountain shape when viewed from the longitudinal direction A, the tensile force F in the short direction B acts on the slit 255 and the slit. 255 opens in the short direction B, but as shown in FIG. 35, the tensile force F generates a crack 257 at the end of the slit 255, and this crack 257 propagates to the adjacent slit 255 in the longitudinal direction A. There is a problem that the adjacent slits 255 are connected via the crack 257.
 本発明は、初期圧力損失および圧力損失の上昇を抑制することができ、小風量時において気泡を分散させて均一に発生させることにより、酸素移動効率の低下を防止することが可能であり、また、亀裂の伝播を防止することができるメンブレン式散気装置を提供することを目的とする。 The present invention can suppress an increase in the initial pressure loss and the pressure loss, and it is possible to prevent a decrease in oxygen transfer efficiency by dispersing bubbles uniformly when the air volume is small. An object of the present invention is to provide a membrane diffuser capable of preventing the propagation of cracks.
 上記目的を達成するために、本第1発明は、散気膜に複数の気孔部が形成され、
散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張して気孔部が開き、
散気停止時、散気膜が膨張していない状態で気孔部が閉じるメンブレン式散気装置であって、
散気膜には、第1気孔部と第1気孔部よりも開き難い第2気孔部とがそれぞれ複数配列されて形成され、
隣り合う第1気孔部間に第2気孔部が位置しているものである。
In order to achieve the above object, according to the first aspect of the present invention, a plurality of pores are formed in a diffuser membrane,
At the time of air diffusion, the air diffuser film expands in a mountain shape by the pressure of the air supplied to the air diffuser film, and the pores open.
A membrane-type air diffuser that closes the pores when the air diffuser is not expanded when the air diffuser stops,
The diffuser membrane is formed by arranging a plurality of first pores and second pores that are more difficult to open than the first pores,
A second pore portion is located between adjacent first pore portions.
 これによると、散気運転時には、散気膜に供給される空気の圧力により散気膜が山形状に膨張し、散気膜に引張力が発生する。この引張力は第1気孔部および第2気孔部を開くための力となるのであるが、この際、第2気孔部は第1気孔部に比べて開き難いため、小風量で散気を行う場合、第2気孔部よりも先に第1気孔部が開き、散気膜に供給された空気の大部分は、開かれた第1気孔部を通り、気泡となって散気膜の内側から外側へ噴出されるのに対し、開き難い第2気孔部を通って外側へ噴出される気泡はほとんど無い。 According to this, during the aeration operation, the aeration membrane expands in a mountain shape due to the pressure of the air supplied to the aeration membrane, and a tensile force is generated in the aeration membrane. This tensile force serves as a force for opening the first pore portion and the second pore portion. At this time, since the second pore portion is harder to open than the first pore portion, air is diffused with a small air volume. In this case, the first pore portion is opened before the second pore portion, and most of the air supplied to the diffuser membrane passes through the opened first pore portion and becomes air bubbles from the inside of the diffuser membrane. While being ejected to the outside, there are hardly any bubbles ejected to the outside through the second pore part that is difficult to open.
 これにより、第1気孔部から噴出した気泡がその隣の第2気孔部からの気泡に結合するのを防止することができる。さらに、隣り合う第1気孔部間に第2気孔部が位置しているため、第1気孔部同士の間隔が拡大され、第1気孔部から噴出した気泡とその近隣の第1気孔部から噴出した気泡とが結合するのを防止することができる。これにより、小風量時において、気泡を分散させて均一に発生させることができ、酸素移動効率の低下を防止することが可能である。 Thereby, it is possible to prevent the bubbles ejected from the first pore portion from being combined with the bubbles from the adjacent second pore portion. Furthermore, since the 2nd pore part is located between the adjacent 1st pore parts, the space | interval of 1st pore parts is expanded, and it ejects from the bubble which ejected from the 1st pore part, and the 1st pore part of the vicinity. It is possible to prevent the bubbles from being combined. Thereby, at the time of a small air volume, bubbles can be dispersed and generated uniformly, and a decrease in oxygen transfer efficiency can be prevented.
 また、風量を上記小風量から大風量に増やして散気を行う場合、空気の供給量が多いほど第2気孔部が開き易くなり、気泡を噴出する第2気孔部の個数が増加する。このため、散気膜に供給された空気は、第1気孔部と第2気孔部とを通り、気泡となって散気膜の内側から外側へ噴出される。このように、小風量では、気泡が主に第1気孔部から噴出するが、風量が増えるのに従って、気泡を噴出する第2気孔部の個数が増加するため、初期圧力損失および圧力損失の上昇を抑制することができる。 In addition, when air is diffused by increasing the air volume from the small air volume to the large air volume, the larger the amount of air supplied, the easier the second pores open, and the number of second pores ejecting bubbles increases. For this reason, the air supplied to the diffuser membrane passes through the first pore portion and the second pore portion, and is blown out from the inside of the diffuser membrane to the outside. As described above, when the air volume is small, the bubbles are mainly ejected from the first pore portion. However, as the air volume increases, the number of the second pore portions that eject the air bubbles increases, so that the initial pressure loss and the pressure loss increase. Can be suppressed.
 本第2発明におけるメンブレン式散気装置は、第1気孔部は散気膜の所定方向に長い孔であり、
第1気孔部が開く方向は、散気膜が山形状に膨張した際に散気膜に発生する引張力の方向と一致し、
第2気孔部は第1気孔部に対して傾斜した方向に長い孔であるものである。
In the membrane-type air diffuser according to the second aspect of the present invention, the first air hole is a hole that is long in a predetermined direction of the air diffuser,
The direction in which the first pore part opens coincides with the direction of the tensile force generated in the diffuser film when the diffuser film expands in a mountain shape,
The second pore portion is a hole that is long in a direction inclined with respect to the first pore portion.
 これによると、散気運転時には、散気膜に供給される空気の圧力により散気膜が山形状に膨張し、散気膜に引張力が発生する。この引張力は第1気孔部および第2気孔部を開くための力となるのであるが、この際、第1気孔部が開く方向と引張力の方向とは一致するが、第2気孔部は第1気孔部に対して傾斜しているため、第2気孔部が開く方向と引張力の方向とは一致しない。これにより、第2気孔部は第1気孔部に比べて開き難くなる。 According to this, during the aeration operation, the aeration membrane expands in a mountain shape due to the pressure of the air supplied to the aeration membrane, and a tensile force is generated in the aeration membrane. This tensile force is a force for opening the first pore portion and the second pore portion. At this time, the opening direction of the first pore portion coincides with the direction of the tensile force, but the second pore portion is Since it inclines with respect to the 1st pore part, the direction which the 2nd pore part opens, and the direction of tensile force do not correspond. Thereby, it becomes difficult for the 2nd pore part to open compared with the 1st pore part.
 本第3発明は、散気膜に複数の気孔部が形成され、
散気時、散気膜に供給される空気の圧力によって散気膜が長手方向から見て山形状に膨張して気孔部が開き、
散気停止時、散気膜が膨張していない状態で気孔部が閉じるメンブレン式散気装置であって、
散気膜の長手方向および短手方向において第1気孔部と第2気孔部とがそれぞれ複数配列されて形成され、
第1気孔部は散気膜の長手方向に長い孔であり、
第2気孔部は散気膜の長手方向に対して傾斜した方向に長い孔であり、
隣り合う第1気孔部間に第2気孔部が位置しているものである。
In the third invention, a plurality of pores are formed in the diffuser membrane,
When diffused, the diffused film expands in a mountain shape when viewed from the longitudinal direction due to the pressure of the air supplied to the diffused film, and the pores open,
A membrane-type air diffuser that closes the pores when the air diffuser is not expanded when the air diffuser stops,
A plurality of first pore portions and second pore portions are respectively arranged in the longitudinal direction and the short direction of the diffuser membrane,
The first pore portion is a long hole in the longitudinal direction of the diffuser membrane,
The second pore portion is a long hole in a direction inclined with respect to the longitudinal direction of the diffuser membrane,
A second pore portion is located between adjacent first pore portions.
 これによると、散気運転時には、散気膜に供給される空気の圧力により散気膜が長手方向から見て山形状に膨張し(すなわち散気膜の長手方向に直交する断面形状が山形状に膨張し)、散気膜に短手方向の引張力が発生する。この引張力は第1気孔部および第2気孔部を開くための力となるのであるが、この際、第1気孔部が開く方向と引張力の方向とは一致するが、第2気孔部は長手方向に対して傾斜しているため、第2気孔部が開く方向と引張力の方向とは一致しない。これにより、第2気孔部は第1気孔部に比べて開き難くなる。 According to this, during the diffuse operation, the diffuser membrane expands in a mountain shape when viewed from the longitudinal direction due to the pressure of the air supplied to the diffuser membrane (that is, the cross-sectional shape orthogonal to the longitudinal direction of the diffuser membrane is a mountain shape) And a tensile force in the short direction is generated in the diffuser membrane. This tensile force is a force for opening the first pore portion and the second pore portion. At this time, the opening direction of the first pore portion coincides with the direction of the tensile force, but the second pore portion is Since it inclines with respect to the longitudinal direction, the direction in which the second pore portion opens and the direction of the tensile force do not match. Thereby, it becomes difficult for the 2nd pore part to open compared with the 1st pore part.
 したがって、小風量で散気を行う場合、第2気孔部よりも先に第1気孔部が開き、散気膜に供給された空気の大部分は、開かれた第1気孔部を通り、気泡となって散気膜の内側から外側へ噴出されるのに対し、開き難い第2気孔部を通って外側へ噴出される気泡はほとんど無い。 Therefore, when air is diffused with a small air volume, the first pore portion is opened before the second pore portion, and most of the air supplied to the diffuser membrane passes through the opened first pore portion, and bubbles The air bubbles are ejected from the inside to the outside of the diffuser membrane, whereas there are almost no air bubbles ejected to the outside through the second pore portion that is difficult to open.
 これにより、第1気孔部から噴出した気泡がその隣の第2気孔部からの気泡に結合するのを防止することができる。さらに、隣り合う第1気孔部間に第2気孔部が位置しているため、第1気孔部同士の間隔が拡大され、第1気孔部から噴出した気泡とその近隣の第1気孔部から噴出した気泡とが結合するのを防止することができる。これにより、小風量時において、気泡を分散させて均一に発生させることができ、酸素移動効率の低下を防止することが可能である。 Thereby, it is possible to prevent the bubbles ejected from the first pore portion from being combined with the bubbles from the adjacent second pore portion. Furthermore, since the 2nd pore part is located between the adjacent 1st pore parts, the space | interval of 1st pore parts is expanded, and it ejects from the bubble which ejected from the 1st pore part, and the 1st pore part of the vicinity. It is possible to prevent the bubbles from being combined. Thereby, at the time of a small air volume, bubbles can be dispersed and generated uniformly, and a decrease in oxygen transfer efficiency can be prevented.
 また、風量を上記小風量から大風量に増やして散気を行う場合、空気の供給量が多いほど第2気孔部が開き易くなり、気泡を噴出する第2気孔部の個数が増加する。このため、散気膜に供給された空気は、第1気孔部と第2気孔部とを通り、気泡となって散気膜の内側から外側へ噴出される。このように、小風量では、気泡が主に第1気孔部から噴出するが、風量が増えるのに従って、気泡を噴出する第2気孔部の個数が増加するため、初期圧力損失および圧力損失の上昇を抑制することができる。 In addition, when air is diffused by increasing the air volume from the small air volume to the large air volume, the larger the amount of air supplied, the easier the second pores open, and the number of second pores ejecting bubbles increases. For this reason, the air supplied to the diffuser membrane passes through the first pore portion and the second pore portion, and is blown out from the inside of the diffuser membrane to the outside. As described above, when the air volume is small, the bubbles are mainly ejected from the first pore portion. However, as the air volume increases, the number of the second pore portions that eject the air bubbles increases, so that the initial pressure loss and the pressure loss increase. Can be suppressed.
 本第4発明は、散気膜に複数の気孔部が形成され、
散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張すると気孔部が開き、
散気停止時、散気膜が膨張していない状態で気孔部が閉じるメンブレン式散気装置であって、
散気膜に、第1気孔部と第2気孔部とがそれぞれ同心円上に複数配列されて形成され、
第1気孔部は散気膜の周方向に長い孔であり、
第2気孔部は散気膜の周方向に対して傾斜した方向に長い孔であり、
隣り合う第1気孔部間に第2気孔部が位置しているものである。
In the fourth invention, a plurality of pores are formed in the diffuser membrane,
When air diffuses, the pores open when the air diffuser expands into a mountain shape due to the pressure of the air supplied to the air diffuser.
A membrane-type air diffuser that closes the pores when the air diffuser is not expanded when the air diffuser stops,
A plurality of first pore portions and second pore portions are arranged in concentric circles on the diffuser membrane,
The first pore portion is a hole long in the circumferential direction of the diffuser membrane,
The second pore portion is a hole long in a direction inclined with respect to the circumferential direction of the diffuser membrane,
A second pore portion is located between adjacent first pore portions.
 これによると、散気運転時には、散気膜に供給される空気の圧力により散気膜が山形状に膨張し、散気膜に引張力が発生する。この引張力は第1気孔部および第2気孔部を開くための力となるのであるが、この際、第1気孔部が開く方向と引張力の方向とは一致するが、第2気孔部は第1気孔部に対して傾斜しているため、第2気孔部が開く方向と引張力の方向とは一致しない。これにより、第2気孔部は第1気孔部に比べて開き難くなる。 According to this, during the aeration operation, the aeration membrane expands in a mountain shape due to the pressure of the air supplied to the aeration membrane, and a tensile force is generated in the aeration membrane. This tensile force is a force for opening the first pore portion and the second pore portion. At this time, the opening direction of the first pore portion coincides with the direction of the tensile force, but the second pore portion is Since it inclines with respect to the 1st pore part, the direction which the 2nd pore part opens, and the direction of tensile force do not correspond. Thereby, it becomes difficult for the 2nd pore part to open compared with the 1st pore part.
 したがって、小風量で散気を行う場合、第2気孔部よりも先に第1気孔部が開き、散気膜に供給された空気の大部分は、開かれた第1気孔部を通り、気泡となって散気膜の内側から外側へ噴出されるのに対し、開き難い第2気孔部を通って外側へ噴出される気泡はほとんど無い。 Therefore, when air is diffused with a small air volume, the first pore portion is opened before the second pore portion, and most of the air supplied to the diffuser membrane passes through the opened first pore portion, and bubbles The air bubbles are ejected from the inside to the outside of the diffuser membrane, whereas there are almost no air bubbles ejected to the outside through the second pore portion that is difficult to open.
 これにより、第1気孔部から噴出した気泡がその隣の第2気孔部からの気泡に結合するのを防止することができる。さらに、隣り合う第1気孔部間に第2気孔部が位置しているため、第1気孔部同士の間隔が拡大され、第1気孔部から噴出した気泡とその近隣の第1気孔部から噴出した気泡とが結合するのを防止することができる。これにより、小風量時において、気泡を分散させて均一に発生させることができ、酸素移動効率の低下を防止することが可能である。 Thereby, it is possible to prevent the bubbles ejected from the first pore portion from being combined with the bubbles from the adjacent second pore portion. Furthermore, since the 2nd pore part is located between the adjacent 1st pore parts, the space | interval of 1st pore parts is expanded, and it ejects from the bubble which ejected from the 1st pore part, and the 1st pore part of the vicinity. It is possible to prevent the bubbles from being combined. Thereby, at the time of a small air volume, bubbles can be dispersed and generated uniformly, and a decrease in oxygen transfer efficiency can be prevented.
 また、風量を上記小風量から大風量に増やして散気を行う場合、空気の供給量が多いほど第2気孔部が開き易くなり、気泡を噴出する第2気孔部の個数が増加する。このため、散気膜に供給された空気は、第1気孔部と第2気孔部とを通り、気泡となって散気膜の内側から外側へ噴出される。このように、小風量では、気泡が主に第1気孔部から噴出するが、風量が増えるのに従って、気泡を噴出する第2気孔部の個数が増加するため、初期圧力損失および圧力損失の上昇を抑制することができる。 In addition, when air is diffused by increasing the air volume from the small air volume to the large air volume, the larger the amount of air supplied, the easier the second pores open, and the number of second pores ejecting bubbles increases. For this reason, the air supplied to the diffuser membrane passes through the first pore portion and the second pore portion, and is blown out from the inside of the diffuser membrane to the outside. As described above, when the air volume is small, the bubbles are mainly ejected from the first pore portion. However, as the air volume increases, the number of the second pore portions that eject the air bubbles increases, so that the initial pressure loss and the pressure loss increase. Can be suppressed.
 本第5発明におけるメンブレン式散気装置は、第2気孔部は第1気孔部に対して5°~25°の角度で傾斜した方向に長い孔であるものである。 In the membrane-type air diffuser according to the fifth aspect of the invention, the second pore portion is a long hole in a direction inclined at an angle of 5 ° to 25 ° with respect to the first pore portion.
 本第6発明におけるメンブレン式散気装置は、第1気孔部又は第2気孔部の長手方向の少なくともいずれか片方に隣り合って第3気孔部が形成され、
第3気孔部は第1気孔部に対してほぼ直交する方向に長い孔であるものである。
In the sixth aspect of the present invention, the membrane type air diffuser has a third pore portion formed adjacent to at least one of the longitudinal direction of the first pore portion or the second pore portion,
The third pore portion is a hole that is long in a direction substantially perpendicular to the first pore portion.
 これによると、散気時、散気膜が山形状に膨張した際、第1気孔部に引張力が作用して第1気孔部が開く。この引張力によって第1気孔部の端部に亀裂が発生しても、この亀裂は、第1気孔部の端部から第3気孔部まで到達すると、そこから先へ進行することはない。したがって、上記亀裂が第1気孔部から隣の第1気孔部まで伝播するのを防止することができる。 According to this, at the time of air diffusion, when the air diffuser film expands in a mountain shape, a tensile force acts on the first pore portion to open the first pore portion. Even if a crack occurs at the end of the first pore due to this tensile force, the crack does not advance further from the end of the first pore to the third pore. Therefore, the crack can be prevented from propagating from the first pore portion to the adjacent first pore portion.
 また、本第7発明におけるメンブレン式散気装置は、散気膜に、第1および第3気孔部がそれぞれ複数配列されて形成され、
散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張することにより第1気孔部が開き、
散気停止時、散気膜が膨張していない状態で第1気孔部が閉じ、
第3気孔部は第1気孔部の長手方向の少なくともいずれか片方に隣り合う位置に形成されており、
第3気孔部は第1気孔部に対して交差する方向に長い孔であるものである。
Further, the membrane-type air diffuser in the seventh invention is formed by arranging a plurality of first and third pore portions in the air diffuser film,
At the time of air diffusion, the first pore part is opened by the air diffusion film expanding in a mountain shape by the pressure of the air supplied to the air diffusion film,
When the aeration is stopped, the first pore portion is closed in a state where the aeration film is not expanded,
The third pore portion is formed at a position adjacent to at least one of the longitudinal directions of the first pore portion,
The third pore portion is a hole that is long in the direction intersecting the first pore portion.
 これによると、散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張し、散気膜に発生する引張力によって第1気孔部が開く。供給された空気は、第1気孔部を通り、気泡となって散気膜の内側から外側へ噴出される。 According to this, at the time of air diffusion, the air diffusion film expands in a mountain shape by the pressure of the air supplied to the air diffusion film, and the first pore portion is opened by the tensile force generated in the air diffusion film. The supplied air passes through the first pore portion, becomes a bubble, and is ejected from the inside to the outside of the diffuser membrane.
 この際、第3気孔部は第1気孔部に対して交差する方向に長い孔であるため、上記引張力によって第1気孔部の端部に亀裂が発生しても、この亀裂は、第1気孔部の端部から第3気孔部まで到達すると、そこから先へ進行することはない。したがって、上記亀裂が第1気孔部から隣の第1気孔部まで伝播するのを防止することができる。 At this time, since the third pore portion is a hole that is long in a direction intersecting the first pore portion, even if a crack occurs at the end portion of the first pore portion due to the tensile force, When reaching the third pore portion from the end portion of the pore portion, it does not proceed further from there. Therefore, the crack can be prevented from propagating from the first pore portion to the adjacent first pore portion.
 また、散気停止時には、散気膜への空気の供給が遮断されて、散気膜は膨張せず、第1および第2気孔部は閉じている。 Also, when the aeration is stopped, the supply of air to the aeration film is interrupted, the aeration film does not expand, and the first and second pores are closed.
 本第8発明におけるメンブレン式散気装置は、第3気孔部は第1気孔部に対してほぼ直交する方向に長い孔であるものである。 In the membrane-type air diffuser according to the eighth aspect of the present invention, the third pore portion is a hole that is long in a direction substantially perpendicular to the first pore portion.
 これによると、散気時、第1気孔部が開き、供給された空気は、第1気孔部を通り、気泡となって散気膜の内側から外側へ噴出される。 According to this, when the air is diffused, the first pore portion is opened, and the supplied air passes through the first pore portion and becomes a bubble to be ejected from the inside of the diffuser membrane to the outside.
 この際、第3気孔部は第1気孔部に対してほぼ直交する方向に長い孔であるため、第1気孔部の端部に亀裂が発生しても、この亀裂は、第1気孔部の端部から第3気孔部まで到達すると、そこから先へ進行することはない。 At this time, since the third pore portion is a hole that is long in a direction substantially orthogonal to the first pore portion, even if a crack occurs at the end portion of the first pore portion, this crack is not generated in the first pore portion. When reaching the third pore portion from the end portion, there is no further progress from there.
 尚、散気時においては、第3気孔部は閉じており、第3気孔部を通って外側へ噴出される気泡はほとんど無い。 In addition, at the time of air diffusion, the third pore portion is closed, and there are almost no bubbles ejected to the outside through the third pore portion.
 本第9発明におけるメンブレン式散気装置は、散気膜に、第1および第3気孔部がそれぞれ複数配列されて形成され、
第1気孔部は散気膜の長手方向に長い孔であり、
第3気孔部は、散気膜の短手方向に長い孔であり、且つ、散気膜の長手方向において第1気孔部の少なくともいずれか片方に隣り合う位置に形成されており、
散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張して第1気孔部が短手方向に開き、
散気停止時、散気膜が膨張していない状態で第1気孔部が閉じるものである。
The membrane diffuser in the ninth invention is formed by arranging a plurality of first and third pores on the diffuser membrane,
The first pore portion is a long hole in the longitudinal direction of the diffuser membrane,
The third pore portion is a hole that is long in the short direction of the diffuser membrane, and is formed at a position adjacent to at least one of the first pore portions in the longitudinal direction of the diffuser membrane,
At the time of air diffusion, the air diffusion film expands in a mountain shape by the pressure of the air supplied to the air diffusion film, and the first pore portion opens in the short direction,
When the aeration is stopped, the first pore portion is closed in a state where the aeration film is not expanded.
 これによると、散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張し、散気膜に発生する短手方向の引張力によって第1気孔部が短手方向に開く。供給された空気は、第1気孔部を通り、気泡となって散気膜の内側から外側へ噴出される。 According to this, at the time of air diffusion, the air diffuser film expands in a mountain shape due to the pressure of the air supplied to the air diffuser film, and the first pore portion is short in the short direction due to the short direction tensile force generated in the air diffuser film. Open to. The supplied air passes through the first pore portion, becomes a bubble, and is ejected from the inside to the outside of the diffuser membrane.
 この際、上記引張力によって第1気孔部の端部に亀裂が発生しても、この亀裂は、第1気孔部の端部から第3気孔部まで到達すると、そこから先へ進行することはない。したがって、上記亀裂が第1気孔部から散気膜の長手方向における隣の第1気孔部まで伝播するのを防止することができる。 At this time, even if a crack occurs in the end portion of the first pore portion due to the tensile force, when the crack reaches the third pore portion from the end portion of the first pore portion, it does not proceed further from there. Absent. Therefore, it is possible to prevent the crack from propagating from the first pore portion to the adjacent first pore portion in the longitudinal direction of the diffuser membrane.
 尚、散気時においては、第2気孔部は閉じており、第2気孔部を通って外側へ噴出される気泡はほとんど無い。 In addition, at the time of air diffusion, the second pore portion is closed, and there are almost no bubbles ejected to the outside through the second pore portion.
 また、散気停止時には、散気膜への空気の供給が遮断されて、散気膜は膨張せず、第1および第2気孔部は閉じている。 Also, when the aeration is stopped, the supply of air to the aeration film is interrupted, the aeration film does not expand, and the first and second pores are closed.
 本第10発明におけるメンブレン式散気装置は、散気膜に、第1および第3気孔部がそれぞれ同心円上に複数配列されて形成され、
第1気孔部は散気膜の周方向に長い孔であり、
第3気孔部は、散気膜の径方向に長い孔であり、且つ、散気膜の周方向において第1気孔部の少なくともいずれか片方に隣り合う位置に形成されており、
散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張して第1気孔部が径方向に開き、
散気停止時、散気膜が膨張していない状態で第1気孔部が閉じるものである。
The membrane-type air diffuser in the tenth aspect of the present invention is formed by arranging a plurality of first and third pore portions concentrically on the air diffuser membrane,
The first pore portion is a hole long in the circumferential direction of the diffuser membrane,
The third pore portion is a hole that is long in the radial direction of the diffuser membrane, and is formed at a position adjacent to at least one of the first pore portions in the circumferential direction of the diffuser membrane,
At the time of air diffusion, the air diffusion film expands in a mountain shape by the pressure of the air supplied to the air diffusion film, and the first pore portion opens in the radial direction,
When the aeration is stopped, the first pore portion is closed in a state where the aeration film is not expanded.
 これによると、散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張し、散気膜に発生する径方向の引張力によって第1気孔部が径方向に開く。供給された空気は、第1気孔部を通り、気泡となって散気膜の内側から外側へ噴出される。 According to this, at the time of air diffusion, the air diffusion film expands in a mountain shape by the pressure of the air supplied to the air diffusion film, and the first pore portion opens in the radial direction by the radial tensile force generated in the air diffusion film. . The supplied air passes through the first pore portion, becomes a bubble, and is ejected from the inside to the outside of the diffuser membrane.
 この際、上記引張力によって第1気孔部の端部に亀裂が発生しても、この亀裂は、第1気孔部の端部から第3気孔部まで到達すると、そこから先へ進行することはない。したがって、上記亀裂が第1気孔部から散気膜の周方向における隣の第1気孔部まで伝播するのを防止することができる。 At this time, even if a crack occurs in the end portion of the first pore portion due to the tensile force, when the crack reaches the third pore portion from the end portion of the first pore portion, it does not proceed further from there. Absent. Therefore, the crack can be prevented from propagating from the first pore portion to the adjacent first pore portion in the circumferential direction of the diffuser membrane.
 尚、散気時においては、第3気孔部は閉じており、第3気孔部を通って外側へ噴出される気泡はほとんど無い。 In addition, at the time of air diffusion, the third pore portion is closed, and there are almost no bubbles ejected to the outside through the third pore portion.
 また、散気停止時には、散気膜への空気の供給が遮断されて、散気膜は膨張せず、第1および第3気孔部は閉じている。 Also, when the aeration is stopped, the supply of air to the aeration film is cut off, the aeration film does not expand, and the first and third pores are closed.
 本第11発明におけるメンブレン式散気装置は、第1気孔部に対して5°~25°の角度で傾斜した方向に長い第2気孔部が散気膜に複数形成されているものである。 The membrane-type air diffuser according to the eleventh aspect of the present invention is such that a plurality of second pore portions that are long in the direction inclined at an angle of 5 ° to 25 ° with respect to the first pore portion are formed on the diffuser membrane.
 これによると、小風量で散気を行う際、散気膜に供給される空気の圧力によって散気膜が山形状に膨張し、散気膜に発生する引張力によって第2気孔部よりも先に第1気孔部が開く。供給された空気は、開かれた第1気孔部を通り、気泡となって散気膜の内側から外側へ噴出されるのに対し、開き難い第2気孔部を通って外側へ噴出される気泡はほとんど無い。 According to this, when air is diffused with a small air volume, the air diffuser film expands in a mountain shape due to the pressure of the air supplied to the air diffuser film, and the tensile force generated in the air diffuser film leads to the second pore part. The first pore portion opens. The supplied air passes through the opened first pore portion and becomes a bubble and is ejected from the inside to the outside of the diffuser membrane, whereas the bubble that is ejected to the outside through the second pore portion that is difficult to open There is almost no.
 また、風量を上記小風量から大風量に増やして散気を行う際、空気の供給量が多いほど第2気孔部が開き易くなり、気泡を噴出する第2気孔部の個数が増加する。このため、散気膜に供給された空気は、第1気孔部と第2気孔部とを通り、気泡となって散気膜の内側から外側へ噴出される。このように、小風量では、気泡が主に第1気孔部から噴出するが、風量が増えるのに従って、気泡を噴出する第2気孔部の個数が増加するため、初期圧力損失および圧力損失の上昇を抑制することができる。 In addition, when the air volume is increased from the small air volume to the large air volume, the second pore portion is easily opened as the air supply amount is increased, and the number of the second pore portions ejecting bubbles is increased. For this reason, the air supplied to the diffuser membrane passes through the first pore portion and the second pore portion, and is blown out from the inside of the diffuser membrane to the outside. As described above, when the air volume is small, the bubbles are mainly ejected from the first pore portion. However, as the air volume increases, the number of the second pore portions that eject the air bubbles increases, so that the initial pressure loss and the pressure loss increase. Can be suppressed.
 以上のように本発明によると、初期圧力損失および圧力損失の上昇を抑制することができ、小風量時において気泡を分散させて均一に発生させることにより、酸素移動効率の低下を防止することが可能である。また、亀裂の伝播を防止することができる。 As described above, according to the present invention, it is possible to suppress an increase in the initial pressure loss and the pressure loss, and it is possible to prevent a decrease in oxygen transfer efficiency by dispersing and generating bubbles uniformly when the air volume is small. Is possible. Moreover, propagation of cracks can be prevented.
本発明の第1の実施の形態におけるメンブレン式散気装置の斜視図である。It is a perspective view of the membrane type air diffuser in the 1st Embodiment of this invention. 図1におけるS-S矢視図であり、散気運転時の状態を示す。FIG. 2 is an SS arrow view in FIG. 1 and shows a state during an aeration operation. 同、メンブレン式散気装置のスリットの配列パターンを示す平面図である。It is a top view which shows the arrangement pattern of the slit of a membrane type air diffuser. 同、メンブレン式散気装置のスリットの拡大平面図であり、(a)は第1~第3スリットが閉じている状態、(b)は第1および第2スリットが開き、第3スリットが閉じている状態を示す。FIG. 4 is an enlarged plan view of the slit of the membrane-type air diffuser, where (a) shows a state in which the first to third slits are closed, and (b) shows a state in which the first and second slits are opened and the third slit is closed. It shows the state. 同、メンブレン式散気装置の第1および第2スリットの拡大断面図であり、(a)は第1および第2スリットが閉じている状態、(b)は第1スリットが開き、第2スリットが閉じている状態、(c)は第1および第2スリットが開いている状態を示す。FIG. 3 is an enlarged cross-sectional view of the first and second slits of the membrane-type air diffuser, in which (a) is a state where the first and second slits are closed, and (b) is a state where the first slit is opened and the second slit is opened. (C) shows a state in which the first and second slits are open. 切欠きの先端に発生する最大応力と切欠きの先端のアールとの一般的な関係式を説明するための図である。It is a figure for demonstrating the general relational expression of the maximum stress which generate | occur | produces at the front-end | tip of a notch, and the radius | R of the front-end | tip of a notch. (a)のグラフは膜面通気量と発泡スリットの個数との関係を示すものであり、(b)のグラフは、膜面通気量と全発泡スリットに占める第1~第3スリットの割合との関係を示すものである。The graph (a) shows the relationship between the membrane surface ventilation rate and the number of foam slits, and the graph (b) shows the membrane surface ventilation rate and the ratio of the first to third slits in all the foam slits. This shows the relationship. 第2スリットの傾斜角度と、発泡する第1スリットの個数を100としたときの発泡する第2スリットの個数の割合との関係を示すグラフである。It is a graph which shows the relationship between the inclination-angle of a 2nd slit, and the ratio of the number of the 2nd slit to foam when the number of the 1st slit to foam is set to 100. FIG. 第1の実施の形態に対する対比例であり、スリットの向きをランダムに配列した配列パターンを示す平面図である。FIG. 5 is a plan view showing an arrangement pattern in which slit directions are arranged at random, which is in proportion to the first embodiment. 本発明の第2の実施の形態におけるメンブレン式散気装置のスリットの配列パターンを示す平面図である。It is a top view which shows the arrangement pattern of the slit of the membrane type air diffuser in the 2nd Embodiment of this invention. 本発明の第3の実施の形態におけるメンブレン式散気装置のスリットの配列パターンを示す平面図である。It is a top view which shows the arrangement pattern of the slit of the membrane type air diffuser in the 3rd Embodiment of this invention. 本発明の第4の実施の形態におけるメンブレン式散気装置のスリットの配列パターンを示す平面図である。It is a top view which shows the arrangement pattern of the slit of the membrane type air diffuser in the 4th Embodiment of this invention. 本発明の第5の実施の形態におけるメンブレン式散気装置の斜視図である。It is a perspective view of the membrane type air diffuser in the 5th Embodiment of this invention. 図13におけるS-S矢視図である。FIG. 14 is an SS arrow view in FIG. 13. 同、メンブレン式散気装置のスリットの配列パターンを示す平面図である。It is a top view which shows the arrangement pattern of the slit of a membrane type air diffuser. 本発明の第6の実施の形態におけるメンブレン式散気装置の平面図である。It is a top view of the membrane type air diffuser in the 6th Embodiment of this invention. 図16におけるS-S矢視図である。FIG. 17 is an SS arrow view in FIG. 16. 本発明の第7の実施の形態におけるメンブレン式散気装置の斜視図である。It is a perspective view of the membrane type air diffuser in the 7th Embodiment of this invention. 図18におけるS-S矢視図であり、散気運転時の状態を示す。FIG. 19 is a view taken along the line SS in FIG. 18 and shows a state during the aeration operation. 同、メンブレン式散気装置のスリットの配列パターンを示す平面図である。It is a top view which shows the arrangement pattern of the slit of a membrane type air diffuser. 同、メンブレン式散気装置のスリットの拡大平面図であり、(a)は第1および第3スリットが閉じている状態、(b)は第1スリットが開き、第3スリットが閉じている状態を示す。FIG. 4 is an enlarged plan view of the slit of the membrane diffuser, where (a) shows a state where the first and third slits are closed, and (b) shows a state where the first slit is open and the third slit is closed. Indicates. 同、メンブレン式散気装置の第1スリットの拡大断面図であり、(a)は第1スリットが閉じている状態、(b)は第1スリットが開いている状態を示す。It is an expanded sectional view of the 1st slit of a membrane type diffuser, (a) shows the state where the 1st slit is closed, and (b) shows the state where the 1st slit is opened. 切欠きの先端に発生する最大応力と切欠きの先端のアールとの一般的な関係式を説明するための図である。It is a figure for demonstrating the general relational expression of the maximum stress which generate | occur | produces at the front-end | tip of a notch, and the radius | R of the front-end | tip of a notch. 本発明の第8の実施の形態におけるメンブレン式散気装置のスリットの配列パターンを示す平面図である。It is a top view which shows the arrangement pattern of the slit of the membrane type air diffuser in the 8th Embodiment of this invention. 同、メンブレン式散気装置のスリットの拡大平面図であり、(a)は第1~第3スリットが閉じている状態、(b)は第1および第2スリットが開き、第3スリットが閉じている状態を示す。FIG. 4 is an enlarged plan view of the slit of the membrane-type air diffuser, where (a) shows a state in which the first to third slits are closed, and (b) shows a state in which the first and second slits are opened and the third slit is closed. It shows the state. (a)のグラフは膜面通気量と発泡スリットの個数との関係を示すものであり、(b)のグラフは、膜面通気量と全発泡スリットに占める第1~第3スリットの割合との関係を示すものである。The graph (a) shows the relationship between the membrane surface ventilation rate and the number of foam slits, and the graph (b) shows the membrane surface ventilation rate and the ratio of the first to third slits in all the foam slits. This shows the relationship. 第2スリットの傾斜角度と、発泡する第1スリットの個数を100としたときの発泡する第2スリットの個数の割合との関係を示すグラフである。It is a graph which shows the relationship between the inclination-angle of a 2nd slit, and the ratio of the number of the 2nd slit to foam when the number of the 1st slit to foam is set to 100. FIG. 本発明の第9の実施の形態におけるメンブレン式散気装置の斜視図である。It is a perspective view of the membrane type air diffusion apparatus in the 9th Embodiment of this invention. 図28におけるS-S矢視図である。FIG. 29 is an SS arrow view in FIG. 28. 同、メンブレン式散気装置のスリットの配列パターンを示す平面図である。It is a top view which shows the arrangement pattern of the slit of a membrane type air diffuser. 本発明の第10の実施の形態におけるメンブレン式散気装置の平面図である。It is a top view of the membrane type air diffusion apparatus in the 10th Embodiment of this invention. 図31におけるS-S矢視図である。FIG. 32 is an SS arrow view in FIG. 31. 従来のメンブレン式散気装置の斜視図である。It is a perspective view of the conventional membrane type diffuser. 同、メンブレン式散気装置のスリットの拡大断面図であり、(a)はスリットが閉じている状態、(b)はスリットが開いている状態を示す。It is an expanded sectional view of the slit of a membrane type air diffuser, (a) shows a state where the slit is closed, and (b) shows a state where the slit is open. 同、メンブレン式散気装置のスリットの配列パターンを示す平面図である。It is a top view which shows the arrangement pattern of the slit of a membrane type air diffuser.
 先ず、請求項1~請求項6に記載された発明における第1~第6の実施の形態を、図面を参照して説明する。 First, first to sixth embodiments of the invention described in claims 1 to 6 will be described with reference to the drawings.
 (第1の実施の形態)
 第1の実施の形態では、図1,図2に示すように、1は下水処理施設等の曝気槽内に設置されるメンブレン式散気装置である。このメンブレン式散気装置1は、プラスチックや金属等で製作された長方形状のベースプレート2と、ベースプレート2の上面に装着された長方形状(一方向に長い形状の一例)の散気膜3とを有している。散気膜3は、弾性を有しており、例えば、EPDM、シリコン等のゴム、或いは、ポリウレタン等の樹脂からなる。
(First embodiment)
In the first embodiment, as shown in FIGS. 1 and 2, reference numeral 1 denotes a membrane-type air diffuser installed in an aeration tank such as a sewage treatment facility. The membrane diffuser 1 includes a rectangular base plate 2 made of plastic or metal, and a rectangular (an example of a shape that is long in one direction) attached to the upper surface of the base plate 2. Have. The air diffusion membrane 3 has elasticity, and is made of, for example, rubber such as EPDM or silicon, or resin such as polyurethane.
 散気膜3の周囲は固定部6(例えばカシメ部材等)によってベースプレート2に固定されており、ベースプレート2と散気膜3との間には空気供給部4が形成されている。また、散気膜3の長手方向A(所定方向の一例)における一端部には、短筒状の給気口5が設けられている。給気口5は、空気供給部4に連通するとともに、空気供給源(図示省略)に接続されている。 The periphery of the diffuser membrane 3 is fixed to the base plate 2 by a fixing portion 6 (for example, a caulking member), and an air supply portion 4 is formed between the base plate 2 and the diffuser membrane 3. Further, a short cylindrical air supply port 5 is provided at one end portion in the longitudinal direction A (an example of a predetermined direction) of the diffuser membrane 3. The air supply port 5 communicates with the air supply unit 4 and is connected to an air supply source (not shown).
 尚、散気膜3は例えば下記のような性状(1)~(3)のものを使用することができる。
*性状(1)
材質:ゴム(EPDM)、硬さ(A):50~70、厚さ(mm):1~3
*性状(2)
材質:ゴム(シリコン)、硬さ(A):35~55、厚さ(mm):1~3
*性状(3)
材質:樹脂(ポリウレタン)、硬さ(A):70~98、厚さ(mm):0.3~1
 尚、上記散気膜3の性状は一例であって、これらに限定されるものではなく、使用する条件に応じて、適宜変更し、最適化することができる。
The diffuser membrane 3 may have, for example, the following properties (1) to (3).
* Properties (1)
Material: Rubber (EPDM), Hardness (A): 50-70, Thickness (mm): 1-3
* Properties (2)
Material: Rubber (silicon), Hardness (A): 35-55, Thickness (mm): 1-3
* Properties (3)
Material: Resin (Polyurethane), Hardness (A): 70-98, Thickness (mm): 0.3-1
The properties of the air diffusing membrane 3 are examples, and are not limited to these, and can be appropriately changed and optimized according to the conditions to be used.
 散気時、図2の実線に示すように、散気膜3に供給される空気の圧力によって散気膜3が長手方向Aから見て山形状に膨張する。尚、このとき、散気膜3の長手方向Aにおける両端はベースプレート2に固定されているため、長手方向Aから見て山形状にはならないが、散気膜3の両端を除いたほとんどの領域において散気膜3が長手方向Aから見て山形状に膨張するので、ここでは散気膜3の両端を除外して考えるものとする。 At the time of air diffusion, as shown by the solid line in FIG. 2, the air diffusion film 3 expands in a mountain shape when viewed from the longitudinal direction A by the pressure of the air supplied to the air diffusion film 3. At this time, since both ends in the longitudinal direction A of the diffuser membrane 3 are fixed to the base plate 2, the diffuser membrane 3 does not have a mountain shape when viewed from the longitudinal direction A, but most regions excluding both ends of the diffuser membrane 3. Since the diffuser membrane 3 expands in a mountain shape when viewed from the longitudinal direction A, the two ends of the diffuser membrane 3 are excluded here.
 散気膜3には複数の第1~第3スリット8~10(第1~第3気孔部の一例)が形成されている。図3,図4に示すように、第1スリット8は、長手方向Aに細長い孔(スリット)であり、上記長手方向Aに対して平行である。第2スリット9は、長手方向A(すなわち第1スリット8)に対して所定の傾斜角度αで傾斜した方向に細長い孔(スリット)である。尚、本実施の形態では、所定の傾斜角度αは13°(鋭角)に設定されている。第3スリット10は、短手方向Bに細長い孔(スリット)であり、上記長手方向A(すなわち第1スリット8)に対して直交している。 A plurality of first to third slits 8 to 10 (an example of first to third pores) are formed in the diffuser membrane 3. As shown in FIGS. 3 and 4, the first slit 8 is an elongated hole (slit) in the longitudinal direction A, and is parallel to the longitudinal direction A. The second slit 9 is an elongated hole (slit) in a direction inclined at a predetermined inclination angle α with respect to the longitudinal direction A (that is, the first slit 8). In the present embodiment, the predetermined inclination angle α is set to 13 ° (acute angle). The third slit 10 is a hole (slit) elongated in the short direction B and is orthogonal to the longitudinal direction A (that is, the first slit 8).
 第1~第3スリット8~10は長手方向Aおよび短手方向Bにおいて所定の配列パターンで複数配列されている。すなわち、第1スリット8は長手方向Aにおいて所定間隔おきに複数形成され、長手方向Aにおいて隣り合う第1スリット8間に第2スリット9が位置している。さらに、第3スリット10は、長手方向Aにおいて隣り合う第1スリット8と第2スリット9との間に位置しているとともに、長手方向Aにおいて隣り合う第1スリット8間に位置しており、これにより、第1スリット8と第2スリット9とに隣り合っている。また、第2スリット9は短手方向Bにおいて隣り合う第1スリット8間にも位置している。 The first to third slits 8 to 10 are arranged in a predetermined arrangement pattern in the longitudinal direction A and the short direction B. That is, a plurality of first slits 8 are formed at predetermined intervals in the longitudinal direction A, and the second slits 9 are located between the first slits 8 adjacent in the longitudinal direction A. Further, the third slit 10 is located between the first slit 8 and the second slit 9 adjacent in the longitudinal direction A, and is located between the first slits 8 adjacent in the longitudinal direction A, As a result, the first slit 8 and the second slit 9 are adjacent to each other. The second slit 9 is also located between the first slits 8 adjacent in the short direction B.
 以下、上記構成における作用を説明する。 Hereinafter, the operation of the above configuration will be described.
 散気運転時には、空気供給源(図示省略)から給気口5を通じて所定圧力の空気をメンブレン式散気装置1に供給することにより、図2の実線に示すように、給気口5から空気供給部4に供給される空気の圧力で散気膜3が長手方向Aから見て山形状に膨張し、散気膜3に短手方向Bの引張力Fが発生する。 At the time of air diffusion operation, air of a predetermined pressure is supplied from the air supply source (not shown) through the air supply port 5 to the membrane-type air diffuser 1, so that air is supplied from the air supply port 5 as shown by the solid line in FIG. The diffuser membrane 3 expands in a mountain shape when viewed from the longitudinal direction A by the pressure of air supplied to the supply unit 4, and a tensile force F in the short direction B is generated in the diffuser membrane 3.
 図4に示すように、引張力Fは第1スリット8および第2スリット9を開くための力となるのであるが、この際、第1スリット8が開く方向と引張力Fの方向とは一致するが、これに対して、第2スリット9は傾斜角度αで傾斜しているため、第2スリット9が開く方向と引張力Fの方向とは一致しない。すなわち、第1スリット8は引張力Fで開かれるのに対して、第2スリット9は、引張力Fよりも小さな、Fcosαの力F´で開かれる。このため、傾斜角度αが増大するほど、第2スリット9は第1スリット8に比べて開き難くなる。 As shown in FIG. 4, the tensile force F is a force for opening the first slit 8 and the second slit 9. At this time, the direction in which the first slit 8 opens and the direction of the tensile force F coincide with each other. However, since the second slit 9 is inclined at the inclination angle α, the direction in which the second slit 9 opens and the direction of the tensile force F do not match. That is, the first slit 8 is opened by the tensile force F, while the second slit 9 is opened by the Fcosα force F ′, which is smaller than the tensile force F. For this reason, the second slit 9 becomes harder to open than the first slit 8 as the inclination angle α increases.
 したがって、小風量で散気を行う場合、図5(b)に示すように、第2スリット9よりも先に第1スリット8が開き、空気供給部4に供給された空気の大部分は、開かれた第1スリット8を通り、気泡13となって散気膜3の内側から外側へ噴出されるのに対し、開き難い第2スリット9を通って外側へ噴出される気泡はほとんど無い。 Therefore, when aeration is performed with a small amount of air, as shown in FIG. 5 (b), the first slit 8 opens before the second slit 9, and most of the air supplied to the air supply unit 4 is While passing through the opened first slit 8 and forming bubbles 13 from the inside of the diffuser membrane 3 to the outside, almost no bubbles are ejected to the outside through the second slit 9 that is difficult to open.
 これにより、第1スリット8から噴出した気泡がその隣の第2スリット9からの気泡に結合するのを防止することができる。さらに、図3に示すように、隣り合う第1スリット8間に第2スリット9が位置しているため、第1スリット8同士の間隔Dが拡大され、第1スリット8から噴出した気泡とその近隣の第1スリット8から噴出した気泡とが結合するのを防止することができる。これにより、小風量時において、気泡を分散させて均一に発生させることができ、酸素移動効率の低下を防止することが可能である。 Thereby, it is possible to prevent the bubbles ejected from the first slit 8 from being combined with the bubbles from the adjacent second slit 9. Further, as shown in FIG. 3, since the second slit 9 is located between the adjacent first slits 8, the interval D between the first slits 8 is enlarged, and the bubbles ejected from the first slit 8 and the bubbles It is possible to prevent the bubbles ejected from the neighboring first slits 8 from being combined. Thereby, at the time of a small air volume, bubbles can be dispersed and generated uniformly, and a decrease in oxygen transfer efficiency can be prevented.
 また、風量を上記小風量から大風量に増やして散気を行う場合、空気供給部4に供給される空気の供給量が多いほど空気供給部4の空気圧が上昇して、第2スリット9が開き易くなり、気泡を噴出する第2スリット9の個数が増加する。このため、図5(c)に示すように、空気供給部4の空気は、第1スリット8と第2スリット9とを通り、気泡13となって散気膜3の内側から外側へ噴出される。このように、小風量では、気泡13が主に第1スリット8から噴出するが、風量が増えるのに従って、気泡13を噴出する第2スリット9の個数が増加するため、初期圧力損失および圧力損失の上昇を抑制することができる。 In addition, when the air volume is increased from the small air volume to the large air volume, the air pressure of the air supply unit 4 increases as the amount of air supplied to the air supply unit 4 increases, and the second slit 9 It becomes easy to open, and the number of the second slits 9 for ejecting bubbles increases. For this reason, as shown in FIG.5 (c), the air of the air supply part 4 passes the 1st slit 8 and the 2nd slit 9, becomes the bubble 13, and is ejected from the inner side of the diffuser film 3 to the outer side. The Thus, with a small air volume, the bubbles 13 are mainly ejected from the first slit 8, but as the air volume increases, the number of the second slits 9 that eject the air bubbles 13 increases, so that the initial pressure loss and pressure loss are increased. Can be suppressed.
 また、散気時、図4(b)に示すように、第1スリット8に短手方向Bの引張力Fが作用して第1スリット8が開くが、この引張力Fによって第1スリット8の端部に亀裂12が発生しても、この亀裂12は、第1スリット8の端部から第3スリット10まで到達すると、そこから先へ進行することはない。したがって、上記亀裂12が第1スリット8から長手方向Aにおける隣の第1スリット8まで伝播するのを防止することができる。 4B, when the air is diffused, the first slit 8 is opened by the tensile force F in the short direction B acting on the first slit 8, and the first slit 8 is opened by this tensile force F. Even if a crack 12 occurs at the end of the first slit, the crack 12 does not advance further from the end of the first slit 8 until it reaches the third slit 10. Therefore, the crack 12 can be prevented from propagating from the first slit 8 to the adjacent first slit 8 in the longitudinal direction A.
 尚、上記のように亀裂12の伝播が防止される理由を、参考として、以下に説明しておく。すなわち、図6に示すように、一般に、切欠き15を形成した部材16に平均応力σがかかる場合、切欠き15の先端に発生する最大応力σmaxは以下の式で表される。 The reason why the propagation of the crack 12 is prevented as described above will be described below for reference. That is, as shown in FIG. 6, generally, when the average stress σ 0 is applied to the member 16 in which the notch 15 is formed, the maximum stress σ max generated at the tip of the notch 15 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式によると、切欠き15の先端のアールρが小さいほど最大応力σmaxが増大する。亀裂12の場合、上記先端のアールρは非常に小さいので、応力集中によって亀裂12は次第に成長する。ここで、図4に示すように、上記第3スリット10の長さ方向と引張力Fの方向とが一致するため、第3スリット10は上記先端のアールρが非常に大きな切欠きであるとみなすことができる。このため、上記式で求められる最大応力σmaxが非常に小さくなり、第3スリット10において応力集中はほとんど発生せず、これにより、第3スリット10において亀裂12の伝播を防止することができる。 According to the above equation, the maximum stress σ max increases as the radius ρ at the tip of the notch 15 decreases. In the case of the crack 12, the radius ρ at the tip is very small, so that the crack 12 gradually grows due to the stress concentration. Here, as shown in FIG. 4, since the length direction of the third slit 10 and the direction of the tensile force F coincide with each other, the third slit 10 has a notch with a very large radius ρ at the tip. Can be considered. For this reason, the maximum stress σ max obtained by the above formula becomes very small, and the stress concentration hardly occurs in the third slit 10, thereby preventing the propagation of the crack 12 in the third slit 10.
 尚、散気時において、山形状に膨張した散気膜3には、主に短手方向Bの引張力Fが発生し、長手方向Aの力はほとんど発生しないため、第3スリット10は閉じたままとなり、空気供給部4から第3スリット10を通って外部へ噴出される空気はほとんど無い。 In addition, since the tensile force F in the short direction B is mainly generated in the diffuser film 3 expanded in a mountain shape at the time of air diffusion, and the force in the longitudinal direction A is hardly generated, the third slit 10 is closed. There is almost no air jetted from the air supply unit 4 through the third slit 10 to the outside.
 また、散気停止時には、散気膜3への空気の供給が遮断されて、図2の仮想線および図5(a)に示すように、散気膜3が水圧を受けてベースプレート2の上面に押し付けられた状態となる。この際、散気膜3は膨張せず、第1~第3スリット8~10は閉じている。 Further, when the aeration is stopped, the supply of air to the aeration film 3 is interrupted, and the aeration film 3 receives water pressure as shown in the phantom line of FIG. 2 and FIG. It will be in the state pressed against. At this time, the diffuser membrane 3 does not expand, and the first to third slits 8 to 10 are closed.
 尚、図7のグラフは風量別の発泡スリット数の測定データの一例であり、このうち、図7(a)のグラフは、膜面通気量と発泡スリットの個数との関係を示すものであり、図7(b)のグラフは、膜面通気量と全発泡スリットに占める第1~第3スリット8~10の割合との関係を示すものである。 Note that the graph of FIG. 7 is an example of measurement data of the number of foam slits by air volume, and among these, the graph of FIG. 7A shows the relationship between the membrane surface ventilation rate and the number of foam slits. The graph of FIG. 7B shows the relationship between the membrane surface air flow rate and the ratio of the first to third slits 8 to 10 occupying in all the foaming slits.
 尚、図7(a)のグラフにおいて、膜面通気量とは、散気膜3を1時間当たり且つ1m当たり通過する空気の通気量を示し、膜面通気量M1から膜面通気量M4になるほど増大している。尚、メンブレン式散気装置1に供給される風量が少ないほど膜面通気量も減少し、風量が多いほど膜面通気量も増大する。 In the graph of FIG. 7 (a), the membrane surface air flow rate indicates the air flow rate of air passing through the diffuser membrane 3 per hour and per m 2, and from the membrane surface air flow rate M1 to the membrane surface air flow rate M4. It has increased to become. It should be noted that the smaller the amount of air supplied to the membrane-type air diffuser 1, the smaller the air flow rate on the membrane surface, and the greater the air flow rate, the greater the air flow rate on the membrane surface.
 また、発泡スリットの個数とは、100個の第1スリット8のうちから気泡を噴出した第1スリット8の個数と、100個の第2スリット9のうちから気泡を噴出した第2スリット9の個数と、100個の第3スリット10のうちから気泡を噴出した第3スリット10の個数とを示したものである。 The number of foam slits is the number of first slits 8 that ejected bubbles from among the 100 first slits 8 and the number of second slits 9 that ejected bubbles from among the 100 second slits 9. The number and the number of the third slits 10 from which the bubbles are jetted out of the 100 third slits 10 are shown.
 また、図7(b)のグラフにおいて、全発泡スリット内に占める割合とは、図7(a)のグラフにおける各膜面通気量M1~M4ごとの発泡スリットの総個数うち、第1~第3スリット8~10が占める割合を示している。尚、このときの散気膜3はポリウレタン樹脂(硬度85A)製で厚さが0.6mmであり、また、第1~第3スリット8~10の長さは約0.4mmである。 In the graph of FIG. 7 (b), the ratio occupied in all the foam slits is the first to the second of the total number of foam slits for each membrane surface air flow rate M1 to M4 in the graph of FIG. 7 (a). The ratio of the three slits 8 to 10 is shown. The diffuser membrane 3 at this time is made of polyurethane resin (hardness 85A) and has a thickness of 0.6 mm, and the lengths of the first to third slits 8 to 10 are about 0.4 mm.
 図7のグラフによると、小風量(例えば膜面通気量M1)で散気を行う場合、気泡のほとんどは第1スリット8から発生し、第2スリット9から発生する気泡はほとんど無い。また、小風量および大風量のいずれの場合においても、第3スリット10から発生する気泡は無い。また、風量が増加するのに応じて、全発泡スリットに占める第2スリット9の割合が増加している。 According to the graph of FIG. 7, when air is diffused with a small air volume (for example, membrane surface ventilation M1), most of the bubbles are generated from the first slit 8 and almost no bubbles are generated from the second slit 9. Further, there is no bubble generated from the third slit 10 in both cases of the small air volume and the large air volume. Moreover, the ratio of the 2nd slit 9 which occupies for all the foaming slits is increasing according to the air volume increasing.
 また、図8は、メンブレン式散気装置1に供給される風量が2リットル/分である場合における第2スリット9の傾斜角度αと、発泡する第1スリット8の個数を100としたときの発泡する第2スリット9の個数の割合との関係を示すグラフである。例えば、傾斜角度αが13°の場合、発泡する第2スリット9の割合は約58%である。この際、空気を噴出(発泡)している第1スリット8の個数が24個とすると、空気を噴出(発泡)している第2スリット9の個数は14個(=24×0.58)となる。 FIG. 8 shows a case where the inclination angle α of the second slit 9 and the number of the foamed first slits 8 are 100 when the air volume supplied to the membrane-type air diffuser 1 is 2 liters / minute. It is a graph which shows the relationship with the ratio of the number of the 2nd slit 9 to foam. For example, when the inclination angle α is 13 °, the ratio of the foamed second slit 9 is about 58%. At this time, if the number of the first slits 8 ejecting (foaming) air is 24, the number of the second slits 9 ejecting (foaming) air is 14 (= 24 × 0.58). It becomes.
 尚、図8のグラフに示される関係に基づいて、第2スリット9の傾斜角度αを最適値の13°に設定したが、13°に限定されるものではなく、5°~25°の範囲内が好ましく、さらには10°~15°の角度がより好ましい。 Although the inclination angle α of the second slit 9 is set to the optimum value of 13 ° based on the relationship shown in the graph of FIG. 8, it is not limited to 13 ° but is in the range of 5 ° to 25 °. An angle of 10 ° to 15 ° is more preferable.
 尚、対比例として、図9に、スリット18の向きをランダムに配列した散気膜3の一例を示す。この場合、長手方向Aに対する傾斜角度αが小さいほどスリット15は開き易くなるのであるが、上記傾斜角度αの小さなスリット15の割合が少なくなるため、圧力損失が高くなるという問題がある。また、散気時、汚泥が発泡しているスリット15に詰まると、傾斜角度αのより大きなスリット15から空気が発泡することになるため、圧力損失の上昇が大きくなるという問題もある。 For comparison, FIG. 9 shows an example of the diffuser membrane 3 in which the orientations of the slits 18 are randomly arranged. In this case, the smaller the inclination angle α with respect to the longitudinal direction A, the easier the slit 15 opens. However, since the ratio of the slits 15 having the small inclination angle α decreases, there is a problem that the pressure loss increases. In addition, when the sludge is clogged with the foamed sludge during air diffusion, the air is foamed from the slit 15 having a larger inclination angle α, which increases the pressure loss.
 上記第1の実施の形態では、図4に示すように、第3スリット10を、長手方向Aに対して、最も効果的な90°の角度に形成しているが、約70°~110°の範囲内の角度に形成してもよい。 In the first embodiment, as shown in FIG. 4, the third slit 10 is formed at the most effective angle of 90 ° with respect to the longitudinal direction A, but it is about 70 ° to 110 °. You may form in the angle within the range.
 (第2の実施の形態)
 上記第1の実施の形態では、散気膜3に第3スリット10を形成したが、第2の実施の形態として、図10に示すように、第3スリット10を形成していないものでもよい。
(Second Embodiment)
In the said 1st Embodiment, although the 3rd slit 10 was formed in the diffuser film 3, as shown in FIG. 10, you may not form the 3rd slit 10 as 2nd Embodiment. .
 (第3の実施の形態)
 第3の実施の形態として、図11に示すように、長手方向Aにおいて隣り合う第1スリット8間に、異なる傾斜角度αを有する二種類の第2スリット9,11(第2気孔部の一例)を形成してもよい。ここでは、一方の第2スリット9の傾斜角度αが13°に設定され、他方の第2スリット11の傾斜角度αが6°に設定されている。
(Third embodiment)
As a third embodiment, as shown in FIG. 11, two types of second slits 9 and 11 (an example of the second pore portion) having different inclination angles α between the first slits 8 adjacent in the longitudinal direction A. ) May be formed. Here, the inclination angle α of one second slit 9 is set to 13 °, and the inclination angle α of the other second slit 11 is set to 6 °.
 これによると、一方の第2スリット9は他方の第2スリット11に比べて開き難く、他方の第2スリット11は第1スリット8に比べて開き難くなる。したがって、小風量で散気を行う場合、第2スリット9,11よりも先に第1スリット8が開き、空気供給部4に供給された空気の大部分は、開かれた第1スリット8を通って噴出される。また、風量を上記小風量から大風量に増やして散気を行う場合、第1スリット8の次に他方の第2スリット11が開き易くなって、気泡を噴出する他方の第2スリット11の個数が増加し、その後、さらに風量が増加すると、一方の第2スリット9も開き易くなって、気泡を噴出する一方の第2スリット9の個数が増加する。 According to this, one second slit 9 is harder to open than the other second slit 11, and the other second slit 11 is harder to open than the first slit 8. Therefore, when the air is diffused with a small air volume, the first slit 8 is opened before the second slits 9 and 11, and most of the air supplied to the air supply unit 4 passes through the opened first slit 8. Erupted through. Further, when the air volume is increased from the small air volume to the large air volume, the other second slit 11 is easily opened after the first slit 8, and the number of the other second slits 11 ejecting bubbles is increased. Then, when the air volume further increases, one of the second slits 9 is easily opened, and the number of one of the second slits 9 for ejecting bubbles increases.
 上記第3の実施の形態では、他方の第2スリット11の傾斜角度αを6°に設定したが、6°に限定されるものではなく、5°~20°の範囲内の角度に設定してもよい。 In the third embodiment, the inclination angle α of the other second slit 11 is set to 6 °, but is not limited to 6 ° and is set to an angle in the range of 5 ° to 20 °. May be.
 (第4の実施の形態)
 上記第1の実施の形態では、長手方向Aにおいて隣り合う第1スリット8間に第2スリット9を形成したが、第4の実施の形態として、図12に示すように、短手方向Bにおいて隣り合う第1スリット8間に第2スリット9を形成し、長手方向Aにおいて配列されているスリットを全て同じ種類に統一してもよい。
(Fourth embodiment)
In the said 1st Embodiment, although the 2nd slit 9 was formed between the 1st slits 8 adjacent in the longitudinal direction A, as shown in FIG. The second slits 9 may be formed between the adjacent first slits 8, and all the slits arranged in the longitudinal direction A may be unified.
 (第5の実施の形態)
 上記第1~第4の実施の形態では、図1に示すように、ベースプレート2と散気膜3との形状を長方形にしたが、長方形に限定されるものではなく、第5の実施の形態として、図13~図15に示すように、ベースプレート2と散気膜3との形状を円形にしてもよい。
(Fifth embodiment)
In the first to fourth embodiments, as shown in FIG. 1, the shapes of the base plate 2 and the diffuser membrane 3 are rectangular. However, the shape is not limited to the rectangle, and the fifth embodiment. As shown in FIGS. 13 to 15, the shape of the base plate 2 and the diffuser membrane 3 may be circular.
 すなわち、短管状の給気口5はベースプレート2の中心部に設けられ、給気口5の上端が空気供給部4に連通し、給気口5の下端が給気管21に接続されて連通している。散気時、図14の実線に示すように、散気膜3に供給される空気の圧力によって散気膜3は径方向Rから見て山形状に膨張する。 That is, the short tubular air supply port 5 is provided at the center of the base plate 2, the upper end of the air supply port 5 communicates with the air supply unit 4, and the lower end of the air supply port 5 is connected to the air supply tube 21 and communicates therewith. ing. At the time of air diffusion, as shown by the solid line in FIG. 14, the air diffusion film 3 expands in a mountain shape when viewed from the radial direction R by the pressure of the air supplied to the air diffusion film 3.
 散気膜3には複数の第1~第3スリット8~10(第1~第3気孔部の一例)が形成されている。図15に示すように、第1スリット8は、散気膜3の円周方向Cに細長い孔(スリット)である。第2スリット9は、円周方向C(すなわち第1スリット8)に対して所定の傾斜角度αで傾斜した方向に細長い孔(スリット)である。尚、所定の傾斜角度αは13°(鋭角)に設定されている。第3スリット10は、散気膜3の径方向Rに細長い孔(スリット)であり、上記円周方向Cに対して直交している。 A plurality of first to third slits 8 to 10 (an example of first to third pores) are formed in the diffuser membrane 3. As shown in FIG. 15, the first slit 8 is a hole (slit) elongated in the circumferential direction C of the diffuser membrane 3. The second slit 9 is a hole (slit) elongated in a direction inclined at a predetermined inclination angle α with respect to the circumferential direction C (that is, the first slit 8). The predetermined inclination angle α is set to 13 ° (acute angle). The third slit 10 is a hole (slit) elongated in the radial direction R of the diffuser membrane 3 and is orthogonal to the circumferential direction C.
 第1~第3スリット8~10は所定の配列パターンで同心円上に複数配列されている。すなわち、第1スリット8は円周方向Cにおいて所定間隔おきに複数形成され、円周方向Cにおいて隣り合う第1スリット8間に第2スリット9が位置している。さらに、第3スリット10は、円周方向Cにおいて隣り合う第1スリット8と第2スリット9との間に位置しているとともに、円周方向Cにおいて隣り合う第1スリット8間に位置している。 The first to third slits 8 to 10 are arranged in a plurality of concentric circles in a predetermined arrangement pattern. That is, a plurality of first slits 8 are formed at predetermined intervals in the circumferential direction C, and the second slits 9 are located between the first slits 8 adjacent in the circumferential direction C. Further, the third slit 10 is located between the first slit 8 and the second slit 9 adjacent in the circumferential direction C, and is positioned between the first slits 8 adjacent in the circumferential direction C. Yes.
 以下、上記構成における作用を説明する。 Hereinafter, the operation of the above configuration will be described.
 散気運転時には、給気管21から給気口5を通じて所定圧力の空気をメンブレン式散気装置1に供給することにより、図14の実線で示すように、給気口5から空気供給部4に供給される空気の圧力で散気膜3が径方向Rから見て山形状に膨張し、散気膜3に径方向Rの引張力Fが発生する。 At the time of air diffusion operation, air of a predetermined pressure is supplied from the air supply pipe 21 through the air supply port 5 to the membrane-type air diffuser 1, so that the air supply port 5 supplies the air supply unit 4 as shown by the solid line in FIG. 14. The diffuser membrane 3 expands in a mountain shape when viewed from the radial direction R by the pressure of the supplied air, and a tensile force F in the radial direction R is generated in the diffuser membrane 3.
 引張力Fは第1スリット8および第2スリット9を開くための力となるのであるが、この際、第1スリット8が開く方向と引張力Fの方向とは一致するが、これに対して、第2スリット9は傾斜角度αで傾斜しているため、第2スリット9が開く方向と引張力Fの方向とは一致しない。これにより、傾斜角度αが増大するほど、第2スリット9は第1スリット8に比べて開き難くなる。 The tensile force F is a force for opening the first slit 8 and the second slit 9. At this time, the direction in which the first slit 8 opens coincides with the direction of the tensile force F. Since the second slit 9 is inclined at an inclination angle α, the direction in which the second slit 9 opens and the direction of the tensile force F do not match. As a result, the second slit 9 becomes harder to open than the first slit 8 as the inclination angle α increases.
 したがって、小風量で散気を行う場合、第2スリット9よりも先に第1スリット8が開き、空気供給部4に供給された空気の大部分は、開かれた第1スリット8を通り、気泡となって散気膜3の内側から外側へ噴出されるのに対し、開き難い第2スリット9を通って外側へ噴出される気泡はほとんど無い。 Therefore, when aeration is performed with a small amount of air, the first slit 8 is opened before the second slit 9, and most of the air supplied to the air supply unit 4 passes through the opened first slit 8, While it becomes a bubble and is ejected from the inside of the diffuser film 3 to the outside, there are almost no bubbles that are ejected to the outside through the second slit 9 that is difficult to open.
 また、風量を上記小風量から大風量に増やして散気を行う場合、空気供給部4に供給される空気の供給量が多いほど空気供給部4の空気圧が上昇して、第2スリット9が開き易くなり、気泡を噴出する第2スリット9の個数が増加する。このため、空気供給部4の空気は、第1スリット8と第2スリット9とを通り、気泡となって散気膜3の内側から外側へ噴出される。 In addition, when the air volume is increased from the small air volume to the large air volume, the air pressure of the air supply unit 4 increases as the amount of air supplied to the air supply unit 4 increases, and the second slit 9 It becomes easy to open, and the number of the second slits 9 for ejecting bubbles increases. For this reason, the air of the air supply part 4 passes the 1st slit 8 and the 2nd slit 9, becomes a bubble, and is ejected from the inner side of the diffuser film 3 to the outer side.
 また、散気時、第1スリット8に径方向Rの引張力Fが作用して第1スリット8が開くが、この引張力Fによって第1スリット8の端部に亀裂12が発生しても、この亀裂12は、第1スリット8の端部から第3スリット10まで到達すると、そこから先へ進行することはない。したがって、上記亀裂12が第1スリット8から円周方向Cにおける隣の第1スリット8まで伝播するのを防止することができる。 Further, when air is diffused, the first slit 8 is opened by the tensile force F in the radial direction R acting on the first slit 8, but even if a crack 12 occurs at the end of the first slit 8 due to this tensile force F. When the crack 12 reaches the third slit 10 from the end of the first slit 8, the crack 12 does not advance further from there. Therefore, the crack 12 can be prevented from propagating from the first slit 8 to the adjacent first slit 8 in the circumferential direction C.
 尚、散気時、山形状に膨張した散気膜3には、主に径方向Rの引張力Fが発生し、円周方向Cの力はほとんど発生しないため、第3スリット10は閉じたままとなり、空気供給部4から第3スリット10を通って外部へ噴出される空気はほとんど無い。 In addition, since the tensile force F of radial direction R mainly generate | occur | produces in the diffused film 3 expanded in the mountain shape at the time of air diffusion, and the force of the circumferential direction C hardly generate | occur | produces, the 3rd slit 10 was closed. There is almost no air jetted from the air supply unit 4 through the third slit 10 to the outside.
 また、散気停止時には、図14の仮想線で示すように、散気膜3が水圧を受けてベースプレート2の上面に押し付けられた状態となる。この際、散気膜3は膨張せず、第1~第3スリット8~10は閉じている。 Further, when the aeration is stopped, as shown by the phantom line in FIG. 14, the aeration film 3 receives a water pressure and is pressed against the upper surface of the base plate 2. At this time, the diffuser membrane 3 does not expand, and the first to third slits 8 to 10 are closed.
 第5の実施の形態では、ベースプレート2と散気膜3との形状を円形にしているが正方形等の正多角形にしてもよい。 In the fifth embodiment, the shape of the base plate 2 and the diffuser membrane 3 is circular, but it may be a regular polygon such as a square.
 (第6の実施の形態)
 上記第1~第5の実施の形態では、メンブレン式散気装置1はベースプレート2の上面に散気膜3を設けたものであるが、第6の実施の形態として、図16,図17に示すように、長方形状の袋状体25の上面に長方形状の散気膜3を設けてもよい。袋状体25は、不通気性のシート状部材からなり、内部に空気供給部4を有している。袋状体25の一側の外縁には給気口5が設けられている。給気口5は、空気供給部4に連通するとともに、空気供給源(図示省略)に接続されている。
(Sixth embodiment)
In the first to fifth embodiments, the membrane diffuser 1 is provided with the diffuser film 3 on the upper surface of the base plate 2. As the sixth embodiment, FIG. 16 and FIG. As shown, a rectangular diffuser film 3 may be provided on the upper surface of the rectangular bag 25. The bag-like body 25 is made of an air-impermeable sheet-like member and has an air supply part 4 inside. An air supply port 5 is provided on one outer edge of the bag-like body 25. The air supply port 5 communicates with the air supply unit 4 and is connected to an air supply source (not shown).
 散気膜3は、袋状体25の上面に形成された散気用開口部26に装着されて、散気用開口部26を覆っている。散気膜3には、上記第1の実施の形態と同様に、第1~第3スリット8~10が多数形成されている。散気時、図17の実線で示すように、給気口5から袋状体25内の空気供給部4に供給される空気の圧力によって、散気膜3が長手方向Aから見て山形状に膨張する。 The diffuser film 3 is attached to the diffuser opening 26 formed on the upper surface of the bag 25 and covers the diffuser opening 26. As in the first embodiment, a large number of first to third slits 8 to 10 are formed in the diffuser membrane 3. At the time of air diffusion, as shown by the solid line in FIG. 17, the air diffusion film 3 is mountain-shaped when viewed from the longitudinal direction A due to the pressure of air supplied from the air supply port 5 to the air supply unit 4 in the bag-like body 25. Inflates.
 これによると、上記第1の実施の形態と同様な作用効果が得られる。 According to this, the same operation and effect as the first embodiment can be obtained.
 上記第6の実施の形態では、袋状体25と散気膜3とを長方形状にしているが、円形状であってもよい。 In the sixth embodiment, the bag 25 and the diffuser membrane 3 are rectangular, but may be circular.
 上記第1~第6の実施の形態において、第1スリット8をX、一方の第2スリット9をY、他方の第2スリット11をY´、第3スリット10をZと略記した場合、上記第1の実施の形態では、図3に示すように、長手方向Aにおけるスリットの配列パターンを「X・Z・Y・Z・X・Z・Y・Z・X・・・」に設定し、また、上記第5の実施の形態では、図15に示すように、円周方向Cにおけるスリットの配列パターンを「X・Z・Y・Z・X・Z・Y・Z・X・・・」に設定しているが、この配列パターンに限定されるものではなく、例えば下記のような配列パターン(1)~(4)に設定してもよい。
パターン(1):X・Y・X・Y・X・Y・X・・・
パターン(2):X・X・Y・X・X・Y・X・X・Y・X・・・
パターン(3):X・Y・Y´・X・Y・Y´・X・Y・Y´・X・・・
パターン(4):X・Y・X・Y´・X・Y・X・Y´・X・・・
 尚、図1~図17においては、理解し易いように、各スリット8~11を実際よりも誇張し拡大して描いているが、実際には、各スリット8~11は微小なサイズであり、例えば、各スリット8~11の長さは、好ましくは0.2mm~1mmの範囲、より好ましくは0.4mm~0.6mmの範囲に設定されている。
In the first to sixth embodiments, when the first slit 8 is abbreviated as X, one second slit 9 is abbreviated as Y, the other second slit 11 is abbreviated as Y ′, and the third slit 10 is abbreviated as Z, In the first embodiment, as shown in FIG. 3, the slit arrangement pattern in the longitudinal direction A is set to “X, Z, Y, Z, X, Z, Y, Z, X. In the fifth embodiment, as shown in FIG. 15, the arrangement pattern of the slits in the circumferential direction C is “X · Z · Y · Z · X · Z · Y · Z · X. However, the present invention is not limited to this arrangement pattern. For example, the following arrangement patterns (1) to (4) may be set.
Pattern (1): X, Y, X, Y, X, Y, X ...
Pattern (2): X, X, Y, X, X, Y, X, X, Y, X ...
Pattern (3): X, Y, Y ', X, Y, Y', X, Y, Y ', X ...
Pattern (4): X, Y, X, Y ', X, Y, X, Y', X ...
In FIG. 1 to FIG. 17, the slits 8 to 11 are exaggerated and enlarged as compared with actual ones for easy understanding, but in actuality, the slits 8 to 11 have a minute size. For example, the length of each of the slits 8 to 11 is preferably set in the range of 0.2 mm to 1 mm, more preferably in the range of 0.4 mm to 0.6 mm.
 また、各スリット8~11の実際の個数は図1~図17で描かれた個数よりも多い。さらに、第1スリット8と第2スリット9とは同じ長さであってもよく、或いは、異なった長さであってもよい。 Also, the actual number of slits 8 to 11 is larger than the number depicted in FIGS. Furthermore, the first slit 8 and the second slit 9 may have the same length or different lengths.
 上記第1~第6の実施の形態では、第1スリット8を長手方向Aに対して平行な方向にしたが、第1スリット8を長手方向Aに対して僅かに傾斜させてもよい。この場合、第2スリット9の傾斜角度を第1スリット8の傾斜角度よりも大きく設定すれば、第2スリット9を第1スリット8よりも開き難く設定することができる。例えば、第1スリット8を長手方向Aに対して3°傾斜させ、第2スリット9を長手方向Aに対して15°傾斜させるという実施形態等が考えられる。尚、これらは散気膜3の材質やスリットの長さに応じて適宜調節できる。 In the first to sixth embodiments, the first slit 8 is parallel to the longitudinal direction A. However, the first slit 8 may be slightly inclined with respect to the longitudinal direction A. In this case, if the inclination angle of the second slit 9 is set larger than the inclination angle of the first slit 8, the second slit 9 can be set to be more difficult to open than the first slit 8. For example, an embodiment in which the first slit 8 is inclined by 3 ° with respect to the longitudinal direction A and the second slit 9 is inclined by 15 ° with respect to the longitudinal direction A can be considered. In addition, these can be suitably adjusted according to the material of the diffuser film 3, and the length of a slit.
 上記第1~第6の実施の形態では、第1スリット8と第2スリット9との間に角度をつけることで、第2スリット9を第1スリット8よりも開き難くしたが、第2スリット9の長さを第1スリット8の長さより短くすることで、第2スリット9を第1スリット8よりも開き難く設定することもできる。例えば、第1スリット8の長さを0.6mm、第2スリット9の長さを0.4mmに設定することにより、第2スリット9が第1スリット8よりも開き難く設定される。 In the first to sixth embodiments, the second slit 9 is more difficult to open than the first slit 8 by providing an angle between the first slit 8 and the second slit 9. By making the length of 9 shorter than the length of the first slit 8, the second slit 9 can be set to be more difficult to open than the first slit 8. For example, by setting the length of the first slit 8 to 0.6 mm and the length of the second slit 9 to 0.4 mm, the second slit 9 is set to be harder to open than the first slit 8.
 上記第1~第6の実施の形態では、散気膜3の形状を長方形状又は円形状にしたが、これら以外に、楕円形状、両端が円弧状に形成された長円形状、L形状、正方形状、菱形状等であってもよい。 In the first to sixth embodiments, the diffuser membrane 3 has a rectangular or circular shape. However, in addition to these, an elliptical shape, an elliptical shape in which both ends are formed in an arc shape, an L shape, A square shape, a rhombus shape, etc. may be sufficient.
 次に、請求項7~請求項11に記載された発明における第7~第10の実施の形態を、図面を参照して説明する。 Next, seventh to tenth embodiments of the invention described in claims 7 to 11 will be described with reference to the drawings.
 (第7の実施の形態)
 第7の実施の形態では、図18,図19に示すように、101は下水処理施設等の曝気槽内に設置されるメンブレン式散気装置である。このメンブレン式散気装置101は、プラスチックや金属等で製作された長方形状のベースプレート102と、ベースプレート102の上面に装着された長方形状の散気膜103とを有している。散気膜103は、弾性を有しており、例えば、EPDM、シリコン等のゴム、或いは、ポリウレタン等の樹脂からなる。
(Seventh embodiment)
In the seventh embodiment, as shown in FIGS. 18 and 19, 101 is a membrane type air diffuser installed in an aeration tank such as a sewage treatment facility. This membrane-type air diffuser 101 includes a rectangular base plate 102 made of plastic, metal, or the like, and a rectangular air diffuser membrane 103 attached to the upper surface of the base plate 102. The air diffusion membrane 103 has elasticity, and is made of, for example, rubber such as EPDM or silicon, or resin such as polyurethane.
 散気膜103の周囲は固定部106(例えばカシメ部材等)によってベースプレート102に固定されており、ベースプレート102と散気膜103との間には空気供給部104が形成されている。また、散気膜103の長手方向Aにおける一端部には、短筒状の給気口105が設けられている。給気口105は、空気供給部104に連通するとともに、空気供給源(図示省略)に接続されている。 The periphery of the diffuser membrane 103 is fixed to the base plate 102 by a fixing unit 106 (for example, a caulking member), and an air supply unit 104 is formed between the base plate 102 and the diffuser membrane 103. Further, a short cylindrical air supply port 105 is provided at one end in the longitudinal direction A of the diffuser membrane 103. The air supply port 105 communicates with the air supply unit 104 and is connected to an air supply source (not shown).
 尚、散気膜103は例えば下記のような性状(1)~(3)のものを使用することができる。
*性状(1)
材質:ゴム(EPDM)、硬さ(A):50~70、厚さ(mm):1~3
*性状(2)
材質:ゴム(シリコン)、硬さ(A):35~55、厚さ(mm):1~3
*性状(3)
材質:樹脂(ポリウレタン)、硬さ(A):70~98、厚さ(mm):0.3~1
 尚、上記散気膜103の性状は一例であって、これらに限定されるものではなく、使用する条件に応じて、適宜変更し、最適化することができる。
As the diffuser membrane 103, for example, the following properties (1) to (3) can be used.
* Properties (1)
Material: Rubber (EPDM), Hardness (A): 50-70, Thickness (mm): 1-3
* Properties (2)
Material: Rubber (silicon), Hardness (A): 35-55, Thickness (mm): 1-3
* Properties (3)
Material: Resin (Polyurethane), Hardness (A): 70-98, Thickness (mm): 0.3-1
The properties of the air diffusing membrane 103 are examples, and are not limited to these, and can be appropriately changed and optimized according to the conditions to be used.
 散気時、図19の実線で示すように、散気膜103に供給される空気の圧力によって散気膜103が長手方向Aから見て山形状に膨張する。尚、このとき、散気膜103の長手方向Aにおける両端はベースプレート102に固定されているため、長手方向Aから見て山形状にはならないが、散気膜103の両端を除いたほとんどの領域において散気膜103が長手方向Aから見て山形状に膨張するので、ここでは散気膜103の両端を除外して考えるものとする。 At the time of air diffusion, as shown by the solid line in FIG. 19, the air diffusion film 103 expands in a mountain shape when viewed from the longitudinal direction A due to the pressure of the air supplied to the air diffusion film 103. At this time, since both ends in the longitudinal direction A of the diffuser membrane 103 are fixed to the base plate 102, it does not have a mountain shape when viewed from the longitudinal direction A, but most regions excluding both ends of the diffuser membrane 103. Since the diffuser membrane 103 expands in a mountain shape when viewed from the longitudinal direction A, the two ends of the diffuser membrane 103 are excluded here.
 散気膜103には複数の第1および第3スリット108,109(第1および第3気孔部の一例)が形成されている。図20,図21に示すように、第1スリット108は、長手方向Aに細長い孔(スリット)であり、上記長手方向Aに対して平行である。第3スリット109は、短手方向Bに細長い孔(スリット)であり、上記長手方向Aに対して直交している。 A plurality of first and third slits 108 and 109 (an example of first and third pore portions) are formed in the diffuser membrane 103. As shown in FIGS. 20 and 21, the first slit 108 is an elongated hole (slit) in the longitudinal direction A, and is parallel to the longitudinal direction A. The third slit 109 is a hole (slit) that is elongated in the lateral direction B, and is orthogonal to the longitudinal direction A.
 第1および第3スリット108,109は長手方向Aおよび短手方向Bにおいて所定の配列パターンで複数配列されている。すなわち、第1スリット108は長手方向Aにおいて所定間隔おきに複数形成され、長手方向Aにおいて隣り合う第1スリット108間(第1スリット108の少なくともいずれか片方に隣り合う位置の一例)に第3スリット109が位置している。また、第1スリット108は短手方向Bにおいても所定間隔おきに複数形成され、短手方向Bにおいて隣り合う第1スリット108間にも第3スリット109が位置している。 A plurality of first and third slits 108 and 109 are arranged in a predetermined arrangement pattern in the longitudinal direction A and the transverse direction B. That is, a plurality of the first slits 108 are formed at predetermined intervals in the longitudinal direction A, and the third slits are disposed between the first slits 108 adjacent in the longitudinal direction A (an example of positions adjacent to at least one of the first slits 108). A slit 109 is located. In addition, a plurality of first slits 108 are formed at predetermined intervals also in the short direction B, and the third slits 109 are located between adjacent first slits 108 in the short direction B.
 以下、上記構成における作用を説明する。 Hereinafter, the operation of the above configuration will be described.
 散気運転時には、空気供給源(図示省略)から給気口105を通じて所定圧力の空気をメンブレン式散気装置101に供給することにより、図19の実線で示すように、給気口105から空気供給部104に供給される空気の圧力で散気膜103が長手方向Aから見て山形状に膨張し、散気膜103に短手方向Bの引張力Fが発生し、図21(b),図22に示すように、この引張力Fによって第1スリット108が短手方向Bに開く。空気供給部104に供給された空気は、第1スリット108を通り、気泡113となって散気膜103の内側から外側へ噴出される。 At the time of the air diffusion operation, air of a predetermined pressure is supplied from the air supply source (not shown) through the air supply port 105 to the membrane type air diffuser 101 so that the air is supplied from the air supply port 105 as shown by the solid line in FIG. The diffuser membrane 103 expands in a mountain shape when viewed from the longitudinal direction A due to the pressure of the air supplied to the supply unit 104, and a tensile force F in the short direction B is generated in the diffuser membrane 103. FIG. 22, the first slit 108 is opened in the short direction B by the tensile force F. The air supplied to the air supply unit 104 passes through the first slit 108, becomes a bubble 113, and is ejected from the inside of the diffuser membrane 103 to the outside.
 この際、図21(b)に示すように、上記引張力Fによって第1スリット108の端部に亀裂112が発生しても、この亀裂112は、第1スリット108の端部から第3スリット109まで到達すると、そこから先へ進行することはない。したがって、上記亀裂112が第1スリット108から長手方向Aにおける隣の第1スリット108まで伝播するのを防止することができる。 At this time, as shown in FIG. 21B, even if a crack 112 occurs at the end of the first slit 108 due to the tensile force F, the crack 112 extends from the end of the first slit 108 to the third slit. When reaching 109, there is no further progress. Therefore, the crack 112 can be prevented from propagating from the first slit 108 to the adjacent first slit 108 in the longitudinal direction A.
 尚、上記のように亀裂112の伝播が防止される理由を、参考として、以下に説明しておく。すなわち、図23に示すように、一般に、切欠き115を形成した部材116に平均応力σがかかる場合、切欠き115の先端に発生する最大応力σmaxは以下の式で表される。 The reason why the propagation of the crack 112 is prevented as described above will be described below for reference. That is, as shown in FIG. 23, generally, when the average stress σ 0 is applied to the member 116 in which the notch 115 is formed, the maximum stress σ max generated at the tip of the notch 115 is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式によると、切欠き115の先端のアールρが小さいほど最大応力σmaxが増大する。亀裂112の場合、上記先端のアールρは非常に小さいので、応力集中によって亀裂112は次第に成長する。ここで、図20に示すように、上記第3スリット109の長さ方向と引張力Fの方向とが一致するため、第3スリット109は上記先端のアールρが非常に大きな切欠きであるとみなすことができる。このため、上記式で求められる最大応力σmaxが非常に小さくなり、第3スリット109において応力集中はほとんど発生せず、これにより、第3スリット109において亀裂112の伝播を防止することができる。 According to the above equation, the maximum stress σ max increases as the radius ρ at the tip of the notch 115 decreases. In the case of the crack 112, the radius ρ at the tip is very small, and the crack 112 gradually grows due to the stress concentration. Here, as shown in FIG. 20, since the length direction of the third slit 109 coincides with the direction of the tensile force F, the third slit 109 has a notch with a very large radius ρ at the tip. Can be considered. For this reason, the maximum stress σ max obtained by the above formula becomes very small, and the stress concentration hardly occurs in the third slit 109, whereby the propagation of the crack 112 in the third slit 109 can be prevented.
 尚、散気時において、山形状に膨張した散気膜103には、主に短手方向Bの引張力Fが発生し、長手方向Aの力はほとんど発生しないため、図21(b)に示すように、第3スリット109は閉じたままとなり、空気供給部104から第3スリット109を通って外部へ噴出される空気はほとんど無い。 Note that, when the air diffuses, the diffuser film 103 that expands in a mountain shape mainly generates a tensile force F in the short direction B and hardly generates a force in the longitudinal direction A. As shown, the third slit 109 remains closed, and almost no air is ejected from the air supply unit 104 through the third slit 109 to the outside.
 また、散気停止時には、散気膜103への空気の供給が遮断されて、図22(a)に示すように、散気膜103が水圧を受けてベースプレート102の上面に押し付けられた状態となる。この際、散気膜103は膨張せず、第1および第2スリット8,9は閉じている。 Further, when the aeration is stopped, the supply of air to the aeration film 103 is interrupted, and as shown in FIG. 22 (a), the aeration film 103 receives water pressure and is pressed against the upper surface of the base plate 102. Become. At this time, the diffuser membrane 103 does not expand, and the first and second slits 8 and 9 are closed.
 (第8の実施の形態)
 第8の実施の形態では、図24,図25に示すように、散気膜103には、上記第1および第3スリット108,109に加えて、長手方向Aに対して所定の傾斜角度αで傾斜した方向に細長い孔である第2スリット110(第2気孔部の一例)が複数形成されている。尚、所定の傾斜角度αは13°(鋭角)に設定されている。第2スリット110は長手方向Aにおいて隣り合う第1スリット108間に位置している。また、第3スリット109は、長手方向Aにおいて隣り合う第1スリット108と第2スリット110との間に位置しているとともに、長手方向Aにおいて隣り合う第1スリット108間に位置している。
(Eighth embodiment)
In the eighth embodiment, as shown in FIGS. 24 and 25, the diffuser membrane 103 has a predetermined inclination angle α with respect to the longitudinal direction A in addition to the first and third slits 108 and 109. A plurality of second slits 110 (an example of a second pore portion) that are elongated holes are formed in the direction inclined at. The predetermined inclination angle α is set to 13 ° (acute angle). The second slit 110 is located between the first slits 108 adjacent in the longitudinal direction A. The third slit 109 is located between the first slit 108 and the second slit 110 adjacent in the longitudinal direction A, and is located between the first slits 108 adjacent in the longitudinal direction A.
 以下、上記構成における作用を説明する。 Hereinafter, the operation of the above configuration will be described.
 散気運転時に、山形状に膨張した散気膜103に発生する短手方向Bの引張力Fは第1スリット108および第2スリット110を開くための力となるのであるが、この際、第1スリット108が開く方向と引張力Fの方向とは一致するが、これに対して、第2スリット110は傾斜角度αで傾斜しているため、第2スリット110が開く方向と引張力Fの方向とは一致しない。すなわち、第1スリット108は引張力Fで開かれるのに対して、第2スリット110は、引張力Fよりも小さな、Fcosαの力F´で開かれる。このため、傾斜角度αが増大するほど、第2スリット110は第1スリット108に比べて開き難くなる。 During the aeration operation, the tensile force F in the short direction B generated in the diffuser film 103 that has expanded in a mountain shape serves as a force for opening the first slit 108 and the second slit 110. The direction in which the first slit 108 opens coincides with the direction of the tensile force F. On the other hand, since the second slit 110 is inclined at the inclination angle α, the direction in which the second slit 110 opens and the tensile force F Does not match the direction. That is, the first slit 108 is opened with the tensile force F, while the second slit 110 is opened with the force F ′ of Fcosα, which is smaller than the tensile force F. For this reason, as the inclination angle α increases, the second slit 110 becomes harder to open than the first slit 108.
 したがって、小風量で散気を行う場合、空気供給部104に供給された空気の大部分は、開かれた第1スリット108を通り、気泡となって散気膜103の内側から外側へ噴出されるのに対し、開き難い第2スリット110を通って外側へ噴出される気泡はほとんど無い。 Therefore, when air is diffused with a small amount of air, most of the air supplied to the air supply unit 104 passes through the opened first slit 108 and is blown out from the inside of the air diffusion membrane 103 to the outside. On the other hand, almost no bubbles are ejected to the outside through the second slit 110 that is difficult to open.
 これにより、第1スリット108から噴出した気泡がその隣の第2スリット110からの気泡に結合するのを防止することができる。さらに、隣り合う第1スリット108間に第2スリット110が位置しているため、第1スリット108同志の間隔Dが拡大され、第1スリット108から噴出した気泡とその近隣の第1スリット108から噴出した気泡とが結合するのを防止することができる。これにより、小風量時において、気泡を分散させて均一に発生させることができ、酸素移動効率の低下を防止することが可能である。 Thereby, it is possible to prevent the bubbles ejected from the first slit 108 from being combined with the bubbles from the adjacent second slit 110. Further, since the second slit 110 is located between the adjacent first slits 108, the interval D between the first slits 108 is enlarged, and the bubbles ejected from the first slit 108 and the neighboring first slits 108 are increased. Bonding with the ejected bubbles can be prevented. Thereby, at the time of a small air volume, bubbles can be dispersed and generated uniformly, and a decrease in oxygen transfer efficiency can be prevented.
 また、風量を上記小風量から大風量に増やして散気を行う場合、空気供給部104に供給される空気の供給量が多いほど空気供給部104の空気圧が上昇して、第2スリット110が開き易くなり、気泡を噴出する第2スリット110の個数が増加する。このため、空気供給部104の空気は、第1スリット108と第2スリット110とを通り、気泡となって散気膜103の内側から外側へ噴出される。このように、小風量では、気泡が主に第1スリット108から噴出するが、風量が増えるのに従って、気泡を噴出する第2スリット110の個数が増加するため、初期圧力損失および初期圧力損失の上昇を抑制することができる。 In addition, when the air volume is increased from the small air volume to the large air volume, the air supply of the air supply unit 104 increases as the amount of air supplied to the air supply unit 104 increases, and the second slit 110 It becomes easy to open, and the number of the second slits 110 for ejecting bubbles increases. For this reason, the air of the air supply part 104 passes through the 1st slit 108 and the 2nd slit 110, and is ejected from the inner side of the diffuser film 103 to the outer side as a bubble. As described above, the bubbles are mainly ejected from the first slit 108 at a small air volume. However, as the air volume increases, the number of the second slits 110 that eject the air bubbles increases. The rise can be suppressed.
 尚、図26のグラフは風量別の発泡スリット数の測定データの一例であり、このうち、図26(a)のグラフは、膜面通気量と発泡スリットの個数との関係を示すものであり、図26(b)のグラフは、膜面通気量と全発泡スリットに占める第1~第3スリット108~110の割合との関係を示すものである。 Note that the graph of FIG. 26 is an example of measurement data of the number of foam slits by air volume, and among these, the graph of FIG. 26A shows the relationship between the membrane surface air flow rate and the number of foam slits. The graph of FIG. 26 (b) shows the relationship between the air flow rate on the membrane surface and the ratio of the first to third slits 108 to 110 in the total foaming slits.
 尚、図26(a)のグラフにおいて、膜面通気量とは、散気膜103を1時間当たり且つ1m当たり通過する空気の通気量を示し、膜面通気量M1から膜面通気量M4になるほど増大している。尚、メンブレン式散気装置101に供給される風量が少ないほど膜面通気量も減少し、風量が多いほど膜面通気量も増大する。 In the graph of FIG. 26 (a), the membrane surface ventilation rate indicates the ventilation rate of air passing through the diffuser membrane 103 per hour and per 1 m 2, and from the membrane surface ventilation rate M1 to the membrane surface ventilation rate M4. It has increased to become. It should be noted that the smaller the amount of air supplied to the membrane type air diffuser 101, the smaller the air flow rate on the membrane surface, and the greater the air volume, the greater the air flow rate on the membrane surface.
 また、発泡スリットの個数とは、100個の第1スリット108のうちから気泡を噴出した第1スリット108の個数と、100個の第3スリット109のうちから気泡を噴出した第3スリット109の個数と、100個の第2スリット110のうちから気泡を噴出した第2スリット110の個数とを示したものである。 The number of foam slits is the number of first slits 108 that ejected bubbles from among the 100 first slits 108 and the number of third slits 109 that ejected bubbles from among the 100 third slits 109. The number and the number of second slits 110 from which bubbles are ejected out of 100 second slits 110 are shown.
 また、図26(b)のグラフにおいて、全発泡スリット内に占める割合とは、図26(a)のグラフにおける各膜面通気量M1~M4ごとの発泡スリットの総個数うち、第1~第3スリット108~110が占める割合を示している。尚、このときの散気膜103はポリウレタン樹脂(硬度85A)製で厚さが0.6mmであり、また、第1~第3スリット108~110の長さは約0.4mmである。 In the graph of FIG. 26 (b), the ratio occupied in all the foaming slits is the first to the second of the total number of foaming slits for each membrane surface air flow rate M1 to M4 in the graph of FIG. The ratio occupied by the three slits 108 to 110 is shown. The diffuser membrane 103 at this time is made of polyurethane resin (hardness 85A) and has a thickness of 0.6 mm, and the lengths of the first to third slits 108 to 110 are about 0.4 mm.
 図26のグラフによると、小風量(例えば膜面通気量M1)で散気を行う場合、気泡のほとんどは第1スリット108から発生し、第2スリット110から発生する気泡はほとんど無い。また、小風量および大風量のいずれの場合においても、第3スリット109から発生する気泡は無い。また、風量が増加するのに応じて、全発泡スリットに占める第2スリット110の割合が増加している。 According to the graph of FIG. 26, when the air is diffused with a small air volume (for example, the membrane surface ventilation rate M1), most of the bubbles are generated from the first slit 108 and almost no bubbles are generated from the second slit 110. Moreover, there is no bubble generated from the third slit 109 in both cases of the small air volume and the large air volume. Moreover, the ratio of the 2nd slit 110 which occupies for all the foaming slits is increasing according to the air volume increasing.
 また、図27は、メンブレン式散気装置101に供給される風量が2リットル/分である場合における第2スリット110の傾斜角度αと、発泡する第1スリット108の個数を100としたときの発泡する第2スリット110の個数の割合との関係を示すグラフである。例えば、傾斜角度αが13°の場合、発泡する第2スリット110の割合は約58%である。この際、空気を噴出(発泡)している第1スリット108の個数が24個とすると、空気を噴出(発泡)している第2スリット110の個数は14個(=24×0.58)となる。 FIG. 27 shows a case where the inclination angle α of the second slit 110 and the number of foamed first slits 108 are 100 when the air volume supplied to the membrane-type air diffuser 101 is 2 liters / minute. It is a graph which shows the relationship with the ratio of the number of the 2nd slit 110 to foam. For example, when the inclination angle α is 13 °, the ratio of the foamed second slit 110 is about 58%. At this time, if the number of the first slits 108 ejecting (foaming) air is 24, the number of the second slits 110 ejecting (foaming) air is 14 (= 24 × 0.58). It becomes.
 尚、図27のグラフに示される関係に基づいて、第2スリット110の傾斜角度αを最適値の13°に設定したが、13°に限定されるものではなく、5°~25°の範囲内が好ましく、さらには10°~15°の角度がより好ましい。 Note that the inclination angle α of the second slit 110 is set to the optimum value of 13 ° based on the relationship shown in the graph of FIG. 27, but is not limited to 13 ° and is in the range of 5 ° to 25 °. An angle of 10 ° to 15 ° is more preferable.
 上記第7および第8の実施の形態では、第3スリット109を、長手方向Aに対して、最も効果的な90°の角度に形成しているが、約70°~110°の範囲内の角度に形成してもよい。 In the seventh and eighth embodiments, the third slit 109 is formed at the most effective angle of 90 ° with respect to the longitudinal direction A, but it is within the range of about 70 ° to 110 °. You may form at an angle.
 上記第7および第8の実施の形態では、第1スリット108を、長手方向Aに対して平行にしたが、長手方向Aに対して僅かに傾斜させてもよい。 In the seventh and eighth embodiments, the first slit 108 is parallel to the longitudinal direction A. However, the first slit 108 may be slightly inclined with respect to the longitudinal direction A.
 (第9の実施の形態)
 上記第7および第8の実施の形態では、ベースプレート102と散気膜103との形状を長方形にしたが、長方形に限定されるものではなく、第9の実施の形態として、図28~図30に示すように、ベースプレート102と散気膜103との形状を円形にしてもよい。
(Ninth embodiment)
In the seventh and eighth embodiments, the shapes of the base plate 102 and the diffuser membrane 103 are rectangular. However, the shape is not limited to a rectangle, and FIGS. 28 to 30 show the ninth embodiment. As shown, the shape of the base plate 102 and the diffuser membrane 103 may be circular.
 すなわち、短管状の給気口105はベースプレート102の中心部に設けられ、給気口105の上端が空気供給部104に連通し、給気口105の下端が給気管121に接続されて連通している。 That is, the short tubular air supply port 105 is provided at the center of the base plate 102, the upper end of the air supply port 105 communicates with the air supply unit 104, and the lower end of the air supply port 105 communicates with the air supply tube 121. ing.
 散気時、図29の実線で示すように、散気膜103に供給される空気の圧力によって散気膜103は径方向Rから見て山形状に膨張する。散気膜103には複数の第1および第3スリット108,109が同心円上に形成されている。図30に示すように、第1スリット108は、散気膜103の円周方向Cに細長い孔(スリット)である。第3スリット109は、散気膜103の径方向Rに細長い孔(スリット)であり、上記円周方向Cに対して直交している。 At the time of air diffusion, as shown by the solid line in FIG. A plurality of first and third slits 108 and 109 are formed concentrically on the diffuser membrane 103. As shown in FIG. 30, the first slit 108 is a hole (slit) elongated in the circumferential direction C of the diffuser membrane 103. The third slit 109 is a hole (slit) elongated in the radial direction R of the diffuser membrane 103 and is orthogonal to the circumferential direction C.
 第1および第3スリット108,109は円周方向Cおよび径方向Rにおいて所定の配列パターンで複数配列されている。すなわち、第1スリット108は円周方向Cにおいて所定間隔おきに複数形成され、円周方向Cにおいて隣り合う第1スリット108間(第1スリット108の少なくともいずれか片方に隣り合う位置の一例)に第3スリット109が位置している。 A plurality of first and third slits 108 and 109 are arranged in a predetermined arrangement pattern in the circumferential direction C and the radial direction R. In other words, a plurality of first slits 108 are formed at predetermined intervals in the circumferential direction C, and between the first slits 108 adjacent in the circumferential direction C (an example of a position adjacent to at least one of the first slits 108). A third slit 109 is located.
 以下、上記構成における作用を説明する。 Hereinafter, the operation of the above configuration will be described.
 散気運転時には、図29の実線で示すように、給気管121から給気口105を通って空気供給部104に供給される空気の圧力により散気膜103が径方向Rから見て山形状に膨張し、散気膜103に径方向Rの引張力Fが発生し、この引張力Fによって第1スリット108が径方向Rに開く。空気供給部104に供給された空気は、第1スリット108を通り、気泡となって散気膜103の内側から外側へ噴出される。 At the time of air diffusion operation, as shown by the solid line in FIG. 29, the air diffusion film 103 is mountain-shaped when viewed from the radial direction R due to the pressure of air supplied from the air supply pipe 121 through the air supply port 105 to the air supply unit 104. The tensile force F in the radial direction R is generated in the diffuser membrane 103, and the first slit 108 is opened in the radial direction R by the tensile force F. The air supplied to the air supply unit 104 passes through the first slit 108 and becomes a bubble, and is ejected from the inside of the diffuser membrane 103 to the outside.
 この際、図30に示すように、上記引張力Fによって第1スリット108の端部に亀裂112が発生しても、この亀裂112は、第1スリット108の端部から第3スリット109まで到達すると、そこから先へ進行することはない。したがって、上記亀裂112が第1スリット108から円周方向Cにおける隣の第1スリット108まで伝播するのを防止することができる。 At this time, as shown in FIG. 30, even if the tensile force F causes a crack 112 at the end of the first slit 108, the crack 112 reaches the third slit 109 from the end of the first slit 108. Then there is no further progress. Therefore, the crack 112 can be prevented from propagating from the first slit 108 to the adjacent first slit 108 in the circumferential direction C.
 尚、散気時において、山形状に膨張した散気膜103には、主に径方向Rの引張力Fが発生し、円周方向Cの力はほとんど発生しないため、第3スリット109は閉じたままとなり、空気供給部104から第3スリット109を通って外部へ噴出される空気はほとんど無い。 In addition, since the tensile film F in the radial direction R is mainly generated in the diffuser film 103 expanded in a mountain shape at the time of air diffusion, and the force in the circumferential direction C is hardly generated, the third slit 109 is closed. There is almost no air jetted from the air supply unit 104 to the outside through the third slit 109.
 また、散気停止時には、散気膜103への空気の供給が遮断されて、散気膜103が水圧を受けてベースプレート102の上面に押し付けられた状態となる。この際、散気膜103は膨張せず、第1および第3スリット108,109は閉じている。 In addition, when the aeration is stopped, the supply of air to the aeration film 103 is interrupted, and the aeration film 103 is pressed against the upper surface of the base plate 102 under water pressure. At this time, the diffuser membrane 103 does not expand, and the first and third slits 108 and 109 are closed.
 上記第9の実施の形態では、散気膜103に第1および第3スリット108,109を形成しているが、円形状の散気膜103に、上記第8の実施の形態と同様な第1~第3スリット108~110を形成してもよい。この場合も、上記第8の実施の形態と同様に、小風量時において、気泡を分散させて均一に発生させることができ、酸素移動効率の低下を防止することが可能であり、さらに、初期圧力損失および初期圧力損失の上昇を抑制することができる。 In the ninth embodiment, the first and third slits 108 and 109 are formed in the diffuser membrane 103. However, in the circular diffuser membrane 103, the same as in the eighth embodiment. The first to third slits 108 to 110 may be formed. Also in this case, as in the case of the eighth embodiment, bubbles can be dispersed and uniformly generated when the air volume is small, and it is possible to prevent a decrease in oxygen transfer efficiency. An increase in pressure loss and initial pressure loss can be suppressed.
 尚、上記第9の実施の形態では、ベースプレート102と散気膜103との形状を円形にしているが正方形等の正多角形にしてもよい。 In the ninth embodiment, the shape of the base plate 102 and the diffuser membrane 103 is circular, but it may be a regular polygon such as a square.
 (第10の実施の形態)
 上記第7~第9の実施の形態では、メンブレン式散気装置101はベースプレート102の上面に散気膜103を設けたものであるが、第10の実施の形態として、図31,図32に示すように、長方形状の袋状体125の上面に長方形状の散気膜103を設けてもよい。袋状体125は、不通気性のシート状部材からなり、内部に空気供給部104を有している。袋状体125の一側の外縁には給気口105が設けられており、給気口105は、空気供給部104に連通するとともに、空気供給源(図示省略)に接続されている。
(Tenth embodiment)
In the seventh to ninth embodiments, the membrane diffuser 101 is provided with the diffuser film 103 on the upper surface of the base plate 102. As the tenth embodiment, FIG. 31 and FIG. As shown, a rectangular diffuser film 103 may be provided on the upper surface of the rectangular bag-shaped body 125. The bag-like body 125 is made of an air-impermeable sheet-like member and has an air supply unit 104 inside. An air supply port 105 is provided on one outer edge of the bag-like body 125, and the air supply port 105 communicates with the air supply unit 104 and is connected to an air supply source (not shown).
 散気膜103は、袋状体125の上面に形成された散気用開口部126に装着されて、散気用開口部126を覆っている。散気膜103には、上記第7の実施の形態と同様に、第1および第3スリット108,109が形成されている。散気時、図32の実線で示すように、給気口105から袋状体125内の空気供給部104に供給される空気の圧力によって、散気膜103が長手方向Aから見て山形状に膨張する。 The diffuser membrane 103 is attached to the diffuser opening 126 formed on the upper surface of the bag-like body 125 and covers the diffuser opening 126. As in the seventh embodiment, the diffuser membrane 103 is formed with first and third slits 108 and 109. At the time of air diffusion, as shown by the solid line in FIG. 32, the air diffusion film 103 is mountain-shaped when viewed from the longitudinal direction A due to the pressure of the air supplied from the air supply port 105 to the air supply unit 104 in the bag-like body 125. Inflates.
 これによると、上記第7の実施の形態と同様な作用効果が得られる。 According to this, the same operation and effect as the seventh embodiment can be obtained.
 上記第10の実施の形態では、袋状体125と散気膜103とを長方形状にしているが、円形状であってもよい。また、散気膜103に、上記第8の実施の形態と同様な第1~第3スリット108~110を形成してもよい。 In the tenth embodiment, the bag-like body 125 and the diffuser membrane 103 are rectangular, but they may be circular. In addition, first to third slits 108 to 110 similar to those in the eighth embodiment may be formed in the diffuser membrane 103.
 尚、図18~図32においては、理解し易いように、各スリット108~110を実際よりも誇張し拡大して描いているが、実際には、各スリット108~110は微小なサイズであり、例えば、各スリット108~110の長さは、好ましくは0.2mm~1mmの範囲、より好ましくは0.4mm~0.6mmの範囲に設定されている。 In FIG. 18 to FIG. 32, the slits 108 to 110 are exaggerated and enlarged as compared with actual ones for easy understanding, but in actuality, the slits 108 to 110 have a minute size. For example, the length of each of the slits 108 to 110 is preferably set in the range of 0.2 mm to 1 mm, more preferably in the range of 0.4 mm to 0.6 mm.
 また、各スリット108~110の実際の個数は図18~図32で描かれた個数よりも多い。さらに、第1スリット108と第3スリット109とは同じ長さであってもよく、或いは、異なった長さであってもよい。 Further, the actual number of the slits 108 to 110 is larger than the number depicted in FIGS. Further, the first slit 108 and the third slit 109 may have the same length, or may have different lengths.
 上記第7~第10の実施の形態では、散気膜103の形状を長方形状又は円形状にしたが、これら以外に、楕円形状、両端が円弧状に形成された長円形状、L形状、正方形状、菱形状等であってもよい。 In the seventh to tenth embodiments, the shape of the diffuser membrane 103 is rectangular or circular. However, in addition to these, an elliptical shape, an oval shape in which both ends are formed in an arc shape, an L shape, A square shape, a rhombus shape, etc. may be sufficient.

Claims (11)

  1. 散気膜に複数の気孔部が形成され、
    散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張して気孔部が開き、
    散気停止時、散気膜が膨張していない状態で気孔部が閉じるメンブレン式散気装置であって、
    散気膜には、第1気孔部と第1気孔部よりも開き難い第2気孔部とがそれぞれ複数配列されて形成され、
    隣り合う第1気孔部間に第2気孔部が位置していることを特徴とするメンブレン式散気装置。
    A plurality of pores are formed in the diffuser membrane,
    At the time of air diffusion, the air diffuser film expands in a mountain shape by the pressure of the air supplied to the air diffuser film, and the pores open.
    A membrane-type air diffuser that closes the pores when the air diffuser is not expanded when the air diffuser stops,
    The diffuser membrane is formed by arranging a plurality of first pores and second pores that are more difficult to open than the first pores,
    A membrane-type air diffuser characterized in that a second pore portion is located between adjacent first pore portions.
  2. 第1気孔部は散気膜の所定方向に長い孔であり、
    第1気孔部が開く方向は、散気膜が山形状に膨張した際に散気膜に発生する引張力の方向と一致し、
    第2気孔部は第1気孔部に対して傾斜した方向に長い孔であることを特徴とする請求項1記載のメンブレン式散気装置。
    The first pore portion is a hole long in a predetermined direction of the diffuser membrane,
    The direction in which the first pore part opens coincides with the direction of the tensile force generated in the diffuser film when the diffuser film expands in a mountain shape,
    The membrane-type air diffuser according to claim 1, wherein the second pore portion is a hole that is long in a direction inclined with respect to the first pore portion.
  3. 散気膜に複数の気孔部が形成され、
    散気時、散気膜に供給される空気の圧力によって散気膜が長手方向から見て山形状に膨張して気孔部が開き、
    散気停止時、散気膜が膨張していない状態で気孔部が閉じるメンブレン式散気装置であって、
    散気膜の長手方向および短手方向において第1気孔部と第2気孔部とがそれぞれ複数配列されて形成され、
    第1気孔部は散気膜の長手方向に長い孔であり、
    第2気孔部は散気膜の長手方向に対して傾斜した方向に長い孔であり、
    隣り合う第1気孔部間に第2気孔部が位置していることを特徴とするメンブレン式散気装置。
    A plurality of pores are formed in the diffuser membrane,
    When diffused, the diffused film expands in a mountain shape when viewed from the longitudinal direction due to the pressure of the air supplied to the diffused film, and the pores open,
    A membrane-type air diffuser that closes the pores when the air diffuser is not expanded when the air diffuser stops,
    A plurality of first pore portions and second pore portions are respectively arranged in the longitudinal direction and the short direction of the diffuser membrane,
    The first pore portion is a long hole in the longitudinal direction of the diffuser membrane,
    The second pore portion is a long hole in a direction inclined with respect to the longitudinal direction of the diffuser membrane,
    A membrane-type air diffuser characterized in that a second pore portion is located between adjacent first pore portions.
  4. 散気膜に複数の気孔部が形成され、
    散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張すると気孔部が開き、
    散気停止時、散気膜が膨張していない状態で気孔部が閉じるメンブレン式散気装置であって、
    散気膜に、第1気孔部と第2気孔部とがそれぞれ同心円上に複数配列されて形成され、
    第1気孔部は散気膜の周方向に長い孔であり、
    第2気孔部は散気膜の周方向に対して傾斜した方向に長い孔であり、
    隣り合う第1気孔部間に第2気孔部が位置していることを特徴とするメンブレン式散気装置。
    A plurality of pores are formed in the diffuser membrane,
    When air diffuses, the pores open when the air diffuser expands into a mountain shape due to the pressure of the air supplied to the air diffuser.
    A membrane-type air diffuser that closes the pores when the air diffuser is not expanded when the air diffuser stops,
    A plurality of first pore portions and second pore portions are arranged in concentric circles on the diffuser membrane,
    The first pore portion is a hole long in the circumferential direction of the diffuser membrane,
    The second pore portion is a hole long in a direction inclined with respect to the circumferential direction of the diffuser membrane,
    A membrane-type air diffuser characterized in that a second pore portion is located between adjacent first pore portions.
  5. 第2気孔部は第1気孔部に対して5°~25°の角度で傾斜した方向に長い孔であることを特徴とする請求項2から請求項4のいずれか1項に記載のメンブレン式散気装置。 The membrane type according to any one of claims 2 to 4, wherein the second pore portion is a long hole in a direction inclined at an angle of 5 ° to 25 ° with respect to the first pore portion. Air diffuser.
  6. 第1気孔部又は第2気孔部の長手方向の少なくともいずれか片方に隣り合って第3気孔部が形成され、
    第3気孔部は第1気孔部に対してほぼ直交する方向に長い孔であることを特徴とする請求項2から請求項5のいずれか1項に記載のメンブレン式散気装置。
    A third pore portion is formed adjacent to at least one of the longitudinal direction of the first pore portion or the second pore portion;
    The membrane type air diffuser according to any one of claims 2 to 5, wherein the third pore portion is a hole that is long in a direction substantially orthogonal to the first pore portion.
  7. 散気膜に、第1および第3気孔部がそれぞれ複数配列されて形成され、
    散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張することにより第1気孔部が開き、
    散気停止時、散気膜が膨張していない状態で第1気孔部が閉じ、
    第3気孔部は第1気孔部の長手方向の少なくともいずれか片方に隣り合う位置に形成されており、
    第3気孔部は第1気孔部に対して交差する方向に長い孔であることを特徴とするメンブレン式散気装置。
    A plurality of first and third pores are arranged in the diffuser membrane,
    At the time of air diffusion, the first pore part is opened by the air diffusion film expanding in a mountain shape by the pressure of the air supplied to the air diffusion film,
    When the aeration is stopped, the first pore portion is closed in a state where the aeration film is not expanded,
    The third pore portion is formed at a position adjacent to at least one of the longitudinal directions of the first pore portion,
    The membrane type air diffuser characterized in that the third pore portion is a hole that is long in a direction intersecting the first pore portion.
  8. 第3気孔部は第1気孔部に対してほぼ直交する方向に長い孔であることを特徴とする請求項7記載のメンブレン式散気装置。 The membrane-type air diffuser according to claim 7, wherein the third pore portion is a hole that is long in a direction substantially perpendicular to the first pore portion.
  9. 散気膜に、第1および第3気孔部がそれぞれ複数配列されて形成され、
    第1気孔部は散気膜の長手方向に長い孔であり、
    第3気孔部は、散気膜の短手方向に長い孔であり、且つ、散気膜の長手方向において第1気孔部の少なくともいずれか片方に隣り合う位置に形成されており、
    散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張して第1気孔部が短手方向に開き、
    散気停止時、散気膜が膨張していない状態で第1気孔部が閉じることを特徴とするメンブレン式散気装置。
    A plurality of first and third pores are arranged in the diffuser membrane,
    The first pore portion is a long hole in the longitudinal direction of the diffuser membrane,
    The third pore portion is a hole that is long in the short direction of the diffuser membrane, and is formed at a position adjacent to at least one of the first pore portions in the longitudinal direction of the diffuser membrane,
    At the time of air diffusion, the air diffusion film expands in a mountain shape by the pressure of the air supplied to the air diffusion film, and the first pore portion opens in the short direction,
    A membrane type air diffuser characterized in that the first pore portion closes when the air diffuser is not expanded when the air diffuser is stopped.
  10. 散気膜に、第1および第3気孔部がそれぞれ同心円上に複数配列されて形成され、
    第1気孔部は散気膜の周方向に長い孔であり、
    第3気孔部は、散気膜の径方向に長い孔であり、且つ、散気膜の周方向において第1気孔部の少なくともいずれか片方に隣り合う位置に形成されており、
    散気時、散気膜に供給される空気の圧力によって散気膜が山形状に膨張して第1気孔部が径方向に開き、
    散気停止時、散気膜が膨張していない状態で第1気孔部が閉じることを特徴とするメンブレン式散気装置。
    A plurality of first and third pore portions are concentrically arranged on the diffuser membrane,
    The first pore portion is a hole long in the circumferential direction of the diffuser membrane,
    The third pore portion is a hole that is long in the radial direction of the diffuser membrane, and is formed at a position adjacent to at least one of the first pore portions in the circumferential direction of the diffuser membrane,
    At the time of air diffusion, the air diffusion film expands in a mountain shape by the pressure of the air supplied to the air diffusion film, and the first pore portion opens in the radial direction,
    A membrane type air diffuser characterized in that the first pore portion closes when the air diffuser is not expanded when the air diffuser is stopped.
  11. 第1気孔部に対して5°~25°の角度で傾斜した方向に長い第2気孔部が散気膜に複数形成されていることを特徴とする請求項7から請求項10のいずれか1項に記載のメンブレン式散気装置。
     
    11. The plurality of second pore portions that are long in a direction inclined at an angle of 5 ° to 25 ° with respect to the first pore portion are formed in the diffuser membrane. The membrane-type air diffuser according to Item.
PCT/JP2011/052685 2011-02-09 2011-02-09 Membrane air diffuser WO2012108008A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180045608.0A CN103118991B (en) 2011-02-09 2011-02-09 Membrane air diffuser
PCT/JP2011/052685 WO2012108008A1 (en) 2011-02-09 2011-02-09 Membrane air diffuser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052685 WO2012108008A1 (en) 2011-02-09 2011-02-09 Membrane air diffuser

Publications (1)

Publication Number Publication Date
WO2012108008A1 true WO2012108008A1 (en) 2012-08-16

Family

ID=46638251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052685 WO2012108008A1 (en) 2011-02-09 2011-02-09 Membrane air diffuser

Country Status (2)

Country Link
CN (1) CN103118991B (en)
WO (1) WO2012108008A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130093106A1 (en) * 2010-06-07 2013-04-18 Invent Umwelt-Und Verfahrenstechnik Ag Device for gassing liquids
WO2023278137A1 (en) * 2021-06-30 2023-01-05 Corning Incorporated Macro-sparger for benchtop bioreactors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2018340870A1 (en) 2017-09-29 2020-04-30 Aquatec Maxcon Pty Ltd Diffuser for aeration of a fluid

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB824376A (en) * 1956-12-19 1959-11-25 Distillers Co Yeast Ltd Gas liquid contacting means
EP0385198A1 (en) * 1989-03-03 1990-09-05 Passavant-Werke Ag Device for water and waste water aeration
JPH0343400U (en) * 1989-09-01 1991-04-23
JPH0427496A (en) * 1990-05-22 1992-01-30 Fuji Electric Co Ltd Aerator of waste water treating device
JP2000185245A (en) * 1998-12-22 2000-07-04 Monobe Engineering:Kk Aerator
JP2001246394A (en) * 2000-03-06 2001-09-11 Suido Kiko Kaisha Ltd Elevation device of diffuser body in aeration tank
JP2005262140A (en) * 2004-03-19 2005-09-29 Kurita Water Ind Ltd Method and equipment for sewage disposal
JP2007000777A (en) * 2005-06-23 2007-01-11 Mitsubishi Cable Ind Ltd Porous membrane material and aeration device
JP2007117871A (en) * 2005-10-27 2007-05-17 Mitsubishi Cable Ind Ltd Porous membrane material and air diffuser
JP2007307439A (en) * 2006-05-16 2007-11-29 Kubota Corp Purifying chamber and nozzle object
JP2010104900A (en) * 2008-10-30 2010-05-13 Kubota Corp Membrane type air diffusion device
JP2010274233A (en) * 2009-06-01 2010-12-09 Kubota Corp Membrane type air diffusion apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3636274A1 (en) * 1986-10-24 1988-04-28 Jaeger Arnold Apparatus for aerating water
CN101411968B (en) * 2007-10-18 2011-06-01 康那香企业股份有限公司 Gas-spreading device for aeration system
CN101870517A (en) * 2009-04-24 2010-10-27 得利满水处理系统(北京)有限公司 Air diffuser for biological aerated filter

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB824376A (en) * 1956-12-19 1959-11-25 Distillers Co Yeast Ltd Gas liquid contacting means
EP0385198A1 (en) * 1989-03-03 1990-09-05 Passavant-Werke Ag Device for water and waste water aeration
JPH0343400U (en) * 1989-09-01 1991-04-23
JPH0427496A (en) * 1990-05-22 1992-01-30 Fuji Electric Co Ltd Aerator of waste water treating device
JP2000185245A (en) * 1998-12-22 2000-07-04 Monobe Engineering:Kk Aerator
JP2001246394A (en) * 2000-03-06 2001-09-11 Suido Kiko Kaisha Ltd Elevation device of diffuser body in aeration tank
JP2005262140A (en) * 2004-03-19 2005-09-29 Kurita Water Ind Ltd Method and equipment for sewage disposal
JP2007000777A (en) * 2005-06-23 2007-01-11 Mitsubishi Cable Ind Ltd Porous membrane material and aeration device
JP2007117871A (en) * 2005-10-27 2007-05-17 Mitsubishi Cable Ind Ltd Porous membrane material and air diffuser
JP2007307439A (en) * 2006-05-16 2007-11-29 Kubota Corp Purifying chamber and nozzle object
JP2010104900A (en) * 2008-10-30 2010-05-13 Kubota Corp Membrane type air diffusion device
JP2010274233A (en) * 2009-06-01 2010-12-09 Kubota Corp Membrane type air diffusion apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130093106A1 (en) * 2010-06-07 2013-04-18 Invent Umwelt-Und Verfahrenstechnik Ag Device for gassing liquids
US9556047B2 (en) * 2010-06-07 2017-01-31 Invent Umwelt-Und Verfahrenstechnik Ag Device for gassing liquids
WO2023278137A1 (en) * 2021-06-30 2023-01-05 Corning Incorporated Macro-sparger for benchtop bioreactors

Also Published As

Publication number Publication date
CN103118991B (en) 2015-09-23
CN103118991A (en) 2013-05-22

Similar Documents

Publication Publication Date Title
US7044453B2 (en) Membrane diffuser with uniform gas distribution
JP4140584B2 (en) Air diffuser
JP4959667B2 (en) Hull frictional resistance reduction device
JP5366785B2 (en) Diffuser
JP4619316B2 (en) Gas-liquid mixing device
WO2012108008A1 (en) Membrane air diffuser
US7243912B2 (en) Aeration diffuser membrane slitting pattern
JP2007307450A (en) Bubble generating device
JP5334740B2 (en) Membrane diffuser
JP5334741B2 (en) Membrane diffuser
JP5562020B2 (en) Membrane diffuser
US8888074B2 (en) Membrane for air diffuser
JP6689921B2 (en) Air diffuser
CN203269665U (en) Rotational flow aerator
JP5557949B2 (en) Membrane diffuser
JP2012170946A (en) Air diffusion cylinder, and aerobic tank provided therewith
WO2021060417A1 (en) Air diffuser
WO2014061758A1 (en) Air-diffusing elastic material, air diffuser provided with said air-diffusing elastic material, and method for diffusing air using said air diffuser
JP2009202139A (en) Gas diffuser member
TW202108235A (en) Device for aerating bodies of water
TWI832932B (en) Device for aerating bodies of water
JP2013226525A (en) Membrane for air diffusion device
JP6695107B2 (en) Floating device and method of manufacturing a levitating device
JP3207607U (en) Rectifier
CN104667771B (en) Diaphragm type air dispersing device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045608.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP