WO2012106917A1 - 光器件滤波带宽的调整方法及装置 - Google Patents

光器件滤波带宽的调整方法及装置 Download PDF

Info

Publication number
WO2012106917A1
WO2012106917A1 PCT/CN2011/077488 CN2011077488W WO2012106917A1 WO 2012106917 A1 WO2012106917 A1 WO 2012106917A1 CN 2011077488 W CN2011077488 W CN 2011077488W WO 2012106917 A1 WO2012106917 A1 WO 2012106917A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
wavelength channel
bandwidth
optical
modulation bandwidth
Prior art date
Application number
PCT/CN2011/077488
Other languages
English (en)
French (fr)
Inventor
邓宁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/077488 priority Critical patent/WO2012106917A1/zh
Priority to EP11858321.0A priority patent/EP2579479B1/en
Priority to CN201180001313.3A priority patent/CN102439994B/zh
Publication of WO2012106917A1 publication Critical patent/WO2012106917A1/zh
Priority to US13/793,928 priority patent/US8989594B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant

Definitions

  • Embodiments of the present invention relate to the field of optical communication networks, and in particular, to a method and an apparatus for adjusting a filter bandwidth of an optical device. Background technique
  • WDM optical devices In Wavelength Division Multiplexing (WDM) optical networks, a large number of optical devices that combine, decompose, or cross-connect multiple wavelength channels in various ways, that is, WDM optical devices, such as: wavelength selective optical switches ( Wavelength Selective Switch, WSS), Optical Cross-Connect (OXC), Multiplexer (MUX), Demultiplexer (DEMUX), Optical Add/Drop Multiplexer (OADM, Optical) Add-Drop Multiplexer), Reconfigurable Optical Add-Drop Multiplexer (RO ADM).
  • WDM optical devices each having a plurality of wavelength channels have the same channel spacing, and the filtering bandwidth of each of the wavelength channels is fixed.
  • the wavelength channels of these WDM optical devices need to transmit different rates (such as 10Gb/s, 40Gb/s, 100Gb/s, etc.) and different modulation patterns (such as On-Off Keying (On-Off Keying).
  • different rates such as 10Gb/s, 40Gb/s, 100Gb/s, etc.
  • different modulation patterns such as On-Off Keying (On-Off Keying).
  • OOK Optical Duo-Binary
  • DPSK Differential Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • PDM Polarization Division Multiplexing
  • QPSK Quadrature Phase Shift Keying
  • QAM Quadrature Amplitude Modulation
  • Embodiments of the present invention provide a method and an apparatus for adjusting a filter bandwidth of an optical device, which can adjust a filter bandwidth of a wavelength channel of an optical device.
  • the embodiments of the present invention provide:
  • a method for adjusting a filter bandwidth of an optical device comprising:
  • the first optical signal is an optical signal input to the first wavelength channel in the optical device; and the second optical signal is input to the optical device
  • An apparatus for adjusting a filter bandwidth of an optical device comprising:
  • a modulation bandwidth acquisition unit configured to acquire a modulation bandwidth of the first optical signal and a modulation bandwidth of the second optical signal, where the first optical signal is an optical signal input to the first wavelength channel of the optical device;
  • the optical signal is an optical signal input to a second wavelength channel in the optical device; the second wavelength channel is adjacent to the first wavelength channel;
  • a first comparing unit configured to compare a modulation bandwidth of the first optical signal with a modulation bandwidth of the second optical signal
  • an adjusting unit configured to adjust a filtering bandwidth of at least one of the first wavelength channel and the second wavelength channel according to a comparison result between the modulation bandwidth of the first optical signal and the modulation bandwidth of the second optical signal. Width, and according to the comparison result, adjusting the filtering bandwidth of at least one wavelength channel in the adjacent wavelength channel, so that the filtering bandwidth of the wavelength channel in the optical device can be dynamically adjusted based on the modulation bandwidth of the received optical signal
  • FIG. 1 is a flowchart of a method for adjusting a filter bandwidth of an optical device according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for adjusting a filter bandwidth of an optical device according to another embodiment of the present invention
  • FIG. 4 is a flowchart of a method for adjusting a filter bandwidth of an optical device according to another embodiment of the present invention
  • FIG. 5 is a structural diagram of an apparatus for adjusting a filter bandwidth of an optical device according to an embodiment of the present invention. detailed description
  • the following embodiments of the present invention provide a method and a device for adjusting a filter bandwidth of an optical device, which can adjust filtering of at least one wavelength channel in an adjacent wavelength channel by comparing modulation bandwidths of optical signals received by adjacent wavelength channels of the optical device.
  • the bandwidth allows the filtering bandwidth of the optical device to be dynamically adjusted based on the modulation bandwidth of the input signal.
  • an embodiment of the present invention provides a method for adjusting a filter bandwidth of an optical device, where the method includes:
  • the steps of the embodiment of the present invention are performed by the WDM network control device.
  • the optical device in the embodiment of the present invention is an optical device having a plurality of wavelength channels, which may be a WDM optical device.
  • the WDM optical device in the embodiment of the present invention has the same channel spacing, for example, the channel spacing is 50 GHz or 100 GHz.
  • Obtaining the modulation bandwidth of the first optical signal and the modulation bandwidth of the second optical signal may be specifically as follows:
  • the first mode is: acquiring information of the first optical signal and information of the second optical signal from the WDM network management device, where the information of the first optical signal includes: a baud rate, a bit rate, and a modulation pattern of the first optical signal And the information of the second optical signal includes: a baud rate, a bit rate, a modulation pattern, and the like of the second optical signal; and then calculating a modulation bandwidth of the first optical signal according to the obtained information of the first optical signal; The information of the two optical signals calculates the modulation bandwidth of the second optical signal.
  • the second method is: acquiring, by the WDM network management device, a modulation bandwidth of the first optical signal and a modulation bandwidth of the second optical signal.
  • the WDM network management device calculates the first optical signal according to the information of the first optical signal. And modulating the bandwidth, calculating a modulation bandwidth of the second optical signal according to the information of the second optical signal, and then transmitting the modulation bandwidth of the first optical signal and the modulation bandwidth of the second optical signal to the WDM network control device.
  • Adjusting a filter bandwidth of at least one of the first wavelength channel and the second wavelength channel is adjusted.
  • the filtering bandwidth of the first wavelength channel and the second wavelength channel may be adjusted, or the non-3dB filtering bandwidth of the first wavelength channel and/or the second wavelength channel may be adjusted, for example, a filtering bandwidth of 0.5 dB, if
  • the filter bandwidth is increased, which is equivalent to flattening the top of the filtered waveform. If the filter bandwidth is reduced, it is equivalent to steepening the top of the filtered waveform. If the 3dB filtering bandwidth of the first wavelength channel and the second wavelength channel is adjusted, the bandwidth of one wavelength channel of the first wavelength channel and the second wavelength channel is increased, and the bandwidth of the other wavelength channel is adjusted to be small.
  • the adjusting the filtering bandwidth of the first wavelength channel and the second wavelength channel may be: the WDM network control device outputs an electrical signal indicating that the filtering bandwidth of the at least one wavelength channel of the first wavelength channel and the second wavelength channel is adjusted to the WDM optical device.
  • the interface, the WDM optical device adjusts the filtering bandwidth of the first wavelength channel and/or the second wavelength channel according to the electrical signal.
  • the comparison between the modulation bandwidth of the first optical signal and the modulation bandwidth of the second optical signal, and the transmission performance requirement of the first optical signal and the transmission performance requirement of the second optical signal may be specifically determined.
  • the filtering bandwidth of the at least one of the first wavelength channel and the second wavelength channel is adjusted; wherein the transmission performance requirement of the first optical signal includes: the transmission required to be achieved after the first optical signal is output through the first wavelength channel a distance (ie, a distance requirement that the first optical signal needs to be transmitted after being output through the first wavelength channel), and a required transmission span after the first optical signal is output through the first wavelength channel (ie, the first optical signal At least one of the requirements for the transmission of the first wavelength signal after the output of the first wavelength channel, and the filtering requirement of the first optical signal when the first optical signal passes through the first wavelength channel; wherein, the transmission performance requirement of the second optical signal includes: the second optical signal The required transmission distance after the output of the second wavelength channel (ie, the distance that the second optical signal needs to
  • adjusting the first wavelength channel according to a comparison result of a modulation bandwidth of the first optical signal and a modulation bandwidth of the second optical signal, and a comparison between a transmission performance requirement of the first optical signal and a transmission performance requirement of the second optical signal The filtering bandwidth of at least one of the wavelength channels and the second wavelength channel is described in detail in the subsequent embodiments.
  • the filtered bandwidth of the adjusted first wavelength channel and the filtered bandwidth of the second wavelength channel can maximize or exceed the total performance index y of the first wavelength channel and the second wavelength channel.
  • B 2 is a first optical signal and a second optical signal, respectively
  • the bit rate is the transmission distance that can be achieved after the first optical signal is outputted by the adjusted first wavelength channel
  • L 2 is the transmission distance that can be achieved after the second optical signal is output by the adjusted second wavelength channel
  • Bi and B 2 are the bit rates of the first optical signal and the second optical signal, respectively; the number of transmission spans that can be achieved after the first optical signal is outputted by the adjusted first wavelength channel, L 2 The transmission span that can be achieved after the second optical signal is outputted by the adjusted second wavelength channel
  • BPB 2 is the first baud rate of the first optical signal and the second optical signal, respectively.
  • L 2 is the transmission distance that can be achieved after the second optical signal of the second optical signal is outputted.
  • B 2 respectively baud first optical signal and second optical signal; a first light After transmission of the output can reach a first wavelength channel numbers across the adjusted number, L 2 is the number of transmission spans that can be achieved after the second optical signal of the second optical signal is output.
  • the adjusted filtering bandwidth of the first wavelength channel and the filtering bandwidth of the second wavelength channel can maximize or exceed a total performance index y of the first wavelength channel and the second wavelength channel, which is equivalent to including the first wavelength
  • the optical network of the channel and the second wavelength channel as a whole improves the overall performance of the network.
  • the embodiment of the present invention compares the modulation bandwidth of the optical signal received by the adjacent wavelength channel of the optical device, and adjusts the filtering bandwidth of at least one wavelength channel in the adjacent wavelength channel according to the comparison result, so as to filter the bandwidth of the wavelength channel in the optical device.
  • the dynamic adjustment can be based on the modulation bandwidth of the received optical signal.
  • FIG. 2 is a schematic diagram of a method for adjusting a filter bandwidth of an optical device according to an embodiment of the present invention, in which a modulation bandwidth of a first optical signal input by a first wavelength channel in a WDM optical device is second and a second in a WDM optical device The modulation bandwidth of the second optical signal input by the wavelength channel is the same.
  • the method specifically includes:
  • the WDM network control device acquires a modulation bandwidth of the first optical signal input by the first wavelength channel and a modulation bandwidth of the second optical signal input by the second wavelength channel.
  • the second wavelength channel is adjacent to the first wavelength channel.
  • the WDM network control device acquires the signal information of the WDM optical device from the WDM network management device, and includes: information of the first optical signal and information of the second optical signal, where the information of the first optical signal includes: the first light The baud rate, the bit rate, the modulation pattern, and the like of the signal; the information of the second optical signal includes: a baud rate, a bit rate, and a modulation pattern of the second optical signal. And calculating a modulation bandwidth of the first optical signal according to the obtained information of the first optical signal; and calculating a modulation bandwidth of the second optical signal according to the obtained information of the second optical signal.
  • the WDM network control device compares a modulation bandwidth of the first optical signal with a tone of the second optical signal. Bandwidth.
  • the WDM network control device compares the transmission performance requirement of the first optical signal with the transmission performance requirement of the second optical signal.
  • the filtering bandwidth of one wavelength channel reduces the filtering bandwidth of the second wavelength channel, and maximizes the total performance index y of the adjusted first wavelength channel and the second wavelength channel.
  • the WDM network control device controls the optical device to improve the filtering bandwidth of the first wavelength channel, and reduces the filtering bandwidth of the second wavelength channel.
  • the WDM network control device outputs an electrical signal indicating the adjustment of the filtering bandwidth to the interface of the WDM optical device.
  • the electrical signal indicating the adjustment of the filtering bandwidth indicates that the filtering bandwidth of the first wavelength channel is increased, and the filtering bandwidth of the second wavelength channel is decreased; and the WDM optical device adjusts the filtering bandwidth of the first wavelength channel and the second wavelength channel according to the electrical signal.
  • the transmission performance requirement of the first optical signal in step 203 includes: a transmission distance that is required after the first optical signal is output through the first wavelength channel; and the transmission performance requirement of the second optical signal includes: the second optical signal passes through the second wavelength
  • the transmission distance required after the channel is outputted, the transmission performance requirement of the first optical signal in step 204 is higher than the transmission performance requirement of the second optical signal: the transmission distance required by the first optical signal after being output through the first wavelength channel is greater than The transmission distance required for the second optical signal to be output after being output through the second wavelength channel; or, the transmission performance requirement of the first optical signal in step 203 includes: a transmission span number required after the first optical signal is output through the first wavelength channel,
  • the transmission performance requirement of the two optical signals includes: a transmission span number required after the second optical signal is output through the second wavelength channel, and the transmission performance requirement of the first optical signal in step 204 is higher than the transmission performance requirement of the second optical signal: After the first optical signal is output through the first wavelength channel, the required transmission span is greater than the second optical
  • the transmission performance requirement of the first optical signal in step 203 includes: a filter impairment requirement when the first optical signal passes through the first wavelength channel, and a transmission performance requirement of the second optical signal includes: The filtering damage requirement of the signal passing through the second wavelength channel is required.
  • the transmission performance requirement of the first optical signal in step 204 is higher than the transmission performance requirement of the second optical signal: the filtering damage of the first optical signal when passing through the first wavelength channel is less than Filtering damage when the two optical signals pass through the second wavelength channel.
  • a description will be made as follows: It is assumed that in a WDM optical device with a channel spacing of 50 GHz, a first wavelength channel inputs an optical signal P, and a second wavelength channel inputs an optical signal Q, wherein The optical signal P and the optical signal Q are optical signals each having a bit rate of 100 Gb/s and a modulation pattern of PDM-QPSK.
  • Adjusting the filtering bandwidth of the first wavelength channel and the second wavelength channel before the transmission of the optical signals P and Q is six spans, wherein the first optical signal transmission performance requirement is: after the optical signal P passes through the first wavelength channel It is required to transmit 8 spans, and the second optical signal transmission performance requirement is as follows: After the optical signal Q passes through the second wavelength channel, it is required to transmit 3 spans.
  • the filtering bandwidth of the first wavelength channel and the second wavelength channel is not adjustable, in order to meet the requirement that the optical signal P transmits 8 spans after passing through the first wavelength channel, a repeater needs to be configured, which increases the cost. And power consumption.
  • the filtering bandwidth of the first wavelength channel is slightly increased, so that the optical signal P passes through the first wavelength channel and reaches the requirement of transmitting eight spans. Accordingly, the second wavelength is decreased.
  • the filtering bandwidth of the channel is such that the optical signal Q can reach the requirement of transmitting three spans after passing through the second wavelength channel.
  • the filtering bandwidth of the second wavelength channel is reduced and
  • the increase of the filter bandwidth of a wavelength channel needs to be calculated based on the total performance index y of the first wavelength channel and the second wavelength channel, that is, the transmission cross of the budget optical signal Q after the output of the second wavelength channel after the filter bandwidth is reduced.
  • the transmission span of the optical signal Q after the output of the second wavelength channel after the filter bandwidth is reduced is a function of the filtered bandwidth of the second wavelength channel, and the first wavelength channel of the optical signal P after the filter bandwidth is increased.
  • the output transmission span is a function of the filtered bandwidth of the first wavelength channel; or, that is, the transmission distance of the budget optical signal Q after the output of the second wavelength channel after the filter bandwidth is reduced
  • the product of the bit rate of the optical signal Q, the transmission distance of the budget optical signal P after the output of the first wavelength channel after the increase of the filter bandwidth, and the bit rate of the optical signal P a product that maximizes the sum of the two products, wherein the transmission distance of the optical signal Q after the output of the second wavelength channel after the filter bandwidth is reduced is a function of the filtered bandwidth of the second wavelength channel, and the optical signal P is in the filtering bandwidth.
  • the transmission distance after the increased output of the first wavelength channel is a function of the filtered bandwidth of the first wavelength channel.
  • the embodiment of the present invention compares the modulation bandwidth of the first optical signal input by the first wavelength channel and the modulation bandwidth of the second optical signal input by the second wavelength channel in the WDM optical device, and compares the first optical signal and the second optical signal.
  • the transmission performance requirement is that the modulation bandwidth of the optical signal input in the adjacent wavelength channel (ie, the first wavelength channel and the second wavelength channel) is the same, and the transmission performance requirement of the first optical signal is higher than that of the second optical signal.
  • the WDM optical device is controlled to increase the filtering bandwidth of the first wavelength channel, and reduce the filtering bandwidth of the second wavelength channel, so that the filtering bandwidth of the wavelength channel in the optical device can be dynamically adjusted based on the modulation bandwidth of the received optical signal; Since the total performance index y of the adjusted first wavelength channel and the second wavelength channel is the largest, the overall performance of the optical network including the first wavelength channel and the second wavelength channel can be improved.
  • FIG. 3 is a diagram showing another method for adjusting a filter bandwidth of an optical device according to an embodiment of the present invention.
  • a modulation bandwidth of a first optical signal input by a first wavelength channel in a WDM optical device is greater than that of a second wavelength channel.
  • the modulation bandwidth of the input second optical signal specifically includes:
  • the WDM network control device acquires a modulation bandwidth of the first optical signal input by the first wavelength channel and a modulation bandwidth of the second optical signal input by the second wavelength channel.
  • the second wavelength channel is adjacent to the first wavelength channel.
  • the WDM network control device acquires the signal information of the WDM optical device from the WDM network management device, and includes: information of the first optical signal and information of the second optical signal, where the information of the first optical signal includes: the first light The baud rate, the bit rate, the modulation pattern, and the like of the signal; the information of the second optical signal includes: a baud rate, a bit rate, and a modulation pattern of the second optical signal. And calculating a modulation bandwidth of the first optical signal according to the obtained information of the first optical signal; and calculating a modulation bandwidth of the second optical signal according to the obtained information of the second optical signal.
  • the WDM network control device compares a modulation bandwidth of the first optical signal with a modulation bandwidth of the second optical signal.
  • the WDM network control device compares a modulation bandwidth of the first optical signal with a filtering bandwidth of the first wavelength channel, and compares a modulation bandwidth of the second optical signal with a filtering bandwidth of the second wavelength channel. 304. The WDM network control device compares the transmission performance requirement of the first optical signal with the transmission performance requirement of the second optical signal.
  • the comparison result of step 302 is that the modulation bandwidth of the first optical signal is greater than the modulation bandwidth of the second optical signal
  • the comparison result of step 303 is that the modulation bandwidth of the first optical signal is greater than the filtering bandwidth of the first wavelength channel.
  • the modulation bandwidth of the second optical signal is smaller than the filtering bandwidth of the second wavelength channel
  • the comparison result of step 304 is that the transmission performance requirement of the first optical signal is higher than the transmission performance requirement of the second optical signal
  • the WDM network control device controls the WDM optical device.
  • the filter bandwidth of the second wavelength channel is reduced, so that the bandwidth of the reduced second wavelength channel can meet the transmission performance requirement of the second optical signal; and the WDM optical device controls the filtering bandwidth of the first wavelength channel, wherein the The increase in the filter bandwidth of a wavelength channel is less than or equal to the decrease in the filter bandwidth of the second wavelength channel.
  • the comparison result of step 302 is that the modulation bandwidth of the first optical signal is greater than the modulation bandwidth of the second optical signal
  • the comparison result of step 303 is that the modulation bandwidth of the first optical signal is greater than the filtering bandwidth of the first wavelength channel
  • the modulation bandwidth of the second optical signal is greater than the filtering bandwidth of the second wavelength channel
  • the comparison result of step 304 is that the transmission performance requirement of the first optical signal is higher than the transmission performance requirement of the second optical signal
  • the WDM network control device controls the WDM optical device.
  • the filtering bandwidth of the first wavelength channel is increased, the filtering bandwidth of the second wavelength channel is reduced, and the total performance index y of the first wavelength channel and the second wavelength channel is maximized.
  • the transmission performance requirement of the first optical signal and the transmission performance requirement of the second optical signal in the embodiment are similar to the transmission performance requirements of the first optical signal and the transmission performance requirement of the second optical signal in the previous embodiment. This will not be repeated here.
  • ⁇ A x Li where i is from 1 to 2, and is assumed in the embodiment of the present invention
  • an example is described as follows: It is assumed that in a WDM optical device with a channel spacing of 50 GHz, a first wavelength channel input optical signal P and a second wavelength channel input optical signal Q, wherein , the optical signal P is a bit rate of 100 Gb/s, modulation
  • the image is a PDM-QPSK optical signal.
  • the optical signal P has a 3dB modulation bandwidth of 36 GHz
  • the optical signal Q is an optical signal with a bit rate of 10 Gb/s and a modulation pattern of OOK.
  • the 3dB modulation bandwidth of Q is 14GHz
  • the filtering bandwidth of the first wavelength channel and the second wavelength channel are both 20GHz. If the transmission performance requirement of the first optical signal is higher than the transmission performance requirement of the second optical signal, for example, the optical signal P is required to transmit 10 spans after being output through the first wavelength channel, and the optical signal Q is required to be output through the second wavelength channel.
  • the filter bandwidth of the first wavelength channel can be increased from 20 GHz to 30 GHz, and the filter bandwidth of the second wavelength channel can be reduced from 20 G to 15 GHz, because the filtered bandwidth of the reduced second wavelength channel is still
  • the modulation bandwidth of the optical signal Q is greater than 14 GHz. Therefore, the bandwidth adjustment method does not cause filtering damage when the optical signal Q passes through the second wavelength channel, but can effectively reduce the filtering damage when the optical signal P passes through the first wavelength channel.
  • the optical signal P has a bit rate of 100 Gb/s and a modulation pattern of PDM-QPSK
  • the 3dB modulation bandwidth of the optical signal P is about 36 GHz
  • the optical signal Q is an optical signal with a bit rate of 40 Gb/s and a modulation pattern of QPSK.
  • the 3 dB modulation bandwidth of the optical signal Q It is about 30 GHz
  • the filtering bandwidth of the first wavelength channel and the second wavelength channel is 20 GHz.
  • the filtering bandwidth of the first wavelength channel can be increased from 20 GHz to 22 GHz, and the filtering bandwidth of the second wavelength channel can be reduced from 20 G to 18 GHz, because the filtering bandwidth of the reduced second wavelength channel is smaller than the modulation bandwidth of the optical signal Q of 30 GHz, However, this maximizes the overall performance index y of the first wavelength channel and the second wavelength channel, improving the overall performance of the optical network including the first wavelength channel and the second wavelength channel.
  • the embodiment of the present invention compares the modulation bandwidth of the first optical signal input by the first wavelength channel and the modulation bandwidth of the second optical signal input by the second wavelength channel in the WDM optical device, and compares the first optical signal and the second optical signal.
  • the transmission performance requirement is that when the modulation bandwidth of the first optical signal is greater than the modulation bandwidth of the second optical signal, and the transmission performance requirement of the first optical signal is higher than the transmission performance requirement of the second optical signal, controlling the WDM optical device improves the first
  • the filtering bandwidth of the wavelength channel reduces the filtering bandwidth of the second wavelength channel, so that the filtering bandwidth of the wavelength channel in the optical device can be dynamically adjusted based on the modulation bandwidth of the received optical signal; further, due to the adjusted first wavelength channel and the second The total performance index of the wavelength channel y Maximum, the overall performance of the optical network comprising the first wavelength channel and the second wavelength channel is improved.
  • FIG. 4 is a diagram showing another method for adjusting the filtering bandwidth of an optical device according to an embodiment of the present invention.
  • the first wavelength channel of the WDM optical device has optical signal transmission
  • the second wavelength channel of the WDM optical device has no light.
  • the method specifically includes:
  • the WDM network control device acquires a modulation bandwidth of the first optical signal input to the first wavelength channel of the WDM optical device, and determines that no optical signal is input in the second wavelength channel of the WDM optical device.
  • the first wavelength channel is adjacent to the second wavelength channel.
  • the WDM network control device acquires the signal information of the WDM optical device from the WDM network management device, and includes: information about the first optical signal, where the WDM network control device calculates the modulation of the first optical signal according to the acquired information of the first optical signal. Bandwidth, obtained by the WDM network control device
  • the signal information of the WDM optical device has no information of the optical signal input to the second wavelength channel in the WDM optical device, and thus it is determined that there is no optical signal input in the second wavelength channel in the WDM optical device.
  • the information of the first optical signal includes: a baud rate, a bit rate, and a modulation pattern of the first optical signal, and the WDM network control device calculates a modulation bandwidth of the first optical signal according to the obtained information of the first optical signal.
  • the WDM network control device acquires a transmission performance requirement of the first optical signal.
  • the transmission performance requirement of the first optical signal includes: a cross-number requirement that the first optical signal needs to be transmitted after being output through the first wavelength channel, for example, the first optical signal needs to be transmitted after being output through the first wavelength channel. 8 spans.
  • the WDM network control device compares a modulation bandwidth of the first optical signal with a filtering bandwidth of the first wavelength channel.
  • step 403 When the comparison result of step 403 is that the modulation bandwidth of the first optical signal is greater than the filtering bandwidth of the first wavelength channel, the WDM network control device controls the WDM optical device to increase the filtering bandwidth of the first wavelength channel, so that the first optical signal passes through the first.
  • the filtered bandwidth of the increased first wavelength channel cannot exceed the third wavelength channel adjacent to the second wavelength channel.
  • the optical signal P needs to transmit 12 spans after being output through the first wavelength channel. If the current filtering bandwidth of the first wavelength channel of the WDM optical device is 20 GHz (the filtering bandwidth of the filtering bandwidth is 3 dB in this example), the optical signal P can only transmit 9 spans after being output through the first wavelength channel.
  • the filtering bandwidth of the first wavelength channel can be adjusted without considering the influence on the second wavelength channel.
  • the optical signal P can be transmitted through the first wavelength channel and can transmit 12 spans, for example, the filtering bandwidth of the first wavelength channel is adjusted from 20 GHz to 28 GHz, so that the optical signal P can be transmitted after being modulated by the adjusted first wavelength channel.
  • the filtering bandwidth of the wavelength channel with the optical signal input can be adjusted, so that the optical signal can be transmitted by using the adjusted filtering bandwidth to meet the transmission performance requirement of the optical signal.
  • the adjustment result of the filtering bandwidth of the first wavelength channel in the step 404 of the foregoing embodiment can meet the transmission performance requirement of the first optical signal, and can be implemented in a simulation manner, for example, the current filtering bandwidth of the first wavelength channel is first The initial bandwidth, and then the filtering bandwidth of the first wavelength channel is increased by ⁇ , whether the filtering bandwidth of the first wavelength channel can meet the transmission performance requirement of the first optical signal, and if not, the first wavelength channel is The filter bandwidth is increased by ⁇ , and the stepwise adjustment is performed in this manner until the transmission performance requirement of the first optical signal is satisfied.
  • the bandwidth of the reduced second wavelength channel in step 305 can meet the transmission performance requirement of the second optical signal.
  • the current filtering bandwidth of the second wavelength channel is used as the initial bandwidth.
  • the filtering bandwidth of the second wavelength channel is decreased by ⁇ , and whether the filtering bandwidth of the second wavelength channel can meet the transmission performance requirement of the second optical signal, and if so, the filtering bandwidth of the second wavelength channel is reduced.
  • until the transmission performance requirement of the second optical signal cannot be satisfied, and then the filtering bandwidth of the last adjusted second wavelength channel is increased by ⁇ , and the bandwidth at this time is the most suitable bandwidth of the second wavelength channel, which can ensure
  • the performance requirements of the second optical signal provide the maximum adjustment space for the bandwidth adjustment of the first wavelength channel.
  • the total performance index y of the first wavelength channel and the second wavelength channel in step 204 and step 306 can be maximized, that is, the current filtering bandwidth of the first wavelength channel is first.
  • the initial bandwidth of the wavelength channel, the current filtering bandwidth of the second wavelength channel is the initial bandwidth of the second wavelength channel, and then the filtering bandwidth of the first wavelength channel is increased by ⁇ , and the filtering bandwidth of the first wavelength channel after the budget is increased
  • the transmission distance or the transmission span of the first optical signal is decreased, the filtering bandwidth of the second wavelength channel is decreased by ⁇ , and the transmission distance or the transmission span of the second optical signal caused by the filtering bandwidth of the second wavelength channel after the budget is reduced, Sum the sum of the two; then increase the filtering bandwidth of the first wavelength channel by ⁇ , and the transmission distance or the number of transmissions of the first optical signal caused by the filtering bandwidth of the first wavelength channel after the budget increase, will be the second
  • the filtering bandwidth of the wavelength channel is reduced by ⁇ , and the transmission distance or the number of transmissions of the
  • the adjustment result of the filtering bandwidth of the first wavelength channel can satisfy the transmission performance requirement of the first optical signal, and can also be implemented in other manners, for example, based on the transmission performance requirement of the first optical signal and the modulation bandwidth of the first optical signal.
  • the information of the first optical signal acquired by the WDM network control device in the foregoing embodiments may further include: residual chromatic dispersion of the first optical signal
  • the information of the second optical signal may further include:
  • the residual dispersion of the signal may specifically compensate for the residual dispersion of the optical signal input by the wavelength channel by increasing or decreasing the dispersion of the corresponding wavelength channel. For example, if the residual signal of the optical signal input from a wavelength channel is 30 ps/nm, the dispersion of the wavelength channel of the WDM optical device can be reduced from 5 ps/nm (assuming 5 ps/nm before adjustment) to -30 ps.
  • the dispersion can be from 5 ps. /nm (assuming 5 ps/nm before adjustment) is increased to +35 ps/nm to compensate for the residual dispersion of the optical signal input to the channel to some extent.
  • the technical solution provided by the foregoing embodiment is applicable not only to WDM light of two wavelength channels.
  • the device is also suitable for WDM optical devices with multiple wavelength channels.
  • an embodiment of the present invention provides a device for adjusting a filter bandwidth of an optical device.
  • the device for adjusting a filter bandwidth of the optical device may be a WDM network control device, and includes:
  • the modulation bandwidth acquisition unit 10 is configured to acquire a modulation bandwidth of the first optical signal and a modulation bandwidth of the second optical signal, where the first optical signal is an optical signal input to the first wavelength channel of the optical device;
  • the second optical signal is an optical signal input to the second wavelength channel of the optical device; the second wavelength channel is adjacent to the first wavelength channel; wherein the channel spacing of the optical device may be the same, for example, the channel spacing is 50 GHz or 100 GHz .
  • a first comparing unit 20 configured to compare a modulation bandwidth of the first optical signal with a modulation bandwidth of the second optical signal
  • the adjusting unit 30 is configured to adjust a filter bandwidth of at least one of the first wavelength channel and the second wavelength channel according to a comparison result between the modulation bandwidth of the first optical signal and the modulation bandwidth of the second optical signal.
  • the apparatus further includes: a second comparison unit 40, configured to compare the transmission performance requirement of the first optical signal with the second
  • the transmission performance requirement of the optical signal is: the adjusting unit 30 is configured to adjust a filtering bandwidth of at least one of the first wavelength channel and the second wavelength channel according to the comparison result of the first comparison unit and the comparison result of the second comparison unit.
  • the transmission performance requirement of the first optical signal and the transmission performance requirement of the second optical signal in the embodiment are similar to the transmission performance requirement of the first optical signal and the transmission performance requirement of the second optical signal in the method embodiment, where No longer.
  • the adjusting unit 30 is specifically configured to: when the comparison result of the first comparing unit is that the modulation bandwidth of the first optical signal is the same as the modulation bandwidth of the second optical signal, and the comparison result of the second comparing unit is the first When the transmission performance requirement of the optical signal is higher than the transmission performance requirement of the second optical signal, the control optical device increases the filtering bandwidth of the first wavelength channel and reduces the filtering bandwidth of the second wavelength channel.
  • the adjusting unit 30 is specifically configured to: when the comparison result of the first comparing unit is that the modulation bandwidth of the first optical signal is greater than the modulation bandwidth of the second optical signal, and the comparison result of the second comparing unit is the first When the transmission performance requirement of the optical signal is higher than the transmission performance requirement of the second optical signal, the control optical device increases the filtering bandwidth of the first wavelength channel and reduces the filtering bandwidth of the second wavelength channel.
  • the channel spacing of the optical device is the same; the modulation bandwidth of the first optical signal is greater than the filtering band of the first wavelength channel Width, and the modulation bandwidth of the second optical signal is smaller than the filtering bandwidth of the second wavelength channel; or, the channel spacing of the optical device is the same, the modulation bandwidth of the first optical signal is greater than the modulation bandwidth of the second optical signal, and the second light The modulation bandwidth of the signal is greater than the filtering bandwidth of the second wavelength channel.
  • the bit rate or baud rate of the second optical signal is the transmission distance that can be achieved after the first optical signal is outputted by the adjusted first wavelength channel, and L 2 is the adjusted second wavelength channel output of the second optical signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光器件滤波带宽的调整方法,包括:获取第一光信号的调制带宽和第二光信号的调制带宽,其中,所述第一光信号是输入到光器件中第一波长通道的光信号;所述第二光信号是输入到光器件中第二波长通道的光信号;所述第二波长通道与所述第一波长通道相邻;比较第一光信号的调制带宽和第二光信号的调制带宽;根据第一光信号的调制带宽和第二光信号的调制带宽的比较结果,调整第一波长通道和第二波长通道中至少一个波长通道的滤波带宽。本发明提供的技术方案能够对光器件的波长通道的滤波带宽进行调整。

Description

光器件滤波带宽的调整方法及装置
技术领域
本发明实施例涉及光通信网络领域,尤其涉及一种光器件滤波带宽的调整 方法及装置。 背景技术
在波分复用 ( Wavelength Division Multiplexing, WDM )光网络中, 需要 使用大量的以各种方式合并、 分解或交叉互联多个波长通道的光器件, 即 WDM光器件, 例如: 波长选择光开关(Wavelength Selective Switch, WSS )、 光交叉连接(Optical Cross-Connect, OXC )、波长复用器( Multiplexer, MUX ), 波长解复用器 (Demultiplexer, DEMUX )、 光分插复用器 ( OADM, Optical Add-Drop Multiplexer ),可重配光分插复用器( RO ADM, Reconfigurable Optical Add-Drop Multiplexer )。 然而, 上述各具有多个波长通道的光器件的通道间隔 都是相同的, 其每个波长通道的滤波带宽是固定的。
现有技术具有如下缺点:
随着技术发展,这些 WDM光器件的各波长通道需要传输不同速率(比如 10Gb/s、 40Gb/s、 100Gb/s等)、 不同调制码型 (比如二进制启闭键控( On-Off Keying, OOK )、 光双二进制调制 ( Optical Duo-Binary, ODB )、 差分移相键控 ( Differential Phase Shift Keying, DPSK ),正交相移键控( Quadrature Phase Shift Keying, QPSK )、 偏振模复用 ( Polarization Division Multiplexing, PDM ) -正交 相移键控 ( Quadrature Phase Shift Keying, QPSK )、 正交幅度调制 (QAM, Quadrature Amplitude Modulation )的光信号, 不同速率、 不同调制码型的光信 号的调制带宽也不同,但是现有技术中,具有 WDM光器件的滤波带宽不能基 于输入信号的调制带宽进行动态调节。 发明内容
本发明实施例提供一种光器件滤波带宽的调整方法及装置,能够对光器件 的波长通道的滤波带宽进行调整。 有鉴于此, 本发明实施例提供:
一种光器件滤波带宽的调整方法, 包括:
获取第一光信号的调制带宽和第二光信号的调制带宽, 其中, 所述第一光 信号是输入到光器件中第一波长通道的光信号;所述第二光信号是输入到光器 件中第二波长通道的光信号; 所述第二波长通道与所述第一波长通道相邻; 比较第一光信号的调制带宽和第二光信号的调制带宽;
根据第一光信号的调制带宽和第二光信号的调制带宽的比较结果,调整第 一波长通道和第二波长通道中至少一个波长通道的滤波带宽。
一种光器件滤波带宽的调整装置, 包括:
调制带宽获取单元,用于获取第一光信号的调制带宽和第二光信号的调制 带宽, 其中, 所述第一光信号是输入到光器件中第一波长通道的光信号; 所述 第二光信号是输入到光器件中第二波长通道的光信号;所述第二波长通道与所 述第一波长通道相邻;
第一比较单元, 用于比较第一光信号的调制带宽和第二光信号的调制带 宽;
调整单元,用于根据第一光信号的调制带宽和第二光信号的调制带宽的比 较结果, 调整第一波长通道和第二波长通道中至少一个波长通道的滤波带宽。 宽, 并根据比较结果, 调整相邻的波长通道中至少一个波长通道的滤波带宽, 使光器件中波长通道的滤波带宽能基于所接收光信号的调制带宽进行动态调
附图说明
图 1是本发明一实施例提供的光器件滤波带宽的调整方法流程图; 图 2是本发明另一实施例提供的光器件滤波带宽的调整方法流程图 图 3是本发明又一实施例提供的光器件滤波带宽的调整方法流程图 图 4是本发明又一实施例提供的光器件滤波带宽的调整方法流程图 图 5是本发明实施例提供的光器件滤波带宽的调整装置的结构图。 具体实施方式
本发明如下实施例提供一种光器件滤波带宽的调整方法及装置,能够通过 比较光器件相邻的波长通道所接收的光信号的调制带宽,调整相邻的波长通道 中至少一个波长通道的滤波带宽,使光器件的滤波带宽能基于输入信号的调制 带宽进行动态调节。
参阅图 1 , 本发明实施例提供一种光器件滤波带宽的调整方法, 该方法包 括:
101、 获取第一光信号的调制带宽和第二光信号的调制带宽, 其中, 所述 第一光信号是输入到光器件中第一波长通道的光信号;所述第二光信号是输入 到光器件中第二波长通道的光信号;所述第二波长通道与所述第一波长通道相 邻。
其中, 本发明实施例的各步骤由 WDM网络控制设备执行。
其中, 本发明实施例中的光器件为具有多个波长通道的光器件, 其可以是 WDM光器件。 其中, 本发明实施例中的 WDM光器件的通道间隔相同, 比如 通道间隔为 50GHz或者 100GHz。
获取第一光信号的调制带宽和第二光信号的调制带宽具体可以采用如下 方式:
第一种方式:从 WDM网络管理设备获取第一光信号的信息和第二光信号 的信息, 其中, 第一光信号的信息包括: 第一光信号的波特率、 比特率和调制 码型等;第二光信号的信息包括:第二光信号的波特率、比特率和调制码型等; 然后根据获取的第一光信号的信息计算第一光信号的调制带宽;根据获取的第 二光信号的信息计算第二光信号的调制带宽。
第二种方式:从 WDM网络管理设备获取第一光信号的调制带宽和第二光 信号的调制带宽,这种情况下,是 WDM网络管理设备根据第一光信号的信息 计算第一光信号的调制带宽,根据第二光信号的信息计算第二光信号的调制带 宽,然后将第一光信号的调制带宽和第二光信号的调制带宽发送給 WDM网络 控制设备。
102、 比较第一光信号的调制带宽和第二光信号的调制带宽。
103、 根据第一光信号的调制带宽和第二光信号的调制带宽的比较结果, 调整第一波长通道和第二波长通道中至少一个波长通道的滤波带宽。 其中,调整第一波长通道和第二波长通道的滤波带宽。可以是调整第一波 长通道和第二波长通道的 3dB滤波带宽, 也可以是调整第一波长通道和 /或第 二波长通道的非 3dB滤波带宽, 比如 0. 5 dB滤波带宽, 此时如果该滤波带宽 调大, 相当于将滤波波形的顶部变平坦, 如果该滤波带宽调小, 相当于将滤波 波形的顶部变陡峭。 如果调整第一波长通道和第二波长通道的 3dB滤波带宽, 则第一波长通道和第二波长通道中一个波长通道的带宽调大,那么另一个波长 通道的带宽调小。
其中, 调整第一波长通道和第二波长通道的滤波带宽具体可以是: WDM 网络控制设备输出指示调整第一波长通道和第二波长通道中至少一个波长通 道的滤波带宽的电信号到 WDM光器件的接口, WDM光器件根据该电信号调 整第一波长通道和 /或第二波长通道的滤波带宽。
在一种优选实施方式中,可以具体根据第一光信号的调制带宽和第二光信 号的调制带宽的比较结果,和第一光信号的传输性能要求与第二光信号的传输 性能要求的比较结果,调整第一波长通道和第二波长通道中至少一个波长通道 的滤波带宽; 其中, 第一光信号的传输性能要求包括: 第一光信号经所述第一 波长通道输出后要求达到的传输距离(即第一光信号经所述第一波长通道输出 后需要传输的距离要求 )、 第一光信号经所述第一波长通道输出后要求达到的 传输跨数 (即第一光信号经所述第一波长通道输出后需要传输的跨数要求)、 第一光信号经过第一波长通道时的滤波损伤要求中至少一个; 其中, 第二光信 号的传输性能要求包括:第二光信号经所述第二波长通道输出后要求达到的传 输距离 (即第二光信号经所述第二波长通道输出后需要传输的距离要求)、 第 二光信号经所述第二波长通道输出后要求达到的传输跨数(即第二光信号经所 述第二波长通道输出后需要传输的跨数要求 )、 第二光信号经过第二波长通道 时的滤波损伤要求中至少一个。 比如,根据第一光信号的调制带宽和第二光信 号的调制带宽的比较结果,和第一光信号经所述第一波长通道输出后要求达到 的传输距离与第二光信号经所述第二波长通道输出后要求达到的传输距离的 比较结果, 调整第一波长通道和第二波长通道中至少一个波长通道的滤波带 宽。 或者, 根据第一光信号的调制带宽和第二光信号的调制带宽的比较结果, 和第一光信号经第一波长通道输出后要求达到的传输跨数与第二光信号经第 二波长通道输出后要求达到的传输跨数的比较结果,调整第一波长通道和第二 波长通道中至少一个波长通道的滤波带宽; 或者,根据第一光信号的调制带宽 和第二光信号的调制带宽的比较结果,和第一光信号经过第一波长通道时的滤 波损伤要求与第二光信号经过第二波长通道时的滤波损伤要求的比较结果,调 整第一波长通道和第二波长通道中至少一个波长通道的滤波带宽。 其中,如何 根据第一光信号的调制带宽和第二光信号的调制带宽的比较结果,和第一光信 号的传输性能要求与第二光信号的传输性能要求的比较结果,调整第一波长通 道和第二波长通道中至少一个波长通道的滤波带宽参见后续实施例的详细描 述。
在一种优选实施方式中,调整后的第一波长通道的滤波带宽和第二波长通 道的滤波带宽能使第一波长通道和第二波长通道的总性能指标 y 最大或者大
N
于预定值, 其中, 所述总性能指标 =∑ Χ , 其中, i从 1到 2 (即此处 N=2 ), —种方式下, 和 B2分别为第一光信号和第二光信号的比特率, 为第一光信号经调整后的第一波长通道输出后所能达到的传输距离, L2为第二 光信号经调整后的第二波长通道输出后所能达到的传输距离; 另一种方式下, Bi和 B2分别为第一光信号和第二光信号的比特率; 为第一光信号经调整后 的第一波长通道输出后所能达到的传输跨数 , L2为第二光信号经调整后的第二 波长通道输出后所能达到的传输跨数; 又一种方式下, B P B2分别为第一光 信号和第二光信号的波特率, 为第一光信号经调整后的第一波长通道输出后 所能达到的传输距离, L2为第二光信号经调整后的第二波长通道输出后所能达 到的传输距离; 又一种方式下, B2分别为第一光信号和第二光信号的波 特率; 为第一光信号经调整后的第一波长通道输出后所能达到的传输跨数, L2为第二光信号经调整后的第二波长通道输出后所能达到的传输跨数。虽然调 整后的第一波长通道的滤波带宽和第二波长通道的滤波带宽中的一个滤波带 宽变大, 另一个滤波带宽变小, 可能会导致一个波长信号性能变好而另一个变 差,但是调整后的第一波长通道的滤波带宽和第二波长通道的滤波带宽能使第 一波长通道和第二波长通道的总性能指标 y最大或者大于某个预定值,这相当 于将包含第一波长通道和第二波长通道的光网络作为一个整体来看,提高了该 网络的整体性能。 本发明实施例通过比较光器件相邻的波长通道接收的光信号的调制带宽, 并根据比较结果,调整相邻的波长通道中至少一个波长通道的滤波带宽,使光 器件中波长通道的滤波带宽能基于所接收光信号的调制带宽进行动态调整。
为了使本发明上述实施例提供的技术方案更加清楚,如下两个实施例对本 发明上述实施例进行详细描述,需要说明的是,如下实施例虽然是以 WDM光 器件为例进行描述, 但是也适用于其他具有多个波长通道的光器件。
图 2示出了本发明实施例提供的一种光器件滤波带宽的调整方法,该方法 中, WDM 光器件中第一波长通道所输入的第一光信号的调制带宽与 WDM 光器件中第二波长通道所输入的第二光信号的调制带宽相同, 该方法具体包 括:
201、 WDM 网络控制设备获取第一波长通道所输入的第一光信号的调制 带宽和第二波长通道所输入的第二光信号的调制带宽。其中, 所述第二波长通 道与所述第一波长通道相邻。
具体的, WDM网络控制设备从 WDM网络管理设备获取 WDM光器件的 信号信息, 其中包括: 第一光信号的信息和第二光信号的信息, 其中, 第一光 信号的信息包括: 第一光信号的波特率、 比特率和调制码型等; 第二光信号的 信息包括: 第二光信号的波特率、 比特率和调制码型等。 然后根据获取的第一 光信号的信息计算第一光信号的调制带宽;根据获取的第二光信号的信息计算 第二光信号的调制带宽。
202、 WDM 网络控制设备比较第一光信号的调制带宽和第二光信号的调 制带宽。
203、 WDM 网络控制设备比较第一光信号的传输性能要求和第二光信号 的传输性能要求。
204、当比较结果为第一光信号的调制带宽和第二光信号的调制带宽相同, 且第一光信号的传输性能要求高于第二光信号的传输性能要求时,控制 WDM 光器件提高第一波长通道的滤波带宽, 降低第二波长通道的滤波带宽, 并使调 整后的第一波长通道和第二波长通道的总性能指标 y最大。
其中, WDM网络控制设备控制光器件提高第一波长通道的滤波带宽, 降 低第二波长通道的滤波带宽的实现方式为: WDM网络控制设备输出指示调整 滤波带宽的电信号到 WDM光器件的接口,其中,指示调整滤波带宽的电信号 指示提高第一波长通道的滤波带宽, 降低第二波长通道的滤波带宽; WDM光 器件根据该电信号调整第一波长通道和第二波长通道的滤波带宽。
其中, 步骤 203中第一光信号的传输性能要求包括: 第一光信号经第一波 长通道输出后要求达到的传输距离; 第二光信号的传输性能要求包括: 第二光 信号经第二波长通道输出后要求达到的传输距离,步骤 204中第一光信号的传 输性能要求高于第二光信号的传输性能要求为:第一光信号经第一波长通道输 出后要求达到的传输距离大于第二光信号经第二波长通道输出后要求达到的 传输距离; 或者, 步骤 203中第一光信号的传输性能要求包括: 第一光信号经 第一波长通道输出后要求达到的传输跨数, 第二光信号的传输性能要求包括: 第二光信号经第二波长通道输出后要求达到的传输跨数,步骤 204中第一光信 号的传输性能要求高于第二光信号的传输性能要求为:第一光信号经第一波长 通道输出后要求达到的传输跨数大于第二光信号经第二波长通道输出后要求 达到的传输跨数; 其中, 步骤 203中第一光信号的传输性能要求包括: 第一光 信号经过第一波长通道时的滤波损伤要求, 第二光信号的传输性能要求包括: 第二光信号经过第二波长通道时的滤波损伤要求,步骤 204中第一光信号的传 输性能要求高于第二光信号的传输性能要求为:第一光信号经过第一波长通道 时的滤波损伤小于第二光信号经过第二波长通道时的滤波损伤。 其中,
Figure imgf000009_0001
, 其中, i从 1到 2 , 本发明实施例中假定 ^和 分别为第一光信号和第二光信号的比特率; 为第一光信号经调整后的第一波 长通道输出后所能达到的传输跨数或者传输距离, L2为第二光信号经调整后的 第二波长通道输出后所能达到的传输跨数或者传输距离。 为了使本实施例提供的技术方案更加清楚明白,如下举实例进行描述: 假 定在通道间隔为 50GHz的 WDM光器件中, 第一波长通道输入光信号 P, 第 二波长通道输入光信号 Q,其中,光信号 P和光信号 Q都为比特率为 100Gb/s、 调制码型均为 PDM-QPSK的光信号。 调整前第一波长通道和第二波长通道的 滤波带宽使光信号 P和 Q的传输跨数为 6个跨, 其中, 第一光信号传输性能 要求为: 该光信号 P经第一波长通道后要求传输 8个跨,第二光信号传输性能 要求为: 光信号 Q经第二波长通道后要求传输 3个跨。 使用现有技术方案, 由 于第一波长通道和第二波长通道的滤波带宽不可调, 所以为了满足光信号 P 经第一波长通道后传输 8个跨的要求, 需要配置中继器, 增加了成本和功耗。 而使用本发明实施例的技术方案,略微增大第一波长通道的滤波带宽, 以使得 光信号 P经过该第一波长通道后尽量达到传输 8个跨的要求,相应的,减小第 二波长通道的滤波带宽, 以使得光信号 Q经过该第二波长通道后能尽量达到 传输 3个跨的要求。如果不能满足光信号 P经过第一波长通道后传输 8个跨的 要求、 且光信号 Q经过第二波长通道后传输 3个跨的要求, 则第二波长通道 的滤波带宽的减小幅度和第一波长通道的滤波带宽的增大幅度需要基于第一 波长通道和第二波长通道的总性能指标 y来计算, 即预算光信号 Q在滤波带 宽减小后的第二波长通道输出后的传输跨数与该光信号 Q 的比特率的乘积, 预算光信号 P在滤波带宽增大后的第一波长通道输出后的传输跨数与光信号 P 的比特率的乘积, 使两个乘积的和最大, 其中, 光信号 Q在滤波带宽减小后 的第二波长通道输出后的传输跨数为第二波长通道调整后的滤波带宽的函数、 光信号 P 在滤波带宽增大后的第一波长通道输出后的传输跨数为第一波长通 道调整后的滤波带宽的函数; 或者, 即预算光信号 Q在滤波带宽减小后的第 二波长通道输出后的传输距离与该光信号 Q 的比特率的乘积, 预算光信号 P 在滤波带宽增大后的第一波长通道输出后的传输距离与光信号 P 的比特率的 乘积, 使两个乘积的和最大, 其中, 光信号 Q在滤波带宽减小后的第二波长 通道输出后的传输距离为第二波长通道调整后的滤波带宽的函数、 光信号 P 在滤波带宽增大后的第一波长通道输出后的传输距离为第一波长通道调整后 的滤波带宽的函数。
本发明实施例比较 WDM 光器件中第一波长通道所输入的第一光信号的 调制带宽和第二波长通道所输入的第二光信号的调制带宽,并比较第一光信号 和第二光信号的传输性能要求,在相邻的波长通道(即上述第一波长通道和第 二波长通道)所输入的光信号的调制带宽相同,且第一光信号的传输性能要求 高于第二光信号的传输性能要求时,控制 WDM光器件提高第一波长通道的滤 波带宽, 降低第二波长通道的滤波带宽,使光器件中波长通道的滤波带宽能基 于所接收光信号的调制带宽进行动态调整; 进一步, 由于调整后的第一波长通 道和第二波长通道的总性能指标 y最大,则可以提高包含第一波长通道和第二 波长通道的光网络的整体性能。
图 3示出了本发明实施例提供的另一种光器件滤波带宽的调整方法,该方 法中, WDM 光器件中第一波长通道所输入的第一光信号的调制带宽大于第 二波长通道所输入的第二光信号的调制带宽, 该方法具体包括:
301、 WDM 网络控制设备获取第一波长通道所输入的第一光信号的调制 带宽和第二波长通道所输入的第二光信号的调制带宽。其中, 第二波长通道与 第一波长通道相邻。
具体的, WDM网络控制设备从 WDM网络管理设备获取 WDM光器件的 信号信息, 其中包括: 第一光信号的信息和第二光信号的信息, 其中, 第一光 信号的信息包括: 第一光信号的波特率、 比特率和调制码型等; 第二光信号的 信息包括: 第二光信号的波特率、 比特率和调制码型等。 然后根据获取的第一 光信号的信息计算第一光信号的调制带宽;根据获取的第二光信号的信息计算 第二光信号的调制带宽。
302、 WDM 网络控制设备比较第一光信号的调制带宽和第二光信号的调 制带宽。
303、 WDM 网络控制设备比较第一光信号的调制带宽和第一波长通道的 滤波带宽; 比较第二光信号的调制带宽和第二波长通道的滤波带宽。 304、 WDM 网络控制设备比较第一光信号的传输性能要求和第二光信号 的传输性能要求。
305、 当步骤 302的比较结果为第一光信号的调制带宽大于第二光信号的 调制带宽,且, 步骤 303的比较结果为第一光信号的调制带宽大于第一波长通 道的滤波带宽, 第二光信号的调制带宽小于第二波长通道的滤波带宽,且步骤 304 的比较结果为第一光信号的传输性能要求高于第二光信号的传输性能要 求时, WDM网络控制设备控制 WDM光器件降低第二波长通道的滤波带宽, 使降低后的第二波长通道的波带带宽能够满足第二光信号的传输性能要求;控 制 WDM光器件升高第一波长通道的滤波带宽,其中,该第一波长通道的滤波 带宽的升高幅度小于或者等于第二波长通道的滤波带宽的降低幅度。
306、 当步骤 302的比较结果为第一光信号的调制带宽大于第二光信号的 调制带宽,且, 步骤 303的比较结果为第一光信号的调制带宽大于第一波长通 道的滤波带宽, 第二光信号的调制带宽大于第二波长通道的滤波带宽,且步骤 304 的比较结果为第一光信号的传输性能要求高于第二光信号的传输性能要 求时, WDM网络控制设备控制 WDM光器件提高第一波长通道的滤波带宽, 降低第二波长通道的滤波带宽,并使第一波长通道和第二波长通道的总性能指 标 y最大。
其中,该实施例中的第一光信号的传输性能要求和第二光信号的传输性能 要求与前一个实施例中第一光信号的传输性能要求和第二光信号的传输性能 要求相似, 在此不再赘述。 其中, ^A x Li , 其中, i从 1到 2 , 本发明实施例中假定 和 分
'■=1 别为第一光信号和第二光信号的比特率; 1^为第一光信号经调整后的第一波长 通道输出后所能达到的传输距离或者传输跨数, L2为第二光信号经调整后的第 二波长通道输出后所能达到的传输距离或者传输跨数。 为了使本实施例提供的技术方案更加清楚明白, 如下举实例进行描述: 假定在通道间隔为 50GHz的 WDM光器件中, 第一波长通道输入光信号 P和第二波长通道输入光信号 Q, 其中, 光信号 P是比特率为 100Gb/s、 调制 码型为 PDM-QPSK的光信号, 此时, 该光信号 P的 3dB调制带宽为 36GHz, 光信号 Q是比特率为 10Gb/s、 调制码型为 OOK的光信号, 此时, 该光信号 Q 的 3dB调制带宽为 14GHz, 且第一波长通道和第二波长通道的滤波带宽均为 20GHz。若第一光信号的传输性能要求比第二光信号的传输性能要求高,比如, 要求光信号 P经第一波长通道输出后能传输 10个跨段,要求光信号 Q经第二 波长通道输出后能传输 6个跨段,则可以将第一波长通道的滤波带宽从 20GHz 提高到 30GHz, 将第二波长通道的滤波带宽从 20G降低到 15GHz, 因为降低 后的第二波长通道的滤波带宽仍然大于光信号 Q的调制带宽 14GHz, 所以这 种带宽调整方式使光信号 Q经过第二波长通道时不会有滤波损伤, 但是能有 效减少光信号 P经过第一波长通道时的滤波损伤。
假定在通道间隔为 50GHz的 WDM光器件中, 第一波长通道输入光信号 P和第二波长通道输入光信号 Q, 其中, 光信号 P是比特率为 100Gb/s、 调制 码型为 PDM-QPSK的光信号,此时,该光信号 P的 3dB调制带宽约为 36GHz, 光信号 Q是比特率为 40Gb/s、 调制码型为 QPSK的光信号, 此时, 该光信号 Q的 3dB调制带宽约为 30GHz, 且第一波长通道和第二波长通道的滤波带宽 均为 20GHz。 若第一光信号的传输性能要求比第二光信号的传输性能要求高, 比如,要求第一波长通道对第一光信号的滤波损伤小于第二波长通道对第二光 信号的滤波损伤,则可以将第一波长通道的滤波带宽从 20GHz提高到 22GHz, 将第二波长通道的滤波带宽从 20G降低到 18GHz, 因为降低后的第二波长通 道的滤波带宽虽然小于光信号 Q的调制带宽 30GHz, 但是这样可以使第一波 长通道和第二波长通道的总性能指标 y最大,提高了包含第一波长通道和第二 波长通道的光网络的整体性能。
本发明实施例比较 WDM 光器件中第一波长通道所输入的第一光信号的 调制带宽和第二波长通道所输入的第二光信号的调制带宽,并比较第一光信号 和第二光信号的传输性能要求,在第一光信号的调制带宽大于第二光信号的调 制带宽,且第一光信号的传输性能要求高于第二光信号的传输性能要求时,控 制 WDM 光器件提高第一波长通道的滤波带宽, 降低第二波长通道的滤波带 宽,使光器件中波长通道的滤波带宽能基于所接收光信号的调制带宽进行动态 调整; 进一步, 由于调整后的第一波长通道和第二波长通道的总性能指标 y 最大, 提高了包含第一波长通道和第二波长通道的光网络的整体性能。
图 4示出了本发明实施例提供的又一种光器件滤波带宽的调整方法,该方 法中, WDM光器件中第一波长通道有光信号传输, WDM光器件中第二波长 通道中无光信号, 该方法具体包括:
401、 WDM网络控制设备获取输入到 WDM光器件中第一波长通道的第 一光信号的调制带宽, 并确定 WDM 光器件中第二波长通道中没有光信号输 入。 其中, 第一波长通道与第二波长通道相邻。
具体的, WDM网络控制设备从 WDM网络管理设备获取 WDM光器件的 信号信息, 其中包括: 第一光信号的信息, WDM网络控制设备根据获取的第 一光信号的信息计算第一光信号的调制带宽,由于 WDM网络控制设备获取的
WDM光器件的信号信息中没有输入到 WDM光器件中第二波长通道的光信号 的信息, 因而可以确定 WDM光器件中第二波长通道中没有光信号输入。
其中, 第一光信号的信息包括: 第一光信号的波特率、 比特率和调制码型 等, WDM网络控制设备根据获取的第一光信号的信息计算第一光信号的调制 带宽。
402、 WDM网络控制设备获取第一光信号的传输性能要求。
其中, 本发明实施例中, 第一光信号的传输性能要求包括: 第一光信号经 第一波长通道输出后需要传输的跨数要求,比如第一光信号经第一波长通道输 出后需要传输 8个跨。
403、 WDM 网络控制设备比较第一光信号的调制带宽和第一波长通道的 滤波带宽。
404、 当步骤 403的比较结果为第一光信号的调制带宽大于第一波长通道 的滤波带宽时, WDM网络控制设备控制 WDM光器件提高第一波长通道的滤 波带宽, 使得第一光信号经第一波长通道输出后能够达到上述传输性能要求。
需要说明的是,该提高后的第一波长通道的滤波带宽不能越过与第二波长 通道相邻的第三波长通道。
为了使本实施例提供的技术方案更加清楚明白, 如下举实例进行描述: 假定在通道间隔为 50GHz的 WDM光器件中, 第一波长通道输入光信号 P, 该光信号 P是比特率为 40Gb/s、 调制码型为 QPSK的光信号, 第二波长通 道中没有光信号输入, 同时获得光信号 P的传输性能要求为:该光信号 P经第 一波长通道输出后需要传输 12个跨。 若该 WDM光器件的第一波长通道当前 的滤波带宽为 20GHz (该实例中该滤波带宽为 3dB时的滤波带宽), 光信号 P 经过该第一波长通道输出后只能传输传 9个跨,不能满足光信号 P的传输性能 要求, 使用本发明的技术方案, 由于第二波长通道没有被利用, 因此可以将第 一波长通道的滤波带宽调高而不需要考虑对第二波长通道的影响,使得该光信 号 P经第一波长通道输出后能够传输 12个跨, 比如将第一波长通道的滤波带 宽从 20GHz调节到 28GHz, 使得光信号 P经调整后的第一波长通道输出后能 够传输 12个跨, 优化 WDM光器件的整体传输性能。 一个没有光信号输入的情况, 能够调整有光信号输入的波长通道的滤波带宽, 使利用调整后的滤波带宽传输该光信号能满足该光信号的传输性能要求。 其中,以上实施例步骤 404中第一波长通道的滤波带宽的调整结果是否能 满足第一光信号的传输性能要求具体可以模拟仿真的方式实现, 比如,先以第 一波长通道的当前滤波带宽为初始带宽,然后将该第一波长通道的滤波带宽增 加 Δα, 看此时的第一波长通道的滤波带宽是否能满足第一光信号的传输性能 要求, 如果不能, 再将该第一波长通道的滤波带宽增加 Δα, 以这种方式进行 逐步调整, 直到满足第一光信号的传输性能要求为止。
同理,采用类似的方式保证步骤 305中降低后的第二波长通道的波带带宽 能够满足第二光信号的传输性能要求, 具体的,先以第二波长通道的当前滤波 带宽为初始带宽, 然后将该第二波长通道的滤波带宽降低 Δα, 看此时的第二 波长通道的滤波带宽是否能满足第二光信号的传输性能要求,如果能,再将该 第二波长通道的滤波带宽降低 Δα, 直到不能满足第二光信号的传输性能要求 为止, 然后将最后一次调整后的第二波长通道的滤波带宽增加 Δα, 此时的带 宽为第二波长通道的最合适带宽, 其既能保证第二光信号的性能要求, 又能为 第一波长通道的带宽调整提供最大的调整空间。
同理,采用类似的方式可以保证步骤 204和步骤 306中第一波长通道和第 二波长通道的总性能指标 y最大,即先以第一波长通道的当前滤波带宽为第一 波长通道的初始带宽,以第二波长通道的当前滤波带宽为第二波长通道的初始 带宽, 然后将该第一波长通道的滤波带宽升高 Δα, 预算升高后的第一波长通 道的滤波带宽导致的第一光信号的传输距离或者传输跨数,将第二波长通道的 滤波带宽降低 Δβ, 预算降低后的第二波长通道的滤波带宽导致的第二光信号 的传输距离或者传输跨数,将两者求和; 然后再将该第一波长通道的滤波带宽 升高 Δα, 预算升高后的第一波长通道的滤波带宽导致的第一光信号的传输距 离或者传输跨数, 将第二波长通道的滤波带宽降低 Δβ, 预算降低后的第二波 长通道的滤波带宽导致的第二光信号的传输距离或者传输跨数, 再将两者求 和; 将多组和值进行比较, 找到最大值, 其对应的第一波长通道的滤波带宽和 第二波长通道的滤波带宽就是步骤 204和步骤 306中调整后的带宽。
其中,保证第一波长通道的滤波带宽的调整结果能满足第一光信号的传输 性能要求具体也可以采用其他方式实现, 比如,基于第一光信号的传输性能要 求和第一光信号的调制带宽,计算满足该第一光信号的传输性能要求的第一波 长通道的滤波带宽;保证步骤 305中降低后的第二波长通道的波带带宽能够满 足第二光信号的传输性能要求也可以采用其他的方式, 比如,基于第二光信号 的传输性能要求和第二光信号的调制带宽,计算满足该第二光信号的传输性能 要求的第二波长通道的滤波带宽。
其中,需要说明的是,上述各实施例中的 WDM网络控制设备获取的第一 光信号的信息还可以包括: 第一光信号的残余色散, 第二光信号的信息还可以 包括:第二光信号的残余色散,具体可以通过增加或较小对应波长通道的色散, 来一定程度的补偿该波长通道输入的光信号的残余色散。例如某波长通道输入 的光信号的残余色散为 30 ps/nm,那么可以将 WDM光器件的该波长通道的色 散从 5 ps/nm (假设调节前为 5 ps/nm )减小为 -30 ps/nm, 来完全补偿该波长通 道输入的光信号的残余色散。 又例如某波长通道输入的光信号的残余色散为 -50 ps/nm, 该 WDM光器件的对应通道的色散调节范围为 [-35, +35]ps/nm, 那 么可以将其色散从 5 ps/nm (假设调节前为 5 ps/nm )增加为 +35 ps/nm, 来一 定程度补偿该通道输入的光信号信号的残余色散。
其中,上述实施例所提供的技术方案不仅适用于两个波长通道的 WDM光 器件, 也适用于多个波长通道的 WDM光器件。
参阅图 5 , 本发明实施例提供一种光器件滤波带宽的调整装置, 该光器件 滤波带宽的调整装置可以是 WDM网络控制设备, 其包括:
调制带宽获取单元 10 , 用于获取第一光信号的调制带宽和第二光信号的 调制带宽, 其中, 所述第一光信号是输入到光器件中第一波长通道的光信号; 所述第二光信号是输入到光器件中第二波长通道的光信号;所述第二波长通道 与所述第一波长通道相邻; 其中, 光器件的通道间隔可以相同, 比如通道间隔 为 50GHz或者 100GHz。
第一比较单元 20 , 用于比较第一光信号的调制带宽和第二光信号的调制 带宽;
调整单元 30 , 用于根据第一光信号的调制带宽和第二光信号的调制带宽 的比较结果,调整第一波长通道和第二波长通道中至少一个波长通道的滤波带 宽。
为了在调整的同时考虑第一光信号的传输性能要求与第二光信号的传输 性能要求, 则该装置还包括: 第二比较单元 40 , 用于比较第一光信号的传输 性能要求与第二光信号的传输性能要求; 调整单元 30 , 用于根据第一比较单 元的比较结果和第二比较单元的比较结果,调整第一波长通道和第二波长通道 中至少一个波长通道的滤波带宽。其中, 该实施例中的第一光信号的传输性能 要求和第二光信号的传输性能要求与方法实施例中第一光信号的传输性能要 求和第二光信号的传输性能要求相似, 在此不再赘述。
在一种实施方式中, 调整单元 30具体用于当第一比较单元的比较结果为 第一光信号的调制带宽和第二光信号的调制带宽相同,且第二比较单元的比较 结果为第一光信号的传输性能要求高于第二光信号的传输性能要求时,控制光 器件提高第一波长通道的滤波带宽, 降低第二波长通道的滤波带宽。
在另一种实施方式中, 调整单元 30具体用于当第一比较单元的比较结果 为第一光信号的调制带宽大于第二光信号的调制带宽,且第二比较单元的比较 结果为第一光信号的传输性能要求高于第二光信号的传输性能要求时,控制光 器件提高第一波长通道的滤波带宽, 降低第二波长通道的滤波带宽。 其中, 光 器件的通道间隔相同;所述第一光信号的调制带宽大于第一波长通道的滤波带 宽, 且第二光信号的调制带宽小于第二波长通道的滤波带宽; 或者, 光器件的 通道间隔相同, 所述第一光信号的调制带宽大于第二光信号的调制带宽,且第 二光信号的调制带宽大于第二波长通道的滤波带宽。
其中,调整后的第一波长通道的滤波带宽和第二波长通道的滤波带宽能使 第一波长通道和第二波长通道的总性能指标 y最大或者大于预定值, 其中, 所 述总性能指标 y= ; X A , 其中, i从 1到 2 , B2分别为第一光信号和
'■=1
第二光信号的比特率或者波特率; 为第一光信号经调整后的第一波长通道输 出后所能达到的传输距离, L2为第二光信号经调整后的第二波长通道输出后所 能达到的传输距离; 或者, 为第一光信号经调整后的第一波长通道输出后所 能达到的传输跨数 , L2为第二光信号经调整后的第二波长通道输出后所能达到 的传输跨数。 宽, 并根据比较结果, 调整相邻的波长通道中至少一个波长通道的滤波带宽, 使光器件中波长通道的滤波带宽能基于所接收光信号的调制带宽进行动态调 整。进一步,由于调整后的第一波长通道和第二波长通道的总性能指标 y最大, 提高了包含第一波长通道和第二波长通道的光网络的整体性能。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可 读存储介质中, 例如只读存储器, 磁盘或光盘等。
以上对本发明实施例所提供的光器件滤波带宽的调整方法及装置进行了 上实施例的说明只是用于帮助理解本发明的方法及其核心思想; 同时,对于本 领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会 有改变之处, 综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种光器件滤波带宽的调整方法, 其特征在于, 包括:
获取第一光信号的调制带宽和第二光信号的调制带宽, 其中, 所述第一光 信号是输入到光器件中第一波长通道的光信号;所述第二光信号是输入到光器 件中第二波长通道的光信号; 所述第二波长通道与所述第一波长通道相邻; 比较第一光信号的调制带宽和第二光信号的调制带宽;
根据第一光信号的调制带宽和第二光信号的调制带宽的比较结果,调整第 一波长通道和第二波长通道中至少一个波长通道的滤波带宽。
2、 根据权利要求 1所述的方法, 其特征在于,
根据第一光信号的调制带宽和第二光信号的调制带宽的比较结果,调整第 一波长通道和第二波长通道中至少一个波长通道的滤波带宽包括:
根据第一光信号的调制带宽和第二光信号的调制带宽的比较结果,和第一 光信号的传输性能要求与第二光信号的传输性能要求的比较结果,调整第一波 长通道和第二波长通道中至少一个波长通道的滤波带宽;
其中, 第一光信号的传输性能要求包括: 第一光信号经所述第一波长通道 输出后需要传输的距离要求、第一光信号经所述第一波长通道输出后需要传输 的跨数要求、 第一光信号经过第一波长通道时的滤波损伤要求中至少一个; 其中, 第二光信号的传输性能要求包括: 第二光信号经所述第二波长通道 输出后需要传输的距离要求、第二光信号经所述第二波长通道输出后需要传输 的跨数要求、 第二光信号经过第二波长通道时的滤波损伤要求中至少一个。
3、 根据权利要求 2所述的方法, 其特征在于,
根据第一光信号的调制带宽和第二光信号的调制带宽的比较结果,和第一 光信号的传输性能要求与第二光信号的传输性能要求的比较结果,调整第一波 长通道和第二波长通道中至少一个波长通道的滤波带宽包括:
当第一光信号的调制带宽与第二光信号的调制带宽相同,且第一光信号的 传输性能要求高于第二光信号的传输性能要求时,控制光器件提高第一波长通 道的滤波带宽, 降低第二波长通道的滤波带宽。
4、 根据权利要求 2所述的方法, 其特征在于,
根据第一光信号的调制带宽和第二光信号的调制带宽的比较结果,和第一 光信号的传输性能要求与第二光信号的传输性能要求的比较结果,调整第一波 长通道和第二波长通道中至少一个波长通道的滤波带宽包括:
当第一光信号的调制带宽大于第二光信号的调制带宽,且第一光信号的传 输性能要求高于第二光信号的传输性能要求时,控制光器件提高第一波长通道 的滤波带宽, 降低第二波长通道的滤波带宽。
5、 根据权利要求 4所述的方法, 其特征在于,
所述光器件的通道间隔相同;所述第一光信号的调制带宽大于第一波长通 道的滤波带宽, 且第二光信号的调制带宽小于第二波长通道的滤波带宽; 或者,
所述光器件的通道间隔相同,所述第一光信号的调制带宽大于第二光信号 的调制带宽, 且第二光信号的调制带宽大于第二波长通道的滤波带宽。
6、 根据权利要求 3-5任一项所述的方法, 其特征在于,
调整后的第一波长通道的滤波带宽和第二波长通道的滤波带宽能使第一 波长通道和第二波长通道的总性能指标 y最大或者大于预定值, 其中, 所述总
N
性能指标 =∑ Χ
Figure imgf000020_0001
B2分别为第一光信号和第二 光信号的比特率或者波特率; 1^为第一光信号经调整后的第一波长通道输出后 所能达到的传输距离, L2为第二光信号经调整后的第二波长通道输出后所能达 到的传输距离;或者, 为第一光信号经调整后的第一波长通道输出后所能达 到的传输跨数, L2为第二光信号经调整后的第二波长通道输出后所能达到的传 输跨数。
7、 一种光器件滤波带宽的调整装置, 其特征在于, 包括:
调制带宽获取单元,用于获取第一光信号的调制带宽和第二光信号的调制 带宽, 其中, 所述第一光信号是输入到光器件中第一波长通道的光信号; 所述 第二光信号是输入到光器件中第二波长通道的光信号;所述第二波长通道与所 述第一波长通道相邻;
第一比较单元, 用于比较第一光信号的调制带宽和第二光信号的调制带 宽;
调整单元,用于根据第一光信号的调制带宽和第二光信号的调制带宽的比 较结果, 调整第一波长通道和第二波长通道中至少一个波长通道的滤波带宽。
8、 根据权利要求 7所述的装置, 其特征在于, 还包括: 第二比较单元, 用于比较第一光信号的传输性能要求与第二光信 号的传输性能要求;
所述调整单元,用于根据第一比较单元的比较结果和第二比较单元的比较 结果, 调整第一波长通道和第二波长通道中至少一个波长通道的滤波带宽。
9、 根据权利要求 8所述的装置, 其特征在于,
所述调整单元,用于当第一比较单元的比较结果为第一光信号的调制带宽 和第二光信号的调制带宽相同,且第二比较单元的比较结果为第一光信号的传 输性能要求高于第二光信号的传输性能要求时,控制光器件提高第一波长通道 的滤波带宽, 降低第二波长通道的滤波带宽。
10、 根据权利要求 8所述的装置, 其特征在于,
所述调整单元,用于当第一比较单元的比较结果为第一光信号的调制带宽 大于第二光信号的调制带宽,且第二比较单元的比较结果为第一光信号的传输 性能要求高于第二光信号的传输性能要求时,控制光器件提高第一波长通道的 滤波带宽, 降低第二波长通道的滤波带宽。
11、 根据权利要求 9至 10中至少一项所述的装置, 其特征在于, 调整后的第一波长通道的滤波带宽和第二波长通道的滤波带宽能使第一 波长通道和第二波长通道的总性能指标 y最大或者大于预定值, 其中, 所述总
N
性能指标 =∑ ><
Figure imgf000021_0001
B2分别为第一光信号和第 二光信号的比特率或者波特率; 为第一光信号经调整后的第一波长通道输出 后所能达到的传输距离, L2为第二光信号经调整后的第二波长通道输出后所能 达到的传输距离;或者, 为第一光信号经调整后的第一波长通道输出后所能 达到的传输跨数, L2为第二光信号经调整后的第二波长通道输出后所能达到的 传输跨数。
PCT/CN2011/077488 2011-07-22 2011-07-22 光器件滤波带宽的调整方法及装置 WO2012106917A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2011/077488 WO2012106917A1 (zh) 2011-07-22 2011-07-22 光器件滤波带宽的调整方法及装置
EP11858321.0A EP2579479B1 (en) 2011-07-22 2011-07-22 Method and equipment for adjusting filter bandwidth of optical apparatus
CN201180001313.3A CN102439994B (zh) 2011-07-22 2011-07-22 光器件滤波带宽的调整方法及装置
US13/793,928 US8989594B2 (en) 2011-07-22 2013-03-11 Method and device for adjusting filtering bandwidth of an optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077488 WO2012106917A1 (zh) 2011-07-22 2011-07-22 光器件滤波带宽的调整方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/793,928 Continuation US8989594B2 (en) 2011-07-22 2013-03-11 Method and device for adjusting filtering bandwidth of an optical device

Publications (1)

Publication Number Publication Date
WO2012106917A1 true WO2012106917A1 (zh) 2012-08-16

Family

ID=45986285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077488 WO2012106917A1 (zh) 2011-07-22 2011-07-22 光器件滤波带宽的调整方法及装置

Country Status (4)

Country Link
US (1) US8989594B2 (zh)
EP (1) EP2579479B1 (zh)
CN (1) CN102439994B (zh)
WO (1) WO2012106917A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982471A (zh) * 2020-08-17 2020-11-24 桂林电子科技大学 一种基于空间调制偏振成像系统检测滤光片带宽的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012106917A1 (zh) * 2011-07-22 2012-08-16 华为技术有限公司 光器件滤波带宽的调整方法及装置
US9847951B2 (en) * 2013-11-04 2017-12-19 Ciena Corporation Dynamic bandwidth allocation systems and methods using content identification in a software-defined networking controlled multi-layer network
US9929826B2 (en) * 2014-12-30 2018-03-27 Infinera Corporation Reduction of wavelength selective switch (WSS) filter-based impairment using differentiated channel baud rates
US9735913B2 (en) * 2014-12-30 2017-08-15 Infinera Corporation Reduction of wavelength selective switch (WSS) filter-based impairment using selective subcarrier adjustment
CN112804024A (zh) 2016-10-25 2021-05-14 日本电气株式会社 光分支/耦合设备、光通信系统和光分支/耦合方法
CN111555812B (zh) * 2020-04-20 2023-03-28 复旦大学 采用双极化mzm调制器同时产生有线无线信号的装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057834A1 (en) * 1998-05-01 1999-11-11 University Of Maryland Baltimore County Real time wavelength monitoring circuit
CN101366208A (zh) * 2006-01-10 2009-02-11 升阳电信公司 用于波长测量或监视系统的宽频与频间多波长参考方法及装置
WO2010022327A2 (en) * 2008-08-21 2010-02-25 Nistica, Inc. Optical channel monitor

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140656A (en) * 1991-08-12 1992-08-18 At&T Bell Laboratories Soliton optical fiber communication system
USH1702H (en) * 1995-01-06 1998-01-06 Esman; Ronald D. Wideband fiber-optic signal processor
IL129031A (en) * 1999-03-17 2003-02-12 Handelman Doron Network control system for optical communication networks
US6944406B1 (en) * 2000-08-04 2005-09-13 Fujitsu Limited Transport system with tunable channel spacing DWDM
US8494372B2 (en) * 2002-04-30 2013-07-23 Pivotal Decisions Llc Apparatus and method for optimizing optical and electrical filtering of optical signals
US6879216B2 (en) * 2002-10-18 2005-04-12 Agilent Technologies, Inc. Integrated circuit that provides access to an output node of a filter having an adjustable bandwidth
US7809280B2 (en) * 2002-12-03 2010-10-05 Finisar Corporation Chirp-managed, electroabsorption-modulated laser
US7616894B2 (en) * 2004-12-28 2009-11-10 Tyco Telecommunications (Us) Inc. System and method for mitigating dispersion slope in an optical communication system
EP1732207B1 (en) * 2005-06-03 2008-02-13 NTT DoCoMo INC. Multi-Band lookup table type predistorter
JP4344367B2 (ja) * 2005-06-06 2009-10-14 株式会社エヌ・ティ・ティ・ドコモ 多周波帯用べき級数型プリディストータ
IL178744A0 (en) * 2006-10-19 2007-09-20 Eci Telecom Ltd Method for estimating bandwidth limiting effects in transmission communication systems
US7655898B2 (en) * 2006-11-30 2010-02-02 Cambridge Research & Instrumentation, Inc. Optical filter assembly with selectable bandwidth and rejection
US7965950B2 (en) * 2007-10-15 2011-06-21 Ciena Corporation Performance optimized receiver with bandwidth adaptive optical filter for high speed long haul WDM systems
CN101605276B (zh) * 2008-06-13 2013-04-24 华为技术有限公司 光信号的传输方法和装置
US8682175B2 (en) 2008-08-28 2014-03-25 Cisco Technology, Inc. Variable rate transponders for optical communication systems using digital electric filters
US8634679B2 (en) 2008-09-15 2014-01-21 Infinera Corporation Tunable optical filter
US8335279B2 (en) * 2009-07-24 2012-12-18 Intel Corporation Alignment of channel filters for multiple-tuner apparatuses
JP5398839B2 (ja) * 2009-09-14 2014-01-29 日本電信電話株式会社 帯域可変通信方法、帯域可変通信装置、伝送帯域決定装置、伝送帯域決定方法、ノード装置、通信路設定システム、及び通信路設定方法
JP5675825B2 (ja) * 2009-10-07 2015-02-25 オフィディウム、プロプライエタリー、リミテッドOfidium Pty Ltd 光通信リンクにおける多重チャネル非線形性補償
US8098969B2 (en) * 2009-12-08 2012-01-17 Onechip Photonics Inc. Waveguide optically pre-amplified detector with passband wavelength filtering
CN101846815B (zh) * 2010-04-30 2012-01-25 天津大学 可同时提取双波长的带宽可调的光波长滤波器
WO2012106917A1 (zh) * 2011-07-22 2012-08-16 华为技术有限公司 光器件滤波带宽的调整方法及装置
JP5924088B2 (ja) * 2012-04-06 2016-05-25 富士通株式会社 光伝送システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999057834A1 (en) * 1998-05-01 1999-11-11 University Of Maryland Baltimore County Real time wavelength monitoring circuit
CN101366208A (zh) * 2006-01-10 2009-02-11 升阳电信公司 用于波长测量或监视系统的宽频与频间多波长参考方法及装置
WO2010022327A2 (en) * 2008-08-21 2010-02-25 Nistica, Inc. Optical channel monitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579479A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982471A (zh) * 2020-08-17 2020-11-24 桂林电子科技大学 一种基于空间调制偏振成像系统检测滤光片带宽的方法
CN111982471B (zh) * 2020-08-17 2022-08-26 桂林电子科技大学 一种基于空间调制偏振成像系统检测滤光片带宽的方法

Also Published As

Publication number Publication date
EP2579479A4 (en) 2013-12-25
EP2579479B1 (en) 2015-06-10
CN102439994B (zh) 2013-11-06
US8989594B2 (en) 2015-03-24
EP2579479A1 (en) 2013-04-10
US20130188957A1 (en) 2013-07-25
CN102439994A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
JP6372143B2 (ja) 可変的サブキャリアスペクトル割り当てを利用する光ネットワークにおけるクロストーク低減
US9312914B2 (en) Crosstalk reduction in optical networks using variable subcarrier power levels
WO2012106917A1 (zh) 光器件滤波带宽的调整方法及装置
US20180359047A1 (en) Reach extension of multi-carrier channels using unequal subcarrier spacing
US9654223B2 (en) Superchannel power pre-emphasis based on transmission criteria
JP7287087B2 (ja) 変調方式及びサブキャリア数の制御を通じた光ネットワークについての到達距離拡大
Takara et al. Experimental demonstration of 400 Gb/s multi-flow, multi-rate, multi-reach optical transmitter for efficient elastic spectral routing
US9768878B2 (en) Methods and systems for superchannel power pre-emphasis
Kozicki et al. Filtering characteristics of highly-spectrum efficient spectrum-sliced elastic optical path (SLICE) network
WO2018123718A1 (ja) 受信装置、送信装置、光通信システムおよび光通信方法
US20170214488A1 (en) Superchannels with mixed baud rate subcarriers
JP6390308B2 (ja) 光伝送装置および光伝送制御方法
JP2018098779A (ja) 光転送ネットワークにおけるスペクトル反転による非線形ノイズ緩和
CN101605276B (zh) 光信号的传输方法和装置
Tibuleac et al. Trends in next-generation ROADM networks
JP6686330B2 (ja) 二重偏波変調フォーマットのための低雑音光位相センシティブ増幅
Yan et al. Demonstration of bandwidth maximization between flexi/fixed grid optical networks with real-time BVTs
WO2014071631A1 (zh) 波分复用光网络传输的方法和装置
Ji et al. Passband optimisation for hybrid 40G/100G system using tunable asymmetric interleaver
Pedro Comparative assessment of 800G-capable embedded and pluggable coherent line interfaces over the optical network lifecycle
Shimizu et al. Optical channel defragmentation technology for flexible optical networks
Colombo Reconfigurable DP-16QAM/QPSK transponders for the transmission of coherent 200 Gb/s carriers in a flexgrid super-channel arrangement
Zhang et al. Commercial Open Line System Optimization for High Speed Data Center Optical Transmission
Al-Rawachy DSP-Based Real-Time Enabling Technologies for Future Cloud Access Networks
Fazel et al. Extinction Ratio and BER Estimation of a Three Degree ROADM Node with Different WSS Placement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001313.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858321

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011858321

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE