WO2012106900A1 - 移相器 - Google Patents

移相器 Download PDF

Info

Publication number
WO2012106900A1
WO2012106900A1 PCT/CN2011/077270 CN2011077270W WO2012106900A1 WO 2012106900 A1 WO2012106900 A1 WO 2012106900A1 CN 2011077270 W CN2011077270 W CN 2011077270W WO 2012106900 A1 WO2012106900 A1 WO 2012106900A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
phase shifting
shifting portion
phase
swing arm
Prior art date
Application number
PCT/CN2011/077270
Other languages
English (en)
French (fr)
Inventor
刘少东
肖伟宏
谢华治
彭建华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180001177.8A priority Critical patent/CN102308434B/zh
Priority to PCT/CN2011/077270 priority patent/WO2012106900A1/zh
Publication of WO2012106900A1 publication Critical patent/WO2012106900A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters

Definitions

  • Embodiments of the present invention relate to the field of wireless communications, and more particularly to phase shifters in base station antennas. Background technique
  • the high frequency phase shifter is an essential component of the electric down-tilt base station antenna. By changing the relative phase between the antenna elements, the device can adjust the downtilt angle of the antenna beam, thereby facilitating the optimization of the communication network.
  • the phase shifters typically used are complex in structure, bulky, and relatively phase-shifted, and thus have limited use in today's large-scale base station antennas. Summary of the invention
  • phase shifter that is small in size, low in loss, and frequency bandwidth. According to an embodiment of the present invention, such a phase shifter can also achieve port output of 1 minute or more.
  • a phase shifter comprising: a first phase shifting unit having a first phase shifting portion and a second phase shifting portion, the first phase shifting portion and the first phase shifting portion
  • the two phase shifting portions respectively include a drive shaft, an input conductor, a conductor swing arm and a conductor strip, the input conductor is pivotally connected to the drive shaft, and one end of the conductor swing arm is disposed on the drive shaft for
  • the driving shaft rotates and is electrically connected to the input conductor, and the other end of the conductor swing arm is disposed corresponding to the conductor strip and electrically connected to the conductor strip, wherein the first phase shifting portion
  • the drive shaft is spaced apart from the drive shaft of the second phase shifting portion and is parallel to each other.
  • the input conductor of the first phase shifting portion is electrically connected directly or indirectly to the input conductor of the second phase shifting portion.
  • the phase shifter according to the embodiment of the present invention has the advantages of small volume and low loss, which is advantageous for reducing product cost and improving product competitiveness.
  • the line-to-line coupling of the microwave signal is small, which is advantageous for reducing the design difficulty of the phase shifter and improving product performance.
  • the phase shifter according to an embodiment of the present invention can also provide an output of 1 minute and 5, and is easy to expand, providing more phase shifting outputs.
  • Figure 1 is an exploded view of a phase shifter in accordance with an embodiment of the present invention
  • Figure 3 is a schematic view of a rack and pinion mechanism for driving a conductor swing arm of a phase shifter of an embodiment of the present invention.
  • Fig. 4 is a schematic view of a link mechanism for driving the rotation of a conductor arm of a phase shifter of an embodiment of the present invention. detailed description
  • the technical solution of the present invention can be applied to various communication systems, such as: GSM, Code Division Multiple Access (CDMA), Wideband Code Division Multiple Access (WCDMA), general packet Wireless Service (GPRS, General Packet Radio Service), Long Term Evolution (LTE), etc.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolutional Node B
  • FIG. 1 is an exploded view of a phase shifter in accordance with an embodiment of the present invention. It should be noted that FIG. 1 is a schematic structural view of a phase shifter. For the convenience of description, other components well known to those skilled in the art are omitted, and those skilled in the art are aware of the structure of these omitted components and the phase shifting. Use in the device.
  • the phase shifter includes a phase shifting unit 100 at the center and a phase shifting unit 200 at both sides.
  • the phase shifting unit includes an input conductor 102, a conductor swing arm 104, and a conductor strip 106, wherein
  • the body strip 106 extends between the output end 108A and the output end 108B, the input conductor 102-end is connected to the signal source, and the other end extends to the node 110 substantially at the center of the conductor strip 106, and the conductor swing arm 104 is at the swing arm input end.
  • the swing arm input end 142 of the conductor swing arm 104 is rotatably electrically coupled to the input conductor 102 at the node 110 such that the conductor swing arm rotates with the conductor swing arm 104 about the node 110.
  • the swing arm coupling end 144 of the 104 is slidably electrically coupled to the conductor strip 106.
  • the electrical connections referred to herein include contact electrical connections as well as non-contact electrical coupling connections.
  • the node 110 can form a hole 114.
  • the swing arm input end 142 of the conductor swing arm 104 is mechanically coupled to the node 110 through the transmission shaft 112, and the drive shaft 112 is fixedly connected to the conductor swing arm 104, that is, The conductor swing arm 104 cannot rotate relative to the drive shaft 112, but the drive shaft 112 can rotate within the bore 114.
  • the drive shaft 112 is rotated by a drive mechanism (described in detail below) disposed below the input conductor 102 to cause the conductor swing arm 104 to swing such that the swing arm coupling end 144 of the conductor swing arm 104 slides over the conductor strip 106. As can be seen from FIG.
  • the conductor strip 106 is disposed between the end of the drive shaft 112 and the end of the conductor swing arm 104 away from the drive shaft 112 to the axis of the drive shaft 112. The distance is on an arc of a radius and is electrically connected to the conductor arm 104.
  • the electrical connections referred to herein include contact electrical connections as well as non-contact electrical coupling connections.
  • the drive shaft 112 is made of an insulating material such as plastic to prevent electrical signals from being transmitted to the drive mechanism via the drive shaft 112.
  • the phase shifting unit 200 includes two parts.
  • the first phase shifting portion is composed of an input conductor 202A, a conductor swing arm 204A, and a conductor strip 206A.
  • the second phase shifting portion is composed of an input conductor 202B, a conductor swing arm 204B, and a conductor strip 206B.
  • a phase shifting portion and a second phase shifting portion are disposed on opposite sides of the phase shifting unit 100, wherein the conductor strip 206A extends between the coupling end 262A and the output end 264A, and the conductor strip 206B is between the coupling end 262B and the output end 264B.
  • one end 226A of the input conductor 202A is electrically coupled to the power segment 116A on the output 108A of the phase shifting unit 100 and the other end 228A extends to a node 210A substantially at the center of the conductor strip 206A, the conductor arm 204A being Extending between the swing arm input end 242 A and the swing arm coupling end 244A, the swing arm input end 242A of the conductor swing arm 204A is rotatably electrically coupled to the input conductor 202A at the node 210A so as to surround the conductor swing arm 204A.
  • the node 210A rotates, the swing arm coupling end 244A of the conductor swing arm 204A is slidably electrically connected to the coupling end 262A of the conductor strip 206A, and the one end 226B of the input conductor 202B is electrically conductive with the power section 116B on the output terminal 108B of the phase shifting unit 100.
  • the other end 228B extends to the conductor with substantially the center of the node 206B 210B, conductor 204B extending arm between the end of the swing arm 242B and 244B enter the coupling end of the swing arm, swing arm conductor input terminal 204B of node 242B 210B
  • the input conductor 202B is rotatably electrically coupled such that as the conductor swing arm 204B rotates about the node 210B, the swing arm coupling end 244B of the conductor swing arm 204B is slidably electrically coupled to the coupling end 262B of the conductor strip 206B.
  • the node 210A may form a hole 214A, and the swing arm input end 242A of the conductor swing arm 204A is mechanically coupled to the node 210A via the transmission shaft 212A, and the transmission shaft 212A and the conductor swing arm 204A
  • the fixed connection that is, the conductor swing arm 204A cannot be rotated relative to the drive shaft 212A, but the drive shaft 212A can be rotated in the bore 214A.
  • the drive shaft 212A is made of an insulating material such as plastic to prevent electrical signals from being transmitted to the drive mechanism via the drive shaft 212A.
  • the drive shaft 212A is rotated by a drive mechanism (described in detail below) placed under the input conductor 202 to cause the conductor swing arm 204A to swing such that the swing arm coupling end 244A of the conductor swing arm 204A slides over the conductor strip 206A.
  • a drive mechanism described in detail below
  • the node 210B can form a hole 214B, and the swing arm input end 242B of the conductor swing arm 204B is mechanically coupled to the node 210B via the drive shaft 212B, and the drive shaft 212B is fixedly coupled to the conductor swing arm 204B, that is, the conductor swing arm 204B. It is not rotatable relative to the drive shaft 212B, but the drive shaft 212B can be rotated in the bore 214B.
  • the drive shaft 212B is rotated by a drive mechanism (described in detail below) placed under the input conductor 202B to cause the conductor swing arm 204B to swing such that the swing arm coupling end 244B of the conductor swing arm 204B slides over the conductor strip 206B.
  • the drive shaft 212B is also made of an insulating material. As shown in Fig. 1, the drive shafts 212A, 212B are parallel to each other and parallel to the drive shaft 112.
  • the conductor strips 206A, 206B are disposed centered on the axes of the drive shafts 212A, 212B with the conductor swing arms 204A, 204B away from the drive shaft 212A.
  • the distance between the ends of 212B and the axes of the drive shafts 212A, 212B is a radius of arc and is electrically coupled to the conductor swing arms 204A, 204B.
  • the electrical connections referred to herein include contact electrical connections as well as non-contact electrical coupling connections.
  • the output terminals 108A, 108B of the phase shifting unit 100 may be formed integrally with the end portions 226A, 226B of the input conductors 202A, 202B of the phase shifting unit 200, respectively, or respectively in the power section 116A.
  • the ends 226A, 226B of the input conductors 202A, 202B are soldered together.
  • the swing arm coupling end 144 of the conductor swing arm 104 can form an arcuate portion that conforms to the conductor strip 106. As the swing arm coupling end 144 slides over the conductor strip 106, the curved swing arm coupling end 144 can increase the coupling area with the conductor strip 106, improving coupling characteristics.
  • the swing arm coupling ends 244A, 244B of the conductor swing arms 204A, 204B may also respectively form an arc shape conforming to the conductor strips 206A, 206B such that the swing arm coupling end 244A rotates with the conductor swing arms 204 A, 204B.
  • conductor strips 206A, 206B are generally arcs of 90 degrees.
  • the conductor strips 206 A , 206B may also be a circular arc of 180 degrees, or an arc of other angles, such as 135 degrees, 120 degrees, etc., depending on the specific application. to make sure.
  • the conductor strip 106 may be a circular arc of 180 degrees, but may also be an arc of other angles, such as 240 degrees, etc., as the conductor swing arm 104 rotates, the swing arm coupling end of the conductor swing arm 104 The 144 slides along the conductor strip 106 such that the difference in transmission path length of the signal input from the input conductor 102 and output from the output terminals 108A, 108B, respectively, thereby obtaining a two-way phase shift signal at the output terminals 108A, 108B.
  • a portion of the signals branched from the power segments 116A, 116B of the output terminals 108A, 108B are transmitted to 210A, 210B via conductors 202A, 202B, respectively, and then coupled to the swing arm input terminals 242A, 242B, respectively, and then along the swing arms 204A, 204B, respectively.
  • the transmissions are again coupled to the coupling ends 262A, 262B of the conductor strips 206A, 206B via the swing arm coupling ends 244A, 244B, respectively, and then transmitted along the conductor strips 206A, 206B, respectively, and ultimately output from the output terminals 264A, 264B.
  • the swing arm coupling ends 244A, 244B of the conductor swing arms 204A, 204B slide over the conductor strips 206 A , 206B, respectively, to effect transmission of signals output from the output terminals 264 A, 264B.
  • the path length difference is further varied, thereby obtaining two additional phase shifting signals at the output terminals 264A, 264B. If the signal input from the input conductor 102 is subjected to power division to output a signal as well, an output of 1 minute 5 can be realized, wherein two pairs of phase shift signals are output from the output terminals 108A, 108B and the output terminals 264A, 264B, respectively. .
  • the phase shifting amount of the signals output from the output terminals 264A, 264B is different from the signals output from the output terminals 108A, 108B.
  • the conductor strips 206A, 206B are oppositely disposed, that is, the conductor strips 206A, 206B are bent in opposite directions, and when the conductor swing arms 204A, 204B rotate in the same direction, for example, in FIG.
  • the conductor swing arms 204A, 204B are rotated clockwise, the length of the transmission path of the signal via the conductor swing arm 204A and the conductor strip 206A is increased, and the length of the transmission path of the signal via the conductor swing arm 204B and the conductor strip 206B is decreased.
  • the transmission path length of the signal via the conductor swing arm 204A and the conductor strip 206A is reduced, and the transmission path length of the signal via the conductor swing arm 204B and the conductor strip 206B is increased.
  • the difference in transmission path length of the signals output from the output terminals 264A, 264B is increased, so that the phase shift amount of the signals output from the output terminals 264A, 264B is larger than the signals output from the output terminals 108A, 108B. The amount of phase shift.
  • the conductor strips 206A, 206B may be disposed in the same direction, that is, the conductor strips 206A, 206B are bent in the same direction, and when the conductor swing arms 204A, 204B rotate in the same direction, the conductor arm is passed through the conductor.
  • the transmission path length of the signal of the 204A and the conductor strip 206A and the transmission path length of the signal via the conductor swing arm 204B and the conductor strip 206B are simultaneously reduced or increased, resulting in a difference in the transmission path length of the signal output from the output terminals 264 A, 264B.
  • the phase shift amount of the signal output from the output terminals 264 A, 264B needs to be different from the transmission path length difference of the signals output from the output terminals 108A, 108B and the transmission path length difference of the signals output from the output terminals 264A, 264B. Judging by the relationship between them, those skilled in the art can reduce the phase shift amount of the signal output from the output terminals 264A, 264B or increase the phase shift amount as needed to perform a custom adjustment.
  • the amount of rotation of the conductor swing arms 204A and 204B may be the same or different, and may be set as the case may be.
  • FIG. 2 is an assembled view of a phase shifter in accordance with an embodiment of the present invention.
  • input conductor 102 and conductor swing arm 104 are utilized by transmission shaft 112 through aperture 114 at node 110 of input conductor 102 and aperture at end 142 of conductor swing arm 104.
  • the input conductor 102 is electrically coupled to the conductor swing arm 104 and the conductor swing arm 104 is rotated about the central axis of the drive shaft 112.
  • the swing arm coupling end 144 of the conductor arm 104 is attached to the conductor strip 106 and is electrically coupled to the conductor strip 106.
  • the region where the swing arm coupling end 144 and the conductor strip 106 are attached may be attached to the swing arm input end 142 or the input conductor 102.
  • An insulating coating such as epoxy or Teflon, is provided on the mating surface of the swing arm coupling end 144 or the conductor strip 106 to insulate the conductor swing arm 104 from the input conductor 102, the swing arm coupling end 144 and the conductor strip 106 DC. insulation.
  • a thin film of insulating material may be disposed at the node 110 of the input conductor 102, or a Teflon coating may be disposed on at least one surface of the mating surface of the swing arm input end 142 and the input conductor 102 to make the conductor
  • the swing arm 104 is DC insulated from the input conductor 102.
  • the input conductor 202A is passed through the hole 214A at the node 210A of the input conductor 202 and the hole at the end 242A of the conductor arm 204 using the drive shaft 212A.
  • the input conductor 202A is electrically coupled to the conductor swing arm 204A and the conductor swing arm 204A is rotated about the central axis of the drive shaft 212A.
  • the swing arm coupling end 244A of the conductor swing arm 204A is attached to the conductor strip 206A and is electrically coupled to the conductor strip 206A.
  • the region where the swing arm input end 242A is in contact with the input conductor 202A, and the region where the swing arm coupling end 244A and the conductor strip 206A are attached may be attached to the surface at the swing arm input end 142 or the input conductor 102.
  • the bonding surface of the swing arm coupling end 244A or the conductor strip 206A is provided with an insulating coating such as epoxy or Teflon to insulate the conductor swing arm 204A from the input conductor 202A, and the swing arm coupling end 244A and the conductor strip 206A DC. insulation.
  • a thin film of insulating material may be disposed at the node 210A of the input conductor 202A, or a Teflon coating may be disposed on at least one surface of the mating surface of the swing arm input end 242A and the input conductor 202A to make the conductor
  • the swing arm 204A is DC insulated from the input conductor 202A.
  • the manner in which the input conductor 202B is coupled to the conductor strip 206B and other features are similar to the manner in which the input conductor 202A is coupled to the conductor strip 206A and will not be repeated.
  • hooks may be provided at the swing arm coupling ends 144, 244A, 244B of the conductor swing arms 104, 204 A, 204B for snapping onto the conductor strips 106, 206A, 206B to Improve the mechanical fit between the conductor arm and the conductor strip.
  • FIG. 3 is a schematic view of a rack and pinion mechanism for driving a conductor swing arm of a phase shifter according to an embodiment of the present invention.
  • the rack and pinion mechanism 300 includes three gears 310, 320, 330, wherein the gear 310 is used to drive the transmission shaft 112, the gear 320 is used to drive the transmission shaft 212A, and the gear 330 drives the transmission shaft 212B.
  • the indirect drive conductor swing arms 102, 202 A, 202B rotate.
  • the central axes 312, 322, 332 of the gears 310, 320, 330 are integrally formed or mechanically coupled to the drive shafts 112, 212A, 212B, such as welding or bayonet connections, to enable the drive shafts 112, 212A, 212B to be rotated, respectively.
  • the rack and pinion mechanism 300 further includes a rack 340 that simultaneously meshes with the three gears 310, 320, 330 to synchronously drive the three gears 310, 320, 330 to rotate as the rack 340 translates.
  • the rack 340 may be provided with slots 342, 344, and the bayonet pins 350, 352 fixedly disposed on the base 360 of the rack and pinion mechanism 300 slide in the slots 342, 344 for ensuring the moving direction of the rack 340 .
  • a drive source known in the art such as an electric motor, can be used to drive the rack 340 to move, thereby providing power to the rotation of the conductor arms 102, 202 A, 202B.
  • a boss extending parallel to the rack 340 may be disposed on the base 360 of the rack and pinion mechanism 300, and the side of the rack 340 without the teeth may slide on the side of the boss. This ensures the sliding direction of the rack.
  • the slots 342, 344 need not be provided on the rack 340, and the bayonet 350, 352 need not be provided on the base 360.
  • one of the drive source driving gears 310, 320, 330 can be utilized, and the rack 340 is used as a linkage mechanism to drive the three gears to rotate simultaneously, thereby being the conductor swing arms 102, 202 A, 202B. Rotation provides power.
  • Fig. 4 is a schematic view of a link mechanism for driving the rotation of a conductor arm of a phase shifter of an embodiment of the present invention.
  • the link mechanism 400 includes three links 410, 420, 430, wherein the link 410 is used to drive the drive shaft 112, the link 420 is used to drive the drive shaft 212A, and the link 430 drives the drive shaft 212B.
  • the conductor swing arms 102, 202 A, 202B are indirectly driven to rotate.
  • One ends 412, 422, 432 of the links 410, 420, 430 are rotatably coupled to the base 460 of the link mechanism 400 on one side, and the other sides of the ends 412, 422, 432 are coupled to the drive shafts 112, 212A, 212B, respectively.
  • Mechanical connections such as welding or bayonet connections, can drive the drive shafts 112, 212A, 212B to rotate, respectively.
  • the linkage mechanism 400 also includes a drive link 440 that is rotatably coupled to the other ends 414, 424, 434 of the links 410, 420, 430 to simultaneously surround the end 412 as the traction drive link 440 , 422, 432 rotate the links 410, 420, 430 to provide power for the rotation of the drive shafts 112, 212A, 212B.
  • the link 430 extends longer than the links 410, 420 and defines a slot 436 at the end 434, the detent 452 at the end of the drive link 450 being disposed in the slot 436, for example When the drive link 450 is driven by the electric motor, the bayonet 452 slides selectively in the slot 436.
  • the drive shafts 112, 212A and 212B may also be provided with a drive mechanism, such as a gear or a link, respectively. And power is provided to drive the drive shafts 112, 212A, and 212B, respectively, to provide greater adjustment capabilities.
  • a drive mechanism such as a gear or a link
  • the phase shifter may include only the first phase shifting unit 200 composed of the first phase shifting portion and the second phase shifting portion.
  • the first phase shifting portion and the second phase shifting portion respectively include a drive shaft, an input conductor, a conductor swing arm, and a conductor strip.
  • the first phase shifting portion includes a drive shaft 212A, an input conductor 202A, a conductor swing arm 204A, and a conductor strip 206A.
  • the second phase shifting portion includes a drive shaft 212B, an input conductor 202B, a conductor swing arm 204B, and a conductor strip 206B.
  • One ends of the input conductors 212A, 212B are pivotally connected to the drive shafts 212A, 212B, and one ends of the conductor swing arms 204A, 204B are disposed on the drive shafts 212A, 212B for the drive shafts 212A, The 212B is rotated and electrically connected to the input conductors 202A, 202B.
  • the electrical connections referred to herein include contact electrical connections as well as non-contact electrical coupling connections.
  • the conductor strips 206A, 206B are disposed at the center of the axis of the drive shafts 212A, 212B with the conductor swing arms 204A, 204B distal from the ends of the drive shafts 212A, 212B to the
  • the distance between the axes of the drive shafts 212A, 212B is on a circular arc of a radius and is electrically coupled to the conductor swing arms 204A, 204B.
  • the transmission shaft 212A of the first phase shifting portion is spaced apart from the transmission shaft 212B of the second phase shifting portion and parallel to each other, and the input conductor 202A of the first phase shifting portion is away from the transmission of the first phase shifting portion
  • One end 226A of the shaft 212A is electrically connected directly or indirectly to the input conductor 202B of the second phase shifting portion away from the one end 226B of the drive shaft 212B of the second phase shifting portion.
  • End 226A can be electrically coupled directly to end 226B and function as an input end of the phase shifter.
  • the end portion 226A and the end portion 226B may be electrically connected together by the conductor strip 106.
  • only the gears 320, 330 for driving the drive shafts 212A, 212B as described above, or only the links 420, 430 for driving the drive shafts 212A, 212B may be provided.
  • the gears 320, 330 can be driven independently of each other or simultaneously.
  • the rack 340 as described above can be provided.
  • the links 420, 430 can also be driven independently of each other or simultaneously.
  • the drive link 440 as described above can be provided.
  • phase shifting unit 200 is connected in series on both sides of the phase shifting unit 200 as shown in FIG.
  • the phaser can provide 1 minute 7 output, or more port output.
  • Such an extended embodiment can be conveniently implemented based on the above-described teachings on the basis of the concept of the embodiments of the present invention, and should also fall within the scope of the embodiments of the present invention.
  • the phase shifter according to the embodiment of the present invention has the advantages of small volume and low loss, which is advantageous for reducing product cost and improving product competitiveness.
  • the phase shifter wiring unit of the embodiment of the invention the line-to-line coupling of the microwave signal is small, which is advantageous for reducing the design difficulty of the phase shifter and improving product performance.
  • the phase shifter according to an embodiment of the present invention can provide an output of 1 minute 5 and is easy to expand, providing more phase shift output.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical, mechanical or otherwise.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential to the prior art or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本发明实施例涉及一种移相器,其包括,具有第一移相部分和第二移相部分构成的第一移相单元,所述第一移相部分及第二移相部分分别包括传动轴、输入导体、导体摆臂以及导体带,所述输入导体枢接在所述传动轴上,所述导体摆臂的一端设置在所述传动轴上用以在所述传动轴的带动下转动并与所述输入导体电连接,所述导体摆臂的另一端与所述导体带对应设置并与所述导体带间电连接,其中,所述第一移相部分的传动轴与所述第二移相部分的传动轴间隔设置且性相互平行,所述第一移相部分的输入导体与第二移相部分的输入导体直接或者间接的电连接。本发明实施例的移相器具有体积小、损耗低的优点。

Description

移相器 技术领域
本发明实施例涉及无线通信领域, 更具体地说, 涉及基站天线中的移相 器。 背景技术
高频移相器是电下倾基站天线的一个必要组件,该器件通过改变天线单 元之间的相对相位可调节天线波束的下倾角度, 从而方便通信网络的优化。 通常所用的移相器结构复杂、 体积较大并且移相频带相对较窄, 因此在当今 大规模基站天线中的使用受到了限制。 发明内容
本发明实施例所要解决的一个技术问题是提供一种体积小、损耗低并且 频带宽的移相器。 根据本发明实施例, 这种移相器还可以实现 1分 5以上的 端口输出。
根据本发明实施例, 提出了一种移相器, 所述移相器包括: 具有第一移 相部分和第二移相部分构成的第一移相单元, 所述第一移相部分及第二移相 部分分别包括传动轴、 输入导体、 导体摆臂以及导体带, 所述输入导体枢接 在所述传动轴上, 所述导体摆臂的一端设置在所述传动轴上用以在所述传动 轴的带动下转动并与所述输入导体电连接, 所述导体摆臂的另一端与所述导 体带对应设置并与所述导体带间电连接, 其中, 所述第一移相部分的传动轴 与所述第二移相部分的传动轴间隔设置且性相互平行, 所述第一移相部分的 输入导体与第二移相部分的输入导体直接或者间接的电连接。
根据本发明实施例的移相器具有体积小、 损耗低的优点, 有利于降低产 品成本并提高产品竟争力。与此同时,根据本发明实施例的移相器布线筒单, 微波信号的线间耦合小, 有利于降低移相器的设计难度并提高产品性能。 根 据本发明实施例的移相器还可以提供 1分 5的输出, 并容易进行扩展, 而提 供更多路移相输出。 附图说明 为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例的移相器的分解视图;
图 2是本发明实施例的移相器的装配图;
图 3是用来驱动本发明实施例的移相器的导体摆臂旋转的齿轮齿条机构 的示意图; 和
图 4是用来驱动本发明实施例的移相器的导体摆臂旋转的联杆机构的示 意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信系统, 例如: GSM, 码分多址 ( CDMA, Code Division Multiple Access ) 系统, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ) , 通用分组无线业务 ( GPRS , General Packet Radio Service ) , 长期演进 (LTE , Long Term Evolution )等。
基站,可以是 GSM或 CDMA中的基站( BTS, Base Transceiver Station ), 也可以是 WCDMA中的基站( NodeB ) ,还可以是 LTE中的演进型基站( eNB 或 e-NodeB , evolutional Node B ), 本发明并不限定, 但为描述方便, 下述实 施例以 Node B为例进行说明。
图 1是本发明实施例的移相器的分解视图。 需要说明的是, 图 1所示为 移相器的示意结构图, 为了叙述方便, 省略了本领域技术人员熟知的其他部 件, 并且本领域技术人员知道这些省略了的部件的结构以及在移相器中的用 途。
如图 1所示,移相器包括位于中部的移相单元 100和位于两侧的移相单 元 200。 移相单元包括输入导体 102、 导体摆臂 104以及导体带 106, 其中导 体带 106在输出端 108A和输出端 108B之间延伸, 输入导体 102—端与信 号源连接, 而另一端延伸到基本上位于导体带 106中心的节点 110, 导体摆 臂 104在摆臂输入端 142和摆臂耦合端 144之间延伸,导体摆臂 104的摆臂 输入端 142在节点 110与输入导体 102可旋转地电连接, 以使随着导体摆臂 104围绕节点 110旋转, 导体摆臂 104的摆臂耦合端 144与导体带 106可滑 动地电连接。这里所说的电连接包括接触式的电连接以及非接触式的电耦合 连接。 根据本发明实施例, 节点 110可以形成孔 114, 导体摆臂 104的摆臂 输入端 142通过传动轴 112与节点 110机械地耦接, 传动轴 112与导体摆臂 104固定连接, 也就是说, 导体摆臂 104不能相对于传动轴 112转动, 但是 传动轴 112可以在所述孔 114中旋转。 利用置于输入导体 102下方的驱动机 构(以下详细描述)驱动传动轴 112旋转, 带动导体摆臂 104摆动, 使得导 体摆臂 104的摆臂耦合端 144在导体带 106上滑动。 从图 1中可以知, 所述 导体带 106设置在以所述传动轴 112的轴线为圓心以所述导体摆臂 104远离 所述传动轴 112的末端到所述传动轴 112的轴线之间的距离为半径的圓弧上 并且与所述导体摆臂 104之间电连接。这里所说的电连接包括接触式的电连 接以及非接触式的电耦合连接。 根据本发明实施例, 传动轴 112以绝缘材料 例如塑料制成, 防止电信号经由传动轴 112传递到驱动机构。
移相单元 200包括两部分, 第一移相部分由输入导体 202A、 导体摆臂 204 A , 导体带 206A构成, 第二移相部分由输入导体 202B、 导体摆臂 204B 以及导体带 206B构成, 第一移相部分和第二移相部分分置于移相单元 100 的两侧, 其中导体带 206A在耦合端 262A和输出端 264A之间延伸,导体带 206B在耦合端 262B与输出端 264B之间延伸, 输入导体 202A的一端 226A 与移相单元 100的输出端 108 A上的功分节 116 A导电连接而另一端 228 A延 伸到基本上位于导体带 206A中心的节点 210A, 导体摆臂 204A在摆臂输入 端 242 A和摆臂耦合端 244A之间延伸, 所述导体摆臂 204A的摆臂输入端 242A在节点 210A与输入导体 202A可旋转地电连接, 以使随着导体摆臂 204A围绕节点 210A旋转,导体摆臂 204A的摆臂耦合端 244A与导体带 206A 的耦合端 262A可滑动地电连接, 输入导体 202B的一端 226B与移相单元 100的输出端 108B上的功分节 116B导电连接而另一端 228B延伸到基本上 位于导体带 206B中心的节点 210B, 导体摆臂 204B在摆臂输入端 242B和 摆臂耦合端 244B之间延伸,导体摆臂 204B的摆臂输入端 242B在节点 210B 与输入导体 202B可旋转地电气耦接,以使随着导体摆臂 204B围绕节点 210B 旋转, 导体摆臂 204B的摆臂耦合端 244B与导体带 206B的耦合端 262B可 滑动地电气 接。
根据本发明实施例,与移相单元 100类似,节点 210A可以形成孔 214A, 导体摆臂 204A的摆臂输入端 242A通过传动轴 212A与节点 210A机械地耦 接, 传动轴 212A与导体摆臂 204A固定连接, 也就是说, 导体摆臂 204A不 能相对于传动轴 212A转动, 但是传动轴 212A可以在所述孔 214A中旋转。 根据本发明实施例, 传动轴 212A以绝缘材料例如塑料制成, 防止电信号经 由传动轴 212A传递到驱动机构。利用置于输入导体 202下方的驱动机构(以 下详细描述)驱动传动轴 212A旋转, 带动导体摆臂 204A摆动, 使得导体 摆臂 204A的摆臂耦合端 244A在导体带 206A上滑动。
同样, 节点 210B可以形成孔 214B,导体摆臂 204B的摆臂输入端 242B 通过传动轴 212B与节点 210B机械地耦接, 传动轴 212B与导体摆臂 204B 固定连接, 也就是说, 导体摆臂 204B不能相对于传动轴 212B转动, 但是 传动轴 212B可以在所述孔 214B中旋转。 利用置于输入导体 202B下方的驱 动机构 (以下详细描述)驱动传动轴 212B旋转, 带动导体摆臂 204B摆动, 使得导体摆臂 204B的摆臂耦合端 244B在导体带 206B上滑动。传动轴 212B 也是以绝缘材料制成。 如图 1所示, 传动轴 212A、 212B相互平行, 并且与 传动轴 112平行。
从图 1可以看出, 与移相单元 100类似, 所述导体带 206A、 206B设置 在以所述传动轴 212A、 212B的轴线为圓心以所述导体摆臂 204A、 204B远 离所述传动轴 212A、 212B的末端到所述传动轴 212A、 212B的轴线之间的 距离为半径的圓弧上并且与所述导体摆臂 204A、 204B之间电连接。 这里所 说的电连接包括接触式的电连接以及非接触式的电耦合连接。
根据本发明实施例, 如图 1所示, 移相单元 100的输出端 108A、 108B 可以分别与移相单元 200的输入导体 202A、 202B的端部 226A、 226B形成 整体或者分别在功分节 116A、 116B处与输入导体 202A、 202B的端部 226A、 226B焊接在一起。
根据本发明实施例, 如图 1所示, 导体摆臂 104的摆臂耦合端 144可以 形成符合导体带 106的弧形部分。在摆臂耦合端 144在导体带 106上滑动时, 弧形的摆臂耦合端 144可以增大与导体带 106的耦合区域, 提高耦合特性。 类似的, 导体摆臂 204A、 204B的摆臂耦合端 244A、 244B也可以分别形成 符合导体带 206A、 206B的弧形形状, 以使得随着导体摆臂 204 A、 204B旋 转, 摆臂耦合端 244A、 244B各自至少一部分分别与导体带 206A、 206B重 合, 提高耦合特性。 根据本发明一种实施例, 例如图 1所示, 导体带 206A、 206B 大致为 90度的圓弧。 而根据本发明另一种未示出的实施例, 导体带 206 A , 206B也可以为 180度的圓弧, 或者为其他角度的圓弧, 例如 135度、 120度等等, 根据具体应用场合来确定。
根据本发明实施例, 导体带 106大致可以为 180度的圓弧, 但是也可以 为其他角度的圓弧, 例如 240度等, 随着导体摆臂 104旋转, 导体摆臂 104 的摆臂耦合端 144沿着导体带 106滑动,使得从输入导体 102输入并分别从 输出端 108A、 108B输出的信号的传输路径长度差异发生变化, 由此在输出 端 108A、 108B获得两路移相信号。
从输出端 108A、 108B的功分节 116A、 116B分出的一部分信号分别经 由导体 202A、 202B传输至 210A、 210B ,然后分别与摆臂输入端 242A、 242B 耦合, 接着分别沿摆臂 204A、 204B传输, 再次分别经过摆臂耦合端 244A、 244B与导体带 206A、 206B的耦合端 262A、 262B耦合, 然后分别沿导体带 206 A , 206B传输并最终从输出端 264A、 264B输出。 随着导体摆臂 204 A、 204B旋转, 导体摆臂 204A、 204B的摆臂耦合端 244A、 244B分别在导体带 206 A , 206B上滑动, 以使从输出端 264 A、 264B输出的信号的传输路径长 度差进一步发生变化, 由此在输出端 264A、 264B获得另外两路移相信号。 如果将从输入导体 102输入的信号进行功分从而也输出一路信号的话, 则可 以实现 1分 5的输出, 其中有两对移相信号, 分别从输出端 108A、 108B , 输出端 264A、 264B输出。 而且, 从输出端 264A、 264B输出的信号的移相 量不同于从输出端 108A、 108B输出的信号。
根据本发明一种实施例, 例如图 1所示,导体带 206A、 206B相对设置, 即导体带 206A、 206B弯曲方向相对, 在导体摆臂 204A、 204B同向旋转时, 例如在图 1中, 导体摆臂 204A、 204B顺时针方向转动时, 则经由导体摆臂 204A和导体带 206A的信号的传输路径长度增大, 而经由导体摆臂 204B和 导体带 206B的信号的传输路径长度减小, 或者导体摆臂 204A、 204B逆时 针方向转动时, 则经由导体摆臂 204A和导体带 206A的信号的传输路径长 度减小, 而经由导体摆臂 204B和导体带 206B的信号的传输路径长度增大。 在这两种情况下, 从输出端 264A、 264B输出的信号的传输路径长度差都增 大, 因此从输出端 264A、 264B输出的信号的移相量大于从输出端 108A、 108B输出的信号的移相量。
根据未示出的本发明另一种实施例,导体带 206A、 206B可以同向设置, 即导体带 206A、 206B弯曲方向相同, 在导体摆臂 204A、 204B同向旋转时, 则经由导体摆臂 204A和导体带 206A的信号的传输路径长度以及经由导体 摆臂 204B和导体带 206B的信号的传输路径长度同时减小或增大, 导致从 输出端 264 A、 264B输出的信号的传输路径长度差减小,此时从输出端 264 A、 264B输出的信号的移相量需要根据从输出端 108A、 108B输出的信号的传 输路径长度差以及从输出端 264A、 264B输出的信号的传输路径长度差之间 的关系来判断, 本领域技术人员可以根据需要减小从输出端 264A、 264B输 出的信号的移相量或者增大该移相量, 进行自定义的调节。
根据本发明实施例, 导体摆臂 204A和 204B旋转的量可以相同, 也可 以不同, 根据具体情况来设置。
图 2是本发明实施例的移相器的装配图。 如图 2所示并结合图 1所示, 利用传动轴 112穿过输入导体 102的节点 110处的孔 114以及导体摆臂 104 的端部 142处的孔而将输入导体 102与导体摆臂 104机械地连接,保证输入 导体 102与导体摆臂 104电气耦接并且导体摆臂 104围绕传动轴 112的中轴 线旋转。导体摆臂 104的摆臂耦合端 144贴合在导体带 106上,与导体带 106 电气耦接。 根据本发明实施例, 在摆臂输入端 142与输入导体 102贴合的区 域, 摆臂耦合端 144与导体带 106贴合的区域, 可以在摆臂输入端 142或者 输入导体 102贴合表面,摆臂耦合端 144或者导体带 106的贴合表面设置绝 缘涂层, 例如环氧树脂或者特富龙, 以使导体摆臂 104与输入导体 102直流 绝缘, 摆臂耦合端 144和导体带 106直流绝缘。 根据本发明一种实施例, 可 以在输入导体 102的节点 110处设置绝缘材料薄膜, 或者在摆臂输入端 142 与输入导体 102 贴合表面至少一个表面上设置特富龙涂层, 以使导体摆臂 104与输入导体 102直流绝缘。
采用相同的方式, 如图 2所示并结合图 1所示, 利用传动轴 212A穿过 输入导体 202的节点 210A处的孔 214A以及导体摆臂 204的端部 242A处的 孔而将输入导体 202A与导体摆臂 204A机械地连接,保证输入导体 202A与 导体摆臂 204A电气耦接并且导体摆臂 204A围绕传动轴 212A的中轴线旋 转。 导体摆臂 204A的摆臂耦合端 244A贴合在导体带 206A上, 与导体带 206A电气耦接。 根据本发明实施例, 摆臂输入端 242A与输入导体 202A贴 合的区域, 在摆臂耦合端 244A与导体带 206A贴合的区域, 可以在摆臂输 入端 142或者输入导体 102贴合表面, 摆臂耦合端 244A或者导体带 206A 的贴合表面设置绝缘涂层, 例如环氧树脂或者特富龙, 以使导体摆臂 204A 与输入导体 202A直流绝缘,摆臂耦合端 244A和导体带 206A直流绝缘。根 据本发明一种实施例, 可以在输入导体 202A的节点 210A处设置绝缘材料 薄膜, 或者在摆臂输入端 242A与输入导体 202A贴合表面至少一个表面上 设置特富龙涂层, 以使导体摆臂 204A与输入导体 202A直流绝缘。 输入导 体 202B与导体带 206B的连接方式以及其他特征均类似于输入导体 202A与 导体带 206A的连接方式, 不再重述。
根据未示出的本发明实施例, 可以在导体摆臂 104、 204 A , 204B 的摆 臂耦合端 144、 244A、 244B处设置卡钩, 用来卡在导体带 106、 206A、 206B 上, 以提高导体摆臂与导体带之间的机械贴合特性。
以下,结合具体结构说明用来驱动本发明实施例的移相器的导体摆臂旋 转的机构。 图 3是用来驱动本发明实施例的移相器的导体摆臂旋转的齿轮齿 条机构的示意图。 如图 3所示, 齿轮齿条机构 300包括 3个齿轮 310、 320、 330, 其中齿轮 310用来驱动传动轴 112、 齿轮 320用来驱动传动轴 212A, 而齿轮 330驱动传动轴 212B , 由此间接驱动导体摆臂 102、 202 A , 202B旋 转。 齿轮 310、 320、 330的中心轴 312、 322、 332与传动轴 112、 212A、 212B 一体成形或者机械连接, 例如焊接或者卡销连接, 以便能分别驱动传动轴 112、 212A、 212B转动。 齿轮齿条机构 300还包括齿条 340, 齿条 340与 3 个齿轮 310、 320、 330同时啮合, 以便随着齿条 340平移而同步地驱动 3个 齿轮 310、 320、 330转动。 齿条 340上可以设置有狭槽 342、 344, 固定地设 置在齿轮齿条机构 300的底座 360上的卡销 350、 352在狭槽 342、 344中滑 动, 用来保证齿条 340的移动方向。 可以利用本领域已知的驱动源, 例如电 动马达来驱动齿条 340移动, 由此为导体摆臂 102、 202 A , 202B旋转提供 动力。 根据未示出的本发明实施例, 也可以在齿轮齿条机构 300的底座 360 上设置与齿条 340平行延伸的凸台,让齿条 340不带齿的那一面在凸台的侧 面滑动, 由此保证齿条的滑动方向。 在这种情况下, 齿条 340上不需要设置 狭槽 342、 344, 并且底座 360上也就不需要设置卡销 350、 352。 根据本发 明的替代实施例,可以利用驱动源驱动齿轮 310、 320、 330之中的一个齿轮, 借助齿条 340作为联动机构,驱动 3个齿轮同时转动, 由此为导体摆臂 102、 202 A、 202B旋转提供动力。
图 4是用来驱动本发明实施例的移相器的导体摆臂旋转的联杆机构的示 意图。 如图 4所示, 联杆机构 400包括 3个联杆 410、 420、 430, 其中联杆 410用来驱动传动轴 112、 联杆 420用来驱动传动轴 212A, 而联杆 430驱动 传动轴 212B, 由此间接驱动导体摆臂 102、 202 A , 202B旋转。 联杆 410、 420、 430的一端部 412、 422、 432在一侧与联杆机构 400的底座 460旋转连 接, 而端部 412、 422、 432的另一侧分别与传动轴 112、 212A、 212B机械 连接, 例如焊接或者卡销连接, 以便能分别驱动传动轴 112、 212A、 212B 转动。 联杆机构 400还包括驱动连杆 440, 驱动连杆 440与联杆 410、 420、 430的另一端部 414、 424、 434旋转连接, 以便随着牵引驱动连杆 440, 能 同时围绕端部 412、 422、 432旋转联杆 410、 420、 430,为传动轴 112、 212A、 212B旋转提供动力。 如图 4所示, 联杆 430延伸地比联杆 410、 420更长, 并且在端部 434处开设狭槽 436, 传动联杆 450端部的卡销 452设置在狭槽 436中, 在例如以电动马达驱动传动连杆 450时, 卡销 452在狭槽 436中滑 可选地, 根据本发明实施例, 也可以为传动轴 112、 212A和 212B分别 提供驱动机构, 例如齿轮或者联杆, 并且分别提供动力来驱动传动轴 112、 212A和 212B, 以便提供更大的调节能力。
根据本发明实施例的构思, 可选择地, 移相器可以仅包括由第一移相部 分和第二移相部分构成的第一移相单元 200。 所述第一移相部分及第二移相 部分分别包括传动轴、 输入导体、 导体摆臂以及导体带。 参照图 1 , 第一移 相部分包括传动轴 212A、 输入导体 202A、 导体摆臂 204A、 导体带 206A, 第二移相部分包括传动轴 212B、 输入导体 202B、 导体摆臂 204B以及导体 带 206B。 所述输入导体 212A、 212B的一端枢接在所述传动轴 212A、 212B 上, 所述导体摆臂 204A、 204B的一端设置在所述传动轴 212A、 212B上用 以在所述传动轴 212A、 212B的带动下转动并与所述输入导体 202A、 202B 电连接。 这里所说的电连接包括接触式的电连接以及非接触式的电耦合连 接。 所述导体带 206A、 206B设置在以所述传动轴 212A、 212B的轴线为圓 心以所述导体摆臂 204A、 204B远离所述传动轴 212A、 212B的末端到所述 传动轴 212A、 212B的轴线之间的距离为半径的圓弧上并且与所述导体摆臂 204A、 204B之间电连接。 所述第一移相部分的传动轴 212A与所述第二移 相部分的传动轴 212B间隔设置且相互平行, 所述第一移相部分的输入导体 202A远离所述第一移相部分的传动轴 212A的一端 226A与第二移相部分的 输入导体 202B远离所述第二移相部分的传动轴 212B的一端 226B直接或者 间接的电连接。 端部 226A可以与端部 226B直接电连接起来, 并作为移相 器的输入端部。 或者如图 1所示, 将移相单元 100的输入导体 102、 导体摆 臂 104以及导体带 106固定不动的话, 也可以看做端部 226A和端部 226B 通过导体带 106导电连接在一起。
在这种实施例中, 可以仅设置如上所述的用来驱动传动轴 212A、 212B 的齿轮 320、 330,或者仅设置用来驱动传动轴 212A、 212B的联杆 420、 430。 齿轮 320、 330可以彼此独立地驱动也可以同时被驱动。在同时驱动齿轮 320、 330的时候, 可以设置如上所述的齿条 340。 联杆 420、 430也可以彼此独立 地驱动也可以同时被驱动。 在同时驱动联杆 420、 430的时候, 可以设置如 上所述的驱动连杆 440。
根据本发明实施例的原理和构思,本领域技术人员还可以想到其他的实 施方式,例如将另外的移相单元 200在如图 1所示的移相单元 200两侧串联, 由此设计的移相器可以提供 1分 7的输出, 或者更多端口的输出。 这种扩展 实施方式可以在本发明实施例的构思的基础上, 根据上述教导而方便地实 现, 也应该落入本发明实施例的范围之内。
根据本发明实施例的移相器具有体积小、 损耗低的优点, 有利于降低产 品成本并提高产品竟争力。与此同时,根据本发明实施例的移相器布线筒单, 微波信号的线间耦合小, 有利于降低移相器的设计难度并提高产品性能。 根 据本发明实施例的移相器可以提供 1分 5的输出, 并容易进行扩展, 而提供 更多路移相输出。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和筒洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1. 一种移相器, 其特征在于, 所述移相器包括: 具有第一移相部分和 第二移相部分构成的第一移相单元,所述第一移相部分及第二移相部分分别 包括传动轴、 输入导体、 导体摆臂以及导体带, 所述输入导体枢接在所述传 动轴上,所述导体摆臂的一端设置在所述传动轴上用以在所述传动轴的带动 下转动并与所述输入导体电连接, 所述导体摆臂的另一端与所述导体带对应 设置并与所述导体带间电连接, 其中, 所述第一移相部分的传动轴与所述第 二移相部分的传动轴间隔设置且性相互平行,所述第一移相部分的输入导体 与第二移相部分的输入导体直接或者间接的电连接。
2. 如权利要求 1所述的移相器,其特征在于,所述导体带设置在以所述 传动轴的轴线为圓心以所述导体摆臂远离所述传动轴的末端到所述传动轴 的轴线之间的距离为半径的圓弧上。
3. 如权利要求 1所述的移相器, 其特征在于, 还包括第二移相单元, 所 述第二移相单元包括第二传动轴、 第二输入导体、 第二导体摆臂以及第二导 体带, 所述第二传动轴设置在所述第一移相部分的传动轴及所述第二移相部 分的传动轴之间并与所述第一移相部分的传动轴及第二移相部分的传动轴 相互平行, 所述第二输入导体的一端枢接在所述第二传动轴上, 另一端用以 与信号源连接,所述第二导体摆臂的一端设置在所述第二传动轴上用以在所 述第二传动轴的带动下转动并与所述第三输入导体电连接, 所述第二导体带 设置在以所述第二传动轴的轴线为圓心以所述第二导体摆臂远离所述第二 传动轴的末端到所述第三传动轴的轴线之间的距离为半径的圓弧上并且与 所述第二导体摆臂之间电连接; 所述第三导体带的相对两端分别与所述第一 移相部分的输入导体及第二移相部分的输入导体电连接。
4. 如权利要求 3所述的移相器, 其特征在于,
所述第二导体摆臂与所述第二导体带耦合的端部形成与所述第二导体 带的端部对应的弧形。
5. 如权利要求 1至 4任意一项所述的移相器, 其特征在于,
所述第一移相部分的导体摆臂与导体带耦合的端部形成符合所述导体 带的弧形端部, 和 /或
所述第二移相部分的导体摆臂与导体带耦合的端部形成符合所述导体带的 弧形端部。
6. 如权利要求 1所述的移相器, 其特征在于,
所述第一移相部分的传动轴和所述第二移相部分的传动轴彼此独立地 转动。
7. 如权利要求 1所述的移相器, 其特征在于,
所述第一移相部分的传动轴和所述第二移相部分的传动轴同时转动。
8. 如权利要求 7所述的移相器, 其特征在于,
所述第一移相部分的导体带和所述第二移相部分的导体带相对设置, 以 使在所述第一移相部分的导体摆臂和所述第二移相部分的导体摆臂向相同 的方向旋转时,所述第一移相部分的导体摆臂与导体带重合的区域增大而所 述第二移相部分的导体摆臂与导体带重合的区域减小, 或者所述第一移相部 分的导体摆臂与导体带重合的区域减小而所述第二移相部分的导体摆臂与 导体带重合的区域增大。
9. 如权利要求 7所述的移相器, 其特征在于,
所述第一移相部分的导体带和所述第二移相部分的导体带同向设置, 以 使在所述第一移相部分的导体摆臂和所述第二移相部分的导体摆臂向相同 的方向旋转时,所述第一移相部分的导体摆臂与所述导体带重合的区域和所 述第二移相部分的导体摆臂与所述导体带重合的区域同时增大或减小。
10. 如权利要求 2所述的移相器, 其特征在于,
所述第一移相部分进一步包括与所述第一移相部分的传动轴相连用来 驱动所述第一移相部分的导体摆臂旋转的第一齿轮; 所述第二移相部分进一 步包括与所述第二移相部分的传动轴相连用来驱动所述第二移相部分的导 体摆臂旋转的第二齿轮; 所述第二移相单元进一步包括与第二传动轴相连用 来驱动所述第二导体摆臂旋转的第三齿轮, 所述移相器还包括与所述第一齿 轮、 第二齿轮和第三齿轮啮合的齿条。
11. 如权利要求 2所述的移相器, 其特征在于,
所述第一移相部分进一步包括与所述第一移相部分的传动轴相连用来 驱动所述第一移相部分的导体摆臂旋转的第一联杆; 所述第二移相部分进一 步包括与所述第二移相部分的传动轴相连用来驱动所述第二移相部分的导 体摆臂旋转的第二联杆, 所述第二移相单元进一步包括与第二传动轴相连用 来驱动所述第二导体摆臂旋转的第三联杆, 所述移相器还包括与所述第一联 杆、 第二联杆和第三联杆相连的驱动联杆。
12. 如权利要求 1所述的移相器, 其特征在于,
所述第一移相部分进一步包括与所述第一移相部分的传动轴相连用来 驱动所述第一移相部分的导体摆臂旋转的第一齿轮; 所述第二移相部分进一 步包括与所述第二移相部分的传动轴相连用来驱动所述第二移相部分的导 体摆臂旋转的第二齿轮, 所述移相器还包括与所述第一齿轮、 第二齿轮啮合 的齿条。
13. 如权利要求 1所述的移相器, 其特征在于,
所述第一移相部分进一步包括与所述第一移相部分的传动轴相连用来 驱动所述第一移相部分的导体摆臂旋转的第一联杆; 所述第二移相部分进一 步包括与所述第二移相部分的传动轴相连用来驱动所述第二移相部分的导 体摆臂旋转的第二联杆, 所述移相器还包括与所述第一联杆、 第二联杆相连 的驱动连杆。
PCT/CN2011/077270 2011-07-18 2011-07-18 移相器 WO2012106900A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180001177.8A CN102308434B (zh) 2011-07-18 2011-07-18 移相器
PCT/CN2011/077270 WO2012106900A1 (zh) 2011-07-18 2011-07-18 移相器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077270 WO2012106900A1 (zh) 2011-07-18 2011-07-18 移相器

Publications (1)

Publication Number Publication Date
WO2012106900A1 true WO2012106900A1 (zh) 2012-08-16

Family

ID=45381257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077270 WO2012106900A1 (zh) 2011-07-18 2011-07-18 移相器

Country Status (2)

Country Link
CN (1) CN102308434B (zh)
WO (1) WO2012106900A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103825070B (zh) * 2014-03-14 2015-11-18 江苏捷士通射频系统有限公司 一种超宽带小型化移相器单元及其联动机构
DE102015003357A1 (de) * 2015-03-16 2016-09-22 Kathrein-Werke Kg Hochfrequenz-Phasenschieberbaugruppe
DE102015004658A1 (de) * 2015-04-13 2016-10-13 Kathrein-Werke Kg Differenz-Phasenschieberbaugruppe
EP3096393B1 (de) * 2015-05-22 2018-01-24 Kathrein Werke KG Differenz-phasenschieberbaugruppe
CN109193082A (zh) * 2018-08-10 2019-01-11 昆山恩电开通信设备有限公司 紧凑型一体化移相器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359548A (zh) * 1999-08-17 2002-07-17 凯特莱恩工厂股份公司 高频移相器组件
CN101174729A (zh) * 2007-10-24 2008-05-07 华南理工大学 电调天线双侧对称弧臂移相器
WO2009044950A1 (en) * 2007-10-05 2009-04-09 Ace Antenna Corp. Phase shifter
WO2009104265A1 (ja) * 2008-02-21 2009-08-27 日本電業工作株式会社 分配移相器
CN101971413A (zh) * 2008-02-25 2011-02-09 日本电业工作株式会社 多分支分配移相器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034748B2 (en) * 2003-12-17 2006-04-25 Microsoft Corporation Low-cost, steerable, phased array antenna with controllable high permittivity phase shifters
CN101202369B (zh) * 2007-12-11 2011-12-07 中国电子科技集团公司第五十五研究所 一种小型化mems开关线移相器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359548A (zh) * 1999-08-17 2002-07-17 凯特莱恩工厂股份公司 高频移相器组件
WO2009044950A1 (en) * 2007-10-05 2009-04-09 Ace Antenna Corp. Phase shifter
CN101174729A (zh) * 2007-10-24 2008-05-07 华南理工大学 电调天线双侧对称弧臂移相器
WO2009104265A1 (ja) * 2008-02-21 2009-08-27 日本電業工作株式会社 分配移相器
CN101971413A (zh) * 2008-02-25 2011-02-09 日本电业工作株式会社 多分支分配移相器

Also Published As

Publication number Publication date
CN102308434A (zh) 2012-01-04
CN102308434B (zh) 2013-08-07

Similar Documents

Publication Publication Date Title
WO2012106900A1 (zh) 移相器
CN108879035B (zh) 介质滑动式移相器及基站天线
US11081789B2 (en) Base station antennas including wiper phase shifters
EP2731191B1 (en) Phase shift equipment and antenna system thereof
JP4792173B2 (ja) アンテナ装置、送受信機、電気機器、及びコンピュータ端末
WO2017113120A1 (zh) 移相器、天线和无线通信设备
CN108432036B (zh) 移相器和天线
JP2018522462A (ja) 導波管電力分配器と導波管位相可変器及びこれを用いた偏波アンテナ
JP2019514305A (ja) 誘電体を用いてアンテナ部分間に連続的な絶縁を提供するためのアンテナ装置及び方法
US11349184B2 (en) Phase shifter including first and second boards having rails thereon and configured to be rotatable with respect to each other and an antenna formed therefrom
JP2022040256A (ja) 無線通信システム、無線通信システムの制御方法及び通信装置
BRPI0613325A2 (pt) disposição para direcionar lóbulo de radiação de antena
WO2014121754A1 (zh) 具有滤波元件的移相器以及滤波元件和天线
CN109193161B (zh) 移相器及天线
CN115966906A (zh) 滤波移相器及天线
CN102132453B (zh) 分配移相器
JP7009179B2 (ja) 無線通信システム、通信装置及び通信方法
EP2629358A2 (en) Phase shifter and antenna
WO2007148908A1 (en) Variable phase shifter
JP5773272B2 (ja) 電力分配型移相器及びアンテナ装置
WO2021104069A1 (zh) 一种射频器件
CN113540794B (zh) 移相装置、天线及基站
JP2017224931A (ja) 移相器およびアンテナ装置
KR101077045B1 (ko) 도전부를 이용하여 프린징 필드를 차단하는 페이즈 쉬프터
WO2022151845A1 (en) Phase shifter, antenna and base station containing the phase shifter

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001177.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11858438

Country of ref document: EP

Kind code of ref document: A1