WO2021104069A1 - 一种射频器件 - Google Patents

一种射频器件 Download PDF

Info

Publication number
WO2021104069A1
WO2021104069A1 PCT/CN2020/128932 CN2020128932W WO2021104069A1 WO 2021104069 A1 WO2021104069 A1 WO 2021104069A1 CN 2020128932 W CN2020128932 W CN 2020128932W WO 2021104069 A1 WO2021104069 A1 WO 2021104069A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstrip line
radio frequency
component
frequency device
rotating
Prior art date
Application number
PCT/CN2020/128932
Other languages
English (en)
French (fr)
Inventor
崔鹤
肖伟宏
张润孝
关涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021104069A1 publication Critical patent/WO2021104069A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular to a radio frequency device.
  • the base station can also be called a public mobile communication base station, and the base station can communicate with the terminal. After the terminal communicates with the base station, it can access the Internet, or after the terminal communicates with the base station, it can perform voice communication or short message sending and receiving with other terminals.
  • a base station antenna is installed on the base station, and the base station can communicate with the terminal through the base station antenna.
  • the current implementation method is to change the coverage of the base station antenna by electrically adjusting the downtilt angle of the base station antenna.
  • the phase shifter is one of the key components in the realization of the downtilt angle of the electric base station antenna.
  • the staff can adjust the downtilt angle by adjusting the phase shifter.
  • Fig. 1 is an example diagram of a current phase shifter.
  • the signal passes from the input conductor 101 through the conductor swing arm 102 to the output terminal 103a and the output terminal 103b.
  • the worker can adjust the angle of the conductor swing arm 102 to change the phase of the signal, thereby realizing the adjustment of the downtilt angle.
  • the disadvantage of this kind of phase shifter is that to achieve the required phase shift function, the size of the conductor arc between the output terminal 103a and the output terminal 103b in the phase shifter needs to be made larger, so that the phase shifter is
  • the antenna occupies a lot of space, which wastes antenna space resources.
  • the embodiment of the present application provides a radio frequency device.
  • the microstrip line of the radio frequency device can be arranged on the side surface of the rotating component, which makes full use of the three-dimensional space and can achieve the phase shift requirement with less space.
  • the embodiment of the present application provides a radio frequency device, including: a rotating component, a first transmission component, and a power component;
  • At least a first microstrip line and a second microstrip line are provided on the side surface of the rotating component, and the first microstrip line and the second microstrip line are provided on the side surface of the rotating component;
  • the power component is connected to the rotating component for driving the rotating component to rotate;
  • a first connection end and a second connection end are provided on the first transmission component
  • one end of the first microstrip line is electrically connected to the first connection end, and the other end of the first microstrip line is electrically connected to the second connection end ;
  • one end of the second microstrip line is electrically connected to the first connection end, and the other end of the second microstrip line is electrically connected to the second connection end .
  • the microstrip line of the radio frequency device can be set on the side of the rotating part, and the shape of the microstrip line can be specifically set according to actual needs.
  • the microstrip line used to realize the phase shift function can make full use of the three-dimensional space on the rotating part. Realize the phase shift requirement with less space.
  • the radio frequency device further includes a second transmission component
  • the second transmission component is provided with a third connection end and a fourth connection end;
  • a third microstrip line and a fourth microstrip line are further provided on the side of the rotating component, and the third microstrip line and the fourth microstrip line are provided on the side of the rotating component;
  • one end of the third microstrip line is electrically connected to the third connection end, and the other end of the third microstrip line is electrically connected to the fourth connection end ;
  • one end of the fourth microstrip line is electrically connected to the third connection end, and the other end of the fourth microstrip line is electrically connected to the fourth connection end .
  • a fifth connection terminal is further provided on the first transmission component
  • the fifth connecting end is electrically connected to the first microstrip line connecting end
  • the fifth connecting end is electrically connected to the second microstrip line connecting end.
  • the first microstrip line is specifically curved and arranged on the side surface of the rotating component.
  • both ends of the first microstrip line are rectangular or circular.
  • a ground terminal is further provided on the first transmission component, and the ground terminal is used to ground the first microstrip line and the second microstrip line.
  • a bump is provided on the power component, and notches are provided on both ends of the rotating component, and the bumps and the notches are matched to connect the power component and the rotating component.
  • the power component and the rotating component are integrally formed.
  • the radio frequency device further includes a base
  • a bracket is installed on the base, and the bracket is used to fix the power component
  • the first transmission component is also installed on the base.
  • first connection end and the second connection end of the first transmission component extend to the base.
  • a first conductive metal sheet and a second conductive metal sheet are provided on the base shown, and the first conductive metal sheet is connected to the first connecting end through a first wire, and the second conductive metal sheet is The conductive metal sheet is connected to the second connecting end through a second wire.
  • the base, the first transmission component and the bracket are integrally formed.
  • the power component is connected to a motor, and the motor is used to drive the power component to rotate.
  • the motor is specifically a stepper motor.
  • the rotating component is specifically cylindrical or prismatic.
  • the embodiment of the present application provides a radio frequency device, and a plurality of microstrip lines are arranged on the side of a rotating component.
  • the radio frequency device transmits a signal through the first microstrip line, and the electrical performance of the signal is adjusted by the first microstrip line.
  • the radio frequency device passes through the second microstrip line.
  • the electrical performance of the signal is adjusted by the second microstrip line.
  • the microstrip line can be arranged on the side surface of the rotating component, which makes full use of the three-dimensional space, and can achieve the phase shift requirement with less space.
  • Figure 1 is an example diagram of a current phase shifter
  • Figure 2 is a schematic diagram of a signal sent by an antenna in an embodiment of the application
  • FIG. 3a is an example diagram 1 of an embodiment of a radio frequency device provided by an embodiment of the application.
  • FIG. 3b is an example diagram 2 of an embodiment of a radio frequency device provided by an embodiment of the application.
  • FIG. 3c is an example diagram 3 of an embodiment of a radio frequency device provided by an embodiment of the application.
  • FIG. 3d is an example FIG. 4 of an embodiment of a radio frequency device provided by an embodiment of the application.
  • FIG. 3e is an example FIG. 5 of an embodiment of a radio frequency device provided by an embodiment of the application.
  • FIG. 3f is an example FIG. 6 of an embodiment of a radio frequency device provided by an embodiment of the application.
  • FIG. 4 is an example diagram for explaining the principle of the microstrip line in an embodiment of the application.
  • FIG. 5a is an example diagram 1 of another embodiment of a radio frequency device provided by an embodiment of the application.
  • FIG. 5b is an example diagram 2 of another embodiment of a radio frequency device provided by an embodiment of the application.
  • FIG. 5c is an example diagram 3 of another embodiment of a radio frequency device provided by an embodiment of the application.
  • FIG. 5d is an example FIG. 4 of another embodiment of a radio frequency device provided by an embodiment of this application.
  • FIG. 6a is an example diagram 1 of an embodiment of a dual-channel radio frequency device provided by an embodiment of the application.
  • FIG. 6b is an example diagram 2 of an embodiment of a dual-channel radio frequency device provided by an embodiment of the application.
  • FIG. 6c is an example diagram 3 of an embodiment of a dual-channel radio frequency device provided by an embodiment of the application.
  • FIG. 6d is an example FIG. 4 of an embodiment of a dual-channel radio frequency device provided by an embodiment of the application.
  • FIG. 6e is an example diagram 5 of an embodiment of a dual-channel radio frequency device provided by an embodiment of the application.
  • FIG. 6f is an example FIG. 6 of an embodiment of a dual-channel radio frequency device provided by an embodiment of the application.
  • FIG. 7a is an example diagram 1 of an embodiment of a variable power division and phase radio frequency device provided by an embodiment of the application.
  • FIG. 7b is an example diagram 2 of an embodiment of a variable power division and phase radio frequency device provided by an embodiment of the application.
  • FIG. 7c is an example diagram 3 of an embodiment of a variable power division and phase radio frequency device provided by an embodiment of the application.
  • FIG. 7d is an example FIG. 4 of an embodiment of a variable power division and phase radio frequency device provided by an embodiment of the application; FIG.
  • FIG. 7e is an example diagram 5 of an embodiment of a variable power division and phase radio frequency device provided by an embodiment of the application.
  • FIG. 7f is an example FIG. 6 of an embodiment of a variable power division and phase radio frequency device provided by an embodiment of the application; FIG.
  • FIG. 8a is an example diagram 1 of another embodiment of a variable power division and phase radio frequency device provided by an embodiment of the application.
  • 8b is an example diagram 2 of another embodiment of a variable power division and phase radio frequency device provided by an embodiment of this application;
  • FIG. 8c is an example diagram 3 of another embodiment of a variable power division and phase radio frequency device provided by an embodiment of the application.
  • FIG. 8d is an example FIG. 4 of another embodiment of a variable power division and phase radio frequency device provided by an embodiment of this application; FIG.
  • FIG. 9a is an example diagram 1 of a microstrip line in an embodiment of the application.
  • FIG. 9b is an example diagram 2 of a microstrip line in an embodiment of this application.
  • Figure 9c is an example Figure 3 of a microstrip line in an embodiment of the application.
  • Fig. 9d is an example Fig. 4 of a microstrip line in an embodiment of this application.
  • the embodiment of the present application provides a radio frequency device.
  • the microstrip line of the radio frequency device can be arranged on the side surface of the rotating component, which makes full use of the three-dimensional space and can achieve the phase shift requirement with less space.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner.
  • Fig. 2 is a schematic diagram of a signal sent by an antenna in an embodiment of the application.
  • the phase shifter 201 is a part of the antenna 202.
  • the radio frequency signal is sent out after being processed by the phase shifter 201.
  • Phaser Phaser
  • Phase shifters are widely used in fields such as radar, communications, instrumentation and even music.
  • the embodiment of the present application does not specifically limit the application of the phase shifter.
  • the specific structure of the phase shifter 201 in the current antenna 202 is shown in FIG. 1, and the size of the phase shifter 201 is larger to meet the requirements of the antenna for phase shift performance.
  • the phase shifter shown in FIG. 1 is not easy to expand into a multiple input multiple output solution, and it is difficult to apply to multiple input multiple output (MIMO) antennas.
  • MIMO multiple input multiple output
  • an embodiment of the present application provides an embodiment of a radio frequency device, as shown in FIG. 3a, including: a rotating part 1, a transmission part 2 and a power part 3;
  • the rotating part 1 is shown in Fig. 3b in some embodiments.
  • the rotating component 1 can be cylindrical, and the rotating component 1 can rotate around the central axis of the cylinder.
  • the rotating part 1 can be prismatic, and the rotating part 1 can rotate around the central axis of the prism.
  • the rotating component 1 can also be designed in other rotatable shapes, and the embodiment of the present application does not limit the shape of the rotating component 1.
  • the embodiment of the present application describes the rotating component 1 mainly in a cylindrical shape, and other shapes can be implemented with reference to the embodiment of the present application.
  • the rotating component 1 may be provided with a first microstrip line 11a and a second microstrip line 11b. In practical applications, other microstrip lines can also be provided, and the embodiment of the present application does not limit the number of microstrip lines on the rotating component 1.
  • the rotating component 1 is a three-dimensional structure. When the phase shift is realized by the microstrip line on the rotating component 1, the three-dimensional space can be fully utilized, which solves the problem of large devices and waste of space due to the current phase shifting only through the planar structure. technical problem.
  • one end of the second microstrip line 11b may be provided with a port 11b-1, and the other end may be provided with a port 11b-2.
  • the second microstrip line 11b may be wider at the port 11b-1 and the port 11b-2, so as to be electrically connected to the connection end.
  • the second microstrip line 11b can be set as a rectangle at the port 11b-1 and the port 11b-2, as shown in FIG. 3b, so that the second microstrip line can better communicate with the transmission component 2.
  • the connection terminal on the electrical conduction In other embodiments, the second microstrip line 11b can be set in a circular shape at the port 11b-1 and the port 11b-2. In the same way, the second microstrip line can be better connected with the transmission component 2
  • the connection ends are electrically conductive.
  • the first microstrip line 11a may be bent on the side surface of the rotating member 1. As shown in FIG. 3b, the first microstrip line 11a is bent upwards and then bent downwards on the side of the rotating member 1, and then bends repeatedly to form a bent configuration. In practical applications, the microstrip line can be bent multiple times on the side surface of the rotating component 1, for example, the number of bendings of the first microstrip line 11a is 17 times. The embodiment of the present application does not specifically limit the number of bending of the microstrip line on the side of the rotating component 1. In the embodiment of the present application, other microstrip lines on the rotating component 1 can also be set to be bent according to actual needs. The bending of the first microstrip line can be referred to. The bending of other microstrip lines in the embodiment of the present application is no longer Go into details. It is understandable that in practical applications, some microstrip lines can be set to not bend. Exemplarily, the second microstrip line 11b is set to not bend.
  • a microstrip line with more bends can be designed to realize the lengthening of the microstrip line. Therefore, compared with the phase shifter shown in FIG. 1, the embodiment of the present application only needs a smaller size to obtain the length of the microstrip line required for phase shifting by bending the microstrip line.
  • the inner side of the transmission member 2 is shown in FIG. 3c in some embodiments, and the outer side of the transmission member 2 is shown in FIG. 3d in some embodiments.
  • the shape of the transmission component 2 can be matched with the rotation component 1.
  • the transmission component 2 can be arc-shaped.
  • the first connection terminal 21a and the second connection terminal 21b may be conductive metal sheets, which are attached to the side surface of the transmission component 2.
  • the first connecting end 21a and the second connecting end 21b can be attached to the inner side surface of the transmission component 2, that is, the side surface close to the rotating component 1.
  • the first connecting end 21a and the second connecting end 21b may be designed to be rectangular or circular.
  • the transmission component 2 may also be provided with a ground terminal 23, and the ground terminal 23 may be used as a reference ground of the microstrip line.
  • the ground terminal 23 is provided on the outer side of the transmission component 2, that is, the side far away from the rotating component 1.
  • more connection terminals may be provided on the transmission component 2 so that multiple connection terminals can be connected to multiple microstrip lines at the same time. In this case, the radio frequency device can realize multiple signals passing through multiple microstrip lines at the same time. Line transmission.
  • the embodiment of the present application does not limit the number of connecting ends on the transmission component 2.
  • FIG. 3e is a diagram showing an example of the combination of the rotating part 1 and the transmission part 2.
  • the shape of the transmission component 2 can be matched with the rotation component 1 so that when the rotation component 1 rotates, the microstrip line on the rotation component 1 is electrically connected to the connection end on the transmission component 2.
  • the port at one end of the first microstrip line 11a is electrically connected to the first connecting end 21a
  • the port at the other end of the first microstrip line 11a is electrically connected to the second connecting end 21b.
  • the port 11b-1 of the second microstrip line 11b is electrically connected to the first connecting end 21a
  • the port 11b-2 of the second microstrip line 11b is electrically connected to the second connecting end 21b
  • the first angle and the second angle may be different, and the range of the first angle and the second angle may be 0 degrees to 360 degrees.
  • the rotating part 1 rotates by 0 degrees, the rotating part 1 can also be said to be in the initial state.
  • the embodiment of the present application does not limit the specific numerical values of the first angle and the second angle, and the numerical values of the first angle and the second angle may be different.
  • the radio frequency signal when the rotating component 1 rotates to a certain angle, the radio frequency signal can be input from the first connection terminal 21a, after being transmitted through the microstrip line, and output at the second connection terminal 21b, the phase of the signal changes to achieve The function of phase shifting. Therefore, when designing the radio frequency device provided by the embodiments of the present application, the length of the microstrip line can be set by designing the number of bending of the microstrip line, so that the designed microstrip line can realize the required phase shift function.
  • the electrical conduction between the aforementioned microstrip line and the connection terminal may include coupling connection and direct connection.
  • Coupling connection can mean that there is a capacitance effect between two metals that have a coupling area close to each other. When the capacitance value is appropriate, the radio frequency signal can be transmitted between the two non-contact metals.
  • Direct connection may refer to direct contact between metals so that radio frequency signals or DC signals can be transmitted between metals. It can be understood that both the microstrip line on the rotating part 1 and the connection end of the transmission part 2 may be metal capable of transmitting signals.
  • Figure 4 is an example diagram of the principle of a microstrip line.
  • One side of the dielectric substrate is provided with a conduction band, and the other side of the dielectric substrate is provided with a ground plate.
  • This kind of conduction band is called a microstrip line and can transmit radio frequency signals.
  • the transmission component 2 can be equivalent to a dielectric substrate, and the microstrip line on the rotating component 1 can be the conducting tape in Fig. 4, and the transmission component
  • the ground terminal 23 on 2 is equivalent to a ground plate, so the microstrip line on the rotating part 1 can transmit radio frequency signals.
  • the first connecting end 21a, the second microstrip line 11b, and the second connecting end 21b constitute a conduction band
  • the ground terminal 23 on the transmission component 2 constitutes a ground plate (as a reference Ground).
  • Fig. 3f is an exploded diagram of the combination of the rotating component 1 and the power component 3 in the embodiment of the application.
  • the rotating component 1 is provided with a first microstrip line 11a, a second microstrip line 11b, a third microstrip line 11c, etc. The number is not limited.
  • the rotating component 1 may be provided with a gap, and the power component 3 may be provided with a bump. The cooperation of the notch and the bump can make the rotating component 1 and the power component 3 clamp each other to be combined together.
  • the power component 3 may be connected with a motor, and the rotation of the motor drives the rotation of the power component 3, thereby driving the rotation of the rotating component 1.
  • the motor specifically adopts a stepper motor.
  • stepper motor rotates, an angle can be fixed for each rotation, which is called the "step angle”. Therefore, the rotating component 1 corresponds to the "step angle”.
  • a microstrip line can be set at the position, so that when the stepper motor rotates an angle, the radio frequency device performs signal transmission by replacing a microstrip line.
  • the radio frequency device provided in the embodiment of the present application can also make the power component 3 rotate at an appropriate angle in other ways, for example, a processor is connected to a motor to control the rotation angle of the motor, which is not specifically limited in the embodiment of the present application.
  • the processor can be a microprocessor, a processor, a main processor, a controller, or an application specific integrated circuit (English abbreviation: ASIC, English full name: Application Specific Integrated Circuit) and other components, which can be realized by changing the voltage and current input to the motor Adjustment of the rotation angle of the motor.
  • the power component 3 may be connected with a knob.
  • the staff can turn the power part 3 through the knob, thereby turning the rotating part 1, so as to switch other microstrip lines for signal transmission.
  • the embodiment of the present application also provides another embodiment of a radio frequency device.
  • the radio frequency device further includes a base 4 on which the transmission component 2 is installed.
  • the base 4 is further equipped with a bracket 5, and the bracket 5 can be used to fix the power component 3.
  • the fixing method is similar to that of a bearing, and will not be repeated here.
  • the transmission component 2 and the bracket 5 may be welded on the base 4. It is understandable that in practical applications, designers can continuously adjust the position settings of each component, so that in the installed radio frequency device, when the rotating component 1 rotates at a certain angle, the microstrip line and the transmission component on the rotating component 1
  • the connection terminal on 2 can be electrically connected.
  • the rotating component 1 may be provided with a first microstrip line 11a, a second microstrip line 11b, a third microstrip line 11c, etc., which are similar to the description of the rotating component 1 in the foregoing embodiment, and will not be repeated here.
  • FIG. 5b is an example diagram of the combination of the rotating part 1 and the power part 3.
  • the rotating component 1 can be closely integrated with the power component 3 through the notches on the rotating component 1 and the bumps on the power component 3.
  • an adhesive or the like may be added between the rotating part 1 and the power part 3 to make the combination of the two more reliable.
  • the rotating part 1 and the power part 3 may be an integral structure. The integrally formed structure not only makes the combination of the rotating part 1 and the power part 3 more reliable, but also eliminates the process of assembling and combining the rotating part 1 and the power part 3 when producing the radio frequency device provided by the embodiment of this application. higher.
  • FIG. 5c is a three-dimensional example diagram of the radio frequency device provided by an embodiment of the application from another angle.
  • the first connecting end 21a may extend to the bottom surface of the base 4.
  • the second connecting end 21b can also extend to the bottom surface of the base 4.
  • the first connecting end 21a may also extend to the surface of the base 4, and the second connecting end 21b may also extend to the surface of the base 4, which is not specifically limited in the embodiment of the present application.
  • After the first connecting end 21a and the second connecting end 21b extend to the base they can be assembled more easily. For example, after the first connecting end 21a and the second connecting end 21b extend to the base, it is easier to implement wire bonding technology, and it is easier to connect to other components of the antenna through wire bonding technology, so as to achieve signal transmission and Phase shift.
  • some conductive metal sheets may be provided on the base to serve as the interface of the connection terminal or the ground terminal of the transmission component 2.
  • the conductive metal sheet on the base can be connected to the connection terminal or the ground terminal on the transmission component 2.
  • a first conductive metal sheet and a second conductive metal sheet are provided on the base, wherein the first conductive metal sheet is connected to the first connection terminal 21a on the transmission component 2 through a first wire, and the second conductive metal sheet passes through a first wire.
  • the two wires are connected to the second connecting end 21b.
  • the wire may be a microstrip line or a small conductive strip, which is not limited in the embodiment of the present application.
  • the conductive metal sheet, the wire, and the connecting end on the transmission component 2 may be an integrally formed structure.
  • the first conductive metal sheet, the first wire, and the first connecting end 21a may be an integrally formed structure, which is not limited in the embodiment of the present application.
  • FIG. 5d is a diagram of an example of the combination of the base 4, the transmission component 2 and the bracket 5 in the radio frequency device provided by the embodiment of the application.
  • the base 4, the transmission member 2 and the bracket 5 are integrally formed, and the combination of the three is more reliable.
  • other structures may be provided on the base 4 to implement functions required in actual applications.
  • a mounting shell may be provided on the base 4 to protect the radio frequency device provided in the embodiment of the present application.
  • a heat dissipation module may be installed on the base 4 to dissipate the radio frequency device provided in the embodiment of the present application, which is not specifically limited in the embodiment of the present application.
  • the ground terminal 23 may be connected to the ground point of the base 4. In other embodiments, the ground terminal 23 may extend to the base 4 and then be grounded. The embodiment of the present application does not specifically limit the grounding manner of the ground terminal 23.
  • an embodiment of the present application also provides a dual-channel radio frequency device.
  • the radio frequency device includes a base, a rotating part, a power part, a transmission part 2 and a bracket. Among them, the rotating parts and power parts are not shown.
  • the base, the rotating component, the power component, and the bracket are similar to the base 4, the rotating component 1, the power component 3, and the bracket 5 of the foregoing embodiment, and will not be repeated here.
  • the transmission component 2 includes a first transmission component and a second transmission component. The structure of the first transmission part is similar to that of the second transmission part, and the positions are symmetrical.
  • the first transmission component is provided with a first connection terminal 21a, a second connection terminal 21b, and a ground terminal 23, which are similar to the transmission component 2 on the side of the rotating component 1 in the foregoing embodiment, and will not be repeated here.
  • the second transmission component is provided with a third connection end 22a and a fourth connection end 22b.
  • a ground terminal 23 may also be provided on the second transmission component, as shown in FIG. 6b.
  • the first connection end 21a, the second connection end 21b, the third connection end 22a, and the fourth connection end 22b may extend to the base or be connected to the conductive metal sheet on the base.
  • the first connection end 21a, the second connection end 21b, the third connection end 22a, and the fourth connection end 22b may extend to the surface of the base or be connected to a conductive metal sheet on the surface of the base.
  • FIG. 6c is an example top view of a dual-channel radio frequency device provided by an embodiment of the application.
  • the side of the base shown in Fig. 6c may be referred to as the surface of the base, and the opposite side may be referred to as the bottom surface of the base.
  • the first connection end 21a, the second connection end 21b, the third connection end 22a, and the fourth connection end 22b may also extend to the bottom surface of the base, which is not specifically limited in the embodiment of the present application.
  • the ground terminal 23 may extend to the bottom surface of the base, as shown in FIG. 6d.
  • FIG. 6d is an example diagram of a bottom view of a dual-channel radio frequency device provided by an embodiment of the application.
  • the ground terminal 23 may extend from multiple interfaces, and these interfaces may be provided on the base in the form of conductive metal sheets.
  • the base shown in FIG. 6d is provided with four conductive metal sheet interfaces of the ground terminal 23.
  • the extension of the ground terminal 23 to the bottom surface of the base facilitates the grounding of the ground terminal 23.
  • the ground terminal 23 may also extend to the surface of the base, which is not specifically limited in the embodiment of the present application.
  • Fig. 6e shows an exemplary cross-sectional view of a rotating component in a radio frequency device provided by an embodiment of the present application.
  • multiple microstrip lines may be provided on the rotating component.
  • the rotating component may be provided with a first microstrip line 11a, a second microstrip line 11b, a third microstrip line 12a, a fourth microstrip line 12b, a fifth microstrip line 11c, a sixth microstrip line 11d, The seventh microstrip line 12c and the eighth microstrip line 12d.
  • Fig. 6f shows an exemplary cross-sectional view of the radio frequency device provided by the embodiment of the present application when the rotating component rotates at a first angle.
  • the first microstrip line 11a is connected to the first connection terminal 21a and the second connection terminal 21b, and the radio frequency device can transmit signals through the first microstrip line 11a to realize the shift of the first signal. phase.
  • the third microstrip line 12a is connected to the third connection end 22a and the fourth connection end 22b, and the radio frequency device can perform signal transmission through the third microstrip line 12a to realize the phase shift of the second signal. Therefore, the dual-channel radio frequency device provided by the embodiment of the present application can realize the transmission of two signals at the same time.
  • the radio frequency device can also be provided with a third transmission component, a fourth transmission component, etc., which have the same structure as the first transmission component, to achieve multi-channel transmission.
  • a third transmission component a fourth transmission component, etc., which have the same structure as the first transmission component, to achieve multi-channel transmission.
  • multiple connection terminals may be provided on the first transmission component, so that the first transmission component can be connected to multiple microstrip lines to realize multiple signal transmission and phase shifting.
  • the first transmission component can be connected to multiple microstrip lines to realize multiple signal transmission and phase shifting.
  • the embodiment of the present application also provides a radio frequency device with variable power division and phase, as shown in FIG. 7a.
  • the radio frequency device may include a rotating part 1, a transmission part 2, a power part, a base and a bracket.
  • the power component, the base, and the support are similar to the power component 3, the base 4, and the support 5 in the foregoing embodiment, and will not be repeated here.
  • connection ends may be provided in the transmission component 2, as shown in FIG. 7b, which are respectively a first connection end 21a, a second connection end 21b, and a fifth connection end 21c.
  • these three connecting ends can all extend to the bottom surface of the base or be connected to the conductive metal sheet on the bottom surface of the base, as shown in FIG. 7c.
  • connection ends extending to the bottom surface of the base in the foregoing embodiments. Description, I won’t repeat it here.
  • the fifth connecting end 21c may be disposed between the first connecting end 21a and the second connecting end 21b.
  • the transmission component 2 may also be provided with a ground terminal 23, as shown in FIG. 7d, which is similar to the ground terminal 23 in the foregoing embodiment, and will not be repeated here.
  • the microstrip line on the rotating component 1 may be provided with an intermediate connection end.
  • a first microstrip line 11a, a second microstrip line 11b, and a third microstrip line 11c are provided on the rotating component 1.
  • other microstrip lines can also be provided on the side of the rotating component 1.
  • the number of microstrip lines is not specifically limited in this embodiment of the application. Taking the first microstrip line 11a as an example, the first microstrip line 11a may be provided with a first microstrip line port 11a-1, a second microstrip line port 11a-5, and an intermediate port 11a-3.
  • the first microstrip line port 11a-1 and the middle port 11a-3 are connected by a first sub-microstrip line 11a-2, and the middle port 11a-3 and the second microstrip line port 11a-5 are connected by a second sub The microstrip line 11a-4 is connected.
  • the bending of the first sub-microstrip line 11a-2 and the second sub-microstrip line 11a-4 is similar to the bending of the first microstrip line 11 in the foregoing embodiment, and will not be repeated here.
  • the first microstrip line port 11a-1, the second microstrip line port 11a-5, and the intermediate port 11a-3 may be provided on the rotating component 1 in the form of conductive metal sheets.
  • the conductive metal sheet may be rectangular or circular, or other shapes.
  • the embodiment of the present application does not specifically limit the shape of the conductive metal sheet.
  • the position of the intermediate port 11a-3 in the example of the present application is on the center line of the port 11a-1 and the port 11a-5, and the position of the 11a-3 can also be in the non-center of the port 11a-1 and the port 11a-5. Online, please do not limit the position of 11a-3.
  • the embodiment itself does not limit the position of the intermediate connection end, and the specific description is the same as that of the intermediate port 11a-3, which will not be repeated here.
  • the first microstrip line port 11a-1 can be electrically connected to the first connection terminal 21a on the transmission component 2, and the second microstrip line
  • the port 11a-5 can be electrically connected to the second connection terminal 21b
  • the middle port 11a-3 can be electrically connected to the fifth connection terminal 21c.
  • the radio frequency signal can enter the radio frequency device through the fifth connection terminal 21c and be transmitted to the intermediate port 11a-3.
  • the signal can be transmitted to the first microstrip line port 11a-1 through the first sub-microstrip line 11a-2. Finally, the signal is transmitted to the antenna through the first connection terminal 21a.
  • Fig. 7f is a schematic diagram of signal transmission in an embodiment of the application.
  • the signal enters the first microstrip line from the intermediate port 11a-3, is output from the first microstrip line port 11a-1 through the first sub-microstrip line 11a-2, and is output from the second microstrip line 11a-4 through the second sub-microstrip line 11a-4.
  • Microstrip line port 11a-5 output. Therefore, the radio frequency device provided by the embodiment of the present application can realize signal power division.
  • microstrip line on the rotating component 1 can be set according to actual conditions, or multiple microstrip lines can be set to meet different power distribution requirements.
  • the embodiment of the present application does not specifically limit the number of microstrip lines on the rotating component 1.
  • the first microstrip line port 11a-1, the second microstrip line port 11a-5, and the intermediate port 11a-3 may be on the same straight line. In other embodiments, the first microstrip line port 11a-1, the second microstrip line port 11a-5, and the intermediate port 11a-3 may not be on the same line, as shown in FIG. 8a.
  • an embodiment of the present application also provides another radio frequency device with variable power division and phase, including a rotating part 1, a transmission part 2, a power part, a base, and a bracket.
  • the power component, the base, and the support are similar to the power component 3, the base 4, and the support 5 in the foregoing embodiment, and will not be repeated here.
  • a plurality of microstrip lines such as a first microstrip line 11a, a second microstrip line 11b, and a third microstrip line 11c, may be provided on the side surface of the rotating component 1 in the embodiment of the present application.
  • the first microstrip line 11a is provided with a first microstrip line port 11a-1, a second microstrip line port 11a-5, and an intermediate port 11a-3.
  • the first microstrip line port 11a-1 and the middle port 11a-3 are connected by a first sub-microstrip line 11a-2, and the middle port 11a-3 and the second microstrip line port 11a-5 are connected by a second sub The microstrip line 11a-4 is connected.
  • the first microstrip line port 11a-1, the second microstrip line port 11a-5, and the intermediate port 11a-3 may not be on the same straight line.
  • the first sub-microstrip line 11a-2 and the second sub-microstrip line 11a-4 can be offset to the middle port 11a-3 in addition to bending themselves, as shown in FIG. 8b.
  • other aspects of the rotating component 1, such as the shape of the rotating component 1 are similar to the rotating component 1 in the foregoing embodiment, and will not be repeated here.
  • the transmission component 2 may be provided with a first connection end 21a, a second connection end 21b, and a fifth connection end 21c.
  • the first connecting end 21a, the second connecting end 21b, and the fifth connecting end 21c may not be on the same straight line, as shown in FIG. 8c.
  • the first connection end 21a, the second connection end 21b, and the fifth connection end 21c may be respectively disposed at positions corresponding to the first microstrip line port 11a-1, the second microstrip line port 11a-5, and the intermediate port 11a-3.
  • the fifth connection There can be electrical conduction between the terminal 21c and the intermediate port 11a-3.
  • the corresponding microstrip line is also electrically connected to the first connection terminal 21a, the second connection terminal 21b, and the fifth connection terminal 21c. This is not the case in the embodiment of the present application. Go into details.
  • the first connection terminal 21a, the second connection terminal 21b, and the fifth connection terminal 21c may extend to the bottom surface of the base or be connected to the conductive metal sheet on the base, as shown in FIG. 8d, which is similar to that in the previous embodiments.
  • the extensions of the first connecting end 21a, the second connecting end 21b and the fifth connecting end 21c are similar, and will not be repeated here.
  • the conductive metal sheets extending from the first connecting end 21a, the second connecting end 21b, and the fifth connecting end 21c to the bottom surface of the base may be on the same straight line or not on the same straight line. This is not specifically limited.
  • the embodiment of the present application also provides a dual-channel variable power division and phase radio frequency device, which includes a rotating part, a transmission part, a power part, a base, and a bracket.
  • the rotating component, the power component, the base, and the bracket are similar to the rotating component 1, the power component 3, the base 4, and the bracket 5 in the foregoing embodiment, and will not be repeated here.
  • the transmission part can be divided into a first transmission part and a second transmission part.
  • the first transmission component and the second transmission component may have the same structure and are placed symmetrically, and the placement situation is similar to the first transmission component and the second transmission component in the embodiment corresponding to FIG. 6a, and will not be repeated here.
  • the structure of the first transmission component may be similar to the structure of the transmission component 2 in the embodiment corresponding to FIG. 7a or the embodiment corresponding to FIG. 8a, and will not be repeated here.
  • the embodiment of the present application also provides a radio frequency device, which includes a rotating part, a transmission part, a power part, a base, and a bracket.
  • the transmission component, the power component, the base and the bracket are similar to the transmission component 2, the power component 3, the base 4, and the bracket 5 in the foregoing embodiment, and will not be repeated here.
  • the two ends of the microstrip line on the rotating part can be set as multiple ports respectively.
  • one end of the microstrip line may be provided with one port, and the other end of the microstrip line may be provided with multiple ports, as shown in FIG. 9a. It is understandable that connection terminals corresponding to multiple ports can be provided on the transmission component.
  • 3 connection terminals may also be provided at corresponding positions on the transmission component.
  • the rotating component rotates to the first angle, for example, the three connecting ends on the transmission component can be electrically connected to the three ports on the right side of the microstrip line shown in FIG. 9a.
  • the rotating part rotates to the second angle, for example, two connecting ends on the transmission part are electrically connected to two ports on the right side of the microstrip line, and the remaining one connecting end is not electrically connected.
  • the rotating component rotates to the third angle for example, only one connection terminal on the transmission component is electrically connected to one port on the right side of the microstrip line.
  • the electrical conduction between the connecting end of the transmission component and the port on the microstrip line can be set according to the actual situation by adjusting the position of the connection end of the transmission component or the port of the microstrip line, for example, When rotated to a certain angle, among the multiple ports at one end of the microstrip line, only one port or two ports are electrically conductive at the same time, or all multiple ports are electrically conductive at the same time, which is not limited in the embodiment of the present application.
  • both ends of the microstrip line are configured as multiple ports.
  • one end of the microstrip line is provided with two ports, and the other end is provided with three ports.
  • the other conditions of the microstrip line are similar to the foregoing embodiment, and will not be repeated here.
  • one end of the microstrip line is set as a port, and the other end of the microstrip line is also set as a port.
  • multiple ports of the microstrip line on the rotating part may be combined into one port.
  • the three ports on the left side of the microstrip line are combined into one port to realize the function of dividing the signal into three.
  • the area of the combined ports can be designed to be larger, so that the rotating part can still be electrically conducted when it rotates.
  • 2 ports, 4 ports, 5 ports, etc. of the microstrip line on the rotating component can also be combined into one port, and the embodiment of the present application does not limit the number of combined ports.
  • the microstrip line on the rotating part may be designed in a one-to-three shape.
  • the port on the left side of the microstrip line is connected to the first section of the microstrip line, and then the three sections of the microstrip line at the bifurcation of the microstrip line are connected to three ports respectively.
  • the bifurcation of the microstrip line can be bifurcated as shown in Fig. 9d, or can be bifurcated in other smoother shapes.
  • the embodiment of the present application does not limit the shape of the bifurcation.
  • the bifurcation of the microstrip line may be arranged in the middle of the microstrip line, as shown in FIG. 9d.
  • the bifurcation of the microstrip line can also be set at other positions, for example, the position of one third of the left port of FIG. 9d, or other positions, the embodiment of the present application does not do the position of the bifurcation. limit.
  • the microstrip line can be designed to be divided into two shapes, designed to be divided into three shapes, designed to be divided into four shapes, etc.
  • the embodiment of the present application design bifurcation of the microstrip line The number is not specifically limited.
  • the shape of the microstrip line is shown as a curve.
  • the microstrip line requested by itself can also be a broken line or a straight line, etc. Please do not make the specific shape of the microstrip line. limit.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Connection Structure (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供一种射频器件,在转动部件的侧面上设置有多条微带线。当转动部件转动第一角度时,射频器件通过第一微带线传输信号,信号的电性能受到第一微带线的调节,当转动部件转动第二角度时,射频器件通过第二微带线传输信号,信号的电性能受到第二微带线的调节。本申请实施例中,微带线可以设置在转动部件的侧面上,充分利用了立体空间,能够以较少的空间实现移相要求。

Description

一种射频器件
本申请要求于2019年11月29日提交中国专利局、申请号为201911218414.0、发明名称为“一种射频器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种射频器件。
背景技术
随着通信技术的发展,通信运营商在各地兴建了大量的基站。基站也可以称为公用移动通信基站,基站可以与终端通信。终端与基站通信后可以接入互联网,或者终端与基站通信后可以与其他终端进行语音通信或短信收发。基站上安装有基站天线,基站可以通过基站天线与终端进行通信。
为了改变基站天线的覆盖范围,通常会通过改变基站天线的倾角来实现。目前的实现方式是:通过电调基站天线的下倾角,实现改变基站天线的覆盖范围。电调基站天线下倾角的实现方案中,移相器是其中一个关键部件。工作人员可以通过调节移相器实现下倾角的调节。
图1为当前移相器的一种示例图,信号从输入导体101经过导体摆臂102到达输出端103a和输出端103b。工作人员可以调节导体摆臂102的角度从而改变信号的相位,从而实现下倾角的调节。然而,这种移相器的缺点是要实现符合要求的移相功能,需要把移相器中输出端103a和输出端103b之间的导体圆弧的尺寸做得较大,使得移相器在天线中占用了较多的空间,浪费天线空间资源。
发明内容
本申请实施例提供了一种射频器件,该射频器件的微带线可以设置在转动部件的侧面上,充分利用了立体空间,能够以较少的空间实现移相要求。
本申请实施例提供了一种射频器件,包括:转动部件、第一传输部件和动力部件;
所述转动部件的侧面上至少设置有第一微带线和第二微带线,所述第一微带线与所述第二微带线在所述转动部件的侧面上设置;
所述动力部件连接所述转动部件,用于驱动所述转动部件转动;
所述第一传输部件上设置有第一连接端和第二连接端;
当所述转动部件转动至第一角度时,所述第一微带线的一端与所述第一连接端电导通,所述第一微带线的另一端与所述第二连接端电导通;
当所述转动部件转动至第二角度时,所述第二微带线的一端与所述第一连接端电导通,所述第二微带线的另一端与所述第二连接端电导通。
该射频器件的微带线可以设置在转动部件的侧面上,微带线的形状可以根据实际需要具体设置,用于实现移相功能的微带线可以充分利用到转动部件上的立体空间,能够以较 少的空间实现移相要求。
在一种可能的示例中,该射频器件还包括第二传输部件;
所述第二传输部件设置有第三连接端和第四连接端;
所述转动部件的侧面上还设置有第三微带线和第四微带线,所述第三微带线与所述第四微带线在所述转动部件的侧面上设置;
当所述转动部件转动至第一角度时,所述第三微带线的一端与所述第三连接端电导通,所述第三微带线的另一端与所述第四连接端电导通;
当所述转动部件转动至第二角度时,所述第四微带线的一端与所述第三连接端电导通,所述第四微带线的另一端与所述第四连接端电导通。
在一种可能的示例中,所述第一传输部件上还设置有第五连接端;
当所述转动部件转动至第一角度时,所述第五连接端与所述第一微带线连接端电导通;
当所述转动部件转动至第二角度时,所述第五连接端与所述第二微带线连接端电导通。
在一种可能的示例中,所述第一微带线具体在所述转动部件的侧面上弯曲设置。
在一种可能的示例中,所述第一微带线的两端为矩形或圆形。
在一种可能的示例中,所述第一传输部件上还设置有接地端,所述接地端用于将所述第一微带线和所述第二微带线的接地。
在一种可能的示例中,所述动力部件上设置有凸块,所述转动部件的两端设置有缺口,所述凸块与所述缺口配合使得所述动力部件与所述转动部件连接。
在一种可能的示例中,所述动力部件与所述转动部件为一体成型结构。
在一种可能的示例中,该射频器件还包括底座;
所述底座上安装有支架,所述支架用于固定所述动力部件;
所述底座上还安装有所述第一传输部件。
在一种可能的示例中,所述第一传输部件的所述第一连接端和所述第二连接端延伸至所述底座上。
在一种可能的示例中,所示底座上设置有第一导电金属片和第二导电金属片,所述第一导电金属片通过第一导线与所述第一连接端连接,所述第二导电金属片通过第二导线与所述第二连接端连接。
在一种可能的示例中,所述底座、所述第一传输部件和所述支架为一体成型结构。
在一种可能的示例中,所述动力部件连接电机,所述电机用于驱动所述动力部件转动。
在一种可能的示例中,所述电机具体为步进电机。
在一种可能的示例中,所述转动部件具体为圆柱形或棱柱形。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例提供一种射频器件,在转动部件的侧面上设置有多条微带线。当转动部件转动第一角度时,射频器件通过第一微带线传输信号,信号的电性能受到第一微带线的调节,当转动部件转动第二角度时,射频器件通过第二微带线传输信号,信号的电性能受到第二微带线的调节。本申请实施例中,微带线可以设置在转动部件的侧面上,充分利用了立体空间,能够以较少的空间实现移相要求。
附图说明
图1为当前移相器的一种示例图;
图2为本申请实施例中天线发送信号的示意图;
图3a为本申请实施例提供的一种射频器件的一个实施例的示例图一;
图3b为本申请实施例提供的一种射频器件的一个实施例的示例图二;
图3c为本申请实施例提供的一种射频器件的一个实施例的示例图三;
图3d为本申请实施例提供的一种射频器件的一个实施例的示例图四;
图3e为本申请实施例提供的一种射频器件的一个实施例的示例图五;
图3f为本申请实施例提供的一种射频器件的一个实施例的示例图六;
图4为本申请实施例中用于说明微带线原理的示例图;
图5a为本申请实施例提供的一种射频器件的另一个实施例的示例图一;
图5b为本申请实施例提供的一种射频器件的另一个实施例的示例图二;
图5c为本申请实施例提供的一种射频器件的另一个实施例的示例图三;
图5d为本申请实施例提供的一种射频器件的另一个实施例的示例图四;
图6a为本申请实施例提供的一种双通道射频器件的一个实施例的示例图一;
图6b为本申请实施例提供的一种双通道射频器件的一个实施例的示例图二;
图6c为本申请实施例提供的一种双通道射频器件的一个实施例的示例图三;
图6d为本申请实施例提供的一种双通道射频器件的一个实施例的示例图四;
图6e为本申请实施例提供的一种双通道射频器件的一个实施例的示例图五;
图6f为本申请实施例提供的一种双通道射频器件的一个实施例的示例图六;
图7a为本申请实施例提供的一种可变功分及相位的射频器件的一个实施例的示例图一;
图7b为本申请实施例提供的一种可变功分及相位的射频器件的一个实施例的示例图二;
图7c为本申请实施例提供的一种可变功分及相位的射频器件的一个实施例的示例图三;
图7d为本申请实施例提供的一种可变功分及相位的射频器件的一个实施例的示例图四;
图7e为本申请实施例提供的一种可变功分及相位的射频器件的一个实施例的示例图五;
图7f为本申请实施例提供的一种可变功分及相位的射频器件的一个实施例的示例图六;
图8a为本申请实施例提供的一种可变功分及相位的射频器件的另一个实施例的示例图一;
图8b为本申请实施例提供的一种可变功分及相位的射频器件的另一个实施例的示例图二;
图8c为本申请实施例提供的一种可变功分及相位的射频器件的另一个实施例的示例图三;
图8d为本申请实施例提供的一种可变功分及相位的射频器件的另一个实施例的示例图四;
图9a为本申请实施例中一种微带线的示例图一;
图9b为本申请实施例中一种微带线的示例图二;
图9c为本申请实施例中一种微带线的示例图三;
图9d为本申请实施例中一种微带线的示例图四。
具体实施方式
本申请实施例提供了一种射频器件,该射频器件的微带线可以设置在转动部件的侧面上,充分利用了立体空间,能够以较少的空间实现移相要求。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“对应于”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了下述各实施例的描述清楚简洁,首先给出相关技术的简要介绍:
图2为本申请实施例中天线发送信号的示意图。移相器201是天线202的一部分。射频信号经过移相器201处理后发送出去。移相器(Phaser)能够对射频信号的相位进行调整的一种装置。移相器在雷达、通信、仪器仪表甚至音乐等领域都有着广泛的应用。本申请实施例对移相器的应用不做具体限定。当前天线202中移相器201的具体结构如图1所示,其尺寸做得较大才能符合天线对于移相性能的要求。并且,如图1所示的移相器不易扩展成多输入多输出方案,很难在多进多出(multiple input multiple output,MIMO)天线中应用。
为解决上述技术问题,本申请实施例提供了一种射频器件的一个实施例,如图3a所示,包括:转动部件1、传输部件2以及动力部件3;
转动部件1在一些实施例中如图3b所示。在一些实施例中,转动部件1可以为圆柱形,则该转动部件1可以围绕圆柱中心轴转动。在另一些实施例中,转动部件1可以为棱柱形,则该转动部件1可以围绕棱柱中心轴转动。在实际应用中,转动部件1还可以设计为其他可旋转的形状,本申请实施例对转动部件1的形状不做限制。为方便描述,本申请实施例 对转动部件1主要以圆柱形进行描述,其他形状可参照本申请实施例以实现。
在本申请实施例中,转动部件1上可以设置有第一微带线11a以及第二微带线11b。在实际应用中,还可以设置其他微带线,本申请实施例对转动部件1上的微带线数量不做限定。转动部件1是立体结构,当通过转动部件1上的微带线实现移相时,可以充分利用到立体空间,解决了当前仅通过平面结构实现移相导致器件普遍做得较大,浪费空间的技术问题。
示例性的,第二微带线11b的一端可以设置端口11b-1,另一端可以设置端口11b-2。在一些实施例中,第二微带线11b在端口11b-1处以及端口11b-2处可以设置较宽,以便与连接端电导通。在一些实施例中,第二微带线11b在端口11b-1处以及端口11b-2处可以设置为矩形,如图3b所示,可以使得第二微带线能够更好地与传输部件2上的连接端电导通。在另一些实施例中,第二微带线11b在端口11b-1处以及端口11b-2处可以设置为圆形,同理可以使得第二微带线能够更好地与传输部件2上的连接端电导通。
在一些实施例中,第一微带线11a可以在转动部件1的侧面上弯曲设置。如图3b所示,第一微带线11a在转动部件1的侧面向上弯曲后向下弯曲,如此反复弯曲多次后形成弯曲设置。在实际应用中,微带线可以在转动部件1的侧面上弯曲多次,例如,第一微带线11a的弯曲次数为17次。本申请实施例对转动部件1侧面上的微带线弯曲次数不做具体限定。在本申请实施例中,转动部件1上的其他微带线也可以根据实际需要设置为弯曲,可参照第一微带线的弯曲情况,本申请实施例对其他微带线的弯曲情况不再赘述。可以理解的是,在实际应用中,有些微带线可以设置为不弯曲。示例性的,第二微带线11b设置为不弯曲。
在本申请实施例中,若天线移相功能需要较长的微带线,则可以设计弯曲次数更多的微带线以实现微带线长度的加长。因此,相对于图1所示的移相器,本申请实施例仅需较小的尺寸就可以通过微带线的弯曲得到移相所需的微带线长度。
传输部件2的内侧面在一些实施例中如图3c所示,传输部件2的外侧面在一些实施例中如图3d所示。在一些实施例中,传输部件2的形状可以配合转动部件1,例如转动部件1为圆柱形,则传输部件2可以为圆弧形。在一些实施例中,第一连接端21a和第二连接端21b可以为导电金属片,贴装在传输部件2的侧面。具体地,第一连接端21a和第二连接端21b可以贴装在传输部件2的内侧面,即靠近转动部件1的侧面。在一些实施例中,第一连接端21a和第二连接端21b可以设计为矩形,也可以设计为圆型,本申请实施例对第一连接端21a和第二连接端21b的形状不做具体限定。在一些实施例中,传输部件2上还可以设置有接地端23,接地端23可以作为微带线的参考地。具体地,接地端23设置在传输部件2的外侧面,即远离转动部件1的侧面。在一些实施例中,传输部件2上还可以设置更多连接端,使得可以同时有多个连接端与多条微带线连接,此时射频器件可以实现多个信号的同时通过多条微带线传输。本申请实施例对传输部件2上连接端的数量不做限定。
图3e为转动部件1和传输部件2组合的一种示例图。传输部件2的形状可以与转动部件1配合,使得转动部件1转动时,转动部件1上的微带线与传输部件2上的连接端电导通。示例性的,当转动部件1转动第一角度时,第一微带线11a一端的端口与第一连接端 21a电导通,第一微带线11a另一端的端口与第二连接端21b电导通;当转动部件1转动第二角度时,第二微带线11b的端口11b-1与第一连接端21a电导通,第二微带线11b的端口11b-2与第二连接端21b电导通。其中,第一角度和第二角度可以不同,第一角度和第二角度的范围可以为0度至360度。当转动部件1转动0度时,转动部件1也可以称为在初始状态。本申请实施例对第一角度和第二角度的具体数值不做限定,并且,第一角度和第二角度的数值可以不同。在一些实施例中,当转动部件1转动一定角度时,射频信号可以从第一连接端21a输入,经过微带线传输后,在第二连接端21b输出,则该信号的相位发生变化,实现了移相的功能。因此在设计本申请实施例提供的射频器件时,可以通过设计微带线的弯曲次数来设定微带线的长度,从而设计出的微带线能够实现要求的移相功能。
上述的微带线与连接端电导通可以包括耦合连接和直接连接。耦合连接可以是指两个相距较近存在耦合面积的金属之间存在电容效应,当电容值合适时射频信号可以在此两非接触的金属间进行传递。直接连接可以是指金属间通过直接接触使得射频信号或直流信号可以在金属间进行传递。可以理解的是,转动部件1上的微带线和传输部件2的连接端都可以是能够传递信号的金属。
图4为微带线的原理示例图。介质基片的一面设置有导带,介质基片另一面设置有接地板,则这种导带称为微带线,可以传输射频信号。在本申请实施例中,当转动部件1和传输部件2如图3e组合时,传输部件2可以相当于介质基片,转动部件1上的微带线可以为图4中的导带,传输部件2上的接地端23相当于接地板,因此转动部件1上的微带线可以传输射频信号。示例性的,当转动部件1转动第二角度时,第一连接端21a、第二微带线11b和第二连接端21b构成导带,传输部件2上的接地端23构成接地板(作为参考地)。
图3f为本申请实施例中转动部件1与动力部件3组合的爆炸示例图。在一些实施例中,转动部件1上设置有可以设置有第一微带线11a、第二微带线11b和第三微带线11c等,本申请实施例对转动部件1上微带线的数量不做限定。在一些实施例中,转动部件1上可以设置有缺口,动力部件3上可以设置有凸块,通过缺口和凸块的配合可以使得转动部件1和动力部件3相互卡住,从而组合在一起。
可以理解的是,动力部件3可以连接有电机,通过电机的转动带动动力部件3的转动,从而带动转动部件1的转动。在一些实施例中,该电机具体采用步进电机,步进电机转动时,每次转动可以固定一个角度,称为“步距角”,因此,转动部件1上对应于该“步距角”的位置可以设置微带线,从而当步进电机转动一个角度时,该射频器件通过更换一个微带线进行信号传输。在实际应用中,本申请实施例提供的射频器件还可以通过其他方式使得动力部件3转动合适的角度,例如通过处理器连接电机,从而控制电机转动角度,本申请实施例对此不做具体限定。其中,该处理器可以为微处理器、处理器、主处理器、控制器或者专用集成电路(英文缩写:ASIC,英文全称:Application Specific Integrated Circuit)等等元件,通过改变输入电机的电压电流实现电机转动角度的调节。
在另一些实施例中,动力部件3可以连接有旋钮。当需要调节移相参数时,工作人员可以通过旋钮转动动力部件3,从而转动转动部件1,从而切换其他微带线进行信号传输。
在实际应用中,本申请实施例还提供了射频器件的另一个实施例,如图5a所示,该射频器件还包括底座4,传输部件2安装在该底座4上。在一些实施例中,底座4还安装有支架5,支架5可以用于固定动力部件3,固定的方式与轴承类似,此处不再赘述。在一些实施例中,传输部件2和支架5可以焊接在底座4上。可以理解的是,在实际应用中,设计人员可以不断调整各个部件位置的设定,使得安装好的射频器件中,在转动部件1转动一定角度时,转动部件1上的微带线与传输部件2上的连接端能够电导通。
转动部件1上可以设置有第一微带线11a、第二微带线11b以及第三微带线11c等,与前述实施例中转动部件1的描述类似,此处不再赘述。
图5b为转动部件1与动力部件3结合的示例图。在一些实施例中,转动部件1可以通过转动部件1上的缺口以及动力部件3上的凸块与动力部件3紧密结合,具体可参照前述实施例对图3f的描述。在一些实施例中,转动部件1和动力部件3之间还可以增加粘合剂等,以使得两者结合更加牢靠。在另一些实施例中,转动部件1可以与动力部件3可以为一体成型结构。一体成型结构不仅可以使得转动部件1和动力部件3结合更加牢靠,而且还可以在生产本申请实施例提供的射频器件时,免去将转动部件1和动力部件3进行组装结合的工序,自动化程度更高。
图5c为本申请实施例提供的射频器件的另一角度的立体示例图。在一些实施例中,第一连接端21a可以延伸至底座4的底面。同理,第二连接端21b也可以延伸至底座4的底面。在另一些实施例中,第一连接端21a也可以延伸至底座4的表面,第二连接端21b也可以延伸至底座4的表面,本申请实施例对此不做具体限定。第一连接端21a和第二连接端21b延伸至底座后,可以更加容易装配。例如,第一连接端21a和第二连接端21b延伸至底座后,可以更加容易实现引线键合(wire bonding)技术,更加容易通过引线键合技术连接到天线的其他部件,实现信号的传输和移相。
在另一些实施例中,底座上可以设置一些导电金属片,作为传输部件2上连接端或接地端的接口。底座上的导电金属片可以与传输部件2上的连接端或接地端相连。示例性的,底座上设置有第一导电金属片和第二导电金属片,其中第一导电金属片通过第一导线与传输部件2上的第一连接端21a连接,第二导电金属片通过第二导线与第二连接端21b连接。在实际应用中,导线可以是微带线或小导电条,本申请实施例对此不做限定。在一些实施例中,导电金属片、导线和传输部件2上的连接端可以为一体成型结构。例如,第一导电金属片、第一导线和第一连接端21a可以为一体成型结构,本申请实施例对此不做限定。
图5d为本申请实施例提供的射频器件中底座4、传输部件2以及支架5的结合示例图。在一些实施例中,底座4、传输部件2以及支架5是一体成型结构,则三者之间的结合更加牢靠。在一些实施例中,底座4上面还可以设置其他结构,用于实现实际应用时需要的功能。例如,底座4上可以设置安装外壳,用于保护本申请实施例提供的射频器件。又例如,底座4上可以设置安装散热模块,用于给本申请实施例提供的射频器件进行散热,本申请实施例对此不作具体限定。在一些实施例中,接地端23可以与底座4的接地点连接。在另一些实施例中,接地端23可以延伸至底座4然后接地。本申请实施例对接地端23接地的方式不做具体限定。
如图6a所示,本申请实施例还提供一种双通道的射频器件。该射频器件包括底座、转动部件、动力部件、传输部件2以及支架。其中,转动部件和动力部件没有画出。在本申请实施例中,底座、转动部件、动力部件以及支架与前述实施例的底座4、转动部件1、动力部件3以及支架5类似,此处不再赘述。在本申请实施例中,传输部件2包括第一传输部件和第二传输部件。第一传输部件与第二传输部件的结构类似,位置对称。第一传输部件上设置有第一连接端21a、第二连接端21b以及接地端23,与前述实施例中转动部件1一侧的传输部件2类似,此处不再赘述。第二传输部件上设置有第三连接端22a和第四连接端22b。在一些实施例中,第二传输部件上还可以设置有接地端23,如图6b所示。
在本申请实施例中,第一连接端21a、第二连接端21b、第三连接端22a和第四连接端22b可以延伸至底座或与底座上的导电金属片连接。示例性的,第一连接端21a、第二连接端21b、第三连接端22a和第四连接端22b可以延伸至底座的表面或与底座表面上的导电金属片连接。图6c为本申请实施例提供的双通道射频器件的俯视示例图。底座图6c中呈现的一面可以称为底座的表面,相反的另一面可以称为底座的底面。在另一些实施例中,第一连接端21a、第二连接端21b、第三连接端22a和第四连接端22b也可以延伸至底座的底面,本申请实施例对此不做具体限定。
在本申请实施例中,接地端23可以延伸至底座的底面,如图6d所示。图6d为本申请实施例提供的双通道射频器件的仰视示例图。在一些实施例中,接地端23可以延伸出多个接口,这些接口可以以导电金属片的形式设置在底座。示例性的,图6d所示的底座中设置有接地端23的四个导电金属片接口。在本申请实施例中,接地端23延伸至底座的底面有利于接地端23的接地,具体的接地方法可以参照前述实施例,此处不再赘述。在另一些实施例中,接地端23也可以延伸至底座的表面,本申请实施例对此不做具体限定。
图6e示出了本申请实施例提供的射频器件中转动部件的横截面示例图。在本申请实施例中,转动部件上可以设置有多条微带线。例如,转动部件上可以设置为第一微带线11a、第二微带线11b、第三微带线12a、第四微带线12b、第五微带线11c、第六微带线11d、第七微带线12c以及第八微带线12d。
图6f示出了本申请实施例提供的射频器件中转动部件转动第一角度时的横截面示例图。当转动部件转动第一角度时,第一微带线11a与第一连接端21a、第二连接端21b连接,射频器件可以通过第一微带线11a进行信号传输,实现第一个信号的移相。同时,第三微带线12a与第三连接端22a、第四连接端22b连接,射频器件可以通过第三微带线12a进行信号传输,实现第二个信号的移相。因此,本申请实施例提供的双通道射频器件能够同时实现两个信号的传输。
在实际应用中,射频器件还可以设置与第一传输部件结构相同的第三传输部件、第四传输部件等,以实现多通道传输,具体实现方式可参照本申请提供的双通道射频器件实施例,此处不再赘述。
在一些实施例中,第一传输部件上还可以设置多个连接端,使得第一传输部件能够与多个微带线连接,实现多个信号传输和移相,具体可参照前述实施例中传输部件2的描述,此处不再赘述。
本申请实施例还提供一种可变功分及相位的射频器件,如图7a所示。该射频器件可以包括转动部件1、传输部件2、动力部件、底座以及支架。其中,动力部件、底座以及支架与前述实施例中的动力部件3、底座4以及支架5类似,此处不再赘述。
在本申请实施例中,传输部件2中可以设置有3个连接端,如图7b所示,分别是第一连接端21a、第二连接端21b和第五连接端21c。在一些实施例中,这3个连接端均可以延伸至底座的底面或与底座底面上的导电金属片连接,如图7c所示,具体情况可参照前述实施例中连接端延伸到底座底面的描述,此处不再赘述。可以理解的是,第五连接端21c可以设置在第一连接端21a和第二连接端21b之间。
在一些实施例中,传输部件2上还可以设置有接地端23,如图7d所示,与前述实施例中接地端23类似,此处不再赘述。
在本申请实施例中,转动部件1上的微带线可以设置有中间连接端。如图7e所示,转动部件1上设置有第一微带线11a、第二微带线11b和第三微带线11c,在实际应用中,转动部件1的侧面上还可以设置其他微带线,本申请实施例对微带线的数量不做具体限定。以第一微带线11a为例,第一微带线11a上可以设置有第一微带线端口11a-1、第二微带线端口11a-5和中间端口11a-3。第一微带线端口11a-1与中间端口11a-3之间通过第一子微带线11a-2连接,中间端口11a-3与第二微带线端口11a-5之间通过第二子微带线11a-4连接。第一子微带线11a-2和第二子微带线11a-4的弯曲情况与前述实施例中第一微带线11的弯曲情况类似,此处不再赘述。在一些实施例中,第一微带线端口11a-1、第二微带线端口11a-5和中间端口11a-3可以以导电金属片的形式设置在转动部件1上。在实际应用中,导电金属片可以是矩形或圆形,或者其他形状,本申请实施例对导电金属片的形状不做具体限定。其中,本申请实施例示例的中间端口11a-3的位置在端口11a-1和端口11a-5的中心线上,11a-3的位置还可以在端口11a-1和端口11a-5的非中心线上,本身请对11a-3的位置不做限定。本身请实施例对中间连接端的位置也不做限定,具体描述同中间端口11a-3,此处不再赘述。
在本申请实施例中,示例性的,当转动部件1转动第一角度时,第一微带线端口11a-1可以与传输部件2上的第一连接端21a电导通,第二微带线端口11a-5可以与第二连接端21b电导通,中间端口11a-3可以与第五连接端21c电导通。此时,射频信号可以通过第五连接端21c进入射频器件,传输至中间端口11a-3后,一方面信号可以通过第一子微带线11a-2传输至第一微带线端口11a-1,最后通过第一连接端21a传输至天线,另一方面信号可以通过第二子微带线11a-4传输至第二微带线端口11a-5,最后通过第二连接端21b传输至天线。图7f为本申请实施例中信号传输的示意图。信号从中间端口11a-3进入第一微带线,经第一子微带线11a-2从第一微带线端口11a-1输出,以及经第二子微带线11a-4从第二微带线端口11a-5输出。因此本申请实施例提供的射频器件可以实现信号的功分。
进一步地,转动部件1上的微带线可以根据实际情况设置,也可以设置多条微带线,以满足不同的功分要求。本申请实施例对转动部件1上的微带线数量不做具体限定。
可以理解的是,转动部件1的其他情况可以与前述实施例中转动部件1类似,此处不再赘述。
在一些实施例中,第一微带线端口11a-1、第二微带线端口11a-5和中间端口11a-3可以在同一直线上。在另一些实施例中,第一微带线端口11a-1、第二微带线端口11a-5和中间端口11a-3可以不在同一直线上,如图8a所示。请参阅图8a,本申请实施例还提供另一种可变功分及相位的射频器件,包括转动部件1、传输部件2、动力部件、底座以及支架。其中,动力部件、底座以及支架与前述实施例中的动力部件3、底座4以及支架5类似,此处不再赘述。
请参阅图8b,在本申请实施例中,转动部件1的侧面上可以设置有多条微带线,例如第一微带线11a、第二微带线11b以及第三微带线11c。示例性的,第一微带线11a上设置有第一微带线端口11a-1、第二微带线端口11a-5和中间端口11a-3。第一微带线端口11a-1与中间端口11a-3之间通过第一子微带线11a-2连接,中间端口11a-3与第二微带线端口11a-5之间通过第二子微带线11a-4连接。在一些实施例中,第一微带线端口11a-1、第二微带线端口11a-5和中间端口11a-3可以不在同一直线上。相应地,第一子微带线11a-2和第二子微带线11a-4除了自身弯曲以外,还可以向中间端口11a-3偏移,如图8b所示。本申请实施例中,转动部件1的其他情况,例如转动部件1的形状等,与前述实施例中转动部件1类似,此处不再赘述。
在本申请实施例中,传输部件2上可以设置有第一连接端21a、第二连接端21b和第五连接端21c。在一些实施例中,第一连接端21a、第二连接端21b和第五连接端21c可以不在同一直线上,如图8c所示。第一连接端21a、第二连接端21b和第五连接端21c可以分别设置在与第一微带线端口11a-1、第二微带线端口11a-5和中间端口11a-3对应的位置,使得转动部件1转动第一角度时,第一连接端21a和第一微带线端口11a-1之间、第二连接端21b和第二微带线端口11a-5之间、第五连接端21c和中间端口11a-3之间能够电导通。同理,转动部件1转动第二角度以及其他角度时,也有对应的微带线与第一连接端21a、第二连接端21b和第五连接端21c电导通,本申请实施例对此不再赘述。
在一些实施例中,第一连接端21a、第二连接端21b和第五连接端21c可以延伸至底座的底面或与底座上的导电金属片连接,如图8d所示,与前述实施例中第一连接端21a、第二连接端21b和第五连接端21c的延伸情况类似,此处不再赘述。在一些实施例中,第一连接端21a、第二连接端21b和第五连接端21c延伸至底座底面处的导电金属片可以在同一直线上,也可以不在同一直线上,本申请实施例对此不做具体限定。
在本申请实施例中,传输部件2的其他情况,例如传输部件2上可以设置有接地端的情况,与前述实施例中传输部件2的情况类似,此处不再赘述。
本申请实施例还提供了一种双通道可变功分及相位的射频器件,包括转动部件、传输部件、动力部件、底座以及支架。其中,转动部件、动力部件、底座以及支架与前述实施例中的转动部件1、动力部件3、底座4以及支架5类似,此处不再赘述。传输部件可以分为第一传输部件和第二传输部件。第一传输部件和第二传输部件可以是结构相同并且对称放置的,放置情况与前述图6a对应的实施例中第一传输部件和第二传输部件类似,此处不再赘述。第一传输部件的结构可以与前述图7a对应的实施例或前述图8a对应的实施例中传输部件2的结构类似,此处不再赘述。
本申请实施例还提供了一种射频器件,包括转动部件、传输部件、动力部件、底座以及支架。其中,传输部件、动力部件、底座以及支架与前述实施例中的传输部件2、动力部件3、底座4以及支架5类似,此处不再赘述。转动部件上的微带线的两端可以分别设置为多个端口。在一些实施例中,微带线的一端可以设置一个端口,微带线的另一端设置多个端口,如图9a所示。可以理解的是,在传输部件上可以设置对应于多个端口的连接端。例如,图9a所示的微带线右侧设置有3个端口,则在传输部件上相应的位置也可以设置有3个连接端。当转动部件转动至第一角度时,示例性的,传输部件上的3个连接端可以分别与图9a所示微带线右侧的3个端口电导通。当转动部件转动至第二角度时,示例性的,传输部件上有2个连接端分别与微带线右侧的其中两个端口电导通,剩下的一个连接端没有电导通。当转动部件转动至第三角度时,示例性的,传输部件上只有1个连接端与微带线右侧的1个端口电导通。在实际应用中,转动部件转动时,传输部件上的连接端与微带线上的端口电导通的情况可以根据实际情况通过调整传输部件连接端或微带线端口的位置进行设定,例如,当转动至某一角度时,微带线一端的多个端口中,同时只有一个端口或两个端口电导通,或者同时所有多个端口都电导通,本申请实施例对此不做限定。
在另一些实施例中,微带线的两端都设置为多个端口。例如,如图9b所示的微带线中,微带线的一端设置有两个端口,另一端设置有三个端口。微带线的其他情况与前述实施例类似,此处不再赘述。
在一些实施例中,微带线的一端设置为一个端口,微带线的另一端也设置为一个端口。转动部件的其他部分可参照前述实施例。
在一些实施例中,转动部件上的微带线的多个端口可以合并为一个端口。例如,如图9c所示,微带线左侧的三个端口合并为一个端口,实现信号一分为三的功分功能。可以理解的是,合并后的端口的面积可以设计较大,以便转动部件转动时仍可电导通。在实际应用中,转动部件上微带线的2个端口、4个端口、5个端口等也可以合并为一个端口,本申请实施例对合并的端口数量不做限制。
在一些实施例中,转动部件上的微带线可以设计为一分三的形状。例如,如图9d所示,微带线左侧的端口连接第一段微带线,然后微带线分叉处三段微带线,分别连接三个端口。可以理解的是,微带线的分叉处可以如图9d样式进行分叉,也可以以其他更加平顺的形状进行分叉,本申请实施例对分叉处的形状不做限制。在一些实施例中,微带线的分叉处可以设置在微带线的中间,如图9d所示。在其他实施例中,微带线的分叉处还可以设置在其他位置,例如靠图9d左侧端口三分之一的位置,或者其他位置,本申请实施例对分叉处的位置不做限制。在实际应用中,微带线可以设计为一分为二的形状、设计为一分为三的形状、设计为一分为四的形状等等,本申请实施例对微带线设计分叉的数量不做具体限定。图9a至图9d所示的实施例中,微带线的形状是以曲线作为示意,本身请的微带线还可以为折线形或者直线形等,本身请对微带线的具体形状不做限制。
以上可见,本申请提供的技术方案不仅可以用于移相器,还可以用于功分器或者合路器,或者还可以用于功分移相器等其他射频器件。
以上各个实施例可以单独实施,也可以交叉实施,本申请实施例对以上实施例交叉实 施的情况不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种射频器件,其特征在于,包括:转动部件、第一传输部件和动力部件;
    所述转动部件的表面上至少设置有第一微带线和第二微带线;
    所述动力部件连接所述转动部件,用于驱动所述转动部件转动;
    所述第一传输部件上设置有第一连接端和第二连接端;
    当所述转动部件转动至第一角度时,所述第一微带线的一端与所述第一连接端电导通,所述第一微带线的另一端与所述第二连接端电导通;
    当所述转动部件转动至第二角度时,所述第二微带线的一端与所述第一连接端电导通,所述第二微带线的另一端与所述第二连接端电导通。
  2. 根据权利要求1所述的射频器件,其特征在于,还包括第二传输部件;
    所述第二传输部件设置有第三连接端和第四连接端;
    所述转动部件的侧面上还设置有第三微带线和第四微带线,所述第三微带线与所述第四微带线在所述转动部件的侧面上设置;
    当所述转动部件转动至第一角度时,所述第三微带线的一端与所述第三连接端电导通,所述第三微带线的另一端与所述第四连接端电导通;
    当所述转动部件转动至第二角度时,所述第四微带线的一端与所述第三连接端电导通,所述第四微带线的另一端与所述第四连接端电导通。
  3. 根据权利要求1所述的射频器件,其特征在于,所述第一传输部件上还设置有第五连接端;
    当所述转动部件转动至第一角度时,所述第五连接端与所述第一微带线连接端电导通;
    当所述转动部件转动至第二角度时,所述第五连接端与所述第二微带线连接端电导通。
  4. 根据权利要求1至3任意一项所述的射频器件,其特征在于,所述第一微带线具体在所述转动部件的侧面上弯曲设置。
  5. 根据权利要求1至3任意一项所述的射频器件,其特征在于,所述第一微带线的两端为矩形或圆形。
  6. 根据权利要求1至3任意一项所述的射频器件,其特征在于,所述第一传输部件上还设置有接地端,所述接地端用于将所述第一微带线和所述第二微带线的接地。
  7. 根据权利要求1至3任意一项所述的射频器件,其特征在于,所述动力部件上设置有凸块,所述转动部件的两端设置有缺口,所述凸块与所述缺口配合使得所述动力部件与所述转动部件连接。
  8. 根据权利要求1至3任意一项所述的射频器件,其特征在于,所述动力部件与所述转动部件为一体成型结构。
  9. 根据权利要求1至3任意一项所述的射频器件,其特征在于,还包括底座;
    所述底座上安装有支架,所述支架用于固定所述动力部件;
    所述底座上还安装有所述第一传输部件。
  10. 根据权利要求9所述的射频器件,其特征在于,所述第一传输部件的所述第一连接端和所述第二连接端延伸至所述底座上。
  11. 根据权利要求9所述的射频器件,其特征在于,所示底座上设置有第一导电金属片和第二导电金属片,所述第一导电金属片通过第一导线与所述第一连接端连接,所述第二导电金属片通过第二导线与所述第二连接端连接。
  12. 根据权利要求9所述的射频器件,其特征在于,所述底座、所述第一传输部件和所述支架为一体成型结构。
  13. 根据权利要求1至3任意一项所述的射频器件,其特征在于,所述动力部件连接电机,所述电机用于驱动所述动力部件转动。
  14. 根据权利要求13所述的射频器件,其特征在于,所述电机具体为步进电机。
  15. 根据权利要求1所述的射频器件,其特征在于,所述转动部件具体为圆柱形或棱柱形。
PCT/CN2020/128932 2019-11-29 2020-11-16 一种射频器件 WO2021104069A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911218414.0 2019-11-29
CN201911218414.0A CN112886170B (zh) 2019-11-29 2019-11-29 一种射频器件

Publications (1)

Publication Number Publication Date
WO2021104069A1 true WO2021104069A1 (zh) 2021-06-03

Family

ID=76039544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128932 WO2021104069A1 (zh) 2019-11-29 2020-11-16 一种射频器件

Country Status (2)

Country Link
CN (1) CN112886170B (zh)
WO (1) WO2021104069A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117673746A (zh) * 2022-09-08 2024-03-08 华为技术有限公司 天线结构件、天线和基站

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697377A (zh) * 2009-10-16 2010-04-21 东莞市晖速天线技术有限公司 微型超宽带旋转式移相器
CN104810577A (zh) * 2015-04-23 2015-07-29 佛山市迪安通讯设备有限公司 一种基站电调天线宽频带慢波移相器
WO2015198969A1 (ja) * 2014-06-27 2015-12-30 日本電業工作株式会社 分配移相器
CN109193160A (zh) * 2018-08-09 2019-01-11 北京北斗星通导航技术股份有限公司深圳分公司 一种新型移相器
CN109193161A (zh) * 2018-08-27 2019-01-11 京信通信系统(中国)有限公司 移相器及天线
CN109755695A (zh) * 2019-02-22 2019-05-14 摩比科技(深圳)有限公司 一种移相器模组、移相器及天线

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602007000299D1 (de) * 2006-01-18 2009-01-15 Toshiba Kk Röntgen-CT-Gerät und Verknüpfungssystem zur Kommunikation von medizinischen Daten
US8212629B1 (en) * 2009-12-22 2012-07-03 Christos Tsironis Wideband low frequency impedance tuner
CN105356014B (zh) * 2015-11-30 2018-05-08 中国科学院微电子研究所 微带开关型移相器及应用其的移相模块
CN107579315B (zh) * 2017-09-18 2019-04-19 东莞市松研智达工业设计有限公司 一种单频立体移相器
CN107681232B (zh) * 2017-09-18 2019-10-01 江苏禹高物联科技有限公司 立体移相结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101697377A (zh) * 2009-10-16 2010-04-21 东莞市晖速天线技术有限公司 微型超宽带旋转式移相器
WO2015198969A1 (ja) * 2014-06-27 2015-12-30 日本電業工作株式会社 分配移相器
CN104810577A (zh) * 2015-04-23 2015-07-29 佛山市迪安通讯设备有限公司 一种基站电调天线宽频带慢波移相器
CN109193160A (zh) * 2018-08-09 2019-01-11 北京北斗星通导航技术股份有限公司深圳分公司 一种新型移相器
CN109193161A (zh) * 2018-08-27 2019-01-11 京信通信系统(中国)有限公司 移相器及天线
CN109755695A (zh) * 2019-02-22 2019-05-14 摩比科技(深圳)有限公司 一种移相器模组、移相器及天线

Also Published As

Publication number Publication date
CN112886170A (zh) 2021-06-01
CN112886170B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
CN112103653B (zh) 回转式弧形移相器
EP2731191B1 (en) Phase shift equipment and antenna system thereof
US6762723B2 (en) Wireless communication device having multiband antenna
EP2068394B1 (en) Data processing device with beam steering and/or forming antennas
CN111987432B (zh) 天线结构和电子设备
JPH1075116A (ja) アンテナ、接続装置、カップラ及び基板積層方法
US10560856B2 (en) Phase shifter, antenna, and base station
CN114530693B (zh) 无线通信结构、显示面板和无线通信设备
US20110234473A1 (en) Cable connector and antenna component
TW201735448A (zh) 天線及其天線模組
WO2021104069A1 (zh) 一种射频器件
JP2023161059A (ja) 無線通信構造、表示パネル及び無線通信装置
JP2004023369A (ja) アンテナアレー及び無線装置
CN115966906A (zh) 滤波移相器及天线
CN112993580B (zh) 天线装置和电子设备
JP3552693B2 (ja) 平板多重アンテナおよびそれを備えた電気機器
WO2014141993A1 (ja) 移相器及びアンテナシステム
KR101223747B1 (ko) 안테나 위상 변위기
WO2007148908A1 (en) Variable phase shifter
JP4127087B2 (ja) アンテナ装置および無線装置
JP5785007B2 (ja) アンテナ装置、及び、通信装置
CN215911565U (zh) 移相器及基站天线
CN113161701A (zh) 移相器及基站天线
JP2017224931A (ja) 移相器およびアンテナ装置
WO2016009470A1 (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20892623

Country of ref document: EP

Kind code of ref document: A1