WO2012105631A1 - 貴金属-酸化物接合ナノ粒子、及び、その高純度製造方法 - Google Patents

貴金属-酸化物接合ナノ粒子、及び、その高純度製造方法 Download PDF

Info

Publication number
WO2012105631A1
WO2012105631A1 PCT/JP2012/052329 JP2012052329W WO2012105631A1 WO 2012105631 A1 WO2012105631 A1 WO 2012105631A1 JP 2012052329 W JP2012052329 W JP 2012052329W WO 2012105631 A1 WO2012105631 A1 WO 2012105631A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
base metal
noble metal
alloy
composite nanoparticles
Prior art date
Application number
PCT/JP2012/052329
Other languages
English (en)
French (fr)
Inventor
健司 古賀
誠一 平澤
宏昭 櫻井
直人 越崎
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2012555944A priority Critical patent/JP5750731B2/ja
Priority to CN201280006935.XA priority patent/CN103402920B/zh
Priority to EP12741532.1A priority patent/EP2671846B1/en
Priority to US13/983,436 priority patent/US9675964B2/en
Publication of WO2012105631A1 publication Critical patent/WO2012105631A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J35/23
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G7/00Compounds of gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Definitions

  • the present invention is expected to be applied to a catalyst or the like, and is a bonded nanoparticle in which one noble metal nanoparticle and one oxide nanoparticle are bonded (hereinafter, “bonded nanoparticle” is sometimes referred to as “composite nanoparticle”). ) And its high-purity production method.
  • junctions between p-type and n-type semiconductors produce properties such as rectification performance, photovoltaic effect, and electroluminescence, and are widely applied to devices such as diodes and transistors.
  • the heterojunction occupies a very important position as one of physical property control, such as a tunnel magnetoresistive effect and a giant magnetoresistive effect which are manifested by the junction structure of the magnetic thin film.
  • Non-Patent Documents (1) to (5) and Patent Documents (1) to (4) gold-oxide composite nanoparticles by liquid phase synthesis are used.
  • Patent Document (5) noble metal and sulfide are mixed.
  • Composite nanoparticles are described.
  • Patent Document (3) describes a mixture of nanoparticles and a precursor containing a hydrophobic outer coat as a method for producing dumbbell-shaped or flower-shaped nanoparticles that can be applied to biomedical medicine, nanodevices, and the like.
  • the first part is made of any one of PbS, CdSe, CdS, ZnS, Au, Ag, Pd, and Pt
  • the second part is made of Au, Ag, Pd, Pt, Fe, Co, Ni, etc.
  • Patent Document (4) as a composite catalyst used in an oxygen electrode of a fuel cell, one noble metal nanoparticle (average particle size less than 10 nm) epitaxially bonded to one ferrite particle (average particle size is 5 to 50 nm) ) And flower-shaped composite nanoparticles composed of two or more noble metal nanoparticles that are epitaxially bonded to one ferrite particle, with the addition of a metal oxide precursor and noble metal nanoparticles.
  • a mixed solution of an organic solvent and a surfactant is heated and refluxed to precipitate composite nanoparticles, and the ferrite particles are represented by the chemical formula A 2+ B 3+ 2 O 4 (where A 2+ is , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ , Mg 2+ , Zn 2+ and Cd 2+ , and B 3+ is Fe 3 +, ions der selected from the group consisting of Cr 3+ and Mn 3+ Ferrite comprises at least a), the noble metal nanoparticles are those containing at least one element selected from the group consisting of at least Pt, Pd and Ag are described. However, as an example, only Pt—Fe 3 O 4 is described.
  • Patent Document (5) describes anisotropically phase-separated acorn-shaped bimetallic nanoparticles produced by polyol reduction of two metal salts at high temperature in the presence of a thiol compound, These metals are Fe, Co, Ni, or Cu, and the other metal is Pd, Pt, Au, or Ag, and those that are expected to be used in the fields of magnetic chemistry and catalytic chemistry are described. However, as examples, only binary nanoparticles composed of Co sulfide and Pd sulfide are described. Nanoparticles containing pure noble metal parts, nanoparticles containing base metal oxides and their production No method is described at all.
  • Non-patent documents (1) to (5) describe dumbbell-shaped Au—Fe 3 O 4 , Au—ZnO, and Au—MnO nanoparticles by liquid phase synthesis, but other than Fe, Zn, and Mn. No mention is made of using non-metallic elements.
  • Patent Documents (1) to (4) and Non-Patent Documents (1) to (3) the use of Fe, Co, Ni, Mn, Cu, Mg, Zn, Cd, and Cr as oxide elements
  • Sn, Ti, Al, Zr, Ce, Y, La, Si, Ge is not described at all, and the oxidation mentioned in the use possibility is only described.
  • the compound used in the case of adopting the element is not disclosed, so it cannot be said that the element is described to the extent that can be easily carried out by those skilled in the art.
  • the gold-oxide composite nanoparticles produced by such liquid phase synthesis inevitably contain various impurities such as ions and organic substances, when used as a catalyst or the like, cleaning of poisonous ions is performed.
  • a removal or cleaning process by burning the nanoparticle-protected organic material is indispensable.
  • these cleaning steps can always be performed stably, completely and reproducibly at the atomic level.
  • dangerous materials such as metal carbonyl are used as raw materials and that various oxide elements other than those used above cannot be easily selected, the gold- There are many problems to be solved in the production of oxide composite nanoparticles.
  • noble metal-base metal nanoparticles are generated in an inert gas using an arc melting method, and then the nanoparticle sample is oxidized.
  • the oxidation treatment temperature and time are a slow oxidation treatment at room temperature or 200 to 600 ° C., 2 minutes to 4 hours, and the like.
  • the alloy nanoparticles are already aggregated, the obtained substance is a precious metal deposited irregularly and non-uniformly on the base metal oxide aggregate. Therefore, by this method, composite nanoparticles in which one noble metal nanoparticle is bonded to the surface of one base metal oxide nanoparticle cannot be obtained in an independently dispersed state.
  • noble metal-oxide composite nanoparticles are generated by evaporating a raw material alloy in an inert gas containing oxygen.
  • this method of the noble metal atoms and base metal atoms evaporated by heating the raw material alloy, only the base metal atoms react with oxygen, and an association of base metal atoms and oxygen is generated in advance. Thereafter, a large number of noble metal atoms and base metal atoms-oxygen aggregates are combined in the gas phase to grow into noble metal-base metal oxide composite nanoparticles. It has been reported that the particles generated in such a process are in a form in which a plurality of noble metal nanoparticles are adhered on the base metal oxide particles.
  • the ultrafine particles collected by the filter are subjected to an oxidation heat treatment in a state of being bonded or aggregated with each other, and are not subjected to an oxidation heat treatment in a floating state in which each ultrafine particle is dispersed independently. Therefore, it is only possible to obtain composite ultrafine particles in which a large number of fine particles composed of noble metals such as Au and Pd and / or their compounds are precipitated and dispersed in ultrafine particles composed of metal oxides such as Ti and Al. Therefore, even by the production method, composite nanoparticles in which one noble metal nanoparticle is bonded to the surface of one base metal oxide nanoparticle cannot be obtained in an independently dispersed state.
  • Non-Patent Document (6) the present inventors produced Cu-46 at.% Au alloy nanoparticles in helium gas in the same process as the gas evaporation method of the embodiment of the present invention. After that, high-temperature oxidation treatment was performed in the gas phase to produce composite nanoparticles composed of a metal portion and a copper oxide portion. However, because the content of Au in the alloy nanoparticles is too high, the alloy nanoparticles cannot be completely oxidized, and the metal part of the composite nanoparticles is in the state of an Au-17at.% Cu alloy. , Separation of Au alone could not be realized.
  • the catalyst generation methods such as coprecipitation method and precipitation method have the advantage that a noble metal-supported oxide catalyst can be obtained very easily, but at the time of high-temperature firing to generate a heterojunction between noble metal and oxide.
  • There are problems such as coarsening of gold particles and residual poisonous substances such as chlorine ions.
  • the hetero interface between the gold nanoparticle and the oxide is generally generated at various atomic planes, it is impossible to uniformly control the hetero interface for each nanoparticle.
  • the present invention is a novel composite nanoparticle in which one high-purity noble metal nanoparticle and one oxide nanoparticle are joined, and there is no poisonous substance remaining, and a heterointerface between nanoscale phases having completely different physical properties.
  • the present invention provides a conventional liquid phase synthesis method by subjecting alloy nanoparticles of a noble metal such as gold or platinum and a base metal that is easily oxidized at a high temperature to thermal oxidation at a high temperature in a state of floating in the gas phase.
  • a noble metal such as gold or platinum
  • a base metal that is easily oxidized at a high temperature to thermal oxidation at a high temperature in a state of floating in the gas phase.
  • composite nanoparticles (M-A x O y ) in which one high-purity noble metal particle (M) was bonded to the surface of a specific base metal oxide (A x O y ) which could not be obtained by
  • the generation of the composite nanoparticles is based on the knowledge that there is no risk of inevitable contamination of impurities, and has the following characteristics.
  • the base metal component in the floating alloy (AM) nanoparticles by heating the alloy (AM) nanoparticles and bringing them into contact with the introduced oxidizing gas in the middle of transporting with an inert gas Oxidizing (A) and phase-separating the oxidized base metal component (A x O y ) with the noble metal component (M), one noble metal particle (M) on the surface of the particulate base metal oxide (A x O y ) method of producing composite nanoparticles (M-a x O y) but to obtain a bonded composite nanoparticles (M-a x O y) .
  • ( AM ) The method for producing composite nanoparticles (MA x O y ) according to any one of (1) to (3), wherein the nanoparticles are heated during heating in an inert gas.
  • (5) The above-mentioned (1), characterized in that any one of a gas evaporation method, a laser ablation method, a sputtering method, an arc plasma method, and an atmospheric pressure plasma method is used as a method for producing alloy (AM) nanoparticles.
  • Base metal oxide (A x O y ) of the base metal (A) is Cu, Sn, Ti, V, Cr, Mn, Co, Fe, Ni, Zn, Al, Y, Zr, Mo, In, It is at least one selected from Mg, La, Ce, Nd, Sm, Eu, Gd, Si, Ge, Pb, Bi, and the noble metal (M) is from Au, Pt, Pd, Rh, Ag, Ru, Ir
  • the method for producing composite nanoparticles (MA x O y ) according to any one of the above (1) to (5), which is one or more selected.
  • Alloy (AM) nanoparticles containing 0.1-30 at.% Noble metal (M), the balance consisting of base metal (A) and inevitable impurities, and having a particle size of 1-200 nm are generated in an inert gas.
  • the base metal component in the floating alloy (AM) nanoparticles by heating the alloy (AM) nanoparticles and bringing them into contact with the introduced oxidizing gas in the middle of transporting with an inert gas
  • One region of particulate base metal oxide (A x O y ) by oxidizing (A) and phase-separating the oxidized base metal component (A x O y ) with the noble metal component (M), and particulate noble metal the method of manufacturing the composite nanoparticles composed of a single region of the (M) (M-a x O y) the obtained composite nanoparticles (M-a x O y) , a base metal (a) is, Cu , Sn, Al, Ni, Co, Ti, Zr, In, Si,
  • Base metal (A) of the base metal oxide (A x O y ) component is Cu, Sn, Ti, V, Cr, Mn, Co, Ni, Zn, Al, Y, Zr, Mo, In, Mg, La, Ce.
  • composite nanoparticles (MA x O y ).
  • composite nanoparticles (M-A x O y) is Au-Cu 2 O or composite nanoparticles according to the above (8), a Au-SnO 2 (M-A x O y).
  • the base metal (A) of the base metal oxide (A x O y ) component is at least one selected from Cu, Sn, Al, Ni, Co, Ti, Zr, In, Si, La, Ce, Eu,
  • the noble metal (M) is at least one selected from Au, Pt, Pd, Rh, and Ag.
  • the base metal (A) of the base metal oxide (A x O y ) component is at least one selected from Cu, Sn, Al,
  • the noble metal (M) is at least one selected from Au and Pt.
  • the production method of the present invention has a remarkable advantage that particles obtained by heterojunction of noble metal nanoparticles represented by gold on various oxide nanoparticles can be easily generated in a gas phase.
  • the product is obtained in a very high purity state, and there is no contamination of impurities such as chlorine ions and organic substances. Therefore, these are washed and burned off.
  • Non-patent documents (1) to (3) and patent documents (1 ) To (4) do not require any essential steps. The point that these post-processes are unnecessary is very important especially for stable production of a catalyst sample.
  • the alloy nanoparticles are completely oxidized by adjusting the precious metal content in the alloy nanoparticles so as not to become too high. As a result, separation of only precious metals can be realized.
  • the noble metal-oxide bonded nanoparticles (MA x O y ) of the present invention have a particle diameter of 1 on the surface of base metal oxide particles (A x O y ) having a particle diameter of 1 to 200 nm (preferably 1 to 100 nm).
  • noble metal particle (M) with a purity of ⁇ 100 nm (preferably 1 to 10 nm) is bonded at the atomic level, and is derived from the heterointerface between nanoscale phases with completely different physical properties. It is expected to exhibit various physical and chemical properties and functions that are reactive, electronic, magnetic, and optical.
  • the noble metal-oxide bonded nanoparticles (MA-O x O y ) of the present invention are effective when used as, for example, an oxidation catalyst, but by selecting a noble metal and an oxide, a very wide range of industrial Application can be expected.
  • FIG. 1 is a drawing showing a process for producing noble metal-oxide bonded nanoparticles of the present invention.
  • FIG. 1 shows that the oxidizing gas is introduced between G and H, it can be introduced at any internal position in H instead.
  • (a) is an electron diffraction pattern of a sample in which Au—Cu 2 O composite nanoparticles are diluted on an amorphous carbon film.
  • (b) is a drawing showing the electron diffraction pattern of (a) converted into an intensity distribution with respect to the wave vector s.
  • the manufacturing method of the composite nanoparticle of this invention is shown in FIG.
  • the method for producing composite nanoparticles of the present invention comprises 0.1 to 30 at.% Of noble metal (M), the remainder is composed of base metal (A) and inevitable impurities, and the particle diameter is 1 to 200 nm (preferably 1 to 100 nm).
  • the alloy (AM) nanoparticles are heated and brought into contact with the introduced oxidizing gas.
  • noble metals or base metals as soluble compounds [eg, HAuCl 4 , H 2 PtCl 6 , Fe (CO) 5 ], and alloy (AM) nanoparticles are used in an inert gas.
  • Any precious metal or base metal that can be generated can be employed. Therefore, there are no restrictions on the types of precious metals and base metals due to compound restrictions such as liquid phase synthesis, so a wide range of precious metals and base metals other than Au, Pt, Cu, Sn, and Al used in the examples described later should be used. Can do.
  • the composite nanoparticle production apparatus used in the implementation of this production method includes a raw material noble metal-base metal alloy nanoparticle production apparatus (G; hereinafter referred to as “alloy nanoparticle production apparatus”), a high-temperature thermal oxidation treatment apparatus (H ), A collector (C), and an exhaust pump (P) connected in series.
  • the exhaust pump (P) is an inert gas introduced into the alloy nanoparticle generator (G), and generates alloy nanoparticles.
  • the exhaust pump (P) is an inert gas introduced into the alloy nanoparticle generator (G), and generates alloy nanoparticles.
  • the oxidizing gas introduced between the apparatus (G) and the high-temperature thermal oxidation processor (H) or the high-temperature part of the high-temperature thermal oxidation processor Used for.
  • the base metal A which comprises a raw material is not limited, For example, Cu, Sn, Ti, V, Cr, Mn, Co, Fe, Ni, Zn, Al, Y, Zr, Mo, In, Mg, La, Ce, One or more selected from Nd, Sm, Eu, Gd, Si, Ge, Pb, and Bi can be used. Preferably, it can be at least one selected from Cu, Sn, Al, Ni, Co, Ti, Zr, In, Si, La, Ce, and Eu.
  • the noble metal M which comprises a raw material is not limited, For example, it can be set as 1 or more types chosen from Au, Pt, Pd, Rh, Ag, Ru, and Ir.
  • the base metal A-noble metal M alloy as a raw material has a noble metal M content of the AM alloy nanoparticles of about 0.1 to 30 at.% (More preferably 1 to 15 at.%, Still more preferably 2 to 10 at. %), The content of the noble metal M is preferably determined in consideration of the vapor pressure of the base metal A and the noble metal M.
  • the noble metal content of the base metal A-noble metal M alloy as a raw material can be in the range of 1 to 60 at.%, For example, depending on the type of base metal element.
  • the amount is 30 to 60 at.% (Preferably 35 to 55 at.%, More preferably 40 to 50 at.%).
  • the precious metal content of the raw base metal A-precious metal M alloy is about 0.1-30 at.% (More preferably 1-15 at.%, (2-10 at.%) Is preferable.
  • AM alloy nanoparticles of base metal A and precious metal M as raw materials in the gas phase, it is possible to operate in a pressure range from low pressure (for example, about 0.1 to 10 kPa) to atmospheric pressure (101.3 kPa).
  • a generator can be used.
  • a gas evaporation method, a laser ablation method, a sputtering method, an arc plasma method, an atmospheric pressure plasma method, and the like, and various other nanoparticle generation methods in a gas phase can be appropriately used.
  • noble metal-base metal alloy nanoparticles of about 1 to 200 nm (preferably 1 to 100 nm, more preferably 2 to 80 nm, and further preferably 5 to 60 nm) are obtained using an inert gas such as helium, argon, or nitrogen. Generate.
  • the particle diameter of the alloy nanoparticles generally increases as the temperature of the evaporation source (energy input to the evaporation source) increases or as the pressure of the inert gas increases and the flow rate decreases. It is possible to adjust.
  • noble metal-base metal alloy nanoparticles When producing noble metal-base metal alloy nanoparticles, if nano-sized secondary particles composed of aggregates of primary particles of the alloy are produced, before the thermal oxidation treatment is performed in the high-temperature thermal oxidation treatment device (H), for example, preliminary By a heating mechanism or the like, it is heated and sintered in an inert atmosphere to form isolated dispersed particles.
  • H high-temperature thermal oxidation treatment device
  • the produced alloy nanoparticles are mixed with the oxidizing gas while being transported in the gas phase by an inert gas or in a high-temperature thermal oxidation treatment device.
  • an inert gas oxygen gas alone or a mixture of air, oxygen gas and inert gas can be used.
  • the oxidizing gas is introduced before the high temperature thermal oxidation processor, the alloy nanoparticles are partially oxidized together with the mixed gas of the inert gas and the oxidizing gas, and then flowed into the high temperature thermal oxidation processor. Only the base metal elements constituting the alloy nanoparticles are completely oxidized by the oxygen gas in the mixed gas heated to a high temperature.
  • the alloy nanoparticles are introduced into the high-temperature thermal oxidation processor together with the inert gas and heated to a high temperature (high-temperature solid or molten In this state, only the base metal elements are rapidly and completely oxidized by exposure to high-temperature oxygen.
  • the oxidation rate and the degree of evaporation of the base metal and the noble metal due to the oxidation heat change depending on the supply position of the oxidizing gas. In any case, the noble metal and the base metal oxide are in a nanoscale phase during the heating.
  • base metal oxide (a x O y) surface noble metal particles (M) composite nanoparticles in which one is joined (M-a x O y) is produced.
  • a uniform hetero interface may be generated for each particle by a high-temperature heat treatment performed simultaneously.
  • the alloy nanoparticles in the high-temperature thermal oxidation processor may be heated indirectly by a mixed gas heated to a high temperature using a tubular electric furnace with a quartz tube as a core tube, It may be heated directly using means such as wave heating.
  • High-temperature thermal oxidation treatment depends on the type of precious metal and base metal, but in general, the temperature should be 400 ° C or higher (preferably 500 to 1200 ° C, more preferably 600 to 1100 ° C), and the processing time should be within 10 seconds. Can do. When the processing temperature is increased, the processing time can be shortened. In the high-temperature thermal oxidation processor, a heating region along the conveyance path of the alloy nanoparticles is set so that the alloy nanoparticles are heated during such a processing time.
  • the noble metal-base metal oxide composite nanoparticles flowing out of the high-temperature thermal oxidation processor are cooled to about room temperature by natural cooling or appropriate cooling means, and then collected in the collector.
  • a collection method a dry method or a wet method used for aerosol collection can be appropriately used.
  • the composition of the noble metal M is about 0.1 to 30 at.% (More preferably 1 to 15 at. %, More preferably 2 to 10 at.%), And the oxygen concentration of the mixed gas is preferably 10% or more.
  • the AM alloy nanoparticles have as little impurity content as possible. Impurities derived from these impurities and the like may be contained. It is desirable to select the raw materials so that the impurity content is in a range that does not significantly impair the intended function (for example, less than 0.01 at.%, Preferably less than 0.001 at.%).
  • Noble metal of the present invention - base metal oxide composite nanoparticles are continuously produced in a very clean state by the above processes, base metal oxides of particle size 1 ⁇ 200 nm (preferably 1 ⁇ 100nm) (A x O y) the particle size 1 ⁇ 100 nm (preferably on the surface of a noble metal particles (M) 1 piece is formed by joining the composite nanoparticles of 1 ⁇ 10nm) (M-a x O y), the base metal oxide
  • the base metal (A) of the (A x O y ) component is Cu, Sn, Ti, V, Cr, Mn, Co, Ni, Zn, Al, Y, Zr, Mo, In, Mg, La, Ce, Nd, One or more selected from Sm, Eu, Gd, Si, Ge, Pb, Bi (except when the base metal oxide is ZnO, MnO), and the noble metal (M) is Au, Pt, Pd, One or more selected from Rh, Ag, Ru and Ir.
  • This composite nanoparticle is composed of one region of base metal oxide (A x O y ) having a size of 1 to 200 nm and one region of noble metal (M) having a size of 1 to 100 nm. It can be said that.
  • the particle diameter of the base metal oxide is 1 to 200 nm, preferably 1 to 100 nm, more preferably 2 to 50 nm, and further preferably 5 to 30 nm.
  • the particle diameter of the noble metal particles is 1 to 100 nm, preferably 1 to 10 nm, More preferably, it is 1 to 8 nm, and still more preferably 1 to 5 nm.
  • the particle size of the base metal oxide is affected not only by the particle size of the noble metal-base metal alloy nanoparticles, but also by the evaporation of the base metal due to the oxidation heat in the high temperature thermal oxidation treatment.
  • the particle diameter of the base metal oxide can also be adjusted by adjusting the position where the oxidizing gas is introduced.
  • the average value of the maximum diameter and the minimum diameter passing through the center of gravity of a particle image obtained by TEM (Transmission Electron Microscope) is defined as “particle diameter”.
  • the size of the base metal oxide or noble metal region is regarded as a particle, and the average value of the maximum diameter and the minimum diameter passing through the center of gravity of the image is defined as the “size” of the region.
  • the noble metal (M) of the composite nanoparticles (MA-O x O y ) produced according to the present invention may be one kind of noble metal or a mixture of plural kinds of noble metals.
  • the purity of the precious metal (M) is about the precious metal raw material (usually about 99.99 to 99.999%) or more (for example, by passing through the phase separation process from the alloy nanoparticle generation process and the base metal oxide component (A x O y )) (for example, 99.9999% or more).
  • Example 1 Production of Au-Cu 2 O composite nanoparticles and measurement of CO oxidation catalytic activity
  • a generator by gas evaporation method was used as a source of alloy nanoparticles.
  • Helium was introduced into the apparatus at an inflow rate of 0.4 L / min, and the pressure in the apparatus was maintained at a reduced pressure of 2 kPa by an oil rotary pump.
  • a Cu-46 at.% Au ingot was placed in a carbon-pBN (Pyrolytic Boron Nitride) double crucible and heated at 1200 ° C. by high frequency heating. From the above experimental conditions, Cu-4at.% Au alloy nanoparticles were formed in helium.
  • the reason why the Au content of the nanoparticles was decreased compared to the raw material ingot was that the vapor pressure of Cu was higher than the vapor pressure of Au.
  • the produced alloy nanoparticles were transported into a quartz tube heated to 1100 ° C. together with oxygen gas with an inflow rate of 0.2 L / min added to helium gas and subjected to high temperature oxidation treatment. Thermal oxidation treatment time is about 0.1 seconds.
  • Au-Cu 2 O composite nanoparticles produced after the oxidation treatment were diluted and spontaneously deposited on the amorphous carbon film placed in the collector, and became a sample for electron microscope observation. Samples for measuring catalytic activity could be collected with silica nanopowder (Sigma-Aldrich, 637238) as buffer particles.
  • FIG. 2 shows a TEM (Transmission Electron Microscope) photograph of Au—Cu 2 O composite nanoparticles having an average particle diameter of 9.8 ⁇ 4.6 nm. It can be seen that there are minute portions of dark contrast in some of all particles.
  • FIG. 3A shows the electron diffraction pattern of the sample
  • FIG. 3B shows the electron diffraction pattern converted into an intensity distribution with respect to the wave vector s. The clear peaks appearing in FIG. 3B are all diffractions due to the Cu 2 O plane index. Although very weak, a peak (arrow) due to Au could be confirmed.
  • the lattice constants of Cu 2 O and Au were found to be 0.4271 ⁇ 0.0004 nm and 0.4070 ⁇ 0.0034 nm, respectively, and within the error range, Cu 2 O (document value: 0.42696 nm) and Au (document value) : 0.4079 nm). From this, it was confirmed that the high-contrast minute portion of the particle in FIG. 2 is Au, and the other large portion is Cu 2 O.
  • the Au: Cu molar composition ratio of the composite nanoparticles was 5:95 according to the result of ICP (Inductively Coupled Plasma) analysis, which was almost the same as the molar composition ratio of the alloy nanoparticles before oxidation.
  • FIGS. 4A and 4B are high-resolution TEM photographs of 17 nm Au—Cu 2 O composite nanoparticles.
  • a clear lattice image is observed in the Cu 2 O part, and when the crystallographic orientation is determined from the relative angle between the lattice fringe spacing and the different lattice fringes, (a) is ⁇ 100> and (b) is ⁇ 110. Matches>.
  • a clear lattice image can be confirmed in the Au portion as well, and its crystallographic orientation is completely coincident with Cu 2 O. Since the lattice stripes are completely connected between the two phases, the two phases are heteroepitaxial junctions.
  • 4 (c) and 4 (d) are high-resolution TEM photographs of 14 nm and 7 nm Au—Cu 2 O composite nanoparticles. It can be seen that even in these particles, both phases are very well heterojunctioned. Common to all particles, half of the Au portion is buried in Cu 2 O. Under the above experimental conditions, when particles were generated by changing the heat treatment temperature, a structure in which Au was separated at a temperature of 400 ° C. or higher was obtained, and was not obtained at 300 ° C. or lower.
  • a sample for measuring catalytic activity was prepared by mixing Au—Cu 2 O composite nanoparticles and silica powder.
  • the total amount of silica powder and Au—Cu 2 O composite nanoparticles used for the measurement was 81 mg, and the content of Au—Cu 2 O composite nanoparticles was 0.65 wt.%.
  • the catalytic activity for CO oxidation reaction was measured using a fixed bed flow reactor. CO (1%) + O 2 (20%) + He mixed gas was allowed to flow at a flow rate of 0.1 L / min. The heating rate was set to 1 ° C / min.
  • FIG. 5 shows the results of temperature dependence of the conversion rate of carbon monoxide to carbon dioxide. The conversion rate rapidly increased above about 200 ° C, and T 50% was 215 ° C.
  • reaction rate per unit weight of Au-Cu 2 O composite nanoparticles excluding silica was calculated, and compared with the activity of the previously reported catalyst from the Arrhenius plot, the alumina-supported gold prepared by the liquid phase method (precipitation precipitation method) It was found that the catalyst performance was equivalent to that of a catalyst. This is because, in the process of the present invention, the individual particles are subjected to heat treatment at a high temperature, so that Au and Cu 2 O form a strong hetero interface and are joined as shown in FIG.
  • Example 2 Formation of Au-SnO 2 composite nanoparticles and measurement of CO oxidation catalytic activity
  • Raw material Sn-5at.% Au alloy nanoparticles were obtained in helium gas by heating a Sn-50at.% Au ingot at 1180 ° C. by the same gas evaporation method as in Example 1.
  • Au-SnO 2 composite nanoparticles were obtained by high-temperature thermal oxidation of the alloy nanoparticles at 700 ° C. for about 0.1 seconds in the gas phase.
  • the other experimental conditions are almost the same as in Example 1.
  • FIG. 6 shows a TEM photograph of the Au—SnO 2 composite nanoparticles. Analysis of the electron diffraction pattern confirmed that the thin contrast portion was SnO 2 phase.
  • Example 2 In the same manner as in Example 1, the sample for catalytic activity measurement was obtained by collecting together with silica powder. The total amount of silica powder and Au—SnO 2 composite nanoparticles (content: 0.64 wt.%) Used for the measurement was 50 mg. Under the same conditions as in Example 1, the temperature dependence of the conversion rate of carbon monoxide to carbon dioxide was measured. FIG. 7 shows the result, and it can be seen that the Au—SnO 2 composite nanoparticles also show the oxidation catalytic ability of carbon monoxide. The conversion rate rapidly increased above about 300 ° C, and T 50% was 345 ° C.
  • Example 3 Production of Au-Al 2 O 3 composite nanoparticles
  • a generator by laser ablation was used as an alloy nanoparticle generation source.
  • Helium gas was introduced into the apparatus at an inflow rate of 0.5 L / min, and the pressure in the apparatus was maintained at a reduced pressure of 1.6 kPa by an oil rotary pump.
  • the second harmonic of Nd: YAG laser (wavelength: 532nm, output: 90mJ / pulse, repetition frequency: 10Hz) is focused on the surface. Irradiation caused the target surface to evaporate instantaneously, and aggregates of nanoparticles of the alloy were generated in helium gas.
  • the resulting alloy nanoparticle aggregates were moved on a helium gas stream, sintered with a preheating mechanism and converted into isolated dispersed particles, and then heated to 900 ° C. with oxygen gas at an inflow rate of 0.25 L / min. It was transported into a quartz tube and subjected to high temperature oxidation treatment. The thermal oxidation treatment time is about 0.01 seconds.
  • Au—Al 2 O 3 composite nanoparticles produced after the oxidation treatment were diluted and spontaneously deposited on the amorphous carbon film placed in the collector, and used as a sample for electron microscope observation.
  • FIG. 8 shows a TEM photograph of Au—Al 2 O 3 composite nanoparticles. As shown in the photograph, each particle shows a shape in which a small portion with high contrast and a large portion with low contrast are joined. Analysis of the electron diffraction pattern revealed that the oxide of Al constituting the particles was a ⁇ -Al 2 O 3 phase. Therefore, the dark contrast portion is Au, and the thin contrast portion is ⁇ -Al 2 O 3 .
  • Example 4 Production of Pt-Cu 2 O composite nanoparticles
  • Example 4 Production of Pt-Cu 2 O composite nanoparticles
  • each particle shows a shape in which a small portion with high contrast and a large portion with low contrast are joined.
  • Analysis of the electron diffraction pattern revealed that the Cu oxide composing the particles was a Cu 2 O phase. Therefore, the dark contrast portion is Pt and the thin contrast portion is Cu 2 O.
  • Example 5 Production of Pt—Al 2 O 3 composite nanoparticles
  • Example 5 Production of Pt—Al 2 O 3 composite nanoparticles
  • each particle shows a shape in which a small portion with high contrast and a large portion with low contrast are joined.
  • Analysis of the electron diffraction pattern revealed that the oxide of Al constituting the particles was a ⁇ -Al 2 O 3 phase. Accordingly, the dark contrast portion is Pt and the thin contrast portion is ⁇ -Al 2 O 3 phase.
  • the present invention is a method for producing composite nanoparticles of noble metal and oxide, and is a method for producing a heterojunction between both nanoscale phases. Further, the present invention is a high-purity noble metal / oxide composite nanoparticle, and a heterojunction is formed between both nanoscale phases. Therefore, chemical-reactive, electronic, magnetic, and optical physical / chemical properties derived from the heterointerface between two phases having completely different physical properties are attached to the nanoscale particles. Therefore, the embodiments of the heterojunction noble metal-oxide composite nanoparticles according to the present invention are not limited to the catalyst application of the above examples, but by selecting noble metals and oxides, a very wide range Industrial application can be expected.

Abstract

 高純度の貴金属ナノ粒子1個と酸化物ナノ粒子1個が接合された複合ナノ粒子を再現性良く、かつ、均一にヘテロ界面を形成させることができ、さらに、被毒物の残存などを回避した、クリーンな生成法を提供する。 貴金属(M)を0.1~30at.%含有し、残部が卑金属(A)と不可避不純物からなり、粒子径が1~200nm(好ましくは1~100nm)の合金(A-M)ナノ粒子を不活性ガス中で生成させ、不活性ガスで搬送する途中で、合金(A-M)ナノ粒子の加熱、及び、導入された酸化性ガスと接触させることによって、ガス中に浮遊する合金(A-M)ナノ粒子中の卑金属成分(A)を酸化させ、かつ、酸化卑金属成分(Axy)を貴金属成分(M)と相分離させて複合ナノ粒子(M-Axy)を得ることを特徴とする。

Description

貴金属-酸化物接合ナノ粒子、及び、その高純度製造方法
 本発明は、触媒などに応用が期待できる、貴金属ナノ粒子1個と酸化物ナノ粒子1個が接合された接合ナノ粒子(以下では、「接合ナノ粒子」を「複合ナノ粒子」ということもある。)、及び、その高純度な生成法に関する。
 複数の異なる性質の物質を原子レベルで接合させることによって、それぞれ単独の物質では決して得られない特性を得ることができる。例えば、p型とn型半導体の接合は、整流性能、光起電力効果、エレクトロルミネセンスなどの性質を生じさせ、ダイオード、トランジスタなどのデバイスに広く応用されている。他にも、磁性薄膜の接合構造によって発現するトンネル磁気抵抗効果、巨大磁気抵抗効果など、ヘテロ接合は物性制御の1つとして非常に重要な位置を占めている。
 一方、近年では、物質の3次元的な大きさをナノメートルスケールに制限することによる特異物性の応用展開が非常に目覚しいが、ここでもヘテロ接合の重要性が指摘されている。金は最も不活性な金属として知られてきたが、ナノサイズの金粒子を酸化チタンや酸化セリウムなどの酸化物上に担持したものは、一酸化炭素の酸化や水性ガスシフト反応、プロピレン等の選択酸化など、工業的に重要な触媒反応に有効であることが明らかになっている。近年の研究から、その機構として、金ナノ粒子と酸化物とのヘテロ接合状態が、触媒活性に不可欠であることが指摘されている。金ナノ粒子触媒の生成法は、一般的には共沈法や析出沈殿法などが使用されている。これらの方法では、予め用意されたサブマイクロメートルサイズの酸化物粉末結晶上に、金を析出させ、高温で焼成することによって、金ナノ粒子と酸化物粉末結晶表面との間で強固な接合が形成されている。
 例えば、非特許文献(1)~(5)、特許文献(1)~(4)では、液相合成による、金-酸化物複合ナノ粒子について、特許文献(5)では貴金属と硫化物との複合ナノ粒子について、記載されている。
 具体的には、特許文献(3)には、生医学、ナノデバイス等へ応用し得るダンベル形状又はフラワー形状のナノ粒子の製造方法として、疎水性外側コートを含むナノ粒子と前駆体との混合物に基づき、第1の部分がPbS,CdSe,CdS,ZnS,Au,Ag,Pd,Ptのいずれかからなり、第2の部分がAu,Ag,Pd, Pt,Fe,Co,Ni等からなるナノ粒子を製造する旨が記載されているが、貴金属と酸化物の接合ナノ粒子については、Au-Fe2O3,Ag-Fe3O4の実施例が記載されているだけである。
 特許文献(4)には、燃料セルの酸素電極において用いられる複合触媒として、1つのフェライト粒子(平均粒子サイズが5~50nm)にエピタキシャルに結合した1つの貴金属ナノ粒子(平均粒子サイズが10nm未満)からなるダンベル形状複合ナノ粒子や、1つのフェライト粒子にエピタキシャルに結合した2つ以上の貴金属ナノ粒子からなるフラワー形状の複合ナノ粒子であって、金属酸化物前駆体及び貴金属ナノ粒子が添加された有機溶媒と界面活性剤との混合溶液を加熱、還流させ、複合ナノ粒子を沈殿させる等の工程により製造され、フェライト粒子が化学式 A2+B3+ 2O4(但し、A2+は、Mn2+,Fe2+,Co2+,Ni2+,Cu2+,Mg2+,Zn2+及びCd2+からなる群から選択されるイオンであり、B3+は、Fe3+,Cr3+及びMn3+からなる群から選択されたイオンである)のフェライトを少なくとも含み、前記貴金属ナノ粒子は、少なくともPt,Pd及びAgからなる群から選択された少なくとも1つの元素を含むものが記載されている。しかしながら、実施例としては、Pt-Fe3O4が記載されているだけである。
 特許文献(5)には、チオール化合物の存在下、2種の金属塩を高温でポリオール還元することにより製造される異方的に相分離したどんぐり形状の二元金属ナノ粒子であって、一方の金属がFe,Co,Ni又はCuで、他方の金属がPd,Pt,Au又はAgであり、磁性化学の分野や触媒化学の分野などでの用途が期待されるものが記載されている。しかしながら、実施例としては、Coの硫化物とPdの硫化物からなる二元ナノ粒子が記載されているに過ぎず、純粋な貴金属部分を含むナノ粒子や卑金属酸化物を含むナノ粒子やその製造方法については全く記載されていない。
 非特許文献(1)~(5)には、液相合成によるダンベル形状のAu-Fe3O4,Au-ZnO,Au-MnOのナノ粒子が記載されているが、Fe,Zn,Mn以外の非金属元素を用いる旨については全く記載されていない。
 しかも、特許文献(1)~(4)、非特許文献(1)~(3)では、酸化物の元素としては、Fe,Co,Ni,Mn,Cu,Mg,Zn,Cd,Crの使用乃至使用可能性が記載されているだけで、Sn,Ti,Al,Zr,Ce,Y,La,Si,Geを用いることは、全く記載されていないし、また、使用可能性が言及された酸化物の元素についても、該元素を採用する場合に用いる化合物等の開示がなされていないので、当業者が容易に実施をすることができる程度に記載されているとは言えない。しかも、このような液相合成により生成された金-酸化物複合ナノ粒子には、イオンや有機物等の各種不純物が不可避的に含まれるため、触媒等として用いる場合には、被毒物イオンの洗浄や、ナノ粒子保護有機物の焼成による除去乃至清浄化工程が不可欠である。その上、これらの清浄化工程が、原子レベルで常に安定かつ完全に、かつ再現性良く行うことができる保証は無い。そして、原料に金属カルボニルなどの危険物を使用する点や、上記で用いられた以外の様々な酸化物の元素を簡単に選択することができない点から見ても、上記液相合成による金-酸化物複合ナノ粒子の生成には多くの解決すべき問題が存在する。
 また、特許文献(6)~(10)では、アーク溶解法を用いて、不活性ガス中で、貴金属-卑金属ナノ粒子(合金ナノ粒子)を生成させ、その後、そのナノ粒子試料を酸化処理させることによって、卑金属酸化物粒子表面上に複数の貴金属ナノ粒子を生成させる方法を提示している。酸化処理温度と時間は、室温での徐酸化処理、または200~600℃、2分~4時間などとしている。しかしながら、この方法では、合金ナノ粒子同士はすでに凝集してしまっているために、得られる物質は卑金属酸化物凝集体の上に貴金属が不規則・不均一に析出したものとなる。それ故、当該法によって、卑金属酸化物ナノ粒子1個の表面に貴金属ナノ粒子が1個接合された複合ナノ粒子を独立分散させた状態で得ることはできない。
 さらに、特許文献(6)~(8)では、酸素を含んだ不活性ガス中で、原材料合金を蒸発させることによって貴金属-酸化物複合ナノ粒子を生成させることも行っている。当該法においては、原材料合金の加熱によって蒸発した貴金属原子および卑金属原子の内、卑金属原子のみが酸素と反応し、卑金属原子と酸素の会合体が先行して生成する。その後、貴金属原子と卑金属原子-酸素会合体が気相中で多数合体することによって、貴金属-卑金属酸化物複合ナノ粒子へ成長する。このような過程で生成した粒子は、卑金属酸化物粒子上に貴金属ナノ粒子が複数個付着した形態となることが報告されている。それ故、当該法によって、卑金属酸化物ナノ粒子1個の表面に貴金属ナノ粒子が1個接合された複合ナノ粒子を独立分散させた状態で得ることはできない。
 特許文献(9)では、T・M(TはTi、Al等、MはAu、Pd等)の原材料を、水素ガス、窒素ガス及び不活性ガスからなる群から選ばれた少なくとも1種のガスを含む雰囲気中で加熱溶解し、超微粒子を生成させてフィルターで捕集後、捕集された超微粒子を酸素を含む雰囲気中で熱処理すること等からなる複合超微粒子の製造方法が記載されている。この製造方法では、フィルターで捕集された超微粒子は、相互に結合乃至凝集した状態で酸化熱処理され、各超微粒子が独立分散した浮遊状態で酸化熱処理されない。そのため、Ti、Al等の金属酸化物からなる超微粒子にAu、Pd等の貴金属又は/及びその化合物からなる多数の微細な粒子が析出、分散した複合超微粒子が得られるだけである。それ故、当該製造方法によっても、卑金属酸化物ナノ粒子1個の表面に貴金属ナノ粒子が1個接合された複合ナノ粒子を独立分散させた状態で得ることはできない。
 一方、本発明者らは、非特許文献(6)で既報の通り、本発明の実施例のガス中蒸発法と同様のプロセスにおいて、ヘリウムガス中でCu-46at.%Au合金ナノ粒子を生成させ、その後、気相中で高温酸化処理を行うことにより金属部分と銅酸化物部分からなる複合ナノ粒子を製造した。しかしながら、合金ナノ粒子中のAuの含有率が高すぎるために、合金ナノ粒子を完全に酸化させることができず、複合ナノ粒子の金属部分はAu-17at.%Cu合金の状態となっており、Auのみの分離が実現できていなかった。
US 7288134 US2006/0053971 US 2008/0168863 特開2009-94048 特許第4170930号 特開平8-215570 特開平8-215576 特開平8-283022 特開平8-283023 特開平10-80637
H.Yinet al.,Nano Lett.,5,2005,379-382. H.Yinet al.,Chem.Commun.,2008,4357-4359. B.Wuet al.,Nano Res.,2,2009,975-983. X.Wang et al.,J.Phys.Chem.C,111,2007,3836-3841. S.-H.Choi et al.,J.Am.Chem.Soc.,130,2008,15573-15580. K.Koga and D.Zubia,J.Phys.Chem.C,112,2008,2079-2085.
 共沈法や析出沈殿法などの触媒生成法では、非常に簡易的に貴金属担持酸化物触媒を得ることが出来る利点の一方で、貴金属/酸化物間にヘテロ接合を生成させるための高温焼成時における金粒子の粗大化、塩素イオンなどの被毒物の残存などの問題が存在している。また、金ナノ粒子と酸化物とのヘテロ界面は、一般に様々な原子面で生成されるために、1つ1つのナノ粒子について、ヘテロ界面を均一に制御することは不可能である。触媒特性等のヘテロ界面に起因した物性を常に安定に提供させるためには、再現性良く、かつ、均一にヘテロ界面を形成させることが重要であり、さらに、被毒物の残存などを回避した、安定したヘテロ界面物性が期待できる貴金属-酸化物接合ナノ粒子や該接合ナノ粒子のクリーンな生成法の確立が望まれる。
 本発明は、高純度の貴金属ナノ粒子1個と酸化物ナノ粒子1個が接合された新規な複合ナノ粒子であって、被毒物の残存がなく、物性の全く異なるナノスケール両相間のヘテロ界面に由来して、化学反応的、電子的、磁気的、光学的などの各種の物理・化学的に特異な物性、機能を発揮することが期待される複合ナノ粒子やその製造方法を提供することを課題とする。
 本発明は、金や白金などの貴金属と、高温で容易に酸化される卑金属との合金ナノ粒子を、気相中に浮遊する状態において高温で熱酸化処理することによって、従来の液相合成法等では得られなかった、特定の卑金属酸化物(Axy)の表面に高純度の貴金属粒子(M)1個が接合した複合ナノ粒子(M-Axy)をワンステップで連続的に生成することができ、しかも、その複合ナノ粒子の生成には、不純物の不可避的混入の恐れがない等の知見に基づくものであり、次のような特徴を有するものである。
(1)貴金属(M)を0.1~30at.%含有し、残部が卑金属(A)と不可避不純物からなり、粒子径が1~100nmの合金(A-M)ナノ粒子を不活性ガス中で生成させ、不活性ガスで搬送する途中で、合金(A-M)ナノ粒子の加熱、及び、導入された酸化性ガスと接触させることによって、浮遊する合金(A-M)ナノ粒子中の卑金属成分(A)を酸化させ、かつ、酸化卑金属成分(Axy)を貴金属成分(M)と相分離させて粒子状卑金属酸化物(Axy)の表面に貴金属粒子(M)1個が接合した複合ナノ粒子(M-Axy)を得る複合ナノ粒子(M-A)の製造方法。
(2)複合ナノ粒子(M-Axy)が独立分散させた状態で得られることを特徴とする上記(1)に記載の複合ナノ粒子(M-Axy)の製造方法。
(3)合金(A-M)ナノ粒子の熱酸化処理は気相中で行い、温度400℃以上、処理時間が10秒以内であることを特徴とする上記(1)又は(2)に記載の複合ナノ粒子(M-Axy)の製造方法。
(4)酸化性ガスの導入を合金(A-M)ナノ粒子の加熱前に行い、該加熱を酸化性ガスと不活性ガスの混合ガス中で行うか、又は、酸化性ガスの導入を合金(A-M)ナノ粒子の不活性ガス中での加熱中に行う上記(1)~(3)のいずれか1項に記載の複合ナノ粒子(M-Axy)の製造方法。
(5)合金(A-M)ナノ粒子の生成法として、ガス中蒸発法、レーザーアブレーション法、スパッタリング法、アークプラズマ法、大気圧プラズマ法のいずれかを用いることを特徴とする上記(1)~(4)のいずれか1項に記載の複合ナノ粒子(M-Axy)の製造方法。
(6)卑金属酸化物(Axy)成分の卑金属(A)が、Cu,Sn,Ti,V,Cr,Mn,Co,Fe,Ni,Zn,Al,Y,Zr,Mo,In,Mg,La,Ce,Nd,Sm,Eu,Gd,Si,Ge,Pb,Biから選ばれる1種以上であり、貴金属(M)が、Au,Pt,Pd,Rh,Ag,Ru,Irから選ばれる1種以上である上記(1)~(5)のいずれか1項に記載の複合ナノ粒子(M-Axy)の製造方法。
(7)貴金属(M)を0.1~30at.%含有し、残部が卑金属(A)と不可避不純物からなり、粒子径が1~200nmの合金(A-M)ナノ粒子を不活性ガス中で生成させ、不活性ガスで搬送する途中で、合金(A-M)ナノ粒子の加熱、及び、導入された酸化性ガスと接触させることによって、浮遊する合金(A-M)ナノ粒子中の卑金属成分(A)を酸化させ、かつ、酸化卑金属成分(Axy)を貴金属成分(M)と相分離させて粒子状卑金属酸化物(Axy)の1個の領域と、粒子状貴金属(M)の1個の領域から構成される複合ナノ粒子(M-Axy)を得る複合ナノ粒子(M-Axy)の製造方法であって、卑金属(A)が、Cu,Sn,Al,Ni,Co,Ti,Zr,In,Si,La,Ce,Euから選ばれる1種以上であり、
貴金属(M)が、Au,Pt,Pd,Rh,Agから選ばれる1種以上である、複合ナノ粒子(M-A)の製造方法。
(8)粒子径1~100nmの卑金属酸化物(A)の表面に粒子径1~10nmの貴金属粒子(M)1個が接合してなる複合ナノ粒子(M-A)であって、
卑金属酸化物(A)成分の卑金属(A)が、Cu,Sn,Ti,V,Cr,Mn,Co,Ni,Zn,Al,Y,Zr,Mo,In,Mg,La,Ce,Nd,Sm,Eu,Gd,Si,Ge,Pb,Biから選ばれる1種以上であり(ただし、卑金属酸化物がZnO,MnOである場合を除く)、
貴金属(M)が、Au,Pt,Pd,Rh,Ag,Ru,Irから選ばれる1種以上である、
複合ナノ粒子(M-Axy)。
(9)複合ナノ粒子(M-Axy)がAu-Cu2O又はAu-SnO2である上記(8)に記載の複合ナノ粒子(M-Axy)。
(10)1~200nmの大きさをもつ卑金属酸化物(Axy)の1個の領域と、1~100nmの大きさをもつ貴金属(M)の1個の領域から構成される複合ナノ粒子(M-Axy)であって、
卑金属酸化物(Axy)成分の卑金属(A)が、Cu,Sn,Al,Ni,Co,Ti,Zr,In,Si,La,Ce,Euから選ばれる1種以上であり、
貴金属(M)が、Au,Pt,Pd,Rh,Agから選ばれる1種以上である、
複合ナノ粒子(M-Axy)。
(11)卑金属酸化物(Axy)成分の卑金属(A)が、Cu,Sn,Alから選ばれる1種以上であり、
貴金属(M)が、Au,Ptから選ばれる1種以上である、
上記(10)に記載の複合ナノ粒子(M-Axy)。
 本発明の製造方法では、金に代表される貴金属のナノ粒子を様々な酸化物ナノ粒子上にヘテロ接合させた粒子を気相中で簡易的に生成できるという顕著な利点がある。生成物は非常に高純度な状態で得られ、塩素イオンや有機物などの不純物の混入は一切無いために、これらを洗浄、焼失させるという非特許文献(1)~(3)や特許文献(1)~(4)では必須となる工程を一切必要としない。これらの後工程が不要な点は、特に触媒試料の安定な生成には非常に重要である。
 本発明の製造方法においては、酸化処理前の合金ナノ粒子を気相中に独立分散させた状態において、気相中で高温熱酸化処理をしているために、特許文献(6)~(10)では得られない、1つのナノ粒子内で1枚の接合界面を介して貴金属と酸化物ナノ粒子が各1個のみ接合された構造のナノ粒子を得ることができる。
 本発明の製造方法では、非特許文献(6)と異なり、合金ナノ粒子中の貴金属の含有率が高くなりすぎないように調整することにより、合金ナノ粒子を完全に酸化させ、また、金属部分として貴金属のみの分離が実現できる。
 また、本発明の貴金属-酸化物接合ナノ粒子(M-Axy)は、粒子径1~200nm(好ましくは1~100nm)の卑金属酸化物粒子(Axy)表面に粒子径1~100nm(好ましくは1~10nm)の純度の高い貴金属粒子(M)1個が原子レベルで接合した極めて微細な粒子であり、物性の全く異なるナノスケール両相間のヘテロ界面に由来して、化学反応的、電子的、磁気的、光学的などの各種の物理・化学的に特異な物性、機能を発揮することが期待される。本発明の貴金属-酸化物接合ナノ粒子(M-Axy)は、例えば、酸化触媒として用いた場合に有効であるが、貴金属と酸化物を選択することによって、非常に幅広い産業上の応用が期待できる。
本発明の貴金属-酸化物接合ナノ粒子の製造プロセスを示す図面。(なお、図1では、酸化性ガスをGとHとの間に導入するように図示しているが、それに替えて、H中の任意の内部位置に導入することもできる。) Au-Cu2O複合ナノ粒子が非晶質炭素膜上に希薄に付着した試料のTEM写真。 (a)はAu-Cu2O複合ナノ粒子が非晶質炭素膜上に希薄に付着した試料の電子回折パターン。(b)は、(a)の電子回折パターンを、波数ベクトルsに対する強度分布に変換して示す図面。 (a),(b)は、それぞれ<100>,<110>方位から観察された、17nmのAu-Cu2O複合ナノ粒子の高分解能TEM写真。(c),(d)は、14nm,7nmのAu-Cu2O複合ナノ粒子の高分解能TEM写真。 Au-Cu2O複合ナノ粒子を含む試料の触媒活性(一酸化炭素の二酸化炭素への転化率の温度依存性)を示す図面。 Au-SnO2複合ナノ粒子のTEM写真。 Au-SnO2複合ナノ粒子を含む試料の触媒活性(一酸化炭素の二酸化炭素への転化率の温度依存性)を示す図面。 Au-Al2O3複合ナノ粒子のTEM写真。 Pt-Cu2O複合ナノ粒子のTEM写真。 Pt-Al2O3複合ナノ粒子のTEM写真。
 以下、本発明の実施形態について説明する。
 本発明の複合ナノ粒子の製造方法を図1に示す。本発明の複合ナノ粒子の製造方法は、貴金属(M)を0.1~30at.%含有し、残部が卑金属(A)と不可避不純物からなり、粒子径が1~200nm(好ましくは1~100nm)の合金(A-M)ナノ粒子を不活性ガス中で生成させ、不活性ガスで搬送する途中で、合金(A-M)ナノ粒子の加熱、及び、導入された酸化性ガスと接触させることによって、浮遊する合金(A-M)ナノ粒子中の卑金属成分(A)を酸化させ、かつ、酸化卑金属成分(Axy)を貴金属成分(M)と相分離させる等の工程を含む。
 この製造方法では、貴金属や卑金属を溶解性の化合物〔例えば、HAuCl4,H2PtCl6,Fe(CO)5〕として用いる必要がなく、合金(A-M)ナノ粒子を不活性ガス中で生成させることができる貴金属、卑金属であれば採用することができる。それ故、液相合成のような化合物の制約による貴金属や卑金属の種類の制限がないので、後述の実施例で用いたAu、Pt、Cu、Sn、Al以外の貴金属や卑金属も幅広く採用することができる。
 この製造方法の実施に用いる複合ナノ粒子の製造装置は、原料の貴金属-卑金属合金ナノ粒子生成装置(G;以下「合金ナノ粒子生成装置」ということがある。)、高温熱酸化処理器(H)、捕集器(C)、排気ポンプ(P)の直列結合によって構成され、排気ポンプ(P)は、合金ナノ粒子生成装置(G)へ導入された不活性ガス、および、合金ナノ粒子生成装置(G)と高温熱酸化処理器(H)の中間又は高温熱酸化処理器の高温部へ導入された酸化性ガスを排気し、合金ナノ粒子生成装置(G)の圧力条件を制御するために用いる。
 原料を構成する卑金属Aは、限定されないが、例えば、Cu,Sn,Ti,V,Cr,Mn,Co,Fe,Ni,Zn,Al,Y,Zr,Mo,In,Mg,La,Ce,Nd,Sm,Eu,Gd,Si,Ge,Pb,Biから選ばれる1種以上とすることができる。好ましくは、Cu,Sn,Al,Ni,Co,Ti,Zr,In,Si,La,Ce,Euから選ばれる1種以上とすることができる。
 原料を構成する貴金属Mは、限定されないが、例えば、Au,Pt,Pd,Rh,Ag,Ru,Irから選ばれる1種以上とすることができる。好ましくは、Au,Pt,Pd,Rh,Agから選ばれる1種以上とすることができる。
 原料の卑金属A-貴金属M合金は、後述の理由によりA-M合金ナノ粒子の貴金属Mの含有率が0.1~30at.%程度(より好ましくは1~15at.%、さらに好ましくは2~10at.%)となるように、卑金属Aと貴金属Mの蒸気圧等を考慮して、その貴金属Mの含有率を決定することが好ましい。ガス中蒸発法では原料の卑金属A-貴金属M合金の貴金属含有率は、卑金属元素の種類にもよるが、例えば、1~60at.%の範囲にすることができ、卑金属元素がCu、Snの場合には、30~60at.%(好ましくは、35~55at.%、より好ましくは40~50at.%)とすることが適当である。レーザーアブレーション法では原料合金の組成と合金ナノ粒子の組成はほぼ一致するため、原料の卑金属A-貴金属M合金の貴金属含有率は0.1~30at.%程度(より好ましくは1~15at.%、さらに好ましくは2~10at.%)とすればよい。
 原料となる卑金属Aと貴金属MのA-M合金ナノ粒子の気相中での生成には、低圧(例えば、0.1~10kPa程度)から大気圧(101.3kPa)程度までの圧力範囲で稼動可能な生成装置を用いることができる。例えば、ガス中蒸発法、レーザーアブレーション法、スパッタリング法、アークプラズマ法、大気圧プラズマ法などであり、他にも様々な気相中でのナノ粒子の生成法を適宜用いることができる。生成にはヘリウム、アルゴン、窒素などの不活性ガスを用いて、1~200nm(好ましくは1~100nm、より好ましくは2~80nm、さらに好ましくは5~60nm)程度の貴金属-卑金属合金ナノ粒子を生成させる。合金ナノ粒子の粒子径は、一般に、蒸発源の温度(蒸発源へ投入するエネルギー)が大きいほど、または、不活性ガスの圧力が大きく流速が遅いほど増大するので、実験結果を確認しつつ適宜調節することが可能である。
 貴金属-卑金属合金ナノ粒子を生成させる際、合金の一次粒子の凝集体からなるナノサイズの二次粒子が生成する場合、高温熱酸化処理器(H)で熱酸化処理される前に、例えば予備加熱機構等によって、不活性雰囲気中で加熱、焼結して孤立分散粒子化される。
 生成された合金ナノ粒子は、不活性ガスによって気相中を運搬される途中又は高温熱酸化処理器内で酸化性ガスと混合される。酸化性ガスとしては、酸素ガス単独、空気や酸素ガスと不活性ガス等とを混合したものが使用できる。酸化性ガスを高温熱酸化処理器の手前で導入する場合には、合金ナノ粒子は、不活性ガスと酸化性ガスとの混合ガスとともに一部酸化されながら、高温熱酸化処理器内へ流入され、高温に加熱された混合ガス中の酸素ガスによって、合金ナノ粒子を構成している卑金属元素のみが完全に酸化される。一方、酸化性ガスを高温熱酸化処理器内に導入する場合には、合金ナノ粒子は、不活性ガスとともに高温熱酸化処理器内へ流入され、高温に加熱された状態(高温の固体または溶融状態)で高温の酸素に曝され卑金属元素のみが急激に完全に酸化される。このように、酸化性ガスの供給位置によって酸化速度や酸化熱による卑金属および貴金属の蒸発の程度が変化するが、いずれの場合においても該加熱の際に、貴金属と卑金属酸化物がナノスケールで相分離を起こし、卑金属酸化物(Axy)の表面に貴金属粒子(M)1個が接合した複合ナノ粒子(M-Axy)が生成する。相分離の際には、同時に行われる高温の熱処理によって、個々の粒子について均一なヘテロ界面が生成する場合がある。
 高温熱酸化処理器における合金ナノ粒子は、石英管を炉心管とした管状型電気炉等を用い、高温に加熱された混合ガスにより間接的に加熱しても良いし、また、誘導加熱、マイクロ波加熱等の手段を用い、直接的に加熱しても良い。
 高温熱酸化処理は、貴金属と卑金属の種類にも依存するが、一般的には温度400℃以上(好ましくは500~1200℃、より好ましくは600~1100℃)、処理時間10秒以内とすることができる。処理温度を高くすると処理時間を短くすることができる。高温熱酸化処理器は、そのような処理時間の間、合金ナノ粒子を加熱されるように、合金ナノ粒子の搬送経路に沿った加熱領域が設定される。
 高温熱酸化処理器から流出した貴金属-卑金属酸化物複合ナノ粒子は、自然冷却や適宜の冷却手段により常温程度まで冷却された後、捕集器内で回収される。捕集方法としては、エアロゾル捕集に用いられている乾式法、湿式法を適宜用いることができる。
 上記プロセスにおいて、A-M合金ナノ粒子を気相中で熱酸化させることによって貴金属Mを完全に相分離させるためには、貴金属Mの組成は0.1~30at.%程度(より好ましくは1~15at.%、さらに好ましくは2~10at.%)、混合ガスの酸素濃度は10%以上が好ましい。
 なお、電子デバイスや触媒等の用途では、複合ナノ粒子の高純度生成が非常に重要となるため、A-M合金ナノ粒子は、不純物含有率が極力少ないことが望ましいが、原料の貴金属や卑金属の不純物等に由来する不純物を含有しうる。不純物の含有率が目的とする機能を大きく損なわない範囲(例えば、0.01at.%未満、好ましくは0.001at.%未満)となるように原料を選択することが望ましい。
 本発明の貴金属-卑金属酸化物複合ナノ粒子は、以上のような工程により非常にクリーンな状態で連続的に製造され、粒子径1~200nm(好ましくは1~100nm)の卑金属酸化物(Axy)の表面に粒子径1~100nm(好ましくは1~10nm)の貴金属粒子(M)1個が接合してなる複合ナノ粒子(M-Axy)であって、その卑金属酸化物(Axy)成分の卑金属(A)が、Cu,Sn,Ti,V,Cr,Mn,Co,Ni,Zn,Al,Y,Zr,Mo,In,Mg,La,Ce,Nd,Sm,Eu,Gd,Si,Ge,Pb,Biから選ばれる1種以上であり(ただし、卑金属酸化物が ZnO,MnOである場合を除く)、貴金属(M)が、Au,Pt,Pd,Rh,Ag,Ru,Irから選ばれる1種以上である。この複合ナノ粒子は、1~200nmの大きさをもつ卑金属酸化物(Ax)の1個の領域と、1~100nmの大きさをもつ貴金属(M)の1個の領域から構成されているともいえる。
 卑金属酸化物の粒子径は1~200nm、好ましくは1~100nm、より好ましくは2~50nm、さらに好ましくは5~30nmであり、貴金属粒子の粒子径は、1~100nm、好ましくは1~10nm、より好ましくは1~8nm、さらに好ましくは1~5nmである。卑金属酸化物の粒子径は、貴金属-卑金属合金ナノ粒子の粒子径だけでなく、高温熱酸化処理における酸化熱による卑金属の蒸発によっても影響を受けるので、蒸発性の高い卑金属の場合には、前述の酸化性ガスの導入位置の調整により卑金属酸化物の粒子径を調整することもできる。
 なお、本発明では、TEM(Transmission Electron Microscope)で得られる粒子の像の重心を通る最大径と最小径の平均値を”粒子径”とする。また、卑金属酸化物や貴金属の領域の大きさとは、該領域を粒子とみなし、その像の重心を通る最大径と最小径の平均値を領域の”大きさ”とする。
 本発明により製造される複合ナノ粒子(M-Axy)の卑金属酸化物(Axy)は、同種原子価の単一卑金属元素の酸化物であっても良いし〔その場合、Axyの式中のx、yは正整数を示し、x及びyは式:xn=2y(式中、nは卑金属原子Aの原子価)を満足する。〕、また、異種原子価の単一卑金属元素の酸化物(混合原子価酸化物)、複数種類の卑金属元素の複合酸化物であっても良いし〔その場合、A=A11・・・Aii;x=Σxi;Σxi×ni=2y(式中、Aiは異種原子価の同種卑金属または異種卑金属の成分元素、xiはAiのモル数、niはAiの原子価)を満足する。〕、複数種類の卑金属酸化物の混合物であっても良い。
 本発明により製造される複合ナノ粒子(M-Axy)の貴金属(M)は、1種類の貴金属であっても良いし、複数種類の貴金属混合物であっても良い。該貴金属(M)の純度は、合金ナノ粒子生成過程や酸化卑金属成分(Axy)から相分離する過程を経ることで、貴金属原料程度(通常99.99~99.999%程度)又はそれ以上(例えば、99.9999%以上)となる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこの実施例によって何ら限定されるものではなく、本発明の要旨を逸脱しない範囲で各種の設定調整や設計変更が可能であることは言うまでもない。
(実施例1:Au-Cu2O複合ナノ粒子の生成と、CO酸化触媒活性の測定)
 合金ナノ粒子発生源としてガス中蒸発法による生成装置を用いた。装置内へ流入速度0.4L/minでヘリウムを導入し、油回転ポンプによって装置内の圧力を2kPaの減圧に保った。炭素-pBN(Pyrolytic Boron Nitride)二重坩堝内にCu-46at.%Auインゴットを設置し、高周波加熱によって1200℃で加熱した。以上の実験条件よりCu-4at.%Au合金ナノ粒子がヘリウム中に生成された。ここで、ナノ粒子のAu含有率が原料インゴットよりも減少したのは、Cuの蒸気圧がAuの蒸気圧よりも高いことに起因する。生成した合金ナノ粒子は、ヘリウムガスに加えられた、流入速度0.2L/minの酸素ガスとともに、1100℃に加熱された石英管内へと運ばれ、高温酸化処理された。熱酸化処理時間は0.1秒程度である。酸化処理後に生成したAu-Cu2O複合ナノ粒子は、捕集器内に設置した非晶質炭素膜上に希薄に自然付着させ、電子顕微鏡観察のための試料となった。触媒活性測定用の試料は、バッファ粒子としてのシリカナノ粉末(Sigma-Aldrich,637238)とともに捕集し得た。
 図2に平均粒径9.8±4.6nmのAu-Cu2O複合ナノ粒子のTEM(Transmission Electron Microscope)写真を示す。すべての粒子の一部に濃いコントラストの微小部分が存在していることがわかる。図3(a)は同試料の電子回折パターンであり、図3(b)は、その電子回折パターンを、波数ベクトルsに対する強度分布に変換したものである。図3(b)に現れた明瞭なピークはすべてCu2Oの面指数に起因した回折である。この中に非常に弱いながらAuに起因したピーク(矢印)が確認できた。詳細な解析により、Cu2OとAuの格子定数は、それぞれ0.4271±0.0004nmと0.4070±0.0034nmと求められ、誤差の範囲内で、Cu2O(文献値:0.42696nm)とAu(文献値:0.4079nm)であることが確証された。このことから、図2の粒子の高コントラストの微小部分はAu、その他の大きな部分はCu2Oであることが確認された。なお、複合ナノ粒子のAu:Cuのモル組成比はICP(Inductively Coupled Plasma)分析結果によれば5:95であり、酸化前の合金ナノ粒子のモル組成比とほぼ同じであった。
 図4(a),(b)は、17nmのAu-Cu2O複合ナノ粒子の高分解能TEM写真である。Cu2O部分には明瞭な格子像が観察されており、格子縞の間隔と互いに異なる格子縞間の相対角から結晶学的方位を断定すると、(a)が<100>、(b)が<110>に一致している。一方、Au部分にも同様に明瞭な格子像を確認することができ、その結晶学的方位はCu2Oと完全に一致している。両相間で格子縞が完全に接続していることから、両相はヘテロエピタキシャル接合になっている。図4(c),(d)は、14nmと7nmのAu-Cu2O複合ナノ粒子の高分解能TEM写真である。これらの粒子においても、両相は非常に良くヘテロ接合していることがわかる。すべての粒子に共通にAu部分の半分はCu2O中に埋没した状態になっている。なお、以上の実験条件において、熱処理温度を変化させて粒子を生成させたところ、400℃以上の温度でAuが分離した構造が得られ、300℃以下では得られなかった。
 触媒活性測定用の試料は、Au-Cu2O複合ナノ粒子とシリカ粉末とを混合させることによって作成した。測定に用いたシリカ粉末とAu-Cu2O複合ナノ粒子の合計量は81mgであり、Au-Cu2O複合ナノ粒子の含有率は0.65wt.%であった。固定床流通反応装置を使用し、CO酸化反応に対する触媒活性の測定を行った。CO(1%)+O2(20%)+He混合ガスを0.1L/minの流速で流した。昇温速度は1℃/minに設定した。図5は、一酸化炭素の二酸化炭素への転化率の温度依存性の結果である。200℃程度以上で急激に転化率が高くなっており、T50%は215℃であった。シリカを除いたAu-Cu2O複合ナノ粒子の単位重量当たりの反応速度を算出し、アレニウスプロットより既報の触媒の活性と比較したところ、液相法(析出沈殿法)で調製したアルミナ担持金触媒などと同等の触媒性能を持つことがわかった。この原因は、本発明におけるプロセスにおいて、個々の粒子が高温で熱処理を施されることによって、図4の通り、AuとCu2Oが強固にヘテロ界面を作って接合していることにある。
(実施例2:Au-SnO2複合ナノ粒子の生成と、CO酸化触媒活性の測定)
 原料Sn-5at.%Au合金ナノ粒子は、実施例1と同様のガス中蒸発法によって、Sn-50at.%Auインゴットを1180℃で加熱してヘリウムガス中に得た。その合金ナノ粒子を気相中において、約0.1秒間700℃で高温熱酸化することによって、Au-SnO2複合ナノ粒子が得られた。その他の実験条件は実施例1とほぼ同じである。図6にAu-SnO2複合ナノ粒子のTEM写真を示す。電子回折パターンの解析より、薄いコントラスト部分はSnO2相であることが確認された。SnO2とAuの回折パターンのピークが重なってしまう部分が非常に多いために、Auのみに由来するピークを分離することが出来なかったが、濃いコントラスト部分は、Snを含まないAuであると考えられる。写真の通り、AuとSnO2夫々1個のナノ粒子が1枚の界面を介して接合された粒子が得られた。
 実施例1と同様にして、シリカ粉末とともに捕集することによって触媒活性測定用の試料を得た。測定に用いたシリカ粉末とAu-SnO2複合ナノ粒子(含有率は0.64wt.%)の合計量は50mgであった。実施例1と同条件で、一酸化炭素の二酸化炭素への転化率の温度依存性の測定を行った。図7がその結果であり、Au-SnO2複合ナノ粒子も一酸化炭素の酸化触媒能を示すことがわかる。300℃程度以上で急激に転化率が高くなっており、T50%は345℃であった。
(実施例3:Au-Al2O3複合ナノ粒子の生成)
 合金ナノ粒子発生源として、レーザーアブレーション法による生成装置を用いた。装置内へ流入速度0.5L/minでヘリウムガスを導入し、油回転ポンプによって装置内の圧力を1.6kPaの減圧に保った。Al-5at.%Au合金のペレット(20mmφ×5mmt)を原料ターゲットとし、その表面へNd:YAGレーザーの第二高調波(波長:532nm、出力:90mJ/pulse、繰り返し周波数:10Hz)を集光・照射することにより、ターゲット表面を瞬間的に蒸発させ、上記合金のナノ粒子の凝集体がヘリウムガス中に生成された。生成した合金ナノ粒子凝集体はヘリウムガス流に乗って移動しつつ、予備加熱機構で焼結され孤立分散粒子化された後、流入速度0.25L/minの酸素ガスとともに、900℃に加熱された石英管内へと運ばれ、高温酸化処理された。熱酸化処理時間は0.01秒程度である。酸化処理後に生成したAu-Al2O3複合ナノ粒子は、捕集器内に設置した非晶質炭素膜上に希薄に自然付着させ、電子顕微鏡観察のための試料となった。
 図8にAu-Al2O3複合ナノ粒子のTEM写真を示す。写真の通り、個々の粒子は、コントラストの濃い小さな部分と、コントラストの薄い大きな部分が接合した形状を示している。電子回折パターンの解析により、粒子を構成するAlの酸化物はγ-Al2O3相であることがわかった。従って、粒子の濃いコントラスト部分はAu、薄いコントラスト部分はγ-Al2O3である。
(実施例4:Pt-Cu2O複合ナノ粒子の生成)
 実施例3と同様に、レーザーアブレーション法によって、Cu-5at.%Pt合金のペレットを原料ターゲットとし実験を行った。レーザー光をターゲットへ集光・照射することにより、ターゲット表面を瞬間的に蒸発させ、上記合金のナノ粒子の凝集体をヘリウムガス中に生成させた。凝集体は予備加熱機構で焼結させた後、酸素ガスとともに900℃に加熱された石英管内へと運ばれ、高温酸化処理されることで、Pt-Cu2O複合ナノ粒子が得られた。実験諸条件は、実施例3と同じである。図9にPt-Cu2O複合ナノ粒子のTEM写真を示す。写真の通り、個々の粒子は、コントラストの濃い小さな部分と、コントラストの薄い大きな部分が接合した形状を示している。電子回折パターンの解析により、粒子を構成するCuの酸化物はCu2O相であることがわかった。従って、粒子の濃いコントラスト部分はPt、薄いコントラスト部分はCu2Oである。
(実施例5:Pt-Al2O3複合ナノ粒子の生成)
 実施例3と同様に、レーザーアブレーション法によって、Al-5at.%Pt合金のペレットを原料ターゲットとし実験を行った。レーザー光をターゲットへ集光・照射することにより、ターゲット表面を瞬間的に蒸発させ、上記合金のナノ粒子の凝集体をヘリウムガス中に生成させた。凝集体は予備加熱機構で焼結させた後、酸素ガスとともに900℃に加熱された石英管内へと運ばれ、高温酸化処理されることで、Pt-Al2O3複合ナノ粒子が得られた。実験諸条件は、実施例3と同じである。図10にPt-Al2O3複合ナノ粒子のTEM写真を示す。写真の通り、個々の粒子は、コントラストの濃い小さな部分と、コントラストの薄い大きな部分が接合した形状を示している。電子回折パターンの解析により、粒子を構成するAlの酸化物はγ-Al2O3相であることがわかった。従って、粒子の濃いコントラスト部分はPt、薄いコントラスト部分はγ-Al2O3相である。
 本発明は、貴金属と酸化物の複合ナノ粒子の生成法であり、ナノスケールの両相間にヘテロ接合を生成させる方法である。また、本発明は、高純度の貴金属と酸化物の複合ナノ粒子であり、ナノスケールの両相間にヘテロ接合が生成されている。したがって、物性の全く異なる両相間のヘテロ界面に由来する、化学反応的、電子的、磁気的、光学的などの物理・化学的性質を、ナノスケールの粒子内に付帯させるものである。ゆえに、本発明に係るヘテロ接合された貴金属-酸化物複合ナノ粒子の実施形態は、上記の実施例の触媒応用に限定されるものではなく、貴金属と酸化物を選択することによって、非常に幅広い産業上の応用が期待できる。

Claims (11)

  1. 貴金属(M)を0.1~30at.%含有し、残部が卑金属(A)と不可避不純物からなり、粒子径が1~100nmの合金(A-M)ナノ粒子を不活性ガス中で生成させ、不活性ガスで搬送する途中で、合金(A-M)ナノ粒子の加熱、及び、導入された酸化性ガスと接触させることによって、浮遊する合金(A-M)ナノ粒子中の卑金属成分(A)を酸化させ、かつ、酸化卑金属成分(Axy)を貴金属成分(M)と相分離させて粒子状卑金属酸化物(Axy)の表面に貴金属粒子(M)1個が接合した複合ナノ粒子(M-Axy)を得る複合ナノ粒子(M-Axy)の製造方法。
  2. 複合ナノ粒子(M-Axy)が独立分散させた状態で得られることを特徴とする請求項1に記載の複合ナノ粒子(M-Axy)の製造方法。
  3. 合金(A-M)ナノ粒子の熱酸化処理は気相中で行い、温度400℃以上、処理時間が10秒以内であることを特徴とする請求項1又は2に記載の複合ナノ粒子(M-Axy)の製造方法。
  4. 酸化性ガスの導入を合金(A-M)ナノ粒子の加熱前に行い、該加熱を酸化性ガスと不活性ガスの混合ガス中で行うか、又は、酸化性ガスの導入を合金(A-M)ナノ粒子の不活性ガス中での加熱中に行う請求項1~3のいずれか1項に記載の複合ナノ粒子(M-Axy)の製造方法。
  5. 合金(A-M)ナノ粒子の生成法として、ガス中蒸発法、レーザーアブレーション法、スパッタリング法、アークプラズマ法、大気圧プラズマ法のいずれかを用いることを特徴とする請求項1~4のいずれか1項に記載の複合ナノ粒子(M-Axy)の製造方法。
  6. 卑金属酸化物(Axy)成分の卑金属(A)が、Cu,Sn,Ti,V,Cr,Mn,Co,Fe,Ni,Zn,Al,Y,Zr,Mo,In,Mg,La,Ce,Nd,Sm,Eu,Gd,Si,Ge,Pb,Biから選ばれる1種以上であり、貴金属(M)が、Au,Pt,Pd,Rh,Ag,Ru,Irから選ばれる1種以上である請求項1~5のいずれか1項に記載の複合ナノ粒子(M-Axy)の製造方法。
  7. 貴金属(M)を0.1~30at.%含有し、残部が卑金属(A)と不可避不純物からなり、粒子径が1~200nmの合金(A-M)ナノ粒子を不活性ガス中で生成させ、不活性ガスで搬送する途中で、合金(A-M)ナノ粒子の加熱、及び、導入された酸化性ガスと接触させることによって、浮遊する合金(A-M)ナノ粒子中の卑金属成分(A)を酸化させ、かつ、酸化卑金属成分(Axy)を貴金属成分(M)と相分離させて粒子状卑金属酸化物(Axy)の1個の領域と、粒子状貴金属(M)の1個の領域から構成される複合ナノ粒子(M-Axy)を得る複合ナノ粒子(M-Axy)の製造方法であって、卑金属(A)が、Cu,Sn,Al,Ni,Co,Ti,Zr,In,Si,La,Ce,Euから選ばれる1種以上であり、
    貴金属(M)が、Au,Pt,Pd,Rh,Agから選ばれる1種以上である、複合ナノ粒子(M-Axy)の製造方法。
  8. 粒子径1~100nmの卑金属酸化物(Axy)の表面に粒子径1~10nmの貴金属粒子(M)1個が接合してなる複合ナノ粒子(M-Axy)であって、
    卑金属酸化物(Axy)成分の卑金属(A)が、Cu,Sn,Ti,V,Cr,Mn,Co,Ni,Zn,Al,Y,Zr,Mo,In,Mg,La,Ce,Nd,Sm,Eu,Gd,Si,Ge,Pb,Biから選ばれる1種以上であり(ただし、卑金属酸化物が ZnO,MnOである場合を除く)、
    貴金属(M)が、Au,Pt,Pd,Rh,Ag,Ru,Irから選ばれる1種以上である、
    複合ナノ粒子(M-Axy)。
  9. 複合ナノ粒子(M-Axy)がAu-Cu2O又はAu-SnO2である請求項8に記載の複合ナノ粒子(M-Axy)。
  10. 1~200nmの大きさをもつ卑金属酸化物(Axy)の1個の領域と、1~100nmの大きさをもつ貴金属(M)の1個の領域から構成される複合ナノ粒子(M-Axy)であって、
    卑金属酸化物(Axy)成分の卑金属(A)が、Cu,Sn,Al,Ni,Co,Ti,Zr,In,Si,La,Ce,Euから選ばれる1種以上であり、
    貴金属(M)が、Au,Pt,Pd,Rh,Agから選ばれる1種以上である、
    複合ナノ粒子(M-Axy)。
  11. 卑金属酸化物(Axy)成分の卑金属(A)が、Cu,Sn,Alから選ばれる1種以上であり、
    貴金属(M)が、Au,Ptから選ばれる1種以上である、
    請求項10に記載の複合ナノ粒子(M-Axy)。
PCT/JP2012/052329 2011-02-02 2012-02-02 貴金属-酸化物接合ナノ粒子、及び、その高純度製造方法 WO2012105631A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012555944A JP5750731B2 (ja) 2011-02-02 2012-02-02 貴金属−酸化物接合ナノ粒子、及び、その高純度製造方法
CN201280006935.XA CN103402920B (zh) 2011-02-02 2012-02-02 贵金属-氧化物接合纳米粒子及其高纯度制造方法
EP12741532.1A EP2671846B1 (en) 2011-02-02 2012-02-02 Noble metal-oxide joined nanoparticles and method for high-purity production of the same
US13/983,436 US9675964B2 (en) 2011-02-02 2012-02-02 Noble metal-oxide combined nanoparticle, and, method of producing the same with high purity

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011020993 2011-02-02
JP2011-020993 2011-02-02
JP2011020996 2011-02-02
JP2011-020996 2011-02-02

Publications (1)

Publication Number Publication Date
WO2012105631A1 true WO2012105631A1 (ja) 2012-08-09

Family

ID=46602837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052329 WO2012105631A1 (ja) 2011-02-02 2012-02-02 貴金属-酸化物接合ナノ粒子、及び、その高純度製造方法

Country Status (5)

Country Link
US (1) US9675964B2 (ja)
EP (1) EP2671846B1 (ja)
JP (1) JP5750731B2 (ja)
CN (1) CN103402920B (ja)
WO (1) WO2012105631A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021230A1 (ja) * 2012-08-01 2014-02-06 独立行政法人産業技術総合研究所 立方体形又は四角柱形を有する岩塩型酸化物ナノ粒子と微細金属粒子との接合構造体、及び、その製造方法
JP2016525998A (ja) * 2013-05-06 2016-09-01 バル・イラン・ユニバーシティBar Ilan University ドープ化金属酸化物ナノ粒子及びその使用
WO2021208232A1 (zh) * 2020-03-02 2021-10-21 深圳市捷安纳米复合材料有限公司 一种纳米银铜合金材料及其制备方法
CN115055678A (zh) * 2022-05-25 2022-09-16 北京信息科技大学 一种金颗粒-氧化亚铜纳米杯的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2735389A1 (de) * 2012-11-23 2014-05-28 Universität Duisburg-Essen Verfahren zur Herstellung reiner, insbesondere kohlenstofffreier Nanopartikel
CN103695000B (zh) * 2013-11-27 2015-10-28 上海纳米技术及应用国家工程研究中心有限公司 一种钆掺杂的氧化锌纳米颗粒及其制备方法
EP2905259B1 (en) 2014-02-05 2016-08-31 King Saud University Porous noble metal oxide nanoparticles, method for preparing the same and their use
KR101839876B1 (ko) * 2015-04-09 2018-03-20 한국전자통신연구원 3d 프린팅용 귀금속 소재, 그 제조 방법, 및 그 소재를 이용한 3d 프린팅 방법
CN105261763A (zh) * 2015-10-30 2016-01-20 太原理工大学 一种纳米管/孔状Ti/W/Ni氧化物原位负载铂/钯纳米颗粒薄膜催化电极及其制备方法
WO2020173909A1 (en) * 2019-02-26 2020-09-03 Umicore Ag & Co. Kg Catalyst materials comprising nanoparticles on a carrier and methods for their production

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215576A (ja) 1995-02-16 1996-08-27 Ykk Kk 複合超微粒子及びその製造方法並びにメタノールの合成・改質用触媒
JPH08215570A (ja) 1995-02-17 1996-08-27 Ykk Kk メタノール合成用触媒およびその製造方法並びにメタノールの合成法
JPH08283023A (ja) 1995-04-11 1996-10-29 Ykk Kk 複合超微粒子及びその製造方法
JPH08283022A (ja) 1995-04-11 1996-10-29 Ykk Kk TiO2 系複合超微粒子及びその製造方法
JPH1080637A (ja) 1996-09-09 1998-03-31 Agency Of Ind Science & Technol 複合超微粒子及びその製造方法並びにそれを用いたメタノールの合成・改質用触媒
JP2004190089A (ja) * 2002-12-11 2004-07-08 Kyoritsu Kagaku Sangyo Kk 無機ナノ粒子融合又は融着構造体の製造方法及びその融合又は融着構造体
US20060053971A1 (en) 2004-09-10 2006-03-16 Shouheng Sun Dumbbell-like nanoparticles and a process of forming the same
JP4170930B2 (ja) 2004-02-26 2008-10-22 独立行政法人科学技術振興機構 異方性相分離した二元金属ナノ粒子及びその製造法
JP2008540126A (ja) * 2005-05-21 2008-11-20 エボニック デグサ ゲーエムベーハー セリア含有担体上の金触媒
JP2009094048A (ja) 2007-10-05 2009-04-30 Hitachi Maxell Ltd 燃料セル、膜電極接合体、触媒、複合ナノ粒子触媒の製造方法、及び酸素の還元方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08215576A (ja) 1995-02-16 1996-08-27 Ykk Kk 複合超微粒子及びその製造方法並びにメタノールの合成・改質用触媒
JPH08215570A (ja) 1995-02-17 1996-08-27 Ykk Kk メタノール合成用触媒およびその製造方法並びにメタノールの合成法
JPH08283023A (ja) 1995-04-11 1996-10-29 Ykk Kk 複合超微粒子及びその製造方法
JPH08283022A (ja) 1995-04-11 1996-10-29 Ykk Kk TiO2 系複合超微粒子及びその製造方法
JPH1080637A (ja) 1996-09-09 1998-03-31 Agency Of Ind Science & Technol 複合超微粒子及びその製造方法並びにそれを用いたメタノールの合成・改質用触媒
JP2004190089A (ja) * 2002-12-11 2004-07-08 Kyoritsu Kagaku Sangyo Kk 無機ナノ粒子融合又は融着構造体の製造方法及びその融合又は融着構造体
JP4170930B2 (ja) 2004-02-26 2008-10-22 独立行政法人科学技術振興機構 異方性相分離した二元金属ナノ粒子及びその製造法
US20060053971A1 (en) 2004-09-10 2006-03-16 Shouheng Sun Dumbbell-like nanoparticles and a process of forming the same
US7288134B2 (en) 2004-09-10 2007-10-30 International Business Machines Corporation Dumbbell-like nanoparticles and a process of forming the same
US20080168863A1 (en) 2004-09-10 2008-07-17 Shouheng Sun Dumbbell-like nanoparticles and a process of forming the same
JP2008540126A (ja) * 2005-05-21 2008-11-20 エボニック デグサ ゲーエムベーハー セリア含有担体上の金触媒
JP2009094048A (ja) 2007-10-05 2009-04-30 Hitachi Maxell Ltd 燃料セル、膜電極接合体、触媒、複合ナノ粒子触媒の製造方法、及び酸素の還元方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
B. WU ET AL., NANO RES., vol. 2, 2009, pages 975 - 983
G.BAJAJ ET AL.: "Synthesis of composite gold/ tin-oxide nanoparticles by nano-soldering", JOURNAL OF NANOPARTICLE RESEARCH, vol. 12, no. 7, September 2010 (2010-09-01), pages 2597 - 2603, XP019827039 *
H. YIN ET AL., CHEM. COMMUN., 2008, pages 4357 - 4359
H. YIN ET AL., NANO LETT., vol. 5, 2005, pages 379 - 382
K. KOGA; D. ZUBIA, J. PHYS. CHEM. C, vol. 112, 2008, pages 2079 - 2085
S.-H. CHOI ET AL., J. AM. CHEM. SOC., vol. 130, 2008, pages 15573 - 15580
S.WANG ET AL.: "Nanostructure Sn02 and supported Au catalysts: Synthesis, characterization, and catalytic oxidation of CO", MATERIALS LETTERS, vol. 60, no. 13-14, June 2006 (2006-06-01), pages 1706 - 1709, XP005351017 *
See also references of EP2671846A4
X. WANG ET AL., J. PHYS. CHEM. C, vol. 111, 2007, pages 3836 - 3841
X.ZHU ET AL.: "Characterization of Argon Glow Discharge Plasma Reduced Pt/A1203 Catalyst", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 45, no. 25, 6 December 2006 (2006-12-06), pages 8604 - 8609, XP055128798 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021230A1 (ja) * 2012-08-01 2014-02-06 独立行政法人産業技術総合研究所 立方体形又は四角柱形を有する岩塩型酸化物ナノ粒子と微細金属粒子との接合構造体、及び、その製造方法
JP5892671B2 (ja) * 2012-08-01 2016-03-23 国立研究開発法人産業技術総合研究所 立方体形又は四角柱形を有する岩塩型酸化物ナノ粒子と微細金属粒子との接合構造体、及び、その製造方法
JP2016525998A (ja) * 2013-05-06 2016-09-01 バル・イラン・ユニバーシティBar Ilan University ドープ化金属酸化物ナノ粒子及びその使用
WO2021208232A1 (zh) * 2020-03-02 2021-10-21 深圳市捷安纳米复合材料有限公司 一种纳米银铜合金材料及其制备方法
CN115055678A (zh) * 2022-05-25 2022-09-16 北京信息科技大学 一种金颗粒-氧化亚铜纳米杯的制备方法
CN115055678B (zh) * 2022-05-25 2023-06-27 北京信息科技大学 一种金颗粒-氧化亚铜纳米杯的制备方法

Also Published As

Publication number Publication date
US20140038815A1 (en) 2014-02-06
EP2671846A1 (en) 2013-12-11
EP2671846A4 (en) 2017-11-22
JP5750731B2 (ja) 2015-07-22
EP2671846B1 (en) 2019-04-03
CN103402920B (zh) 2016-10-26
CN103402920A (zh) 2013-11-20
JPWO2012105631A1 (ja) 2014-07-03
US9675964B2 (en) 2017-06-13

Similar Documents

Publication Publication Date Title
JP5750731B2 (ja) 貴金属−酸化物接合ナノ粒子、及び、その高純度製造方法
Rai et al. Noble metal@ metal oxide semiconductor core@ shell nano-architectures as a new platform for gas sensor applications
Li et al. Au@ In 2 O 3 core–shell composites: a metal–semiconductor heterostructure for gas sensing applications
Roy et al. Development of an ethanol sensor based on CBD grown ZnO nanorods
Zhang et al. 2D nanosheet-assembled PdZnO microflowers for acetone sensor with enhanced performances
Cai et al. Room temperature detection of NO2 gas under UV irradiation based on Au nanoparticle-decorated porous ZnO nanowires
Wang et al. UV light-assisted synthesis of coral SnO2: characterization and its enhanced photocatalytic properties
Ghosh et al. Understanding on the selective carbon monoxide sensing characteristics of copper oxide-zinc oxide composite thin films
Deokar et al. Unveiling an unexpected potential of beetroot waste in green synthesis of single crystalline gold nanoplates: A mechanistic study
Lin et al. Enhancing ethanol detection by heterostructural silver nanoparticles decorated polycrystalline zinc oxide nanosheets
Bhattacharya et al. Monodisperse colloidal metal nanoparticles to core–shell structures and alloy nanosystems via digestive ripening in conjunction with solvated metal atom dispersion: A mechanistic study
Chen et al. In2O3 Nanocrystals with a Tunable Size in the Range of 4− 10 nm: One-Step Synthesis, Characterization, and Optical Properties
Tsai et al. Effect of Ag templates on the formation of Au-Ag hollow/core-shell nanostructures
Choudhury et al. Study of improved VOCs sensing properties of boron nitride quantum dots decorated nanostructured 2D-ZnO material
Antony et al. Role of Cu in the enhancement of NH3 sensing performance of spray pyrolyzed WO3 nanostructures
Lee et al. Enhanced photodetector performance in gold nanoparticle decorated ZnO microrods
Singh et al. ZnO nanorods and nanopolypods synthesized using microwave assisted wet chemical and thermal evaporation method
Kharissova et al. A review on less-common nanostructures
JP5892671B2 (ja) 立方体形又は四角柱形を有する岩塩型酸化物ナノ粒子と微細金属粒子との接合構造体、及び、その製造方法
Sangpour et al. ZnO nanowires from nanopillars: Influence of growth time
Cha et al. CuGaS2 hollow spheres from Ga–CuS core–shell nanoparticles
Chen et al. Advances in photochemical deposition for controllable synthesis of heterogeneous catalysts
Young et al. High selectivity to ethanol gas sensor based on ZnO nanosheets decorated with Ag nanoparticles by aqueous solution and photochemical deposition
Bhoraskar et al. Thermal plasma assisted synthesis of nanocrystalline silicon—a review
Kim et al. Self-catalytic growth and characterization of composite (GaN, InN) nanowires

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741532

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555944

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012741532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13983436

Country of ref document: US