WO2012105325A1 - アンテナ装置 - Google Patents
アンテナ装置 Download PDFInfo
- Publication number
- WO2012105325A1 WO2012105325A1 PCT/JP2012/051078 JP2012051078W WO2012105325A1 WO 2012105325 A1 WO2012105325 A1 WO 2012105325A1 JP 2012051078 W JP2012051078 W JP 2012051078W WO 2012105325 A1 WO2012105325 A1 WO 2012105325A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- antenna element
- sealing material
- antenna device
- antenna elements
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/40—Radiating elements coated with or embedded in protective material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/242—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
- H01Q1/243—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/42—Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
Definitions
- the present invention relates to an antenna device, and more particularly to an antenna device that operates in two frequency bands.
- mobile terminal devices typified by mobile phones have been added with various communication functions such as a GPS (Global Positioning System) function, a Bluetooth function, and a wireless LAN function, thereby enabling communication between various electronic devices. ing.
- a portable terminal device incorporates an antenna for performing communication.
- two antennas corresponding to these functions are provided.
- mobile terminal devices are desired to be small and thin, and even if two antennas are individually disposed, space efficiency is lowered. Therefore, an antenna in which two antennas are integrated has been proposed. (See Patent Document 1).
- the first antenna element is patterned on the first dielectric substrate
- the second antenna element is patterned on the second dielectric substrate, and then the first and second antennas are formed.
- An antenna device that operates in two frequency bands has been realized by stacking dielectric substrates (see Patent Document 2 and FIG. 3).
- the conventional antenna device in which antenna elements are patterned after being formed on a dielectric substrate has a problem in that production facilities are excessive and manufacturing costs are high. Further, in the conventional antenna device, the antenna element inevitably has a planar structure and has a configuration exposed to the outside, so that it is difficult to obtain good antenna characteristics.
- Embodiments of the present invention have been made in view of the above points, and an object of the present invention is to provide an antenna device capable of improving manufacturing efficiency and improving characteristics.
- First and second antenna elements formed by forming a conductive metal plate in a meander shape; It is made of a high dielectric material and has a sealing material for sealing the first and second antenna elements, While arranging the first antenna element and the second antenna element in parallel, An antenna device in which the first and second antenna elements are embedded in the sealing material by insert molding is provided.
- the first antenna element and the second antenna element are capacitively coupled via the sealing material.
- the first antenna element and the second antenna element have the same shape.
- the first antenna element can be a GPS antenna
- the second antenna element can be a Bluetooth antenna
- the disclosed antenna device it is possible to improve the manufacturing efficiency by performing insert molding, and the first and second antenna elements are embedded in a sealing material made of a high dielectric material, so that the antenna characteristics are improved. Can be improved.
- FIG. 1 is a perspective view showing an antenna apparatus according to an embodiment of the present invention.
- FIG. 2 is a perspective view showing first and second antenna elements of the antenna device according to the embodiment of the present invention.
- FIG. 3 is a diagram for explaining a method for manufacturing an antenna device according to an embodiment of the present invention.
- FIG. 4 is a perspective view showing the first and second antenna elements before being mounted on the mold.
- FIG. 5 is a VSWR characteristic diagram of the antenna device according to the embodiment of the present invention.
- FIGS. 6A to 6F are diagrams showing the directivity characteristics of the antenna device according to the embodiment of the present invention.
- FIG. 7 is a diagram showing the board mounting direction.
- FIG. 1 shows an antenna device 10 according to an embodiment of the present invention.
- the antenna device 10 according to the present embodiment is a two-resonance antenna device that operates in two frequency bands.
- the antenna device 10 is mounted on a mobile terminal device such as a mobile phone, for example.
- the antenna device 10 includes a first antenna element 11, a second antenna element 12, a sealing material 13, and the like.
- the first and second antenna elements 11 and 12 are formed by integrally forming a conductive metal plate using press working or the like.
- the first antenna element 11 located at the upper part is a GPS antenna
- the second antenna element 12 located at the lower part is a Bluetooth antenna.
- the first antenna element 11 and the second antenna element 12 have the same shape.
- the antenna elements 11 and 12 do not necessarily have the same shape, and may have different shapes as long as capacitive coupling is possible as described later.
- a connecting portion 16 is integrally formed between the first antenna element 11 and the second antenna element 12. The connecting portion 16 can keep the distance between the first antenna element 11 and the second antenna element 12 constant.
- stainless steel is used as the material of the first and second antenna elements 11 and 12, but the material of each antenna element 11 and 12 is not limited to this, and other materials such as copper are used. It is also possible to use materials. Moreover, it is good also as a structure which plated the surface of each antenna element 11 and 12 as needed.
- the first and second antenna elements 11 and 12 integrally form meander parts 11A and 12A, power supply terminal parts 11B and 12B, and a connecting part 16 as shown in an enlarged view in FIG. .
- the meander portions 11A and 12A are portions having a zigzag pattern.
- the size of the outer shape of the antenna device 10 can be 3 mm ⁇ 10 mm ⁇ 3.5 mm.
- the feeding terminal portions 11B and 12B are formed to extend laterally at the end portions of the meander portions 11A and 12B. As shown in FIG. 1, the power supply terminal portions 11 ⁇ / b> B and 12 ⁇ / b> B are portions that extend to the outside of the sealing material 13. The power supply terminal portions 11B and 12B are connected to an electronic circuit in the mobile terminal device. In the present embodiment, the width of the first and second antenna elements 11 and 12 is 0.5 mm to 2.0 mm.
- Sealing material 13 is formed of a high dielectric resin material.
- the high dielectric resin material used in this embodiment is a liquid crystal polymer resin (LCP resin) whose high dielectric properties are adjusted by adding ceramic powder having a predetermined Q value and relative dielectric constant, for example. .
- LCP resin liquid crystal polymer resin
- the antenna device 10 can be downsized due to the wavelength shortening effect.
- the relative dielectric constant of the sealing material 13 is preferably 4 or more and 30 or less, for example.
- the relative dielectric constant of the sealing material 13 is preferably 4 or more and 30 or less, for example.
- sealing material 13 illustrated the structure which added the ceramic powder to the resin material in this embodiment
- the material of the sealing material 13 is not limited to this. As long as the above-mentioned relative permittivity can be realized, it is possible to use a sealing material made of a single ceramic and a single resin.
- FIG. 3 shows a mold 20 used when insert-molding the first and second antenna elements 11 and 12 into the sealing material 13.
- the mold 20 includes an upper mold 21 and a lower mold 22.
- the upper mold 21 is provided with a pot 28 to which a plunger (not shown) is attached.
- the upper mold 21 is provided with a holder base 27 at the upper part of the base 26.
- a die block 23 is attached to the center of the holder base 27, and a cavity 24 corresponding to the shape of the antenna device 10 is formed in the die block 23.
- each cavity 24 is connected by a runner 25, and the pot 28 is connected to the runner 25 in a state where the upper mold 21 and the lower mold 22 are combined.
- the positioning support 29 is a member for positioning the upper mold 21 and the lower mold 22.
- first and second antenna elements 11 and 12 are first installed in the cavity 24. At this time, the first antenna element 11 and the second antenna element 12 are mounted so as to be parallel in the cavity 24. Each antenna element 11, 12 is attached to the mold 20 so as to be separated from the inner wall of the cavity 24 in a state where it is mounted in the cavity 24.
- the upper die 21 is attached to the lower die 22.
- a high dielectric resin material to be the sealing material 13 is loaded in the pot 28, and the resin is pressurized by a plunger (not shown) and introduced into each cavity 24 through the runner 25.
- the antenna device 10 in which the first and second antenna elements 11 and 12 are embedded in the sealing material 13 is manufactured.
- the distance between the antenna elements 11 and 12 is set to a predetermined value. Can be kept in.
- the manufacturing apparatus can be reduced and the manufacturing method can be reduced as compared with the conventional method of stacking the substrates or patterning the antenna elements. Since the process is simplified, the production efficiency can be improved and the production cost can be reduced.
- FIG. 4 shows a modification in which the distance between the antenna elements 14 and 15 is maintained at a predetermined value.
- leg portions 14C and 15C are formed on the antenna elements 14 and 15, respectively.
- the first antenna element 14 has a configuration in which only one leg 14C is provided at the end of the meander part 14A, and a power feeding terminal is provided at the lower end of the leg 14C.
- the portion 14B is formed.
- the second antenna element 15 has leg portions 15C provided at both ends of the meander portion 15A, and a power supply terminal portion 15B is integrally formed on one leg portion 15C.
- the first antenna element 11 and the second antenna element 12 are maintained in a parallel state in the sealing material 13.
- a sealing material 13 having a high dielectric constant is interposed between the pair of antenna elements 11 and 12.
- the antenna device 10 realizes an antenna device that operates in two frequency bands by using a capacitive capacitor generated between the pair of antenna elements 11 and 12.
- the antenna device 10 performs impedance adjustment at an arbitrary frequency.
- FIG. 5 shows VSWR (Voltage Standing Wave Ratio) characteristics of the antenna device 10 according to the present embodiment.
- the VSWR is 0.2 in the GPS band (about 1575 MHz) of the antenna device 10
- the VSWR is 2.5 in the Bluetooth (registered trademark) band (about 2400 MHz). Therefore, it was demonstrated that the small antenna device has good performance.
- FIG. 6 shows the directivity characteristics of the antenna device 10.
- the antenna device 10 was mounted on a substrate 30 having a predetermined shape (for example, a general substrate shape used for a mobile phone), and the directivity was evaluated.
- a predetermined shape for example, a general substrate shape used for a mobile phone
- 6 (A) to 6 (F) show the results of measuring the antenna gain and radiation directivity of the antenna device 10 shown in FIG.
- two propagation frequencies are measured. Specifically, a first frequency (frequency 1) corresponding to the GPS frequency and a second frequency (frequency 2) corresponding to Bluetooth were set as frequencies for measuring the characteristics.
- 6 (A), 6 (B), and 6 (C) show the characteristics of the XY plane, the YZ plane, and the XZ plane at frequency 1
- FIGS. 6E and 6F show the characteristics of the XY plane, YZ plane, and XZ plane at frequency 2 (refer to FIG. 7 for the directions of X, Y, and Z).
- the vertical polarization component and the horizontal polarization component were measured.
- the frequency 2 characteristic is substantially the same as that of the frequency 1, and although the vertical polarization gain is low on the XY plane, the horizontal polarization has a high gain and omnidirectionality. In the plane and the XZ plane, it was found that both vertical polarization and horizontal polarization were high gain and omnidirectional.
- the antenna device 10 according to the present embodiment is an antenna having high gain and excellent omnidirectionality.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Support Of Aerials (AREA)
- Details Of Aerials (AREA)
Abstract
アンテナ装置であって、導電性金属板をメアンダ形状に形成してなる第1及び第2のアンテナエレメントと、高誘電材料からなり、前記第1及び第2のアンテナエレメントを封止する封止材とを有しており、前記第1のアンテナエレメントと前記第2のアンテナエレメントを平行に配置すると共に、該第1及び第2のアンテナエレメントを前記封止材内にインサート成型により埋設した構成とする。
Description
本発明はアンテナ装置に係り、特に二つの周波数帯域で動作するアンテナ装置に関する。
近年、携帯電話機に代表される携帯端末装置は、GPS(Global Positioning System)機能、ブルートゥース機能、無線LAN機能等の種々の通信機能が附加されており、各種電子機器間での通信が可能となっている。このような携帯端末装置には、通信を行うためのアンテナが内蔵されている。また、複数(例えば、二つ)の通信機能を有した携帯端末装置では、この機能に対応した二つのアンテナを設けている。一方、携帯端末装置は小型・薄型化が望まれており、アンテナにおいても二つのアンテナを個々に配設したのではスペース効率が低下するため、二つのアンテナを一体化したアンテナが提案されている(特許文献1参照)。
一方、アンテナの形態としては、第1の誘電基板上に第1のアンテナエレメントをパターン形成し、第2の誘電基板上に第2のアンテナエレメントをパターン形成し、その後にこの第1及び第2誘電基板を積層することにより二つの周波数帯域で動作するアンテナ装置を実現することが行われていた(特許文献2、図3参照)。
しかしながら、従来の誘電基板上にアンテナエレメントをパターン形成した後これを積層するアンテナ装置では、生産設備が過大で、製造コストが高くなるという問題点があった。また、従来のアンテナ装置では、必然的にアンテナエレメントは平面的な構造となり、また外部に露出した構成となるため、良好なアンテナ特性を得ることが困難であるという問題点があった。
本発明の実施の形態は上記の点に鑑みてなされたものであり、製造効率の向上を図ることができ、しかも特性の向上を図りうるアンテナ装置を提供することを目的とする。
本発明の実施の形態の一側面によれば、
導電性金属板をメアンダ形状に形成してなる第1及び第2のアンテナエレメントと、
高誘電材料からなり、前記第1及び第2のアンテナエレメントを封止する封止材とを有しており、
前記第1のアンテナエレメントと前記第2のアンテナエレメントを平行に配置すると共に、
該第1及び第2のアンテナエレメントを前記封止材内にインサート成型により埋設したアンテナ装置が提供される。
導電性金属板をメアンダ形状に形成してなる第1及び第2のアンテナエレメントと、
高誘電材料からなり、前記第1及び第2のアンテナエレメントを封止する封止材とを有しており、
前記第1のアンテナエレメントと前記第2のアンテナエレメントを平行に配置すると共に、
該第1及び第2のアンテナエレメントを前記封止材内にインサート成型により埋設したアンテナ装置が提供される。
また上記発明において、前記第1のアンテナエレメントと前記第2のアンテナエレメントは、前記封止材を介して容量性カップリングされていることが望ましい。
また上記発明において、前記第1のアンテナエレメントと前記第2のアンテナエレメントは、同一形状とされていることが望ましい。
また上記発明において、第1のアンテナエレメントをGPS用アンテナとし、前記第2のアンテナエレメントをブルートゥース用アンテナとすることができる。
開示のアンテナ装置によれば、インサート成型を行うことにより製造効率の向上を図ることができ、しかも第1及び第2のアンテナエレメントは高誘電材料からなる封止材内に埋設されるためアンテナ特性の向上を図ることができる。
本発明の他の目的、特徴及び利点は添付の図面を参照し以下の詳細な説明を読むことにより、一層明瞭となるであろう。
図1は、本発明の一実施形態であるアンテナ装置を示す斜視図である。
図2は、本発明の一実施形態であるアンテナ装置の第1及び第2のアンテナエレメントを示す斜視図である。
図3は、本発明の一実施形態であるアンテナ装置の製造方法を説明するための図である。
図4は、金型に装着前の第1及び第2のアンテナエレメントを示す斜視図である。
図5は、本発明の一実施形態であるアンテナ装置のVSWR特性図である。
図6(A)から図6(F)は、本発明の一実施形態であるアンテナ装置の指向性特性を示す図である。
図7は、基板実装方向を示す図である。
次に、本発明の実施の形態について図面と共に説明する。
図1は本発明の一実施形態であるアンテナ装置10を示している。本実施形態に係るアンテナ装置10は、二つの周波数帯域で動作する2共振アンテナ装置である。このアンテナ装置10は、例えば、携帯電話機等の携帯端末装置に搭載されるものである。
アンテナ装置10は、第1のアンテナエレメント11、第2のアンテナエレメント12、及び封止材13等により構成されている。
第1及び第2のアンテナエレメント11,12は、導電性金属板をプレス打加工等を用いて一体的に形成したものである。本実施形態では、上部に位置する第1のアンテナエレメント11はGPS用アンテナであり、下部に位置する第2のアンテナエレメント12はブルートゥース用アンテナである。
また本実施形態では、第1のアンテナエレメント11と第2のアンテナエレメント12は同一形状とされている。しかしながら、各アンテナエレメント11,12は必ずしも同一形状とする必要はなく、後述するように容量性カップリングが可能であれば異なる形状とすることも可能である。
また、後述するように第1のアンテナエレメント11と第2のアンテナエレメント12の離間距離が所定値となるように高精度に位置決めする必要がある。このため第1のアンテナエレメント11と第2のアンテナエレメント12との間には連結部16を一体的に形成している。この連結部16により、第1のアンテナエレメント11と第2のアンテナエレメント12の離間距離を一定に保つことができる。
尚、本実施形態では第1及び第2のアンテナエレメント11,12の材質としてステンレスを用いているが、各アンテナエレメント11,12の材質はこれに限定されるものではなく、銅等の他の材料を用いることも可能である。また、必要に応じて各アンテナエレメント11,12の表面にメッキを施した構成としてもよい。
また、第1及び第2のアンテナエレメント11,12は、図2に拡大して示すように、メアンダ部11A,12A、給電端子部11B,12B、及び連結部16を一体的に形成している。メアンダ部11A,12Aは、ジグザグのパターンとされた部分である。このように、メアンダ部11A,12Aを形成することにより、アンテナの実質的な長さを長くしつつ、小形化を図ることができる。本実施形態では、アンテナ装置10の外形の大きさを3mm×10mm×3.5mmとすることができた。
給電端子部11B,12Bはメアンダ部11A,12Bの端部に側方に延出するよう形成されている。図1に示すように、給電端子部11B,12Bは封止材13の外部に延出する部位である。この給電端子部11B,12Bは、携帯端末装置内の電子回路に接続される。尚、本実施形態では、第1及び第2のアンテナエレメント11,12の幅は0.5mm~2.0mmとしている。
封止材13は、高誘電樹脂材料により形成されている。この本実施形態で使用している高誘電樹脂材料は、例えば液晶ポリマー樹脂(LCP樹脂)に所定のQ値や比誘電率を有するセラミック粉末を添加することにより高誘電特性を調整したものである。このように、封止材13を高誘電樹脂材料とすることにより、波長短縮効果によりアンテナ装置10の小形化を図ることができる。
この封止材13の比誘電率は、例えば4以上30以下が望ましい。封止材13の比誘電率をこの範囲に設定することにより、封止材13のアンテナ特性を低下することなく小形化を図ることができる。即ち,比誘電率が4未満になると封止材13の形状を有効に小さくすることが困難となり、逆に比誘電率が30を超えると共振周波数帯域が狭くなりアンテナ特性が低下してしまう。
尚、本実施形態では封止材13が樹脂材にセラミック粉末を添加した構成を例示したが、封止材13の材質はこれに限定されるものではない。上記の比誘電率が実現できる材料であれば、セラミック単体及び樹脂単体からなる封止材を用いることも可能である。
上記した第1及び第2のアンテナエレメント11,12は、インサート成型により封止材13内に埋設される。図3は、第1及び第2のアンテナエレメント11,12を封止材13内にインサート成型する際に使用する金型20を示している。
金型20は、上型21と下型22とにより構成されている。上型21には図示しないプランジャーが装着されるポット28が設けられている。上型21は、基台26の上部にホルダベース27が設けられている。ホルダベース27の中央部にはダイブロック23が装着されており、このダイブロック23にはアンテナ装置10の形状に対応したキャビティ24が形成されている。
本実施形態では、ダイブロック23に4個のキャビティ24が形成されている。各キャビティ24はランナ25により接続されており、上型21と下型22を組み合わせた状態において、ポット28はランナ25に接続する。尚、位置決め支柱29は、上型21と下型22の位置決めを行うための部材である。
インサート成型を行うには、先ず第1及び第2のアンテナエレメント11,12をキャビティ24内に装着する。この際、第1のアンテナエレメント11と第2のアンテナエレメント12はキャビティ24内で平行となるよう装着される。また、各アンテナエレメント11,12は、キャビティ24に装着された状態で、キャビティ24の内壁から離間するよう金型20に取り付けられる。
上記のように第1及び第2のアンテナエレメント11,12がダイブロック23に装着されると、上型21は下型22に装着される。続いて、ポット28に封止材13となる高誘電樹脂材料が装填されると共に図示しないプランジャーにより樹脂は加圧され、ランナ25を介して各キャビティ24に導入される。これにより、封止材13の内部に第1及び第2のアンテナエレメント11,12が埋設されたアンテナ装置10が製造される。
この際、第1のアンテナエレメント11と第2のアンテナエレメント12は連結部16で連結されているため、キャビティ24内に樹脂が充填しても、各アンテナエレメント11,12の離間距離を所定値に保つことができる。
上記のように、アンテナ装置10はインサート成型法を用いて製造されるため、従来のように基板を積層したりアンテナエレメントをパターン形成したりする方法に比べ、製造設備は少なくて済み、また製造工程も簡単化するため、製造効率の向上及び製造コストの低減を図ることができる。
尚、図4は、各アンテナエレメント14,15の離間距離を所定値に保つ変形例を示している。この変形例では、各アンテナエレメント14,15に脚部14C,15Cを形成した構成としている。この脚部14C,15Cの長さに差を設けておくことにより、各アンテナエレメント14,15の離間距離を所定値に保つことが可能となる。
この図4に示す変形例では、第1のアンテナエレメント14にはメアンダ部14Aの端部に一本の脚部14Cのみが設けられた構成とされており、この脚部14Cの下端に給電端子部14Bが形成された構成とされている。また、第2のアンテナエレメント15は、メアンダ部15Aの両端に脚部15Cが設けられており、その一方の脚部15Cに給電端子部15Bが一体的に形成された構成とされている。
次に、上記のように製造されたアンテナ装置10の構造に注目する。前記のように第1のアンテナエレメント11と第2のアンテナエレメント12は封止材13内で平行状態を維持した状態となっている。また、この一対のアンテナエレメント11,12の間には、高誘電率を有した封止材13が介在した構成となっている。
よって、この一対のアンテナエレメント11,12は、封止材13を介して容量性カップリングされた状態となる。本実施形態に係るアンテナ装置10は、この一対のアンテナエレメント11,12間に発生する容量性キャパシタを利用して二つの周波数帯域で動作するアンテナ装置を実現している。
即ち、二つのメアンダライン形状のアンテナエレメント11,12の距離を変化させることで、結合容量も変化する。この結合容量と距離との関係を利用して、本実施形態に係るアンテナ装置10では、任意の周波数でインピーダンス調整を行っている。
図5は、本実施形態に係るアンテナ装置10のVSWR(Voltage Standing Wave Ratio)特性を示している。図5に示すように、アンテナ装置10のGPS帯(約1575MHz)においてVSWRは0.2となっており、またBluetooth(登録商標)帯(約2400MHz)においてVSWRは2.5となっている。よって、小型アンテナ装置として、良好な性能であることが実証された。
一方、図6はアンテナ装置10の指向性特性を示している。測定方法としては、図7に示すように、所定形状(例えば、携帯電話に用いられる一般的な基板形状)の基板30にアンテナ装置10を実装し指向性の評価を行った。
図6(A)から図6(F)は、図1に示したアンテナ装置10について、アンテナ利得及び放射指向性を測定した結果を示している。また、本測定では二つの伝播周波数について測定している。具体的には特性を測定する周波数として、GPSの周波数に対応する第1の周波数(周波数1)と、ブルートゥースに対応する第2の周波数(周波数2)を設定した。図6(A),図6(B),図6(C)は周波数1のX-Y面、Y-Z面、X-Z面の夫々の特性を示し、図6(D),図6(E),図6(F)は周波数2のX-Y面、Y-Z面、X-Z面の夫々の特性を示している(X,Y,Zの方向は図7参照)。また、いずれの指向性特性測定においても、垂直偏波成分と水平偏波成分を測定することとした。
先ず、周波数1の特性に注目すると、X-Y面では垂直偏波の利得が低いものの、水平偏波においては高い利得を有すると共に無指向性であることが分かった。また、Y-Z面及びX-Z面では、垂直偏波及び水平偏波の双方において高利得で無指向性であることが分かった。
また、周波数2の特性も周波数1と略同様の特性を示し、X-Y面では垂直偏波の利得が低いものの水平偏波においては高い利得を有すると共に無指向性を有し、Y-Z面及びX-Z面では垂直偏波及び水平偏波の双方において高利得で無指向性であることが分かった。
従って図6(A)から図6(F)に示す結果より、本実施形態に係るアンテナ装置10は高利得で無指向性に優れたアンテナであることが立証された。
以上、本発明の好ましい実施形態について詳述したが、本発明は上記した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能なものである。
本願は2011年2月2日に出願した日本国特許出願第2011-021059号に基づきその優先権を主張するものであり、同日本国出願の全内容を参照することにより本願に援用する。
10 アンテナ装置
11,14 第1のアンテナエレメント
12,15 第2のアンテナエレメント
11A,12A,14A,15A メアンダ部
11B,12B,14B,15B 給電端子部
13 封止材
16 連結部
20 金型
24 キャビティ
11,14 第1のアンテナエレメント
12,15 第2のアンテナエレメント
11A,12A,14A,15A メアンダ部
11B,12B,14B,15B 給電端子部
13 封止材
16 連結部
20 金型
24 キャビティ
Claims (4)
- 導電性金属板をメアンダ形状に形成してなる第1及び第2のアンテナエレメントと、
高誘電材料からなり、前記第1及び第2のアンテナエレメントを封止する封止材とを有しており、
前記第1のアンテナエレメントと前記第2のアンテナエレメントを平行に配置すると共に、
該第1及び第2のアンテナエレメントを前記封止材内にインサート成型により埋設した構成としたことを特徴とするアンテナ装置。 - 前記第1のアンテナエレメントと前記第2のアンテナエレメントは、前記封止材を介して容量性カップリングされてなることを特徴とする請求項1記載のアンテナ装置。
- 前記第1のアンテナエレメントと前記第2のアンテナエレメントは、同一形状とされていることを特徴とする請求項1記載のアンテナ装置。
- 第1のアンテナエレメントはGPS用アンテナであり、前記第2のアンテナエレメントはブルートゥース用アンテナであることを特徴とする請求項1記載のアンテナ装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12741655.0A EP2672567A4 (en) | 2011-02-02 | 2012-01-19 | ANTENNA DEVICE |
US13/982,345 US20140232610A1 (en) | 2011-02-02 | 2012-01-19 | Antenna device |
CN2012800072210A CN103348530A (zh) | 2011-02-02 | 2012-01-19 | 天线装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-021059 | 2011-02-02 | ||
JP2011021059A JP2012161041A (ja) | 2011-02-02 | 2011-02-02 | アンテナ装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012105325A1 true WO2012105325A1 (ja) | 2012-08-09 |
Family
ID=46602544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051078 WO2012105325A1 (ja) | 2011-02-02 | 2012-01-19 | アンテナ装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140232610A1 (ja) |
EP (1) | EP2672567A4 (ja) |
JP (1) | JP2012161041A (ja) |
CN (1) | CN103348530A (ja) |
WO (1) | WO2012105325A1 (ja) |
Families Citing this family (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
KR101481287B1 (ko) * | 2013-07-01 | 2015-01-14 | 현대자동차주식회사 | 이동통신 서비스를 위한 차량용 안테나 |
US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
DE102015208845B3 (de) * | 2015-05-13 | 2016-08-11 | Sivantos Pte. Ltd. | Hörgerät |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US10063108B1 (en) * | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10186892B2 (en) | 2015-12-24 | 2019-01-22 | Energous Corporation | Receiver device with antennas positioned in gaps |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10164478B2 (en) | 2015-12-29 | 2018-12-25 | Energous Corporation | Modular antenna boards in wireless power transmission systems |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
CN116455101A (zh) | 2016-12-12 | 2023-07-18 | 艾诺格思公司 | 发射器集成电路 |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
WO2018183892A1 (en) | 2017-03-30 | 2018-10-04 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
US11515732B2 (en) | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
WO2020160015A1 (en) | 2019-01-28 | 2020-08-06 | Energous Corporation | Systems and methods for miniaturized antenna for wireless power transmissions |
EP3921945A1 (en) | 2019-02-06 | 2021-12-15 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
CN115104234A (zh) | 2019-09-20 | 2022-09-23 | 艾诺格思公司 | 使用多个整流器保护无线电力接收器以及使用多个整流器建立带内通信的系统和方法 |
US11139699B2 (en) | 2019-09-20 | 2021-10-05 | Energous Corporation | Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems |
US11381118B2 (en) | 2019-09-20 | 2022-07-05 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
WO2021055898A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
WO2021119483A1 (en) | 2019-12-13 | 2021-06-17 | Energous Corporation | Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device |
US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
US11799324B2 (en) | 2020-04-13 | 2023-10-24 | Energous Corporation | Wireless-power transmitting device for creating a uniform near-field charging area |
US11916398B2 (en) | 2021-12-29 | 2024-02-27 | Energous Corporation | Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001217632A (ja) * | 2000-01-31 | 2001-08-10 | Matsushita Electric Ind Co Ltd | アンテナ及び電子機器 |
JP2003124729A (ja) | 2001-09-25 | 2003-04-25 | Samsung Electro Mech Co Ltd | ダイバーシティ機能を備えたデュアルフィードチップアンテナ |
JP2003209432A (ja) * | 2001-11-08 | 2003-07-25 | Furukawa Electric Co Ltd:The | 小型アンテナ |
JP2004228982A (ja) | 2003-01-23 | 2004-08-12 | Alps Electric Co Ltd | デュアルバンドアンテナ |
JP2007049674A (ja) * | 2005-03-24 | 2007-02-22 | Tdk Corp | アンテナ構造体 |
JP2009272988A (ja) * | 2008-05-09 | 2009-11-19 | Fujikura Ltd | アンテナ |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000022421A (ja) * | 1998-07-03 | 2000-01-21 | Murata Mfg Co Ltd | チップアンテナ及びそれを搭載した無線機器 |
TW513829B (en) * | 2000-10-12 | 2002-12-11 | Furukawa Electric Co Ltd | Small antenna |
GB0030741D0 (en) * | 2000-12-16 | 2001-01-31 | Koninkl Philips Electronics Nv | Antenna arrangement |
JP3895737B2 (ja) * | 2004-04-09 | 2007-03-22 | 古河電気工業株式会社 | 多周波共用アンテナ及び小型アンテナ |
KR100638872B1 (ko) * | 2005-06-30 | 2006-10-27 | 삼성전기주식회사 | 내장형 칩 안테나 |
WO2008136244A1 (ja) * | 2007-05-02 | 2008-11-13 | Murata Manufacturing Co., Ltd. | アンテナ構造およびそれを備えた無線通信装置 |
-
2011
- 2011-02-02 JP JP2011021059A patent/JP2012161041A/ja active Pending
-
2012
- 2012-01-19 EP EP12741655.0A patent/EP2672567A4/en not_active Withdrawn
- 2012-01-19 CN CN2012800072210A patent/CN103348530A/zh active Pending
- 2012-01-19 WO PCT/JP2012/051078 patent/WO2012105325A1/ja active Application Filing
- 2012-01-19 US US13/982,345 patent/US20140232610A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001217632A (ja) * | 2000-01-31 | 2001-08-10 | Matsushita Electric Ind Co Ltd | アンテナ及び電子機器 |
JP2003124729A (ja) | 2001-09-25 | 2003-04-25 | Samsung Electro Mech Co Ltd | ダイバーシティ機能を備えたデュアルフィードチップアンテナ |
JP2003209432A (ja) * | 2001-11-08 | 2003-07-25 | Furukawa Electric Co Ltd:The | 小型アンテナ |
JP2004228982A (ja) | 2003-01-23 | 2004-08-12 | Alps Electric Co Ltd | デュアルバンドアンテナ |
JP2007049674A (ja) * | 2005-03-24 | 2007-02-22 | Tdk Corp | アンテナ構造体 |
JP2009272988A (ja) * | 2008-05-09 | 2009-11-19 | Fujikura Ltd | アンテナ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2672567A4 |
Also Published As
Publication number | Publication date |
---|---|
CN103348530A (zh) | 2013-10-09 |
EP2672567A4 (en) | 2014-07-09 |
EP2672567A1 (en) | 2013-12-11 |
JP2012161041A (ja) | 2012-08-23 |
US20140232610A1 (en) | 2014-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012105325A1 (ja) | アンテナ装置 | |
US9876272B2 (en) | Electronic device antenna with embedded parasitic arm | |
US8698677B2 (en) | Mobile wireless terminal and antenna device | |
TWI359530B (en) | A coupled-fed multiband loop antenna | |
JP2004088218A (ja) | 平面アンテナ | |
TWI403021B (zh) | 載具和裝置 | |
JP2006517370A (ja) | 平面高周波又はマイクロ波アンテナ | |
KR101505595B1 (ko) | 탑 로우딩된 미앤더 선로 방사체의 소형 안테나 | |
JP2005094360A (ja) | アンテナ装置および無線通信装置 | |
JP4047283B2 (ja) | マイクロ波アンテナ | |
EP2323223A1 (en) | Chip antenna | |
JP3255803B2 (ja) | 移動無線用アンテナ | |
JP2006067251A (ja) | チップアンテナおよびその製造方法 | |
TW201345049A (zh) | 天線 | |
KR101970861B1 (ko) | 안테나 장치 | |
TW200402905A (en) | Multiband microwave antenna | |
JP6527865B2 (ja) | 無線周波数信号を送受信するための装置 | |
TWI612722B (zh) | 應用於具有金屬邊框之電子裝置的lte多頻單極天線 | |
JP5702008B2 (ja) | アンテナ装置 | |
KR100962574B1 (ko) | 비아홀에 의한 주파수 가변 칩 안테나 | |
EP1938422A1 (en) | Multi-band antenna | |
JP2003133842A5 (ja) | ||
JP2003142931A (ja) | モノポールアンテナ | |
WO2020151807A1 (en) | Slot antenna and electronic device comprising said slot antenna | |
JP2004297534A (ja) | 電子素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12741655 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2012741655 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012741655 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13982345 Country of ref document: US |