WO2012103831A2 - 一种天线设备和系统 - Google Patents

一种天线设备和系统 Download PDF

Info

Publication number
WO2012103831A2
WO2012103831A2 PCT/CN2012/072610 CN2012072610W WO2012103831A2 WO 2012103831 A2 WO2012103831 A2 WO 2012103831A2 CN 2012072610 W CN2012072610 W CN 2012072610W WO 2012103831 A2 WO2012103831 A2 WO 2012103831A2
Authority
WO
WIPO (PCT)
Prior art keywords
module
antenna
signal
interface
active
Prior art date
Application number
PCT/CN2012/072610
Other languages
English (en)
French (fr)
Other versions
WO2012103831A9 (zh
WO2012103831A3 (zh
Inventor
蒲涛
何平华
毛孟达
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280000504.2A priority Critical patent/CN102763279B/zh
Priority to EP12741935.6A priority patent/EP2827449B1/en
Priority to PCT/CN2012/072610 priority patent/WO2012103831A2/zh
Publication of WO2012103831A2 publication Critical patent/WO2012103831A2/zh
Publication of WO2012103831A9 publication Critical patent/WO2012103831A9/zh
Publication of WO2012103831A3 publication Critical patent/WO2012103831A3/zh
Priority to US14/489,997 priority patent/US9627774B2/en
Priority to US15/458,266 priority patent/US10594043B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the present invention relates to the field of wireless transmission, and in particular, to an antenna device and system. Background technique
  • the base station antenna is used to convert the radio frequency signal into an electromagnetic wave signal and radiate into the space; or receive the electromagnetic wave signal transmitted from the terminal, convert it into a radio frequency signal, and transmit it to the base station.
  • Each base station antenna controls a range of areas (called sectors or cells) in which electromagnetic waves are radiated or received, and the radius of radiation can be controlled by controlling the main lobe downtilt.
  • the Active Antenna System is a system that integrates an active transceiver and an antenna. It is a new type of base station architecture. Compared with the traditional antenna system, AAS reduces the feeder loss, makes the antenna beam adjustment more convenient, and has certain advantages in the utilization of spectrum resources.
  • the tower and the site are a limited resource (for example, the tower has limited load-bearing capacity and limited roof space. European and American residents are sensitive to the number and size of the antennas due to health awareness.
  • the site charges are also strongly related to the owner’s charges, so there is These towers or sites that consider the limiting factors can only hold a small number of antennas, and you want to share or reuse them as much as possible.
  • an antenna can only be used alone in a passive antenna system or an active antenna system, and cannot be used together for both an active antenna system and a passive antenna system. Or, just integrate the two antennas into the same antenna device. Two sets of (column) completely independent antennas are arranged in the same antenna. The downtilt adjustment of the two groups (columns) of the antennas does not affect each other, but the oscillator is not shared, and the antenna resources are wasted.
  • the present invention provides an antenna device and system. Yes, it can be used for both active antenna systems and passive antenna systems, sharing antenna arrays and other components (such as feeder networks, etc.) in active and passive antenna systems.
  • An aspect of the present invention provides an antenna device, where the antenna device includes: An antenna array for radiating or receiving electromagnetic wave signals;
  • a feed network configured to connect the antenna array and the signal multiplexer
  • At least one signal multiplexer each of the signal multiplexers including a combined port and at least two shunt ports for dividing one signal from the feed network into at least two signals, or at least Two-way signal synthesis is transmitted to the feed network;
  • At least two interface modules each of which is connected to a passive module or an active module, for receiving signals from the passive module or the active module or to the passive module or The active module sends a signal;
  • the at least two branch ports of each of the signal multiplexers include at least a first port and a second port, and the at least two interface modules at least include a first interface module and a second interface module, the first port and The first interface module is connected, and the second port is connected to the second interface module, so that the signal output by the first port is sent to the first interface module by using the first interface module.
  • a passive module or an active module and the signal output by the second port is sent to the passive module or the active module connected to the second interface module by using the second interface module, or
  • a signal output by the passive module or the active module connected to an interface module and a signal output by the passive module or the active module connected to the second interface module are sent through the first port and the second port.
  • a signal multiplexer In a signal multiplexer.
  • the present invention also provides an antenna system comprising the antenna device as described above.
  • the present invention also provides a communication system comprising the antenna system as described above.
  • the technical solution of the present invention has the following beneficial effects:
  • a new antenna structure is proposed, in which multiple interface modules are simultaneously set in the antenna device, and the interface module can be connected as needed
  • An active module or a passive module such that the antenna device can be combined with an active module or a passive module to form an active antenna system or a passive antenna system, and can be shared between the active antenna system or the passive antenna system
  • Resources such as antenna arrays or feed networks. Resources are shared while improving antenna scalability.
  • FIG. 1 is a schematic diagram of a specific composition of an antenna system in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a specific composition of an antenna device in an embodiment of the present invention.
  • FIG. 3 is a second specific schematic diagram of an antenna device in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram showing a third specific composition of an antenna device according to an embodiment of the present invention.
  • FIG. 5 is a fourth specific schematic diagram of an antenna device according to an embodiment of the present invention.
  • FIG. 6 is a second specific schematic diagram of an antenna system in an embodiment of the present invention.
  • Figure ⁇ is a specific composition diagram of the connection between the antenna system and the non-distributed base station in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing a specific composition of an antenna system connected to a distributed base station according to an embodiment of the present invention.
  • FIG. 9 is another specific composition diagram of the connection between the antenna system and the distributed base station in the embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a specific composition of an antenna device having a multi-column antenna array in an embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing a specific composition of an antenna device having a multi-column antenna array in an external active or passive module according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram showing a specific composition of an antenna device having a multi-column antenna array and supporting horizontal and vertical plane adjustments in an embodiment of the present invention
  • Figure 13 is a block diagram showing a specific configuration of an antenna device having a multi-column antenna array and having a Butler Matrix module in an embodiment of the present invention. detailed description
  • GSM Global System of Mobile communication
  • CDMA code division multiple access
  • WCDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolved Node B) in LTE.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • e-NodeB evolved Node B
  • the antenna device used for AAS in the embodiment of the present invention is simply referred to as an active antenna, and the antenna device not used for AAS is simply referred to as a passive antenna and the non-AAS is referred to as a passive antenna system.
  • the antenna device in the embodiment of the present invention can be used for the active antenna system, that is, the AAS, and can be connected to the remote radio unit (RRU).
  • RRU remote radio unit
  • a non-distributed base station is used as a passive antenna, and can expand the frequency band and the standard well; in the antenna system, in addition to the vibrator sharing the antenna array, between the passive antenna system and the active antenna system
  • Other components of the antenna can be shared at the same time, such as a feed network, a Butler matrix, and the like.
  • an antenna system in an embodiment of the present invention includes an antenna device 1. Further, the antenna system may further include an active module 3 and/or a passive module 2.
  • the active module referred to in the embodiment of the present invention refers to a module including an active circuit, and a module including a transceiver, an RRU or a baseband intermediate frequency module belongs to an active module.
  • the passive module is a module that does not include an active circuit, such as a module including only a passive circuit such as a phase shifter, a splitter, and a power splitter.
  • the passive module 2 When the passive module 2 is included in the antenna system, the passive module 2 is connected to the first interface module of the antenna device 1, and can be connected to the network side through a coaxial feeder, such as a 1.8 GHz coaxial feeder and a non-distributed The base stations are connected.
  • a coaxial feeder such as a 1.8 GHz coaxial feeder and a non-distributed The base stations are connected.
  • the active module 3 is connected to the second interface module of the antenna device 1, and can be connected to other devices through the baseband interface, such as a 2.1 GHz CPRI interface or a 2.6 GHz CPRI interface and distribution.
  • the BBUs in the base station are connected.
  • composition and function of the first interface module and the second interface module are not substantially different.
  • the first interface module and the active module may also be used. 1 connection, and vice versa.
  • a plurality of active modules or passive modules may be included, and a corresponding number of interface modules need to be included on the antenna device, and at the same time, a signal multiplexer in the antenna device
  • the number of port ports also needs to correspond to the number of interface modules.
  • the antenna device 1 includes: an antenna array 10 for radiating or receiving an electromagnetic wave signal; and a feeding network 12 for connecting the antenna Array 10 and signal multiplexer 14; at least one signal multiplexer 14, each of said signal multiplexers comprising a combined port and at least two shunt ports for routing one from said feed network 12
  • the signal is divided into at least two signals, or at least two signals are combined into one signal to the feed network 12; at least two interface modules, each of which is connected to a passive module or an active module for receiving Signals sent from the passive module or the active module or sent to the passive module or the active module;
  • the branch port of each signal multiplexer includes at least a first port and a second port
  • the interface module includes at least a first interface module 16 and a second interface module 18, the first port and the first port
  • An interface module is connected, and the second port is connected to the second interface module, and is configured to send, by using the first interface module, a signal output by the first port to a passive module connected to the first interface module.
  • an active module sending, by the second interface module, a signal output by the second port to a passive module or an active module connected to the second interface module, or a signal output by the connected passive module or the active module and a signal output by the passive module or the active module connected to the second interface module are sent to each signal through the first port and the second port.
  • the antenna array 10 may include a wideband antenna element, the wideband antenna element is an antenna element supporting receiving or transmitting a broadband signal, and the broadband signal is a signal including two or more frequency bands; corresponding to the feeding Network 12 is a broadband feed network that includes a feed network that supports transmission of the broadband signal.
  • the antenna array 10 in the antenna device 1 may include two or more antennas, or may include only a single column antenna, and each column antenna includes two or more antenna elements.
  • the single-column antenna can adjust the vertical tilt angle of the antenna, and can further adjust the down-tilt angle of the sub-band for the single-column antenna, or adjust the down-tilt angle of the sub-band, and further realize the beam adjustment of the antenna horizontal plane and further Achieve sub-band beam adjustment.
  • the above antenna device 1 can be used for antenna array multiplexing of vertical planes, antenna array multiplexing for horizontal planes, and antenna array multiplexing for vertical planes and antenna array multiplexing for horizontal planes.
  • the antenna device may further include a Butler matrix module 11 which may be located in the antenna array.
  • the feed network 12 may also be located between the feed network 12 and the signal multiplexer 14 for forming two or more beams in a specified direction in the horizontal plane of the antenna beam, that is, to achieve antenna splitting.
  • a secondary phase shifting network can be included in the feed network 12 for increasing the beam conditioning capability of the active antenna signal or the passive antenna signal.
  • the antenna device 1 may further include a calibration module 13 for calibration of the antenna signals.
  • the calibration module 13 is part of a calibration network that also includes a calibration channel that can be located in the antenna device or in the active module.
  • the calibration module 13 can include a sequentially connected calibration coupler, a calibration multiplexer, and a calibration channel; the calibration module transmits a calibration signal between the antenna device and the active module through the calibration channel, which can be used for transmitting and receiving signals in the active antenna system. calibration.
  • the antenna array 10 When the antenna array 10 implements antenna array multiplexing in a horizontal plane, the antenna array 10 includes a multi-column antenna, and the signal multiplexer and the interface module can be used for antenna array multiplexing on a horizontal plane, that is, the signal multiplexer and the interface module can be horizontally disposed.
  • the antenna array 10 When the antenna array 10 implements antenna array multiplexing in a vertical plane, the antenna array 10 may include a multi-column antenna, or may include only a single-column antenna, and the signal multiplexer and the interface module are used for each column antenna for the antenna array on the vertical plane. Multiplexing, that is, the signal multiplexer and interface module can be set vertically.
  • the antenna array 10 When the antenna array 10 simultaneously performs antenna array multiplexing on the horizontal and vertical planes, the antenna array 10 has a multi-column antenna, and the signal multiplexer and the interface module included in the antenna device 1 are in an array form, that is, a partial signal multiplexer and an interface module.
  • the horizontal setting is used for antenna array multiplexing on the horizontal plane, and the other part of the signal multiplexer and interface module are vertically arranged for antenna array multiplexing on the vertical plane.
  • an antenna device in an embodiment of the present invention is further described by taking an antenna device having four signal multiplexers and three interface modules arranged vertically.
  • the interface module may be a radio frequency coaxial connector composed of a radio frequency coaxial interface, such that the three RF coaxial connectors of the antenna device may be respectively connected to the passive module, the first active module, and the second Source module.
  • the interface module can be a 1.8GHz passive module, a 2.1GHz active module, and a 2.6GHz active module.
  • the thick solid line on the left in Figure 5 represents the antenna array, which is used to radiate electromagnetic waves and receive Electromagnetic wave; the network between the antenna array and the signal multiplexer is a feed network; each signal multiplexer includes a combined port and three branch ports, which can be realized by a resonator combiner, which is understandable
  • the signal multiplexer can be implemented as a two-stage two-in-one combiner, a three-in-one combiner, or a four-in-one combiner, and is not limited herein; RF coaxial interface, 4 RF coaxial interfaces form an RF coaxial connector, and each RF coaxial connector is connected to an active or passive module.
  • the antenna device shown in FIG. 5 may further include:
  • Two-stage phase shifter when the number of RF coaxial interfaces is insufficient, the active or passive modules connected to the right side of the RF coaxial interface cannot provide sufficient phase values to the antenna array, which may result in poor lobe map indicators. , the performance of the upper side lobe is poor or the range of downtilt is limited.
  • the use of a two-stage phase shifter can add better phase freedom to the antenna array.
  • the antenna device shown in FIG. 5 may further include a calibration coupler (not shown) and a calibration multiplexer, and may further include a calibration channel for channel calibrating the signals of the active antenna system.
  • the calibration coupler acquires the signal from the active module, connects to the calibration channel through the calibration multiplexer, and performs channel calibration on the transmitted signal from the active module.
  • the calibration channel is sent to the calibration multiplexer and the calibration coupler.
  • a signal is injected into the signal of the source module to perform channel calibration on the received signal to the active module.
  • the above-mentioned calibration coupler, calibration multiplexer and calibration channel are usually only required when the antenna device is connected to the active module in the AAS configuration. If the antenna device is only connected to a passive module, or only to an active module in a non-distributed base station configuration or RRU configuration, no calibration is required and the calibration coupler, calibration multiplexer and calibration channel described above need not be provided.
  • FIG. 6 a schematic diagram of a specific embodiment of an antenna system formed by externally connecting an active module and a passive module to the antenna device of FIG.
  • the antenna device is connected to a passive module and two active modules through three RF coaxial connectors, which are a passive module, a first active module, and a second active module.
  • RF coaxial connectors which are a passive module, a first active module, and a second active module.
  • a passive module comprising: a first primary phase shifter and a coaxial feeder interface, wherein the coaxial feeder interface is configured to interact with a first radio frequency signal, such as a non-distributed base station, on the network side, the first primary The phase shifter is configured to perform phase shift processing on the first radio frequency signal.
  • the first primary phase shifter may be a passive primary phase shifter, and the phase shifter itself has a splitting function.
  • the coaxial feeder interface can be a coaxial connector with the German industry standard (Deutsche Industrie Normen, DIN); the other side of the passive module Connected to the antenna device through a set of RF coaxial interfaces.
  • an antenna system including the above passive module in the embodiment of the present invention where the non-distributed base station (including the baseband processing unit may be included in the non-distributed base station) is placed in the system Under the tower, the RF signal is fed through a radio frequency coaxial feeder to a passive antenna system on the tower (ie, a system including a 1.8 GHz passive module and antenna device).
  • a passive antenna system on the tower ie, a system including a 1.8 GHz passive module and antenna device.
  • a first active module comprising: a first radio frequency unit and a first baseband interface, wherein the first baseband interface is configured to exchange a first digital signal with the baseband unit, where the first radio frequency unit is used for The first digital signal and the second radio frequency signal are mutually converted.
  • the first baseband interface may be a Common Public Radio Interface (CPRI), and the first active module may be connected to the BBU through an optical fiber.
  • CPRI Common Public Radio Interface
  • the other side of the first active module is coupled to the antenna device via a set of radio frequency coaxial interfaces.
  • the first radio frequency unit may include a second primary phase shifter and a remote radio frequency unit (RRU), wherein the remote radio frequency unit is configured to convert and process the first digital signal and the second radio frequency signal
  • the second primary phase shifter is configured to perform phase shift processing on the second radio frequency signal.
  • the RRU can be composed of a Transceiver (TRX) and a baseband IF module; the TRX processes the analog signal, the baseband IF module performs analog-to-digital conversion, and further processes the digital signal.
  • TRX Transceiver
  • baseband IF module performs analog-to-digital conversion, and further processes the digital signal.
  • an antenna system including the above first active module in the embodiment of the present invention, where the RRU in the first active module is connected to the BBU in the distributed base station, the first The source module can perform signal interaction between the optical fiber or the small-signal coaxial cable and the BBU.
  • the RRU can be a physically independent RRU, installed on the tower or under the tower, or is an RRU module, and is semi-integrated with the antenna device. This case is called the RRU form.
  • a second active module including a second radio frequency unit and a second baseband interface, where the second baseband interface is used to exchange a second digital signal between the second active module and the baseband unit, where the second radio frequency unit is used And converting and processing the second digital signal and the third radio frequency signal.
  • the second baseband interface can be a Common Public Radio Interface (CPRI), and the second active module can be connected to the BBU through the optical fiber.
  • CPRI Common Public Radio Interface
  • the other side of the second active module is coupled to the antenna device via a set of radio frequency coaxial interfaces.
  • the second radio frequency unit may include a TRX module and a baseband intermediate frequency module.
  • the transceiver module is configured to convert the third radio frequency signal and the second intermediate frequency signal, where the baseband intermediate frequency unit is configured to convert the second intermediate frequency signal and the second digital signal to each other. deal with.
  • the TRX module can be composed of a TRX array for processing RF signals; the baseband IF module performs analog-to-digital conversion and further processes the digital signals.
  • an antenna system including the above second active module in the embodiment of the present invention in the system, the TRX module in the second active module includes a TRX array, and the TRX array can be as needed.
  • amplitude and phase can be separately adjusted for the plurality of sub-components to achieve a lobe shaping function.
  • the amplitude and phase can be adjusted separately for different signals to achieve the function of space diversity. This situation is called the AAS form.
  • the antenna device in the embodiment of the present invention can support the smooth evolution and expansion of the operator by externally connecting different modules, and realize the sharing of the antenna resources of the active antenna and the passive antenna.
  • the antenna device may include a signal multiplexer, an interface module (for example, a radio frequency coaxial connector including a set of radio frequency coaxial interfaces), a feed network, and the like, and may further include a calibration module.
  • the signal multiplexer and interface module are used for multiplexing the antenna array of the horizontal plane.
  • One set of RF coaxial interfaces is connected to the TRX array; the other two sets of RF coaxial interfaces are interface extensions, such as coaxial expansion interfaces, which can be connected to passive modules or active modules;
  • the RF coaxial interface to which the active module or the passive module is connected is drawn in one group.
  • the corresponding RF coaxial interface connected with the different signal multiplexer is used as One group, which is an RF coaxial connector, is connected to an external module.
  • the antenna device can also support smooth evolution and expansion of operators.
  • the above-mentioned coaxial expansion interface can be directly connected to the matched load, and the antenna device and the connected TRX array are used as the active antenna system, and the 2.6 GHz band itself is provided.
  • Source antenna capability When it is required to meet the application scenarios of 1.8 GHz or 2.1 GHz, the number of required antennas may be selected according to different scenarios and the beam width of the antenna horizontal plane, and the passive power division network module may be added at the corresponding RF coaxial interface.
  • Source transceiver module When it is required to meet the application scenarios of 1.8 GHz or 2.1 GHz, the number of required antennas may be selected according to different scenarios and the beam width of the antenna horizontal plane, and the passive power division network module may be added at the corresponding RF coaxial interface.
  • Source transceiver module When it is required to meet the application scenarios of 1.8 GHz or 2.1 GHz, the number of required antennas may be selected according to different scenarios and the beam width of the antenna horizontal plane
  • the 1.8GHz RRU module is split into two channels through a 1.8GHz splitter through a coaxial expansion interface and a signal multiplexer to form two rows of antennas to form the horizontal beamwidth and beam pointing required for 1.8G.
  • the GHz RRU module is connected to the 4-column antenna through a coaxial expansion interface and a signal multiplexer through a 4-way power split network of a 2.1 GHz splitter to form a horizontal beam and beam pointing required for 2.1 G.
  • the antenna device as exemplified in FIG. 12 can simultaneously support the adjustment of the horizontal plane and the vertical plane;
  • the device may include: an antenna array, a signal multiplexer array, a radio frequency coaxial connector array, and a feed network (which may include a secondary phase shifter), and the like, and may further include a calibration module.
  • Portions of the RF coaxial connector array are connected to the TRX array to form an active antenna system.
  • One of the columns of n TRXi (i takes a value of 1 to n) drives all the antenna elements of the column through the feed network, and changes the down-tilt angle of the column antenna by changing the amplitude and phase characteristics, while the multiple columns in the antenna array
  • the horizontal beam of the antenna can also be adjusted by the control of the amplitude phase of the TRX; such an antenna device can simultaneously support flexible adjustment of horizontal and vertical beam.
  • Other reserved RF coaxial interfaces can extend active or passive modules in other frequency bands.
  • the RRU can be connected to each corresponding through a power split phase shift network (including a power splitter and a phase shifter). port.
  • the multi-column antenna unit sharing may include not only the feed network, but also the sharing of the Butler matrix required for splitting, as shown in FIG.
  • the antenna device in the embodiment of the present invention can be connected to various forms of base stations, such as non-distributed base stations, RRUs, or AASs.
  • This antenna device can be shared by active passive modules in different frequency bands or different forms.
  • the downtilt angle can be adjusted at the same time, or the horizontal beam can be adjusted at the same time (including simultaneous splitting), or the downtilt angle can be adjusted independently, or the horizontal beam can be independently adjusted.
  • the original non-distributed base station that is still not allowed to be thrown away by the operator can be connected to the antenna module through the DIN head and a passive module to protect the operator's historical investment.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Description

一种天线设备和系统 技术领域
本发明涉及无线传输领域, 尤其涉及一种天线设备和系统。 背景技术
基站天线用于将射频信号转化成电磁波信号, 辐射到空间; 或接收从终端 发射的电磁波信号, 转化成射频信号, 输送至基站。
每个基站天线控制一定范围的区域(称为扇区或小区), 在此区域内辐射或 接收电磁波, 可以通过控制主瓣下倾角的方法来控制辐射半径。 主瓣下倾角越 大, 则辐射半径越小。 还可以通过控制天线的主瓣水平指向来控制小区的扇区 覆盖区域的中心, 通过控制主瓣水平波束宽度来控制辐射的水平覆盖范围。
有源天线系统( Active Antenna System , AAS )是指将有源的收发信机和天 线集成形成的系统, 是一种新型的基站架构。 AAS和传统的天线系统相比, 减 小了馈线损耗, 天线波束调节更加方便, 同时在频谱资源的利用率上也有一定 的优势。 而铁塔、 站址作为一种有限的资源 (例如铁塔承重有限, 屋顶空间有 限, 欧美居民出于健康意识对天线数量与尺寸艮敏感, 站址的收费也与业主的 收费强相关, 所以在有这些考虑限制因素的铁塔或站址都只能装少量天线), 则 希望尽可能共享或重用。
但是, 现有技术中, 一个天线只能在无源天线系统或有源天线系统中单独 使用, 不能同时为有源天线系统和无源天线系统共同使用。 或者, 仅仅是将两 种天线集成在同一个天线设备中。 在同一个天线内设置两组(列) 完全独立的 天线, 两组(列) 天线的下倾角调节是互不影响的, 但不共享振子, 浪费了天 线资源。 发明内容
本发明提供一种天线设备和系统。 可以, 既能够为有源天线系统所用, 也 可以为无源天线系统所用, 在有源和无源天线系统中共享天线阵列和其他部件 (如馈电网络等)。
本发明一方面提供了一种天线设备, 所述天线设备包括: 天线阵列, 用于辐射或接收电磁波信号;
馈电网络, 用于连接所述天线阵列和信号复用器;
至少一个信号复用器, 每个所述信号复用器包括一个合路端口和至少两个 分路端口, 用于将来自所述馈电网络的一路信号分为至少两路信号, 或者将至 少两路信号合成一路信号传输至所述馈电网络;
至少两个接口模块, 每个所述接口模块与一个无源模块或有源模块相连, 用于接收从所述无源模块或所述有源模块发来的信号或者向所述无源模块或所 述有源模块发送信号;
所述每个信号复用器的至少两个分路端口至少包括第一端口和第二端口, 所述至少两个接口模块至少包括第一接口模块和第二接口模块, 所述第一端口 和所述第一接口模块相连, 所述第二端口和所述第二接口模块相连, 以将所述 第一端口输出的信号通过所述第一接口模块发送给与所述第一接口模块相连的 无源模块或有源模块, 将所述第二端口输出的信号通过所述第二接口模块发送 给与所述第二接口模块相连的无源模块或有源模块, 或者, 将与所述第一接口 模块相连的无源模块或有源模块输出的信号及与所述第二接口模块相连的无源 模块或有源模块输出的信号通过所述第一端口和所述第二端口送入每个信号复 用器中。
另一方面, 本发明还提供了一种天线系统, 所述天线系统包括如上所述的 天线设备。
再一方面, 本发明还提供了一种通信系统, 包括如上所述的天线系统。 实施本发明的技术方案, 具有如下有益效果: 在本发明所提出的天线设备 中, 提出了一种新的天线结构, 在天线设备中同时设置多个接口模块, 并且该 接口模块可以根据需要连接有源模块或无源模块, 使得该天线设备可以与有源 模块或无源模块结合, 组成为有源天线系统或无源天线系统, 并使得有源天线 系统或无源天线系统之间可以共享天线阵列或馈电网络等资源。 在提高天线可 扩展性的同时共享了资源。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例中的天线系统的一个具体组成示意图;
图 2是本发明实施例中的天线设备的一个具体组成示意图;
图 3是本发明实施例中的天线设备的第二具体组成示意图;
图 4是本发明实施例中的天线设备的第三具体组成示意图;
图 5是本发明实施例中的天线设备的第四具体组成示意图;
图 6是本发明实施例中的天线系统的第二具体组成示意图;
图 Ί是本发明实施例中的天线系统与非分布式基站连接的一个具体组成示 意图;
图 8是本发明实施例中的天线系统与分布式基站连接的一个具体组成示意 图;
图 9是本发明实施例中的天线系统与分布式基站连接的另一个具体组成示 意图
图 10是本发明实施例中的具有多列天线阵列的天线设备一个具体组成示意 图;
图 11是本发明实施例中的具有多列天线阵列的天线设备外接有源或无源模 块时的一个具体组成示意图;
图 12是本发明实施例中的具有多列天线阵列且同时支持水平面和垂直面调 节的天线设备一个具体组成示意图;
图 13是本发明实施例中的具有多列天线阵列且具有巴特勒矩阵模块的天线 设备一个具体组成示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种通信系统, 例如: 全球移动通信系统 ( Global System of Mobile communication, GSM ) , 码分多址(CDMA, Code Division Multiple Access )系统,宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ) , 通用分组无线业务 ( GPRS, General Packet Radio Service ) , 长期演进 ( LTE, Long Term Evolution )等。
基站, 可以是 GSM或 CDMA中的基站(BTS, Base Transceiver Station ) , 也可以是 WCDMA中的基站(NodeB ) , 还可以是 LTE中的演进型基站 (eNB 或 e-NodeB, evolved Node B ) , 本发明并不限定。
在本发明实施例中用于 AAS的天线设备简称为有源天线, 非用于 AAS的 天线设备简称为无源天线并将非 AAS称为无源天线系统。
本发明实施例中的技术方案可以增强天线的可扩展性, 即本发明实施例中 的天线设备既能够用于有源天线系统, 即 AAS , 又能够连接远端射频单元 ( Remote Radio Unit, RRU )或非分布式基站作为无源天线使用, 并且能够很好 的扩展频段和制式; 使得在该天线系统中, 无源天线系统和有源天线系统之间 除了共享天线阵列的振子之外, 还可以同时共享天线的其他部件, 如馈电网络、 巴特勒矩阵等。
如图 1所示, 为本发明实施例中的天线系统, 该天线系统包括天线设备 1 , 进一步的, 该天线系统还可包括有源模块 3和 /或无源模块 2。
在本发明实施例中所指的有源模块是指包括有源电路的模块, 如包括收发 信机、 RRU或基带中频模块的模块都属于有源模块。 相应的, 无源模块则是不 包括有源电路的模块, 如仅包括移相器、 合分路器、 功分器等无源电路的模块。
当天线系统中包括无源模块 2时, 该无源模块 2与天线设备 1的第一接口 模块连接, 并可以通过同轴馈线与网络侧连接, 如可以通过 1.8GHz同轴馈线和 非分布式基站相连。
当天线系统中包括有源模块时, 该有源模块 3与天线设备 1 的第二接口模 块连接, 并可以通过基带接口与其他设备连接, 如可以通过 2.1 GHz CPRI接口 或 2.6GHz CPRI接口与分布式基站中的 BBU相连。
需要说明的是, 第一接口模块和第二接口模块的组成和功能并无实质区别, 比如, 当第一接口模块上没有连接无源模块 2 时, 也可以将第一接口模块与有 源模块 1连接, 反之亦然。
当然, 在一个天线系统中可以包括多个有源模块或无源模块, 则在天线设 备上需要包括对应数量的接口模块, 同时, 在天线设备中的信号复用器中的分 路端口数目也需要与接口模块数目对应。 关于有源模块和无源模块的具体组成, 及其与天线设备的关系将在后续的具体实施例中将进行进一步说明, 以下先描 述天线设备的具体组成。
如图 2所示, 为本发明实施例中的天线设备 1 的具体组成示意图, 该天线 设备 1包括: 天线阵列 10, 用于辐射或接收电磁波信号; 馈电网络 12, 用于连 接所述天线阵列 10和信号复用器 14; 至少一个信号复用器 14, 每个所述信号 复用器包括一个合路端口和至少两个分路端口, 用于将来自所述馈电网络 12的 一路信号分为至少两路信号, 或者将至少两路信号合成一路信号传输至馈电网 络 12; 至少两个接口模块, 每个所述接口模块与一个无源模块或有源模块相连, 用于接收从所述无源模块或所述有源模块发来的信号或者向所述无源模块或所 述有源模块发送信号;
所述每个信号复用器的分路端口至少包括第一端口和第二端口 , 所述接口 模块至少包括第一接口模块 16和第二接口模块 18,所述第一端口和所述第一接 口模块相连, 所述第二端口和所述第二接口模块相连, 用于将所述第一端口输 出的信号通过所述第一接口模块发送给与所述第一接口模块相连的无源模块或 有源模块, 将所述第二端口输出的信号通过所述第二接口模块发送给与所述第 二接口模块相连的无源模块或有源模块, 或者, 将与所述第一接口模块相连的 无源模块或有源模块输出的信号及与所述第二接口模块相连的无源模块或有源 模块输出的信号通过所述第一端口和所述第二端口送入每个信号复用器中。
其中,若需要天线设备 1可以同时外接不同频段的无源模块或 /和有源模块, 则要求天线阵列可以收发相应的多个频段的信号。 则此时的天线阵列 10可包括 宽带天线振子, 所述宽带天线振子为支持接收或发射宽频信号的天线振子, 宽 频信号为包括两个或两个以上的频段的信号; 相应的所述馈电网络 12为宽频馈 电网络, 所述宽频馈电网络包括支持传输所述宽频信号的馈电网络。
进一步的, 天线设备 1中的天线阵列 10可包括两列以上天线, 也可以仅包 括单列天线, 每列天线包括两个以上天线振子。 其中, 对单列天线可以实现天 线垂直面下倾角的调节, 还可以对单列天线进一步实现分频段的下倾角调节, 或分频段的下倾角调节之外, 还可以进一步实现天线水平面的波束调节并进一 步实现分频段的波束调节。 以上天线设备 1 既可以用于垂直面的天线阵列复用, 也可以用于水平面的 天线阵列复用, 还可以既用于垂直面的天线阵列复用也用于水平面的天线阵列 复用。
如图 3所示, 当天线设备 1中的天线阵列 10包括两列以上天线(简称多列 天线)时, 该天线设备还可以包括巴特勒矩阵模块 11 , 该巴特勒矩阵模块 11可 以位于天线阵列 10和馈电网络 12之间, 也可以位于馈电网络 12和信号复用器 14之间, 用于在天线波束的水平面形成指定方向的两个以上的波束, 即实现天 线劈裂。
此外, 馈电网络 12中还可包括二级移相网络, 用于增加对有源天线信号或 无源天线信号的波束调节能力。
如图 4所示, 天线设备 1还可包括校准模块 13 , 用于天线信号的校准。 该 校准模块 13是校准网络的一部分, 校准网络还包括一个校准通道, 该通道可以 位于天线设备之中, 也可以位于有源模块之中。 校准模块 13可包括顺序连接的 校准耦合器、 校准复用器和校准通道; 校准模块通过校准通道在天线设备和有 源模块之间传输校准信号, 可以用于有源天线系统中的收发信号的校准。
当天线阵列 10在水平面实现天线阵列复用时, 天线阵列 10包括多列天线, 信号复用器和接口模块可以用于水平面上的天线阵列复用, 即可以水平设置信 号复用器和接口模块, 当天线阵列 10在垂直面实现天线阵列复用时, 天线阵列 10可以包括多列天线, 也可以仅包括单列天线, 信号复用器和接口模块针对每 列天线用于垂直面上的天线阵列复用, 即可以垂直设置信号复用器和接口模块。 当天线阵列 10同时在水平面和垂直面实现天线阵列复用时, 天线阵列 10保罗 多列天线, 天线设备 1 包括的信号复用器和接口模块为阵列形式, 即部分信号 复用器和接口模块水平设置, 用于水平面上的天线阵列复用, 另一部分信号复 用器和接口模块垂直设置, 用于垂直面上的天线阵列复用。 在如图 5 中, 以具 有垂直设置的 4个信号复用器和 3个接口模块的天线设备为例, 进一步描述本 发明实施例中的天线设备。 在本例中, 接口模块具体可为射频同轴接口组成的 射频同轴连接器, 这样天线设备的 3个射频同轴连接器可以分别连接无源模块, 第一有源模块, 和第二有源模块。 如, 具体可以为, 1.8GHz无源模块, 2.1GHz 有源模块, 2.6GHz有源模块。
在图 5 中左边的粗实线代表天线阵列, 该天线阵列用于辐射电磁波与接收 电磁波; 在天线阵列与信号复用器之间的网络为馈电网络; 每个信号复用器包 括一个合路端口和三个分路端口, 具体可以由共振子合路器实现, 可以理解的 是, 该信号复用器可以为两级二合一合路器、 三合一合路器或四合一合路器等 实现方式, 在此可以不予以限定; 图 5中最右边为多个射频同轴接口, 4个射频 同轴接口组成一个射频同轴连接器, 每个射频同轴连接器外接一个有源或无源 模块。
此外, 如图 5所示的天线设备中还可以包括:
二级移相器, 当射频同轴接口数量不够时, 接在射频同轴接口右侧的有源 或无源模块无法提供足够自由度的相位值给天线阵列, 可导致波瓣图指标不好, 表现为上副瓣较差或下倾角范围有限。 采用二级移相器可以补充更好的相位自 由度给天线阵列。
进一步的, 如图 5 所示的天线设备还可以包括校准耦合器(图中未示)和 校准复用器, 还可以进一步包括校准通道, 用于对有源天线系统的信号进行通 道校准。 校准耦合器获取来自有源模块的信号, 通过校准复用器与校准通道相 连, 对来自有源模块的发射信号进行通道校准, 或者, 校准通道通过校准复用 器和校准耦合器向发往有源模块的信号中注入信号, 以对发往有源模块的接收 信号进行通道校准。
需要说明的是, 上述的校准耦合器、 校准复用器和校准通道, 通常只有当 天线设备与 AAS形态中的有源模块连接时才需要。 如果天线设备仅与无源模块 连接, 或仅与非分布式基站形态或 RRU形态的有源模块连接时, 则无需校准, 不需要设置上述的校准耦合器、 校准复用器和校准通道。
如图 6所示, 为图 5 中的天线设备外接有源模块和无源模块时组成的天线 系统的一种具体实施例的示意图。 在本例中, 天线设备通过 3 个射频同轴连接 器外接一个无源模块和两个有源模块, 这三个模块分别为无源模块, 第一有源 模块, 第二有源模块。 其具体组成和功能如下所述:
无源模块, 在该模块中包括第一初级移相器和同轴馈线接口, 所述同轴馈 线接口用于与网络侧, 如非分布式基站, 交互第一射频信号, 所述第一初级移 相器用于对所述第一射频信号进行移相处理。 其中, 第一初级移相器可以是无 源初级移相器, 该移相器本身含有合分路功能。 该同轴馈线接口可为与德国工 业标准( Deutsche Industrie Normen, DIN )头同轴连接器; 而无源模块的另一侧 通过一组射频同轴接口与天线设备相连。
相应的, 如图 7 所示, 为本发明实施例中的包括以上无源模块的一种天线 系统, 在本系统中非分布式基站(在非分布式基站中可以包括含基带处理单元) 放置在塔下, 通过射频同轴馈线将射频信号馈送至塔上的无源天线系统(即包 括 1.8GHz无源模块和天线设备的系统)。 该情况, 称为非分布式基站形态。
第一有源模块, 在该模块中包括第一射频单元和第一基带接口, 所述第一 基带接口用于与基带单元之间交互第一数字信号, 所述第一射频单元用于将所 述第一数字信号与第二射频信号进行相互转换。 第一基带接口可以为公共无线 接口 (Common Public Radio Interface, CPRI ), 该第一有源模块可以通过光纤与 BBU连接。 该第一有源模块的另一侧通过一组射频同轴接口与天线设备相连。
其中, 第一射频单元可以包括第二初级移相器和远端射频单元(RRU ), 其 中, 所述远端射频单元用于将所述第一数字信号与第二射频信号进行相互转换 和处理, 所述第二初级移相器用于对所述第二射频信号进行移相处理。 其中, RRU可以由收发信机(Transceiver, TRX )和基带中频模块构成; TRX对模拟 信号进行处理, 基带中频模块进行模数信号转换, 并对数字信号进行进一步处 理。
相应的, 如图 8 所示, 为本发明实施例中包括以上第一有源模块的一种天 线系统, 该第一有源模块中的 RRU与分布式基站中的 BBU连接, 该第一有源 模块可以通过光纤或小信号同轴电缆和 BBU之间进行信号的交互; 其中, RRU 可以为物理独立的 RRU, 安装在塔上或塔下, 或者为 RRU模块, 与天线设备半 集成。 该情况, 称为 RRU形态。
第二有源模块, 包括第二射频单元和第二基带接口, 所述第二基带接口用 于所述第二有源模块与基带单元之间交互第二数字信号, 所述第二射频单元用 于将所述第二数字信号与第三射频信号进行相互转换和处理。 第二基带接口可 以为公共无线接口 (Common Public Radio Interface, CPRI ), 该第二有源模块可 以通过光纤与 BBU连接。 该第二有源模块的另一侧通过一组射频同轴接口与天 线设备相连。
其中, 第二射频单元可以包括 TRX模块和基带中频模块。 其中, 所述收发 信机模块用于将所述第三射频信号与第二中频信号进行转换, 所述基带中频单 元用于将所述第二中频信号与所述第二数字信号进行相互转换和处理。 在本发 明实施例中, TRX模块可由 TRX阵列组成, 进行射频信号的处理; 基带中频模 块则进行模数转换, 并进一步对数字信号进行处理。
相应的, 如图 9所示, 为本发明实施例中包括以上第二有源模块的一种天 线系统, 在本系统中第二有源模块中的 TRX模块包括 TRX阵列, TRX阵列可 以根据需要处理一个信号的多个子分量或者处理不同的信号, 处理一个信号的 多个子分量时, 可以对这多个子分量分别调节幅度和相位, 以达到波瓣赋形功 能。 处理不同的信号时, 可以对不同的信号分别调节幅度和相位, 从而达到空 间分集的功能。 该情况, 称为 AAS形态。
这样, 本发明实施例中的天线设备通过外接不同的模块, 就可以支持运营 商的平滑演进与扩容, 并实现有源天线和无源天线的天线资源的共享。 图。 在本发明实施例中, 该天线设备可以包括信号复用器, 接口模块(如, 包 括一组射频同轴接口的射频同轴连接器), 馈电网络等, 还可以包括校准模块。 在本例中, 信号复用器和接口模块用于水平面的天线阵列的复用。 其中一组射 频同轴接口连接了 TRX阵列; 其他两组射频同轴接口为接口扩展部分, 比如为 同轴扩展接口, 可以连接无源模块或有源模块; 在本示意图中, 未将与同一有 源模块或无源模块连接的射频同轴接口画在一组, 但是, 作为本领域普通技术 人员可以理解到, 在实际连接时, 将与不同信号复用器连接的对应射频同轴接 口作为一组, 即为一个射频同轴连接器, 与外部模块连接。
同样的, 该天线设备也可以支持运营商的平滑演进与扩容。 例如, 当只需 要 2.6GHz天线信号的应用场景时,上述的同轴扩展接口可以直接连接匹配负载, 该天线设备和其所连接的 TRX阵列作为有源天线系统, 本身就具备 2.6GHz频 段的有源天线能力。 当需要满足 1.8GHz或 2.1GHz的应用场景时, 可以根据不 同的场景及天线水平面的波束宽度, 选择所需要的天线列数, 在相应的射频同 轴接口处增加无源功分网络模块或有源收发信机模块。
如图 11所示, 1.8GHz的 RRU模块通过 1.8GHz功分器分成两路通过同轴 扩展接口和信号复用器接到两列天线, 形成 1.8G所需要的水平波束宽度及波束 指向, 2.1GHz的 RRU模块通过 2.1GHz功分器的 4路功分网络通过同轴扩展接 口和信号复用器连接到 4列天线, 形成 2.1 G所需的水平波束及波束指向。
如图 12中示例的天线设备则可同时支持水平面和垂直面的调节; 该天线设 备可以包括: 天线阵列, 信号复用器阵列, 射频同轴连接器阵列, 和馈电网络 (其中可包括二级移相器)等, 还可以包括校准模块。
射频同轴连接器阵列中的部分连接了 TRX阵列形成有源天线系统。 其中一 列的 n个 TRXi ( i取值为 1到 n )通过馈电网络驱动该列所有的天线振子, 通过 改变幅相特性从而改变该列天线的下倾角, 同时天线阵列中的多列之间也可以 通过 TRX的幅度相位的控制调节天线的水平波束; 这样的天线设备可以同时支 持水平面和垂直面波束的灵活调节。 其他预留的射频同轴接口可以扩展其他频 段的有源模块或无源模块。
当未连接 TRX的射频同轴接口外接扩展模块时, 为了和有源天线具有类似 的下倾角调节功能, RRU可以通过功分移相网络(包括功分器和移相器)连接 到各个相应的端口。
多列的天线单元共享可以不仅仅包括馈电网络, 也可以包括劈裂所需要的 巴特勒矩阵的共享, 如图 13所示。
通过上述描述可知, 在本发明实施例中的天线设备可以连接多种形态的基 站, 如非分布式基站、 RRU、 或 AAS。 不同频段或不同形态的有源无源模块均 可共享此天线设备。
在共享天线设备时, 通过适当设计, 或可同时调节下倾角, 或可同时调节 水平面波束(包括同时劈裂), 或可独立调节下倾角, 或可独立调节水平面波束。
通过共享天线设备, 可以实现共享站点、 铁塔、 天面 (天线), 为运营商节 省建设成本及运营成本(租金)。 运营商在升级搬迁基站天线过程中, 原有的仍 然正常运行舍不得扔掉的非分布式基站可以通过 DIN头和一个无源模块与本天 线模块相连, 保护运营商的历史投资。
本领域普通技术人员可以理解实现上述实施例的装置中的全部或部分功 能, 可以通过计算机程序来指令相关的硬件来完成, 所述的程序可存储于一计 算机可读取存储介质中, 该程序在执行时, 可包括如上述各装置的实施例的功 能。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体( Read-Only Memory, ROM )或随机存储记忆体(Random Access Memory, RAM )等。
以上所揭露的仅为本发明一种较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

权 利 要 求
1、 一种天线设备, 其特征在于, 所述天线设备包括:
天线阵列, 用于辐射或接收电磁波信号;
馈电网络, 用于连接所述天线阵列和信号复用器;
至少一个信号复用器, 每个所述信号复用器包括一个合路端口和至少两个 分路端口, 用于将来自所述馈电网络的一路信号分为至少两路信号, 或者将至 少两路信号合成一路信号传输至所述馈电网络;
至少两个接口模块, 每个所述接口模块与一个无源模块或有源模块相连, 用于接收从所述无源模块或所述有源模块发来的信号或者向所述无源模块或所 述有源模块发送信号;
所述每个信号复用器的分路端口至少包括第一端口和第二端口 , 所述接口 模块至少包括第一接口模块和第二接口模块, 所述第一端口和所述第一接口模 块相连, 所述第二端口和所述第二接口模块相连, 用于将所述第一端口输出的 信号通过所述第一接口模块发送给与所述第一接口模块相连的无源模块或有源 模块, 将所述第二端口输出的信号通过所述第二接口模块发送给与所述第二接 口模块相连的无源模块或有源模块, 或者, 将与所述第一接口模块相连的无源 模块或有源模块输出的信号及与所述第二接口模块相连的无源模块或有源模块 输出的信号通过所述第一端口和所述第二端口送入每个信号复用器中。
2、 如权利要求 1所述的天线设备, 其特征在于,
所述天线阵列包括宽带天线振子, 所述宽带天线振子支持接收或发射包括 两个或两个以上的频段的宽频信号;
所述馈电网络包括支持传输所述宽频信号的宽频馈电网络。
3、 如权利要求 2所述的天线设备, 其特征在于, 所述天线阵列包括两列以 上天线或单列天线, 每列天线包括两个以上天线振子。
4、 如权利要求 3所述的天线设备, 其特征在于, 当所述天线阵列包括两列 以上天线时, 所述至少一个信号复用器为信号复用器阵列。
5、 如权利要求 3所述的天线设备, 其特征在于, 所述天线设备还包括巴特 勒矩阵模块, 位于所述天线阵列和所述馈电网络之间或者位于所述馈电网络和 所述信号复用器之间, 用于在天线波束的水平面形成指定方向的至少两个波束。
6、 如权利要求 1至 5中任一项所述的天线设备, 其特征在于, 所述馈电网 络还包括二级移相网络, 用于增加对信号的波束调节能力。
7、 如权利要求 1至 6中任一项所述的天线设备, 其特征在于, 所述天线设 备还包括校准模块, 所述校准模块用于天线信号的校准。
8、 一种天线系统, 其特征在于, 所述天线系统包括如权利要求 1至 7任一 项所述的天线设备。
9、 如权利要求 8所述的天线系统, 其特征在于, 所述天线系统还包括与第 一接口模块相连的无源模块,
所述无源模块包括第一初级移相器和同轴馈线接口, 所述同轴馈线接口用 于与非分布式基站交互第一射频信号, 所述第一初级移相器用于对所述第一射 频信号进行移相处理。
10、 如权利要求 8或 9所述的天线系统, 其特征在于, 所述天线系统还包 括与第二接口模块相连的第一有源模块,
所述第一有源模块包括第一射频单元和第一基带接口, 所述第一基带接口 用于与基带单元之间交互第一数字信号, 所述第一射频单元用于将所述第一数 字信号与第二射频信号进行相互转换。
11、 如权利要求 10所述的天线系统, 其特征在于, 所述第一射频单元包括 第二初级移相器和射频拉远单元, 其中, 所述射频拉远单元用于将所述第一数 字信号与第二射频信号进行相互转换和处理, 所述第二初级移相器用于对所述 第二射频信号进行移相处理。
12、 如权利要求 8至 11任意一项所述的天线系统, 其特征在于, 还包括第 二有源模块, 与所述天线设备的第三接口模块相连, 所述第二有源模块包括第 二射频单元和第二基带接口, 所述第二基带接口用于所述第二有源模块与基带 单元之间交互第二数字信号, 所述第二射频单元用于将所述第二数字信号与第 三射频信号进行相互转换和处理。
13、 如权利要求 12所述的天线系统, 其特征在于, 所述第二射频单元包括 收发信机模块和基带中频单元, 其中, 所述收发信机模块用于将所述第三射频 信号与第二中频信号进行转换, 所述基带中频单元用于将所述第二中频信号与 所述第二数字信号进行相互转换和处理。
14、 一种通信系统, 其特征在于, 包括如权利要求 8至 13任一项所述的天 线系统。
PCT/CN2012/072610 2012-03-20 2012-03-20 一种天线设备和系统 WO2012103831A2 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280000504.2A CN102763279B (zh) 2012-03-20 2012-03-20 一种天线设备和系统
EP12741935.6A EP2827449B1 (en) 2012-03-20 2012-03-20 Antenna device and system
PCT/CN2012/072610 WO2012103831A2 (zh) 2012-03-20 2012-03-20 一种天线设备和系统
US14/489,997 US9627774B2 (en) 2012-03-20 2014-09-18 Antenna device and system having active and passive modules
US15/458,266 US10594043B2 (en) 2012-03-20 2017-03-14 Antenna device and system having active modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/072610 WO2012103831A2 (zh) 2012-03-20 2012-03-20 一种天线设备和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/489,997 Continuation US9627774B2 (en) 2012-03-20 2014-09-18 Antenna device and system having active and passive modules

Publications (3)

Publication Number Publication Date
WO2012103831A2 true WO2012103831A2 (zh) 2012-08-09
WO2012103831A9 WO2012103831A9 (zh) 2012-09-27
WO2012103831A3 WO2012103831A3 (zh) 2013-02-28

Family

ID=46603134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072610 WO2012103831A2 (zh) 2012-03-20 2012-03-20 一种天线设备和系统

Country Status (4)

Country Link
US (2) US9627774B2 (zh)
EP (1) EP2827449B1 (zh)
CN (1) CN102763279B (zh)
WO (1) WO2012103831A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715521A (zh) * 2012-10-08 2014-04-09 华为技术有限公司 有源和无源一体化天线装置和基站
WO2014086386A1 (en) * 2012-12-03 2014-06-12 Telefonaktiebolaget L M Ericsson (Publ) A wireless communication node with 4tx/4rx triple band antenna arrangement
WO2015062473A1 (zh) * 2013-10-28 2015-05-07 华为技术有限公司 基站天线
CN104901025A (zh) * 2014-03-04 2015-09-09 中兴通讯股份有限公司 一种天线模块化的实现方法及装置、天线模块
CN112366454A (zh) * 2020-09-25 2021-02-12 广东省新一代通信与网络创新研究院 一种有源阵列天线及移动通信基站

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2827449B1 (en) * 2012-03-20 2023-10-04 Huawei Technologies Co., Ltd. Antenna device and system
US10249932B1 (en) * 2016-02-05 2019-04-02 Tessco Communications Incorporated Bollard lighting fixture with integrated antenna
US10886595B1 (en) 2016-02-05 2021-01-05 Tessco Communications Incorporated Outdoor Wi-Fi bollard
US20180332372A1 (en) * 2017-05-12 2018-11-15 Futurewei Technologies, Inc. Optical Implementation of a Butler Matrix
CN107276693B (zh) * 2017-07-17 2021-03-16 Oppo广东移动通信有限公司 终端射频前端测试方法、设备及系统
US20230155276A1 (en) * 2018-02-06 2023-05-18 Comba Telecom Technology (Guangzhou) Limited Multi-standard integrated antenna
CN110572833B (zh) * 2018-06-06 2022-10-14 中国移动通信有限公司研究院 室内分布系统及网络侧设备
CN110957578B (zh) * 2018-09-27 2022-01-14 华为技术有限公司 一种天线装置
EP3861642A4 (en) * 2018-10-01 2022-09-21 CommScope Technologies LLC SYSTEMS AND METHODS FOR PASSIVE-ACTIVE DISTRIBUTED ANTENNA ARCHITECTURE
CN110221323A (zh) * 2019-05-28 2019-09-10 深圳市广和通无线股份有限公司 Gps天线组件和系统
CN110224215A (zh) * 2019-06-06 2019-09-10 天通凯美微电子有限公司 一种毫米波天线阵及射频前端器件集成的电子设备
WO2021000262A1 (zh) * 2019-07-02 2021-01-07 瑞声声学科技(深圳)有限公司 一种基站天线
US11184044B2 (en) * 2019-09-18 2021-11-23 Rf Venue, Inc. Antenna distribution unit
US11482774B2 (en) 2020-03-24 2022-10-25 Commscope Technologies Llc Base station antennas having an active antenna module and related devices and methods
US11611143B2 (en) 2020-03-24 2023-03-21 Commscope Technologies Llc Base station antenna with high performance active antenna system (AAS) integrated therein
CA3172688A1 (en) 2020-03-24 2021-09-30 Haifeng Li Radiating elements having angled feed stalks and base station antennas including same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6667714B1 (en) * 2000-05-03 2003-12-23 Lucent Technologies Inc. Downtilt control for multiple antenna arrays
DE10034911A1 (de) * 2000-07-18 2002-02-07 Kathrein Werke Kg Antenne für Mehrfrequenzbetrieb
US6529166B2 (en) * 2000-09-22 2003-03-04 Sarnoff Corporation Ultra-wideband multi-beam adaptive antenna
CN101026266A (zh) 2001-11-09 2007-08-29 Ipr特许公司 使用空间二次谐波的双频带相控阵
CA2464883A1 (en) * 2001-11-14 2003-05-22 Louis David Thomas Antenna system
CN100455075C (zh) 2003-06-05 2009-01-21 中兴通讯股份有限公司 空间多波束馈电网络的实现装置
CN101523759A (zh) * 2006-10-02 2009-09-02 施克莱无线公司 集中式无线通信系统
US20080102760A1 (en) 2006-10-02 2008-05-01 Sierra Wireless, Inc. Centralized wireless communication system
GB0622411D0 (en) * 2006-11-10 2006-12-20 Quintel Technology Ltd Phased array antenna system with electrical tilt control
GB2444980B (en) * 2006-12-22 2012-02-22 Deltenna Ltd Antenna system
WO2009051558A1 (en) * 2007-10-17 2009-04-23 Chalmers Intellectual Property Rights Ab Circuit-based multi port antenna
JP4968191B2 (ja) * 2008-06-17 2012-07-04 富士通株式会社 シングルレイヤアダプティブ平面アレイアンテナ、可変リアクタンス回路
CN105141335A (zh) * 2009-12-23 2015-12-09 华为技术有限公司 天线振子复用的方法、装置和天线组件
US8423028B2 (en) * 2009-12-29 2013-04-16 Ubidyne, Inc. Active antenna array with multiple amplifiers for a mobile communications network and method of providing DC voltage to at least one processing element
US20130294302A1 (en) * 2010-08-04 2013-11-07 Nokia Siemens Networks Oy Broadband Antenna and Radio Base Station System for Process-ing at Least Two Frequency Bands or Radio Standards in a Radio Communications System
EP2487800B1 (en) * 2011-02-11 2013-06-19 Alcatel Lucent Active antenna arrays
CN102522634B (zh) * 2011-12-13 2015-04-15 华为技术有限公司 天线装置、基站及通信系统
EP2827449B1 (en) * 2012-03-20 2023-10-04 Huawei Technologies Co., Ltd. Antenna device and system
CN104901025B (zh) * 2014-03-04 2019-07-09 中兴通讯股份有限公司 一种天线模块化的实现方法及装置、天线模块

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2827449A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715521A (zh) * 2012-10-08 2014-04-09 华为技术有限公司 有源和无源一体化天线装置和基站
US9774098B2 (en) 2012-12-03 2017-09-26 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication node with 4TX/4RX triple band antenna arrangement
CN104823323A (zh) * 2012-12-03 2015-08-05 瑞典爱立信有限公司 具有4tx/4rx三频带天线布置的无线通信节点
WO2014086386A1 (en) * 2012-12-03 2014-06-12 Telefonaktiebolaget L M Ericsson (Publ) A wireless communication node with 4tx/4rx triple band antenna arrangement
WO2015062473A1 (zh) * 2013-10-28 2015-05-07 华为技术有限公司 基站天线
US10446926B2 (en) 2013-10-28 2019-10-15 Huawei Technologies Co., Ltd. Base station antenna
US11563268B2 (en) 2013-10-28 2023-01-24 Huawei Technologies Co., Ltd. Base station antenna
CN104901025A (zh) * 2014-03-04 2015-09-09 中兴通讯股份有限公司 一种天线模块化的实现方法及装置、天线模块
JP2017509247A (ja) * 2014-03-04 2017-03-30 ゼットティーイー コーポレイション アンテナのモジュール化の実現方法及び装置、アンテナモジュール
US10236580B2 (en) 2014-03-04 2019-03-19 Zte Corporation Method and apparatus for implementing antenna modularization and antenna module
CN104901025B (zh) * 2014-03-04 2019-07-09 中兴通讯股份有限公司 一种天线模块化的实现方法及装置、天线模块
CN112366454A (zh) * 2020-09-25 2021-02-12 广东省新一代通信与网络创新研究院 一种有源阵列天线及移动通信基站
WO2022062472A1 (zh) * 2020-09-25 2022-03-31 广东省新一代通信与网络创新研究院 一种有源阵列天线及移动通信基站

Also Published As

Publication number Publication date
US10594043B2 (en) 2020-03-17
EP2827449B1 (en) 2023-10-04
CN102763279B (zh) 2014-04-30
US20150002361A1 (en) 2015-01-01
WO2012103831A9 (zh) 2012-09-27
EP2827449A4 (en) 2015-03-11
CN102763279A (zh) 2012-10-31
WO2012103831A3 (zh) 2013-02-28
US20170187122A1 (en) 2017-06-29
US9627774B2 (en) 2017-04-18
EP2827449A2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
WO2012103831A2 (zh) 一种天线设备和系统
EP2816664B1 (en) Antenna system
US9136885B2 (en) Antennae system
EP3780280A1 (en) Antenna system and feeding network reconstruction method and device
TWI571081B (zh) 在無線通訊節點之間的無線回載通訊之設備、系統和方法
US8346092B2 (en) Antenna device
CN109980362B (zh) 一种天线装置及波束状态切换方法
US6038459A (en) Base station antenna arrangement
WO2013097395A1 (zh) 有源天线装置及其收发信号的方法
JP2016511598A (ja) マルチアレイアンテナ
JPH07249938A (ja) 基地局アンテナ構成およびそのアンテナを動作させる方法
EP1297591A2 (en) System and method for simultaneous transmission of signals in multiple beams without feeder cable coherency
WO2013017104A1 (zh) 多模天线与基站
CN109509980B (zh) 混合多波束天线
WO2014008797A1 (zh) 一种基站天线和基站
WO2015042968A1 (zh) 扇区配置方法及装置、系统
WO2020020107A1 (zh) 一种基站天线、切换开关和基站设备
CN101465472A (zh) 多系统共用天线
WO2019154362A1 (zh) 多制式融合的天线
US8463323B2 (en) Antenna device, wireless cellular network and method of capacity expansion
WO2022140999A1 (zh) 基站天线
WO2022062472A1 (zh) 一种有源阵列天线及移动通信基站
WO2021003030A1 (en) Antenna feed networks and related antennas and methods
WO2024077500A1 (zh) 一种通信设备及基站
WO2022246773A1 (zh) 一种天线阵列、无线通信装置及通信终端

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000504.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741935

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012741935

Country of ref document: EP