WO2015042968A1 - 扇区配置方法及装置、系统 - Google Patents

扇区配置方法及装置、系统 Download PDF

Info

Publication number
WO2015042968A1
WO2015042968A1 PCT/CN2013/084744 CN2013084744W WO2015042968A1 WO 2015042968 A1 WO2015042968 A1 WO 2015042968A1 CN 2013084744 W CN2013084744 W CN 2013084744W WO 2015042968 A1 WO2015042968 A1 WO 2015042968A1
Authority
WO
WIPO (PCT)
Prior art keywords
initial
antenna
sectors
antenna array
polarization state
Prior art date
Application number
PCT/CN2013/084744
Other languages
English (en)
French (fr)
Inventor
赵建平
王琳琳
罗伟
杨朝辉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380002161.8A priority Critical patent/CN103765940B/zh
Priority to PCT/CN2013/084744 priority patent/WO2015042968A1/zh
Publication of WO2015042968A1 publication Critical patent/WO2015042968A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/106Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using two or more intersecting plane surfaces, e.g. corner reflector antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a sector configuration method, apparatus, and system.
  • BACKGROUND With the increasing standards of mobile communication user experience, cellular networking technologies need to be combined with antenna technology to meet the needs of a wide range of mobile communication users.
  • Conventional 3 sectors or 6 sectors are typically produced by 3 to 6 panel-like base station antennas. If sector adjustment is to be made, the base station antenna must be manually set at the site, and the sector adjustment is not flexible.
  • a Butler matrix is used as a feed network connecting a dual-polarized beam port and an array element, and beamforming and sector adjustment are performed on the antenna array element, and if it is necessary to improve beamforming capability and
  • the flexibility of sector adjustment requires increasing the number of antenna elements and the number of ports in the Butler matrix, which greatly increases the system complexity, cost, and insertion loss caused by the Butler matrix. In addition, it leads to the level of the Butler matrix. The problem of narrowing the bandwidth of the antenna system caused by the joint structure.
  • the present invention provides a sector configuration method, apparatus, and system, which not only solves the problem of poor sector adjustment flexibility existing in the existing antenna system, but also reduces system complexity and cost, and improves system performance.
  • a sector configuration system including: a cylindrical antenna array, a beam pre-processing module, a transceiver unit module, and a baseband module; and the cylindrical antenna array is configured to output N co-polarized initial beams , W ⁇ 3, to achieve a full 360-degree coverage; the beam pre-processing module, configured to output said cylindrical array antenna with the N initial beam polarization beamforming, give initial M a sector, 2 ⁇ M ⁇ N ; the transceiver unit module, configured to send signals of the M initial sectors to the baseband module; the baseband module, configured to use the M initial sectors User equipment distribution and/or network planning parameters, the M initials At least two adjacent initial sectors in the sector are combined into one physical sector, resulting in ⁇ physical sectors, 1 ⁇ K ⁇ M.
  • the cylindrical antenna array includes N columns of antenna elements; the N columns of antenna elements are parallel to each other to form a closed cylinder in space; The number of antenna elements in each column antenna element in the N-column array element is greater than or equal to 1; each of the N-column array elements is a directional antenna, and the radiation of each antenna element The direction is normal to the closed cylindrical surface formed; and each of the antenna elements in each of the N array antenna elements is connected by a power distribution feed network.
  • each of the antenna array elements is a dual-polarized directional antenna
  • each of the N-column antenna array elements The antenna element includes a first antenna port and a second antenna port; the first antenna port is an antenna port in a first polarization state, and the second antenna port is an antenna port in a second polarization state;
  • the antenna port corresponds to an initial beam of a first polarization state; and the second antenna port corresponds to an initial beam of a second polarization state.
  • the beam pre-processing module is specifically configured to: output the N first polarizations to the cylindrical antenna array The initial beam of the state is beamformed to obtain an initial sector of M first polarization states; and beamforming the initial beams of the N second polarization states output by the cylindrical antenna array The initial sector of M second polarization states.
  • the baseband module is specifically configured to:
  • the cells are merged into one physical sector to obtain K physical sectors of the first polarization state; and the user equipment distribution and/or network planning parameters in the M initial sectors according to the second polarization state And combining at least two adjacent initial sectors of the M initial sectors in the second polarization state into one physical sector, to obtain K physical sectors in the second polarization state.
  • the beam pre-processing module includes 2 XN antenna connection ports and 2 XM initial sector connection ports, the 2 XN antenna connection ports Not connecting to the N first antenna ports and the N second antenna ports of the cylindrical antenna array;
  • the transceiver unit module includes 2 XM transceiver components, and the 2 XM transceivers The component is connected to the 2 XM initial sector connection ports through the RF channel to implement signal transmission and reception;
  • the transceiver unit module and the baseband module are connected by a fiber optic cable or a bundle cable.
  • each of the antenna array elements is a single-polarized directional antenna
  • each of the N-column antenna array elements The antenna element includes a third antenna port.
  • the beam pre-processing module includes N antenna connection ports and M initial sector connection ports, where the N antenna connections are Ports are respectively connected to the N third antenna ports of the cylindrical antenna array;
  • the transceiver unit module includes M transceiver components, and the M transceiver components respectively communicate with the M through radio frequency channels
  • the initial sector connection port is connected to realize signal transceiving;
  • the transceiver unit module and the baseband module are connected by an optical cable or a bundle cable.
  • the beam pre-processing module is a passive network.
  • a method for configuring a sector including: beamforming an N co-polarized initial beam output by a cylindrical antenna array, and obtaining a 360-degree omnidirectional coverage area of the cylindrical antenna array M initial sectors, 2 ⁇ M ⁇ N, N ⁇ 3 ., according to the user equipment distribution and/or network planning parameters in the M initial sectors, at least two of the M initial sectors The adjacent initial sectors are merged into one physical sector, and K physical sectors are obtained, 1 ⁇ K ⁇ M.
  • the cylindrical antenna array specifically includes: N columns of antenna elements, and the N columns of antenna elements are parallel to each other, and form a closed cylinder in space And the number of antenna array elements in each of the N array antenna elements is greater than or equal to 1; each of the N array antenna elements is a directional antenna, and each antenna array The radiation direction of the element is normal outward along the closed cylinder surface formed; and each antenna element in each column antenna element of the N-column array element is connected by a power distribution feed network.
  • each of the antenna array elements is a dual-polarized directional antenna
  • each of the N-column antenna array elements The antenna array element includes a first antenna port and a second antenna port; the first antenna port is a first polarization The antenna port of the state, the second antenna port is an antenna port of a second polarization state; the first antenna port corresponds to an initial beam of a first polarization state; and the second antenna port corresponds to a second polarization state Initial beam.
  • the N co-polarized initial beams outputted by the cylindrical antenna array are beamformed to obtain M initial fans.
  • a region comprising: beamforming the initial beams of the N first polarization states output by the cylindrical antenna array, obtaining an initial sector of M first polarization states; and pairing the cylindrical antennas
  • the initial beams of the N second polarization states output by the array are beamformed to obtain initial sectors of M second polarization states.
  • the performing the M according to the user equipment distribution and/or network planning parameters in the M initial sectors At least two adjacent initial sectors in the initial sector are merged into one physical sector, and K physical sectors are obtained, including: distribution of user equipment in M initial sectors according to the first polarization state And/or network planning parameters, combining at least two adjacent initial sectors of the M initial sectors of the first polarization state into one physical sector, to obtain K physical states of the first polarization state a sector; and at least two of the M initial sectors of the second polarization state according to user equipment distribution and/or network planning parameters in the M initial sectors according to the second polarization state
  • the initial sectors of the neighbors are merged into one physical sector, and K physical sectors of the second polarization state are obtained.
  • each of the antenna elements in the cylindrical antenna array is a single-polarized directional antenna
  • the N-column antenna Each column of antenna elements in the array element includes a third antenna port.
  • a sector configuration apparatus including: a first setting module, configured to perform beamforming on N co-polarized initial beams output by a cylindrical antenna array, where the cylindrical antenna array is 360 Obtaining M initial sectors in the omnidirectional coverage area, 2 ⁇ M ⁇ N, W ⁇ 3; a second setting module, configured to allocate user equipment according to the M initial sectors and/or network planning parameters And combining at least two adjacent initial sectors of the M initial sectors into one physical sector to obtain K physical sectors, 1 ⁇ ⁇ M.
  • the cylindrical antenna array includes: N columns of antenna elements, and the N columns of antenna elements are parallel to each other, forming a closed column in space
  • the number of antenna elements in each column of the N columns of antenna elements is greater than or equal to 1; each antenna element in the N columns of antenna elements is a directional antenna, and the radiation direction of each antenna element Along the formed closed cylinder normal outward; each antenna element in each of the N array antenna elements is connected by a power distribution network.
  • each of the N array antenna elements is a dual-polarized directional antenna
  • the N-column antenna Each column antenna element in the array element includes a first antenna port and a second antenna port; the first antenna port is an antenna port in a first polarization state, and the second antenna port is an antenna in a second polarization state a port; the first antenna port corresponds to an initial beam of a first polarization state; and the second antenna port corresponds to an initial beam of a second polarization state.
  • the first setting module is specifically configured to: output the N first polarizations to the cylindrical antenna array
  • the initial beam of the state is beamformed, the initial sectors of the M first polarization states are obtained in the 360 degree omnidirectional coverage area of the cylindrical antenna array; and the N outputs are output to the cylindrical antenna array
  • the initial beam of the second polarization state is beamformed, and M initial states of the second polarization state are obtained in the 360 degree omnidirectional coverage area of the cylindrical antenna array.
  • the second setting module is specifically configured to: user in the M initial sectors according to the first polarization state a device distribution condition and/or a network planning parameter, combining at least two adjacent initial sectors of the M initial sectors of the first polarization state into one physical sector, to obtain the first polarization state K physical sectors; and at least user equipment distribution and/or network planning parameters in the M initial sectors according to the second polarization state, at least the M initial sectors of the second polarization state Two adjacent initial sectors are combined into one physical sector to obtain K physical sectors of the second polarization state.
  • each antenna array element in the cylindrical antenna array is a single-polarized directional antenna
  • the N-column antenna Each column of antenna elements in the array element includes a third antenna port.
  • the system of the embodiment of the present invention uses a beam pre-processing module to perform beamforming on the N (greater than or equal to) the same-polarized initial beam outputted by the cylindrical antenna array, and can divide the 360-degree omnidirectional coverage of the antenna array into M Initial sector, 2 ⁇ M ⁇ N; using baseband units according to the M User equipment distribution and/or network planning parameters in the initial sector, combining at least two adjacent initial sectors of the M initial sectors into one physical sector, and obtaining K physical sectors, 1 ⁇ ⁇ ⁇ ⁇ , the flexible configuration of the sector is realized; in addition, the number of ports of the Butler matrix does not need to be increased in the system of the embodiment, and therefore, the system complexity and the insertion loss caused by the Butler matrix are not increased, thereby reducing the system.
  • FIG. 1 is a schematic structural diagram of a sector configuration system according to an embodiment of the present invention.
  • FIG. 2 is a top plan view showing an arrangement of a cylindrical antenna array according to an embodiment of the present invention
  • FIG. 3 is a three-dimensional view of a cylindrical antenna array arrangement according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of M initial sectors according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of K physical sectors according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a sector configuration method according to another embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a sector configuration system according to another embodiment of the present invention
  • FIG. 8 is an initial diagram of the embodiment shown in FIG. Schematic diagram of the beam direction;
  • Figure 9 is a schematic diagram of an initial sector generated by the embodiment shown in Figure 7;
  • FIG. 10 is a schematic diagram of physical sectors generated by the embodiment shown in FIG. 7;
  • FIG. 11 is a schematic structural diagram of a sector configuration system according to another embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an initial sector generated by the embodiment shown in FIG.
  • Figure 13 is a schematic diagram of a physical sector generated by the embodiment shown in Figure 11;
  • FIG. 14 is a schematic diagram of another physical sector generated by the embodiment shown in FIG. 11;
  • FIG. 15 is a schematic structural diagram of a sector configuration apparatus according to another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS In order to make the objectives, technical solutions and advantages of the embodiments of the present invention more clear, the following will be combined with the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the drawings, and the embodiments are described as a part of the embodiments of the present invention, rather than all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • the technical solution of the present invention can be applied to various wireless communication systems, for example, Global System for Mobi Le Communications (GSM), General Packet Radio Service (GPRS) system, and code division multiple access.
  • GSM Global System for Mobi Le Communications
  • GPRS General Packet Radio Service
  • code division multiple access Code Division Multiple Access
  • CDMA Code Division Mul tiple Access
  • CDMA2000 CDMA2000
  • WCDMA Wideband Code Dimensional Multi-Access
  • LTE Long Term Evolution
  • WiMAX global microwave access interoperability World Interoperabi ty for Microwave Access
  • the sector configuration system of this embodiment includes: a cylindrical antenna array 11, a beam pre-processing module 12, and a transceiver unit module. 13 and the baseband module 14, as described below.
  • the cylindrical antenna array 11 is for outputting N co-polarized initial beams, W ⁇ 3 , to achieve 360-degree omnidirectional coverage.
  • the beam pre-processing module 12 is configured to beamform the N co-polarized initial beams output by the cylindrical antenna array 11 to obtain M initial sectors, 2 ⁇ M ⁇ N.
  • the beam pre-processing module 12 divides the 360-degree omnidirectional coverage of the cylindrical antenna array 11 into M initial sectors.
  • the beam pre-processing module 12 may be composed of an analog power-fed feed network, and may specifically include a microwave device such as a combiner, a power splitter, a phase shifter, and a transmission line to generate M initial sectors, so that beamforming is performed. There is no need to be limited by the digital beamforming system and the complexity of the correction network. Beam shaping processing belongs to the prior art and will not be described here.
  • the beam pre-processing module 12 is preferably a passive network.
  • the transceiver unit module 13 is configured to transmit signals of the M initial sectors to the baseband module 14.
  • the transceiver unit module 13 can also be used to convert the baseband signal generated by the baseband module 14 into a radio frequency signal and transmit the signal to the beam pre-processing module 12.
  • the baseband module 14 is configured to combine at least two adjacent initial sectors of the M initial sectors into one physical according to user equipment distribution and/or network planning parameters in the M initial sectors. Sector, get K physical sectors, 1 ⁇ ⁇ ⁇ .
  • the network planning parameter may include one or more of the following: a time period parameter, a load threshold, a signal level or a quality threshold, and a merge or de-merging indication parameter set to meet an operator's network requirements; the network plan belongs to the existing Technology, there are many considerations, and there is no limit here.
  • the time period parameter may be Set to 0 to 4 points, you can also set other time period parameters with less traffic according to the specific traffic conditions.
  • the coverage area of a part of the initial sector in the initial sector is a special geographical condition, such as a seashore, a vast grassland, etc.
  • the initial sector may be merged, and the merge indication parameter is input through the peripheral device. , indicating that the initial sectors covering the special geographic area are merged into one physical sector, which are not enumerated here.
  • the baseband module 14 may specifically determine, according to the signals of the first initial sectors sent by the transceiver unit module 13, the distribution of the user equipment in the initial sector, that is, the number of user equipments in each initial sector, and then determine according to the basis.
  • the distribution of user equipment in the initial sector determines whether merging of at least two adjacent sectors in the initial sector is required. For example, when the number of user equipments having two adjacent sectors in one sector is less than a preset first threshold, the two sectors are combined into one physical sector.
  • the user equipment distribution of the initial sector may be combined with the network planning parameters to combine the sectors, for example, if the sectors have been merged to obtain one physical sector, and
  • the network planning parameter is a time period parameter
  • the initial sectors are re-merged to obtain K1 physical sectors.
  • the user equipment distribution of the partial sector can be estimated by the user equipment distribution of the merged physical sector, for example, proportional allocation. Or, the user equipment distribution of the merged physical sector is respectively used as the traffic distribution of the merged initial sector, and is not limited herein; in addition, when multiple initial sectors are combined into one physical sector, the baseband module 14 may transmit the same signal using the same frequency in the plurality of initial sectors, increasing the coverage of the physical sector while saving the frequency band resources.
  • the cylindrical antenna array 11 includes a matrix antenna element, and the array antenna elements are parallel to each other to form a closed cylinder in space; each of the array antenna elements in the array antenna element The number of antenna array elements is greater than or equal to 1, and each antenna array element is a directional antenna, and the radiation direction of each antenna array element is normal outward along the formed closed cylinder; the N-column antenna array element Each of the antenna elements in each of the array antenna elements is connected by a power distribution feed network. Further, the N-column array elements are evenly arranged at equal intervals, which is advantageous for the isotropic of the N-column array elements.
  • the closed cylindrical surface may be a closed cylindrical surface or a closed prism surface, which is not limited herein.
  • FIG. 2 is a plan view of a cylindrical antenna array arrangement according to an embodiment of the present invention
  • FIG. 3 is an arrangement of a cylindrical antenna array according to an embodiment of the present invention.
  • the cylindrical antenna array is a closed prism face and the N columns of antenna elements are parallel to each other.
  • each antenna element in the N-column antenna array element is a dual-polarized directional antenna
  • each of the N-column antenna array elements includes a first antenna port and a second antenna port
  • the first antenna port is an antenna port in a first polarization state
  • the second antenna port is an antenna port in a second polarization state
  • Each of the N first antenna ports corresponds to an initial beam of a first polarization state
  • Each of the N second antenna ports corresponds to an initial beam of a second polarization state.
  • the N co-polarized initial beams include N initial polarization states or
  • each of the N array antenna elements is a single polarization directional antenna
  • each of the N array antenna elements includes a third antenna port, that is, an N array antenna array.
  • the element corresponds to N third antenna ports.
  • the system of the embodiment of the present invention uses a beam pre-processing module to perform beamforming on the N (greater than or equal to) the same-polarized initial beam outputted by the antenna array, thereby dividing the 360-degree omnidirectional coverage of the cylindrical antenna array into M.
  • Initial sectors 2 ⁇ M ⁇ N ; the baseband unit combines at least two adjacent initial sectors of the M initial sectors into one according to user equipment distribution and/or network planning parameters in the M initial sectors.
  • there is no need to add a Butler matrix in the sector configuration system there is no need to add a Butler matrix in the sector configuration system. The number of ports, therefore, does not increase system complexity and insertion loss caused by the Butler matrix, thereby reducing system complexity and cost, and improving system performance.
  • FIG. 4 is a schematic diagram of M initial sectors according to an embodiment of the present invention.
  • each antenna element in an N-column array element When the directional antenna is dual-polarized, the beam pre-processing module 12 is specifically configured to:
  • the initial beams of the N second polarization states output by the cylindrical antenna array 11 are beamformed to obtain initial sectors of M second polarization states.
  • the M initial sectors of the same polarization are independent of each other, have a small overlapping area, and have a low degree of out-of-roundness at the contour edge, for example, M of the first polarization state.
  • the initial sectors are independent of each other.
  • FIG. 5 is a schematic diagram of K physical sectors according to an embodiment of the present invention.
  • the baseband module 14 is specifically configured to:
  • the physical sector obtains K physical sectors of the second polarization state.
  • the beam pre-processing module 12 includes: 2 XN antenna connection ports and 2 XM initial sector connection ports, wherein 2 XN antenna connection ports and columns respectively N first antenna ports of the antenna array 11 and N second antenna ports are connected;
  • the transceiver unit module 13 includes 2 X M transceiver components (TRx), wherein 2 X M transceiver components are respectively connected to 2 X M initial sector connection ports through the RF channel to implement signal transmission and reception;
  • the transceiver unit module 13 and the baseband module 14 are connected by a fiber optic cable or a bundled cable.
  • each antenna element in each column antenna element in the cylindrical antenna array 11 is a single-polarized directional antenna
  • each of the N-column antenna elements Column The antenna array element includes a third antenna port
  • the beam pre-processing module 12 includes N antenna connection ports and M initial sector connection ports, wherein the N antenna connection ports are respectively N and the third of the cylindrical antenna array 1 Antenna port connection;
  • the transceiver unit module 13 includes M transceiver components, wherein the M transceiver components are respectively connected to the M initial sector connection ports of the beam preprocessing module 12 through the radio frequency channel to implement signal transmission and reception;
  • the transceiver unit module 13 and the baseband module 14 are connected by a fiber optic cable or a bundled cable.
  • FIG. 6 is a schematic flowchart of a sector configuration method according to another embodiment of the present invention, including:
  • the cylindrical antenna array specifically includes: N columns of antenna elements, and N columns of antenna elements are parallel to each other, forming a closed cylinder in space, and 360-degree omnidirectional of the cylindrical antenna array by beamforming
  • the coverage area divides M initial sectors.
  • each antenna element in each column of the N-column array elements is greater than or equal to 1, and each antenna element is a directional antenna, and the radiation direction of each antenna element is a closed cylindrical normal formed by the cylindrical antenna array. Outward; each antenna element in each column antenna element in the N-column array element is connected by a power-feeding network.
  • the closed cylindrical surface may be a closed cylindrical surface or a closed prism surface, which is not limited herein.
  • each of the N-column antenna elements in the cylindrical antenna array is a dual-polarized directional antenna
  • each of the N-column antenna elements includes a first antenna port and a The two antenna ports, that is, the N columns of antenna elements correspond to N first antenna ports and N second antenna ports.
  • the first antenna port is an antenna port in a first polarization state
  • the second antenna port is an antenna port in a second polarization state
  • the first antenna port corresponds to an initial beam of the first polarization state
  • the second antenna port corresponds to an initial beam of the second polarization state.
  • each antenna element in the cylindrical antenna array is a single-polarized directional antenna
  • each of the N-column antenna elements includes a third antenna port, that is, an N-column antenna element pair. There should be N third antenna ports.
  • step 601 can be implemented by using a beam pre-processing module, wherein the beam pre-processing module is electrically connected to 2 X N antenna ports of the cylindrical antenna array, and the specific implementation includes:
  • the initial beams of the N second polarization states output by the cylindrical antenna array are beamformed, and M initial polarization regions of the second polarization state are obtained in the 360 degree omnidirectional coverage area of the cylindrical antenna array.
  • the first polarization state is, for example, a +45 degree polarization state
  • the second polarization state is, for example, a -45 degree polarization state.
  • the beam pre-processing module may be composed of an analog power-fed feed network, and may specifically include a microwave device such as a combiner, a power splitter, a phase shifter, and a transmission line, and the beam pre-processing module uses an analog power-fed feed network to make the beam
  • a microwave device such as a combiner, a power splitter, a phase shifter, and a transmission line
  • the beam pre-processing module uses an analog power-fed feed network to make the beam
  • the shape does not need to be limited by the digital beamforming system and the complexity of the correction network.
  • step 602 can be implemented by using a baseband module, where M initial sector ports of the first polarization state and M initial sector ports of the second polarization state respectively transmit and receive signals 2 XM transceiver components in the unit module are connected by RF channel to realize signal transmission and reception and digital-to-analog conversion.
  • 2 XM transceiver components are connected to the baseband module through bundle cable or optical cable.
  • the specific implementation includes:
  • the user equipment distribution is mainly concentrated in the first and fourth quadrants of the xy plane as shown in FIG. 5, or the user equipment in the first and fourth quadrants of the xy plane are required according to network planning parameters.
  • Sector adjustment in the direction of concentration Therefore, in the baseband module, the M initial sectors of the same polarization can be flexibly combined to obtain K (1 ⁇ K ⁇ M) physical sectors.
  • the beam pre-processing module performs beamforming on the N (greater than or equal to) the same-polarized initial beam outputted by the cylindrical antenna array, and can distinguish the omnidirectional coverage in the 360-degree range of the cylindrical antenna array.
  • M initial sectors 2 ⁇ M ⁇ N ; using baseband units according to user equipment distribution and/or network planning parameters in the M initial sectors, at least two of the M initial sectors
  • the initial sectors of the neighbors are merged into one physical sector, and K physical sectors are obtained, 1 ⁇ ⁇ ⁇ , which realizes flexible configuration of sectors; in addition, this embodiment does not need to increase the number of ports of the Butler matrix, and therefore, Increase system complexity and insertion loss caused by the Butler matrix, which reduces system complexity and cost, and improves system performance.
  • FIG. 7 is a schematic structural diagram of a sector configuration system according to another embodiment of the present invention, as shown in FIG. 7, comprising: a cylindrical antenna array Al, a beam pre-processing module A2, a transceiver unit module A3, and a baseband module A4;
  • the cylindrical antenna array A1 specifically includes six columns of antenna elements, and each column of antenna elements includes four antenna elements. Each antenna element utilizes a dihedral corner reflector structure to achieve a 48 degree 3dB beamwidth. Six columns of directional dual-polarization elements are arranged at equal intervals on the surface of the prism, and a 360-degree full coverage can be formed in the horizontal plane. The 12 antenna ports correspond to 6 independent sectors of polarization state 1 and 6 independent sectors of polarization state 2, respectively.
  • the beam pre-processing module A2 includes 12 antenna connection ports and 10 sector connection ports.
  • the beam pre-processing module A2 includes an analog power distribution feed network.
  • Transceiver unit module A3 which contains 10 transceiver components.
  • the baseband module A4 contains 10 transceiver connection ports. As shown in FIG. 6, six columns of directional dual-polarization elements are arranged at equal intervals in parallel with each other on the closed surface of the six prisms, and the center of the six sub-arrays constitutes a closed ring. This antenna array produces six initial beams in the horizontal plane, resulting in omnidirectional coverage in the 360 degree range. A dihedral corner reflector structure is constructed around each array element, resulting in six initial beams as shown in FIG.
  • FIG. 8 is a schematic diagram of an initial wave velocity direction generated by the embodiment shown in FIG. 7. As shown in FIG. 8, the 3 initial beam beams have a 3 dB beamwidth of 48 degrees and a small overlap region.
  • FIG. 9 is a schematic diagram of an initial sector generated by the embodiment shown in FIG.
  • the initial sector signal after the beam pre-processing module is connected to the baseband module through the transceiver group module.
  • the baseband module can flexibly perform initial sector configuration (eg, merging) according to network planning parameters or distribution of user equipment to form a required physical sector.
  • 10 is a schematic diagram of physical sectors generated by the embodiment shown in FIG. 7, as shown in FIG. 10, the initial sectors 1-2 and 3 are combined in the baseband module to form physical sectors 1-2-3, and others. Physical sectors 4, 5, 6. Similarly, any two adjacent initial sectors in the initial sectors of 1-2, 3, 4, 5, and 6 can be combined to achieve an optimized physical sector coverage.
  • a schematic diagram of a structure of a sector configuration system includes: a cylindrical antenna array A1, a beam pre-processing module A2, a transceiver unit module A3, and a baseband module A4;
  • the cylindrical antenna array A1 adopts 12 columns of directional dual-polarization elements, and is parallel to each other. The distance is arranged on the closed surface of the 6 prisms. As shown in Fig. 11, the two array elements share a prism surface, and the beam is optimized by a dihedral corner reflector structure.
  • the cylindrical antenna array A1 has 12 +45 degree polarizations. Output port and 12-45 degree polarization output port;
  • the beam pre-processing module A2 consists of six +45 degree polarization output ports and six -45 degree polarization output ports;
  • the transceiver unit module A3 has 12 transceiver components, and the transceiver unit modules are respectively connected to the beam pre-processing module and the baseband module through 12 transceiver components;
  • the baseband module A4 contains 12 ports for connection to the transceiver unit module A3.
  • FIG. 12 is a schematic diagram of an initial sector generated by the embodiment shown in FIG. As shown in FIG. 12, six initial sectors of the same polarization are formed on the basis of 12 co-polarized initial beams.
  • the beam pre-processing module A2 is connected to the baseband module A4 through the transceiver unit module A3, and transmits the generated initial sector signal to the baseband module A4 through the transceiver unit module A3.
  • the baseband module A4 can flexibly configure (for example, merge processing) six initial sectors according to network planning parameters and/or distribution of user equipment, etc., to form a required physical sector.
  • Figure 13 is a diagram showing the physical sectors generated by the embodiment shown in Figure 11. As shown in Figure 13, the initial sectors 1 and 2, 3 and 4, 5 and 6 are combined to obtain three physical sectors. 1 - 2, 3 - 4, 5 - 6, to achieve optimized sector coverage.
  • FIG. 14 is a schematic diagram of another physical sector generated by the embodiment shown in FIG. 11. As shown in FIG. 14, the initial sectors 1, 2, and 3 may be combined to form a physical sector 1-2-3. The initial sectors 4, 5, and 6 are not merged, thereby forming four physical sectors, optimizing sector coverage.
  • any two adjacent initial sectors in the initial sectors 1, 2, 3, 4, 5, and 6 can be combined to achieve an optimized physical sector coverage.
  • FIG. 15 is a schematic structural diagram of a sector configuration apparatus according to another embodiment of the present invention. As shown in FIG. 5, the method includes:
  • the first setting module 51 is configured to perform beamforming on the N co-polarized initial beams output by the cylindrical antenna array, and obtain M initial sectors in the 360-degree omnidirectional coverage area of the cylindrical antenna array, 2 ⁇ M ⁇ N, N ⁇ 3.
  • a second setting module 52 configured to merge at least two adjacent initial sectors of the M initial sectors into one according to user equipment distribution and/or network planning parameters in the M initial sectors.
  • Physical sector get K physical sectors, 1 ⁇ K ⁇ M.
  • the network planning parameters, and how to merge at least two adjacent initial sectors in the M initial sectors into one physical sector according to the user equipment distribution and/or network planning parameters in each initial sector of the M For details about the K physical sectors, refer to the related description in the embodiment shown in FIG. 1 , and details are not described herein again.
  • the cylindrical antenna array specifically includes: N columns of antenna elements, and the N columns of antenna elements are parallel to each other, and form a closed cylinder in space.
  • the cylinder may be a cylindrical surface or a prism. No, there are no restrictions here.
  • the number of antenna elements in each column of the above-mentioned N-column array elements is greater than or equal to 1, and the radiation direction of each antenna element is normal outward along the closed cylinder formed by the cylindrical antenna array, and in each column of antenna elements
  • Each antenna array element is connected by a power distribution feed network.
  • each of the N-column antenna elements includes a first antenna port and a second antenna port, that is, N-column antenna elements correspond to N first antenna ports and N second antenna ports;
  • the first antenna port is an antenna port in a first polarization state
  • the second antenna port is an antenna port in a second polarization state
  • the first antenna port corresponds to an initial beam of the first polarization state
  • the second antenna port corresponds to an initial beam of the second polarization state.
  • each of the N-column antenna elements includes a third antenna port, that is, the N-column antenna elements correspond to N third. Antenna port.
  • the first setting module 51 is specifically configured to: Performing beamforming on the initial beams of the N first polarization states output by the cylindrical antenna array, and obtaining M initial polarization states in the 360-degree omnidirectional coverage area of the cylindrical antenna array District; and
  • the second setting module 52 is specifically configured to:
  • the cells are merged into one physical sector to obtain ⁇ physical sectors of the first polarization state; and the user equipment distribution and/or network planning parameters in the M initial sectors according to the second polarization state And combining at least two adjacent initial sectors of the M initial sectors in the second polarization state into one physical sector, to obtain K physical sectors in the second polarization state.
  • first setting module 51 is located on the beam pre-processing module side shown in FIG. 1
  • second setting module is located on the baseband module side shown in FIG. 1
  • specific implementation may refer to the correlation in the embodiment shown in FIG. 1 . description.
  • the beam pre-processing module performs beamforming on the N (greater than or equal to) the same-polarized initial beam outputted by the antenna array, and the 360-degree omnidirectional coverage of the antenna array can be divided into M initial sectors. 2 ⁇ M ⁇ N ; combining , by the baseband unit, at least two adjacent initial sectors of the M initial sectors according to user equipment distribution and/or network planning parameters in the M initial sectors A physical sector, K physical sectors, 1 ⁇ ⁇ ⁇ , to achieve flexible configuration of the sector; in addition, this embodiment does not need to increase the number of ports of the Butler matrix, therefore, does not increase system complexity and But The insertion loss caused by the ler matrix reduces system complexity and cost and improves system performance.
  • the beam pre-processing module generates M initial sectors by using an analog power-fed feed network. Therefore, beamforming does not need to be limited by the digital beamforming system and the complexity of the correction network.
  • the disclosed system, device and The method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional units are stored in a storage medium and include a number of instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform some of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了扇区配置方法及装置、系统,其中,该系统包括:柱面天线阵列,波束预处理模块,收发信机组模块和基带模块;所述柱面天线阵列,用于输出N个同极化的初始波束,N ≥ 3,以实现360度全向覆盖;所述波束预处理模块,用于对所述柱面天线阵列输出的所述N个同极化的初始波束进行波束赋形,得到M个初始扇区,2 ≤ M N;所述收发信机组模块,用于将所述M个初始扇区的信号发送给所述基带模块;所述基带模块,用于根据用户设备分布情况和/或网络规划参数,将所述M个初始扇区中至少两个相邻的初始扇区合并为一个物理扇区,得到K个物理扇区,1 ≤ K M,可以实现扇区的灵活配置。

Description

扇区配置方法及装置、 系统 技术领域 本发明实施例涉及通信技术领域, 尤其涉及一种扇区配置方法及装 置、 系统。 背景技术 随着移动通信用户体验标准的日益提高, 蜂窝组网技术需要与天线技 术相结合才能满足广大移动通信用户的需求。传统的 3扇区或者 6扇区通 常由 3至 6个面板状基站天线产生。 如果要进行扇区调整, 就必须在站点 上对基站天线进行人工设置,扇区调整不灵活。
现有技术的天线系统, 巴特勒 (Butler ) 矩阵作为连接双极化的波束 端口与阵元的馈电网络, 对天线阵元进行波束赋形以及扇区调整, 若需要 提高波束赋形能力和扇区调整的灵活度, 则需要同时增加天线阵元数目和 Butler矩阵的端口数目, 大大增加了系统复杂度、 成本, 以及 But ler矩 阵带来的插损, 此外, 导致了由于 Butler矩阵的级联结构特点引起的天 线系统带宽变窄的问题。 发明内容 本发明提供一种扇区配置方法及装置、 系统, 不但能够解决现有的天 线系统存在的扇区调整灵活性差的问题, 还能够降低系统复杂度和成本, 提升系统性能。
第一方面, 提供一种扇区配置系统, 包括: 柱面天线阵列, 波束预处 理模块, 收发信机组模块和基带模块; 所述柱面天线阵列, 用于输出 N个 同极化的初始波束, W≥3, 以实现 360度全向覆盖; 所述波束预处理模块, 用于对所述柱面天线阵列输出的所述 N 个同极化的初始波束进行波束赋 形, 得到 M个初始扇区, 2≤M≤N ; 所述收发信机组模块, 用于将所述 M 个初始扇区的信号发送给所述基带模块; 所述基带模块, 用于根据所述 M 个初始扇区中的用户设备分布情况和 /或网络规划参数, 将所述 M个初始 扇区中至少两个相邻的初始扇区合并为一个物理扇区, 得到 κ个物理扇 区, 1 < K < M。
结合第一方面, 在第一方面的第一种实现方式中, 所述柱面天线阵列 包括 N列天线阵元;所述 N列天线阵元彼此平行,在空间上形成闭合柱面; 所述 N列天线阵元中的每列天线阵元中天线阵元的数目大于或等于 1 ; 所 述 N列天线阵元中的每个天线阵元为定向天线, 所述每个天线阵元的辐射 方向沿所述形成的闭合柱面法向向外; 所述 N列天线阵元中的每列天线阵 元中的各个天线阵元之间用功分馈电网络连接。
结合第一方面的第一种实现方式, 在第一方面的第二种实现方式中, 若所述每个天线阵元为双极化定向天线,则所述 N列天线阵元中的每列天 线阵元包括第一天线端口和第二天线端口; 所述第一天线端口为第一极化 状态的天线端口, 所述第二天线端口为第二极化状态的天线端口; 所述第 一天线端口对应第一极化状态的初始波束; 所述第二天线端口对应第二极 化状态的初始波束。
结合第一方面的第二种实现方式, 在第一方面的第三种实现方式中, 所述波束预处理模块具体用于: 对所述柱面天线阵列输出的 N个所述第一 极化状态的初始波束进行波束赋形, 得到 M个第一极化状态的初始扇区; 和对所述柱面天线阵列输出的 N个所述第二极化状态的初始波束进行波束 赋形, 得到 M个第二极化状态的初始扇区。
结合第一方面的第三种实现方式, 在第一方面的第四种实现方式中, 所述基带模块具体用于:
根据所述第一极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第一极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第一极化状态的 K个物理扇区; 和 根据所述第二极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第二极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第二极化状态的 K个物理扇区。
结合第一方面的第二种实现方式或第三种实现方式或第四种实现方 式, 在第一方面的第五种实现方式中, 所述波束预处理模块包含 2 X N个 天线连接端口和 2 X M个初始扇区连接端口, 所述 2 X N个天线连接端口分 别与所述柱面天线阵列的 N个所述第一天线端口和 N个所述第二天线端口 连接; 所述收发信机组模块包含 2 X M个收发信机组件, 所述 2 X M个收发 信机组件通过射频通道分别与所述 2 X M个初始扇区连接端口连接, 实现 信号收发; 所述收发信机组模块与所述基带模块通过光缆或集束电缆连 接。
结合第一方面的第一种实现方式, 在第一方面的第六种实现方式中, 若所述每个天线阵元为单极化定向天线,则所述 N 列天线阵元中的每列天 线阵元包括一个第三天线端口。
结合第一方面的第六种实现方式, 在第一方面的第七种实现方式中, 所述波束预处理模块包含 N个天线连接端口和 M个初始扇区连接端口, 所 述 N个天线连接端口分别与所述柱面天线阵列的 N个所述第三天线端口连 接; 所述收发信机组模块包含 M个收发信机组件, 所述 M个收发信机组件 通过射频通道分别与所述 M个初始扇区连接端口连接, 实现信号收发; 所 述收发信机组模块与所述基带模块通过光缆或集束电缆连接。
结合第一方面的上述任一种实现方式, 在第一方面的第八种实现方式 中, 所述波束预处理模块为无源网络。
第二方面, 提供一种扇区配置方法, 包括: 对柱面天线阵列输出的 N 个同极化的初始波束进行波束赋形, 在所述柱面天线阵列的 360度全向覆 盖区内得到 M个初始扇区, 2≤M≤N , N≥3 ., 根据所述 M个初始扇区中的 用户设备分布情况和 /或网络规划参数, 将所述 M个初始扇区中至少两个 相邻的初始扇区合并为一个物理扇区, 得到 K个物理扇区, 1≤K < M。
结合第二方面, 在第二方面的第一种实现方式中, 所述柱面天线阵列 具体包括: N列天线阵元,且所述 N列天线阵元彼此平行, 在空间上形成闭 合柱面; 所述 N列天线阵元中的每列天线阵元中天线阵元的数目大于或等 于 1 ; 所述 N列天线阵元中的每个天线阵元为定向天线, 所述每个天线阵 元的辐射方向沿所述形成的闭合柱面法向向外; 所述 N列天线阵元中的每 列天线阵元中的各个天线阵元之间用功分馈电网络连接。
结合第二方面的第一种实现方式, 在第二方面的第二种实现方式中, 若所述每个天线阵元为双极化定向天线,则所述 N列天线阵元中的每列天 线阵元包括第一天线端口和第二天线端口; 所述第一天线端口为第一极化 状态的天线端口, 所述第二天线端口为第二极化状态的天线端口; 所述第 一天线端口对应第一极化状态的初始波束; 所述第二天线端口对应第二极 化状态的初始波束。
结合第二方面的第二种实现方式, 在第二方面的第三种实现方式中, 所述对柱面天线阵列输出的 N个同极化的初始波束进行波束赋形, 得到 M 个初始扇区, 包括: 对所述柱面天线阵列输出的 N个所述第一极化状态的 初始波束进行波束赋形, 得到 M个第一极化状态的初始扇区; 和对所述柱 面天线阵列输出的 N个所述第二极化状态的初始波束进行波束赋形, 得到 M个第二极化状态的初始扇区。
结合第二方面的第三种实现方式, 在第二方面的第四种实现方式中, 所述根据所述 M个初始扇区中的用户设备分布情况和 /或网络规划参数, 将所述 M个初始扇区中至少两个相邻的初始扇区合并为一个物理扇区, 得 到 K个物理扇区, 包括: 根据所述第一极化状态的 M个初始扇区中的用户 设备分布情况和 /或网络规划参数, 将所述第一极化状态的 M个初始扇区 中至少两个相邻的初始扇区合并为一个物理扇区, 得到所述第一极化状态 的 K个物理扇区; 和根据所述第二极化状态的 M个初始扇区中的用户设备 分布情况和 /或网络规划参数, 将所述第二极化状态的 M个初始扇区中至 少两个相邻的初始扇区合并为一个物理扇区, 得到所述第二极化状态的 K 个物理扇区。
结合第二方面的第一种实现方式, 在第二方面的第五种实现方式中, 若所述柱面天线阵列中的每个天线阵元为单极化定向天线,则所述 N列天 线阵元中的每列天线阵元包括一个第三天线端口。
第三方面, 提供一种扇区配置装置, 包括: 第一设置模块, 用于对柱 面天线阵列输出的 N个同极化的初始波束进行波束赋形, 在所述柱面天线 阵列的 360度全向覆盖区内得到 M个初始扇区, 2≤M≤N, W≥3 ; 第二设 置模块, 用于根据所述 M个初始扇区中的用户设备分布情况和 /或网络规 划参数, 将所述 M个初始扇区中至少两个相邻的初始扇区合并为一个物理 扇区, 得到 K个物理扇区, 1≤ < M。
结合第三方面, 在第三方面的第一种实现方式中, 所述柱面天线阵列 包括: N列天线阵元,且所述 N列天线阵元彼此平行, 在空间上形成闭合柱 面; 所述 N列天线阵元中的每列天线阵元数目大于或等于 1 ; 所述 N列天 线阵元中的每个天线阵元为定向天线, 所述每个天线阵元的辐射方向沿所 述形成的闭合柱面法向向外; 所述 N列天线阵元中的每列天线阵元中的各 个天线阵元之间用功分馈电网络连接。
结合第三方面的第一种实现方式, 在第三方面的第二种实现方式中, 若所述 N列天线阵元中每个天线阵元为双极化定向天线,则所述 N列天线 阵元中的每列天线阵元包括第一天线端口和第二天线端口; 所述第一天线 端口为第一极化状态的天线端口, 所述第二天线端口为第二极化状态的天 线端口; 所述第一天线端口对应第一极化状态的初始波束; 所述第二天线 端口对应第二极化状态的初始波束。
结合第三方面的第二种实现方式, 在第三方面的第三种实现方式中, 所述第一设置模块具体用于: 对所述柱面天线阵列输出的 N个所述第一极 化状态的初始波束进行波束赋形, 在所述柱面天线阵列的 360度全向覆盖 区内得到 M个第一极化状态的初始扇区; 和对所述柱面天线阵列输出的 N 个所述第二极化状态的初始波束进行波束赋形, 在所述柱面天线阵列的 360度全向覆盖区内得到 M个第二极化状态的初始扇区。
结合第三方面的第三种实现方式, 在第三方面的第四种实现方式中, 所述第二设置模块具体用于: 根据所述第一极化状态的 M个初始扇区中的 用户设备分布情况和 /或网络规划参数, 将所述第一极化状态的 M个初始 扇区中至少两个相邻的初始扇区合并为一个物理扇区, 得到所述第一极化 状态的 K个物理扇区; 和根据所述第二极化状态的 M个初始扇区中的用户 设备分布情况和 /或网络规划参数, 将所述第二极化状态的 M个初始扇区 中至少两个相邻的初始扇区合并为一个物理扇区, 得到所述第二极化状态 的 K个物理扇区。
结合第三方面的第一种实现方式, 在第三方面的第五种实现方式中, 若所述柱面天线阵列中的每个天线阵元为单极化定向天线,则所述 N 列天线阵元中的每列天线阵元包括一个第三天线端口。
本发明实施例的系统采用波束预处理模块对柱面天线阵列输出的 N (大于或等于 3 )个同极化的初始波束进行波束赋形,可以将天线阵列 360 度全向覆盖区分成 M个初始扇区, 2≤M≤N ; 采用基带单元根据所述 M个 初始扇区中的用户设备分布情况和 /或网络规划参数, 将所述 M个初始扇 区中至少两个相邻的初始扇区合并为一个物理扇区, 得到 K个物理扇区, 1≤Κ < Μ , 实现了扇区的灵活配置; 此外, 本实施例系统中不需要增加 Butler矩阵的端口数目, 因此, 不会增加系统复杂度以及 But ler矩阵带 来的插损, 从而降低了系统复杂度和成本, 提升系统性能。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明一实施例提供的扇区配置系统的结构示意图;
图 2为本发明实施例所述的柱面天线阵列排布的俯视图;
图 3为本发明实施例所述的柱面天线阵列排布的三维视图;
图 4为本发明实施例所述的 M个初始扇区的示意图;
图 5为本发明实施例所述的 K个物理扇区的示意图;
图 6为本发明另一实施例提供的扇区配置方法的流程示意图; 图 7为本发明另一实施例提供的扇区配置系统的结构示意图; 图 8为图 7所示实施例产生的初始波束方向示意图;
图 9为图 7所示实施例产生的初始扇区的示意图;
图 10图 7所示实施例产生的物理扇区的示意图;
图 11为本发明另一实施例提供的扇区配置系统的结构示意图; 图 12为图 11所示实施例产生的初始扇区的示意图;
图 13为图 11所示实施例产生的物理扇区的示意图;
图 14为图 11所示实施例产生的另一物理扇区的示意图;
图 15为本发明另一实施例提供的扇区配置装置的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案, 可以应用于各种无线通信系统, 例如: 全球移动 通信系统 ( Global System for Mobi le Communications , GSM) 、 通用分 组无线业务 ( General Packet Radio Service , GPRS )系统、码分多址 ( Code Divi sion Mul tiple Access , CDMA ) 系统、 CDMA2000系统、 宽带码分多址 ( Wideband Code Divi sion Mult iple Access , WCDMA ) 系统、 长期演进 ( Long Term Evolution , LTE ) 系统或全球微波接入互操作性 (World Interoperabi l i ty for Microwave Access , WiMAX) 系统等。
图 1为本发明一实施例提供的扇区配置系统的结构示意图, 如图 1所 示, 本实施例的扇区配置系统包括: 柱面天线阵列 11, 波束预处理模块 12, 收发信机组模块 13和基带模块 14, 具体如下所述。
柱面天线阵列 11,用于输出 N个同极化的初始波束, W≥3,以实现 360 度全向覆盖。
波束预处理模块 12, 用于对柱面天线阵列 11输出的 N个同极化的初 始波束进行波束赋形, 得到 M个初始扇区, 2≤M≤N。
例如, 波束预处理模块 12将柱面天线阵列 11的 360度范围内全向覆 盖区分成 M个初始扇区。
可选地, 波束预处理模块 12 可以由模拟功分馈电网络组成, 具体可 以包含合路器、功分器、移相器和传输线等微波器件, 产生 M个初始扇区, 使得波束赋形不需要受限于数字波束赋形系统以及校正网络的复杂度。 波 束赋形处理属于现有技术, 此处不再赘述。
其中, 波束预处理模块 12优选为无源网络。
收发信机组模块 13, 用于将 M个初始扇区的信号发送给基带模块 14。 其中, 收发信机组模块 13还可以用于将基带模块 14产生的基带信号 转化为射频信号, 传输给波束预处理模块 12。
基带模块 14, 用于根据 M个初始扇区中的用户设备分布情况和 /或网 络规划参数, 将 M个初始扇区中至少两个相邻的初始扇区合并为一个物理 扇区, 得到 K个物理扇区, 1≤ < Μ。
其中, 网络规划参数可以包括以下一种或多种: 时间段参数, 负载门 限, 信号电平或质量门限, 以及为满足运营商布网要求设置的合并或解合 并指示参数; 网络规划属于现有技术, 考虑因素比较多, 此处不予限制。
例如, 当系统运行时间满足该时间段参数指示的时间段时, 对 Μ个初 始扇区中的至少两个相邻的初始扇区进行合并; 其中, 对于办公楼宇覆盖 场景, 该时间段参数可以设置为 0点至 4点, 也可以根据具体话务情况设 置其它话务量较少的时间段参数。 再例如, 当 Μ个初始扇区中部分初始扇 区的覆盖区域是特殊的地理状况, 如海滨, 地域广阔的草原等, 则可以对 该部分初始扇区进行合并, 通过外设输入合并指示参数, 指示该部分覆盖 特殊地理区域的初始扇区合并为一个物理扇区, 此处不再一一列举。
其中, 基带模块 14具体可以根据收发信机组模块 13发送的 Μ个初始 扇区的信号来确定 Μ个初始扇区的用户设备分布情况, 即每个初始扇区的 用户设备数量, 然后在根据确定的 Μ个初始扇区中用户设备的分布情况来 确定是否需要对 Μ个初始扇区中的至少两个相邻扇区合并。 例如, 当 Μ个 扇区中存在两个相邻扇区的用户设备数量小于预设的第一门限值, 则将这 两个扇区合并为一个物理扇区。 进一步地, 也可以将 Μ个初始扇区的用户 设备分布情况与网络规划参数相结合来对 Μ个扇区进行合并, 例如, 若已 经将 Μ个扇区进行合并得到 Κ个物理扇区, 且网络规划参数为时间段参数 时, 则当统计 Μ个扇区中用户设备分布情况满足预设条件, 并且系统运行 时间满足时间段参数, 对 Μ个初始扇区重新合并, 得到 K1个物理扇区。
需要说明的是, 当 Μ个初始扇区中存在部分扇区合并时, 则该部分扇 区的用户设备分布情况可以通过合并后的物理扇区的用户设备分布情况 估算, 例如, 按比例进行分配, 或者将合并后的物理扇区的用户设备分布 情况分别作为合并的初始扇区的话务分布情况, 此处不予限制; 此外, 多 个初始扇区合并为一个物理扇区时, 基带模块 14可以在该多个初始扇区 中采用相同的频率发送相同的信号, 在节省频段资源的同时增大了物理扇 区的覆盖范围。
可选地, 柱面天线阵列 1 1包括 Ν列天线阵元, 所述 Ν列天线阵元彼 此平行, 在空间上形成闭合柱面; 所述 Ν列天线阵元中的每列天线阵元中 天线阵元的数目大于或等于 1, 且每个天线阵元为定向天线, 所述每个天 线阵元的辐射方向沿所述形成的闭合柱面法向向外; 所述 N列天线阵元中 的每列天线阵元中的各个天线阵元之间用功分馈电网络连接。 进一步地, N列天线阵元等间距均匀排布, 有利于 N列天线阵元的各向同性。
其中, 上述闭合柱面可以为闭合圆柱面, 也可以为闭合棱柱面, 此处 不予限制。 例如, 在本发明的一个可选的实施方式中, 图 2为本发明实施 例所述的柱面天线阵列排布的俯视图, 图 3为本发明实施例所述的柱面天 线阵列排布的三维视图, 其中, 图 2和图 3中所示的柱面天线阵列为闭合 圆柱面, 且 N列天线阵元彼此平行, 等间距排布。
再例如, 在本发明的另一个可选的实施方式中, 柱面天线阵列为闭合 棱柱面, 且 N列天线阵元彼此平行。
可选地, 若 N列天线阵元中每个天线阵元为双极化定向天线,则 N列 天线阵元中的每列天线阵元包括第一天线端口和第二天线端口;
所述第一天线端口为第一极化状态的天线端口, 所述第二天线端口为 第二极化状态的天线端口;
所述 N个第一天线端口中的每个第一天线端口对应第一极化状态的初 始波束;
所述 N个第二天线端口中的每个第二天线端口对应第二极化状态的初 始波束。
具体地, N个同极化的初始波束包括 N个第一极化状态的初始波束或
N个第二极化状态的初始波束。
可选地,若 N列天线阵元中每个天线阵元为单极化定向天线,则所述 N 列天线阵元中的每列天线阵元包括一个第三天线端口, 即 N列天线阵元对 应 N个第三天线端口。
本发明实施例的系统采用波束预处理模块对天线阵列输出的 N (大于 或等于 3 )个同极化的初始波束进行波束赋形,从而将柱面天线阵列的 360 度全向覆盖区分成 M个初始扇区, 2≤M≤N ; 基带单元根据 M个初始扇区 中的用户设备分布情况和 /或网络规划参数, 将 M个初始扇区中至少两个 相邻的初始扇区合并为一个物理扇区, 得到 K个物理扇区, 1≤Κ Μ, 从 而实现扇区的灵活配置。 此外, 扇区配置系统中无需增加 Butler矩阵的 端口数目, 因此不会增加系统复杂度以及 But ler矩阵带来的插损, 从而 降低了系统复杂度和成本, 提升系统性能。
可选地, 在本发明的一种实施场景中, 图 4为本发明实施例所述的 M 个初始扇区的示意图, 如图 4所示, 当 N列天线阵元中每个天线阵元为双 极化定向天线时, 波束预处理模块 12具体用于:
对柱面天线阵列 11输出的 N个第一极化状态的初始波束进行波束赋 形, 得到 M个第一极化状态的初始扇区; 和
对柱面天线阵列 11输出的 N个第二极化状态的初始波束进行波束赋 形, 得到 M个第二极化状态的初始扇区。
如图 4所示, 同极化的 M个初始扇区之间相互独立, 具有较小的交叠 区域, 并且其轮廓边缘具有很低的不圆度, 例如, 第一极化状态的 M个初 始扇区之间相互独立。
在上述实施场景下的一种实施方式中, 图 5为本发明实施例的 K个物 理扇区的示意图, 如图 5所示, 基带模块 14具体用于:
根据第一极化状态的 M个初始扇区中的用户设备分布情况和 /或网络 规划参数, 将第一极化状态的 M个初始扇区中至少两个相邻的初始扇区合 并为一个物理扇区, 得到第一极化状态的 K个物理扇区; 和
根据第二极化状态的 M个初始扇区中的用户设备分布情况和 /或网络 规划参数, 将第二极化状态的 M个初始扇区中至少两个相邻的初始扇区合 并为一个物理扇区, 得到第二极化状态的 K个物理扇区。
举例来说, 如图 6所示, 本实施例场景下, 波束预处理模块 12包含: 2 X N个天线连接端口和 2 X M个初始扇区连接端口, 其中, 2 X N个天线连 接端口分别与柱面天线阵列 11的 N个第一天线端口和 N个第二天线端口 连接;
收发信机组模块 13包含 2 X M个收发信机组件 (TRx ) , 其中, 2 X M 个收发信机组件通过射频通道分别与 2 X M个初始扇区连接端口连接, 实 现信号收发;
收发信机组模块 13与基带模块 14通过光缆或集束电缆连接。
可选地, 在本发明的另一种实施场景中, 若柱面天线阵列 11 中每列 天线阵元中的每个天线阵元为单极化定向天线,则 N列天线阵元中的每列 天线阵元包括一个第三天线端口; 波束预处理模块 12包含 N个天线连接 端口和 M个初始扇区连接端口, 其中, N个天线连接端口分别与柱面天线 阵列 1 1的 N个第三天线端口连接;
收发信机组模块 13包含 M个收发信机组件, 其中, M个收发信机组件 通过射频通道分别与波束预处理模块 12的 M个初始扇区连接端口连接, 实现信号收发;
收发信机组模块 13与基带模块 14通过光缆或集束电缆连接。
基于图 1所示实施例所述的扇区配置系统, 图 6为本发明另一实施例 提供的扇区配置方法的流程示意图, 包括:
601、 对柱面天线阵列输出的 N个同极化的初始波束进行波束赋形, 在该柱面天线阵列的 360 度全向覆盖区内得到 M 个初始扇区,
2 < M≤N , W≥3。
如图 1所示, 柱面天线阵列具体包括: N列天线阵元, 且 N列天线阵 元彼此平行,在空间上形成闭合柱面,通过波束赋形将柱面天线阵列的 360 度全向覆盖区划分出 M个初始扇区。
其中, N列天线阵元中的每列天线阵元数目大于或等于 1, 且每个天 线阵元为定向天线, 每个天线阵元的辐射方向沿柱面天线阵列形成的闭合 柱面法向向外; N列天线阵元中每列天线阵元中的各个天线阵元之间用功 分馈电网络连接。
其中, 上述闭合柱面可以为闭合圆柱面, 也可以为闭合棱柱面, 此处 不予限制。
可选地, 若柱面天线阵列中的 N列天线阵元中的每个天线阵元为双极 化定向天线,则 N列天线阵元中的每列天线阵元包括第一天线端口和第二 天线端口, 即 N列天线阵元对应 N个第一天线端口和 N个第二天线端口。
其中, 第一天线端口为第一极化状态的天线端口, 第二天线端口为第 二极化状态的天线端口;
第一天线端口对应第一极化状态的初始波束;
第二天线端口对应第二极化状态的初始波束。
可选地, 若柱面天线阵列中的每个天线阵元为单极化定向天线,则 N 列天线阵元中的每列天线阵元包括一个第三天线端口, 即 N列天线阵元对 应 N个第三天线端口。
举例来说, 如图 1所示, 步骤 601可以采用波束预处理模块来实现, 其中, 波束预处理模块与柱面天线阵列的 2 X N个天线端口电气连接, 具 体实现时包括:
对柱面天线阵列输出的 N个第一极化状态的初始波束进行波束赋形, 在该柱面天线阵列的 360度全向覆盖区内得到 M个第一极化状态的初始扇 区; 和
对柱面天线阵列输出的 N个第二极化状态的初始波束进行波束赋形, 在该柱面天线阵列的 360度全向覆盖区内得到 M个第二极化状态的初始扇 区。
需要说明的是, 2≤M≤N ; 上述第一极化状态例如为 +45度极化状态, 第二极化状态例如为 -45度极化状态。
其中, 波束预处理模块可以由模拟功分馈电网络组成, 具体可以包含 合路器、 功分器、 移相器和传输线等微波器件, 波束预处理模块采用模拟 功分馈电网络, 使得波束赋形不需要受限于数字波束赋形系统以及校正网 络的复杂度。
602、 根据 M个初始扇区中的用户设备分布情况和 /或网络规划参数, 将 M个初始扇区中至少两个相邻的初始扇区合并为一个物理扇区, 得到 K 个物理扇区, 1≤ < M。
其中, 网络规划参数, 以及如何根据 M各初始扇区中用户设备分布情 况和 /或网络规划参数, 将 M个初始扇区中至少两个相邻的初始扇区合并 为一个物理扇区, 得到 K个物理扇区具体可以参见图 1所示实施例中的相 关描述。
举例来说, 如图 1所示, 步骤 602可以采用基带模块来实现, 其中, 第一极化状态的 M个初始扇区端口和第二极化状态的 M个初始扇区端口分 别与收发信机组模块中 2 X M个收发信机组件过射频通道连接, 实现信号 收发和数模转换, 2 X M个收发信机组件通过集束电缆线或者光缆连接至基 带模块; 具体实现时包括:
根据所述第一极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第一极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第一极化状态的 κ个物理扇区; 和 根据所述第二极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第二极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第二极化状态的 K个物理扇区。 需要说明的是, 在实际蜂窝通信场景中, 用户设备在基站周围 360度范 围内分布可能是不均匀的, 并且随时间变化的。 例如, 在某时间范围内, 用户设备分布主要集中在如图 5所示的 x-y平面的第一和第四象限, 或者 根据网络规划参数, 需要对 x-y平面的第一和第四象限内用户设备集中的 方向进行扇区调整。 因此, 基带模块中可以对同极化的 M个初始扇区灵活 进行合并处理, 得到 K ( 1≤K < M ) 个物理扇区。
本发明实施例采用波束预处理模块对柱面天线阵列输出的 N (大于或 等于 3 ) 个同极化的初始波束进行波束赋形, 可以将柱面天线阵列 360度 范围内的全向覆盖区分成 M个初始扇区, 2≤M≤N ; 采用基带单元根据所 述 M个初始扇区中的用户设备分布情况和 /或网络规划参数, 将所述 M个 初始扇区中至少两个相邻的初始扇区合并为一个物理扇区, 得到 K个物理 扇区, 1≤ < Μ,实现了扇区的灵活配置;此外,本实施例不需要增加 Butler 矩阵的端口数目, 因此, 不会增加系统复杂度以及 But ler矩阵带来的插 损, 从而降低了系统复杂度和成本, 提升系统性能。
图 7为本发明另一实施例提供的扇区配置系统的结构示意图, 如图 7 所示, 包含: 柱面天线阵列 Al、 波束预处理模块 A2、 收发信机组模块 A3 和基带模块 A4;
其中, 柱面天线阵列 A1 , 具体包含 6列天线阵元, 每列天线阵元包含 4 个天线阵元。 每个天线阵元利用二面角角反射器结构实现 48 度的 3dB 波束宽度。 6列定向双极化阵元等间隔排布在棱柱表面, 在水平面内可以 形成 360度全覆盖。 12个天线端口分别对应极化状态 1的 6个独立扇区和 极化状态 2的 6个独立扇区。
波束预处理模块 A2 , 包含 12个天线连接端口和 10个扇区连接端口。 可选地, 波束预处理模块 A2包含模拟功分馈电网络。
收发信机组模块 A3 , 包含 10个收发信机组件。
基带模块 A4, 包含 10个收发信机连接端口。 如图 Ί所示, 6列定向双极化阵元彼此平行等间距排布在 6棱柱的闭 合表面, 6个子阵列中心组成一个闭合圆环。 此天线阵列在水平面内产生 6个初始波束, 从而形成 360度范围内的全向覆盖。 每个阵元周围构造出 二面角反射器结构, 产生如图 8所示的 6个初始波束。 图 8为图 7所示实 施例产生的初始波速方向示意图, 如图 8所示, 这 6个初始波束的 3dB波 束宽度均为 48度, 且交叠区域较小。
如图 8所示, 假设方位角 0〜120度内, 用户设备分布较为密集, 而其 他方向的用户设备分布较为稀疏。 如果采用传统 3/6扇区, 则固定波束方 向难以灵活应对这种现象, 导致网络容量降低。
在如图 7所示的波束预处理模块中, 对初始波 1和初始波束 2进行等 幅同相波束赋形, 得到如图 9所示新的初始扇区 1—2以及初始扇区 3、 4、 5、 6, 图 9为图 7所示实施例产生的初始扇区的示意图。
需要说明的是, 上述波束预处理模块后的初始扇区信号通过收发信机 组模块与基带模块相连接。
在实际应用, 基带模块可以根据网络规划参数或者用户设备的分布情 况等, 灵活进行初始扇区的配置 (例如合并) , 形成所需的物理扇区。 图 10图 7所示实施例产生的物理扇区的示意图, 如图 10所示, 在基带模块 将初始扇区 1—2与 3进行合并处理,形成物理扇区 1—2—3,以及其他物理扇 区 4、 5、 6。 同理, 也可以对 1—2、 3、 4、 5和 6初始扇区中任意两个相邻 的初始扇区进行合并处理, 实现优化的物理扇区覆盖形式。
其中, 网络规划参数, 以及如何根据用户设备分布情况或网络规划参 数进行初始扇区的配置, 可以参见图 1所示实施例中的相关描述, 此处不 再赘述。
由此可见, 利用本发明实施例提供的扇区配置系统, 可以实现扇区的 灵活配置, 可以使得用户设备密集区域得到很好的覆盖, 从而提升网络容 图 1 1 为本发明另一实施例提供的扇区配置系统的结构示意图, 如图 1 1所示, 包含: 柱面天线阵列 Al、 波束预处理模块 A2、 收发信机组模块 A3和基带模块 A4;
其中, 柱面天线阵列 A1采用 12列定向双极化阵元, 且彼此平行等间 距排布在 6棱柱闭合表面,如图 1 1所示, 两列阵元共用一个棱柱面,采用 二面角反射器结构对波束进行优化, 柱面天线阵列 A1有 12个 +45度极化 的输出端口和 12个 -45度极化的输出端口;
波束预处理模块 A2由 6个 +45度极化输出端口和 6个 -45度极化输出 端口;
收发信机组模块 A3中有 12个收发信机组件, 该收发信机组模块分别 通过 12个收发信机组件连接波束预处理模块和基带模块;
基带模块 A4包含有 12个端口, 该 12个端口用于与收发信机组模块 A3连接。
在波束预处理模块 A2 中, 用功分器分别将共用棱柱面的两个同极化 初始波束进行等幅同相波束赋形, 图 12为图 1 1所示实施例产生的初始扇 区的示意图, 如图 12所示, 在 12个同极化初始波束基础上形成同极化的 6个初始扇区。
波束预处理模块 A2通过收发信机组模块 A3与基带模块 A4连接, 通 过收发信机组模块 A3将产生的初始扇区信号发送给基带模块 A4。
在实际应用中, 基带模块 A4可以根据网络规划参数和 /或用户设备的 分布情况等, 对 6个初始扇区进行灵活配置(例如合并处理), 形成所需的 物理扇区。 图 13为图 1 1所示实施例产生的物理扇区的示意图, 如图 13 所示, 分别对初始扇区 1和 2, 3和 4, 5和 6进行合并, 从而得到三个物理 扇区 1—2, 3—4, 5—6, 从而实现优化的扇区覆盖。
其中, 网络规划参数, 以及如何根据用户设备分布情况和 /或网络规 划参数, 对初始扇区进行灵活配置, 可以参见图 1所示实施例中的相关描 述, 此处不再赘述。
图 14为图 1 1所示实施例产生的另一物理扇区的示意图, 如图 14所 示, 也可以对初始扇区 1、 2和 3进行合并形成物理扇区 1—2—3, 对初始扇 区 4、 5和 6不作合并, 从而形成四个物理扇区, 优化扇区覆盖。
同理, 也可以对 1、 2、 3、 4、 5和 6初始扇区中任意两个相邻的初始 扇区进行合并处理, 实现优化的物理扇区覆盖形式。
由此可见, 利用本发明实施例提供的扇区配置系统, 可以实现扇区的 灵活配置, 可以使得用户设备密集区域得到很好的覆盖, 从而提升网络容 图 15为本发明另一实施例提供的扇区配置装置的结构示意图,如图 5 所示, 包括:
第一设置模块 51,用于对柱面天线阵列输出的 N个同极化的初始波束 进行波束赋形, 在该柱面天线阵列的 360度全向覆盖区内得到 M个初始扇 区, 2≤M≤N , N≥3 .
第二设置模块 52,用于根据所述 M个初始扇区中的用户设备分布情况 和 /或网络规划参数, 将所述 M个初始扇区中至少两个相邻的初始扇区合 并为一个物理扇区, 得到 K个物理扇区, 1≤K≤M。
其中, 网络规划参数, 以及如何根据 M各初始扇区中用户设备分布情 况和 /或网络规划参数, 将 M个初始扇区中至少两个相邻的初始扇区合并 为一个物理扇区, 得到 K个物理扇区具体可以参见图 1所示实施例中的相 关描述, 此处不再赘述。
举例来说, 柱面天线阵列, 具体包括: N列天线阵元,且 N列天线阵元 彼此平行, 在空间上形成闭合柱面, 具体地, 该柱面可以为圆柱面, 也可 以为棱柱面, 此处不予限制。
上述 N列天线阵元中的每列天线阵元数目大于或等于 1, 且每个天线 阵元的辐射方向沿柱面天线阵列形成的闭合柱面法向向外, 每列天线阵元 中的各个天线阵元之间用功分馈电网络连接。
假设柱面天线阵列中的每个天线阵元为双极化定向天线,则 N列天线 阵元中的每列天线阵元包括第一天线端口和第二天线端口, 即 N列天线阵 元对应 N个第一天线端口和 N个第二天线端口;
第一天线端口为第一极化状态的天线端口, 第二天线端口为第二极化 状态的天线端口;
第一天线端口对应第一极化状态的初始波束;
第二天线端口对应第二极化状态的初始波束。
假设柱面天线阵列中的每个天线阵元为单极化定向天线,则 N列天线 阵元中的每列天线阵元包括一个第三天线端口, 即 N列天线阵元对应 N个 第三天线端口。
举例来说, 第一设置模块 51具体用于: 对所述柱面天线阵列输出的 N个第一极化状态的初始波束进行波束赋 形, 在所述柱面天线阵列的 360度全向覆盖区内得到 M个第一极化状态的 初始扇区; 和
对所述柱面天线阵列输出的 N个第二极化状态的初始波束进行波束赋 形, 在所述柱面天线阵列的 360度全向覆盖区内得到 M个第二极化状态的 初始扇区。
举例来说, 第二设置模块 52具体用于:
根据所述第一极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第一极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第一极化状态的 κ个物理扇区; 和 根据所述第二极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第二极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第二极化状态的 K个物理扇区。
需要说明的是, 上述第一设置模块 51位于图 1所示的波束预处理模 块侧, 第二设置模块位于图 1所示的基带模块侧, 具体实现可以参考图 1 所示实施例中的相关描述。
本发明实施例采用波束预处理模块对天线阵列输出的 N (大于或等于 3 ) 个同极化的初始波束进行波束赋形, 可以将天线阵列 360度全向覆盖 区分成 M个初始扇区, 2≤M≤N ; 采用基带单元根据所述 M个初始扇区中 的用户设备分布情况和 /或网络规划参数, 将所述 M个初始扇区中至少两 个相邻的初始扇区合并为一个物理扇区, 得到 K个物理扇区, 1≤Κ Μ, 从而实现扇区的灵活配置; 此外, 本实施例不需要增加 But ler矩阵的端 口数目, 因此, 不会增加系统复杂度以及 But ler矩阵带来的插损, 从而 降低了系统复杂度和成本, 提升系统性能。
进一步地,波束预处理模块采用模拟功分馈电网络产生 M个初始扇区, 因此, 波束赋形不需要受限于数字波束赋形系统以及校正网络的复杂度。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统, 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用硬件加软件 功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元, 可以存储在一个计算机 可读取存储介质中。 上述软件功能单元存储在一个存储介质中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等) 执行本发明各个实施例所述方法的部分步骤。 而前述的存储介质包括: 移动 硬盘、只读存储器(Read-Only Memory, ROM)、随机存取存储器(Random Access Memory, RAM) 、 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的保护范围。

Claims

权利 要 求书
1、 一种扇区配置系统, 其特征在于, 包括: 柱面天线阵列, 波束预 处理模块, 收发信机组模块和基带模块;
所述柱面天线阵列, 用于输出 N个同极化的初始波束, W≥3, 以实现
360度全向覆盖;
所述波束预处理模块, 用于对所述柱面天线阵列输出的所述 N个同极 化的初始波束进行波束赋形, 得到 M个初始扇区, 2≤M≤N ;
所述收发信机组模块, 用于将所述 M个初始扇区的信号发送给所述基 带模块;
所述基带模块, 用于根据所述 M个初始扇区中的用户设备分布情况和 /或网络规划参数, 将所述 M个初始扇区中至少两个相邻的初始扇区合并 为一个物理扇区, 得到 K个物理扇区, 1≤ < Μ。
2、 根据权利要求 1 所述的系统, 其特征在于, 所述柱面天线阵列包 括 Ν列天线阵元;
所述 Ν列天线阵元彼此平行, 在空间上形成闭合柱面;
所述 Ν 列天线阵元中的每列天线阵元中天线阵元的数目大于或等于
1;
所述 Ν列天线阵元中的每个天线阵元为定向天线, 所述每个天线阵元 的辐射方向沿所述形成的闭合柱面法向向外;
所述 Ν列天线阵元中的每列天线阵元中的各个天线阵元之间用功分馈 电网络连接。
3、 根据权利要求 2所述的系统, 其特征在于, 若所述每个天线阵元 为双极化定向天线,则所述 Ν列天线阵元中的每列天线阵元包括第一天线 端口和第二天线端口;
所述第一天线端口为第一极化状态的天线端口, 所述第二天线端口为 第二极化状态的天线端口;
所述第一天线端口对应第一极化状态的初始波束;
所述第二天线端口对应第二极化状态的初始波束。
4、 根据权利要求 3所述的系统, 其特征在于, 所述波束预处理模块 具体用于:
对所述柱面天线阵列输出的 N个所述第一极化状态的初始波束进行波 束赋形, 得到 M个第一极化状态的初始扇区; 和
对所述柱面天线阵列输出的 N个所述第二极化状态的初始波束进行波 束赋形, 得到 M个第二极化状态的初始扇区。
5、 根据权利要求 4所述的系统, 其特征在于, 所述基带模块具体用 于:
根据所述第一极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第一极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第一极化状态的 κ个物理扇区; 和 根据所述第二极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第二极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第二极化状态的 K个物理扇区。
6、 根据权利要求 3-5任一项所述的系统, 其特征在于:
所述波束预处理模块包含 2 X N个天线连接端口和 2 X M个初始扇区连 接端口, 所述 2 X N个天线连接端口分别与所述柱面天线阵列的 N个所述 第一天线端口和 N个所述第二天线端口连接;
所述收发信机组模块包含 2 X M个收发信机组件, 所述 2 X M个收发信 机组件通过射频通道分别与所述 2 X M个初始扇区连接端口连接, 实现信 号收发;
所述收发信机组模块与所述基带模块通过光缆或集束电缆连接。
7、 根据权利要求 2所述的系统, 其特征在于, 若所述每个天线阵元为 单极化定向天线,则所述 N列天线阵元中的每列天线阵元包括一个第三天 线端口。
8、 根据权利要求 7所述的系统, 其特征在于:
所述波束预处理模块包含 N个天线连接端口和 M个初始扇区连接端 口, 所述 N个天线连接端口分别与所述柱面天线阵列的 N个所述第三天线 端口连接;
所述收发信机组模块包含 M个收发信机组件, 所述 M个收发信机组件 通过射频通道分别与所述 M个初始扇区连接端口连接, 实现信号收发; 所述收发信机组模块与所述基带模块通过光缆或集束电缆连接。
9、 根据权利要求 1-8任一项所述的系统, 其特征在于, 所述波束预 处理模块为无源网络。
10、 一种扇区配置方法, 其特征在于, 包括:
对柱面天线阵列输出的 N个同极化的初始波束进行波束赋形, 在所述 柱面天线阵列的 360度全向覆盖区内得到 M个初始扇区, 2≤M≤N, N≥3 ., 根据所述 M个初始扇区中的用户设备分布情况和 /或网络规划参数, 将所述 M个初始扇区中至少两个相邻的初始扇区合并为一个物理扇区, 得 到 K个物理扇区, 1≤ < M。
11、 根据权利要求 10所述的方法, 其特征在于, 所述柱面天线阵列 具体包括: N列天线阵元,且所述 N列天线阵元彼此平行, 在空间上形成闭 合柱面;
所述 N 列天线阵元中的每列天线阵元中天线阵元的数目大于或等于
1;
所述 N列天线阵元中的每个天线阵元为定向天线, 所述每个天线阵元 的辐射方向沿所述形成的闭合柱面法向向外;
所述 N列天线阵元中的每列天线阵元中的各个天线阵元之间用功分馈 电网络连接。
12、 根据权利要求 11所述的方法, 其特征在于:
若所述每个天线阵元为双极化定向天线,则所述 N列天线阵元中的每 列天线阵元包括第一天线端口和第二天线端口;
所述第一天线端口为第一极化状态的天线端口, 所述第二天线端口为 第二极化状态的天线端口;
所述第一天线端口对应第一极化状态的初始波束;
所述第二天线端口对应第二极化状态的初始波束。
13、 根据权利要求 12 所述的方法, 其特征在于, 所述对柱面天线阵 列输出的 N个同极化的初始波束进行波束赋形,得到 M个初始扇区,包括: 对所述柱面天线阵列输出的 N个所述第一极化状态的初始波束进行波 束赋形, 得到 M个第一极化状态的初始扇区; 和
对所述柱面天线阵列输出的 N个所述第二极化状态的初始波束进行波 束赋形, 得到 M个第二极化状态的初始扇区。
14、 根据权利要求 13所述的方法, 其特征在于, 所述根据所述 M个 初始扇区中的用户设备分布情况和 /或网络规划参数, 将所述 M个初始扇 区中至少两个相邻的初始扇区合并为一个物理扇区, 得到 K个物理扇区, 包括:
根据所述第一极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第一极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第一极化状态的 K个物理扇区; 和 根据所述第二极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第二极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第二极化状态的 K个物理扇区。
15、 根据权利要求 11所述的方法, 其特征在于:
若所述柱面天线阵列中的每个天线阵元为单极化定向天线,则所述 N 列天线阵元中的每列天线阵元包括一个第三天线端口。
16、 一种扇区配置装置, 其特征在于, 包括:
第一设置模块, 用于对柱面天线阵列输出的 N个同极化的初始波束进 行波束赋形, 在所述柱面天线阵列的 360度全向覆盖区内得到 M个初始扇 区, 2≤M≤N , N≥3 .
第二设置模块, 用于根据所述 M个初始扇区中的用户设备分布情况和 /或网络规划参数, 将所述 M个初始扇区中至少两个相邻的初始扇区合并 为一个物理扇区, 得到 K个物理扇区, 1≤K < M。
17、 根据权利要求 16所述的装置, 其特征在于, 所述柱面天线阵列 包括: N列天线阵元,且所述 N列天线阵元彼此平行, 在空间上形成闭合柱 面;
所述 N列天线阵元中的每列天线阵元数目大于或等于 1 ;
所述 N列天线阵元中的每个天线阵元为定向天线, 所述每个天线阵元 的辐射方向沿所述形成的闭合柱面法向向外;
所述 N列天线阵元中的每列天线阵元中的各个天线阵元之间用功分馈 电网络连接。
18、 根据权利要求 17所述的装置, 其特征在于: 若所述 N列天线阵元中每个天线阵元为双极化定向天线,则所述 N列 天线阵元中的每列天线阵元包括第一天线端口和第二天线端口;
所述第一天线端口为第一极化状态的天线端口, 所述第二天线端口为 第二极化状态的天线端口;
所述第一天线端口对应第一极化状态的初始波束;
所述第二天线端口对应第二极化状态的初始波束。
19、 根据权利要求 18所述的装置, 其特征在于, 所述第一设置模块 具体用于:
对所述柱面天线阵列输出的 N个所述第一极化状态的初始波束进行波 束赋形, 在所述柱面天线阵列的 360度全向覆盖区内得到 M个第一极化状 态的初始扇区; 和
对所述柱面天线阵列输出的 N个所述第二极化状态的初始波束进行波 束赋形, 在所述柱面天线阵列的 360度全向覆盖区内得到 M个第二极化状 态的初始扇区。
20、 根据权利要求 19所述的装置, 其特征在于, 所述第二设置模块 具体用于:
根据所述第一极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第一极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第一极化状态的 K个物理扇区; 和 根据所述第二极化状态的 M个初始扇区中的用户设备分布情况和 /或 网络规划参数, 将所述第二极化状态的 M个初始扇区中至少两个相邻的初 始扇区合并为一个物理扇区, 得到所述第二极化状态的 K个物理扇区。
21、 根据权利要求 17所述的装置, 其特征在于:
若所述柱面天线阵列中的每个天线阵元为单极化定向天线,则所述 N 列天线阵元中的每列天线阵元包括一个第三天线端口。
PCT/CN2013/084744 2013-09-30 2013-09-30 扇区配置方法及装置、系统 WO2015042968A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380002161.8A CN103765940B (zh) 2013-09-30 2013-09-30 扇区配置方法及装置、系统
PCT/CN2013/084744 WO2015042968A1 (zh) 2013-09-30 2013-09-30 扇区配置方法及装置、系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/084744 WO2015042968A1 (zh) 2013-09-30 2013-09-30 扇区配置方法及装置、系统

Publications (1)

Publication Number Publication Date
WO2015042968A1 true WO2015042968A1 (zh) 2015-04-02

Family

ID=50531064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084744 WO2015042968A1 (zh) 2013-09-30 2013-09-30 扇区配置方法及装置、系统

Country Status (2)

Country Link
CN (1) CN103765940B (zh)
WO (1) WO2015042968A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034837A1 (en) * 2016-08-19 2018-02-22 Qualcomm Incorporated Non-uniform transmission of synchronization signals
EP3316397A4 (en) * 2016-03-23 2018-08-29 Shanghai Spaceflight Institute of TT&C And Telecommunication Fixed multibeam stereoscopic helical antenna array and helical antenna flexible support device thereof
WO2019013947A1 (en) * 2017-07-14 2019-01-17 Amazon Technologies, Inc. ANTENNA STRUCTURES AND INSULATION CHAMBERS OF MULTI-CHANNEL MULTI-RADIO MESH ARRAY DEVICE (MRMC)
US10523247B2 (en) 2016-01-28 2019-12-31 Amazon Technologies, Inc. Network hardware devices organized in a wireless mesh network for content distribution to client devices having no internet connectivity
US10615514B2 (en) 2017-07-14 2020-04-07 Amazon Technologies, Inc. Antenna structures of a multi-radio, multi-channel (MRMC) mesh network device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015176316A1 (zh) * 2014-05-23 2015-11-26 华为技术有限公司 一种多波束成型装置及基站
WO2016011974A1 (en) * 2014-07-25 2016-01-28 Mediatek Inc. Wireless communication device capable of adjusting at least one antenna to improve efficiency of other coexisting antenna (s) and related wireless communication method
WO2017008264A1 (zh) * 2015-07-15 2017-01-19 华为技术有限公司 一种天线、天线系统及基站
US10193236B1 (en) 2016-06-22 2019-01-29 Amazon Technologies, Inc. Highly isolated sector antenna for concurrent radio operation
US10505609B2 (en) 2017-06-14 2019-12-10 Commscope Technologies Llc Small cell beam-forming antennas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1630219A (zh) * 2004-04-26 2005-06-22 西安海天天线科技股份有限公司 极化分集的小灵通phs通信系统全向智能天线
CN101267065A (zh) * 2007-03-13 2008-09-17 大唐移动通信设备有限公司 单极化定向天线/阵列定向天线及其时分双工通信系统
US20080261658A1 (en) * 2007-04-18 2008-10-23 Cisco Technology, Inc. Hybrid Time-Spatial Multiplexing for Wireless Broadcast Messages through Antenna Radiation Beam Synthesis
CN101442757A (zh) * 2007-11-21 2009-05-27 中国移动通信集团公司 一种智能天线系统的设置方法及其装置和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030058562A (ko) * 2001-12-31 2003-07-07 에스케이 텔레콤주식회사 이동 통신 시스템에서의 세대간 안테나 공유를 위한 섹터병합 방법
CN101359947B (zh) * 2007-07-30 2017-07-21 电信科学技术研究院 多天线阵列系统的广播波束赋形方法及装置
CN102340783A (zh) * 2007-09-21 2012-02-01 电信科学技术研究院 一种实现小区组网的方法及系统
JP5570620B2 (ja) * 2010-02-25 2014-08-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 変換行列を含む通信システムノード

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1630219A (zh) * 2004-04-26 2005-06-22 西安海天天线科技股份有限公司 极化分集的小灵通phs通信系统全向智能天线
CN101267065A (zh) * 2007-03-13 2008-09-17 大唐移动通信设备有限公司 单极化定向天线/阵列定向天线及其时分双工通信系统
US20080261658A1 (en) * 2007-04-18 2008-10-23 Cisco Technology, Inc. Hybrid Time-Spatial Multiplexing for Wireless Broadcast Messages through Antenna Radiation Beam Synthesis
CN101442757A (zh) * 2007-11-21 2009-05-27 中国移动通信集团公司 一种智能天线系统的设置方法及其装置和系统

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10523247B2 (en) 2016-01-28 2019-12-31 Amazon Technologies, Inc. Network hardware devices organized in a wireless mesh network for content distribution to client devices having no internet connectivity
US10560127B2 (en) 2016-01-28 2020-02-11 Amazon Technologies, Inc. Antenna structures and reflective chambers of a multi-radio, multi-channel (MRMC) mesh network device
US11368173B2 (en) 2016-01-28 2022-06-21 Amazon Technologies, Inc. Network hardware devices organized in a wireless mesh network for content distribution to client device having no internet connectivity
EP3316397A4 (en) * 2016-03-23 2018-08-29 Shanghai Spaceflight Institute of TT&C And Telecommunication Fixed multibeam stereoscopic helical antenna array and helical antenna flexible support device thereof
WO2018034837A1 (en) * 2016-08-19 2018-02-22 Qualcomm Incorporated Non-uniform transmission of synchronization signals
US10075928B2 (en) 2016-08-19 2018-09-11 Qualcomm Incorporated Non-uniform transmission of synchronization signals
US10548100B2 (en) 2016-08-19 2020-01-28 Qualcomm Incorporated Non-uniform transmission of synchronization signals
WO2019013947A1 (en) * 2017-07-14 2019-01-17 Amazon Technologies, Inc. ANTENNA STRUCTURES AND INSULATION CHAMBERS OF MULTI-CHANNEL MULTI-RADIO MESH ARRAY DEVICE (MRMC)
US10291698B2 (en) 2017-07-14 2019-05-14 Amazon Technologies, Inc. Antenna structures and isolation chambers of a multi-radio, multi-channel (MRMC) mesh network device
CN110870139A (zh) * 2017-07-14 2020-03-06 亚马逊技术股份有限公司 多无线电、多通道(mrmc)网状网络设备的天线结构和隔离室
US10615514B2 (en) 2017-07-14 2020-04-07 Amazon Technologies, Inc. Antenna structures of a multi-radio, multi-channel (MRMC) mesh network device
CN110870139B (zh) * 2017-07-14 2021-06-18 亚马逊技术股份有限公司 多无线电、多通道(mrmc)网状网络设备的天线结构和隔离室

Also Published As

Publication number Publication date
CN103765940B (zh) 2017-11-17
CN103765940A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
WO2015042968A1 (zh) 扇区配置方法及装置、系统
WO2019201063A1 (zh) 一种天线系统、馈电网络重构方法及装置
EP2816664B1 (en) Antenna system
WO2018001007A1 (zh) 一种用于5g系统的密集阵列天线
EP2846400B1 (en) Antenna array, antenna device and base station
CN107196684B (zh) 一种天线系统、信号处理系统以及信号处理方法
JP5464126B2 (ja) 移動通信用基地局アンテナ、及び移動通信用基地局アンテナシステム
CN105356062B (zh) 一种宽频阵列天线
WO2012103831A9 (zh) 一种天线设备和系统
US10285179B2 (en) Flexible reconfiguration of an antenna arrangement
CN106159465B (zh) 宽频五波束阵列天线
US20160380690A1 (en) Wireless Communication Node With Adaptive Communication
CN106252901A (zh) 宽频三波束阵列天线
CN106571537A (zh) 一种双极化二波束低副瓣快速跌落矩形赋形阵列天线
CN107667480B (zh) 传输设备及其方法、计算机可读介质
WO2018040020A1 (zh) 调节天线信号功率的方法及基站
CN108666769A (zh) 一种宽频九波束阵列天线
US10581501B2 (en) Flexible analog architecture for sectorization
US6961580B2 (en) Wireless communication system and method of maximizing the use of communication signal resource
CN206322857U (zh) 宽频五波束阵列天线
CN206322856U (zh) 宽频三波束阵列天线
CN109861007B (zh) 一种双极化基站天线阵列
US11646502B2 (en) Multi-band base station antenna
CN208352529U (zh) 一种宽频九波束阵列天线
CN112993596A (zh) 一种降维多波束天线系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894493

Country of ref document: EP

Kind code of ref document: A1