WO2015176316A1 - 一种多波束成型装置及基站 - Google Patents

一种多波束成型装置及基站 Download PDF

Info

Publication number
WO2015176316A1
WO2015176316A1 PCT/CN2014/078307 CN2014078307W WO2015176316A1 WO 2015176316 A1 WO2015176316 A1 WO 2015176316A1 CN 2014078307 W CN2014078307 W CN 2014078307W WO 2015176316 A1 WO2015176316 A1 WO 2015176316A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
interface
radio frequency
sub
Prior art date
Application number
PCT/CN2014/078307
Other languages
English (en)
French (fr)
Inventor
王艺
赵建平
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14892752.8A priority Critical patent/EP3136508B1/en
Priority to CN201480078645.5A priority patent/CN106463843B/zh
Priority to PCT/CN2014/078307 priority patent/WO2015176316A1/zh
Publication of WO2015176316A1 publication Critical patent/WO2015176316A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a multi-beamforming apparatus and a base station. Background technique
  • MIMO technology improves frequency efficiency through multiple input and output technologies.
  • the RF signal is first fed through a power amplifier placed under the antenna and then through the cable.
  • the loss of the cable becomes huge due to the increase in the number of antennas, resulting in energy utilization efficiency. The low problem is highlighted.
  • Large-scale antenna deployment needs to consider the needs of the scenario, and the antenna distribution is applicable to various soft and hard aggregation technologies.
  • the large-grained design module is easy to install but inefficient to use, and the small particle size of the module will increase the unit construction cost.
  • the cost of the RF channel is much higher than the antenna assembly.
  • Various aggregation techniques are used in large-scale MIMO, and the damage of the antenna is particularly significant for performance, and the ease of repair of the design solution also needs to be considered.
  • each unit integrates an antenna and RF channel pair, contains a duplexer, and is variable in power.
  • the small cells can be spatially combined into a desired shape as needed. It is thus possible to easily combine various hierarchical or multiplexed combinations without wasting redundant antennas and radio frequency channels.
  • the solution also addresses RF amplifier to antenna cable loss issues.
  • Antenna and RF module unitized solutions are scalable, replaceable, flexible, and relatively low in deployment costs.
  • each unit module contains one antenna and one RF module.
  • the present invention provides a multi-beamforming apparatus including a phased array sub-module, an interface module, and at least one RF channel sub-module;
  • the interface module transmits a baseband signal of the external baseband data unit to the radio frequency channel submodule; the radio frequency channel submodule converts the baseband signal received by the interface module from the external to a radio frequency signal, and sends the signal to the phase control An array module; the phased array sub-module performs beam shaping on the radio frequency signal sent by the radio channel sub-module and transmits the signal through the antenna.
  • the phased array submodule sends a radio frequency signal received from an antenna to the radio frequency channel submodule, where the radio frequency channel submodule uses the phase control matrix
  • the RF signal received by the module is converted into a baseband signal and sent to the interface module, and outputted to the external baseband data unit through the interface module.
  • the radio channel sub-module includes a transmit signal processing unit, where the transmit signal processing unit includes a first intermediate frequency processor, a digital-to-analog converter, and an up-conversion mixing And the power amplifier, the first intermediate frequency processor receives the baseband signal transmitted by the interface module, and performs intermediate frequency processing on the baseband signal, and then sends the signal to the digital/analog converter, where the digital/analog converter
  • the intermediate frequency processed baseband signal is converted into an analog signal and sent to the upconverting mixer, and the upconverting mixer converts the analog signal from an intermediate frequency to a radio frequency signal, and is sent by the duplexer to The phased array submodule.
  • the radio channel sub-module further includes a received signal processing unit, where the received signal processing unit includes a second intermediate frequency processor and a module. /digital converter, downconverting mixer, and low noise amplifier, the low noise
  • the sound amplifier performs low noise amplification processing on the antenna signal received by the duplexer from the phased array sub-module, and then sends the low-noise amplification processing to the down-converting mixer, and the low-noise amplification processing is performed by the down-conversion mixing processor
  • the latter antenna signal is processed as an intermediate frequency analog signal
  • the intermediate frequency analog signal is sent to the analog/digital converter
  • the analog/digital converter converts it into an intermediate frequency digital signal and sends the signal to the second intermediate frequency processing.
  • the second intermediate frequency processor converts the intermediate frequency digital signal into a baseband signal and transmits the data to the external baseband data unit through the interface module.
  • the interface module includes a baseband signal transmission interface for transmitting a baseband signal, and Multi-module expansion interface for performing multi-module extended connections.
  • the multi-module expansion interface further comprises a clock synchronization interface for clock synchronization between the plurality of multi-beamforming devices, for implementing combined multiple beamforming A frequency synchronization interface for frequency synchronization between devices, at least one of a multi-module correction interface for implementing physical signal correction between the combined multiple beamforming devices.
  • the present invention provides a base station, the base station comprising the multi-beamforming device provided by the first aspect of the present invention, wherein S is a natural number greater than or equal to 1, wherein the interface module of each multi-beamforming device Further includes a multi-module expansion interface that performs multi-module extended connections.
  • the S multiple beamforming devices are connected to external baseband data units by respective baseband signal transmission interfaces, and the S multiple beamforming devices
  • the devices are connected by the multi-module expansion interface, one of the S multi-beamforming devices is a main module, and the remaining S-1 multi-beamforming devices are slave modules, and the main module is expanded by the multi-module
  • the interface outputs at least one of a clock signal, a frequency synchronization signal, and a channel correction signal to the at least one slave module.
  • a multi-module expansion interface of one of the s multi-beamforming devices and a multi-module expansion interface with two or more slave modules the two or more slave modules receiving the main through respective multi-module expansion interfaces At least one of a clock signal, a frequency synchronization signal, and a channel correction signal transmitted by the module.
  • the S multiple beamforming devices are connected in a chain through respective multi-module expansion interfaces, where the main module passes through The multi-module expansion interface of the main module outputs at least one of a clock signal, a frequency synchronization signal and a channel correction signal to a slave module, and each slave module is connected from the multi-beam connection thereof through its multi-module expansion interface. At least one of a clock signal, a frequency synchronization signal, and a channel correction signal is received in the device.
  • the modular universal beam forming device can realize the rapid combination and splicing of multi-module or super-multi-module for different application layout requirements, which avoids complicated integration. design. DRAWINGS
  • FIG. 1 is a structural block diagram of a multi-beam forming apparatus according to an embodiment of the present invention
  • FIG. 2 is a structural diagram of an embodiment of a multi-beam forming apparatus according to an embodiment of the present invention.
  • FIG. 3 is a structural diagram of an embodiment of a multi-beam forming apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another embodiment of a base station according to an embodiment of the present invention;
  • FIG. 6 is a schematic structural diagram of another embodiment of a base station according to an embodiment of the present invention;
  • FIG. 7 is a schematic structural diagram of still another embodiment of a base station according to an embodiment of the present invention.
  • 8 is a schematic diagram of a combination of multiple multi-beam forming devices according to an embodiment of the present invention;
  • FIG. 9 is a schematic diagram of a plurality of multi-beam forming devices according to an embodiment of the present invention.
  • an embodiment of the present invention provides a multi-beam shaping transceiver device.
  • the embodiment includes at least one radio frequency channel sub-module 101 , a phased array sub-module 102 , and an interface module 103 .
  • the phased array module 102 includes at least two antenna elements;
  • the RF channel sub-module 101 converts the baseband signal received by the interface module 103 from the external to a radio frequency signal, and sends the signal to the phased array sub-module 102; and receives the phased array sub-module 102 through the antenna array element.
  • the RF signal is converted into a baseband signal and output to the external baseband data unit through the interface module 103;
  • the phased array sub-module 102 performs beam shaping of the radio frequency signal sent by the radio frequency channel sub-module 101 and transmits it through the antenna; and transmits data received from the antenna to the radio frequency channel sub-module 102;
  • the interface module 103 transmits a baseband signal between the RF channel sub-module 101 and an external baseband data unit, and a multi-module expansion combination with other devices.
  • the number of antenna elements included in the phased array sub-module 102 is much larger than the number of radio frequency (RF) channel sub-modules 101 in the multi-beam shaping transceiver, thereby reducing the number of RF channels to be calibrated.
  • the phased array sub-module implements weighting of the radio frequency signals to form multiple beams and then transmit them in different antenna elements.
  • the phased array sub-module 102 implements N-TO between the N RF channel sub-modules and the M antenna elements. -M mapping.
  • the interface module 103 further includes: a baseband data transmission interface 1031 for transmitting a baseband signal and a multi-module expansion interface 1032 for performing a multi-module extension connection;
  • the baseband signal transmission interface may be a general public radio interface (CPRI)
  • CPRI General public Radio Interface
  • REC base station data processing control unit
  • RE Radio Equipment
  • the multi-module expansion interface further includes a clock synchronization interface that implements clock synchronization between the combined multiple beamforming devices and a multi-module correction for implementing physical signal correction between the combined multiple beamforming devices interface.
  • the multi-module expansion interface can be implemented to combine a plurality of transceivers in the embodiment shown in FIG. 1 to form a large-scale MIMO base station.
  • Figure 8 and Figure 9 show the implementation of two multi-beam module extensions. When multiple multi-beamforming devices are combined, one multi-beamforming device will be configured as the main module, and other multi-beamforming devices will be configured. Into the module. As shown in FIG. 8 and FIG.
  • the multi-module expansion interface of the main module outputs all signals or one type of signals in the clock signal, the frequency synchronization signal, and the channel correction signal, and inputs the clock signal and frequency from the multi-module expansion interface of the module.
  • the sync signal and the channel correction signal all of the reference signals or one of the signals.
  • the source of the slave module reference signal may be directly from the main module as shown in FIG. 9, or may be from the expansion interface of the upper slave module, as shown in FIG.
  • one multi-beam forming device is configured as the main module 0, and the remaining N multi-beam forming devices are configured to pass the respective modules 1-N, N multi-beam forming devices.
  • the baseband signal transmission interface in the interface module is connected to the external baseband data unit to transmit the baseband signal.
  • the main module is connected to the slave module 1 through the multi-module expansion interface
  • the slave module 1 is further connected to the slave module 2 through the multi-module expansion interface of the slave module 1.
  • the multi-module expansion interface, and so on, the slave module N and the previous slave module are connected through respective multi-module extension interfaces.
  • At least one of the reference signals from the module 1, such as a clock signal, a frequency synchronization signal, and a channel correction signal, is derived from the main module 0, and the reference signal from the module 2 is from the slave module 1.
  • a chained serial interface is formed.
  • one multi-beamforming device is configured as the main module 0, and the remaining N multi-beamforming devices are configured as the slave modules 1-N, N
  • the multi-beamforming device is coupled to the external baseband data unit via a baseband signal transmission interface in the respective interface module to transmit the baseband signal.
  • the multi-module expansion interface of one main module of the S multi-beamforming devices is connected with the multi-module expansion interface of two or more slave modules, and the main module has multiple multi-module expansion interfaces, which can simultaneously pass
  • the multi-module expansion interface connects multiple multi-module expansion interfaces of the slave 1-N to form a tree structure.
  • the reference signals of the slave module are all derived from the main module 0. Furthermore, according to different needs, it can also be combined by the two embodiments of FIG. 8 and FIG. 9, for example, the main module is connected to a plurality of slave modules, and one or more slave modules connected to the master module are used as a first-level slave module. .
  • the first-level slave module can be further connected to one or several slave modules, and the slave modules are used as secondary slave modules, and so on.
  • the reference signal of the first-level slave module comes from the main module, and the reference signal of the secondary slave module comes from the first-level slave module, which is not repeated. Further, referring to FIG.
  • the radio frequency channel sub-module 101 further includes a transmit signal processing unit 1011 and a receive signal processing unit 1012, wherein the transmit signal processing unit 1011 and the receive signal processing unit 1012 share a duplex
  • the duplexer is connected to the phased array submodule;
  • the transmit signal processing unit 1011 includes a first intermediate frequency processor (IF) 10111, a digital-to-analog converter (DAC) 10212, an up-conversion mixer 10113, and a power amplifier (power).
  • Amplifier, PA) 10114 the first intermediate frequency processor 10111 receives the baseband signal transmitted by the interface module 103, and performs intermediate frequency processing on the baseband signal, and then sends the signal to the digital/analog converter 10112, and the digital/analog converter 10112 processes the intermediate frequency
  • the baseband signal is converted into an analog signal and sent to the upconverting mixer 10113, and the upconverting mixer 10113 converts the analog signal from an intermediate frequency to a radio frequency signal, and is sent to the duplexer by the duplexer.
  • the phased array sub-module 102 The phased array sub-module 102;
  • the received signal processing unit 1012 includes: a second intermediate frequency processor (IF) 10121, an analog-to-digital converter (ADC) 10122, a down-converting mixer 10123, and a low noise amplifier (Low Noise Amplifier).
  • the low noise amplifier 10124 performs low noise amplification processing on the antenna signal received by the duplexer from the phased array submodule 102, and then sends the signal to the downconverting mixer 10123.
  • the variable frequency mixing processor 10123 processes the low noise amplified antenna signal into an intermediate frequency analog signal, and then sends the intermediate frequency analog signal to the analog to digital converter 10122, and the analog to digital converter 10122 It is converted to an intermediate frequency digital signal and then sent to the second intermediate frequency processor 10121.
  • the second intermediate frequency processor 10121 converts the intermediate frequency digital signal into a baseband signal and transmits it to the outside through the interface module 103.
  • the received signal processing unit 1012 and the transmitted signal processing unit 1011 can be integrated to reduce the occupied space.
  • the multi-beam forming device provided by the embodiment of the present invention can realize the rapid combination and splicing of multi-module or super-multi-module according to the requirements of different application layouts through the modular universal beam forming device, which avoids complicated integrated design.
  • the device is designed with a unique inter-module interface, it can support the arrangement and combination of any module very flexibly.
  • the embodiments shown in Figures 1 to 4 can be applied to a base station, which can be a large base station or a small micro base station.
  • the base station includes S multi-beamforming devices, and the multi-beamforming device includes at least one radio frequency channel sub-module, a phased array sub-module, and an interface module, where the phased-array sub-module includes at least two antenna elements, S For a natural number not less than 1, the S can be specifically selected according to the size of the base station and the size of the transmission power.
  • the number of each base station For the specific structure of the beamforming transceiver device, reference may be made to the embodiment shown in FIG. 1 to FIG. 3, and details are not described herein. Referring to FIG. 8 and FIG.
  • the S multi-beamforming devices are connected by the multi-module expansion interface, and one of the S multi-beamforming devices is a main module, and the remaining S-1
  • the multiple beamforming devices are slave modules that output reference signals for clock, frequency synchronization, and channel correction to at least one slave module through the multi-module expansion interface.
  • one main module of the S multi-beamforming devices is connected to two or more slave modules, and the two or more slave modules receive clocks and frequency synchronizations transmitted by the main module through a multi-module expansion interface. And channel corrected reference signal.
  • the S multi-beamforming devices are chain-connected, one of the S multi-beamforming devices is a main module, and the remaining S-1 multi-beamforming devices are slave modules, and the main The module outputs reference signals for clock, frequency synchronization, and channel correction to a slave module through the multi-module expansion interface, and each slave module receives clock, frequency synchronization, and channel corrected reference signals through a multi-beam forming device connected thereto .
  • FIG. 5 is a structural diagram of a base station according to an embodiment of the present invention.
  • the base station shown in FIG. 4 is a micro base station, and the micro base station includes only one multi-beam forming device, wherein one multi-beam forming device is N (N ⁇ 1) RF channel sub-modules and phased array sub-modules including M (M > > N) antenna elements, the phased array sub-module completes N between N RF channels and M antenna elements -to-M mapping, this embodiment can be conveniently deployed in indoor and other scenarios.
  • each sub-multibeam forming device unit is composed of N (N ⁇ 1) RF channel sub-modules and a phased array sub-module including M (M > > N) antenna elements, and the phase-controlled sub-module is in N RF N-to-M phased array mapping between the channel and the M antenna elements;
  • the spacing of the S modules in space can be the same or different.
  • Each beamforming device implements expansion between multiple beamforming devices via an interface module.
  • BS can be composed of S (S > 1) multi-beam forming devices to form a large-scale array, the number of modules, The location distribution can be flexibly configured according to actual deployment and scenario requirements.
  • the embodiment shown in FIG. 6 is a large-scale antenna base station system composed of S (S > 1) one-dimensionally arranged multi-beam forming devices.
  • S multi-beam forming devices are in a spatial position.
  • the upper ones are linearly arranged in one dimension, and the arrangement of the plurality of modules can be linearly arranged in a horizontal or vertical direction.
  • the spacing of the S modules in the spatial arrangement may be the same or different.
  • the antenna array on the BS side is composed of a plurality of such multi-beam forming devices, and the spatial arrangement direction includes but is not limited to horizontal and vertical directions.
  • the number of modules can be flexibly selected according to actual deployment and scene requirements, and the one-dimensional direction is realized. Beam control.
  • the embodiment shown in FIG. 7 is a large-scale antenna base station composed of two-dimensionally arranged S(S>1) multi-beamforming devices.
  • S multi-beamforming devices are in a spatial position.
  • the arrangement of the plurality of modules can be arranged in a horizontal and vertical direction to form a rectangular structure.
  • the antenna array on the BS side is composed of S (S > 1) multi-beam forming devices to form a two-dimensional area array.
  • the modules can be flexibly configured according to actual deployment and scene requirements, including the number of modules and position distribution in different dimensions. Beam steering in two dimensions.
  • the S(S>1) multi-beamforming device constitutes a large-scale antenna base station system, wherein the S multi-beamforming devices are arranged in three dimensions in a spatial position, and the multi-module arrangement can be in three dimensions.
  • the spaces are arranged in an array which may be formed in a cylindrical shape or in any irregular shape.
  • the antenna array on the BS side is three-dimensionally arranged by S(S>1) multi-beamforming devices to form an arbitrary shape arrangement.
  • the modules can be flexibly configured according to actual deployment and scene requirements, including the number of modules and position distribution in different dimensions. Implement beam steering.
  • the multi-beam forming apparatus provided in the embodiment of the present invention can be applied to a large-scale antenna system to realize flexible combination and configuration of the number of antennas and the spatial position. Moreover, due to the modular design, for example, some antenna modules can be directly replaced after failure, and quick and convenient maintenance and maintenance can be realized in the later stage.
  • the multi-beamforming device provided by the embodiments of the present invention can greatly increase the system capacity of MIMO.
  • the multi-beam forming device provided by the embodiment of the present invention can realize the rapid combination and splicing of multi-module or super-multi-module according to the requirements of different application layouts through the modular universal beam forming device, which avoids complicated integrated design.
  • the device is designed with a unique inter-module interface, it can support the arrangement and combination of any module very flexibly.
  • RAM random access memory
  • ROM read only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other form of storage known in the art. In the medium.

Abstract

本发明实施例提供了一种多波束成型装置,其包括至少一个射频通道子模块、相控阵子模块以及接口模块,其中,所述射频通道子模块将所述接口模块从外部接收到的基带信号转换为射频信号,发送给所述相控阵子模块;以及将所述相控阵子模块接收到的射频信号,转换为基带信号,通过所述接口模块输出给外部;所述相控阵子模块将所述射频通道子模块发送的射频信号进行波束赋形后通过天线发送;以及将从天线接收到的数据发送给所述射频通道子模块;接口模块传输所述射频通道子模块与外部基带数据单元之间的基带信号,以及与其他装置之间的多模块扩展连接。本发明可以以实现通过提供一种模块化的多波束成型装置,实现基站中的多波束成型装置的拼接。

Description

一种多波束成型装置及基站 技术领域
本发明涉及无线通信领域, 具体涉及到一种多波束成型装置及基站。 背景技术
MIMO技术通过多个输入输出技术提升频语效率。传统 MIMO天线系统 中射频信号先通过安置于天线下方的功率放大器再经过线缆对天线进行馈电, 在大规模 MIMO中, 线缆的损耗由于天线数量的增多而变得巨大, 使得能量 利用效率低的问题凸显了出来。 大规模的天线部署需要考虑场景的需求, 将 天线的分布适用于各种软、 硬聚合技术。 大颗粒度的设计模块便于安装但使 用效率低下, 模块过小的颗粒度会造成单位组建成本的上升。 此外作为有源 器件, 射频通道的成本远高于天线组建。 大规模 MIMO中釆用了各种聚合技 术, 天线的损坏对性能影响尤为明显, 设计方案的易修复性也需要考虑的问 题。
为了解决天线数量和空间位置可以灵活变更的问题,射频-天线单元模块 的概念被提出。 每一个单元中集成一个天线和射频通道对, 包含双工器, 并 且功率可变。 根据需要可以将小单元在空间上组合成为需要的形状。 从而可 以方便地组合出各种分级或者复用的组合而不浪费多余的天线和射频信道。 该方案也解决的射频功放至天线线缆损耗问题。 天线和射频模块单元化的解 决方案可扩展、 可替换、 配置灵活, 相对部署成本较低。 但是, 缺陷在于, 每个单元模块包含一个天线和一个射频模块, 当天线数量巨大时意味着同时 部署了大量的射频模块, 射频模块相比较天线模块成本高得多。 在发射预编 码中, 由于天线和射频通道的——对应关系, 所有的预编码过程全部要在基 带侧进行, 基带算法复杂度很高。
发明内容
本发明的目的是提供一种多波束成型装置, 以通过模块化的多波束成型 装置, 方便基站中的多个多波束成型装置的拼接。
第一方面, 本发明提供了一种多波束成型装置, 其包括相控阵子模块、 接口模块以及至少一个射频通道子模块;
所述接口模块将外部基带数据单元的基带信号传输给所述射频通道子模 块; 所述射频通道子模块将所述接口模块从外部接收到的基带信号转换为射 频信号, 发送给所述相控阵子模块; 所述相控阵子模块将所述射频通道子模 块发送的射频信号进行波束赋形后通过天线发送。
基于第一方面, 在第一种可能的实施方式中, 所述相控阵子模块将从天 线接收到的射频信号发送给所述射频通道子模块, 所述射频通道子模块将所 述相控阵子模块接收到的射频信号,转换为基带信号后发送给所述接口模块, 通过所述接口模块输出给外部基带数据单元。
基于第一方面, 在第二种可能的实施方式中, 所述射频通道子模块包括 发射信号处理单元, 所述发射信号处理单元包括第一中频处理器、 数 /模转换 器、 上变频混频器以及功率放大器, 所述第一中频处理器接收所述接口模块 传输的基带信号, 并对所述基带信号进行中频处理后发送给所述数 /模转换器, 所述数 /模转换器将所述中频处理后的基带信号转换为模拟信号, 并发送给所 述上变频混频器,所述上变频混频器将所述模拟信号从中频转换为射频信号, 并由双工器发送给所述相控阵子模块。
基于第一方面的第一种可能的实施方式, 在第三种可能的实施方式中, 所述射频通道子模块还包括接收信号处理单元, 所述接收信号处理单元包括 第二中频处理器、 模 /数转换器、 下变频混频器以及低噪声放大器, 所述低噪 声放大器将双工器从所述相控阵子模块接收到的天线信号进行低噪声放大处 理后发送给所述下变频混频器, 由所述下变频混频处理器将所述低噪声放大 处理后的天线信号处理为中频模拟信号, 再将所述中频模拟信号发送给所述 模 /数转换器,所述模 /数转换器将其转换为中频数字信号后发送给所述第二中 频处理器, 所述第二中频处理器将所述中频数字信号转换为基带信号, 并通 过所述接口模块向外部基带数据单元传输。
基于第一方面或第一方面的第一、 或第二或第三种可能的实施方式, 在 第四种可能的实施方式中, 所述接口模块包括用于传输基带信号的基带信号 传输接口和用于执行多模块扩展连接的多模块扩展接口。 基于第一方面的第四种可能的实施方式, 所述多模块扩展接口进一步包 括用于多个多波束成型装置之间的时钟同步的时钟同步接口、 用于实现组合 后的多个多波束成型装置之间的频率同步的频率同步接口、 用于实现组合后 的多个多波束成型装置之间的物理信号校正的多模块校正接口中的至少一个 接口。
第二方面, 本发明提供了一种基站, 所述基站包括本发明第一方面提供 的多波束成型装置, 其中 S为大于等于 1的自然数, 其中, 每个多波束成型 装置的所述接口模块进一步包括执行多模块扩展连接的多模块扩展接口。
基于第二方面, 在第一种可能的实施方式中, 当 S大于 1时, 所述 S个 多波束成型装置通过各自的基带信号传输接口与外部基带数据单元连接, 所 述 S个多波束成型装置之间通过所述多模块扩展接口连接, 所述 S个多波束 成型装置中的一个为主模块, 其余 S-1个多波束成型装置为从模块, 所述主 模块通过所述多模块扩展接口向至少一个从模块输出用于时钟信号、 频率 同步信号和通道校正信号中的至少一种信号。
基于第二方面的第一种可能的实施方式中,在第一种可能的实施方式中, 所述 s个多波束成型装置中的一个主模块的多模块扩展接口与与两个以上从 模块的多模块扩展接口连接, 所述两个以上从模块通过各自的多模块扩展接 口接收所述主模块传输的时钟信号、 频率同步信号和通道校正信号中的至 少一种信号。
基于第二方面的第一种可能的实施方式中,在第二种可能的实施方式中, 所述 S个多波束成型装置通过各自的多模块扩展接口呈链状连接, 所述主模 块通过所述该主模块的多模块扩展接口向一个从模块输出用于时钟信号、 频率同步信号和通道校正信号中的至少一种信号, 每个从模块通过其多模 块扩展接口从与其连接的多波束成型装置中接收时钟信号、 频率同步信号 和通道校正信号中的至少一种信号。
釆用本发明提供的多波束成型装置, 通过模块化通用的波束形成装置, 能够针对不同应用布局的需求, 实现多模块或超多模块的快速组合与拼接, 这一实现避免了复杂的一体化设计。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中 的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不 付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的一种多波束成型装置的结构框图;
图 2是本发明实施例提供的一种多波束成型装置的一种实施例的结构图 图 3是本发明实施例提供的一种多波束成型装置的一种实施例的结构图 图 4是本发明实施例提供的一种射频通道子模块的一种实施例的结构图 图 5是本发明实施例提供的一种基站的另一种实施例的结构示意图; 图 6是本发明实施例提供的一种基站的又一种实施例的结构示意图; 图 7是本发明实施例提供的一种基站的又一种实施例的结构示意图。 图 8是本发明实施例提供的一种多个多波束成型装置组合示意图; 图 9是本发明实施例提供的一种多个多波束成型装置组合示意图;
具体实施方式
以下结合附图, 对本发明的具体实施例做进一步详细描述。
如图 1所示, 本发明实施例提供了一种多波束赋型的收发装置, 由图 1 可见, 本实施例包括至少一个射频通道子模块 101、 相控阵子模块 102 以及 接口模块 103, 其中, 所述相控阵子模块 102包括至少两个天线阵元;
所述射频通道子模块 101将所述接口模块 103从外部接收到的基带信号 转换为射频信号, 发送给所述相控阵子模块 102; 以及将所述相控阵子模块 102通过天线阵元接收到的射频信号, 转换为基带信号, 通过所述接口模块 103输出给外部基带数据单元;
所述相控阵子模块 102将所述射频通道子模块 101发送的射频信号进行 波束赋形后通过天线发送; 以及将从天线接收到的数据发送给所述射频通道 子模块 102;
接口模块 103传输所述射频通道子模块 101与外部基带数据单元之间的 基带信号, 以及与其他装置之间的多模块扩展组合。
其中, 相控阵子模块 102中包含的天线阵元数目远大于多波束赋型的收 发装置中射频 (Radio Frequency, RF)通道子模块 101的个数, 从而降低需要校 准的 RF通道数量。 该相控阵子模块实现对射频信号的加权, 形成多路波束 后在不同的天线阵元进行发射。 当一个收发装置包含 N个 RF通道子模块, 相控阵子模块 102包含 M个天线阵元时, 该相控阵子模块 102实现 N个 RF 通道子模块与 M个天线阵元之间的 N-TO-M映射。 进一步地, 所述接口模块 103进一步包括: 用于传输基带信号的基带数 据传输接口 1031和执行多模块扩展连接的多模块扩展接口 1032; 所述的基 带信号传输接口可以是通用公共无线接口(CPRI,The Common Public Radio Interface), 釆用数字的方式来传输基带信号, 定义了基站数据处理控制单元 (Radio Equipment Control, REC)与基站收发单元 (Radio Equipment, RE)之间 的接口关系, 它的数据结构可以直接用于直放站的数据进行远端传输,成为基 站的一种拉远系统。 所述多模块扩展接口进一步包括实现组合后的多个多波束成型装置之间 的时钟同步的时钟同步接口和用于实现组合后的多个多波束成型装置之间的 物理信号校正的多模块校正接口。 通过该多模块扩展接口可以实现, 将多个 图 1所示实施例中的收发装置进行组合, 形成较大规模的 MIMO基站。 例如, 图 8和图 9给出了两种多个多波束模块扩展的实现方法, 在多个 多波束成型装置组合时, 有一个多波束成型装置会配置成主模块, 其他多波 束成型装置配置成从模块。 如图 8和图 9所示, 主模块的多模块扩展接口输 出用于时钟信号、频率同步信号和通道校正信号中的全部信号或者一种信号, 从模块的多模块扩展接口输入时钟信号、 频率同步信号和通道校正信号中的 全部基准信号或者其中的一种信号。 根据不同的连接方法, 从模块基准信号的来源可以如图 9所示直接来自 于主模块, 也可以来自于上一级从模块的扩展接口, 如图 8所示。 例如, 图 8中的 S个多波束成型装置中, 一个多波束成型装置被配置为 主模块 0, 其余 N个多波束成型装置被配置为从模块 1-N, N个多波束成型 装置通过各自的接口模块中的基带信号传输接口与外部基带数据单元连接, 以传输基带信号。 S 个多波束成型装置中, 主模块通过多模块扩展接口连接 从模块 1, 从模块 1进一步通过从模块 1的多模块扩展接口连接从模块 2的 多模块扩展接口, 依次类推, 从模块 N与前一个从模块通过各自的多模块扩 展接口连接。 从模块 1的基准信号, 例如时钟信号、 频率同步信号和通道校 正信号等基准信号中的至少一种信号来自于主模块 0, 而从模块 2的基准信 号来自于从模块 1。 以此类推, 形成一种链状的串行接口。 在另一种实施方式中, 图 9中的 S个多波束成型装置中, 一个多波束成 型装置被配置为主模块 0, 其余 N个多波束成型装置被配置为从模块 1-N, N 个多波束成型装置通过各自的接口模块中的基带信号传输接口与外部基带数 据单元连接, 以传输基带信号。 S个多波束成型装置中, S个多波束成型装 置中的一个主模块的多模块扩展接口与两个以上从模块的多模块扩展接口连 接, 主模块具有多个多模块扩展接口, 可以同时通过多模块扩展接口连接多 个从模块 1-N 的多模块扩展接口, 形成一种树状结构。 从模块的基准信号, 例如时钟信号、频率同步信号和通道校正信号等基准信号都来自于主模块 0。 此夕卜,根据不同的需要,也可以通过图 8和图 9两种实施方式进行结合, 例如, 主模块连接多个从模块, 与主模块连接的一个或多个从模块作为一级 从模块。 一级从模块可以进一步连接一个或几个从模块, 该些从模块则作为 次级从模块, 依次类推。 一级从模块的基准信号来自于主模块, 次级从模块 的基准信号则来自于一级从模块, 不多赘述。 进一步的, 可参考图 3, 所述射频通道子模块 101进一步包括发射信号 处理单元 1011和接收信号处理单元 1012,其中,所述发射信号处理单元 1011 和所述接收信号处理单元 1012共用一个双工器,所述双工器连接所述相控阵 子模块;
所述发射信号处理单元 1011 包括第一中频处理器 ((intermediate frequency, IF ) 10111、数 /模转换器( digital-to-analog converter, DAC ) 10212、 上变频混频器 10113以及功率放大器 (power amplifier, PA)10114, 所述第一 中频处理器 10111接收所述接口模块 103传输的基带信号, 并对所述基带信 号进行中频处理后发送给所述数 /模转换器 10112, 所述数 /模转换器 10112将 所述中频处理后的基带信号转换为模拟信号, 并发送给所述上变频混频器 10113 , 所述上变频混频器 10113将所述模拟信号从中频转换为射频信号, 并 由所述双工器发送给所述相控阵子模块 102;
所述接收信号处理单元 1012 包括: 第二中频处理器 (IF)10121、 模 /数转 换器( analog -to- digital converter , ADC ) 10122、 下变频混频器 10123以及 低噪声放大器(Low Noise Amplifier, LNA ) 10124, 所述低噪声放大器 10124 将所述双工器从所述相控阵子模块 102接收到的天线信号进行低噪声放大处 理后发送给所述下变频混频器 10123, 所述下变频混频处理器 10123将所述 低噪声放大处理后的天线信号处理为中频模拟信号, 再将所述中频模拟信号 发送给所述模 /数转换器 10122, 所述模 /数转换器 10122将其转换为中频数字 信号后发送给所述第二中频处理器 10121, 所述第二中频处理器 10121将所 述中频数字信号转换为基带信号, 并通过所述接口模块 103向外部传输。
如图 4所示, 在实际应用中, 可以将接收信号处理单元 1012和发射信号 处理单元 1011集成在一起, 以降低占用的空间。
釆用本发明实施例提供的多波束成型装置, 通过模块化通用的波束形成 装置, 能够针对不同应用布局的需求, 实现多模块或超多模块的快速组合与 拼接, 这一实现避免了复杂的一体化设计。 同时由于本装置设计了独有的模 块间组合接口能够很好的支持任一模块的排列与组合, 十分灵活。
图 1至 4所示的实施例, 可以被应用在基站中, 基站可以是大型基站, 也可以是小微基站。 所述基站包括 S个多波束成型装置, 所述多波束成型装 置包括至少一个射频通道子模块、 相控阵子模块以及接口模块, 其中, 所述 相控阵子模块包括至少两个天线阵元, S为不小于 1 的自然数, 根据基站的 规模和发射功率大小, 可以对 S进行具体的选择。 关于每个基站中包含的多 波束成型收发装置的具体结构,可参考图 1至图 3所示的实施例,不多赘述。 请参考图 8和图 9, 当 S大于 1时, 所述 S个多波束成型装置通过所述 多模块扩展接口连接,所述 S个多波束成型装置中的一个为主模块,其余 S-1 个多波束成型装置为从模块,所述主模块通过所述多模块扩展接口向至少一 个从模块输出用于时钟、 频率同步和通道校正的基准信号。
如图 9所示, 所述 S个多波束成型装置中的一个主模块与两个以上从模 块连接,所述两个以上从模块通过多模块扩展接口接收所述主模块传输的时 钟、 频率同步和通道校正的基准信号。
如图 8所示, 所述 S个多波束成型装置中链状连接, 所述 S个多波束成 型装置中的一个为主模块, 其余 S-1个多波束成型装置为从模块, 所述主模 块通过所述多模块扩展接口向一个从模块输出用于时钟、 频率同步和通道 校正的基准信号,每个从模块通过与其连接的多波束成型装置中接收时钟、 频率同步和通道校正的基准信号。
图 5是本发明实施例提供的一种基站的结构图, 该实施例中, 图 4所示 的基站是微基站, 该微基站中只包含一个多波束成型装置, 其中一个多波束 成型装置由 N(N^ 1)个 RF通道子模块和包含 M(M > > N)个天线阵元的相控 阵子模块构成, 相控阵子模块完成 N 个 RF通道与 M 个天线阵元之间的 N-to-M映射, 该实施例可方便部署于室内等场景。
此外, 本发明实施例还可以形成由 S(S〉1)个多波束成型装置构成的大规 模天线基站系统。此时,每个子多波束成型装置单元由 N(N^ l)个 RF通道子 模块和包含 M(M > > N)个天线阵元的相控阵子模块构成,相控阵子模块在 N 个 RF通道与 M个天线阵元之间实现 N-to-M的相控阵映射;
S 个模块在空间排列的间距可以相同也可以不同。 每个波束成型装置通 过接口模块实现多个波束成型装置之间的扩展。
BS可以由 S(S〉1)个多波束成型装置构成的构成大规模阵列, 模块数量、 位置分布可 4艮据实际部署和场景需求灵活配置。
例如, 图 6所示的实施例是一种由 S(S〉1)个一维排列的多波束成型装置 构成的大规模天线基站系统, 该实施例中, S个多波束成型装置在空间位置 上按照一维线性排列, 多模块的排列可以按照水平或者垂直的方向按线性排 列。 S个模块在空间排列的间距可以相同也可以不同。 BS侧的天线阵列由若 干个这样的多波束成型装置构成一维线性阵列, 空间排列方向包括但不限于 水平和垂直方向, 模块数量可根据实际部署和场景需求灵活选择, 实现一维 方向上的波束控制。
再例如, 图 7所示的实施例是一种由二维排列的 S(S〉1)个多波束成型装 置构成的大规模天线基站, 该实施例中, S个多波束成型装置在空间位置上 按照二维排列,多模块的排列可以按照水平和垂直的方向排列形成矩形结构。 BS侧的天线阵列由 S(S〉1)个多波束成型装置构成二维面阵排列,可才艮据实际 部署和场景需求灵活配置模块, 包括不同维度上的模块数量以及位置分布等, 实现二维方向上的波束控制。
在另一种实施例中, S(S〉1)个多波束成型装置构成了大规模天线基站系 统,其中 S个多波束成型装置在空间位置上按照三维排列, 多模块的排列可以 按照三维在空间形成排列, 其排列方式可以形成如圓柱状或者任意不规则形 状。 BS侧的天线阵列由 S(S〉1)个多波束成型装置构成三维排列, 形成任意形 状的排列, 可根据实际部署和场景需求灵活配置模块, 包括不同维度上的模 块数量以及位置分布等, 实现波束控制。
釆用本发明实施例中提供的多波束成型装置, 可以应用在大规模天线系 统中, 实现天线数量和空间位置的灵活组合与配置。 并且, 由于釆用了模块 化设计, 例如, 部分天线模块出现故障后可直接替换, 在后期能够实现快速 便捷的维修与维护。
本发明实施例提供的多波束成型装置可以大规模提升 MIMO的系统容量。 釆用本发明实施例提供的多波束成型装置, 通过模块化通用的波束形成 装置, 能够针对不同应用布局的需求, 实现多模块或超多模块的快速组合与 拼接, 这一实现避免了复杂的一体化设计。 同时由于本装置设计了独有的模 块间组合接口能够很好的支持任一模块的排列与组合, 十分灵活。
专业人员应该还可以进一步意识到, 结合本文中所公开的实施例描述的 各示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来 实现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能 一般性地描述了各示例的组成及步骤。 这些功能究竟以硬件还是软件方式来 执行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每 个特定的应用来使用不同方法来实现所描述的功能, 但是这种实现不应认为 超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、 处理 器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存储器
( RAM ) 、 内存、 只读存储器(ROM ) 、 电可编程 ROM、 电可擦除可编程 ROM, 寄存器、 硬盘、 可移动磁盘、 CD-ROM, 或技术领域内所公知的任意 其它形式的存储介质中。
以上所述的具体实施方式, 对本发明的目的、 技术方案和有益效果进行 了进一步详细说明, 所应理解的是, 以上所述仅为本发明的具体实施方式而 已, 并不用于限定本发明的保护范围, 凡在本发明的精神和原则之内, 所做 的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1、 一种多波束成型装置, 其特征在于, 包括相控阵子模块、 接口模块以 及至少一个射频通道子模块;
所述接口模块将外部基带数据单元的基带信号传输给所述射频通道子模 块; 所述射频通道子模块将所述接口模块从外部接收到的基带信号转换为射 频信号, 发送给所述相控阵子模块; 所述相控阵子模块将所述射频通道子模 块发送的射频信号进行波束赋形后通过天线发送。
2、 如权利要求 1所述的装置, 其特征在于, 所述相控阵子模块将从天线 接收到的射频信号发送给所述射频通道子模块, 所述射频通道子模块将所述 相控阵子模块接收到的射频信号, 转换为基带信号后发送给所述接口模块, 通过所述接口模块输出给外部基带数据单元。
3、 如权利要求 1所述的装置, 其特征在于, 所述射频通道子模块包括发 射信号处理单元,所述发射信号处理单元包括第一中频处理器、数 /模转换器、 上变频混频器以及功率放大器, 所述第一中频处理器接收所述接口模块传输 的基带信号, 并对所述基带信号进行中频处理后发送给所述数 /模转换器, 所 述数 /模转换器将所述中频处理后的基带信号转换为模拟信号, 并发送给所述 上变频混频器, 所述上变频混频器将所述模拟信号从中频转换为射频信号, 并由双工器发送给所述相控阵子模块。
4、 如权利要求 2所述的装置, 其特征在于, 所述射频通道子模块还包括 接收信号处理单元, 所述接收信号处理单元包括第二中频处理器、 模 /数转换 器、 下变频混频器以及低噪声放大器, 所述低噪声放大器将双工器从所述相 控阵子模块接收到的天线信号进行低噪声放大处理后发送给所述下变频混频 器, 由所述下变频混频处理器将所述低噪声放大处理后的天线信号处理为中 频模拟信号, 再将所述中频模拟信号发送给所述模 /数转换器, 所述模 /数转换 器将其转换为中频数字信号后发送给所述第二中频处理器, 所述第二中频处 理器将所述中频数字信号转换为基带信号, 并通过所述接口模块向外部基带 数据单元传输。
5、 如权利要求 1至 4任一项所述的装置, 其特征在于, 所述接口模块包 括用于传输基带信号的基带信号传输接口和用于执行多模块扩展连接的多模 块扩展接口。
6、 如权利要求 5所述的装置, 其特征在于, 所述多模块扩展接口进一步 包括用于多个多波束成型装置之间的时钟同步的时钟同步接口、 用于实现组 合后的多个多波束成型装置之间的频率同步的频率同步接口、 用于实现组合 后的多个多波束成型装置之间的物理信号校正的多模块校正接口中的至少一 个接口。
7、 一种基站, 其特征在于, 所述基站包括 S个权利要求 1至 6任一项所 述的多波束成型装置, 其中 S为大于等于 1的自然数, 其中, 每个多波束成 型装置的所述接口模块进一步包括执行多模块扩展连接的多模块扩展接口。
8、 如权利要求 7所述的基站, 其特征在于, 当 S大于 1时, 所述 S个多 波束成型装置通过各自的基带信号传输接口与外部基带数据单元连接, 所述 S个多波束成型装置之间通过所述多模块扩展接口连接, 所述 S个多波束成 型装置中的一个为主模块, 其余 S-1个多波束成型装置为从模块, 所述主模 块通过所述多模块扩展接口向至少一个从模块输出用于时钟信号、 频率同 步信号和通道校正信号中的至少一种信号。
9、 如权利要求 8所述的基站, 其特征在于, 所述 S个多波束成型装置 中的一个主模块的多模块扩展接口与两个以上从模块的多模块扩展接口连接, 所述两个以上从模块通过各自的多模块扩展接口接收所述主模块传输的时 钟信号、 频率同步信号和通道校正信号中的至少一种信号。
10、 如权利要求 8所述的基站, 其特征在于, 所述 S个多波束成型装置 通过各自的多模块扩展接口呈链状连接, 所述主模块通过所述该主模块的 多模块扩展接口向一个从模块输出用于时钟信号、 频率同步信号和通道校 正信号中的至少一种信号, 每个从模块通过其多模块扩展接口从与其连接 的多波束成型装置中接收时钟信号、 频率同步信号和通道校正信号中的至 少一种信号。
PCT/CN2014/078307 2014-05-23 2014-05-23 一种多波束成型装置及基站 WO2015176316A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14892752.8A EP3136508B1 (en) 2014-05-23 2014-05-23 Multi-beam forming device and base station
CN201480078645.5A CN106463843B (zh) 2014-05-23 2014-05-23 一种多波束成型装置及基站
PCT/CN2014/078307 WO2015176316A1 (zh) 2014-05-23 2014-05-23 一种多波束成型装置及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/078307 WO2015176316A1 (zh) 2014-05-23 2014-05-23 一种多波束成型装置及基站

Publications (1)

Publication Number Publication Date
WO2015176316A1 true WO2015176316A1 (zh) 2015-11-26

Family

ID=54553264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078307 WO2015176316A1 (zh) 2014-05-23 2014-05-23 一种多波束成型装置及基站

Country Status (3)

Country Link
EP (1) EP3136508B1 (zh)
CN (1) CN106463843B (zh)
WO (1) WO2015176316A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018223979A1 (zh) * 2017-06-06 2018-12-13 华为技术有限公司 一种天线装置以及波束调整的方法
CN110133606A (zh) * 2019-04-16 2019-08-16 天津大学 用于高分辨率雷达阵列系统的频率源同步与校准方法
CN117478206A (zh) * 2023-12-21 2024-01-30 中国电子科技集团公司第五十四研究所 一种基于信关站收发信机池化的多波束灵活分配系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111835367B (zh) * 2019-04-11 2022-04-22 华为技术有限公司 信号处理芯片和通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045926B2 (en) * 2008-10-15 2011-10-25 Nokia Siemens Networks Oy Multi-transceiver architecture for advanced Tx antenna monitoring and calibration in MIMO and smart antenna communication systems
CN102917397A (zh) * 2012-09-29 2013-02-06 东南大学 一种基于相控阵天线阵列的无线信道测量装置与测量方法
CN103594823A (zh) * 2012-08-17 2014-02-19 华为技术有限公司 模块化的天线系统
CN103765940A (zh) * 2013-09-30 2014-04-30 华为技术有限公司 扇区配置方法及装置、系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830982B2 (en) * 2006-05-12 2010-11-09 Northrop Grumman Systems Corporation Common antenna array using baseband adaptive beamforming and digital IF conversion
CN201222735Y (zh) * 2008-05-21 2009-04-15 京信通信系统(中国)有限公司 工作通带可移的数字射频拉远系统
TW201246816A (en) * 2010-12-08 2012-11-16 Broadcom Corp RF module control interface
US20120309331A1 (en) * 2011-06-06 2012-12-06 Wilocity, Ltd. Modular millimeter-wave radio frequency system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8045926B2 (en) * 2008-10-15 2011-10-25 Nokia Siemens Networks Oy Multi-transceiver architecture for advanced Tx antenna monitoring and calibration in MIMO and smart antenna communication systems
CN103594823A (zh) * 2012-08-17 2014-02-19 华为技术有限公司 模块化的天线系统
CN102917397A (zh) * 2012-09-29 2013-02-06 东南大学 一种基于相控阵天线阵列的无线信道测量装置与测量方法
CN103765940A (zh) * 2013-09-30 2014-04-30 华为技术有限公司 扇区配置方法及装置、系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018223979A1 (zh) * 2017-06-06 2018-12-13 华为技术有限公司 一种天线装置以及波束调整的方法
US10879610B2 (en) 2017-06-06 2020-12-29 Huawei Technologies Co., Ltd. Antenna apparatus and beam adjustment method
CN110133606A (zh) * 2019-04-16 2019-08-16 天津大学 用于高分辨率雷达阵列系统的频率源同步与校准方法
CN117478206A (zh) * 2023-12-21 2024-01-30 中国电子科技集团公司第五十四研究所 一种基于信关站收发信机池化的多波束灵活分配系统
CN117478206B (zh) * 2023-12-21 2024-03-12 中国电子科技集团公司第五十四研究所 一种基于信关站收发信机池化的多波束灵活分配系统

Also Published As

Publication number Publication date
CN106463843B (zh) 2019-12-13
EP3136508A4 (en) 2017-04-12
EP3136508A1 (en) 2017-03-01
EP3136508B1 (en) 2019-05-15
CN106463843A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
US9444140B2 (en) Multi-element antenna beam forming configurations for millimeter wave systems
EP2827449B1 (en) Antenna device and system
WO2019201063A1 (zh) 一种天线系统、馈电网络重构方法及装置
WO2013097395A1 (zh) 有源天线装置及其收发信号的方法
WO2013123753A1 (zh) 一种有源天线多收发通道同步校准的装置和方法
WO2015176316A1 (zh) 一种多波束成型装置及基站
US10950936B2 (en) Signal distribution network
EP3469727B1 (en) Flexible reconfiguration of an antenna arrangement
KR20180102612A (ko) 안테나 맵핑 및 다이버시티
WO2020238208A1 (zh) 基于空域反馈的面向混合大规模mimo阵列的数字预失真结构
US20180359018A1 (en) Methods and systems for digital beamforming
EP4082079A1 (en) Phased array module
CN106537969B (zh) 用于大容量无线通信的密集阵无线系统架构
EP3138356B1 (en) Multi-sector antenna integrated radio unit
JP6484264B2 (ja) 分散型デジタル変換可能無線機(ddcr)
WO2015051668A1 (zh) 天线系统和基站
WO2009074007A1 (fr) Procédé de réglage pour système d'antenne intelligente et dispositif et système associés
JP5948669B2 (ja) 送受信モジュール、アンテナ、基地局、および信号受信方法
JP2017055245A (ja) 送受信モジュールおよびアクティブフェーズドアレーアンテナ
JP2001177328A (ja) 統合rfセンサシステム
US11764468B2 (en) Phased array system-in package supporting spatio-spectral division multiplexing
KR20160050489A (ko) 배열 안테나 제어 방법 및 장치
CN113890582A (zh) 一种自组织方向性网络系统及其通信方法
WO2016072175A1 (ja) アクティブアンテナシステム
OA18405A (en) Beam forming using an antenna arrangement.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892752

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014892752

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892752

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE