WO2012102320A1 - Solar cell module and method for manufacturing solar cell module - Google Patents
Solar cell module and method for manufacturing solar cell module Download PDFInfo
- Publication number
- WO2012102320A1 WO2012102320A1 PCT/JP2012/051598 JP2012051598W WO2012102320A1 WO 2012102320 A1 WO2012102320 A1 WO 2012102320A1 JP 2012051598 W JP2012051598 W JP 2012051598W WO 2012102320 A1 WO2012102320 A1 WO 2012102320A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filler
- surface protection
- wiring
- solar cell
- back surface
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000000034 method Methods 0.000 title description 24
- 239000000945 filler Substances 0.000 claims abstract description 291
- 230000001681 protective effect Effects 0.000 claims abstract description 86
- 230000007704 transition Effects 0.000 claims abstract description 35
- 238000007789 sealing Methods 0.000 claims abstract description 29
- 239000011810 insulating material Substances 0.000 claims abstract description 21
- 229920005989 resin Polymers 0.000 claims description 62
- 239000011347 resin Substances 0.000 claims description 62
- 239000003566 sealing material Substances 0.000 claims description 38
- 238000010030 laminating Methods 0.000 claims description 31
- 238000002788 crimping Methods 0.000 claims description 25
- -1 polypropylene Polymers 0.000 claims description 20
- 239000012790 adhesive layer Substances 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000000155 melt Substances 0.000 claims description 14
- 239000011521 glass Substances 0.000 claims description 11
- 229920000098 polyolefin Polymers 0.000 claims description 11
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 10
- 239000004698 Polyethylene Substances 0.000 claims description 10
- 239000003822 epoxy resin Substances 0.000 claims description 10
- 229920000647 polyepoxide Polymers 0.000 claims description 10
- 229920000573 polyethylene Polymers 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 8
- 239000005977 Ethylene Substances 0.000 claims description 8
- 229920001577 copolymer Polymers 0.000 claims description 8
- 229920000554 ionomer Polymers 0.000 claims description 8
- 229910000679 solder Inorganic materials 0.000 claims description 8
- 229920002125 Sokalan® Polymers 0.000 claims description 7
- 125000004122 cyclic group Chemical group 0.000 claims description 7
- 239000004743 Polypropylene Substances 0.000 claims description 6
- 239000011889 copper foil Substances 0.000 claims description 6
- 229920001155 polypropylene Polymers 0.000 claims description 6
- 229920000178 Acrylic resin Polymers 0.000 claims description 5
- 239000004925 Acrylic resin Substances 0.000 claims description 5
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229920006026 co-polymeric resin Polymers 0.000 claims description 5
- 230000000379 polymerizing effect Effects 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 5
- 229920001684 low density polyethylene Polymers 0.000 claims description 4
- 239000004702 low-density polyethylene Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229920005668 polycarbonate resin Polymers 0.000 claims description 4
- 239000004431 polycarbonate resin Substances 0.000 claims description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 4
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims description 3
- 229920005672 polyolefin resin Polymers 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 229920001225 polyester resin Polymers 0.000 claims 2
- 239000004645 polyester resin Substances 0.000 claims 2
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000004584 polyacrylic acid Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 21
- 239000000853 adhesive Substances 0.000 description 14
- 230000001070 adhesive effect Effects 0.000 description 14
- 238000003475 lamination Methods 0.000 description 14
- 239000002245 particle Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229920002050 silicone resin Polymers 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 125000005641 methacryl group Chemical group 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 239000013034 phenoxy resin Substances 0.000 description 2
- 229920006287 phenoxy resin Polymers 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009747 swallowing Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/10165—Functional features of the laminated safety glass or glazing
- B32B17/10293—Edge features, e.g. inserts or holes
- B32B17/10302—Edge sealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10743—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing acrylate (co)polymers or salts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
- B32B17/10—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
- B32B17/10005—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
- B32B17/1055—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
- B32B17/10788—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/0481—Encapsulation of modules characterised by the composition of the encapsulation material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a solar cell module and a method for manufacturing the solar cell module.
- the solar cell module has a structure in which a filler is disposed between the translucent member and the back surface protective film, and a plurality of solar cells are sealed in the filler.
- the plurality of solar cells are connected in series or in parallel by a wiring member.
- a plurality of solar cells arranged in one direction are electrically connected by a wiring member to constitute a solar cell string.
- a plurality of solar cell strings are arranged in another direction orthogonal to one direction, and the wiring members positioned at the ends between the adjacent strings are electrically connected by the jumper wiring.
- the crossover wiring is also used as an output wiring for taking out the generated power from all the solar cell strings. Therefore, a part of the crossover wiring collects the power generation output from the wiring member, routes it to the external output of the solar cell module, and is soldered to a conductor that is electrically connected to the external output unit.
- Patent Document 1 a translucent member, a filler sheet, a plurality of solar cell strings, a filler sheet, and a back surface protective film are laminated in this order, and this laminate is manufactured by heating and pressing with a laminating apparatus. A solar cell module is described.
- the back surface protective film may bend to the translucent member side and be damaged by coming into contact with the end of the crossover wiring. For this reason, there exists a possibility of reducing the manufacture yield of a solar cell module.
- the present invention provides a solar cell module that suppresses damage to the back surface protection form and improves the manufacturing yield.
- a solar cell module includes a surface protection member, a back surface protection film, a plurality of solar cells disposed between the surface protection member and the back surface protection film, and the surface protection member. And the back surface protective film, a filler for sealing the plurality of solar cells, a wiring member for electrically connecting the plurality of solar cells to each other, and a bridge electrically connected to the wiring member
- the wiring is made of an insulating material that is interposed between the front surface protective member and the back surface protective film in the vicinity of the transition wiring and is harder than the filler or having a lower melt flow rate at a temperature equal to or higher than the softening point of the filler.
- An end face sealing member is made of an insulating material that is interposed between the front surface protective member and the back surface protective film in the vicinity of the transition wiring and is harder than the filler or having a lower melt flow rate at a temperature equal to or higher than the softening point of the filler.
- a solar cell module in another aspect of the present invention, includes a surface protection member, a back surface protection film, a plurality of solar cells disposed between the surface protection member and the back surface protection film, and the surface protection member. And a back surface protective film between the first filler for sealing the plurality of solar cells, a wiring member for electrically connecting the plurality of solar cells to each other, and electrically connected to the wiring member.
- a transition wire and a second filler disposed at least at a part of the position where the transition wire is disposed, and having a melt flow rate smaller than that of the first filler, and the second filler is Further, the wiring has a thickness such that the wiring is separated from the back surface protective film across the interval between the transition wire and the back surface protective film.
- a method for manufacturing a solar cell module includes wiring a plurality of solar cells by a wiring member and a crossover wiring, and a first filler sheet, the plurality of solar cells on a surface protection member, A first filler sheet, a second filler sheet disposed in at least a part of the place where the crossover wiring is disposed and having a melt flow rate lower than that of the first filler sheet, and a back surface protective film are laminated in this order. Then, a laminate is formed, the laminate is heated and pressed, and the softened filler is filled around the plurality of solar cells.
- a solar cell module in another aspect of the present invention, includes a surface protection member, a back surface protection film, a plurality of solar cells disposed between the surface protection member and the back surface protection film, and the surface protection member. And the back surface protective film, a filler for sealing the plurality of solar cells, a wiring member for electrically connecting the plurality of solar cells to each other, and a bridge electrically connected to the wiring member Wiring, and the thickness of the portion located between the surface protection member and the back surface protective film at the end of the solar cell module on the side where at least the crossover wiring is arranged is greater than the thickness of the central portion. Largely formed.
- a solar cell module is configured by wiring a plurality of solar cells by a wiring member and a crossover wiring, and on a surface protection member, a filler sheet, the plurality of solar cells, the filler sheet, and the bridge
- the filler sheet placed at the place where the wiring is placed, the back surface protective film on the top is laminated in this order to form a laminate, the laminate is heated and pressed, and at least the transition wire is arranged
- a thickness of the filler positioned between the surface protection member on the side and the back surface protection film is formed to be larger than a thickness of the filler in a central portion, and between the surface protection member and the back surface protection film
- the plurality of solar cells are sealed with the filler.
- a solar cell module is configured by wiring a plurality of solar cells by a wiring member and a crossover wiring, and on the surface protection member, a filler sheet, the plurality of solar cells, the filler sheet, and the uppermost part.
- the back surface protective film is laminated in this order to form a laminated body, and the laminated body is pressed in a state where the laminating temperature of the portion where the crossover wiring is located is heated higher than the other portions, and at least the crossover wiring
- the thickness of the filler positioned between the surface protection member on the side where the metal is disposed and the back surface protection film is formed to be larger than the thickness of the filler at the central portion, and the surface protection member and the back surface protection
- the plurality of solar cells are sealed with the filler between the film.
- a solar cell module is configured by wiring a plurality of solar cells by a wiring member and a crossover wiring, and on the surface protection member, a filler sheet, the plurality of solar cells, the filler sheet, and the uppermost part.
- the back surface protective film is laminated in this order to form a laminated body, the laminated body is heated, and after the passage of a predetermined time after the start of crimping of a portion other than the portion where the transition wiring is located, the transition wiring is positioned.
- the pressure of the portion to be pressed is started, the laminate is pressed, and the thickness of the filler located between at least the front surface protection member and the back surface protection film on the side where the crossover wiring is arranged is determined as a central portion.
- the plurality of solar cells are sealed with the filler between the surface protective member and the back surface protective film.
- a method for manufacturing a solar cell module includes: wiring a plurality of solar cells by a wiring member and a crossover wiring; and a filler sheet, the plurality of solar cells, and a filler sheet on a surface protection member. Then, a back surface protective film is laminated on the uppermost portion in this order to form a laminated body, and the laminated body is heated, and the crimping strength of the portion other than the portion where the jumper wiring is located is higher than the crimping strength of the portion where the jumper wire is located.
- the crossover wiring can be prevented from coming into contact with the back surface protective film.
- FIG. 2 is an enlarged cross-sectional view of a main part of the solar cell module according to the first embodiment, taken along line AA in FIG.
- FIG. 3 is an enlarged cross-sectional view of a main part of a solar cell module according to a second embodiment, taken along line AA in FIG.
- FIG. 5 is an enlarged cross-sectional view of a main part of a solar cell module according to a third embodiment, taken along line AA in FIG. FIG.
- FIG. 6 is an enlarged cross-sectional view of a main part of a solar cell module according to a fourth embodiment, taken along line AA in FIG.
- FIG. 7 is an enlarged cross-sectional view of a main part of a solar cell module according to a fifth embodiment, taken along line AA in FIG.
- FIG. 10 is an enlarged cross-sectional view of a main part of a solar cell module according to a sixth embodiment, taken along line AA in FIG. It is a principal part expanded sectional view of the solar cell module which concerns on the 7th Embodiment of this invention. It is the top view seen from the back surface side of the solar cell module centering on the crossover wiring part of the solar cell module which concerns on the 7th Embodiment of this invention.
- FIGS. 1 to 3 A schematic configuration of the solar cell module 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
- the solar cell module 10 is formed in a substantially rectangular shape in plan view.
- the solar cell module 10 includes a solar cell 11, a surface protection member 12, a back surface protection film 13, and fillers 14a and 14b.
- the solar cell module 10 is configured by sealing a plurality of solar cells 11 between the surface protection member 12 and the back surface protection film 13. Electrodes are formed on the light receiving surface and the back surface of the solar cell 11.
- the plurality of solar cells 11 are connected to each other by the wiring member 16.
- the plurality of solar cells 11 connected in series by the wiring member 16 constitutes a string 110 that is a unit. These strings 110 and 110 are connected by a crossover wiring 20. A part of the crossover wiring 20 is used as an output wiring for outputting electricity to the outside.
- the solar cell 11 is made of a crystalline semiconductor composed of, for example, single crystal silicon or polycrystalline silicon having a thickness of about 0.15 mm, and has a substantially square shape with one side being 100 mm, but is not limited thereto. Other solar cells may be used.
- the solar cell 11 has, for example, an n-type region and a p-type region.
- a junction for forming an electric field for carrier separation is formed at the interface between the n-type region and the p-type region.
- the wiring member 16 is connected to an electrode formed on the light receiving surface of the solar cell 11 and an electrode formed on the back surface of another solar cell 11 adjacent to the solar cell 11. Thereby, the adjacent solar cells 11 are electrically connected.
- the wiring member 16 includes a thin plate-like copper foil and solder plated on the surface of the copper foil.
- the solder plated on the surface of the wiring member 16 is melted and connected to the electrode of the solar cell 11.
- the connection between the solar cell 11 and the wiring member 16 can be performed using a resin adhesive in addition to the connection using solder.
- the resin adhesive is preferably cured at a temperature lower than the melting point of the eutectic solder, that is, about 200 ° C. or lower.
- a resin adhesive film having anisotropy is used as the resin adhesive.
- the conductive adhesive film includes at least a resin adhesive component and conductive particles dispersed therein.
- a resin adhesive component in which conductive particles are dispersed is provided on a base film made of polyimide or the like.
- the resin adhesive component is composed of a composition containing a thermosetting resin.
- an epoxy resin, a phenoxy resin, an acrylic resin, a polyimide resin, a polyamide resin, or a polycarbonate resin can be used.
- These thermosetting resins are used singly or in combination of two or more, and one or more thermosetting resins selected from the group consisting of epoxy resins, phenoxy resins and acrylic resins are preferable.
- the conductive particles include metal particles such as gold particles, silver particles, copper particles, and nickel particles, or conductive or insulating core particles such as gold plating particles, copper plating particles, and nickel plating particles. Conductive particles formed by coating with a conductive layer such as a layer are used.
- the surface protection member 12 is disposed on the light receiving surface side of the filler 14 a and protects the surface of the solar cell module 10.
- glass having translucency and water shielding properties, translucent plastic, or the like can be used as the surface protection member 12.
- the back surface protective film 13 is disposed on the back surface side of the filler 14b and protects the back surface of the solar cell module 10.
- a resin film such as PET (Polyethylene Terephthalate), a laminated film having a structure in which an Al (aluminum) foil is sandwiched between resin films, or the like can be used.
- Fillers 14 a and 14 b seal the solar cell 11 between the front surface protection member 12 and the back surface protection film 13.
- EVA ethylene / vinyl acetate copolymer resin
- polyolefins such as polyethylene and polypropylene, cyclic polyethylene, ionomers, polyacrylic acid polymers, and copolymers obtained by polymerizing a plurality of these can be used.
- at least the filler 14a disposed between the surface protection member 12 and the solar cell 11 has translucency.
- an end face sealing material 17 is disposed near the crossover wiring 20 as will be described later.
- a surface protection member 12, an end surface sealing material 17 disposed on the surface protection member 12 in the vicinity of the crossover wiring 20, a front surface side filler resin sheet 14a, a plurality of solar cell strings, a back surface side filler resin sheet 14b, And the back surface protective film 13 are laminated in this order, and the laminated body is heated and pressurized by a laminating apparatus to soften the resin sheet for the filler while maintaining a predetermined interval at the place where the end face sealing material 17 is arranged. . Then, the air bubbles inside are expelled, and the softening filling resin is uniformly filled around the solar cell 11, so that the solar cell 11 is sealed between the surface protection member 12 and the back surface protection film 13.
- the back surface protective film 13 is provided with an opening 13 a for taking out the output wiring 20.
- a terminal box (not shown) is attached using an adhesive such as silicone resin so as to cover the opening 13a of the back surface protective film 13.
- the output crossover wiring 20 taken out from the opening 13a is connected to a terminal in a terminal box (not shown) and led out to the outside.
- the terminal block of the terminal box is provided with four terminals, to which the corresponding output transition wirings 20 1 to 20 4 are connected.
- a backflow prevention diode is connected between the terminals of the terminal box.
- the interconnectors 20 1-20 4 for these output, an insulating member 20a is attached to insulate the transition wirings 20 for other output.
- FIGS. 1 and 2 six strings are connected in series. Output transition wirings 20 1 leftmost string is pulled out from the opening 13a. Second and third string from the left are connected by the output connecting wire 20 2, interconnectors 20 2 for the output is withdrawn from the opening 13a.
- rightmost output interconnectors 20 4 strings is pulled from the opening 13a.
- the second from the right and third strings are connected by the output connecting wire 20 3, the output line 20 3 is pulled out from the opening 13a.
- the solar cell module is configured by being drawn out from the opening 13a of the back surface protective film 13 as the output wirings 20 1 to 20 4 from the six strings, and connected to predetermined terminals of the terminal box. .
- An Al (aluminum) frame (not shown) can be attached to the outer periphery of the solar cell module 10 having the above configuration.
- the wiring member 16 located at the end of each solar cell string is connected to the crossover wiring 20 that connects the solar cell strings.
- the crossover wiring 20 is also used as an output wiring for taking out the power generation output from all the solar cell strings.
- the output transition wiring 20 taken out to the outside is connected to the terminal of a terminal box (not shown) for the electrical output from the solar cell 11.
- the crossover wiring 20 is usually a copper foil having a thickness of about 0.1 mm to 0.3 mm and a width of 4 to 6 mm, and its entire surface is solder-coated, cut to a predetermined length, and soldered to the wiring member 16. Yes.
- the fillers 14a and 14b flow, the back surface protection film 13 bends to the surface protection film 12 side, and the solar cell module 10 ends.
- the thickness of the fillers 14a and 14b is reduced.
- angular part of the crossover wiring 20 located in the edge part side of the solar cell module 10 may penetrate the filler 14b on the back surface side, and may reach the back surface protective film 13 side.
- the end portions of the crossover wires 20 located at the four corners of the solar cell module 10 are in contact with the back surface protective film 13.
- the ends of the solar cell module 10 where the crossover wires 20 are arranged are filled at a temperature higher than the softening point of the fillers 14a and 14b.
- An end face sealing material 17 made of an insulating material harder than the materials 14a and 14b or an insulating material having a low melt flow rate (MFR) is interposed. That is, the end face seal of such a size that the distance between the front surface protection member 12 and the rear surface protection film 13 is maintained at a predetermined distance during and after the lamination so that the end of the crossover wiring 20 does not contact the back surface protection film 13. Stop material 17 is interposed.
- the outflow of the fillers 14a and 14b is suppressed, and the wiring member 16 is reliably sealed by the fillers 14a and 14b. Thereby, since insulation is maintained even if the distance between the end face of the surface protection member 12 and the crossover wiring 20 is reduced, the surface protection member 12 can be reduced, and module efficiency can be improved.
- the shape of the end surface portion of the solar cell module 10 can be maintained, and it can be applied to a building material integrated solar cell module with a high yield.
- the end face sealing material 17 can reduce the outflow of the fillers 14a and 14b, it is possible to reduce the trimming process for removing the filler that protrudes to the periphery in the subsequent process, and to reduce the manufacturing cost.
- the inside of the module can be deaerated during lamination, and the solar cell module can be manufactured with high yield.
- the fillers 14a and 14b, the end surface sealing material 17 and the adhesive layer 18 may satisfy the following relationship.
- the end surface sealing member 17 may be selected from an insulating material that is harder than the fillers 14a and 14b or has a lower melt flow rate at a temperature equal to or higher than the softening point of the fillers 14a and 14b. That is, when the fillers 14a and 14b are selected, the material of the end surface sealing member 17 that can be used can be selected.
- the adhesive layer 18 may be selected from materials that cure at a lower temperature than the softening points of the fillers 14a and 14b.
- Table 1 illustrates the fillers 14a and 14b. Note that the fillers 14a and 14b may be selected from the materials shown in Table 1. A combination of the materials shown in Table 1 can also be used as the filler.
- EVA is an ethylene / vinyl acetate copolymer resin
- HDPE is a high-density polyethylene resin
- LDPE is a low-density polyethylene resin.
- the end surface sealing member 17 may be selected from an insulating material harder than the selected fillers 14a and 14b or an insulating material having a low melt flow rate. .
- the following are insulating materials whose hardness at the high temperature (40 degrees to 180 degrees) which is the softening point temperature of the filler is harder than that of the filler.
- Glass epoxy resin which is a material obtained by impregnating a substrate such as glass cloth, glass fiber, or glass paper with an epoxy resin, a phenol resin, a methacryl resin, a silicone resin, an acrylic resin, or a urethane resin
- the melt flow rate of this glass epoxy resin is zero.
- Epoxy resin, phenol resin, methacryl resin, silicone resin, acrylic resin or urethane resin, and the melt flow rate of these resins is 0.02 to 53.
- Polyamide resin the melt flow rate of this resin is 10-80.
- Polyolefin resin having a high melting point represented by polypropylene resin, and the melt flow rate of this resin is 5 to 60.
- Polycarbonate resin the melt flow rate of this resin is 2-30.
- melt flow rate of polyethylene and this resin is 0.03 to 50.
- Elastomers such as butyl rubber, butadiene rubber and styrene / butadiene rubber, and the melt flow rate of this resin is 5 to 60.
- the insulating resin that cures at a temperature lower than the softening point temperature of the filler that can be used as the adhesive layer 18 is shown in Table 2.
- an epoxy resin may be used as the adhesive layer 18 and a glass epoxy resin may be used as the end surface sealing member 17.
- the fillers 14 a and 14 b are softened between the surface protection member 12 and the back surface protection film 13 at the end of the solar cell module 10 on which the crossover wiring 20 is arranged.
- An end face sealing material 17 is provided through an adhesive layer 18 that cures at a lower temperature than the point.
- the adhesive layer 18 is provided on each of the surface protection member 12 and the back surface protection film 13 side.
- the fillers 14a and 14b flow, but since the end surface sealing material 17 made of an insulating material harder than the fillers 14a and 14b or an insulating material having a low melt flow rate is interposed, It is possible to prevent the back surface protection film 13 from being curved toward the surface protection member 12, and to prevent the crossover wiring 20 from penetrating the filler 14 b and coming into contact with the back surface protection film 13.
- the end surface sealing material 17 is provided between the surface protection member 12 and the back surface protection film 13 of the edge part of the solar cell module 10 by which the crossover wiring 20 is distribute
- the end surface sealing material 17 is configured to be bonded by the fillers 14a and 14b.
- the end surface sealing material 17 is provided with an engaging portion 17 a that engages with the surface protection member 12.
- the engaging portion 17a is engaged with the surface protection member 12, and the end surface sealing material 17 is temporarily fixed to the surface protection member 12 until the lamination is completed.
- the end surface sealing material 17 is bonded by the fillers 14 a and 14 b and fixed between the front surface protection member 12 and the rear surface protection film 13.
- the end surface sealing material 17 can be fixed with higher accuracy by fixing the end surface sealing material 17 to the surface protection member 12 and then setting and laminating.
- the end surface sealing material 17 is provided between the surface protection member 12 and the back surface protection film 13 of the edge part of the solar cell module 10 by which the crossover wiring 20 is distribute
- the end surface sealing material 17 is configured to be bonded by an adhesive 18 and fillers 14a and 14b.
- the end surface sealing material 17 is provided with an engaging portion 17 a that engages with the surface protection member 12.
- the engaging portion 17 a is engaged with the surface protection member 12, and the surface protection member 12 and the end surface sealing material 17 are adhered by the adhesive layer 18 at the start of lamination.
- the end surface sealing material 17 is bonded by the fillers 14 a and 14 b and the adhesive 18, and is fixed between the surface protection member 12 and the back surface protection film 13.
- the end surface sealing material 17 is provided between the surface protection member 12 and the back surface protection film 13 of the edge part of the solar cell module 10 by which the crossover wiring 20 is distribute
- the end surface sealing material 17 is configured to be bonded by an adhesive 18 and fillers 14a and 14b.
- the end surface sealing material 17 is provided with an engaging portion 17 a that engages with the surface protection member 12.
- An adhesive layer 18 is provided on the bottom and side surfaces of the engaging portion 17a.
- the engaging portion 17 a is engaged with the surface protection member 12, and the surface protection member 12 and the end surface sealing material 17 are adhered by the adhesive layer 18 at the start of lamination.
- the end surface sealing material 17 is bonded by the fillers 14 a and 14 b and the adhesive 18, and is fixed between the surface protection member 12 and the back surface protection film 13.
- the end surface sealing material 17 is provided between the surface protection member 12 and the back surface protection film 13 of the edge part of the solar cell module 10 by which the crossover wiring 20 is distribute
- the end surface sealing material 17 is configured to be bonded by an adhesive 18 and fillers 14a and 14b.
- the end surface sealing material 17 is provided with an engaging portion 17 a that engages with the surface protection member 12.
- An adhesive layer 18 is provided on the bottom and side surfaces of the engaging portion 17a.
- the engaging portion 17 a is engaged with the surface protection member 12, and the surface protection member 12 and the end surface sealing material 17 are adhered by the adhesive layer 18 at the start of lamination.
- the end surface sealing material 17 is bonded by the fillers 14 a and 14 b and the adhesive 18, and is fixed between the surface protection member 12 and the back surface protection film 13.
- FIG. 10 A schematic configuration of a solar cell module 10 according to a seventh embodiment of the present invention will be described with reference to FIG.
- the surface protection member 12 is disposed on the light receiving surface side of the first filler 14 a and protects the surface of the solar cell module 10.
- the back surface protective film 13 is disposed on the back surface side of the second filler 14b and protects the back surface of the solar cell module 10.
- a second filler 14c having a melt flow rate smaller than that of the first fillers 14a and 14b is disposed between the crossover wiring 20 and the back surface protective film 13.
- Fillers 14a, 14b, and 14c seal the solar cell 11 between the front surface protective member 12 and the back surface protective film 13.
- the filler 14a disposed between the surface protection member 12 and the solar cell 11 has translucency.
- the filler 14c and the fillers 14a and 14b arranged at least at a part of the end of the solar cell module 10 in the vicinity of the crossover wiring 20 are selected in consideration of the relationship between the respective material melt flow rates.
- the fillers 14a, 14b and 14c are selected from ethylene / vinyl acetate copolymer (EVA), polyolefin, cyclic polyethylene, ionomer, polyacrylic acid polymer, or a copolymer obtained by polymerizing a plurality of these, and the filler 14a 14b and the filler 14c are selected such that the filler 14c has a lower melt flow rate than the fillers 14a and 14b at a temperature equal to or higher than the softening point of the filler, for example, 150 ° C.
- EVA ethylene / vinyl acetate copolymer
- first filler (first filler sheet) 14a made of a resin sheet on the front side, a plurality of solar cell strings, a filler made of a resin sheet on the back side (first filler sheet) 14b, the 2nd filler (2nd filler sheet) 14c which consists of a resin sheet distribute
- each filler made of a resin sheet is softened.
- a material having a lower melt flow rate is selected as the second filler 14c than the first fillers 14a and 14b.
- the fluidity of the second filler 14c is smaller than that of the first fillers 14a and 14b, so that the distance between the back surface protective film 13 and the crossover wiring 20 is secured at the softening temperature of the resin. A certain cell is expelled and the softening filling resin is uniformly filled around the solar cell 11, and the solar cell 11 is sealed between the front surface protection member 12 and the back surface protection film 13.
- a temperature higher than the softening point of the first fillers 14a and 14b for example, 150 ° C. or higher.
- a second filler 14c made of an insulating material having a lower melt flow rate than the first fillers 14a and 14b is interposed. That is, the gap between the back film 13 and the crossover wiring 20 is maintained at a predetermined interval during and after lamination so that the end of the crossover wiring 20 and the like do not come into contact with the back surface protection film 13.
- the melt flow rate is at the softening point of the first fillers 14 a and 14 b between the back film 13 at the end of the solar cell module 10 on which the crossover wiring 20 is arranged and the crossover wiring 20.
- a second filler 14c made of a small insulating material is interposed.
- the second filler 14c made of an insulating material harder than the first fillers 14a and 14b or an insulating material having a lower melt flow rate is interposed. Therefore, the second filler 14c does not flow much.
- the back surface protection film 13 curves to the surface protection member 12 side, and it can prevent that the crossover wiring 20 penetrates the 2nd filler 14c, and contacts with the back surface protection film 13.
- first fillers 14a and 14b and the second filler 14c may satisfy the following relationship.
- the second filler 14c is selected from an insulating material having a lower melt flow rate than the first fillers 14a and 14b at a temperature equal to or higher than the softening point of the first fillers 14a and 14b, for example, 150 degrees or higher. Good. That is, when the first fillers 14a and 14b are selected, a usable material for the second filler 14c can be selected.
- Table 3 illustrates the first fillers 14a and 14b and the second filler 14c. Note that the fillers 14a, 14b, and 14c may be selected from the materials shown in Table 3. A combination of the materials shown in Table 3 can also be used as the filler.
- EVA is an ethylene / vinyl acetate copolymer resin.
- the first fillers 14a and 14b are selected from the resins exemplified in Table 3, and the second filler 14c may be selected from an insulating material having a lower melt flow rate than the selected fillers 14a and 14b.
- the first fillers 14a and 14b EVA or polyolefin polymer used as the first fillers 14a and 14b
- EVA or polyolefin polymer used in the cyclic polyethylene, ionomer, polyacrylic acid polymer as the second filler 14c. Therefore, a material having a low melt flow rate may be selected. These materials have good adhesion to EVA or polyolefin polymer, and the interface between the two is closely integrated to suppress moisture permeation from the interface.
- FIG. 12 is a schematic diagram showing an example of a laminating apparatus for manufacturing a solar cell module.
- the solar cell 11 is sealed between the front surface protection member 12 and the back surface protection film 13 by the fillers 14a, 14b, and 14c.
- a laminating apparatus as shown in FIG. 12 is used.
- the laminating apparatus includes an upper chamber 101 having an inflatable diaphragm 102 and a lower chamber 105 having a support 107 incorporating a heater for heating the laminate to be laminated.
- a vacuum pump 104 outside the chamber is connected so that the diaphragm sheet 102 inside the upper chamber 101 and the inner region surrounded by the upper chamber 101 can be depressurized.
- the upper chamber 101 and the lower chamber 105 are openable and closable.
- the lower chamber 105 is connected to a vacuum pump 110 for depressurizing the inside of the lower chamber 105, and a support body 107 disposed almost in the center of the lower chamber 105 is made of a metal member such as aluminum or stainless steel. Is disposed in an insulating state with respect to the support 107.
- FIGS. 12 With reference to the laminating apparatus shown in FIG. 12, a method of laminating with the filler 14c disposed in the crossover wiring 20 portion and securing the space between the back surface protective film 13 and the crossover wiring 20 is shown in FIGS. This will be described with reference to FIG.
- the laminating process first, placing the laminated body 10 1 to be laminated on a support 107 in the lower chamber 105.
- Laminate 10 1, the surface protective member 12, such as EVA on its first filling material made of a resin sheet (first filler sheet) 14a, the wiring member 16, a plurality of which were wired by interconnectors 20
- the first filling material (first filling material sheet) 14b made of a resin sheet such as the solar cell 11 or EVA, and the second filling made of a resin sheet at a position where at least the crossover wiring 20 for connecting the strings is arranged.
- the material (second filler sheet) 14c and the back surface protective film 13 are laminated on the top.
- the second filler 14c is selected from an insulating material having a lower melt flow rate than the first fillers 14a and 14b.
- the second filler 14c is selected from cyclic polyethylene and ionomer polyacrylic acid polymer.
- the second filler 14c is a material having a lower melt flow rate than the EVA or polyolefin polymer used.
- EVA or polyolefin-based polymer may be used as the second filler 14c, and a resin having a higher melt flow rate than the resin of the second filler 14c may be used as the first fillers 14a and 14b. .
- the laminated body 101 described above is set on the support 107 with the surface protection member 12 side down, the upper and lower chambers 101 and 105 are closed, and the upper chamber vacuum region and the lower chamber vacuum region are set by the vacuum pumps 104 and 110.
- the pressure is reduced to about 66 to 133 Pa.
- the lower chamber vacuum region 105 is also returned to atmospheric pressure, the upper chamber 101 and the lower chamber 105 are opened, and the solar cell module 10 is taken out.
- the second filling sheet 14c having a low melt flow rate is disposed at the position where the crossover wiring 20 is disposed, and then laminated. As shown in FIG. 9, the second filler 14 c located at the end of the solar cell module 10 on which the crossover wiring 20 is arranged does not flow so much, and the corner of the crossover wiring 20 and the back surface protective film 13 A sufficient interval can be maintained, and the back surface protective film 13 is suppressed from being damaged.
- the second filler 14 c is arranged on the first filler 14 b where the crossover wiring 20 is located.
- the first filler 14b is disposed at least in the vicinity of the crossover wiring 20 that connects the strings 30.
- the second filler 14c is disposed so as to be in contact with the filler 14b.
- Other configurations are the same as those of the seventh embodiment.
- the laminated body of the eighth embodiment having such a configuration is laminated in the same manner as described above.
- the second filler 14c has a melt flow rate smaller than that of the first fillers 14a and 14b, so the second filler 14c does not flow so much, and the corners of the transition wiring 20 and the back surface protective film It is possible to maintain a sufficient distance between the back surface protective film 13 and the back surface protective film 13 from being damaged.
- FIG. 10 A schematic configuration of a solar cell module 10 according to a ninth embodiment of the present invention will be described with reference to FIG.
- the surface protection member 12 is disposed on the light receiving surface side of the filler 14 and protects the surface of the solar cell module 10.
- the back surface protective film 13 is disposed on the back surface side of the filler 14 and protects the back surface of the solar cell module 10.
- the filler 14 seals the solar cell 11 between the front surface protective member 12 and the back surface protective film 13.
- the filler 14 include EVA (ethylene / vinyl acetate copolymer resin), polyolefins such as polyethylene and polypropylene, cyclic polyethylene, ionomers, polyacrylic acid polymers, copolymers obtained by polymerizing a plurality of these, polydimethylsiloxane, and the like. Silicone-based resins can be used.
- a filler having translucency is used as the filler 14 disposed at least between the surface protection member 12 and the solar cell 11.
- the surface protective member 12, the front surface side filler resin sheet, the plurality of solar cell strings 30, the back surface side filler resin sheet, and the back surface protective film 13 are laminated in this order.
- the resin sheet for fillers is softened by heating and pressurizing this laminated body with a laminating apparatus. Then, the air bubbles inside are expelled, and the softening filling resin is uniformly filled around the solar cell 11, so that the solar cell 11 is sealed between the surface protection member 12 and the back surface protection film 13.
- the solar cell module 10 As shown in FIG. 15, the solar cell module 10 according to the ninth embodiment of the present invention varies in the size of the thickness of the filler 14 filled between the surface protection member 12 and the back surface protection film 13 depending on the part. It is laminated so that.
- sealing member 14 1 is located in the solar cell module 10 ends including at least interconnectors 20 is larger than the center of the sealing member 14 2 of the thickness of the site.
- the filler 14 flows in the vicinity of the end portions of the surface protection member 12 and the back surface protection film 13 during the laminating process described above, and the back surface protection film 13 protects the surface.
- the thickness of the filler 14 at the end of the solar cell module 10 is reduced by bending toward the film 12 side.
- angular part of the crossover wiring 20 located in the edge part side of the solar cell module 10 may penetrate the filler 14b on the back surface side, and may reach the back surface protective film 13 side.
- the end portions of the crossover wires 20 located at the four corners of the solar cell module 10 are in contact with the back surface protective film 13.
- at least one part of the crossover wiring 20 contacts the back surface protection member 13 in this way there exists a possibility that the reliability of a solar cell module may be reduced, and there exists a possibility that a yield may fall for this reason.
- the filler 14 1 located at the end of the side of the solar cell module 10 over wires 20 are disposed, the central site filler 14 It is formed larger than the thickness of 2 .
- the additional filler interconnectors 20 parts The thickness of the filler depending on the part is controlled by, for example, arranging or changing the conditions at the time of laminating and controlling the curing of the filler.
- a method of increasing the thickness of the filler 14 1 located at the end of the solar cell module 10 over wires 20 are disposed.
- Lamination process first, placing the laminated body 10 1 to be laminated on a support 107 in the lower chamber 105.
- the first filler 14b made of a sheet, the filler 14d made of an additional resin sheet at a position where the crossover wiring 20 connecting at least the string 20 is disposed, and the back surface protective film 13 are laminated on the uppermost part. Yes.
- the upper and lower chambers 101, 105 are closed, and the upper chamber vacuum region and the lower chamber vacuum region are reduced to about 66 to 133 Pa by the vacuum pumps 104, 110.
- the lower chamber vacuum region 105 is also returned to atmospheric pressure, the upper chamber 101 and the lower chamber 105 are opened, and the solar cell module 10 is taken out.
- sealing member 14 1 located at the end may be larger than the filler 14 2 of the thickness of the central portion.
- a filler 14 1 interconnectors 20 are located at the end of the solar cell module 10 on the side which is arranged, by formed larger than the filler 14 2 of the thickness of the central portion, the corners of the interconnectors 20 and the back A sufficient distance from the protective film 13 can be maintained, and the crossover wiring 20 can be prevented from coming into contact with the back surface protective film 13.
- the laminating temperature of the part where the crossover wiring 20 is located is made higher than that of the other part. That is, the temperature of the heaters 107a and 107b built in the support 107 is changed to increase the laminating temperature of the portion where the crossover wiring 20 is located.
- the heaters 107a at both ends are controlled so that the laminating temperature of the portion where the crossover wiring 20 is located is 130 ° C. to 180 ° C.
- the central portion heater 107b is controlled so that the central portion temperature becomes 100 ° C. to 130 ° C.
- a surface protection member 102 is placed on a support 107 in the lower chamber 105, and a plurality of fillers (filler sheet) 14 a made of a resin sheet such as EVA, a wiring member 16, and a transition wiring 20 are wired thereon.
- the laminated body which consists of the solar cell 11, the filler 14b which consists of resin sheets, such as EVA, and the back surface protective film 13 is put on the uppermost part.
- the upper chamber vacuum region and the lower chamber vacuum region 11 are decompressed to about 66 to 133 Pa by the vacuum pumps 104 and 110.
- the temperature of the laminated body is heated by the support body 107 in which the temperature is distributed, and the temperature rise is started. In this state, maintain for 4 to 5 minutes.
- the fillers 14a and 14b such as EVA are softened, but when the temperature is high, the curing starts first. For this reason, the hardening of the filler at the position of the crossover wiring 20 starts first.
- the diaphragm sheet 102 is expanded by gradually returning the upper chamber vacuum region to atmospheric pressure, and the laminate is heated and pressed between the diaphragm sheet 102 and the support 107 of the upper chamber 101. This state is maintained for about 4 to 5 minutes to expel air bubbles inside the laminate, and the softened fillers 14a and 14b are uniformly filled around the solar cell 11.
- the thickness of the portion where the hardening has started at the time of heating and pressing does not start hardening. Thickness will increase from the location.
- the vacuum region of the lower chamber 105 is also returned to atmospheric pressure, the upper chamber 101 and the lower chamber 101 are opened, and the solar cell module 10 is taken out.
- filler 14 1 located at the end of the solar cell module 10 on the side where the transition wirings 20 are disposed are it can be larger than the center of the sealing member 14 2 of the thickness of the site.
- a filler 14 1 interconnectors 20 are located at the end of the side solar cell module 10 which is arranged, by larger than the filler 14 2 of the thickness of the other portions, the corner portions of the interconnectors 20 and the back surface protection A sufficient distance between the film 13 and the film 13 can be maintained, and the crossover wiring 20 is prevented from coming into contact with the back surface protective film 13.
- the thickness of the filler 14 is changed depending on the location so as to change the time for starting the crimping between the center and both ends.
- the laminator device is configured such that a crimping member 121 for crimping the crossover wiring 20 portion and a crimping member 120 for crimping other portions are operated separately.
- a surface protection member 102 is placed on a support 107 in the lower chamber 105, and a plurality of fillers (filler sheet) 14 a made of a resin sheet such as EVA, a wiring member 16, and a transition wiring 20 are wired thereon.
- seat) 14b which consists of resin sheets, such as the solar cell 11 and EVA, and the uppermost part is installed.
- the upper chamber vacuum region and the lower chamber vacuum region are reduced to about 66 to 133 Pa by the vacuum pumps 104 and 110.
- the temperature of the laminate is started by heating the laminate with the support 107.
- the temperature of the laminated body reaches 130 to 180 ° C., and is maintained in this state for 4 to 5 minutes to soften the fillers 14a and 14b.
- the vicinity of the center is crimped for 2 to 3 minutes by the crimping member 120 at the center.
- the whole is crimped by the crimping members 121 at both ends and the crimping member 120 at the center.
- This state is maintained for about 4 to 5 minutes to expel air bubbles inside the laminate, and the softened fillers 14a and 14b are uniformly filled around the solar cell 11.
- filler 14 1 located at the end of the solar cell module 10 over wires 20 are disposed, the other parts filler 14
- the thickness can be larger than 2 .
- a filler 14 1 interconnectors 20 are located at the end of the solar cell module 10 on the side which is arranged, by formed larger than the filler 14 2 of the thickness of the central portion, the corners of the interconnectors 20 and the back A sufficient distance from the protective film 13 can be maintained, and the crossover wiring 20 can be prevented from coming into contact with the back surface protective film 13.
- the thickness of the filler 14 is changed depending on the location so as to change the pressure-bonding strength between the center and both ends.
- the laminator device is configured such that the crimping member 121 for crimping the crossover wiring portion 20 and the crimping member 120 for crimping other portions are driven separately.
- the surface protection member 12 is placed on the support 107 in the lower chamber 105, and a plurality of solar cells on which wiring is performed by a filler (filling sheet) 14 a made of a resin sheet such as EVA, the wiring member 16, and the transition wiring 20.
- a filler (filler sheet) 14 b made of a resin sheet such as EVA, and a laminate in which the back surface protective film 13 is placed on the uppermost part are installed.
- the upper chamber vacuum region and the lower chamber vacuum region are reduced to about 66 to 133 Pa by the vacuum pumps 104 and 110.
- the temperature of the laminate is started by heating the laminate with the support 107.
- the temperature of the laminated body 8 reaches 130 to 180 ° C., and this state is maintained for 4 to 5 minutes.
- the crimping strength of the crimping member 120 near the center is increased by the crimping member 120 near the center, and the crimping strength is weaker than that of the central portion by the crimping members 121 at both ends, and the crimping is performed for 4 to 5 minutes.
- a filler 14 1 interconnectors 20 are located at the end of the solar cell module 10 on the side which is arranged, by formed larger than the filler 14 2 of the thickness of the central portion, the corners of the interconnectors 20 and the back A sufficient distance from the protective film 13 can be maintained, and the crossover wiring 20 can be prevented from coming into contact with the back surface protective film 13.
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
The present invention provides a solar cell module in which damage to a reverse-surface protective film is suppressed, as is the occurrence of damage. This solar cell module (10) comprises: a front-surface protective member (12); a reverse-surface protective film (13); a plurality of solar cells (11) installed between the front-surface protective member (12) and the reverse-surface protective film (13) and electrically connected by wiring members (16); fillers (14a, 14b) for sealing the solar cells (11) between the front-surface protective member (12) and the reverse-surface protective film (13); and transition wiring (20) electrically connected to the wiring members (16). An end-surface sealing member (17) is interposed between the reverse-surface protective film (13) and the front-surface protective member (12) at least in the vicinity of the transition wiring (20), the sealing member comprising an insulating material having a lower melt flow rate, or an insulating material having a higher hardness, than a filler at a temperature equal to or greater than the softening point of the filler.
Description
本発明は、太陽電池モジュールおよび太陽電池モジュールの製造方法に関する。
The present invention relates to a solar cell module and a method for manufacturing the solar cell module.
太陽電池モジュールは、透光性部材と裏面保護フィルムとの間に充填材を配し、充填材中に複数の太陽電池を封止した構造を有する。複数の太陽電池は配線部材により、直列または並列に接続されている。
The solar cell module has a structure in which a filler is disposed between the translucent member and the back surface protective film, and a plurality of solar cells are sealed in the filler. The plurality of solar cells are connected in series or in parallel by a wiring member.
太陽電池モジュールにおいて、一の方向に配列された複数の太陽電池が配線部材によって電気的に接続されることにより、太陽電池ストリングを構成する。一の方向と直交する他の方向に複数の太陽電池ストリングが配列され、隣り合うストリング間の端部に位置する配線部材は、渡り配線によって電気的に接続される。また、渡り配線は、全ての太陽電池ストリングからの発電電力を外部に取り出す出力配線としても用いられる。そのため、渡り配線の一部は、配線部材からの発電出力を集電して太陽電池モジュールの外部出力に引き回し、外部出力部と電気的に連結する導体に半田付けされる。
In a solar cell module, a plurality of solar cells arranged in one direction are electrically connected by a wiring member to constitute a solar cell string. A plurality of solar cell strings are arranged in another direction orthogonal to one direction, and the wiring members positioned at the ends between the adjacent strings are electrically connected by the jumper wiring. The crossover wiring is also used as an output wiring for taking out the generated power from all the solar cell strings. Therefore, a part of the crossover wiring collects the power generation output from the wiring member, routes it to the external output of the solar cell module, and is soldered to a conductor that is electrically connected to the external output unit.
特許文献1には、透光性部材、充填材シート、複数の太陽電池ストリング、充填材シート及び裏面保護フィルムの順で積層し、この積層体をラミネート装置で加熱、加圧することにより製造される太陽電池モジュールが記載されている。
In Patent Document 1, a translucent member, a filler sheet, a plurality of solar cell strings, a filler sheet, and a back surface protective film are laminated in this order, and this laminate is manufactured by heating and pressing with a laminating apparatus. A solar cell module is described.
然しながら、ラミネート装置によるラミネート化工程中に、裏面保護フィルムが透光性部材側に曲がり、渡り配線の端部と接触することにより傷つくおそれがある。このため、太陽電池モジュールの製造歩留りを低下させるおそれがある。
However, during the laminating process by the laminating apparatus, the back surface protective film may bend to the translucent member side and be damaged by coming into contact with the end of the crossover wiring. For this reason, there exists a possibility of reducing the manufacture yield of a solar cell module.
本発明は、裏面保護フォルムが傷つくことを抑制し、製造歩留まりを向上した太陽電池モジュールを提供する。
The present invention provides a solar cell module that suppresses damage to the back surface protection form and improves the manufacturing yield.
本発明の1つの態様では、太陽電池モジュールは、表面保護部材と、裏面保護フィルムと、前記表面保護部材と前記裏面保護フィルムとの間に配設された複数の太陽電池と、前記表面保護部材と前記裏面保護フィルムとの間に、前記複数の太陽電池を封止する充填材と、前記複数の太陽電池を互いに電気的に接続する配線部材と、前記配線部材と電気的に接続された渡り配線と、前記渡り配線近傍の前記表面保護部材と裏面保護フィルムの間に介在され、前記充填材の軟化点以上の温度において前記充填材よりも硬い絶縁材またはメルトフローレートが小さい絶縁材からなる端面封止部材と、を備える。
In one aspect of the present invention, a solar cell module includes a surface protection member, a back surface protection film, a plurality of solar cells disposed between the surface protection member and the back surface protection film, and the surface protection member. And the back surface protective film, a filler for sealing the plurality of solar cells, a wiring member for electrically connecting the plurality of solar cells to each other, and a bridge electrically connected to the wiring member The wiring is made of an insulating material that is interposed between the front surface protective member and the back surface protective film in the vicinity of the transition wiring and is harder than the filler or having a lower melt flow rate at a temperature equal to or higher than the softening point of the filler. An end face sealing member.
本発明の別の態様では、太陽電池モジュールは、表面保護部材と、裏面保護フィルムと、前記表面保護部材と前記裏面保護フィルムとの間に配設された複数の太陽電池と、前記表面保護部材と裏面保護フィルムとの間に、前記複数の太陽電池を封止する第1の充填材と、前記複数の太陽電池を互いに電気的に接続する配線部材と、前記配線部材と電気的に接続された渡り配線と、前記渡り配線が配置される位置の少なくとも一部に配置され、前記第1の充填材よりメルトフローレートが小さい第2の充填材と、を備え、前記第2の充填材は、前記渡り配線と裏面保護フィルムとの間の間隔を渡り配線が裏面保護フィルムから離間した状態となる厚みを有する。
In another aspect of the present invention, a solar cell module includes a surface protection member, a back surface protection film, a plurality of solar cells disposed between the surface protection member and the back surface protection film, and the surface protection member. And a back surface protective film between the first filler for sealing the plurality of solar cells, a wiring member for electrically connecting the plurality of solar cells to each other, and electrically connected to the wiring member. A transition wire and a second filler disposed at least at a part of the position where the transition wire is disposed, and having a melt flow rate smaller than that of the first filler, and the second filler is Further, the wiring has a thickness such that the wiring is separated from the back surface protective film across the interval between the transition wire and the back surface protective film.
本発明の別の態様では、太陽電池モジュールの製造方法は、配線部材及び渡り配線により複数の太陽電池を配線し、表面保護部材の上に、第1の充填材シート、前記複数の太陽電池、第1の充填材シート、前記渡り配線が配置された箇所の少なくとも一部に配置され前記第1の充填シートよりメルトフローレートが小さい第2の充填材シート、および裏面保護フィルムをこの順序で積層して積層体を形成し、前記積層体を加熱、押圧し、軟化した前記充填材を前記複数の太陽電池の周囲に充填させる。
In another aspect of the present invention, a method for manufacturing a solar cell module includes wiring a plurality of solar cells by a wiring member and a crossover wiring, and a first filler sheet, the plurality of solar cells on a surface protection member, A first filler sheet, a second filler sheet disposed in at least a part of the place where the crossover wiring is disposed and having a melt flow rate lower than that of the first filler sheet, and a back surface protective film are laminated in this order. Then, a laminate is formed, the laminate is heated and pressed, and the softened filler is filled around the plurality of solar cells.
本発明の別の態様では、太陽電池モジュールは、表面保護部材と、裏面保護フィルムと、前記表面保護部材と前記裏面保護フィルムとの間に配設された複数の太陽電池と、前記表面保護部材と前記裏面保護フィルムとの間に、前記複数の太陽電池を封止する充填材と、前記複数の太陽電池を互いに電気的に接続する配線部材と、前記配線部材と電気的に接続された渡り配線と、を備え、前記充填材は、少なくとも渡り配線が配された側の太陽電池モジュール端部の前記表面保護部材と裏面保護フィルムの間に位置する部位の厚みが、中央の部位の厚みより大きく形成されている。
In another aspect of the present invention, a solar cell module includes a surface protection member, a back surface protection film, a plurality of solar cells disposed between the surface protection member and the back surface protection film, and the surface protection member. And the back surface protective film, a filler for sealing the plurality of solar cells, a wiring member for electrically connecting the plurality of solar cells to each other, and a bridge electrically connected to the wiring member Wiring, and the thickness of the portion located between the surface protection member and the back surface protective film at the end of the solar cell module on the side where at least the crossover wiring is arranged is greater than the thickness of the central portion. Largely formed.
本発明の別の態様では、太陽電池モジュールは、配線部材及び渡り配線により複数の太陽電池を配線し、表面保護部材の上に、充填材シート、前記複数の太陽電池、充填材シート、前記渡り配線が配置された箇所に配置された充填材シート、最上部に裏面保護フィルムをこの順序で積層して積層体を形成し、前記積層体を加熱、押圧し、少なくとも前記渡り配線が配された側の前記表面保護部材と前記裏面保護フィルムの間に位置する前記充填材の厚みを、中央の部位の前記充填材の厚みより大きく形成して、前記表面保護部材と前記裏面保護フィルムとの間に前記複数の太陽電池を前記充填材で封止する。
In another aspect of the present invention, a solar cell module is configured by wiring a plurality of solar cells by a wiring member and a crossover wiring, and on a surface protection member, a filler sheet, the plurality of solar cells, the filler sheet, and the bridge The filler sheet placed at the place where the wiring is placed, the back surface protective film on the top is laminated in this order to form a laminate, the laminate is heated and pressed, and at least the transition wire is arranged A thickness of the filler positioned between the surface protection member on the side and the back surface protection film is formed to be larger than a thickness of the filler in a central portion, and between the surface protection member and the back surface protection film The plurality of solar cells are sealed with the filler.
本発明の別の態様では、太陽電池モジュールは、配線部材及び渡り配線により複数の太陽電池を配線し、表面保護部材の上に、充填材シート、前記複数の太陽電池、充填材シート、最上部に裏面保護フィルムをこの順序で積層して積層体を形成し、前記積層体を前記渡り配線が位置する部分のラミネート温度を他の部分より高くして加熱した状態で押圧し、少なくとも前記渡り配線が配された側の前記表面保護部材と前記裏面保護フィルムの間に位置する前記充填材の厚みを、中央の部位の前記充填材の厚みより大きく形成して、前記表面保護部材と前記裏面保護フィルムとの間に前記複数の太陽電池を前記充填材で封止する。
In another aspect of the present invention, a solar cell module is configured by wiring a plurality of solar cells by a wiring member and a crossover wiring, and on the surface protection member, a filler sheet, the plurality of solar cells, the filler sheet, and the uppermost part. The back surface protective film is laminated in this order to form a laminated body, and the laminated body is pressed in a state where the laminating temperature of the portion where the crossover wiring is located is heated higher than the other portions, and at least the crossover wiring The thickness of the filler positioned between the surface protection member on the side where the metal is disposed and the back surface protection film is formed to be larger than the thickness of the filler at the central portion, and the surface protection member and the back surface protection The plurality of solar cells are sealed with the filler between the film.
本発明の別の態様では、太陽電池モジュールは、配線部材及び渡り配線により複数の太陽電池を配線し、表面保護部材の上に、充填材シート、前記複数の太陽電池、充填材シート、最上部に裏面保護フィルムをこの順序で積層して積層体を形成し、前記積層体を加熱し、前記渡り配線が位置する部分以外の部分の圧着を開始した後、所定時間経過後前記渡り配線が位置する部分の圧着を開始して、前記積層体を押圧し、少なくとも前記渡り配線が配された側の前記表面保護部材と前記裏面保護フィルムの間に位置する前記充填材の厚みを、中央の部位の前記充填材の厚みより大きく形成して、前記表面保護部材と前記裏面保護フィルムとの間に前記複数の太陽電池を前記充填材で封止する。
In another aspect of the present invention, a solar cell module is configured by wiring a plurality of solar cells by a wiring member and a crossover wiring, and on the surface protection member, a filler sheet, the plurality of solar cells, the filler sheet, and the uppermost part. The back surface protective film is laminated in this order to form a laminated body, the laminated body is heated, and after the passage of a predetermined time after the start of crimping of a portion other than the portion where the transition wiring is located, the transition wiring is positioned. The pressure of the portion to be pressed is started, the laminate is pressed, and the thickness of the filler located between at least the front surface protection member and the back surface protection film on the side where the crossover wiring is arranged is determined as a central portion. The plurality of solar cells are sealed with the filler between the surface protective member and the back surface protective film.
本発明の別の態様では、太陽電池モジュールの製造方法は、配線部材及び渡り配線により複数の太陽電池を配線し、表面保護部材の上に、充填材シート、前記複数の太陽電池、充填材シート、最上部に裏面保護フィルムをこの順序で積層して積層体を形成し、前記積層体を加熱し、前記渡り配線が位置する部分の圧着強度より前記渡り配線が位置する部分以外の部分の圧着強度を強くして、前記積層体を押圧し、少なくとも前記渡り配線が配された側の前記表面保護部材と前記裏面保護フィルムの間に位置する前記充填材の厚みを、中央の部位の前記充填材の厚みより大きく形成して、前記表面保護部材と前記裏面保護フィルムとの間に前記複数の太陽電池を前記充填材で封止する。
In another aspect of the present invention, a method for manufacturing a solar cell module includes: wiring a plurality of solar cells by a wiring member and a crossover wiring; and a filler sheet, the plurality of solar cells, and a filler sheet on a surface protection member. Then, a back surface protective film is laminated on the uppermost portion in this order to form a laminated body, and the laminated body is heated, and the crimping strength of the portion other than the portion where the jumper wiring is located is higher than the crimping strength of the portion where the jumper wire is located. Strengthening and pressing the laminate, at least the thickness of the filler located between the surface protection member on the side where the crossover wiring is arranged and the back surface protection film, the filling of the central part The plurality of solar cells are sealed with the filler between the front surface protective member and the back surface protective film.
本発明によると、渡り配線が裏面保護フィルムと接触することを防止できる。
According to the present invention, the crossover wiring can be prevented from coming into contact with the back surface protective film.
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、説明の重複を避けるためにその説明は繰返さない。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきである。従って、具体的な寸法等は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated in order to avoid duplication of description. However, it should be noted that the drawings are schematic and ratios of dimensions and the like are different from actual ones. Accordingly, specific dimensions and the like should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
本発明の第1の実施形態に係る太陽電池モジュール10の概略構成について、図1ないし図3を参照しながら説明する。
A schematic configuration of the solar cell module 10 according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
太陽電池モジュール10は、平面視において略矩形状に形成される。太陽電池モジュール10は、太陽電池11、表面保護部材12、裏面保護フィルム13及び充填材14a、14bを備える。太陽電池モジュール10は、表面保護部材12と裏面保護フィルム13との間に、複数の太陽電池11を封止することにより構成される。太陽電池11の受光面上及び裏面上には電極が形成される。複数の太陽電池11は配線部材16によって互いに接続される。
The solar cell module 10 is formed in a substantially rectangular shape in plan view. The solar cell module 10 includes a solar cell 11, a surface protection member 12, a back surface protection film 13, and fillers 14a and 14b. The solar cell module 10 is configured by sealing a plurality of solar cells 11 between the surface protection member 12 and the back surface protection film 13. Electrodes are formed on the light receiving surface and the back surface of the solar cell 11. The plurality of solar cells 11 are connected to each other by the wiring member 16.
配線材16により直列に接続された複数の太陽電池11は、1単位ユニットであるストリング110を構成している。これらストリング110、110間は渡り配線20により接続されている。渡り配線20の一部は、外部に電気を出力するための出力配線として用いられる。
The plurality of solar cells 11 connected in series by the wiring member 16 constitutes a string 110 that is a unit. These strings 110 and 110 are connected by a crossover wiring 20. A part of the crossover wiring 20 is used as an output wiring for outputting electricity to the outside.
太陽電池11は、例えば、厚みが0.15mm程度の単結晶シリコンや多結晶シリコンなどで構成される結晶系半導体からなり、1辺が100mmの略正方形状を有するが、これに限るものではなく、他の太陽電池を用いても良い。
The solar cell 11 is made of a crystalline semiconductor composed of, for example, single crystal silicon or polycrystalline silicon having a thickness of about 0.15 mm, and has a substantially square shape with one side being 100 mm, but is not limited thereto. Other solar cells may be used.
太陽電池11内には、例えば、n型領域とp型領域を有する。n型領域とp型領域との界面部分でキャリア分離用の電界を形成するための接合部が形成されている。
The solar cell 11 has, for example, an n-type region and a p-type region. A junction for forming an electric field for carrier separation is formed at the interface between the n-type region and the p-type region.
配線部材16は、太陽電池11の受光面上に形成された電極と、この太陽電池11に隣接する他の太陽電池11の裏面上に形成された電極とに接続される。これにより、隣接する太陽電池11間は電気的に接続される。例えば、配線部材16は、薄板状の銅箔と、銅箔の表面にメッキされた半田とを含む。
The wiring member 16 is connected to an electrode formed on the light receiving surface of the solar cell 11 and an electrode formed on the back surface of another solar cell 11 adjacent to the solar cell 11. Thereby, the adjacent solar cells 11 are electrically connected. For example, the wiring member 16 includes a thin plate-like copper foil and solder plated on the surface of the copper foil.
配線部材16と太陽電池11とを半田で接続させる場合には、配線部材16の表面にメッキされた半田を溶融させて、太陽電池11の電極と接続させる。
When connecting the wiring member 16 and the solar cell 11 with solder, the solder plated on the surface of the wiring member 16 is melted and connected to the electrode of the solar cell 11.
太陽電池11と配線部材16との接続は、半田を用いた接続以外に、樹脂接着剤を用いて接続することも可能である。樹脂接着剤は、共晶半田の融点以下、即ち、約200℃以下の温度で硬化することが好ましい。樹脂接着剤としては、例えば、異方性を有する導電性接着フィルムが用いられる。導電性接着フィルムとしては、樹脂接着成分とその中に分散した導電性粒子とを少なくとも含んで構成されている。この内部に導電性粒子が分散された樹脂接着成分がポリイミドなどからなる基材フィルム上に設けられている。樹脂接着成分は熱硬化性樹脂を含有する組成物からなり、例えば、エポキシ樹脂、フェノキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカーボネート樹脂を用いることができる。これらの熱硬化性樹脂は、1種を単独で用いるか2種以上を組み合わせて用いられ、エポキシ樹脂、フェノキシ樹脂及びアクリル樹脂からなる群より選ばれる1種以上の熱硬化性樹脂が好ましい。導電性粒子としては、例えば、金粒子、銀粒子、銅粒子及びニッケル粒子などの金属粒子、或いは、金メッキ粒子、銅メッキ粒子及びニッケルメッキ粒子などの導電性又は絶縁性の核粒子の表面を金属層などの導電層で被覆してなる導電性粒子が用いられる。
The connection between the solar cell 11 and the wiring member 16 can be performed using a resin adhesive in addition to the connection using solder. The resin adhesive is preferably cured at a temperature lower than the melting point of the eutectic solder, that is, about 200 ° C. or lower. As the resin adhesive, for example, a conductive adhesive film having anisotropy is used. The conductive adhesive film includes at least a resin adhesive component and conductive particles dispersed therein. A resin adhesive component in which conductive particles are dispersed is provided on a base film made of polyimide or the like. The resin adhesive component is composed of a composition containing a thermosetting resin. For example, an epoxy resin, a phenoxy resin, an acrylic resin, a polyimide resin, a polyamide resin, or a polycarbonate resin can be used. These thermosetting resins are used singly or in combination of two or more, and one or more thermosetting resins selected from the group consisting of epoxy resins, phenoxy resins and acrylic resins are preferable. Examples of the conductive particles include metal particles such as gold particles, silver particles, copper particles, and nickel particles, or conductive or insulating core particles such as gold plating particles, copper plating particles, and nickel plating particles. Conductive particles formed by coating with a conductive layer such as a layer are used.
表面保護部材12は、充填材14aの受光面側に配置されており、太陽電池モジュール10の表面を保護する。表面保護部材12としては、透光性及び遮水性を有するガラス、透光性プラスチック等を用いることができる。
The surface protection member 12 is disposed on the light receiving surface side of the filler 14 a and protects the surface of the solar cell module 10. As the surface protection member 12, glass having translucency and water shielding properties, translucent plastic, or the like can be used.
裏面保護フィルム13は、充填材14bの裏面側に配置されており、太陽電池モジュール10の背面を保護する。裏面保護フィルム13としては、PET(Polyethylene Terephthalate)等の樹脂フィルム、Al(アルミニウム)箔を樹脂フィルムでサンドイッチした構造を有する積層フィルムなどを用いることができる。
The back surface protective film 13 is disposed on the back surface side of the filler 14b and protects the back surface of the solar cell module 10. As the back surface protective film 13, a resin film such as PET (Polyethylene Terephthalate), a laminated film having a structure in which an Al (aluminum) foil is sandwiched between resin films, or the like can be used.
充填材14a、14bは、表面保護部材12と裏面保護フィルム13との間で太陽電池11を封止する。充填材14a、14bとしては、EVA(エチレン・酢酸ビニル共重合樹脂)、ポリエチレン、ポリプロピレン等のポリオレフィン、環状ポリエチレン、アイオノマー、ポリアクリル酸系ポリマー及びこれらを複数種重合させたコポリマーを用いることができる。また、少なくとも表面保護部材12と太陽電池11との間に配される充填剤14aは透光性を有する。
Fillers 14 a and 14 b seal the solar cell 11 between the front surface protection member 12 and the back surface protection film 13. As the fillers 14a and 14b, EVA (ethylene / vinyl acetate copolymer resin), polyolefins such as polyethylene and polypropylene, cyclic polyethylene, ionomers, polyacrylic acid polymers, and copolymers obtained by polymerizing a plurality of these can be used. . Further, at least the filler 14a disposed between the surface protection member 12 and the solar cell 11 has translucency.
この実施形態では、渡り配線20近傍には、後述するように、端面封止材17が配置される。
In this embodiment, an end face sealing material 17 is disposed near the crossover wiring 20 as will be described later.
表面保護部材12、渡り配線20近傍の表面保護部材12に配せられる端面封止材17、表面側の充填材用樹脂シート14a、複数の太陽電池ストリング、裏面側の充填材用樹脂シート14b、及び裏面保護フィルム13の順で積層し、この積層体をラミネート装置で加熱加圧することにより、端面封止材17が配された箇所は所定の間隔を保ちつつ、充填材用樹脂シートを軟化させる。そして、内部にある気泡を追い出して、軟化した充填用樹脂を太陽電池11の周囲に満遍なく充填して、表面保護部材12と裏面保護フィルム13の間に太陽電池11が封止される。
A surface protection member 12, an end surface sealing material 17 disposed on the surface protection member 12 in the vicinity of the crossover wiring 20, a front surface side filler resin sheet 14a, a plurality of solar cell strings, a back surface side filler resin sheet 14b, And the back surface protective film 13 are laminated in this order, and the laminated body is heated and pressurized by a laminating apparatus to soften the resin sheet for the filler while maintaining a predetermined interval at the place where the end face sealing material 17 is arranged. . Then, the air bubbles inside are expelled, and the softening filling resin is uniformly filled around the solar cell 11, so that the solar cell 11 is sealed between the surface protection member 12 and the back surface protection film 13.
裏面保護フィルム13には、出力用の渡り配線20を取り出すための開口部13aが設けられている。
The back surface protective film 13 is provided with an opening 13 a for taking out the output wiring 20.
裏面保護フィルム13の開口部13aを被覆するように、シリコーン樹脂などの接着剤を用いて端子ボックス(図示しない)が取り付けられる。開口部13aから取り出された出力用の渡り配線20が端子ボックス(図示しない)内の端子と接続され、外部に導出される。
A terminal box (not shown) is attached using an adhesive such as silicone resin so as to cover the opening 13a of the back surface protective film 13. The output crossover wiring 20 taken out from the opening 13a is connected to a terminal in a terminal box (not shown) and led out to the outside.
この実施形態では、開口部13aから導出される出力用の渡り配線20は、4本ある。このため、端子ボックスの端子台には、4つの端子が設けられ、それぞれ該当する出力用の渡り配線201~204が接続される。端子ボックスの端子間には逆流防止ダイオードが接続されている。これら出力用の渡り配線201~204には、他の出力用の渡り配線20と絶縁する絶縁材20aが取り付けられている。
In this embodiment, there are four output transition wires 20 led out from the opening 13a. For this reason, the terminal block of the terminal box is provided with four terminals, to which the corresponding output transition wirings 20 1 to 20 4 are connected. A backflow prevention diode is connected between the terminals of the terminal box. The interconnectors 20 1-20 4 for these output, an insulating member 20a is attached to insulate the transition wirings 20 for other output.
図1、図2においては、6個のストリングを直列に接続している。一番左端のストリングの出力用渡り配線201が開口部13aから引き出される。左から2番目と3番目のストリングが出力用渡り線202で接続され、この出力用の渡り配線202が開口部13aから引き出される。
In FIGS. 1 and 2, six strings are connected in series. Output transition wirings 20 1 leftmost string is pulled out from the opening 13a. Second and third string from the left are connected by the output connecting wire 20 2, interconnectors 20 2 for the output is withdrawn from the opening 13a.
また、一番右端のストリングの出力用渡り配線204が、開口部13aから引き出される。そして、右から2番目と3番目のストリングが出力用渡り線203で接続され、この出力線203が開口部13aから引き出される。
Further, rightmost output interconnectors 20 4 strings is pulled from the opening 13a. The second from the right and third strings are connected by the output connecting wire 20 3, the output line 20 3 is pulled out from the opening 13a.
このようにして、6個のストリングから出力配線201~204として裏面保護フィルム13の開口部13aから引き出され、そして、端子ボックスの所定の端子に接続されて太陽電池モジュールが構成されている。
In this way, the solar cell module is configured by being drawn out from the opening 13a of the back surface protective film 13 as the output wirings 20 1 to 20 4 from the six strings, and connected to predetermined terminals of the terminal box. .
以上のような構成を有する太陽電池モジュール10の外周には、Al(アルミニウム)フレーム(図示しない)を取り付けることができる。
An Al (aluminum) frame (not shown) can be attached to the outer periphery of the solar cell module 10 having the above configuration.
各太陽電池ストリングの端部に位置する配線部材16は、太陽電池ストリング間を接続する渡り配線20と接続される。渡り配線20は、全ての太陽電池ストリングからの発電出力を外部に取り出す出力配線としても用いられる。外部に取り出す出力用の渡り配線20は、太陽電池11からの電気出力を端子ボックス(図示しない)の端子と接続される。渡り配線20は、通常、厚さ0.1mm~0.3mm程度、幅4~6mmの銅箔にその全面を半田コートしたものを所定の長さに切断し、配線部材16に半田付けされている。
The wiring member 16 located at the end of each solar cell string is connected to the crossover wiring 20 that connects the solar cell strings. The crossover wiring 20 is also used as an output wiring for taking out the power generation output from all the solar cell strings. The output transition wiring 20 taken out to the outside is connected to the terminal of a terminal box (not shown) for the electrical output from the solar cell 11. The crossover wiring 20 is usually a copper foil having a thickness of about 0.1 mm to 0.3 mm and a width of 4 to 6 mm, and its entire surface is solder-coated, cut to a predetermined length, and soldered to the wiring member 16. Yes.
前述したラミネート工程時に、表面保護部材12と裏面保護フィルム13の端部近傍では、充填材14a、14bが流動し、裏面保護フィルム13が表面保護フィルム12側に撓み、太陽電池モジュール10端部での充填材14a、14bの厚みが薄くなる。このため、太陽電池モジュール10の端部側に位置する渡り配線20の角部が裏面側の充填材14bを貫通し、裏面保護フィルム13側に到達することがある。特に、太陽電池モジュール10の四隅部分に位置する渡り配線20の端部分が裏面保護フィルム13に接触する可能性が大きい。
During the laminating process described above, in the vicinity of the end portions of the surface protection member 12 and the back surface protection film 13, the fillers 14a and 14b flow, the back surface protection film 13 bends to the surface protection film 12 side, and the solar cell module 10 ends. The thickness of the fillers 14a and 14b is reduced. For this reason, the corner | angular part of the crossover wiring 20 located in the edge part side of the solar cell module 10 may penetrate the filler 14b on the back surface side, and may reach the back surface protective film 13 side. In particular, there is a high possibility that the end portions of the crossover wires 20 located at the four corners of the solar cell module 10 are in contact with the back surface protective film 13.
そこで、この実施形態においては、渡り配線20が配される太陽電池モジュール10の端部、すなわち、図1の上下の両端部に、充填材14a、14bの軟化点以上の高温の温度において、充填材14a、14bよりも硬い絶縁材またはメルトフローレート(Melt Flow Rate:MFR)が小さい絶縁材からなる端面封止材17を介在させている。すなわち、表面保護部材12と裏面保護フィルム13との間隔をラミネート時並びにラミネート後も所定の間隔を保ち、渡り配線20の端部等が裏面保護フィルム13と当接することがない大きさの端面封止材17が介在される。
Therefore, in this embodiment, the ends of the solar cell module 10 where the crossover wires 20 are arranged, that is, the upper and lower ends in FIG. 1 are filled at a temperature higher than the softening point of the fillers 14a and 14b. An end face sealing material 17 made of an insulating material harder than the materials 14a and 14b or an insulating material having a low melt flow rate (MFR) is interposed. That is, the end face seal of such a size that the distance between the front surface protection member 12 and the rear surface protection film 13 is maintained at a predetermined distance during and after the lamination so that the end of the crossover wiring 20 does not contact the back surface protection film 13. Stop material 17 is interposed.
図3に示すように、渡り配線20が配される太陽電池モジュール10の端部の表面保護部材12と裏面保護フィルム13との間に、充填材14a、14bの軟化点よりも低温で硬化する接着層18を介して端面封止材17が設けられている。接着層18は、ラミネートを開始すると、表面保護部材12側に端面封止材17をまず接着させ、表面保護部材12と裏面保護フィルム13との間を所定の間隔に維持する。ラミネート工程時には、充填材14a、14bが流動するが、充填材14a、14bよりも硬い絶縁材またはメルトフローレートが小さい絶縁材からなる端面封止材17が介在している。当該端部では、裏面保護フィルム13が表面保護部材12側に湾曲することが抑制され、渡り配線20が充填材14a、14bを突き抜け、裏面保護フィルム13と接触することが防止できる。
As shown in FIG. 3, it hardens | cures at low temperature rather than the softening point of the fillers 14a and 14b between the surface protection member 12 and the back surface protection film 13 of the edge part of the solar cell module 10 by which the crossover wiring 20 is distribute | arranged. An end face sealing material 17 is provided via the adhesive layer 18. When the lamination starts, the adhesive layer 18 first adheres the end surface sealing material 17 to the surface protection member 12 side, and maintains a predetermined distance between the surface protection member 12 and the back surface protection film 13. During the laminating process, the fillers 14a and 14b flow, but an end face sealing material 17 made of an insulating material harder than the fillers 14a and 14b or an insulating material having a lower melt flow rate is interposed. In the said edge part, it is suppressed that the back surface protection film 13 curves to the surface protection member 12 side, and it can prevent that the crossover wiring 20 penetrates the fillers 14a and 14b and contacts the back surface protection film 13. FIG.
充填材14a、14bの流出が抑制され、配線部材16が充填材14a、14bによって確実に封止される。これにより、表面保護部材12端面と渡り配線20の距離を近づけても絶縁が保たれるので表面保護部材12を小さくでき、モジュール効率の向上を図ることができる。
The outflow of the fillers 14a and 14b is suppressed, and the wiring member 16 is reliably sealed by the fillers 14a and 14b. Thereby, since insulation is maintained even if the distance between the end face of the surface protection member 12 and the crossover wiring 20 is reduced, the surface protection member 12 can be reduced, and module efficiency can be improved.
端面封止材17を用いることによって、太陽電池モジュール10の端面部の形状を保つことができ、建材一体型太陽電池モジュールにも歩留まり良く適用できる。
By using the end surface sealing material 17, the shape of the end surface portion of the solar cell module 10 can be maintained, and it can be applied to a building material integrated solar cell module with a high yield.
端面封止材17によって充填材14a、14bの流出を低減できるので、後工程で周囲にはみ出した充填材を除去するトリミング工程を減らすことができ、製造コストを削減できる。
Since the end face sealing material 17 can reduce the outflow of the fillers 14a and 14b, it is possible to reduce the trimming process for removing the filler that protrudes to the periphery in the subsequent process, and to reduce the manufacturing cost.
充填材14a、14bの流出を低減できることにより、モジュールサイズのバラつきを抑えることができ、フレームを取り付ける際の、フレーム飲み込部のより緻密な設計を可能にすることができる。
Since the outflow of the fillers 14a and 14b can be reduced, variations in the module size can be suppressed, and a more precise design of the frame swallowing portion when the frame is attached can be made possible.
端面封止部材17の一部分のみ接着するように構成することで、ラミネート時のモジュール内部の脱気を行うことができ、太陽電池モジュールを歩留まり良く製造できる。
By constructing such that only a part of the end surface sealing member 17 is adhered, the inside of the module can be deaerated during lamination, and the solar cell module can be manufactured with high yield.
ところで、充填材14a、14bと端面封止材17並びに接着層18とは次の関係を満たせばよい。
By the way, the fillers 14a and 14b, the end surface sealing material 17 and the adhesive layer 18 may satisfy the following relationship.
端面封止部材17は、充填材14a、14bの軟化点以上の温度において、充填材14a、14bよりも硬い絶縁材またはメルトフローレートが小さい絶縁材から選択すればよい。すなわち、充填材14a、14bを選択すると、使用できる端面封止部材17の材料が選択できる。また、接着層18は、充填材14a、14bの軟化点よりも低温で硬化する材料から選択すればよい。
The end surface sealing member 17 may be selected from an insulating material that is harder than the fillers 14a and 14b or has a lower melt flow rate at a temperature equal to or higher than the softening point of the fillers 14a and 14b. That is, when the fillers 14a and 14b are selected, the material of the end surface sealing member 17 that can be used can be selected. The adhesive layer 18 may be selected from materials that cure at a lower temperature than the softening points of the fillers 14a and 14b.
表1に、充填材14a、14bを例示する。なお、表1に示す材料の中から充填材14a、14bを選択すればよい。表1に示す材料を組み合わせたものも充填材として使用することができる。ここで、EVAは、エチレン・酢酸ビニル共重合樹脂、HDPEは、高密度ポリエチレン樹脂、LDPEは、低密度ポリエチレン樹脂である。
Table 1 illustrates the fillers 14a and 14b. Note that the fillers 14a and 14b may be selected from the materials shown in Table 1. A combination of the materials shown in Table 1 can also be used as the filler. Here, EVA is an ethylene / vinyl acetate copolymer resin, HDPE is a high-density polyethylene resin, and LDPE is a low-density polyethylene resin.
表1で例示した樹脂の中から充填材14a、14bを選択すると、端面封止部材17は、選択した充填材14a、14bよりも硬い絶縁材またはメルトフローレートが小さい絶縁材から選択すればよい。
When the fillers 14a and 14b are selected from the resins exemplified in Table 1, the end surface sealing member 17 may be selected from an insulating material harder than the selected fillers 14a and 14b or an insulating material having a low melt flow rate. .
充填材の軟化点温度である高温時(40度~180度)の硬さが充填材よりも硬い絶縁性物質としては次のものがある。
The following are insulating materials whose hardness at the high temperature (40 degrees to 180 degrees) which is the softening point temperature of the filler is harder than that of the filler.
(1)ガラスクロス、ガラスファイバー、ガラスペーパーといった基材に、エポキシ系樹脂もしくはフェノール系樹脂もしくはメタアクリル系樹脂もしくはシリコーン系樹脂もしくはアクリル系樹脂もしくはウレタン系樹脂を含浸させた物質であるガラスエポキシ樹脂、このガラスエポキシ樹脂のメルトフローレートは、0である。
(2)エポキシ系樹脂もしくはフェノール系樹脂もしくはメタアクリル系樹脂もしくはシリコーン系樹脂もしくはアクリル系樹脂もしくはウレタン系樹脂、これら樹脂のメルトフローレートは、0.02~53である。
(3)ポリアミド樹脂、この樹脂のメルトフローレートは、10~80である。
(4)ポリプロピレン樹脂に代表される高融点のポリオレフィン樹脂、この樹脂のメルトフローレートは、5~60である。
(5)ポリカーボネート樹脂、この樹脂のメルトフローレートは、2~30である。
(6)ポリエチレン、この樹脂のメルトフローレートは、0.03~50である。
(7)ブチルゴム、ブタジエンゴム、スチレン・ブタジエンゴム等のエラストマー、この樹脂のメルトフローレートは、5~60である。 (1) Glass epoxy resin, which is a material obtained by impregnating a substrate such as glass cloth, glass fiber, or glass paper with an epoxy resin, a phenol resin, a methacryl resin, a silicone resin, an acrylic resin, or a urethane resin The melt flow rate of this glass epoxy resin is zero.
(2) Epoxy resin, phenol resin, methacryl resin, silicone resin, acrylic resin or urethane resin, and the melt flow rate of these resins is 0.02 to 53.
(3) Polyamide resin, the melt flow rate of this resin is 10-80.
(4) Polyolefin resin having a high melting point represented by polypropylene resin, and the melt flow rate of this resin is 5 to 60.
(5) Polycarbonate resin, the melt flow rate of this resin is 2-30.
(6) The melt flow rate of polyethylene and this resin is 0.03 to 50.
(7) Elastomers such as butyl rubber, butadiene rubber and styrene / butadiene rubber, and the melt flow rate of this resin is 5 to 60.
(2)エポキシ系樹脂もしくはフェノール系樹脂もしくはメタアクリル系樹脂もしくはシリコーン系樹脂もしくはアクリル系樹脂もしくはウレタン系樹脂、これら樹脂のメルトフローレートは、0.02~53である。
(3)ポリアミド樹脂、この樹脂のメルトフローレートは、10~80である。
(4)ポリプロピレン樹脂に代表される高融点のポリオレフィン樹脂、この樹脂のメルトフローレートは、5~60である。
(5)ポリカーボネート樹脂、この樹脂のメルトフローレートは、2~30である。
(6)ポリエチレン、この樹脂のメルトフローレートは、0.03~50である。
(7)ブチルゴム、ブタジエンゴム、スチレン・ブタジエンゴム等のエラストマー、この樹脂のメルトフローレートは、5~60である。 (1) Glass epoxy resin, which is a material obtained by impregnating a substrate such as glass cloth, glass fiber, or glass paper with an epoxy resin, a phenol resin, a methacryl resin, a silicone resin, an acrylic resin, or a urethane resin The melt flow rate of this glass epoxy resin is zero.
(2) Epoxy resin, phenol resin, methacryl resin, silicone resin, acrylic resin or urethane resin, and the melt flow rate of these resins is 0.02 to 53.
(3) Polyamide resin, the melt flow rate of this resin is 10-80.
(4) Polyolefin resin having a high melting point represented by polypropylene resin, and the melt flow rate of this resin is 5 to 60.
(5) Polycarbonate resin, the melt flow rate of this resin is 2-30.
(6) The melt flow rate of polyethylene and this resin is 0.03 to 50.
(7) Elastomers such as butyl rubber, butadiene rubber and styrene / butadiene rubber, and the melt flow rate of this resin is 5 to 60.
また、接着層18として用いることができる充填材の軟化点温度より低温で硬化する絶縁性樹脂としては、表2のものがある。
Also, the insulating resin that cures at a temperature lower than the softening point temperature of the filler that can be used as the adhesive layer 18 is shown in Table 2.
上記した各材料から上記した条件に適合する材料を組み合わせればよい。例えば、充填材14a、14bとして、EVAまたはLDPEを用いた場合には、接着層18として、エポキシ樹脂、端面封止部材17として、ガラスエポキシ樹脂を用いればよい。
It is sufficient to combine materials that meet the above conditions from the above materials. For example, when EVA or LDPE is used as the fillers 14 a and 14 b, an epoxy resin may be used as the adhesive layer 18 and a glass epoxy resin may be used as the end surface sealing member 17.
図4に示すように、第2の実施形態では、渡り配線20が配される太陽電池モジュール10の端部の表面保護部材12と裏面保護フィルム13との間に、充填材14a、14bの軟化点よりも低温で硬化する接着層18を介して端面封止材17が設けられている。接着層18は、表面保護部材12と裏面保護フィルム13側にそれぞれ設けている。ラミネートを開始すると、渡り配線20の端部近傍で表面保護部材12と裏面保護フィルム13間に端面封止材17が接着層18で接着し、表面保護部材12と裏面保護フィルム13との間を所定の間隔に維持する。ラミネート工程時には、充填材14a、14bが流動するが、充填材14a、14bよりも硬い絶縁材またはメルトフローレートが小さい絶縁材からなる端面封止材17が介在しているので、当該端部では、裏面保護フィルム13が表面保護部材12側に湾曲することが抑制され、渡り配線20が充填材14bを突き抜け、裏面保護フィルム13と接触することが防止できる。
As shown in FIG. 4, in the second embodiment, the fillers 14 a and 14 b are softened between the surface protection member 12 and the back surface protection film 13 at the end of the solar cell module 10 on which the crossover wiring 20 is arranged. An end face sealing material 17 is provided through an adhesive layer 18 that cures at a lower temperature than the point. The adhesive layer 18 is provided on each of the surface protection member 12 and the back surface protection film 13 side. When laminating is started, the end surface sealing material 17 is adhered by the adhesive layer 18 between the surface protection member 12 and the back surface protection film 13 in the vicinity of the end portion of the crossover wiring 20, and the space between the surface protection member 12 and the back surface protection film 13 is adhered. Maintain a predetermined interval. During the laminating process, the fillers 14a and 14b flow, but since the end surface sealing material 17 made of an insulating material harder than the fillers 14a and 14b or an insulating material having a low melt flow rate is interposed, It is possible to prevent the back surface protection film 13 from being curved toward the surface protection member 12, and to prevent the crossover wiring 20 from penetrating the filler 14 b and coming into contact with the back surface protection film 13.
図5に示すように、第3の実施形態では、渡り配線20が配される太陽電池モジュール10の端部の表面保護部材12と裏面保護フィルム13との間に、端面封止材17を設け、端面封止材17は充填材14a、14bにより接着するように構成されている。この端面封止材17には、表面保護部材12と係合する係合部17aが設けられている。この係合部17aで表面保護部材12と係合させ、ラミネートが完了するまで、表面保護部材12に端面封止材17を仮止めしている。そして、ラミネートが完了すると、端面封止材17は充填材14a、14bにより接着され、表面保護部材12と裏面保護フィルム13との間に固定される。この第3の実施形態においては、表面保護部材12に端面封止材17を固定してからセッティングを行いラミネートすることによってより精度よく端面封止材を固定できる。
As shown in FIG. 5, in 3rd Embodiment, the end surface sealing material 17 is provided between the surface protection member 12 and the back surface protection film 13 of the edge part of the solar cell module 10 by which the crossover wiring 20 is distribute | arranged. The end surface sealing material 17 is configured to be bonded by the fillers 14a and 14b. The end surface sealing material 17 is provided with an engaging portion 17 a that engages with the surface protection member 12. The engaging portion 17a is engaged with the surface protection member 12, and the end surface sealing material 17 is temporarily fixed to the surface protection member 12 until the lamination is completed. When the lamination is completed, the end surface sealing material 17 is bonded by the fillers 14 a and 14 b and fixed between the front surface protection member 12 and the rear surface protection film 13. In the third embodiment, the end surface sealing material 17 can be fixed with higher accuracy by fixing the end surface sealing material 17 to the surface protection member 12 and then setting and laminating.
図6に示すように、第4の実施形態では、渡り配線20が配される太陽電池モジュール10の端部の表面保護部材12と裏面保護フィルム13との間に、端面封止材17を設け、更に、係合部17aの底面と側面に接着層18を設けたものである。端面封止材17は接着剤18と充填材14a、14bにより接着するように構成されている。この端面封止材17には、表面保護部材12と係合する係合部17aが設けられている。この係合部17aで表面保護部材12と係合させ、ラミネート開始時に、接着層18で表面保護部材12と端面封止材17とを接着する。そして、ラミネートが完了すると、端面封止材17は充填材14a、14b、接着剤18により接着され、表面保護部材12と裏面保護フィルム13との間に固定される。
As shown in FIG. 6, in 4th Embodiment, the end surface sealing material 17 is provided between the surface protection member 12 and the back surface protection film 13 of the edge part of the solar cell module 10 by which the crossover wiring 20 is distribute | arranged. Furthermore, an adhesive layer 18 is provided on the bottom and side surfaces of the engaging portion 17a. The end surface sealing material 17 is configured to be bonded by an adhesive 18 and fillers 14a and 14b. The end surface sealing material 17 is provided with an engaging portion 17 a that engages with the surface protection member 12. The engaging portion 17 a is engaged with the surface protection member 12, and the surface protection member 12 and the end surface sealing material 17 are adhered by the adhesive layer 18 at the start of lamination. When the lamination is completed, the end surface sealing material 17 is bonded by the fillers 14 a and 14 b and the adhesive 18, and is fixed between the surface protection member 12 and the back surface protection film 13.
図7に示すように、第5の実施形態では、渡り配線20が配される太陽電池モジュール10の端部の表面保護部材12と裏面保護フィルム13との間に、端面封止材17を設け、更に、係合部17aの底面に接着層18を設けたものである。端面封止材17は接着剤18と充填材14a、14bにより接着するように構成されている。この端面封止材17には、表面保護部材12と係合する係合部17aが設けられている。この係合部17aの底面と側面に接着層18を設けたものである。この係合部17aで表面保護部材12と係合させ、ラミネート開始時に、接着層18で表面保護部材12と端面封止材17とを接着する。そして、ラミネートが完了すると、端面封止材17は充填材14a、14b、接着剤18により接着され、表面保護部材12と裏面保護フィルム13との間に固定される。
As shown in FIG. 7, in 5th Embodiment, the end surface sealing material 17 is provided between the surface protection member 12 and the back surface protection film 13 of the edge part of the solar cell module 10 by which the crossover wiring 20 is distribute | arranged. Further, an adhesive layer 18 is provided on the bottom surface of the engaging portion 17a. The end surface sealing material 17 is configured to be bonded by an adhesive 18 and fillers 14a and 14b. The end surface sealing material 17 is provided with an engaging portion 17 a that engages with the surface protection member 12. An adhesive layer 18 is provided on the bottom and side surfaces of the engaging portion 17a. The engaging portion 17 a is engaged with the surface protection member 12, and the surface protection member 12 and the end surface sealing material 17 are adhered by the adhesive layer 18 at the start of lamination. When the lamination is completed, the end surface sealing material 17 is bonded by the fillers 14 a and 14 b and the adhesive 18, and is fixed between the surface protection member 12 and the back surface protection film 13.
図8に示すように、第6実施形態では、渡り配線20が配される太陽電池モジュール10の端部の表面保護部材12と裏面保護フィルム13との間に、端面封止材17を設け、更に、係合部17aの側面に接着層18を設けたものである。端面封止材17は接着剤18と充填材14a、14bにより接着するように構成されている。この端面封止材17には、表面保護部材12と係合する係合部17aが設けられている。この係合部17aの底面と側面に接着層18を設けたものである。この係合部17aで表面保護部材12と係合させ、ラミネート開始時に、接着層18で表面保護部材12と端面封止材17とを接着する。そして、ラミネートが完了すると、端面封止材17は充填材14a、14b、接着剤18により接着され、表面保護部材12と裏面保護フィルム13との間に固定される。
As shown in FIG. 8, in 6th Embodiment, the end surface sealing material 17 is provided between the surface protection member 12 and the back surface protection film 13 of the edge part of the solar cell module 10 by which the crossover wiring 20 is distribute | arranged, Further, an adhesive layer 18 is provided on the side surface of the engaging portion 17a. The end surface sealing material 17 is configured to be bonded by an adhesive 18 and fillers 14a and 14b. The end surface sealing material 17 is provided with an engaging portion 17 a that engages with the surface protection member 12. An adhesive layer 18 is provided on the bottom and side surfaces of the engaging portion 17a. The engaging portion 17 a is engaged with the surface protection member 12, and the surface protection member 12 and the end surface sealing material 17 are adhered by the adhesive layer 18 at the start of lamination. When the lamination is completed, the end surface sealing material 17 is bonded by the fillers 14 a and 14 b and the adhesive 18, and is fixed between the surface protection member 12 and the back surface protection film 13.
本発明の第7の実施形態に係る太陽電池モジュール10の概略構成について、図9を参照しながら説明する。
A schematic configuration of a solar cell module 10 according to a seventh embodiment of the present invention will be described with reference to FIG.
表面保護部材12は、第1の充填材14aの受光面側に配置されており、太陽電池モジュール10の表面を保護する。
The surface protection member 12 is disposed on the light receiving surface side of the first filler 14 a and protects the surface of the solar cell module 10.
裏面保護フィルム13は、第2の充填材14bの裏面側に配置されており、太陽電池モジュール10の背面を保護する。又、渡り配線20と裏面保護フィルム13との間には第1の充填材14a、14bよりメルトフローレートが小さい第2の充填材14cが配置されている。
The back surface protective film 13 is disposed on the back surface side of the second filler 14b and protects the back surface of the solar cell module 10. A second filler 14c having a melt flow rate smaller than that of the first fillers 14a and 14b is disposed between the crossover wiring 20 and the back surface protective film 13.
充填材14a、14b、14cは、表面保護部材12と裏面保護フィルム13との間で太陽電池11を封止する。表面保護部材12と太陽電池11との間に配される充填材14aは透光性を有する。
Fillers 14a, 14b, and 14c seal the solar cell 11 between the front surface protective member 12 and the back surface protective film 13. The filler 14a disposed between the surface protection member 12 and the solar cell 11 has translucency.
渡り配線20近傍の太陽電池モジュール10の端部の少なくとも一部に配置される充填材14cと充填材14a、14bはそれぞれの材料メルトフローレートの関係を考慮して選択される。充填材14a、14b、14cは、エチレン・酢酸ビニル共重合体(EVA)、ポリオレフィン、環状ポリエチレン、アイオノマー、ポリアクリル酸系ポリマー又はこれらを複数種類重合させたコポリマーの中から選択され、充填材14a、14b及び充填材14cは、充填材の軟化点以上の温度、例えば、150℃の温度において、充填材14a、14bより充填材14cの方が、メルトフローレートが小さい充填材が選択される
The filler 14c and the fillers 14a and 14b arranged at least at a part of the end of the solar cell module 10 in the vicinity of the crossover wiring 20 are selected in consideration of the relationship between the respective material melt flow rates. The fillers 14a, 14b and 14c are selected from ethylene / vinyl acetate copolymer (EVA), polyolefin, cyclic polyethylene, ionomer, polyacrylic acid polymer, or a copolymer obtained by polymerizing a plurality of these, and the filler 14a 14b and the filler 14c are selected such that the filler 14c has a lower melt flow rate than the fillers 14a and 14b at a temperature equal to or higher than the softening point of the filler, for example, 150 ° C.
表面保護部材12、表面側の樹脂シートからなる第1の充填材(第1の充填材シート)14a、複数の太陽電池ストリング、裏面側の樹脂シートからなる充填材(第1の充填材シート)14b、渡り配線20の裏面フィルム13側に配せられる樹脂シートからなる第2の充填材(第2の充填材シート)14c、及び裏面保護フィルム13の順で積層する。この積層体をラミネート装置で加熱加圧することにより、樹脂シートからなる各充填材を軟化させる。そして、第1の充填材14a、14bより、第2の充填材14cが、メルトフローレートが小さい材料が選択されている。このため、第2の充填材14cの流動性は第1の充填材14a、14bより小さいので、裏面保護フィルム13と渡り配線20との間の距離を確保しながら、樹脂の軟化温度で内部にある気泡を追い出して、軟化した充填用樹脂を太陽電池11の周囲に満遍なく充填して、表面保護部材12と裏面保護フィルム13の間に太陽電池11が封止される。
Surface protective member 12, first filler (first filler sheet) 14a made of a resin sheet on the front side, a plurality of solar cell strings, a filler made of a resin sheet on the back side (first filler sheet) 14b, the 2nd filler (2nd filler sheet) 14c which consists of a resin sheet distribute | arranged to the back film 13 side of the crossover wiring 20, and the back surface protective film 13 are laminated | stacked in order. By heating and pressing this laminate with a laminating apparatus, each filler made of a resin sheet is softened. A material having a lower melt flow rate is selected as the second filler 14c than the first fillers 14a and 14b. For this reason, the fluidity of the second filler 14c is smaller than that of the first fillers 14a and 14b, so that the distance between the back surface protective film 13 and the crossover wiring 20 is secured at the softening temperature of the resin. A certain cell is expelled and the softening filling resin is uniformly filled around the solar cell 11, and the solar cell 11 is sealed between the front surface protection member 12 and the back surface protection film 13.
渡り配線20が配される太陽電池モジュール10の端部、すなわち、図10に示すように、上下の両端部に、第1の充填材14a、14bの軟化点以上の高温、例えば、150℃以上の温度において、第1の充填材14a、14bよりもメルトフローレートが小さい絶縁材からなる第2の充填材14cを介在させている。すなわち、裏面フィルム13と渡り配線20との間隔をラミネート時並びにラミネート後も所定の間隔を保ち、渡り配線20の端部等が裏面保護フィルム13と当接することがないように構成されている。
At the end of the solar cell module 10 on which the crossover wiring 20 is arranged, that is, as shown in FIG. 10, at the upper and lower ends, a temperature higher than the softening point of the first fillers 14a and 14b, for example, 150 ° C. or higher. At this temperature, a second filler 14c made of an insulating material having a lower melt flow rate than the first fillers 14a and 14b is interposed. That is, the gap between the back film 13 and the crossover wiring 20 is maintained at a predetermined interval during and after lamination so that the end of the crossover wiring 20 and the like do not come into contact with the back surface protection film 13.
図9に示すように、渡り配線20が配される太陽電池モジュール10の端部の裏面フィルム13と渡り配線20の間に、第1の充填材14a、14bの軟化点において、メルトフローレートが小さい絶縁材からなる第2の充填材14cを介在させている。ラミネート工程時には、第1の充填材14a、14bが流動する際には、第1の充填材14a、14bよりも硬い絶縁材またはメルトフローレートが小さい絶縁材からなる第2の充填材14cを介在させているので、第2の充填材14cは、流動があまりない。当該端部では、裏面保護フィルム13が表面保護部材12側に湾曲することが抑制され、渡り配線20が第2の充填材14cを突き抜けて裏面保護フィルム13と接触することが防止できる。
As shown in FIG. 9, the melt flow rate is at the softening point of the first fillers 14 a and 14 b between the back film 13 at the end of the solar cell module 10 on which the crossover wiring 20 is arranged and the crossover wiring 20. A second filler 14c made of a small insulating material is interposed. During the laminating process, when the first fillers 14a and 14b flow, the second filler 14c made of an insulating material harder than the first fillers 14a and 14b or an insulating material having a lower melt flow rate is interposed. Therefore, the second filler 14c does not flow much. In the said edge part, it is suppressed that the back surface protection film 13 curves to the surface protection member 12 side, and it can prevent that the crossover wiring 20 penetrates the 2nd filler 14c, and contacts with the back surface protection film 13. FIG.
ところで、第1の充填材14a、14bと第2の充填材14cとは次の関係を満たせばよい。
Incidentally, the first fillers 14a and 14b and the second filler 14c may satisfy the following relationship.
第2の充填材14cは、第1の充填材14a、14bの軟化点以上、例えば150度以上の温度において、第1の充填材14a、14bよりもメルトフローレートが小さい絶縁材から選択すればよい。すなわち、第1の充填材14a、14bを選択すると、使用できる第2の充填材14cの材料が選択できる。
If the second filler 14c is selected from an insulating material having a lower melt flow rate than the first fillers 14a and 14b at a temperature equal to or higher than the softening point of the first fillers 14a and 14b, for example, 150 degrees or higher. Good. That is, when the first fillers 14a and 14b are selected, a usable material for the second filler 14c can be selected.
表3に、第1の充填材14a、14b及び第2の充填材14cを例示する。なお、表3に示す材料の中から充填材14a、14b、14cを選択すればよい。なお、表3に示す材料を組み合わせたものも充填材として使用することができる。ここで、EVAは、エチレン・酢酸ビニル共重合樹脂である。
Table 3 illustrates the first fillers 14a and 14b and the second filler 14c. Note that the fillers 14a, 14b, and 14c may be selected from the materials shown in Table 3. A combination of the materials shown in Table 3 can also be used as the filler. Here, EVA is an ethylene / vinyl acetate copolymer resin.
表3で例示した樹脂の中から第1の充填材14a、14bを選択し、第2の充填材14cは、選択した充填材14a、14bよりメルトフローレートが小さい絶縁材から選択すればよい。例えば、第1の充填材14a、14bとして、EVAまたはポリオレフィン系ポリマーを用いた場合、第2の充填材14cとして、環状ポリエチレン、アイオノマー、ポリアクリル酸系ポリマーの中で使用するEVAまたはポリオレフィン系ポリマーより、メルトフローレートが小さい材料を選べばよい。そして、これら材料は、EVAまたはポリオレフィン系ポリマーと接着が良好であり、両者の界面が密着して一体化され、界面からの水分の浸透等が抑制される。
The first fillers 14a and 14b are selected from the resins exemplified in Table 3, and the second filler 14c may be selected from an insulating material having a lower melt flow rate than the selected fillers 14a and 14b. For example, when EVA or polyolefin polymer is used as the first fillers 14a and 14b, EVA or polyolefin polymer used in the cyclic polyethylene, ionomer, polyacrylic acid polymer as the second filler 14c. Therefore, a material having a low melt flow rate may be selected. These materials have good adhesion to EVA or polyolefin polymer, and the interface between the two is closely integrated to suppress moisture permeation from the interface.
図12は、太陽電池モジュールを製造するラミネート装置の一例を示す模式図である。上述したように、太陽電池11は、表面保護部材12と裏面保護フィルム13との間に、充填材14a、14b、14cにより封止される。この封止を行うために、図12に示すようなラミネート装置が用いられる。ラミネート装置は、膨張自在なダイヤフラム102を具備した上チャンバー101とラミネートする積層体を加熱するためのヒーターを内蔵した支持体107を備えた下チャンバー105を備える。そして、上チャンバー101の内部のダイヤフラムシート102と上チャンバー101に囲まれた内部の領域は減圧できるようにチャンバーの外にある真空ポンプ104が接続されている。また、上チャンバー101と下チャンバー105は開閉可能な構造となっている。
FIG. 12 is a schematic diagram showing an example of a laminating apparatus for manufacturing a solar cell module. As described above, the solar cell 11 is sealed between the front surface protection member 12 and the back surface protection film 13 by the fillers 14a, 14b, and 14c. In order to perform this sealing, a laminating apparatus as shown in FIG. 12 is used. The laminating apparatus includes an upper chamber 101 having an inflatable diaphragm 102 and a lower chamber 105 having a support 107 incorporating a heater for heating the laminate to be laminated. A vacuum pump 104 outside the chamber is connected so that the diaphragm sheet 102 inside the upper chamber 101 and the inner region surrounded by the upper chamber 101 can be depressurized. Further, the upper chamber 101 and the lower chamber 105 are openable and closable.
下チャンバー105には、その内部を減圧するための真空ポンプ110が接続されており、またその内部のほぼ中央には配置された支持体107はアルミニウムやステンレス等の金属部材からなり、内部にヒーターが支持体107と絶縁状態に配置されている。
The lower chamber 105 is connected to a vacuum pump 110 for depressurizing the inside of the lower chamber 105, and a support body 107 disposed almost in the center of the lower chamber 105 is made of a metal member such as aluminum or stainless steel. Is disposed in an insulating state with respect to the support 107.
この図12に示すラミネート装置を用いて、渡り配線20部分に充填材14cを配置して、裏面保護フィルム13と渡り配線20との間の間隔を確保してラミネートする方法につき、図11及び図12を参照して説明する。
With reference to the laminating apparatus shown in FIG. 12, a method of laminating with the filler 14c disposed in the crossover wiring 20 portion and securing the space between the back surface protective film 13 and the crossover wiring 20 is shown in FIGS. This will be described with reference to FIG.
図12に示すように、ラミネート工程は、まず、下チャンバー105にある支持体
107上にラミネートされる積層体101を載置する。積層体101は、表面保護部材12、その上にEVA等の樹脂シートからなる第1の充填材(第1の充填材シート)14a、配線部材16、渡り配線20により配線を行った複数の太陽電池11、EVA等の樹脂シートからなる第1の充填材(第1の充填材シート)14b、さらに、少なくともストリングを接続する渡り配線20が配置された箇所に樹脂シートからなる第2の充填材(第2の充填材シート)14c、そして、最上部に裏面保護フィルム13が積層されている。第2の充填材14cは、第1の充填材14a、14bよりメルトフローレートが小さい絶縁材から選択されている。例えば、第1の充填材14a、14bとして、EVAまたはポリオレフィン系ポリマーを用いた場合、第2の充填材14cとして、環状ポリエチレン、アイオノマーポリアクリル酸系ポリマーの中から選択される。この第2の充填剤14cは、使用するEVAまたはポリオレフィン系ポリマーより、メルトフローレートが小さい材料である。これに限らず、第2の充填材14cとしてEVAまたはポリオレフィン系ポリマーを用い、第1の充填材14a、14bとして第2の充填材14cの樹脂よりもメルトフローレートが大きい樹脂を用いても良い。 As shown in FIG. 12, the laminating process, first, placing thelaminated body 10 1 to be laminated on a support 107 in the lower chamber 105. Laminate 10 1, the surface protective member 12, such as EVA on its first filling material made of a resin sheet (first filler sheet) 14a, the wiring member 16, a plurality of which were wired by interconnectors 20 The first filling material (first filling material sheet) 14b made of a resin sheet such as the solar cell 11 or EVA, and the second filling made of a resin sheet at a position where at least the crossover wiring 20 for connecting the strings is arranged. The material (second filler sheet) 14c and the back surface protective film 13 are laminated on the top. The second filler 14c is selected from an insulating material having a lower melt flow rate than the first fillers 14a and 14b. For example, when EVA or a polyolefin polymer is used as the first fillers 14a and 14b, the second filler 14c is selected from cyclic polyethylene and ionomer polyacrylic acid polymer. The second filler 14c is a material having a lower melt flow rate than the EVA or polyolefin polymer used. Not limited to this, EVA or polyolefin-based polymer may be used as the second filler 14c, and a resin having a higher melt flow rate than the resin of the second filler 14c may be used as the first fillers 14a and 14b. .
107上にラミネートされる積層体101を載置する。積層体101は、表面保護部材12、その上にEVA等の樹脂シートからなる第1の充填材(第1の充填材シート)14a、配線部材16、渡り配線20により配線を行った複数の太陽電池11、EVA等の樹脂シートからなる第1の充填材(第1の充填材シート)14b、さらに、少なくともストリングを接続する渡り配線20が配置された箇所に樹脂シートからなる第2の充填材(第2の充填材シート)14c、そして、最上部に裏面保護フィルム13が積層されている。第2の充填材14cは、第1の充填材14a、14bよりメルトフローレートが小さい絶縁材から選択されている。例えば、第1の充填材14a、14bとして、EVAまたはポリオレフィン系ポリマーを用いた場合、第2の充填材14cとして、環状ポリエチレン、アイオノマーポリアクリル酸系ポリマーの中から選択される。この第2の充填剤14cは、使用するEVAまたはポリオレフィン系ポリマーより、メルトフローレートが小さい材料である。これに限らず、第2の充填材14cとしてEVAまたはポリオレフィン系ポリマーを用い、第1の充填材14a、14bとして第2の充填材14cの樹脂よりもメルトフローレートが大きい樹脂を用いても良い。 As shown in FIG. 12, the laminating process, first, placing the
支持体107上に、上記した積層体101を表面保護部材12側が下になった状態でセットし、上下チャンバー101、105を閉じ、真空ポンプ104、110で上チャンバー真空領域及び下チャンバー真空領域を66~133Pa程度に減圧する。
The laminated body 101 described above is set on the support 107 with the surface protection member 12 side down, the upper and lower chambers 101 and 105 are closed, and the upper chamber vacuum region and the lower chamber vacuum region are set by the vacuum pumps 104 and 110. The pressure is reduced to about 66 to 133 Pa.
その後、ヒーターを内蔵した支持体107で積層体101を加熱して昇温を開始する。この加熱によって積層体101の温度が130~180℃に達し、EVA等の充填材14a、14b、14cが軟化したら上チャンバー真空領域を徐々に大気圧に戻すことによってダイヤフラムシート102を膨張させて積層体101を上チャンバー101のダイヤフラムシート102と支持体107との間で加熱、押圧する。軟化時のメルトフローレートは、第1の充填材14a、14bより、第2の充填材14cの方が小さいので、渡り配線20と裏面保護フィルム13との間に配置された第2の充填材14cは、あまり流動化せず、裏面保護フィルム13と渡り配線20との間の距離が保たれた状態で樹脂の架橋反応が進む。この状態を3~10分間程度維持し、積層体101の内部にある気泡を追い出すと共に、軟化した第1の充填材14a、14bを太陽電池11の周囲に万遍なく充填させる。
Then, to start raising the temperature by heating the laminate 10 1 a support 107 with a built-in heater. The temperature of the laminate 10 1 This heating reaches 130 ~ 180 ° C., and the diaphragm sheet 102 is expanded by returning the upper chamber vacuum region gradually atmospheric Once filler 14a such as EVA, 14b, 14c is softened heating the laminate 10 1 between the diaphragm sheet 102 of the upper chamber 101 and the support 107 to push. The melt flow rate at the time of softening is smaller in the second filler 14c than in the first fillers 14a and 14b. Therefore, the second filler disposed between the crossover wiring 20 and the back surface protective film 13 is used. 14c is not fluidized so much that the crosslinking reaction of the resin proceeds in a state where the distance between the back surface protective film 13 and the crossover wiring 20 is maintained. This state was maintained for about 3 to 10 minutes, with expel air bubbles in the interior of the laminated body 10 1, the first sealing member 14a softened, 14b to be filled in evenly around the solar cell 11.
その後、下チャンバー真空領域105も大気圧に戻し、上チャンバー101と下チャンバー105を開いて太陽電池モジュール10を取り出す。
Thereafter, the lower chamber vacuum region 105 is also returned to atmospheric pressure, the upper chamber 101 and the lower chamber 105 are opened, and the solar cell module 10 is taken out.
このように、渡り配線20が配置される箇所にメルトフローレートが小さい第2の充填シート14cを配置した後、ラミネートする。図9に示すように、渡り配線20が配される太陽電池モジュール10の端部に位置する第2の充填材14cは、あまり流動せず、渡り配線20の角部と裏面保護フィルム13との間の間隔を十分保持でき、裏面保護フィルム13に傷がつくことが抑制される。
As described above, the second filling sheet 14c having a low melt flow rate is disposed at the position where the crossover wiring 20 is disposed, and then laminated. As shown in FIG. 9, the second filler 14 c located at the end of the solar cell module 10 on which the crossover wiring 20 is arranged does not flow so much, and the corner of the crossover wiring 20 and the back surface protective film 13 A sufficient interval can be maintained, and the back surface protective film 13 is suppressed from being damaged.
本発明の第8の実施形態につき、図13及び図14に従い説明する。
The eighth embodiment of the present invention will be described with reference to FIGS.
図11に示すように、第7の実施形態は、渡り配線20が位置する箇所の第1の充填材14bの上に第2の充填材14cを配置している。これに対して、この第10の実施形態は、図13及び図14に示すように、少なくともストリング30間を接続する渡り配線20の近傍まで第1の充填材14bを配置し、その第1の充填材14bと接するように第2の充填材14cを配置している。その他の構成は、第7の実施形態と同様である。このような構成の第8の実施形態の積層体を前述と同様に、ラミネート処理する。このラミネート時において、第2の充填材14cはメルトフローレートが第1の充填材14a、14bより小さいので、第2の充填材14cはあまり流動せず、渡り配線20の角部と裏面保護フィルム13との間の間隔を十分保持でき、裏面保護フィルム13に傷がつくことが抑制される。
As shown in FIG. 11, in the seventh embodiment, the second filler 14 c is arranged on the first filler 14 b where the crossover wiring 20 is located. On the other hand, in the tenth embodiment, as shown in FIGS. 13 and 14, the first filler 14b is disposed at least in the vicinity of the crossover wiring 20 that connects the strings 30. The second filler 14c is disposed so as to be in contact with the filler 14b. Other configurations are the same as those of the seventh embodiment. The laminated body of the eighth embodiment having such a configuration is laminated in the same manner as described above. At the time of lamination, the second filler 14c has a melt flow rate smaller than that of the first fillers 14a and 14b, so the second filler 14c does not flow so much, and the corners of the transition wiring 20 and the back surface protective film It is possible to maintain a sufficient distance between the back surface protective film 13 and the back surface protective film 13 from being damaged.
本発明の第9の実施形態に係る太陽電池モジュール10の概略構成について図15を参照しながら説明する。
A schematic configuration of a solar cell module 10 according to a ninth embodiment of the present invention will be described with reference to FIG.
表面保護部材12は、充填材14の受光面側に配置されており、太陽電池モジュール10の表面を保護する。
The surface protection member 12 is disposed on the light receiving surface side of the filler 14 and protects the surface of the solar cell module 10.
裏面保護フィルム13は、充填材14の裏面側に配置されており、太陽電池モジュール10の背面を保護する。
The back surface protective film 13 is disposed on the back surface side of the filler 14 and protects the back surface of the solar cell module 10.
充填材14は、表面保護部材12と裏面保護フィルム13との間で太陽電池11を封止する。充填材14としては、EVA(エチレン・酢酸ビニル共重合樹脂)、ポリエチレン、ポリプロピレン等のポリオレフィン、環状ポリエチレン、アイオノマー、ポリアクリル酸系ポリマー及びこれらを複数種重合させたコポリマーや、ポリジメチルシロキサン等のシリコーン系の樹脂を用いることができる。尚、少なくとも表面保護部材12と太陽電池11との間に配する充填材14には、透光性を有する充填材を用いる。
The filler 14 seals the solar cell 11 between the front surface protective member 12 and the back surface protective film 13. Examples of the filler 14 include EVA (ethylene / vinyl acetate copolymer resin), polyolefins such as polyethylene and polypropylene, cyclic polyethylene, ionomers, polyacrylic acid polymers, copolymers obtained by polymerizing a plurality of these, polydimethylsiloxane, and the like. Silicone-based resins can be used. A filler having translucency is used as the filler 14 disposed at least between the surface protection member 12 and the solar cell 11.
本発明の第9の実施形態においては、表面保護部材12、表面側の充填材用樹脂シート、複数の太陽電池ストリング30、裏面側の充填材用樹脂シート、及び裏面保護フィルム13の順で積層し、この積層体をラミネート装置で加熱、加圧することにより、充填材用樹脂シートを軟化させる。そして、内部にある気泡を追い出して、軟化した充填用樹脂を太陽電池11の周囲に満遍なく充填して、表面保護部材12と裏面保護フィルム13の間に太陽電池11が封止される。
In the ninth embodiment of the present invention, the surface protective member 12, the front surface side filler resin sheet, the plurality of solar cell strings 30, the back surface side filler resin sheet, and the back surface protective film 13 are laminated in this order. And the resin sheet for fillers is softened by heating and pressurizing this laminated body with a laminating apparatus. Then, the air bubbles inside are expelled, and the softening filling resin is uniformly filled around the solar cell 11, so that the solar cell 11 is sealed between the surface protection member 12 and the back surface protection film 13.
図15に示すように、本発明の第9の実施形態の太陽電池モジュール10は、表面保護部材12と裏面保護フィルム13との間に充填される充填材14の厚みを部位によって大きさを異なるようにラミネート成型している。すなわち、少なくとも渡り配線20を含む太陽電池モジュール10端部に位置する充填材141は、中央の部位の充填材142の厚みより大きく形成されている。
As shown in FIG. 15, the solar cell module 10 according to the ninth embodiment of the present invention varies in the size of the thickness of the filler 14 filled between the surface protection member 12 and the back surface protection film 13 depending on the part. It is laminated so that. In other words, sealing member 14 1 is located in the solar cell module 10 ends including at least interconnectors 20 is larger than the center of the sealing member 14 2 of the thickness of the site.
図24に示すように、比較例の太陽電池モジュールでは、前述したラミネート工程時に、表面保護部材12と裏面保護フィルム13の端部近傍では、充填材14が流動し、裏面保護フィルム13が表面保護フィルム12側に撓み、太陽電池モジュール10端部での充填材14の厚みが薄くなる。このため、太陽電池モジュール10の端部側に位置する渡り配線20の角部が裏面側の充填材14bを貫通し、裏面保護フィルム13側に到達することがある。特に、太陽電池モジュール10の四隅部分に位置する渡り配線20の端部分が裏面保護フィルム13に接触する可能性が大きい。そして、このように渡り配線20の少なくとも一部が裏面保護部材13に接触すると、太陽電池モジュールの信頼性を低下させるおそれがあり、このため歩留りが低下するおそれがある。
As shown in FIG. 24, in the solar cell module of the comparative example, the filler 14 flows in the vicinity of the end portions of the surface protection member 12 and the back surface protection film 13 during the laminating process described above, and the back surface protection film 13 protects the surface. The thickness of the filler 14 at the end of the solar cell module 10 is reduced by bending toward the film 12 side. For this reason, the corner | angular part of the crossover wiring 20 located in the edge part side of the solar cell module 10 may penetrate the filler 14b on the back surface side, and may reach the back surface protective film 13 side. In particular, there is a high possibility that the end portions of the crossover wires 20 located at the four corners of the solar cell module 10 are in contact with the back surface protective film 13. And when at least one part of the crossover wiring 20 contacts the back surface protection member 13 in this way, there exists a possibility that the reliability of a solar cell module may be reduced, and there exists a possibility that a yield may fall for this reason.
そこで、図15に示すように、この第9の実施形態においては、渡り配線20が配される側の太陽電池モジュール10の端部に位置する充填材141は、中央の部位の充填材142の厚みより大きく形成されている。
Therefore, as shown in FIG. 15, in this ninth embodiment, the filler 14 1 located at the end of the side of the solar cell module 10 over wires 20 are disposed, the central site filler 14 It is formed larger than the thickness of 2 .
渡り配線20が配される側の太陽電池モジュール10の端部に位置する充填材141の厚みを大きくする方法としては、種々の方法があり、例えば、渡り配線20部分に追加の充填材を配置したり、ラミネート時の条件等を変化させ、充填材の硬化を制御する等して、部位による充填材の厚さを制御する。以下、渡り配線20が配される太陽電池モジュール10の端部に位置する充填材141の厚みを大きくする方法につき説明する。
As a method of increasing the thickness of the filler 14 1 interconnectors 20 are located at the end of the solar cell module 10 on the side which is disposed, there are various methods, for example, the additional filler interconnectors 20 parts The thickness of the filler depending on the part is controlled by, for example, arranging or changing the conditions at the time of laminating and controlling the curing of the filler. Hereinafter, it will be explained a method of increasing the thickness of the filler 14 1 located at the end of the solar cell module 10 over wires 20 are disposed.
上記した図12に示すラミネート装置を用いて、渡り配線20部分に追加の充填材を配置して、その部分の充填材の厚さを大きくする方法につき、図16を参照して説明する。
Using the laminating apparatus shown in FIG. 12, a method of arranging an additional filler in the crossover wiring 20 portion and increasing the thickness of the filler in that portion will be described with reference to FIG.
ラミネート工程は、まず、下チャンバー105にある支持体107上にラミネートされる積層体101を載置する。積層体101は、表面保護部材12、その上にEVA等の樹脂シートからなる第1の充填材14a、配線部材16、渡り配線20により配線を行った複数の太陽電池11、EVA等の樹脂シートからなる第1の充填材14b、さらに、少なくともストリング20を接続する渡り配線20が配置された箇所に追加の樹脂シートからなる充填材14d、そして、最上部に裏面保護フィルム13が積層されている。
Lamination process, first, placing the laminated body 10 1 to be laminated on a support 107 in the lower chamber 105. Laminate 10 1, the surface protective member 12, the first sealing member 14a made of a resin sheet such as EVA thereon, the wiring member 16, a plurality of solar cells 11 that the wiring was performed by interconnectors 20, such as EVA resin The first filler 14b made of a sheet, the filler 14d made of an additional resin sheet at a position where the crossover wiring 20 connecting at least the string 20 is disposed, and the back surface protective film 13 are laminated on the uppermost part. Yes.
上下チャンバー101、105を閉じ、真空ポンプ104、110で上チャンバー真空領域及び下チャンバー真空領域を66~133Pa程度に減圧する。
The upper and lower chambers 101, 105 are closed, and the upper chamber vacuum region and the lower chamber vacuum region are reduced to about 66 to 133 Pa by the vacuum pumps 104, 110.
その後、ヒーターを内蔵した支持体107で積層体101を加熱して昇温を開始する。この加熱によって積層体101の温度が130~180℃に達し、EVA等の充填材14a、14b、14dが軟化したら上チャンバー真空領域を徐々に大気圧に戻すことによってダイヤフラムシート102を膨張させて積層体101を上チャンバー101のダイヤフラムシート102と支持体107との間で加熱、押圧する。この状態を3~10分間程度維持し、積層体101の内部にある気泡を追い出すと共に、軟化した充填材14a、14b、14dを太陽電池11の周囲に万遍なく充填させる。
Then, to start raising the temperature by heating the laminate 10 1 a support 107 with a built-in heater. The temperature of the laminate 10 1 This heating reaches 130 ~ 180 ° C., and the diaphragm sheet 102 is expanded by returning the upper chamber vacuum region gradually atmospheric Once filler 14a such as EVA, 14b, 14d is softened heating the laminate 10 1 between the diaphragm sheet 102 of the upper chamber 101 and the support 107 to push. This state was maintained for about 3 to 10 minutes, with expel air bubbles in the interior of the laminated body 10 1, softened filler 14a, 14b, 14d to be filled in evenly around the solar cell 11.
その後、下チャンバー真空領域105も大気圧に戻し、上チャンバー101と下チャンバー105を開いて太陽電池モジュール10を取り出す。
Thereafter, the lower chamber vacuum region 105 is also returned to atmospheric pressure, the upper chamber 101 and the lower chamber 105 are opened, and the solar cell module 10 is taken out.
このように、渡り配線20が配置される箇所に追加の充填シートを配置した後、ラミネートすることにより、図15及び図17に示すように、渡り配線20が配される側の太陽電池モジュール10の端部に位置する充填材141は、中央の部位の充填材142の厚みより大きく形成することができる。渡り配線20が配される側の太陽電池モジュール10の端部に位置する充填材141を、中央の部位の充填材142の厚みより大きく形成することで、渡り配線20の角部と裏面保護フィルム13との間の間隔を十分保持でき、渡り配線20が裏面保護フィルム13に接触することが抑制される。
In this way, by placing an additional filling sheet at a location where the transition wiring 20 is disposed, and then laminating, the solar cell module 10 on the side where the transition wiring 20 is disposed as shown in FIGS. 15 and 17. sealing member 14 1 located at the end may be larger than the filler 14 2 of the thickness of the central portion. A filler 14 1 interconnectors 20 are located at the end of the solar cell module 10 on the side which is arranged, by formed larger than the filler 14 2 of the thickness of the central portion, the corners of the interconnectors 20 and the back A sufficient distance from the protective film 13 can be maintained, and the crossover wiring 20 can be prevented from coming into contact with the back surface protective film 13.
次に、追加の充填シートを用いずに、渡り配線20が配される側太陽電池モジュール10の端部に位置する充填材141を、他の部位の充填材142の厚みより大きくする第10の実施形態の方法につき図18及び図19を参照して説明する。この方法は、特にEVA等の架橋タイプの充填材を用いるときに有効である。
Then, without the use of additional filler sheet, a filler 14 1 located at the end of the side solar cell module 10 over wires 20 are arranged, the larger than the filler 14 2 of the thickness of the other portions The method according to the tenth embodiment will be described with reference to FIGS. This method is particularly effective when a crosslinking type filler such as EVA is used.
図18に示すように、渡り配線20が位置する部分のラミネート温度を他の部分より高くする。すなわち、支持体107に内蔵するヒーター107a、107bの温度を変化させ、渡り配線20が位置する部分のラミネート温度を高くする。例えば、渡り配線20が位置する部分のラミネート温度130℃~180℃になるように両端のヒーター107aを制御する。また、中央部分温度が100℃~130℃になるように、中央部分のヒーター107bを制御する。
As shown in FIG. 18, the laminating temperature of the part where the crossover wiring 20 is located is made higher than that of the other part. That is, the temperature of the heaters 107a and 107b built in the support 107 is changed to increase the laminating temperature of the portion where the crossover wiring 20 is located. For example, the heaters 107a at both ends are controlled so that the laminating temperature of the portion where the crossover wiring 20 is located is 130 ° C. to 180 ° C. Further, the central portion heater 107b is controlled so that the central portion temperature becomes 100 ° C. to 130 ° C.
下チャンバー105にある支持体107上に表面保護部材102を置き、その上にEVA等の樹脂シートからなる充填材(充填材シート)14a、配線部材16、渡り配線20により配線を行った複数の太陽電池11、EVA等の樹脂シートからなる充填材14b、そして、最上部に裏面保護フィルム13からなる積層体を置く。
A surface protection member 102 is placed on a support 107 in the lower chamber 105, and a plurality of fillers (filler sheet) 14 a made of a resin sheet such as EVA, a wiring member 16, and a transition wiring 20 are wired thereon. The laminated body which consists of the solar cell 11, the filler 14b which consists of resin sheets, such as EVA, and the back surface protective film 13 is put on the uppermost part.
この状態で、真空ポンプ104、110で上チャンバー真空領域及び下チャンバー真空領域11を66~133Pa程度に減圧する。
In this state, the upper chamber vacuum region and the lower chamber vacuum region 11 are decompressed to about 66 to 133 Pa by the vacuum pumps 104 and 110.
その後、温度が分布された支持体107で積層体を加熱して昇温を開始する。この状態で、4分から5分維持する。この加熱により、EVA等の充填材14a、14bが軟化するが、温度が高いと先に硬化が始まる。このため、渡り配線20の位置の箇所の充填材の硬化が先に始まる。この状態で、上チャンバー真空領域を徐々に大気圧に戻すことによってダイヤフラムシート102を膨張させて積層体を上チャンバー101のダイヤフラムシート102と支持体107との間で加熱押圧する。この状態を4~5分間程度維持し、積層体の内部にある気泡を追い出すと共に、軟化した充填材14a、14bを太陽電池11の周囲に万遍なく充填させる。
Thereafter, the temperature of the laminated body is heated by the support body 107 in which the temperature is distributed, and the temperature rise is started. In this state, maintain for 4 to 5 minutes. By this heating, the fillers 14a and 14b such as EVA are softened, but when the temperature is high, the curing starts first. For this reason, the hardening of the filler at the position of the crossover wiring 20 starts first. In this state, the diaphragm sheet 102 is expanded by gradually returning the upper chamber vacuum region to atmospheric pressure, and the laminate is heated and pressed between the diaphragm sheet 102 and the support 107 of the upper chamber 101. This state is maintained for about 4 to 5 minutes to expel air bubbles inside the laminate, and the softened fillers 14a and 14b are uniformly filled around the solar cell 11.
上述したように、渡り配線20の位置する箇所の硬化が先に始まっているので、図19に示すように、この加熱、押圧時には、硬化が始まっている箇所の厚みは、硬化が始まっていない箇所より厚みが増えることになる。
As described above, since the hardening of the portion where the jumper wiring 20 is located has started first, as shown in FIG. 19, the thickness of the portion where the hardening has started at the time of heating and pressing does not start hardening. Thickness will increase from the location.
その後、下チャンバー105の真空領域も大気圧に戻し、上チャンバー101と下チャンバー101を開いて太陽電池モジュール10を取り出す。
Thereafter, the vacuum region of the lower chamber 105 is also returned to atmospheric pressure, the upper chamber 101 and the lower chamber 101 are opened, and the solar cell module 10 is taken out.
このように、渡り配線20が配置される箇所の充填材の硬化を速くしてラミネートすることにより、渡り配線20が配される側の太陽電池モジュール10の端部に位置する充填材141は、中央の部位の充填材142の厚みより大きく形成することができる。渡り配線20が配される側太陽電池モジュール10の端部に位置する充填材141を、他の部位の充填材142の厚みより大きく形成することで、渡り配線20の角部と裏面保護フィルム13との間の間隔を十分保持でき、渡り配線20が裏面保護フィルム13に接触することが抑制される。
Thus, by transition wirings 20 are faster to laminate the cured filler of a portion disposed, filler 14 1 located at the end of the solar cell module 10 on the side where the transition wirings 20 are disposed are it can be larger than the center of the sealing member 14 2 of the thickness of the site. A filler 14 1 interconnectors 20 are located at the end of the side solar cell module 10 which is arranged, by larger than the filler 14 2 of the thickness of the other portions, the corner portions of the interconnectors 20 and the back surface protection A sufficient distance between the film 13 and the film 13 can be maintained, and the crossover wiring 20 is prevented from coming into contact with the back surface protective film 13.
次に、追加の充填シートを用いずに、渡り配線20が配される側の太陽電池モジュール10の端部に位置する充填材141を、他の部位の充填材142の厚みより大きくする第11の実施形態の方法につき図20ないし図22を参照して説明する。尚、この方法は、EVA等の架橋タイプの充填材以外の充填材にも有効である。
Then, without the use of additional filler sheet, a filler 14 1 located at the end of the side of the solar cell module 10 over wires 20 are arranged, larger than the filler 14 2 of the thickness of the other portions The method according to the eleventh embodiment will be described with reference to FIGS. In addition, this method is effective also for fillers other than bridge | crosslinking type fillers, such as EVA.
この図20ないし図22に示す実施形態は、中央部と両端部との圧着を開始する時間を変化させるようにして、充填材14の厚みを場所により変化させたものである。このため、ラミネータ装置には、渡り配線20部分を圧着するための圧着部材121と、その他の部分を圧着する圧着部材120とが別に作動するように構成されている。
In the embodiment shown in FIG. 20 to FIG. 22, the thickness of the filler 14 is changed depending on the location so as to change the time for starting the crimping between the center and both ends. For this reason, the laminator device is configured such that a crimping member 121 for crimping the crossover wiring 20 portion and a crimping member 120 for crimping other portions are operated separately.
下チャンバー105にある支持体107上に表面保護部材102を置き、その上にEVA等の樹脂シートからなる充填材(充填材シート)14a、配線部材16、渡り配線20により配線を行った複数の太陽電池11、EVA等の樹脂シートからなる充填材(充填材シート)14b、そして、最上部に裏面保護フィルム13を置いた積層体を設置する。
A surface protection member 102 is placed on a support 107 in the lower chamber 105, and a plurality of fillers (filler sheet) 14 a made of a resin sheet such as EVA, a wiring member 16, and a transition wiring 20 are wired thereon. The laminated body which put the back surface protection film 13 on the filler (filler sheet | seat) 14b which consists of resin sheets, such as the solar cell 11 and EVA, and the uppermost part is installed.
この状態で、真空ポンプ104、110で上チャンバー真空領域及び下チャンバー真空領域を66~133Pa程度に減圧する。
In this state, the upper chamber vacuum region and the lower chamber vacuum region are reduced to about 66 to 133 Pa by the vacuum pumps 104 and 110.
その後、支持体107で積層体を加熱して昇温を開始する。この加熱によって積層体の温度が130~180℃に達して、この状態で、4分から5分維持し、充填材14a、14bを軟化させる。続いて、中央部の圧着部材120により、中央付近を2分から3分圧着する。
Thereafter, the temperature of the laminate is started by heating the laminate with the support 107. By this heating, the temperature of the laminated body reaches 130 to 180 ° C., and is maintained in this state for 4 to 5 minutes to soften the fillers 14a and 14b. Subsequently, the vicinity of the center is crimped for 2 to 3 minutes by the crimping member 120 at the center.
その後、両端の圧着部材121と中央の圧着部材120にて全体を圧着する。この状態を4分~5分間程度維持し、積層体の内部にある気泡を追い出すと共に、軟化した充填材14a、14bを太陽電池11の周囲に万遍なく充填させる。このように、圧着開始する時間を渡り配線20の部分を遅くすることで、渡り配線20が配される太陽電池モジュール10の端部に位置する充填材141は、他の部位の充填材142の厚みより大きく形成することができる。渡り配線20が配される側の太陽電池モジュール10の端部に位置する充填材141を、中央の部位の充填材142の厚みより大きく形成することで、渡り配線20の角部と裏面保護フィルム13との間の間隔を十分保持でき、渡り配線20が裏面保護フィルム13に接触することが抑制される。
Thereafter, the whole is crimped by the crimping members 121 at both ends and the crimping member 120 at the center. This state is maintained for about 4 to 5 minutes to expel air bubbles inside the laminate, and the softened fillers 14a and 14b are uniformly filled around the solar cell 11. Thus, by slowing the portion of the wire 20 over the time to start crimping, filler 14 1 located at the end of the solar cell module 10 over wires 20 are disposed, the other parts filler 14 The thickness can be larger than 2 . A filler 14 1 interconnectors 20 are located at the end of the solar cell module 10 on the side which is arranged, by formed larger than the filler 14 2 of the thickness of the central portion, the corners of the interconnectors 20 and the back A sufficient distance from the protective film 13 can be maintained, and the crossover wiring 20 can be prevented from coming into contact with the back surface protective film 13.
次に、追加の充填シートを用いずに、渡り配線20が配される側の太陽電池モジュール10の端部に位置する充填材141を、中央の部位の充填材142の厚みより大きくする第12の実施形態の方法につき図23を参照して説明する。
Then, without the use of additional filler sheet, a filler 14 1 located at the end of the side of the solar cell module 10 over wires 20 are arranged, larger than the center of the sealing member 14 2 of the thickness of the site A method according to the twelfth embodiment will be described with reference to FIG.
この実施形態は、中央部と両端部との圧着強度を変化させるようにして、充填材14の厚みを場所により変化させたものである。このため、ラミネータ装置には、渡り配線20部分を圧着するための圧着部材121と、その他の部分を圧着する圧着部材120とが別に駆動するように構成されている。
In this embodiment, the thickness of the filler 14 is changed depending on the location so as to change the pressure-bonding strength between the center and both ends. For this reason, the laminator device is configured such that the crimping member 121 for crimping the crossover wiring portion 20 and the crimping member 120 for crimping other portions are driven separately.
下チャンバー105にある支持体107上に表面保護部材12を置き、その上にEVA等の樹脂シートからなる充填材(充填シート)14a、配線部材16、渡り配線20により配線を行った複数の太陽電池11、EVA等の樹脂シートからなる充填材(充填材シート)14b、そして、最上部に裏面保護フィルム13を置いた積層体を設置する。
The surface protection member 12 is placed on the support 107 in the lower chamber 105, and a plurality of solar cells on which wiring is performed by a filler (filling sheet) 14 a made of a resin sheet such as EVA, the wiring member 16, and the transition wiring 20. The battery 11, a filler (filler sheet) 14 b made of a resin sheet such as EVA, and a laminate in which the back surface protective film 13 is placed on the uppermost part are installed.
この状態で、真空ポンプ104、110で上チャンバー真空領域及び下チャンバー真空領域を66~133Pa程度に減圧する。
In this state, the upper chamber vacuum region and the lower chamber vacuum region are reduced to about 66 to 133 Pa by the vacuum pumps 104 and 110.
その後、支持体107で積層体を加熱して昇温を開始する。この加熱によって積層体8の温度が130~180℃に達して、この状態で、4分から5分維持する。続いて、中央部の圧着部材120により、中央付近の圧着部材120の圧着強度を強く、両端の圧着部材121により、圧着強度を中央部分より弱くして4分から5分圧着する。
Thereafter, the temperature of the laminate is started by heating the laminate with the support 107. By this heating, the temperature of the laminated body 8 reaches 130 to 180 ° C., and this state is maintained for 4 to 5 minutes. Subsequently, the crimping strength of the crimping member 120 near the center is increased by the crimping member 120 near the center, and the crimping strength is weaker than that of the central portion by the crimping members 121 at both ends, and the crimping is performed for 4 to 5 minutes.
この状態を4~5分間程度維持し、積層体の内部にある気泡を追い出すと共に、軟化した充填材14a、14bを太陽電池11の周囲に万遍なく充填させる。このように、圧着強度を渡り配線20が位置する部分を弱くすることで、渡り配線20が配される側の太陽電池モジュール10の端部に位置する充填材141は、中央の部位の充填材142の厚みより大きく形成することができる。渡り配線20が配される側の太陽電池モジュール10の端部に位置する充填材141を、中央の部位の充填材142の厚みより大きく形成することで、渡り配線20の角部と裏面保護フィルム13との間の間隔を十分保持でき、渡り配線20が裏面保護フィルム13に接触することが抑制される。
This state is maintained for about 4 to 5 minutes to expel air bubbles inside the laminate, and the softened fillers 14a and 14b are uniformly filled around the solar cell 11. Thus, by weakening the portion where the wiring 20 cross the crimping strength is located, filler 14 1 located at the end of the solar cell module 10 on the side where the transition wirings 20 are arranged, the filling of the central portion it can be larger than wood 14 2 thickness. A filler 14 1 interconnectors 20 are located at the end of the solar cell module 10 on the side which is arranged, by formed larger than the filler 14 2 of the thickness of the central portion, the corners of the interconnectors 20 and the back A sufficient distance from the protective film 13 can be maintained, and the crossover wiring 20 can be prevented from coming into contact with the back surface protective film 13.
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.
10 太陽電池モジュール
11 太陽電池
12 表面保護部材
13 裏面保護フィルム
13a 開口部
14 充填材
14a、14b 第1の充填材
14c 第2の充填材
16 配線部材
17 端面封止部材
18 接着剤
20 渡り配線 DESCRIPTION OFSYMBOLS 10 Solar cell module 11 Solar cell 12 Surface protection member 13 Back surface protection film 13a Opening part 14 Filler 14a, 14b 1st filler 14c 2nd filler 16 Wiring member 17 End surface sealing member 18 Adhesive 20 Crossover wiring
11 太陽電池
12 表面保護部材
13 裏面保護フィルム
13a 開口部
14 充填材
14a、14b 第1の充填材
14c 第2の充填材
16 配線部材
17 端面封止部材
18 接着剤
20 渡り配線 DESCRIPTION OF
Claims (19)
- 表面保護部材と、
裏面保護フィルムと、
前記表面保護部材と前記裏面保護フィルムとの間に配設された複数の太陽電池と、
前記表面保護部材と前記裏面保護フィルムとの間に、前記複数の太陽電池を封止する充填材と、
前記複数の太陽電池を互いに電気的に接続する配線部材と、
前記配線部材と電気的に接続された渡り配線と、
前記渡り配線近傍の前記表面保護部材と前記裏面保護フィルムの間に介在され、前記充填材の軟化点以上の温度において前記充填材よりも硬い絶縁材またはメルトフローレートが小さい絶縁材からなる端面封止部材と、
を備える太陽電池モジュール。 A surface protection member;
A back surface protective film;
A plurality of solar cells disposed between the surface protection member and the back surface protection film;
Between the surface protection member and the back surface protection film, a filler for sealing the plurality of solar cells,
A wiring member for electrically connecting the plurality of solar cells to each other;
A transition wire electrically connected to the wiring member;
An end face seal made of an insulating material that is interposed between the front surface protective member and the back surface protective film in the vicinity of the transition wiring and is harder than the filler or having a lower melt flow rate at a temperature equal to or higher than the softening point of the filler. A stop member;
A solar cell module comprising: - 前記端面封止部材は、前記渡り配線よりも外周側に配置される、
請求項1記載の太陽電池モジュール。 The end surface sealing member is disposed on the outer peripheral side of the crossover wiring.
The solar cell module according to claim 1. - 前記端面封止材は、前記表面保護部材と係合する係合部を有する、
請求項1または2記載の太陽電池モジュール。 The end surface sealing material has an engaging portion that engages with the surface protection member.
The solar cell module according to claim 1 or 2. - 前記端面封止材と前記表面保護部材との間の少なくとも一部に、前記充填材の軟化点よりも低温で硬化する接着層を備える、
請求項1~3のいずれか1項に記載の太陽電池モジュール。 An adhesive layer that cures at a temperature lower than the softening point of the filler is provided on at least a portion between the end surface sealing material and the surface protection member.
The solar cell module according to any one of claims 1 to 3. - 前記充填材は、エチレン・酢酸ビニル共重合樹脂または低密度ポリエチレン樹脂またはアイオノマー樹脂からなり、
前記端面封止材は、ガラスエポキシ樹脂または高密度ポリプロピレン樹脂からなり、
前記接着層はエポキシ系樹脂またはアクリル系樹脂からなる、
請求項1~4のいずれか1項に記載の太陽電池モジュール。 The filler is made of ethylene / vinyl acetate copolymer resin, low density polyethylene resin or ionomer resin,
The end surface sealing material is made of glass epoxy resin or high density polypropylene resin,
The adhesive layer is made of epoxy resin or acrylic resin,
The solar cell module according to any one of claims 1 to 4. - 前記表面保護部材は、ガラスまたはポリカーボネート樹脂またはポリメタアクリル樹脂からなり、
前記裏面保護フィルムは、ポリエチレンテレフタラート樹脂等のポリエステル樹脂またはポリプロピレン等のポリオレフィン樹脂またはアルミニウム等の金属箔またはガラス及びこれらの積層フィルムからなる、
請求項1~5のいずれか1項に記載の太陽電池モジュール。 The surface protection member is made of glass, polycarbonate resin or polymethacrylic resin,
The back surface protective film is made of a polyester resin such as polyethylene terephthalate resin, a polyolefin resin such as polypropylene, or a metal foil or glass such as aluminum, and a laminated film thereof.
The solar cell module according to any one of claims 1 to 5. - 前記配線部材は、銅箔にはんだをメッキしたものまたは銅箔に銀をメッキしたものからなり、
前記渡り配線部材は、銅箔にはんだメッキしたものからなる、
請求項1~6のいずれか1項に記載に太陽電池モジュール。 The wiring member consists of a copper foil plated with solder or a copper foil plated with silver,
The crossover wiring member is made of a copper foil solder plated.
The solar cell module according to any one of claims 1 to 6. - 表面保護部材と、
裏面保護フィルムと、
前記表面保護部材と前記裏面保護フィルムとの間に配設された複数の太陽電池と、
前記表面保護部材と裏面保護フィルムとの間に、前記複数の太陽電池を封止する第1の充填材と、
前記複数の太陽電池を互いに電気的に接続する配線部材と、
前記配線部材と電気的に接続された渡り配線と、
前記渡り配線が配置される位置の少なくとも一部に配置され、前記第1の充填材よりメルトフローレートが小さい第2の充填材と、を備え、
前記第2の充填材は、前記渡り配線と前記裏面保護フィルムとの間の間隔を前記渡り配線が前記裏面保護フィルムから離間した状態となる厚みを有する、
太陽電池モジュール。 A surface protection member;
A back surface protective film;
A plurality of solar cells disposed between the surface protection member and the back surface protection film;
A first filler for sealing the plurality of solar cells between the surface protection member and the back surface protection film;
A wiring member for electrically connecting the plurality of solar cells to each other;
A transition wire electrically connected to the wiring member;
A second filler disposed at at least a part of the position where the crossover wiring is disposed, and having a lower melt flow rate than the first filler;
The second filler has a thickness at which the transition wiring is separated from the back surface protection film at an interval between the transition wiring and the back surface protection film.
Solar cell module. - 太陽電池モジュール端部は、前記第1の充填材が配置されている、
請求項8記載の太陽電池モジュール。 At the end of the solar cell module, the first filler is disposed.
The solar cell module according to claim 8. - 前記第1の充填材及び第2の充填材は、エチレン・酢酸ビニル共重合体、ポリオレフィン系ポリマー、環状ポリエチレン、アイオノマー、ポリアクリル酸系ポリマー又はこれらを複数種類重合させたコポリマーの中から選択され、
前記第1の充填材及び第2の充填材は、充填材の軟化点以上の温度において、第1の充填材より第2の充填材の方が、メルトフローレートが小さい充填材が選択される、
請求項8又は請求項9に記載の太陽電池モジュール。 The first filler and the second filler are selected from an ethylene / vinyl acetate copolymer, a polyolefin polymer, a cyclic polyethylene, an ionomer, a polyacrylic acid polymer, or a copolymer obtained by polymerizing a plurality of these. ,
As the first filler and the second filler, a filler having a lower melt flow rate is selected for the second filler than for the first filler at a temperature equal to or higher than the softening point of the filler. ,
The solar cell module according to claim 8 or 9. - 前記表面保護部材は、ガラスまたはポリカーボネート樹脂またはポリメタアクリル樹脂からなり、
前記裏面保護フィルムは、ポリエチレンテレフタラート樹脂等のポリエステル樹脂またはポリプロピレン等のポリオレフィン樹脂またはアルミニウム等の金属箔またはガラス及びこれらの積層フィルムからなる、
請求項8ないし請求項10のいずれか1項に記載の太陽電池モジュール。 The surface protection member is made of glass, polycarbonate resin or polymethacrylic resin,
The back surface protective film is made of a polyester resin such as polyethylene terephthalate resin, a polyolefin resin such as polypropylene, or a metal foil or glass such as aluminum, and a laminated film thereof.
The solar cell module according to any one of claims 8 to 10. - 配線部材及び渡り配線により複数の太陽電池を配線し、
表面保護部材の上に、第1の充填材シート、前記複数の太陽電池、第1の充填材シート、前記渡り配線が配置された箇所の少なくとも一部に配置され前記第1の充填シートよりメルトフローレートが小さい第2の充填材シート、および裏面保護フィルムをこの順序で積層して積層体を形成し、
前記積層体を加熱、押圧し、軟化した前記充填材を前記複数の太陽電池の周囲に充填させる、
太陽電池モジュールの製造方法。 Wiring multiple solar cells with wiring members and crossover wiring,
On the surface protection member, the first filler sheet, the plurality of solar cells, the first filler sheet, and at least a part of the place where the crossover wiring is arranged are melted from the first filler sheet. A second filler sheet having a small flow rate and a back surface protective film are laminated in this order to form a laminate,
The laminated body is heated, pressed, and filled with the softened filler around the plurality of solar cells.
Manufacturing method of solar cell module. - 前記第1の充填材シート及び第2の充填材シートは、エチレン・酢酸ビニル共重合体、ポリオレフィン系ポリマー、環状ポリエチレン、アイオノマー、ポリアクリル酸系ポリマー又はこれらを複数種類重合させたコポリマーの中から選択され、
前記第1の充填材シート及び前記第2の充填材シートは、充填材の軟化点以上の温度において、前記第1の充填材シートより前記第2の充填材シートの方が、メルトフローレートが小さい充填材シートが選択される、
請求項12に記載の太陽電池モジュールの製造方法。 The first filler sheet and the second filler sheet are made of an ethylene / vinyl acetate copolymer, a polyolefin-based polymer, a cyclic polyethylene, an ionomer, a polyacrylic acid-based polymer, or a copolymer obtained by polymerizing a plurality of these. Selected
In the first filler sheet and the second filler sheet, the melt flow rate of the second filler sheet is higher than that of the first filler sheet at a temperature equal to or higher than the softening point of the filler. A small filler sheet is selected,
The manufacturing method of the solar cell module of Claim 12. - 表面保護部材と、
裏面保護フィルムと、
前記表面保護部材と前記裏面保護フィルムとの間に配設された複数の太陽電池と、
前記表面保護部材と前記裏面保護フィルムとの間に、前記複数の太陽電池を封止する充填材と、
前記複数の太陽電池を互いに電気的に接続する配線部材と、
前記配線部材と電気的に接続された渡り配線と、を備え、
前記充填材は、少なくとも前記渡り配線が配された側の太陽電池モジュール端部の前記表面保護部材と前記裏面保護フィルムの間に位置する部位の厚みが、中央の部位の厚みより大きく形成されている、
太陽電池モジュール。 A surface protection member;
A back surface protective film;
A plurality of solar cells disposed between the surface protection member and the back surface protection film;
Between the surface protection member and the back surface protection film, a filler for sealing the plurality of solar cells,
A wiring member for electrically connecting the plurality of solar cells to each other;
A transition wire electrically connected to the wiring member,
The filler is formed such that at least the thickness of the portion located between the surface protection member and the back surface protection film at the end of the solar cell module on the side where the crossover wiring is arranged is larger than the thickness of the central portion. Yes,
Solar cell module. - 少なくとも渡り配線が配された側の太陽電池モジュール端部の前記表面保護部材と裏面保護フィルムの間に配置される充填材の量を中央の部位に配置される充填材の量より多くしている、
請求項14に記載の太陽電池モジュール。 At least the amount of the filler disposed between the surface protection member and the back surface protection film at the end of the solar cell module on the side where the crossover wiring is arranged is larger than the amount of the filler disposed in the central portion. ,
The solar cell module according to claim 14. - 配線部材及び渡り配線により複数の太陽電池を配線し、
表面保護部材の上に、充填材シート、前記複数の太陽電池、充填材シート、前記渡り配線が配置された箇所に配置された充填材シート、最上部に裏面保護フィルムをこの順序で積層して積層体を形成し、
前記積層体を加熱、押圧し、少なくとも前記渡り配線が配された側の前記表面保護部材と前記裏面保護フィルムの間に位置する前記充填材の厚みを、中央の部位の前記充填材の厚みより大きく形成して、前記表面保護部材と前記裏面保護フィルムとの間に前記複数の太陽電池を前記充填材で封止する、
太陽電池モジュールの製造方法。 Wiring multiple solar cells with wiring members and crossover wiring,
On the surface protection member, the filler sheet, the plurality of solar cells, the filler sheet, the filler sheet disposed at the place where the transition wiring is disposed, and the back surface protective film on the top are laminated in this order. Forming a laminate,
The laminate is heated and pressed, and the thickness of the filler located between the front surface protection member and the back surface protection film on the side where at least the crossover wiring is arranged is greater than the thickness of the filler at the central portion. Largely formed, and sealing the plurality of solar cells with the filler between the surface protection member and the back surface protection film,
Manufacturing method of solar cell module. - 配線部材及び渡り配線により複数の太陽電池を配線し、
表面保護部材の上に、充填材シート、前記複数の太陽電池、充填材シート、最上部に裏面保護フィルムをこの順序で積層して積層体を形成し、
前記積層体を前記渡り配線が位置する部分のラミネート温度を他の部分より高くして加熱した状態で押圧し、少なくとも前記渡り配線が配された側の前記表面保護部材と前記裏面保護フィルムの間に位置する前記充填材の厚みを、中央の部位の前記充填材の厚みより大きく形成して、前記表面保護部材と前記裏面保護フィルムとの間に前記複数の太陽電池を前記充填材で封止する、
太陽電池モジュールの製造方法。 Wiring multiple solar cells with wiring members and crossover wiring,
On the surface protection member, a laminate is formed by laminating a filler sheet, the plurality of solar cells, the filler sheet, and a back surface protective film in this order on the top,
The laminated body is pressed in a state where the laminating temperature of the portion where the crossover wiring is positioned is higher than that of the other portion and heated, and at least between the surface protection member and the back surface protection film on the side where the crossover wiring is arranged The filler is positioned at a thickness greater than that of the filler at a central portion, and the plurality of solar cells are sealed with the filler between the front surface protection member and the back surface protection film. To
Manufacturing method of solar cell module. - 配線部材及び渡り配線により複数の太陽電池を配線し、
表面保護部材の上に、充填材シート、前記複数の太陽電池、充填材シート、最上部に裏面保護フィルムをこの順序で積層して積層体を形成し、
前記積層体を加熱し、前記渡り配線が位置する部分以外の部分の圧着を開始した後、所定時間経過後前記渡り配線が位置する部分の圧着を開始して、前記積層体を押圧し、少なくとも前記渡り配線が配された側の前記表面保護部材と前記裏面保護フィルムの間に位置する前記充填材の厚みを、中央の部位の前記充填材の厚みより大きく形成して、前記表面保護部材と前記裏面保護フィルムとの間に前記複数の太陽電池を前記充填材で封止する、
太陽電池モジュールの製造方法。 Wiring multiple solar cells with wiring members and crossover wiring,
On the surface protection member, a laminate is formed by laminating a filler sheet, the plurality of solar cells, the filler sheet, and a back surface protective film in this order on the top,
After heating the laminated body and starting the crimping of the part other than the part where the transition wiring is located, starting the crimping of the part where the transition wiring is located after a predetermined time has passed, and pressing the laminated body, Forming the thickness of the filler located between the surface protection member on the side where the crossover wiring is arranged and the back surface protection film to be larger than the thickness of the filler in a central portion; and Sealing the plurality of solar cells with the filler between the back surface protective film,
Manufacturing method of solar cell module. - 配線部材及び渡り配線により複数の太陽電池を配線し、
表面保護部材の上に、充填材シート、前記複数の太陽電池、充填材シート、最上部に裏面保護フィルムをこの順序で積層して積層体を形成し、
前記積層体を加熱し、前記渡り配線が位置する部分の圧着強度より前記渡り配線が位置する部分以外の部分の圧着強度を強くして、前記積層体を押圧し、少なくとも前記渡り配線が配された側の前記表面保護部材と前記裏面保護フィルムの間に位置する前記充填材の厚みを、中央の部位の前記充填材の厚みより大きく形成して、前記表面保護部材と前記裏面保護フィルムとの間に前記複数の太陽電池を前記充填材で封止する、
太陽電池モジュールの製造方法。
Wiring multiple solar cells with wiring members and crossover wiring,
On the surface protection member, a laminate is formed by laminating a filler sheet, the plurality of solar cells, the filler sheet, and a back surface protective film in this order on the top,
The laminated body is heated, the pressure bonding strength of the portion other than the portion where the transition wiring is located is made stronger than the pressure bonding strength of the portion where the transition wiring is located, and the laminate is pressed, so that at least the transition wiring is arranged. The thickness of the filler located between the surface protection member on the other side and the back surface protection film is formed to be larger than the thickness of the filler at the center, and the surface protection member and the back surface protection film Sealing the plurality of solar cells with the filler in between,
Manufacturing method of solar cell module.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-016602 | 2011-01-28 | ||
JP2011016602 | 2011-01-28 | ||
JP2011033706 | 2011-02-18 | ||
JP2011-033706 | 2011-02-18 | ||
JP2011037608 | 2011-02-23 | ||
JP2011-037608 | 2011-02-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012102320A1 true WO2012102320A1 (en) | 2012-08-02 |
Family
ID=46580884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051598 WO2012102320A1 (en) | 2011-01-28 | 2012-01-26 | Solar cell module and method for manufacturing solar cell module |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012102320A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014030225A1 (en) * | 2012-08-22 | 2014-02-27 | 三洋電機株式会社 | Solar cell module and manufacturing method therefor |
JP2015002318A (en) * | 2013-06-18 | 2015-01-05 | 三菱電機株式会社 | Solar cell module and manufacturing method thereof |
JP2017073466A (en) * | 2015-10-07 | 2017-04-13 | トヨタ自動車株式会社 | On-vehicle solar battery module |
JP2019102503A (en) * | 2017-11-28 | 2019-06-24 | 藤森工業株式会社 | Coverlay film and electronic apparatus using the same |
CN113841258A (en) * | 2019-06-05 | 2021-12-24 | 松下知识产权经营株式会社 | Solar cell module |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5568682A (en) * | 1978-11-17 | 1980-05-23 | Matsushita Electric Ind Co Ltd | Solar battery device |
JP2000031519A (en) * | 1998-07-09 | 2000-01-28 | Sanyo Electric Co Ltd | Manufacture for solar cell module |
JP2005050927A (en) * | 2003-07-30 | 2005-02-24 | Kyocera Corp | Solar cell module, its manufacturing method, and installation structure thereof |
JP2005079170A (en) * | 2003-08-28 | 2005-03-24 | Kyocera Corp | Solar cell module and its manufacturing method |
JP2005159181A (en) * | 2003-11-27 | 2005-06-16 | Kyocera Corp | Method of manufacturing solar cell module |
JP2005317665A (en) * | 2004-04-27 | 2005-11-10 | Nakajima Glass Co Inc | Method of manufacturing solar cell module |
JP2006073793A (en) * | 2004-09-02 | 2006-03-16 | Toppan Printing Co Ltd | Solar battery, back sheet therefor and manufacturing method thereof |
JP2006173298A (en) * | 2004-12-15 | 2006-06-29 | Fuji Electric Holdings Co Ltd | Solar cell module |
JP2006295087A (en) * | 2005-04-15 | 2006-10-26 | Sanyo Electric Co Ltd | Photovoltaic module |
JP2008258269A (en) * | 2007-04-02 | 2008-10-23 | Sharp Corp | Solar cell module and manufacturing process of the same |
JP2009246208A (en) * | 2008-03-31 | 2009-10-22 | Kyocera Corp | Solar cell module, and method for manufacturing the same |
JP2010177282A (en) * | 2009-01-27 | 2010-08-12 | Sanyo Electric Co Ltd | Method of manufacturing solar cell module |
-
2012
- 2012-01-26 WO PCT/JP2012/051598 patent/WO2012102320A1/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5568682A (en) * | 1978-11-17 | 1980-05-23 | Matsushita Electric Ind Co Ltd | Solar battery device |
JP2000031519A (en) * | 1998-07-09 | 2000-01-28 | Sanyo Electric Co Ltd | Manufacture for solar cell module |
JP2005050927A (en) * | 2003-07-30 | 2005-02-24 | Kyocera Corp | Solar cell module, its manufacturing method, and installation structure thereof |
JP2005079170A (en) * | 2003-08-28 | 2005-03-24 | Kyocera Corp | Solar cell module and its manufacturing method |
JP2005159181A (en) * | 2003-11-27 | 2005-06-16 | Kyocera Corp | Method of manufacturing solar cell module |
JP2005317665A (en) * | 2004-04-27 | 2005-11-10 | Nakajima Glass Co Inc | Method of manufacturing solar cell module |
JP2006073793A (en) * | 2004-09-02 | 2006-03-16 | Toppan Printing Co Ltd | Solar battery, back sheet therefor and manufacturing method thereof |
JP2006173298A (en) * | 2004-12-15 | 2006-06-29 | Fuji Electric Holdings Co Ltd | Solar cell module |
JP2006295087A (en) * | 2005-04-15 | 2006-10-26 | Sanyo Electric Co Ltd | Photovoltaic module |
JP2008258269A (en) * | 2007-04-02 | 2008-10-23 | Sharp Corp | Solar cell module and manufacturing process of the same |
JP2009246208A (en) * | 2008-03-31 | 2009-10-22 | Kyocera Corp | Solar cell module, and method for manufacturing the same |
JP2010177282A (en) * | 2009-01-27 | 2010-08-12 | Sanyo Electric Co Ltd | Method of manufacturing solar cell module |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014030225A1 (en) * | 2012-08-22 | 2014-02-27 | 三洋電機株式会社 | Solar cell module and manufacturing method therefor |
CN104508832A (en) * | 2012-08-22 | 2015-04-08 | 三洋电机株式会社 | Solar cell module and manufacturing method therefor |
US9379268B2 (en) | 2012-08-22 | 2016-06-28 | Panasonic Intellectual Property Management Co., Ltd. | Solar cell module and method of manufacturing the same |
JP2015002318A (en) * | 2013-06-18 | 2015-01-05 | 三菱電機株式会社 | Solar cell module and manufacturing method thereof |
JP2017073466A (en) * | 2015-10-07 | 2017-04-13 | トヨタ自動車株式会社 | On-vehicle solar battery module |
JP2019102503A (en) * | 2017-11-28 | 2019-06-24 | 藤森工業株式会社 | Coverlay film and electronic apparatus using the same |
JP7045173B2 (en) | 2017-11-28 | 2022-03-31 | 藤森工業株式会社 | Coverlay film and electronic devices using it |
CN113841258A (en) * | 2019-06-05 | 2021-12-24 | 松下知识产权经营株式会社 | Solar cell module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101476478B1 (en) | Solar cell module manufacturing method | |
CN203277411U (en) | Solar cell module | |
JP4860652B2 (en) | Solar cell module and manufacturing method thereof | |
WO2012102320A1 (en) | Solar cell module and method for manufacturing solar cell module | |
EP3389099B1 (en) | Photovoltaic module, photovoltaic encapsulant and method of producing a photovoltaic module | |
JPWO2012017538A1 (en) | Manufacturing method of solar cell module | |
TWI628807B (en) | Back-contacted solar panel and method for manufacturing such a solar panel | |
JP5430326B2 (en) | Solar cell module | |
JPWO2018051658A1 (en) | Solar cell module | |
JP5430956B2 (en) | Manufacturing method of solar cell module | |
JP5545569B2 (en) | Method for manufacturing solar cell backsheet | |
JP2005072567A (en) | Manufacturing method of solar cell module | |
JP2011210747A (en) | Solar cell module and method of manufacturing the same | |
JP2010278147A (en) | Method for manufacturing solar cell module | |
JP2012079838A (en) | Solar cell module and method for manufacturing the same | |
WO2017043518A1 (en) | Solar battery module manufacturing method, solar battery module, and solar battery cell connecting method | |
JP2011135068A (en) | Method for manufacturing solar cell module | |
US11075312B2 (en) | Solar cell module and method for manufacturing solar cell module | |
JP2009081217A (en) | Solar battery module | |
JP5652911B2 (en) | Manufacturing method of solar cell module | |
JP5816823B2 (en) | Solar cell module and manufacturing method thereof | |
WO2012117891A1 (en) | Output wire for solar cell modules, solar cell module, and method for manufacturing same | |
JP2012204533A (en) | Solar cell module and manufacturing method of the same | |
WO2024216821A1 (en) | Photovoltaic electrode unit and photovoltaic electrode module | |
KR101444793B1 (en) | Back contact solar cell module and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12739711 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12739711 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |