WO2012102305A1 - Photovoltaic device - Google Patents

Photovoltaic device Download PDF

Info

Publication number
WO2012102305A1
WO2012102305A1 PCT/JP2012/051551 JP2012051551W WO2012102305A1 WO 2012102305 A1 WO2012102305 A1 WO 2012102305A1 JP 2012051551 W JP2012051551 W JP 2012051551W WO 2012102305 A1 WO2012102305 A1 WO 2012102305A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic device
layer
insulating resin
insulating
resin base
Prior art date
Application number
PCT/JP2012/051551
Other languages
French (fr)
Japanese (ja)
Inventor
篠原 亘
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012102305A1 publication Critical patent/WO2012102305A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic device.
  • Patent Document 1 a first electrode layer, a semiconductor photoactive layer, and a transparent conductive layer are formed on substantially the entire surface of an insulating substrate, and then a spot-like laser beam is scanned to form divided grooves, and a desired plurality of grooves are formed.
  • a photovoltaic device in which a laminated body corresponding to a power generation region is formed is known.
  • Patent Document 2 discloses that a transparent electrode film is formed on substantially the entire insulating surface on which a semiconductor photoactive layer is formed, and a patterned protective layer that transmits visible light but does not transmit ultraviolet light is used as a masking material. Further forming on the conductive layer, irradiating the entire surface of the substrate with ultraviolet laser light to remove the portion of the transparent conductive layer not masked by the protective layer to form a transparent conductive layer.
  • a photovoltaic device having a structure in which a protective member is disposed in a portion of a wide dividing groove from which the transparent conductive layer has been removed is disclosed.
  • Patent Document 3 discloses a photovoltaic device using a liquid crystal polymer resin as a substrate.
  • an insulating substrate having an insulating surface formed of a polyimide (PI) resin on a thin stainless steel plate is used.
  • the PI resin has high water absorption and gas absorption, and degassing occurs when heated in vacuum during the formation of the first electrode film, the semiconductor photoactive layer, or the transparent conductive layer.
  • the characteristics of the one-electrode film, the semiconductor photoactive layer, or the transparent conductive layer may be deteriorated.
  • liquid crystal polymer itself when used as a substrate material, in order to form the photovoltaic device flat, it is necessary to form the liquid crystal polymer itself as a thick film, and there is a problem that the manufacturing cost increases. Furthermore, generally, since the liquid crystal polymer resin has a flat surface shape, there is a problem that a sufficient light confinement effect cannot be obtained for the photovoltaic device.
  • the present invention provides a photovoltaic device in which a first electrode layer, a semiconductor photoactive layer, and a transparent conductive layer are laminated on a power generation region on a substrate having an insulating surface, the substrate comprising an insulating resin base and the insulating resin base.
  • a photovoltaic device comprising an insulating resin layer that is dispersed in a resin base and includes insulating fine particles that are different from the insulating resin base and have a refractive index of light.
  • a photovoltaic device with improved characteristics can be provided.
  • a photovoltaic device 100 includes a substrate 10, a first electrode layer 12, a semiconductor photoactive layer 14, a transparent conductive layer 16, a conductive terminal 18, and a protective layer, as shown in the sectional view of FIG. 20 is comprised.
  • the substrate 10 in the present embodiment includes a laminated structure of a metal sheet 10a and an insulating resin layer 10b as shown in the cross-sectional view of FIG. 1 and the enlarged cross-sectional view of FIG.
  • the substrate 10 may be translucent or non-translucent.
  • the metal sheet 10a is preferably flexible.
  • the metal sheet 10a can be comprised from materials, such as stainless steel and aluminum, for example.
  • the insulating resin layer 10b is a layer formed on the metal sheet 10a and made of an electrically insulating material.
  • the film thickness of the insulating resin layer 10b is preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the insulating resin layer 10b is configured to include a material obtained by mixing the insulating resin base 10c with the insulating fine particles 10d.
  • the insulating resin base 10c becomes a coating agent applied on the metal sheet 10a in a state where the insulating fine particles 10d are diffused, and is a solidified paste-like material that can be applied to the predetermined thickness on the metal sheet 10a. It can be.
  • a liquid crystal polymer or a liquid crystal polyester for example, a wholly aromatic polyester resin or a wholly aromatic polyamide resin can be used.
  • the insulating resin base 10c includes, for example, a polymer of ethylene terephthalate and parahydroxybenzoic acid represented by chemical formula (1), a polymer of phenol and phthalic acid and parahydroxybenzoic acid represented by chemical formula (2), chemical formula (3) It is preferable to use a polymer of 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid as shown in FIG.
  • the insulating fine particles 10d are fine particles made of an insulating material that is diffused and distributed in the insulating resin base 10c.
  • the insulating fine particles 10d are preferably made of a material having a refractive index different from that of the insulating resin base 10c.
  • a semiconductor film such as a silicon semiconductor film, a silicon carbide semiconductor film, or a silicon germanium semiconductor film is applied as the semiconductor photoactive layer 14, it scatters light in at least a part of the visible light region, particularly a wavelength region of 400 nm to 800 nm.
  • the shape of the insulating fine particles 10d is not particularly limited, but may be a spherical shape, a cubic shape, a rectangular parallelepiped shape, or the like.
  • the insulating fine particles 10d preferably have an average diameter of 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the insulating fine particles 10d are preferably dispersed so that the volume occupation ratio is 5% or more and 50% or less with respect to the insulating resin base 10c.
  • the insulating fine particles 10d are preferably composed of an alkali-free material.
  • the insulating fine particles 10d preferably have an element content of impurities such as sodium, potassium, calcium, zirconium, lead, etc. of 1 atomic% or less.
  • the height of the unevenness appearing on the surface of the insulating resin layer 10b formed on the surface of the substrate 10 is 0.01 ⁇ m or more and 1 ⁇ m or less on average.
  • the arithmetic average roughness Ra of the unevenness appearing on the surface of the insulating resin layer 10b is 70 nm or less.
  • the first electrode layer 12 constitutes an electrode layer for taking out electric power from the semiconductor photoactive layer 14 serving as a power generation layer.
  • the first electrode layer 12 can be made of a metal film, for example, a metal film of tungsten, aluminum, titanium, nickel, copper, silver, zinc oxide, stainless steel, or an alloy containing these materials. Is preferred.
  • a plurality of types of metal layers may be stacked to form the first electrode layer 12.
  • the film thickness of the first electrode layer 12 is preferably 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the semiconductor photoactive layer 14 becomes a power generation layer of the photovoltaic device 100.
  • the semiconductor photoactive layer 14 forms a pn junction semiconductor layer in which p-type and n-type semiconductor layers are laminated or a pin junction semiconductor layer in which p-type, i-type, and n-type semiconductor layers are laminated on the first electrode layer 12. It is composed by doing.
  • the p-type semiconductor layer is a semiconductor layer added with a dopant (boron or the like) that generates holes in the semiconductor
  • the n-type semiconductor layer is a dopant (phosphorus, antimony, or the like) that generates electrons in the semiconductor.
  • the i-type semiconductor layer refers to a semiconductor layer containing only a small amount of dopant with respect to the stacked p-type semiconductor layer or n-type semiconductor layer.
  • the semiconductor photoactive layer 14 is not limited to this, but may be a laminate of amorphous silicon, amorphous silicon carbide, amorphous silicon germanium, or the like.
  • the film thickness of the semiconductor photoactive layer 14 may be appropriately selected according to the light absorption rate of the constituent material, the mobility of carriers (electrons / holes), etc., but is 0.3 ⁇ m or more and 1.0 ⁇ m or less. Is preferred. For example, when amorphous silicon is selected, it is preferable that the semiconductor photoactive layer 14 has a thickness of 300 nm to 400 nm.
  • the transparent conductive layer 16 serves as a window region where light is incident on the semiconductor photoactive layer 14 serving as a power generation layer, and constitutes an electrode layer for extracting power from the semiconductor photoactive layer 14.
  • the transparent conductive layer 16 is formed on substantially the entire surface of the semiconductor photoactive layer 14.
  • the transparent conductive layer 16 can be composed of zinc oxide (ZnO), indium tin oxide (ITO), tin oxide (SnO 2 ), or the like.
  • the film thickness of the transparent conductive layer 16 is preferably 0.3 ⁇ m or more and 1.0 ⁇ m or less.
  • the conductive terminal 18 is provided to extract power from the transparent conductive layer 16 to the outside of the photovoltaic device 100.
  • the conductive terminal 18 can be formed by applying a conductive paste containing a powder of silver, nickel, aluminum or the like to a polyimide, phenol, or epoxy binder by a screen printing method or the like.
  • the film thickness of the conductive terminal 18 is preferably 20 ⁇ m or more and 60 ⁇ m or less.
  • the protective layer 20 is a layer for protecting the transparent conductive layer 16 and the conductive terminal 18.
  • the protective layer 20 is made of a material that transmits at least part of light in a wavelength region that can be absorbed by the semiconductor photoactive layer 14.
  • the protective layer 20 can be formed of, for example, a translucent material that transmits visible light but does not transmit ultraviolet light. Specifically, a polyethylene terephthalate (PET) resin or the like can be used.
  • PET polyethylene terephthalate
  • the thickness of the protective layer 20 is preferably 3 ⁇ m or more and 6 ⁇ m or less.
  • the interval between the protective layers 20 is preferably 0.2 mm or more.
  • the photovoltaic device 100 is formed in the formation region 30 surrounded by the one-dot chain line in the plan view of FIG.
  • FIG. 4 is an enlarged view of one of the formation regions 30 in FIG.
  • the divided areas A to D are power generation areas constituted by a laminate of a first electrode layer 12, a semiconductor photoactive layer 14, and a transparent conductive layer 16, which will be described later.
  • a positive electrode terminal region AT and a negative electrode terminal region DT each including a conductive terminal 18 are provided in the power generation region.
  • an insulating resin layer 10b is formed on the surface of the metal sheet 10a.
  • the insulating resin layer 10b can be formed by forming an insulating resin base 10c in which insulating fine particles 10d are dispersed into a film shape and thermocompression-bonding on the metal sheet 10a.
  • the insulating resin layer 10b can be formed by applying an insulating resin base 10c in which insulating fine particles 10d are dispersed to the entire surface of the metal sheet 10a, and curing it by heat treatment.
  • the insulating resin layer 10b is preferably formed so as to have a thickness of 1 ⁇ m to 10 ⁇ m.
  • the first electrode layer 12 is formed.
  • the first electrode layers 12a to 12d are divided and arranged in association with the regions A to D.
  • Each of the first electrode layers 12a to 12d has a fan shape with a central angle of approximately 90 °, and these are arranged so as to form a circular shape as a whole with a predetermined interval therebetween.
  • Each of the first electrode layers 12a to 12c has connection portions 12ae, 12be, and 12ce extending outward from the power generation regions B to D adjacent thereto.
  • the first electrode layer 12d is formed to extend.
  • the first electrode layer 12 is not formed in the region corresponding to the positive electrode terminal region AT.
  • the first electrode layer 12 can be formed by a sputtering method in which a target containing a raw material is sputtered and deposited on the surface of the substrate 10, a vapor deposition method in which the raw material is heated and evaporated on the surface of the substrate 10, or the like. At this time, it is preferable to perform film formation by heating the temperature of the substrate 10 to 100 ° C. or higher and 240 ° C. or lower.
  • a mask material such as a metal mask is disposed on the surface of the substrate 10 to form the first electrode layer 12, or the first electrode layer 12 is formed on the entire surface of the substrate 10.
  • a pattern can be formed later by etching using a photolithography technique or the like.
  • tungsten is formed with a thickness of 30 nm to 50 nm
  • aluminum is stacked with a thickness of 100 nm to 300 nm
  • titanium is stacked with a thickness of 30 nm to 100 nm.
  • the semiconductor photoactive layer 14 is formed on substantially the entire surface of the substrate 10.
  • the semiconductor photoactive layer 14 can be deposited by, for example, heating the substrate 10 to 90 ° C. or more and 200 ° C. or less and performing plasma CVD or the like.
  • a transparent conductive layer 16 is formed on substantially the entire surface of the semiconductor photoactive layer 14.
  • the transparent conductive layer 16 can be formed by a sputtering method in which a target containing a raw material is sputtered to make a volume on the surface of the substrate 10, a vapor deposition method in which the raw material is heated by an electron beam or the like and evaporated on the surface of the substrate 10. At this time, it is preferable to perform film formation by heating the temperature of the substrate 10 to 100 ° C. or more and 200 ° C. or less.
  • the transparent conductive layer 16 positioned on the connection portions 12ae, 12be, and 12ce of the first electrode layer is irradiated while scanning with a laser, and the connection portions 20ae, 20be, and 20ce of the first electrode layer 12 and the transparent conductive layer 16 are irradiated. And are electrically connected.
  • YAG laser light wavelength: 1.06 ⁇ m
  • the welded portion has, for example, a spot shape with a diameter of 50 ⁇ m or more and 80 ⁇ m or less.
  • welding may be performed by using a laser device capable of irradiating a laser only on the connection portions 12ae, 12be, and 12ce of the first electrode layer 12 for electrical connection. .
  • the regions serving as the positive electrode terminal region AT and the negative electrode terminal region DT are formed.
  • Conductive terminals 18 are formed respectively.
  • the conductive terminal 18 can be formed by applying a conductive paste by a screen printing method or the like.
  • the conductive paste patterned by screen printing is dried by heat treatment.
  • the heat treatment is preferably performed at 150 ° C., for example.
  • the conductive terminal 18 having a desired thickness can be obtained by repeating the above process several times. Moreover, it is also possible to obtain a desired film thickness by one screen printing by appropriately changing the printing conditions and materials.
  • a protective layer 20 is formed on the transparent conductive layer 16.
  • the protective layer 20 is divided and disposed as protective layers 20a to 20d in association with the power generation areas A to D.
  • protective layer 20a is formed to extend, and in terminal region DT, a substantially circular protective layer 20dt is formed separately from protective layer 20d.
  • the protective layer 20 is formed by screen printing a raw material, applying the raw material in a pattern, and heat drying.
  • the protective layers 20a to 20d are irradiated by irradiating a laser on substantially the entire surface of the substrate 10.
  • the area not covered by 20 dt, that is, the exposed transparent conductive layer 16 is removed.
  • the laser is preferably scanned with, for example, excimer laser light (KrF laser light), which is a sheet beam-like ultraviolet laser light.
  • the excimer laser is preferably applied in consideration of conditions such as the scanning speed and the width of the sheet beam so that the transparent conductive layer 16 can be sufficiently removed.
  • the transparent conductive layer 16 is 70 nm ITO
  • KrF laser light is irradiated at an output of 1.0 to 1.6 J / pulse, a sheet length of 150 mm, a sheet width of 0.4 mm, a pulse of 30 Hz, and a scanning speed of 12 mm / second.
  • ITO which is the transparent conductive layer 16 can be sufficiently removed.
  • the remaining transparent conductive layer 16 has connection portions 16be, 16ce, and 16de that face the connection portions 12ae, 12be, and 12ce of the first electrode layer 12 across the semiconductor photoactive layer 14, and is adjacent to the first electrode layer. 12 and the connection parts 12ae, 12be, and 12ce are electrically connected.
  • a circular opening hole extending from the back surface side to the conductive terminal 18 is provided.
  • An opening hole can be formed using the method (Thomson type cutter) which punches with a circumferential blade type
  • the individual photovoltaic devices 100 can be separated from the substrate 10 by punching in the vicinity of the outer periphery of the power generation regions A to D by the Thomson type cutter method or the like. At the same time, by punching a hole in the center of each photovoltaic device 100, an opening through which the axis of the hand when the photovoltaic device 100 is used as a power source for a watch can be formed.
  • the outer periphery of the power generation areas A to D, between the power generation areas, and the terminal areas AT and DT may be covered with a protective member.
  • a protective member it is preferable to apply acrylic resin or polyethylene terephthalate (PET) resin.
  • PET polyethylene terephthalate
  • the protective member can be formed using, for example, a screen printing method.
  • the protective member may be transparent or colored. For example, when a protective member colored in brown is used, the color is the same as that of the semiconductor photoactive layer 14 made of amorphous silicon, and the color contrast on the light receiving surface of the photovoltaic device is reduced. When used, the appearance can be improved.
  • a film-like transparent protective film may be formed on the entire surface of the substrate 10 and the back surface.
  • the protective film it is preferable to apply polyethylene terephthalate (PET), a fluororesin material, or the like.
  • PET polyethylene terephthalate
  • an adhesive layer is provided on one side of a polyethylene terephthalate (PET) film body having a thickness of about 25 to 1000 ⁇ m, and protection is provided by laminating the entire surface of the substrate 10 on the front and back surfaces while passing between heat rollers.
  • a film can be formed.
  • a vacuum thermocompression bonding method in which pressure bonding is performed in a vacuum while heating may be used.
  • the photovoltaic device 100 can be formed.
  • a material in which insulating fine particles 10d are mixed with insulating resin base 10c as insulating resin layer 10b light incident from the transparent conductive layer 16 side and transmitted through semiconductor photoactive layer 14 is used. Is scattered by the insulating fine particles 10d contained in the insulating resin layer 10b and is incident on the semiconductor photoactive layer 14 again. Thereby, the light use efficiency in the semiconductor photoactive layer 14 is increased, and the photoelectric conversion efficiency of the photovoltaic device 100 is improved.
  • Table 1 shows the measurement results of the power generation characteristics of the photovoltaic device 100 according to the present embodiment and the conventional photovoltaic device.
  • a liquid crystal polymer insulating resin base 10c containing insulating fine particles 10d made of alkali-free glass having an average diameter of 500 nm is formed into a film shape, and then a stainless substrate having a thickness of 100 ⁇ m
  • a first electrode layer 12 is formed by laminating tungsten, aluminum, and titanium on top of each other by sputtering, and an amorphous silicon semiconductor having a nip junction structure is formed thereon by plasma enhanced chemical vapor deposition (PECVD).
  • PECVD plasma enhanced chemical vapor deposition
  • the photoactive layer 14 was formed, and the transparent conductive layer 16 mainly composed of indium oxide was formed thereon by sputtering.
  • the conventional photovoltaic device has a configuration in which the substrate is formed in the same manner as the photovoltaic device 100 in the present embodiment except that a polyimide layer is formed on a stainless steel substrate.
  • the wavelength of 400 nm or more and 800 nm or less in the photovoltaic device 100 according to the present embodiment indicated by the solid line is different from the conventional photovoltaic device indicated by the broken line.
  • the light collection efficiency was improved over the area.
  • the optical path length in the semiconductor photoactive layer 14 can be extended, and the light utilization efficiency is further increased. It is considered possible.
  • FIG. 11 shows the characteristics of the photovoltaic device 100 in the case of using an insulating resin base 10c of liquid crystal polymer containing insulating fine particles 10d of glass beads (refractive index 1.50) having an average diameter of 0.5 ⁇ m.
  • the horizontal axis represents the arithmetic mean roughness Ra of the surface irregularities of the insulating resin layer 10b
  • the vertical axis represents the short circuit current Isc and the open circuit voltage Voc.
  • AFM atomic force microscope
  • the short-circuit current Isc showed a linear correlation with the arithmetic average roughness Ra of the surface irregularities of the insulating resin layer 10b.
  • the open circuit voltage Voc rapidly decreased when the arithmetic average roughness Ra of the surface irregularities of the insulating resin layer 10b exceeded 70 nm. Therefore, the arithmetic average roughness Ra of the surface irregularities of the insulating resin layer 10b is preferably 70 nm or less.
  • the photovoltaic device 100 when used by being incorporated in a watch dial, light incident from the dial does not reach the mechanical mechanism portion of the watch provided on the back side of the photovoltaic device 100.
  • the watch dial can be easily read.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Provided is a photovoltaic device having a structure obtained by laminating a first electrode layer (12), a semiconductor photoactive layer (14), and a transparent conductor layer (16) on the electricity-generating region of a substrate (10), wherein the substrate (10) has an insulating resin layer (10b) comprising an insulating resin base (10c) and insulating microparticles (10d) that are dispersed in the insulating resin base (10c) and that have a refractive index of light different from that of the insulating resin base (10c).

Description

光起電力装置Photovoltaic device
 本発明は、光起電力装置に関する。 The present invention relates to a photovoltaic device.
 特許文献1には、絶縁基板上の略全面に、第1電極層、半導体光活性層、透明導電層を形成した後、スポット状のレーザビームを走査して分割溝を形成し、所望の複数発電領域に対応した積層体を形成した光起電力装置が知られている。 In Patent Document 1, a first electrode layer, a semiconductor photoactive layer, and a transparent conductive layer are formed on substantially the entire surface of an insulating substrate, and then a spot-like laser beam is scanned to form divided grooves, and a desired plurality of grooves are formed. A photovoltaic device in which a laminated body corresponding to a power generation region is formed is known.
 また、特許文献2には、半導体光活性層が形成された絶縁表面上の略全面に透明電極膜を形成し、可視光を透過し紫外光を透過しないパターニングされた保護層をマスキング材料として透明導電層の上にさらに形成し、基板上の略全面に紫外光レーザ光を照射して保護層にてマスキングされていない部分の透明導電層を除去して透明導電層を形成し、保護層を残して透明導電層を除去した広い分割溝の部分において保護部材を配置する構造の光起電力装置が開示されている。 Patent Document 2 discloses that a transparent electrode film is formed on substantially the entire insulating surface on which a semiconductor photoactive layer is formed, and a patterned protective layer that transmits visible light but does not transmit ultraviolet light is used as a masking material. Further forming on the conductive layer, irradiating the entire surface of the substrate with ultraviolet laser light to remove the portion of the transparent conductive layer not masked by the protective layer to form a transparent conductive layer. A photovoltaic device having a structure in which a protective member is disposed in a portion of a wide dividing groove from which the transparent conductive layer has been removed is disclosed.
 また、特許文献3には、液晶ポリマー樹脂を基板として用いた光起電力装置が開示されている。 Patent Document 3 discloses a photovoltaic device using a liquid crystal polymer resin as a substrate.
特開平10-107305号公報JP-A-10-107305 特許第4090168号公報Japanese Patent No. 4090168 特開2002-064213号公報Japanese Patent Application Laid-Open No. 2002-064213
 光起電力装置では、ステンレス薄板をポリイミド(PI)樹脂で絶縁表面を形成した絶縁基板を用いている。このような絶縁基板を用いた場合、PI樹脂は吸水性及び吸ガス性が高く、第1電極膜、半導体光活性層、又は透明導電層の形成時に真空中で加熱すると脱ガスを生じ、第1電極膜、半導体光活性層、又は透明導電層の特性の低下を招くおそれがある。 In the photovoltaic device, an insulating substrate having an insulating surface formed of a polyimide (PI) resin on a thin stainless steel plate is used. When such an insulating substrate is used, the PI resin has high water absorption and gas absorption, and degassing occurs when heated in vacuum during the formation of the first electrode film, the semiconductor photoactive layer, or the transparent conductive layer. There is a possibility that the characteristics of the one-electrode film, the semiconductor photoactive layer, or the transparent conductive layer may be deteriorated.
 また、液晶ポリマー自体を基板材料として用いた場合、光起電力装置を平坦に形成するためには液晶ポリマー自体を厚い膜として形成する必要があり、製造コストが高くなるという問題がある。さらに、一般的に、液晶ポリマー樹脂は表面形状が平坦であるので、光起電力装置に対して十分な光閉じ込め効果を得ることができない問題がある。 Further, when the liquid crystal polymer itself is used as a substrate material, in order to form the photovoltaic device flat, it is necessary to form the liquid crystal polymer itself as a thick film, and there is a problem that the manufacturing cost increases. Furthermore, generally, since the liquid crystal polymer resin has a flat surface shape, there is a problem that a sufficient light confinement effect cannot be obtained for the photovoltaic device.
 本発明は、絶縁表面を有する基板上の発電領域に、第1電極層、半導体光活性層及び透明導電層を積層した光起電力装置であって、前記基板は、絶縁樹脂ベースと、前記絶縁樹脂ベース内に分散され、前記絶縁樹脂ベースと光の屈折率が異なる絶縁微粒子と、を含む絶縁性樹脂層を備える、光起電力装置である。 The present invention provides a photovoltaic device in which a first electrode layer, a semiconductor photoactive layer, and a transparent conductive layer are laminated on a power generation region on a substrate having an insulating surface, the substrate comprising an insulating resin base and the insulating resin base. A photovoltaic device comprising an insulating resin layer that is dispersed in a resin base and includes insulating fine particles that are different from the insulating resin base and have a refractive index of light.
 本発明によれば、特性を向上させた光起電力装置を提供することができる。 According to the present invention, a photovoltaic device with improved characteristics can be provided.
本発明の実施の形態における光起電力装置の構成を示す断面図である。It is sectional drawing which shows the structure of the photovoltaic apparatus in embodiment of this invention. 本発明の実施の形態における基板の構成を示す拡大断面図である。It is an expanded sectional view which shows the structure of the board | substrate in embodiment of this invention. 本発明の実施の形態における光起電力装置の形成領域を説明する図である。It is a figure explaining the formation area of the photovoltaic apparatus in embodiment of this invention. 本発明の実施の形態における光起電力装置の構成を示す平面図である。It is a top view which shows the structure of the photovoltaic apparatus in embodiment of this invention. 本発明の実施の形態における光起電力装置の製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of the photovoltaic apparatus in embodiment of this invention. 本発明の実施の形態における光起電力装置の製造工程を説明する平面図及び断面図である。It is the top view and sectional drawing explaining the manufacturing process of the photovoltaic apparatus in embodiment of this invention. 本発明の実施の形態における光起電力装置の製造工程を説明する平面図及び断面図である。It is the top view and sectional drawing explaining the manufacturing process of the photovoltaic apparatus in embodiment of this invention. 本発明の実施の形態における光起電力装置の製造工程を説明する平面図及び断面図である。It is the top view and sectional drawing explaining the manufacturing process of the photovoltaic apparatus in embodiment of this invention. 本発明の実施の形態における光起電力装置の製造工程を説明する平面図及び断面図である。It is the top view and sectional drawing explaining the manufacturing process of the photovoltaic apparatus in embodiment of this invention. 本発明の実施の形態における光起電力装置の光の収集効率を示す図である。It is a figure which shows the light collection efficiency of the photovoltaic apparatus in embodiment of this invention. 本発明の実施の形態における表面凹凸の算術平均粗さと短絡電流及び開放電圧との関係を示す図である。It is a figure which shows the relationship between the arithmetic mean roughness of the surface unevenness | corrugation in embodiment of this invention, a short circuit current, and an open circuit voltage.
 本発明の実施の形態における光起電力装置100は、図1の断面図に示すように、基板10、第1電極層12、半導体光活性層14、透明導電層16、導電端子18及び保護層20を含んで構成される。 A photovoltaic device 100 according to an embodiment of the present invention includes a substrate 10, a first electrode layer 12, a semiconductor photoactive layer 14, a transparent conductive layer 16, a conductive terminal 18, and a protective layer, as shown in the sectional view of FIG. 20 is comprised.
 本実施の形態における基板10は、図1の断面図及び図2の拡大断面図に示すように金属シート10aと絶縁性樹脂層10bとの積層構造を含んで構成される。基板10は、透光性でも、非透光性でもよい。 The substrate 10 in the present embodiment includes a laminated structure of a metal sheet 10a and an insulating resin layer 10b as shown in the cross-sectional view of FIG. 1 and the enlarged cross-sectional view of FIG. The substrate 10 may be translucent or non-translucent.
 金属シート10aは、可撓性を有することが好適である。金属シート10aは、例えば、ステンレスやアルミニウム等の材料から構成することができる。 The metal sheet 10a is preferably flexible. The metal sheet 10a can be comprised from materials, such as stainless steel and aluminum, for example.
 絶縁性樹脂層10bは、金属シート10a上に形成され、電気的に絶縁性を有する材料で構成された層である。絶縁性樹脂層10bの膜厚は、1μm以上10μm以下とすることが好適である。 The insulating resin layer 10b is a layer formed on the metal sheet 10a and made of an electrically insulating material. The film thickness of the insulating resin layer 10b is preferably 1 μm or more and 10 μm or less.
 本実施の形態において、絶縁性樹脂層10bは、絶縁樹脂ベース10cに絶縁微粒子10dを混合した材料を含んで構成される。絶縁樹脂ベース10cは、絶縁微粒子10dを拡散させた状態で金属シート10a上に塗布される塗布剤となり、金属シート10a上で所定の膜厚に塗布できるようなペースト状の材料を固化させたものとすることができる。絶縁樹脂ベース10cとしては、液晶ポリマー又は液晶ポリエステル、例えば、全芳香族ポリエステル樹脂、全芳香族ポリアミド樹脂等を用いることができる。 In this embodiment, the insulating resin layer 10b is configured to include a material obtained by mixing the insulating resin base 10c with the insulating fine particles 10d. The insulating resin base 10c becomes a coating agent applied on the metal sheet 10a in a state where the insulating fine particles 10d are diffused, and is a solidified paste-like material that can be applied to the predetermined thickness on the metal sheet 10a. It can be. As the insulating resin base 10c, a liquid crystal polymer or a liquid crystal polyester, for example, a wholly aromatic polyester resin or a wholly aromatic polyamide resin can be used.
 絶縁樹脂ベース10cは、例えば、化学式(1)に示すエチレンテレフタレートとパラヒドロキシ安息香酸との重合体、化学式(2)に示すフェノール及びフタル酸とパラヒドロキシ安息香酸との重合体、化学式(3)に示す2,6-ヒドロキシナフトエ酸とパラヒドロキシ安息香酸との重合体とすることが好適である。
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-C000002

Figure JPOXMLDOC01-appb-C000003
The insulating resin base 10c includes, for example, a polymer of ethylene terephthalate and parahydroxybenzoic acid represented by chemical formula (1), a polymer of phenol and phthalic acid and parahydroxybenzoic acid represented by chemical formula (2), chemical formula (3) It is preferable to use a polymer of 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid as shown in FIG.
Figure JPOXMLDOC01-appb-C000001

Figure JPOXMLDOC01-appb-C000002

Figure JPOXMLDOC01-appb-C000003
 絶縁微粒子10dは、絶縁樹脂ベース10c内に拡散分布させられる絶縁材料からなる微粒子である。絶縁微粒子10dは、絶縁樹脂ベース10cと異なる屈折率を有する材料から構成することが好適である。特に、半導体光活性層14において光電変換に利用される波長領域の光を散乱させることができる屈折率の材料を用いることが好適である。シリコン半導体膜、シリコンカーバイド半導体膜、シリコンゲルマニウム半導体膜等の半導体膜を半導体光活性層14として適用した場合には、少なくとも可視光領域の一部、特に400nm以上800nm以下の波長領域の光を散乱させることができる屈折率の材料を用いることが好適である。例えば、ガラスビーズ、ブラスチックビーズ、セラミックビーズ等とすることが好適である。絶縁微粒子10dの形状は、特に限定されるものではないが、球状・立方体状、直方体状等とすることができる。絶縁微粒子10dは、平均径が0.01μm以上1μm以下とすることが好適である。また、絶縁微粒子10dは、絶縁樹脂ベース10cに対して体積占有率で5%以上50%以下となるように分散させることが好適である。 The insulating fine particles 10d are fine particles made of an insulating material that is diffused and distributed in the insulating resin base 10c. The insulating fine particles 10d are preferably made of a material having a refractive index different from that of the insulating resin base 10c. In particular, it is preferable to use a material having a refractive index capable of scattering light in a wavelength region used for photoelectric conversion in the semiconductor photoactive layer 14. When a semiconductor film such as a silicon semiconductor film, a silicon carbide semiconductor film, or a silicon germanium semiconductor film is applied as the semiconductor photoactive layer 14, it scatters light in at least a part of the visible light region, particularly a wavelength region of 400 nm to 800 nm. It is preferable to use a material having a refractive index that can be adjusted. For example, glass beads, plastic beads, ceramic beads and the like are suitable. The shape of the insulating fine particles 10d is not particularly limited, but may be a spherical shape, a cubic shape, a rectangular parallelepiped shape, or the like. The insulating fine particles 10d preferably have an average diameter of 0.01 μm or more and 1 μm or less. The insulating fine particles 10d are preferably dispersed so that the volume occupation ratio is 5% or more and 50% or less with respect to the insulating resin base 10c.
 絶縁微粒子10dは、無アルカリ材料で構成することが好適である。例えば、絶縁微粒子10dは、ナトリウム、カリウム、カルシウム、ジルコニウム、鉛等の不純物の元素含有量がそれぞれ1原子%以下であることが好適である。これにより、絶縁性樹脂層10b上に第1電極層12、半導体光活性層14、透明導電層16を形成した際に、これらの層に拡散する不純物量を抑制することができ、光起電力装置100の発電効率を向上させることができる。 The insulating fine particles 10d are preferably composed of an alkali-free material. For example, the insulating fine particles 10d preferably have an element content of impurities such as sodium, potassium, calcium, zirconium, lead, etc. of 1 atomic% or less. Thereby, when the 1st electrode layer 12, the semiconductor photoactive layer 14, and the transparent conductive layer 16 are formed on the insulating resin layer 10b, the amount of impurities diffused into these layers can be suppressed, and the photovoltaic power The power generation efficiency of the device 100 can be improved.
 また、基板10の表面に形成された絶縁性樹脂層10bの表面に現われる凹凸の高さは平均0.01μm以上1μm以下とすることが好適である。また、絶縁性樹脂層10bの表面に現われる凹凸の算術平均粗さRaが70nm以下であることが好適である。このような凹凸の高さ又は凹凸の算術平均粗さRaとすることによって、絶縁性樹脂層10bにおける光の散乱効果を高めることができ、光起電力装置100の発電効率を向上させることができる。このような凹凸は、上記条件の絶縁樹脂ベース10c及び絶縁微粒子10dを用いることで実現することができる。 Further, it is preferable that the height of the unevenness appearing on the surface of the insulating resin layer 10b formed on the surface of the substrate 10 is 0.01 μm or more and 1 μm or less on average. In addition, it is preferable that the arithmetic average roughness Ra of the unevenness appearing on the surface of the insulating resin layer 10b is 70 nm or less. By setting the height of the unevenness or the arithmetic average roughness Ra of the unevenness, the light scattering effect in the insulating resin layer 10b can be enhanced, and the power generation efficiency of the photovoltaic device 100 can be improved. . Such unevenness can be realized by using the insulating resin base 10c and the insulating fine particles 10d under the above conditions.
 第1電極層12は、発電層となる半導体光活性層14から電力を取り出すための電極層を構成する。第1電極層12は、金属膜から構成することができ、例えば、タングステン、アルミニウム、チタニウム、ニッケル、銅、銀、酸化亜鉛、ステンレス等の金属膜又はこれらの材料を含む合金で構成することが好適である。また、複数種の金属層を積層して第1電極層12としてもよい。第1電極層12の膜厚は、0.1μm以上1.0μm以下とすることが好適である。 The first electrode layer 12 constitutes an electrode layer for taking out electric power from the semiconductor photoactive layer 14 serving as a power generation layer. The first electrode layer 12 can be made of a metal film, for example, a metal film of tungsten, aluminum, titanium, nickel, copper, silver, zinc oxide, stainless steel, or an alloy containing these materials. Is preferred. A plurality of types of metal layers may be stacked to form the first electrode layer 12. The film thickness of the first electrode layer 12 is preferably 0.1 μm or more and 1.0 μm or less.
 半導体光活性層14は、光起電力装置100の発電層となる。半導体光活性層14は、第1電極層12上にp型及びn型の半導体層を積層したpn接合半導体層又はp型、i型、n型の半導体層を積層したpin接合半導体層を形成することによって構成される。ここで、p型半導体層とは半導体内に正孔を生じさせるドーパント(ボロン等)を添加した半導体層であり、n型半導体層とは半導体内に電子を生じさせるドーパント(燐、アンチモン等)を添加した半導体層であり、i型半導体層とは積層されるp型半導体層又はn型半導体層に対して実効的に少ないドーパントしか含まない半導体層をいう。半導体光活性層14は、これに限定されるものではないが、アモルファスシリコン、アモルファスシリコンカーバイド、アモルファスシリコンゲルマニウム等の積層体とすることができる。半導体光活性層14の膜厚は、構成する材料の光の吸収率やキャリア(電子・正孔)の移動度等に応じて適宜選択すればよいが、0.3μm以上1.0μm以下とすることが好適である。例えば、アモルファスシリコンを選択した場合、半導体光活性層14の膜厚は300nm以上400nm以下とすることが好適である。 The semiconductor photoactive layer 14 becomes a power generation layer of the photovoltaic device 100. The semiconductor photoactive layer 14 forms a pn junction semiconductor layer in which p-type and n-type semiconductor layers are laminated or a pin junction semiconductor layer in which p-type, i-type, and n-type semiconductor layers are laminated on the first electrode layer 12. It is composed by doing. Here, the p-type semiconductor layer is a semiconductor layer added with a dopant (boron or the like) that generates holes in the semiconductor, and the n-type semiconductor layer is a dopant (phosphorus, antimony, or the like) that generates electrons in the semiconductor. The i-type semiconductor layer refers to a semiconductor layer containing only a small amount of dopant with respect to the stacked p-type semiconductor layer or n-type semiconductor layer. The semiconductor photoactive layer 14 is not limited to this, but may be a laminate of amorphous silicon, amorphous silicon carbide, amorphous silicon germanium, or the like. The film thickness of the semiconductor photoactive layer 14 may be appropriately selected according to the light absorption rate of the constituent material, the mobility of carriers (electrons / holes), etc., but is 0.3 μm or more and 1.0 μm or less. Is preferred. For example, when amorphous silicon is selected, it is preferable that the semiconductor photoactive layer 14 has a thickness of 300 nm to 400 nm.
 透明導電層16は、発電層となる半導体光活性層14に光を入射される窓領域となると共に、半導体光活性層14から電力を取り出すための電極層を構成する。透明導電層16は、半導体光活性層14上の略全面に形成される。透明導電層16は、酸化亜鉛(ZnO)、酸化インジウム錫(ITO)、酸化錫(SnO2)等から構成することができる。透明導電層16の膜厚は、0.3μm以上1.0μm以下とすることが好適である。 The transparent conductive layer 16 serves as a window region where light is incident on the semiconductor photoactive layer 14 serving as a power generation layer, and constitutes an electrode layer for extracting power from the semiconductor photoactive layer 14. The transparent conductive layer 16 is formed on substantially the entire surface of the semiconductor photoactive layer 14. The transparent conductive layer 16 can be composed of zinc oxide (ZnO), indium tin oxide (ITO), tin oxide (SnO 2 ), or the like. The film thickness of the transparent conductive layer 16 is preferably 0.3 μm or more and 1.0 μm or less.
 導電端子18は、透明導電層16から光起電力装置100の外部へ電力を取り出すために設けられる。導電端子18は、ポリイミド、フェノール又はエポキシ系のバインダーに銀、ニッケル又はアルミニウム等の粉末を含む導電性ペーストをスクリーン印刷法等で塗布することによって形成することができる。導電端子18の膜厚は、20μm以上60μm以下とすることが好適である。 The conductive terminal 18 is provided to extract power from the transparent conductive layer 16 to the outside of the photovoltaic device 100. The conductive terminal 18 can be formed by applying a conductive paste containing a powder of silver, nickel, aluminum or the like to a polyimide, phenol, or epoxy binder by a screen printing method or the like. The film thickness of the conductive terminal 18 is preferably 20 μm or more and 60 μm or less.
 保護層20は、透明導電層16及び導電端子18を保護するための層である。保護層20は、半導体光活性層14で吸収され得る波長領域の光の少なくとも一部を透過させる材料で構成される。保護層20は、例えば、可視光を透過し紫外光を透過しない透光性材料で形成することができ、具体的にはポリエチレンテレフタレート(PET)樹脂等を用いることができる。保護層20の膜厚は、3μm以上6μm以下とすることが好適である。また、保護層20の間隔は、0.2mm以上とすることが好適である。 The protective layer 20 is a layer for protecting the transparent conductive layer 16 and the conductive terminal 18. The protective layer 20 is made of a material that transmits at least part of light in a wavelength region that can be absorbed by the semiconductor photoactive layer 14. The protective layer 20 can be formed of, for example, a translucent material that transmits visible light but does not transmit ultraviolet light. Specifically, a polyethylene terephthalate (PET) resin or the like can be used. The thickness of the protective layer 20 is preferably 3 μm or more and 6 μm or less. The interval between the protective layers 20 is preferably 0.2 mm or more.
 光起電力装置100は、図3の平面図の一点鎖線で囲まれた形成領域30に形成される。図4は、図3における形成領域30の1つの拡大図である。図4において、区分された領域A~Dは、後述する第1電極層12、半導体光活性層14及び透明導電層16の積層体で構成される発電領域である。この発電領域には、導電端子18からなる正極端子領域AT及び負極端子領域DTが設けられる。 The photovoltaic device 100 is formed in the formation region 30 surrounded by the one-dot chain line in the plan view of FIG. FIG. 4 is an enlarged view of one of the formation regions 30 in FIG. In FIG. 4, the divided areas A to D are power generation areas constituted by a laminate of a first electrode layer 12, a semiconductor photoactive layer 14, and a transparent conductive layer 16, which will be described later. In the power generation region, a positive electrode terminal region AT and a negative electrode terminal region DT each including a conductive terminal 18 are provided.
 以下の図5~図9に示す工程においては、図4に示した形成領域30の1つにおける光起電力装置100の製造方法を説明する。光起電力装置100の他の領域についても同様に製造することができる。 In the following steps shown in FIGS. 5 to 9, a method for manufacturing the photovoltaic device 100 in one of the formation regions 30 shown in FIG. 4 will be described. Other regions of the photovoltaic device 100 can be manufactured in the same manner.
 まず、図5の断面図に示すように、金属シート10aの表面上に絶縁性樹脂層10bが形成される。絶縁性樹脂層10bは、絶縁微粒子10dを分散させた絶縁樹脂ベース10cをフィルム状に成形し、金属シート10a上に熱圧着することによって形成することができる。また、絶縁性樹脂層10bは、絶縁微粒子10dを分散させた絶縁樹脂ベース10cを金属シート10aの表面全面に塗布し、加熱処理して硬化させることによって形成することもできる。絶縁性樹脂層10bは、膜厚が1μm以上10μm以下となるように形成することが好適である。 First, as shown in the sectional view of FIG. 5, an insulating resin layer 10b is formed on the surface of the metal sheet 10a. The insulating resin layer 10b can be formed by forming an insulating resin base 10c in which insulating fine particles 10d are dispersed into a film shape and thermocompression-bonding on the metal sheet 10a. Alternatively, the insulating resin layer 10b can be formed by applying an insulating resin base 10c in which insulating fine particles 10d are dispersed to the entire surface of the metal sheet 10a, and curing it by heat treatment. The insulating resin layer 10b is preferably formed so as to have a thickness of 1 μm to 10 μm.
 次に、図6(a)の平面図及び図6(b)の断面図(ラインX-X)に示すように、第1電極層12が形成される。第1電極層12は、領域A~Dに対応付けて第1電極層12a~12dが分割配置される。第1電極層12a~12dは、各々中心角が略90°の扇形の形を有し、これらは相互の間に所定間隔を隔てて全体として円形をなすように配置されている。第1電極層12a~12cの各々は、これらに隣接する発電領域B~Dの外方に延在する接続部12ae、12be、12ceを有している。また、負極端子領域DTに対応する領域では、第1電極層12dが延出して形成される。一方、正極端子領域ATに対応する領域では、第1電極層12は形成されない。 Next, as shown in the plan view of FIG. 6A and the cross-sectional view (line XX) of FIG. 6B, the first electrode layer 12 is formed. In the first electrode layer 12, the first electrode layers 12a to 12d are divided and arranged in association with the regions A to D. Each of the first electrode layers 12a to 12d has a fan shape with a central angle of approximately 90 °, and these are arranged so as to form a circular shape as a whole with a predetermined interval therebetween. Each of the first electrode layers 12a to 12c has connection portions 12ae, 12be, and 12ce extending outward from the power generation regions B to D adjacent thereto. In the region corresponding to the negative electrode terminal region DT, the first electrode layer 12d is formed to extend. On the other hand, the first electrode layer 12 is not formed in the region corresponding to the positive electrode terminal region AT.
 第1電極層12は、原料を含むターゲットをスパッタリングして基板10の表面に堆積させるスパッタリング法、原料を加熱して基板10の表面に蒸着させる蒸着法等によって形成することができる。このとき、基板10の温度を100℃以上240℃以下に加熱して成膜を行うことが好適である。 The first electrode layer 12 can be formed by a sputtering method in which a target containing a raw material is sputtered and deposited on the surface of the substrate 10, a vapor deposition method in which the raw material is heated and evaporated on the surface of the substrate 10, or the like. At this time, it is preferable to perform film formation by heating the temperature of the substrate 10 to 100 ° C. or higher and 240 ° C. or lower.
 また、第1電極層12a~12dは、金属マスク等のマスク材を基板10の表面に配置して第1電極層12を形成したり、基板10の表面全体に第1電極層12を形成した後にフォトリソグラフィ技術等を用いてエッチング処理したりしてパターンを形成することができる。例えば、タングステンを30nm以上50nm以下で形成し、アルミニウムを100nm以上300nm以下で積層し、その上にチタンを30nm以上100nm以下で積層することが好適である。 For the first electrode layers 12a to 12d, a mask material such as a metal mask is disposed on the surface of the substrate 10 to form the first electrode layer 12, or the first electrode layer 12 is formed on the entire surface of the substrate 10. A pattern can be formed later by etching using a photolithography technique or the like. For example, it is preferable that tungsten is formed with a thickness of 30 nm to 50 nm, aluminum is stacked with a thickness of 100 nm to 300 nm, and titanium is stacked with a thickness of 30 nm to 100 nm.
 その後、図7(a)の平面図及び図7(b)の断面図(ラインX-X)に示すように、基板10上の略全面に半導体光活性層14を形成する。半導体光活性層14は、例えば、基板10を90℃以上200℃以下に加熱し、プラズマCVD法等で堆積させることができる。 Thereafter, as shown in the plan view of FIG. 7A and the cross-sectional view (line XX) of FIG. 7B, the semiconductor photoactive layer 14 is formed on substantially the entire surface of the substrate 10. The semiconductor photoactive layer 14 can be deposited by, for example, heating the substrate 10 to 90 ° C. or more and 200 ° C. or less and performing plasma CVD or the like.
 さらに、半導体光活性層14上の略全面に透明導電層16を形成する。透明導電層16は、原料を含むターゲットをスパッタリングして基板10の表面に体積させるスパッタリング法、原料を電子ビーム等で加熱して基板10の表面に蒸着させる蒸着法等によって形成することができる。このとき、基板10の温度を100℃以上200℃以下に加熱して成膜を行うことが好適である。 Further, a transparent conductive layer 16 is formed on substantially the entire surface of the semiconductor photoactive layer 14. The transparent conductive layer 16 can be formed by a sputtering method in which a target containing a raw material is sputtered to make a volume on the surface of the substrate 10, a vapor deposition method in which the raw material is heated by an electron beam or the like and evaporated on the surface of the substrate 10. At this time, it is preferable to perform film formation by heating the temperature of the substrate 10 to 100 ° C. or more and 200 ° C. or less.
 そして、第1電極層の接続部12ae、12be、12ce上に位置する透明導電層16上からレーザを走査しつつ照射して第1電極層12の接続部20ae、20be、20ceと透明導電層16とをそれぞれ溶着して電気接続する。レーザ加工には、YAGレーザ光(波長1.06μm)を用いることが好適である。溶着された部分は、例えば、直径50μm以上80μm以下のスポット形状となる。また、レーザ光を直線的に走査することに代えて、第1電極層12の接続部12ae、12be、12ce上にのみレーザを照射可能なレーザ装置を用いて溶着して電気接続してもよい。 Then, the transparent conductive layer 16 positioned on the connection portions 12ae, 12be, and 12ce of the first electrode layer is irradiated while scanning with a laser, and the connection portions 20ae, 20be, and 20ce of the first electrode layer 12 and the transparent conductive layer 16 are irradiated. And are electrically connected. For laser processing, it is preferable to use YAG laser light (wavelength: 1.06 μm). The welded portion has, for example, a spot shape with a diameter of 50 μm or more and 80 μm or less. Further, instead of linearly scanning the laser beam, welding may be performed by using a laser device capable of irradiating a laser only on the connection portions 12ae, 12be, and 12ce of the first electrode layer 12 for electrical connection. .
 次に、図8(a)の平面図及び図8(b)の断面図(ラインX-X)に示すように、透明導電層16上において正極端子領域AT及び負極端子領域DTとなる領域に導電端子18をそれぞれ形成する。導電端子18は、導電性ペーストをスクリーン印刷方法等により塗布することに形成することができる。スクリーン印刷によりパターン形成された導電性ペーストは加熱処理によって乾燥される。加熱処理は、例えば、150℃で行うことが好適である。 Next, as shown in the plan view of FIG. 8A and the cross-sectional view of FIG. 8B (line XX), on the transparent conductive layer 16, the regions serving as the positive electrode terminal region AT and the negative electrode terminal region DT are formed. Conductive terminals 18 are formed respectively. The conductive terminal 18 can be formed by applying a conductive paste by a screen printing method or the like. The conductive paste patterned by screen printing is dried by heat treatment. The heat treatment is preferably performed at 150 ° C., for example.
 一般的に、1回の印刷によって乾燥後の膜厚で約10μm~20μmの金属層が形成されるので、上記処理を数回繰り返すことによって所望の膜厚の導電端子18を得ることができる。また、印刷条件や材料等を適宜変更することにより、1回のスクリーン印刷で所望の膜厚を得ることも可能である。 Generally, since a metal layer having a thickness of about 10 μm to 20 μm is formed by one printing, the conductive terminal 18 having a desired thickness can be obtained by repeating the above process several times. Moreover, it is also possible to obtain a desired film thickness by one screen printing by appropriately changing the printing conditions and materials.
 透明導電層16上には保護層20が形成される。保護層20は、発電領域A~Dに対応付けて保護層20a~20dとして分割配置される。端子領域ATにおいては、保護層20aが延長して形成され、端子領域DTにおいては、保護層20dとは分離して略円形の保護層20dtが形成される。保護層20は、原材料をスクリーン印刷してパターン状に塗布され、熱乾燥して形成される。 A protective layer 20 is formed on the transparent conductive layer 16. The protective layer 20 is divided and disposed as protective layers 20a to 20d in association with the power generation areas A to D. In terminal region AT, protective layer 20a is formed to extend, and in terminal region DT, a substantially circular protective layer 20dt is formed separately from protective layer 20d. The protective layer 20 is formed by screen printing a raw material, applying the raw material in a pattern, and heat drying.
 次に、図9(a)の平面図及び図9(b)の断面図(ラインX-X)に示すように、基板10上の略全面にレーザを照射することにより、保護層20a~20d、20dtに覆われていない領域、すなわち露出した透明導電層16が除去される。レーザは、例えば、シートビーム状の紫外光レーザ光であるエキシマレーザ光(KrFレーザ光)を走査することが好適である。ここで、エキシマレーザは、透明導電層16が十分除去できるように、走査スピード、シートビームの幅等の条件を考慮して適用することが好適である。例えば、透明導電層16が70nmのITOである場合、KrFレーザ光を出力1.0~1.6J/パルス、シート長150mm、シート幅0.4mm、30Hzのパルス、走査スピード12mm/秒で照射することによって透明導電層16であるITOを十分に除去できる。 Next, as shown in the plan view of FIG. 9A and the cross-sectional view (line XX) of FIG. 9B, the protective layers 20a to 20d are irradiated by irradiating a laser on substantially the entire surface of the substrate 10. , The area not covered by 20 dt, that is, the exposed transparent conductive layer 16 is removed. The laser is preferably scanned with, for example, excimer laser light (KrF laser light), which is a sheet beam-like ultraviolet laser light. Here, the excimer laser is preferably applied in consideration of conditions such as the scanning speed and the width of the sheet beam so that the transparent conductive layer 16 can be sufficiently removed. For example, when the transparent conductive layer 16 is 70 nm ITO, KrF laser light is irradiated at an output of 1.0 to 1.6 J / pulse, a sheet length of 150 mm, a sheet width of 0.4 mm, a pulse of 30 Hz, and a scanning speed of 12 mm / second. By doing so, ITO which is the transparent conductive layer 16 can be sufficiently removed.
 残された透明導電層16は、第1電極層12の接続部12ae、12be、12ceと半導体光活性層14を挟んで対向する接続部16be、16ce、16deを有し、隣接する第1電極層12と接続部12ae、12be、12ceと電気的に接続される。 The remaining transparent conductive layer 16 has connection portions 16be, 16ce, and 16de that face the connection portions 12ae, 12be, and 12ce of the first electrode layer 12 across the semiconductor photoactive layer 14, and is adjacent to the first electrode layer. 12 and the connection parts 12ae, 12be, and 12ce are electrically connected.
 また、裏面側から導電端子18に至る円形の開口孔を設ける。これによって、開口孔内に導電端子18の裏面側が露出し、そこから端子領域AT及び端子領域DTに電気的にコンタクトを取ることができる。開口孔は、円周状の刃型にて打ち抜く方法(トムソンタイプカッター)を用いて形成することができる。さらに、発電領域A~Dの外周部近傍にて、トムソンタイプカッター法等により打ち抜くことにより、基板10から個々の光起電力装置100を分離することができる。同時に、各光起電力装置100の中央部の開穴を打ち抜くことにより、光起電力装置100が時計用の電源として用いられるときの針の軸が通る開穴を形成すことができる。 Further, a circular opening hole extending from the back surface side to the conductive terminal 18 is provided. As a result, the back surface side of the conductive terminal 18 is exposed in the opening hole, and the terminal area AT and the terminal area DT can be electrically contacted from there. An opening hole can be formed using the method (Thomson type cutter) which punches with a circumferential blade type | mold. Further, the individual photovoltaic devices 100 can be separated from the substrate 10 by punching in the vicinity of the outer periphery of the power generation regions A to D by the Thomson type cutter method or the like. At the same time, by punching a hole in the center of each photovoltaic device 100, an opening through which the axis of the hand when the photovoltaic device 100 is used as a power source for a watch can be formed.
 なお、発電領域A~Dの外周部、各発電領域間、端子領域AT、DTを保護部材で覆ってもよい。保護部材としては、アクリル樹脂、ポリエチレンテレフタレート(PET)樹脂を適用することが好適である。保護部材は、例えば、スクリーン印刷法を用いて形成することができる。保護部材は、透明または着色したものとしてもよい。例えば、茶色に着色された保護部材を利用した場合、アモルファスシリコンの半導体光活性層14と同系色となり、光起電力装置の受光面での色のコントラストが少なくなるので、これを時計の電源として利用したとき等に、外観を良好にすることができる。 Note that the outer periphery of the power generation areas A to D, between the power generation areas, and the terminal areas AT and DT may be covered with a protective member. As the protective member, it is preferable to apply acrylic resin or polyethylene terephthalate (PET) resin. The protective member can be formed using, for example, a screen printing method. The protective member may be transparent or colored. For example, when a protective member colored in brown is used, the color is the same as that of the semiconductor photoactive layer 14 made of amorphous silicon, and the color contrast on the light receiving surface of the photovoltaic device is reduced. When used, the appearance can be improved.
 また、基板10の表面上及び裏面上全面に、フィルム状の透明な保護フィルムを形成してもよい。保護フィルムは、ポリエチレンテレフタレ-ト(PET)、フッ素樹脂材料等を適用することが好適である。例えば、厚さ約25~1000μmのポリエチレンテレフタレ-ト(PET)のフィルム体の片面に接着層を設け、熱ローラ間を通過させながら基板10の表面上及び裏面上全面にラミネートすることによって保護フィルムを形成することができる。接着層としては、エチレン-酢酸ビニル共重合体(=EVA)、ポリビニルブチラ-ル(=PVB)等を利用することができる。また、このラミネート法に代わって、加熱しながら真空中で圧着する真空熱圧着法を用いて形成してもよい。 Also, a film-like transparent protective film may be formed on the entire surface of the substrate 10 and the back surface. As the protective film, it is preferable to apply polyethylene terephthalate (PET), a fluororesin material, or the like. For example, an adhesive layer is provided on one side of a polyethylene terephthalate (PET) film body having a thickness of about 25 to 1000 μm, and protection is provided by laminating the entire surface of the substrate 10 on the front and back surfaces while passing between heat rollers. A film can be formed. As the adhesive layer, ethylene-vinyl acetate copolymer (= EVA), polyvinyl butyral (= PVB), or the like can be used. Further, instead of this laminating method, a vacuum thermocompression bonding method in which pressure bonding is performed in a vacuum while heating may be used.
 このようにして光起電力装置100を形成することができる。本実施の形態のように、絶縁性樹脂層10bとして絶縁樹脂ベース10cに絶縁微粒子10dを混合した材料を適用することによって、透明導電層16側から入射されて半導体光活性層14を透過した光は絶縁性樹脂層10bに含まれる絶縁微粒子10dによって散乱され、再び半導体光活性層14へ入射される。これにより、半導体光活性層14における光の利用効率が高まり、光起電力装置100の光電変換効率が向上する。 In this way, the photovoltaic device 100 can be formed. As in the present embodiment, by applying a material in which insulating fine particles 10d are mixed with insulating resin base 10c as insulating resin layer 10b, light incident from the transparent conductive layer 16 side and transmitted through semiconductor photoactive layer 14 is used. Is scattered by the insulating fine particles 10d contained in the insulating resin layer 10b and is incident on the semiconductor photoactive layer 14 again. Thereby, the light use efficiency in the semiconductor photoactive layer 14 is increased, and the photoelectric conversion efficiency of the photovoltaic device 100 is improved.
 表1は、本実施の形態における光起電力装置100と、従来の光起電力装置と、における発電特性の測定結果を示す。本実施の形態における光起電力装置100は、平均直径が500nmの無アルカリガラス製の絶縁微粒子10dを含有する液晶ポリマーの絶縁樹脂ベース10cをフィルム状に成形させた後、板厚100μmのステンレス基板上に貼り付け、その上にスパッタリング法によってタングステン、アルミニウム、チタンを積層して第1電極層12を形成し、その上にプラズマ化学気相成長法(PECVD)によってnip接合構造のアモルファスシリコンの半導体光活性層14を形成し、さらにその上にスパッタリング法によって酸化インジウムを主成分とする透明導電層16を形成した構成とした。一方、従来の光起電力装置は、基板をステンレス基板上にポリイミド層を形成したこと以外、本実施の形態における光起電力装置100と同様に形成した構成とした。
Figure JPOXMLDOC01-appb-T000004
Table 1 shows the measurement results of the power generation characteristics of the photovoltaic device 100 according to the present embodiment and the conventional photovoltaic device. In the photovoltaic device 100 in the present embodiment, a liquid crystal polymer insulating resin base 10c containing insulating fine particles 10d made of alkali-free glass having an average diameter of 500 nm is formed into a film shape, and then a stainless substrate having a thickness of 100 μm A first electrode layer 12 is formed by laminating tungsten, aluminum, and titanium on top of each other by sputtering, and an amorphous silicon semiconductor having a nip junction structure is formed thereon by plasma enhanced chemical vapor deposition (PECVD). The photoactive layer 14 was formed, and the transparent conductive layer 16 mainly composed of indium oxide was formed thereon by sputtering. On the other hand, the conventional photovoltaic device has a configuration in which the substrate is formed in the same manner as the photovoltaic device 100 in the present embodiment except that a polyimide layer is formed on a stainless steel substrate.
Figure JPOXMLDOC01-appb-T000004
 表1から、本実施の形態における光起電力装置100では、従来の光起電力装置に比べて、短絡電流が増加し、発電効率が向上した。なお、表1では、本実施の形態及び従来の光起電力装置の最大の発電効率を示す測定結果及び平均の発電効率を示す測定結果を示した。測定結果は、従来の光起電力装置の各測定結果を1として規格化した値で示した。 From Table 1, in the photovoltaic device 100 in this Embodiment, compared with the conventional photovoltaic device, the short circuit current increased and the power generation efficiency improved. In Table 1, the measurement results indicating the maximum power generation efficiency and the average power generation efficiency of the present embodiment and the conventional photovoltaic device are shown. The measurement results are shown as values normalized with each measurement result of the conventional photovoltaic device as 1.
 また、図10の光の収集効率の測定結果に示すように、破線で示す従来の光起電力装置に対して、実線で示す本実施の形態における光起電力装置100では400nm以上800nm以下の波長領域に亘って光の収集効率が向上していた。特に、絶縁微粒子10dによって散乱された光は、半導体光活性層14に対して様々な入射角度で入射するので、半導体光活性層14における光路長を伸ばすことができ、光の利用効率をより高めることができると考えられる。 In addition, as shown in the measurement result of the light collection efficiency in FIG. 10, the wavelength of 400 nm or more and 800 nm or less in the photovoltaic device 100 according to the present embodiment indicated by the solid line is different from the conventional photovoltaic device indicated by the broken line. The light collection efficiency was improved over the area. In particular, since the light scattered by the insulating fine particles 10d is incident on the semiconductor photoactive layer 14 at various incident angles, the optical path length in the semiconductor photoactive layer 14 can be extended, and the light utilization efficiency is further increased. It is considered possible.
 図11は、平均径0.5μmのガラスビーズ(屈折率1.50)の絶縁微粒子10dを含有する液晶ポリマーの絶縁樹脂ベース10cを用いた場合の光起電力装置100の特性を示す。図11では、横軸に絶縁性樹脂層10bの表面凹凸の算術平均粗さRa、縦軸に短絡電流Iscと開放電圧Vocを示している。なお、原子間力顕微鏡(AFM)による表面観察により、同じ粒径の絶縁微粒子10dを絶縁樹脂ベース10cに対して異なる混合比で配合することによって絶縁性樹脂層10bの表面凹凸の算術平均粗さRaを変化させることができることを確認した。 FIG. 11 shows the characteristics of the photovoltaic device 100 in the case of using an insulating resin base 10c of liquid crystal polymer containing insulating fine particles 10d of glass beads (refractive index 1.50) having an average diameter of 0.5 μm. In FIG. 11, the horizontal axis represents the arithmetic mean roughness Ra of the surface irregularities of the insulating resin layer 10b, and the vertical axis represents the short circuit current Isc and the open circuit voltage Voc. In addition, by surface observation with an atomic force microscope (AFM), the arithmetic average roughness of the surface unevenness of the insulating resin layer 10b is obtained by blending the insulating fine particles 10d having the same particle diameter with the insulating resin base 10c at different mixing ratios. It was confirmed that Ra can be changed.
 図11から、短絡電流Iscは、絶縁性樹脂層10bの表面凹凸の算術平均粗さRaと直線的な相関を示した。一方、開放電圧Vocは、絶縁性樹脂層10bの表面凹凸の算術平均粗さRaが70nmを超えると急激に低下した。したがって、絶縁性樹脂層10bの表面凹凸の算術平均粗さRaは70nm以下とすることが好適である。 From FIG. 11, the short-circuit current Isc showed a linear correlation with the arithmetic average roughness Ra of the surface irregularities of the insulating resin layer 10b. On the other hand, the open circuit voltage Voc rapidly decreased when the arithmetic average roughness Ra of the surface irregularities of the insulating resin layer 10b exceeded 70 nm. Therefore, the arithmetic average roughness Ra of the surface irregularities of the insulating resin layer 10b is preferably 70 nm or less.
 また、光起電力装置100を腕時計の文字盤に組み込んで使用する場合、文字盤から入射した光が光起電力装置100の裏側に設けられた時計の機械的な機構部分まで到達することがなくなり、腕時計の文字盤の読み取りを容易にすることができる。 Further, when the photovoltaic device 100 is used by being incorporated in a watch dial, light incident from the dial does not reach the mechanical mechanism portion of the watch provided on the back side of the photovoltaic device 100. The watch dial can be easily read.
 10 基板、10a 金属シート、10b 絶縁性樹脂層、10c 絶縁樹脂ベース、10d 絶縁微粒子、12 第1電極層、14 半導体光活性層、16 透明導電層、18 導電端子、20 保護層、30 形成領域、100 光起電力装置。 10 substrate, 10a metal sheet, 10b insulating resin layer, 10c insulating resin base, 10d insulating fine particles, 12 first electrode layer, 14 semiconductor photoactive layer, 16 transparent conductive layer, 18 conductive terminal, 20 protective layer, 30 formation region , 100 photovoltaic devices.

Claims (8)

  1.  絶縁表面を有する基板上の発電領域に、第1電極層、半導体光活性層及び透明導電層を積層した光起電力装置であって、
     前記基板は、絶縁樹脂ベースと、前記絶縁樹脂ベース内に分散され、前記絶縁樹脂ベースと光の屈折率が異なる絶縁微粒子と、を含む絶縁性樹脂層を備えることを特徴とする光起電力装置。
    A photovoltaic device in which a first electrode layer, a semiconductor photoactive layer, and a transparent conductive layer are laminated on a power generation region on a substrate having an insulating surface,
    The substrate includes an insulating resin base, and an insulating resin layer including an insulating resin layer dispersed in the insulating resin base and having insulating fine particles having a refractive index of light different from that of the insulating resin base. .
  2.  請求項1に記載の光起電力装置であって、
     前記絶縁樹脂ベースは、液晶ポリマー又は液晶ポリエステルの少なくとも1つを含むことを特徴とする光起電力装置。
    The photovoltaic device according to claim 1,
    The photovoltaic device according to claim 1, wherein the insulating resin base includes at least one of a liquid crystal polymer or a liquid crystal polyester.
  3.  請求項1に記載の光起電力装置であって、
     前記絶縁樹脂ベースは、エチレンテレフタレートとパラヒドロキシ安息香酸との重合体、フェノール及びフタル酸とパラヒドロキシ安息香酸との重合体、及び2,6-ヒドロキシナフトエ酸とパラヒドロキシ安息香酸との重合体の少なくとも1つを含むことを特徴とする光起電力装置。
    The photovoltaic device according to claim 1,
    The insulating resin base is composed of a polymer of ethylene terephthalate and parahydroxybenzoic acid, a polymer of phenol and phthalic acid and parahydroxybenzoic acid, and a polymer of 2,6-hydroxynaphthoic acid and parahydroxybenzoic acid. A photovoltaic device comprising at least one.
  4.  請求項1に記載の光起電力装置であって、
     前記基板は、金属部材の表面に前記絶縁性樹脂層が形成されていることを特徴とする光起電力装置。
    The photovoltaic device according to claim 1,
    The photovoltaic device according to claim 1, wherein the insulating resin layer is formed on a surface of the metal member.
  5.  請求項1に記載の光起電力装置であって、
     前記絶縁微粒子は、平均径が0.01μm以上1μm以下であることを特徴とする光起電力装置。
    The photovoltaic device according to claim 1,
    The photovoltaic device according to claim 1, wherein the insulating fine particles have an average diameter of 0.01 μm or more and 1 μm or less.
  6.  請求項1に記載の光起電力装置であって、
     前記絶縁性樹脂層の表面の凹凸の算術平均粗さRaは、70nm以下であることを特徴とする光起電力装置。
    The photovoltaic device according to claim 1,
    The photovoltaic device according to claim 1, wherein the arithmetic average roughness Ra of the irregularities on the surface of the insulating resin layer is 70 nm or less.
  7.  請求項1に記載の光起電力装置であって、
     前記絶縁微粒子は、ナトリウム、カリウム、カルシウム、ジルコニウム、鉛の含有率がそれぞれ1原子%以下であることを特徴とする光起電力装置。
    The photovoltaic device according to claim 1,
    The photovoltaic device according to claim 1, wherein the insulating fine particles each have a content of sodium, potassium, calcium, zirconium and lead of 1 atomic% or less.
  8.  請求項1に記載の光起電力装置であって、
     時計の文字盤部分に使用されることを特徴とする光起電力装置。
    The photovoltaic device according to claim 1,
    A photovoltaic device used for a dial portion of a watch.
PCT/JP2012/051551 2011-01-27 2012-01-25 Photovoltaic device WO2012102305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011014984 2011-01-27
JP2011-014984 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012102305A1 true WO2012102305A1 (en) 2012-08-02

Family

ID=46580870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051551 WO2012102305A1 (en) 2011-01-27 2012-01-25 Photovoltaic device

Country Status (1)

Country Link
WO (1) WO2012102305A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374935A (en) * 1986-09-17 1988-04-05 Nippon Electric Glass Co Ltd Glass composition for substrate, having improved chemical resistance
JPS63310505A (en) * 1987-06-12 1988-12-19 Sanyo Electric Co Ltd Tin oxide membrane for transparent electrode
JP2001102605A (en) * 1999-09-29 2001-04-13 Tdk Corp Solar cell
JP2004140143A (en) * 2002-10-17 2004-05-13 National Institute Of Advanced Industrial & Technology Substrate for solar cell and solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374935A (en) * 1986-09-17 1988-04-05 Nippon Electric Glass Co Ltd Glass composition for substrate, having improved chemical resistance
JPS63310505A (en) * 1987-06-12 1988-12-19 Sanyo Electric Co Ltd Tin oxide membrane for transparent electrode
JP2001102605A (en) * 1999-09-29 2001-04-13 Tdk Corp Solar cell
JP2004140143A (en) * 2002-10-17 2004-05-13 National Institute Of Advanced Industrial & Technology Substrate for solar cell and solar cell

Similar Documents

Publication Publication Date Title
JP6199839B2 (en) Solar cell and manufacturing method thereof
WO2011001837A1 (en) Solar battery cell with wiring sheet, solar battery module, and method for producing solar battery cell with wiring sheet
JP6220063B2 (en) Solar cell and method for manufacturing solar cell
CN101836301B (en) Thin film type solar cell and method for manufacturing the same
US20080230116A1 (en) Method for manufacturing solar cell, and the solar cell
TWI720959B (en) A solar cell, a mthod of fabricating the solar cell and a paste for forming a non-conductive region of the solar cell
CN107112378A (en) Solar cell and its manufacture method and solar module
CN110729377A (en) Preparation method of double-sided power generation heterojunction solar cell and tile-stacked module thereof
JP2011003663A (en) Thin-film photoelectric conversion device
JP2005217148A (en) Solar cell module
WO2012102305A1 (en) Photovoltaic device
WO2019227804A1 (en) Solar cell and preparation method therefor
TWI578552B (en) Solar cell, solar battery and method for making the same
JP2011146678A (en) Method of manufacturing solar cell device
WO2015145886A1 (en) Electrode pattern forming method and solar cell manufacturing method
JP2021150578A (en) Solar cell and manufacturing method for solar cell
JP2010171370A (en) Solar cell element, solar cell module, and solar power generating apparatus
JP2014123662A (en) Solar cell and solar cell module
JP2014216381A (en) Solar cell and solar cell module
JPWO2019054240A1 (en) How to manufacture photoelectric conversion module and photoelectric conversion module
CN219979576U (en) Solar thin film battery
KR100972115B1 (en) Flexible thin film type solar cell and method for manufacturing the same
WO2016009712A1 (en) Solar cell module and solar cell module manufacturing method
JP5518005B2 (en) Method for forming solar cell electrode, printer, method for manufacturing solar cell, and method for manufacturing solar cell module
JP2013258310A (en) Solar cell string, solar cell module, and manufacturing method of wiring sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP