JP2011003663A - Thin-film photoelectric conversion device - Google Patents

Thin-film photoelectric conversion device Download PDF

Info

Publication number
JP2011003663A
JP2011003663A JP2009144491A JP2009144491A JP2011003663A JP 2011003663 A JP2011003663 A JP 2011003663A JP 2009144491 A JP2009144491 A JP 2009144491A JP 2009144491 A JP2009144491 A JP 2009144491A JP 2011003663 A JP2011003663 A JP 2011003663A
Authority
JP
Japan
Prior art keywords
layer
photoelectric conversion
wavelength
transparent conductive
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009144491A
Other languages
Japanese (ja)
Inventor
Shinsaku Yamaguchi
晋作 山口
Hirofumi Konishi
博文 小西
Hidetada Tokioka
秀忠 時岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009144491A priority Critical patent/JP2011003663A/en
Publication of JP2011003663A publication Critical patent/JP2011003663A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin-film photoelectric conversion device that is configured by improving utilization efficiency of converted light and preventing a series resistive component from being increased by utilizing an up conversion material.SOLUTION: In this thin-film photoelectric conversion device, a transparent conductive layer 2, photoelectric conversion layers 32, 42, 62, a transparent conductive layer 7 and a back reflecting electrode layer 9 are sequentially laminated on an insulating transparent substrate 1. The thin-film photoelectric conversion device includes a wavelength conversion layer 8 between the transparent conductive layer 7 and the back reflecting electrode layer 9, wherein the wavelength conversion layer 8 contains a material for converting the wavelength of light having entered from the insulating transparent substrate 1 and having passed through the photoelectric conversion layers 32, 42, 62 to further small wavelength, and includes conductive parts 10 for electrically connecting the transparent conductive layer 7 to the back reflecting electrode layer 9 in the layer.

Description

本発明は、薄膜太陽電池等の薄膜光電変換装置に関する。   The present invention relates to a thin film photoelectric conversion device such as a thin film solar cell.

近年、太陽電池の低コスト化、高効率化を両立するために薄膜太陽電池の開発が精力的になされており、多接合型薄膜光電変換装置が注目されている。一般に、多接合型の光電変換装置の構成には透明導電層、光電変換層、導電型層、中間層、および裏面反射電極層が含まれ、光電変換層における入射光の一次吸収、中間層、裏面反射電極層等による反射光の高次吸収によって発電が行なわれている。   In recent years, thin-film solar cells have been vigorously developed in order to achieve both low cost and high efficiency of solar cells, and multi-junction thin-film photoelectric conversion devices have attracted attention. In general, the configuration of a multi-junction photoelectric conversion device includes a transparent conductive layer, a photoelectric conversion layer, a conductive type layer, an intermediate layer, and a back reflective electrode layer. The primary absorption of incident light in the photoelectric conversion layer, the intermediate layer, Power generation is performed by higher-order absorption of reflected light by the back surface reflective electrode layer or the like.

しかしながら、光電変換層に用いる材料または結晶性によっては、入射光スペクトルに対して十分に光を吸収しない場合がある。例えば、光電変換層に非晶質シリコンや微結晶シリコンを用いた場合、入射光の内、可視光付近の領域に対する吸収は顕著であるが、紫外光や、赤外光の一部を除く領域に対する吸収は、その材料や結晶性等に起因して入射光を十分に吸収しない。このため、光電変換層における非吸収の光が生じ、多接合型光電変換装置の光電変換効率の向上を図る上で考慮すべき項目であった。   However, depending on the material or crystallinity used for the photoelectric conversion layer, light may not be sufficiently absorbed with respect to the incident light spectrum. For example, when amorphous silicon or microcrystalline silicon is used for the photoelectric conversion layer, absorption of visible light in a region near visible light is significant, but a region excluding a part of ultraviolet light or infrared light. Absorption of light does not sufficiently absorb incident light due to its material, crystallinity, and the like. For this reason, non-absorbing light is generated in the photoelectric conversion layer, which is an item to be considered in improving the photoelectric conversion efficiency of the multi-junction photoelectric conversion device.

一方、特許文献1では、赤外の一部を除く領域の光を可視付近の領域の光に変換する組成物に関する取り組みがなされており、低励起(照射)強度かつ常温で効率的なアップコンバージョン作用を示す材料及び組成物が開示されている。この材料及び組成物は、組成物の感光体として機能し、第1の波長域w≦λ1≦xにてエネルギを吸収する第1成分と、組成物の発光体として機能し、第2の波長域y≦λ2≦zにてエネルギを吸収する第2成分との少なくとも2つの成分を含み、λ2≦λ1であり、第1の成分による第1の波長域λ1におけるエネルギ吸収時に、第2の成分が第2の波長域λ2にてエネルギを放出し、第1の成分及び/又は第2の成分が有機化合物である。このような材料及び組成物の用途として、「光起電力素子、特に太陽電池、あるいはLED等におけるラベルであることを特徴とするアップコンバージョン装置」と記載されている。   On the other hand, in Patent Document 1, an effort has been made regarding a composition that converts light in a region excluding a part of infrared light into light in the near visible region, and is effective for upconversion at low excitation (irradiation) intensity and at room temperature. Active materials and compositions are disclosed. The material and the composition function as a photoreceptor of the composition, function as a light emitter of the composition, a first component that absorbs energy in the first wavelength range w ≦ λ1 ≦ x, and a second wavelength. Including at least two components, a second component that absorbs energy in the region y ≦ λ2 ≦ z, λ2 ≦ λ1, and the second component during energy absorption in the first wavelength region λ1 by the first component Emits energy in the second wavelength region λ2, and the first component and / or the second component is an organic compound. As an application of such a material and composition, it is described as “an up-conversion device characterized by being a label in a photovoltaic element, particularly a solar cell or LED”.

特開2005−49824号公報JP-A-2005-49824

薄膜光電変換装置は、光電変換層、導電層の厚みが薄いため、光電変換効率向上には、光の利用効率を上げることと、導電層の電気抵抗を低下させることが特に重要である。しかしながら、特許文献1には、上記材料及び組成物の太陽電池への応用に関する記載はあるが、どのように応用するかについての具体的な構造は示されていない。   In the thin film photoelectric conversion device, since the photoelectric conversion layer and the conductive layer are thin, it is particularly important to increase the utilization efficiency of light and decrease the electric resistance of the conductive layer in order to improve the photoelectric conversion efficiency. However, Patent Document 1 describes the application of the above materials and compositions to solar cells, but does not show a specific structure on how to apply them.

本発明は、上記に鑑みてなされたものであって、アップコンバージョン材料を利用することで、変換した光の利用効率を高め、さらに直列抵抗成分を増加させないようにした薄膜光電変換装置を得ることを目的とする。   The present invention has been made in view of the above, and by using an up-conversion material, a thin-film photoelectric conversion device that improves the utilization efficiency of converted light and does not increase the series resistance component is obtained. With the goal.

上述した課題を解決し、目的を達成するために、本発明にかかる薄膜光電変換装置は、透光性基板上に、第1透明導電層、光電変換層、第2透明導電層、および裏面反射電極層が順に積層された薄膜光電変換装置であって、前記第2透明導電層と前記裏面反射電極層との間に、波長変換層を有し、前記波長変換層は、前記透光性基板から入射して前記光電変換層を通過した光の波長をより短い波長に変換する材料を含有し、かつ、層内に前記第2透明導電層と前記裏面反射電極層とを電気的に接続する導電部を有することを特徴とする。   In order to solve the above-described problems and achieve the object, a thin film photoelectric conversion device according to the present invention includes a first transparent conductive layer, a photoelectric conversion layer, a second transparent conductive layer, and a back surface reflection on a translucent substrate. A thin-film photoelectric conversion device in which electrode layers are sequentially stacked, having a wavelength conversion layer between the second transparent conductive layer and the back reflective electrode layer, wherein the wavelength conversion layer is the translucent substrate Containing a material that converts the wavelength of light that has entered through the photoelectric conversion layer into a shorter wavelength, and electrically connects the second transparent conductive layer and the back reflective electrode layer within the layer It has a conductive part.

本発明によれば、第2透明導電層と裏面反射電極層の間に、透光性基板から入射して光電変換層を通過した光の波長をより短い波長に変換する材料を含有する波長変換層を有するので、光電変換層で吸収されずに通過した波長の光を、吸収されやすい波長の光に変換し、光電変換層側に反射吸収させることができ、よって、変換した光の利用効率が向上し、この際、導電部によって裏面反射電極層と電気的に接続された第2透明導電層が光電変換層の背面側に設置されているので、光電変換層から電力を取り出す際の直列抵抗成分を低減させることができるという効果を奏する。   According to this invention, the wavelength conversion containing the material which converts into a shorter wavelength the wavelength of the light which injected from the translucent board | substrate and passed the photoelectric converting layer between the 2nd transparent conductive layer and the back surface reflective electrode layer. Since it has a layer, light having a wavelength that has passed without being absorbed by the photoelectric conversion layer can be converted into light having a wavelength that is easily absorbed, and reflected and absorbed by the photoelectric conversion layer, and thus the efficiency of use of the converted light In this case, since the second transparent conductive layer electrically connected to the back surface reflective electrode layer by the conductive portion is disposed on the back side of the photoelectric conversion layer, the series when taking out the electric power from the photoelectric conversion layer is improved. There is an effect that the resistance component can be reduced.

図1は、実施の形態1にかかる多接合型薄膜光電変換装置を示す概略断面図である。FIG. 1 is a schematic cross-sectional view illustrating a multi-junction thin film photoelectric conversion device according to a first embodiment. 図2は、実施の形態2にかかる多接合型薄膜光電変換装置を示す概略断面図である。FIG. 2 is a schematic cross-sectional view illustrating a multi-junction thin film photoelectric conversion device according to the second embodiment. 図3は、実施の形態3にかかる多接合型薄膜光電変換装置を示す概略断面図である。FIG. 3 is a schematic cross-sectional view illustrating a multi-junction thin-film photoelectric conversion device according to the third embodiment. 図4は、実施の形態4にかかる多接合型薄膜光電変換装置を示す概略断面図である。FIG. 4 is a schematic cross-sectional view illustrating a multi-junction thin film photoelectric conversion device according to the fourth embodiment.

以下に、本発明にかかる薄膜光電変換装置の実施の形態を図面に基づいて詳細に説明する。なお、これらの実施の形態により本発明が限定されるものではない。また、以下の実施の形態に示す薄膜光電変換装置の断面図は、模式的なものであり、層の厚みと幅との関係や各層の厚みの比率などは現実のものとは異なる。   Embodiments of a thin film photoelectric conversion device according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to these embodiments. In addition, the cross-sectional views of the thin film photoelectric conversion device described in the following embodiments are schematic, and the relationship between the thickness and width of the layers, the ratio of the thicknesses of the layers, and the like are different from the actual ones.

実施の形態1.
図1は、本実施の形態1にかかる多接合型薄膜光電変換装置を示す概略断面図である。本実施の形態1にかかる多接合型薄膜光電変換装置は、絶縁性透明基板1上に、透明導電層2、前方光電変換セル3、中間光電変換セル4、中間層5、後方光電変換セル6、透明導電層7、波長変換層8、および裏面反射電極層9を順次積層させた三接合型光電変換装置である。なお、図1は、絶縁性透明基板1側より光が入射するものとし、前述の積層構造からなるが、本発明は接合数に特に限定は無く、単一の光電変換装置、例えば多結晶シリコンや薄膜非晶質シリコンからなる光電変換装置や、二接合以上の光電変換装置、例えば非晶質シリコンと微結晶シリコンからなる二接合光電変換装置、さらにはこれに非晶質シリコンゲルマニウムを加えた三接合光電変換装置にも適用する場合などが挙げられるが、組合せはこの限りではない。また、波長変換層8が非晶質シリコンなどからなる単層の光電変換装置であってもよい。
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view showing a multi-junction thin-film photoelectric conversion device according to the first embodiment. The multi-junction thin film photoelectric conversion device according to the first embodiment includes a transparent conductive layer 2, a front photoelectric conversion cell 3, an intermediate photoelectric conversion cell 4, an intermediate layer 5, and a rear photoelectric conversion cell 6 on an insulating transparent substrate 1. , A three-junction photoelectric conversion device in which a transparent conductive layer 7, a wavelength conversion layer 8, and a back reflective electrode layer 9 are sequentially stacked. In FIG. 1, light is incident from the insulating transparent substrate 1 side and has the above-described laminated structure. However, the present invention has no particular limitation on the number of junctions, and a single photoelectric conversion device such as polycrystalline silicon is used. Or a photoelectric conversion device made of thin-film amorphous silicon, a photoelectric conversion device having two or more junctions, for example, a two-junction photoelectric conversion device made of amorphous silicon and microcrystalline silicon, and amorphous silicon germanium added thereto Although the case where it applies also to a three junction photoelectric conversion apparatus etc. is mentioned, a combination is not this limitation. The wavelength conversion layer 8 may be a single layer photoelectric conversion device made of amorphous silicon or the like.

透光性基板である絶縁性透明基板1には、ガラス、樹脂フィルム等が用いられる。この絶縁性透明基板1上にSnOやZnO等からなる第1透明導電層である透明導電層2がCVD、スパッタ、蒸着等の方法を用いて形成されることが望ましい。なお、透明導電層2は、入射光の散乱を増大させる凹凸構造を有することが望ましい。 Glass, resin film, etc. are used for the insulating transparent substrate 1 which is a translucent board | substrate. It is desirable that the transparent conductive layer 2 as the first transparent conductive layer made of SnO 2 , ZnO or the like is formed on the insulating transparent substrate 1 by using a method such as CVD, sputtering, or vapor deposition. The transparent conductive layer 2 desirably has a concavo-convex structure that increases the scattering of incident light.

また、前方光電変換セル3、中間光電変換セル4、および後方光電変換セル6は、それぞれpin接合を有するものである。すなわち、前方光電変換セル3は、導電型層31と光電変換層32と導電型層33とからなり、中間光電変換セル3は導電型層41と光電変換層42と導電型層43とからなり、後方光電変換セル6は、導電型層61と光電変換層62と導電型層63とからなる。この場合、前方光電変換セル3に相対的にバンドギャップの広い材料、例えば非晶質シリコンを用い、後方光電変換セル6に相対的にバンドギャップの狭い材料、例えば微結晶シリコンや微結晶シリコンゲルマニウムを用いることが好ましい。   Further, the front photoelectric conversion cell 3, the intermediate photoelectric conversion cell 4, and the rear photoelectric conversion cell 6 each have a pin junction. That is, the front photoelectric conversion cell 3 includes a conductive layer 31, a photoelectric conversion layer 32, and a conductive layer 33, and the intermediate photoelectric conversion cell 3 includes a conductive layer 41, a photoelectric conversion layer 42, and a conductive layer 43. The rear photoelectric conversion cell 6 includes a conductive type layer 61, a photoelectric conversion layer 62, and a conductive type layer 63. In this case, a material having a relatively wide band gap, such as amorphous silicon, is used for the front photoelectric conversion cell 3, and a material having a relatively narrow band gap, such as microcrystalline silicon or microcrystalline silicon germanium, is used for the rear photoelectric conversion cell 6. Is preferably used.

中間層5は、低屈折率を有し、所望の波長に対して高透過率、高反射率を持ち、かつ、導電性を併せ持つ薄膜である。例えば、屈折率が1.5〜2.5程度、膜厚が20〜100nm程度で、図1のような光電変換装置を形成した場合にも、中間層5による電気的損失が無く、中間層5よりも入射側にある光電変換セル3、4へ所望の波長の光を反射させ、それと反対側にある光電変換セル6へ所望の波長の光を透過させる薄膜である。   The intermediate layer 5 is a thin film having a low refractive index, a high transmittance and a high reflectance with respect to a desired wavelength, and a conductivity. For example, even when the photoelectric conversion device as shown in FIG. 1 is formed with a refractive index of about 1.5 to 2.5 and a film thickness of about 20 to 100 nm, there is no electrical loss due to the intermediate layer 5, and the intermediate layer 5 is a thin film that reflects light of a desired wavelength to the photoelectric conversion cells 3 and 4 on the incident side of 5 and transmits light of the desired wavelength to the photoelectric conversion cell 6 on the opposite side.

裏面反射電極層9は、Ag、Al、Cu等の金属薄膜がスパッタ法、蒸着法によって形成されることが好ましい。なお、光電変換セル6と裏面反射電極層9との間にSnOやZnO等からなる第2透明導電層であるの透明導電層7を形成することが好ましい。 The back reflective electrode layer 9 is preferably formed of a metal thin film such as Ag, Al, or Cu by sputtering or vapor deposition. In addition, it is preferable to form the transparent conductive layer 7 that is a second transparent conductive layer made of SnO 2 , ZnO, or the like between the photoelectric conversion cell 6 and the back surface reflective electrode layer 9.

本実施の形態1の波長変換層8は、図1の三接合型光電変換装置を背面側に通過した光の一部を、波長の短い光に変換するアップコンバージョン作用を持つ。これにより、前方光電変換セル3、中間光電変換セル4、および後方光電変換セル6で吸収可能な波長の光を発生させることができる。よって、これまでの多接合型光電変換装置では利用不可能であった波長域を有効利用することで光電変換効率を向上させることができる。   The wavelength conversion layer 8 of the first embodiment has an up-conversion action that converts part of the light that has passed through the three-junction photoelectric conversion device in FIG. 1 to the back side into light having a short wavelength. Thereby, the light of the wavelength which can be absorbed by the front photoelectric conversion cell 3, the intermediate photoelectric conversion cell 4, and the back photoelectric conversion cell 6 can be generated. Therefore, it is possible to improve the photoelectric conversion efficiency by effectively using the wavelength region that could not be used in conventional multi-junction photoelectric conversion devices.

この波長変換層8は、例えば、特許文献1中に示されたような有機材料や、アップコンバージョン作用を有する無機材料等である。たとえば、2光子吸収の特性を有する色素としてポルフィリンやフタロシアニンなどの化合物、およびフルオレン系などの発光ポリマーを有するものであってもよい。また、Erなどの希土類元素をY、YAO、YFなどに添加して得られる焼結粒子であってもよい。シリコンを主成分とする薄膜光電変換装置では裏面側に800〜1200nmの波長の光が比較的透過するので、これらの波長域にある光をシリコンが吸収しやすい400〜700nmに変換するものであることが望ましい。これらのアップコンバージョン材料は、アクリル樹脂やシリコーン樹脂などの透明なポリマーなどの材料中に分散してもよい。適当な溶媒で溶液として、スパッタ法、印刷法、スプレー塗布法等によって形成することができる。 The wavelength conversion layer 8 is, for example, an organic material as disclosed in Patent Document 1 or an inorganic material having an upconversion action. For example, it may have a compound such as porphyrin or phthalocyanine and a fluorene-based luminescent polymer as a pigment having the two-photon absorption property. Further, a rare earth element such as Er Y 2 O 3, YAO 3 , YF 3 may be a sintered particles obtained by adding the like. In a thin film photoelectric conversion device containing silicon as a main component, light having a wavelength of 800 to 1200 nm is relatively transmitted to the back surface side, so that light in these wavelength regions is converted to 400 to 700 nm that is easily absorbed by silicon. It is desirable. These up-conversion materials may be dispersed in a material such as a transparent polymer such as an acrylic resin or a silicone resin. It can be formed as a solution with an appropriate solvent by sputtering, printing, spray coating, or the like.

薄膜光電変換装置は、光電変換層62、透明導電層7の厚みが薄いため、光電変換効率向上には、光の利用効率を上げだけでなく、透明導電層7の電気抵抗を低下させることが特に重要である。本実施の形態1では、波長変換層8を透明導電層7の背面側に配置して、波長変換した光を含む反射光を光電変換に利用するので利用効率を向上させることができる。一方、透明導電層7の電気抵抗の増加を防止のために透明導電層7を厚くすると、近赤外領域など長波長側の光が透明導電層7によって吸収され、反射光の利用効率が減少してしまう。そこで、本実施の形態1では、透明導電層7をある程度薄くしても電気抵抗を低下できる構造として、波長変換層8は層内に透明導電層7と裏面反射電極層9とを電気的に接続する導電部10を形成した。透明導電層7は、少し抵抗が高くなるが、導電部10によって裏面反射電極層9に電気的に接続されるので、光電変換層62からの電力の取り出しが高効率に行える。   In the thin film photoelectric conversion device, since the photoelectric conversion layer 62 and the transparent conductive layer 7 are thin, not only the light use efficiency is increased but also the electric resistance of the transparent conductive layer 7 is decreased in order to improve the photoelectric conversion efficiency. Of particular importance. In Embodiment 1, the wavelength conversion layer 8 is disposed on the back side of the transparent conductive layer 7 and the reflected light including the wavelength-converted light is used for photoelectric conversion, so that the utilization efficiency can be improved. On the other hand, when the transparent conductive layer 7 is thickened to prevent an increase in the electrical resistance of the transparent conductive layer 7, light on the long wavelength side such as the near infrared region is absorbed by the transparent conductive layer 7 and the use efficiency of reflected light is reduced. Resulting in. Therefore, in the first embodiment, the wavelength conversion layer 8 electrically connects the transparent conductive layer 7 and the back surface reflective electrode layer 9 in the layer so that the electrical resistance can be lowered even if the transparent conductive layer 7 is thinned to some extent. The conductive part 10 to be connected was formed. The transparent conductive layer 7 has a little higher resistance, but is electrically connected to the back reflective electrode layer 9 by the conductive portion 10, so that power can be extracted from the photoelectric conversion layer 62 with high efficiency.

本実施の形態1では、図1に示すように、波長変換層8中に貫通部8aを形成し、貫通部8aに裏面反射電極層9の一部を入り込ませることで導電部10を形成し、透明導電層7と裏面反射電極層9とが電気的に接する構造とした。なお、図1では波長変換層8中の貫通部8aに裏面反射電極層9の一部が入り込むことで、透明導電層7と裏面反射電極層9とを直接接触させる導電部10構造としているので最も簡単であるが、貫通部8a中に別の導電材料を挿入させて導電部を形成するようにしてもよい。また、貫通部8aに代えて、波長変換層8を複数の島状のパターンに分割して、その島状パターンの隙間で透明導電層7と裏面反射電極層9とを電気的に接続するようにしてもよい。   In the first embodiment, as shown in FIG. 1, the penetrating portion 8a is formed in the wavelength conversion layer 8, and the conductive portion 10 is formed by allowing a part of the back surface reflecting electrode layer 9 to enter the penetrating portion 8a. The transparent conductive layer 7 and the back reflective electrode layer 9 are in electrical contact with each other. In FIG. 1, since a part of the back surface reflective electrode layer 9 enters the penetrating portion 8 a in the wavelength conversion layer 8, the transparent conductive layer 7 and the back surface reflective electrode layer 9 are in direct contact with each other. Although it is the simplest, another conductive material may be inserted into the penetrating portion 8a to form the conductive portion. Further, instead of the penetrating portion 8a, the wavelength conversion layer 8 is divided into a plurality of island-shaped patterns, and the transparent conductive layer 7 and the back surface reflective electrode layer 9 are electrically connected through gaps between the island-shaped patterns. It may be.

波長変換層8の貫通部8aや島状パターンは、層状に塗布形成した膜を、マスクを利用してウェットあるいはドライエッチングにより形成できる。また、印刷法で直接パターンを加工した層を形成すると簡単に形成できる。   The penetrating portion 8a and the island pattern of the wavelength conversion layer 8 can be formed by wet or dry etching of a layer-coated film using a mask. Further, it can be easily formed by forming a layer in which a pattern is directly processed by a printing method.

波長変換層8の厚みは、例えば、膜厚が1〜750nmとなるようにしてもよい。下地となる層に対する波長変換層8の被覆率が概ね80%以下であれば、透明導電層7と裏面反射電極層9との接続抵抗が低下するので望ましい。一方、波長変換の効率の観点からは、下地となる層に対する波長変換層8の被覆率が概ね50%以上であることが好ましい。   The wavelength conversion layer 8 may have a thickness of 1 to 750 nm, for example. If the coverage of the wavelength conversion layer 8 with respect to the underlying layer is approximately 80% or less, it is desirable because the connection resistance between the transparent conductive layer 7 and the back reflective electrode layer 9 decreases. On the other hand, from the viewpoint of the efficiency of wavelength conversion, it is preferable that the coverage of the wavelength conversion layer 8 with respect to the underlying layer is approximately 50% or more.

また、波長変換層8の表面の凹凸が原子間力顕微鏡によって測定されるRMSを指標として1〜50nm、などの凹凸構造を有するようにすると、裏面反射電極層9での反射が散乱されるので反射光の利用効率が高まる。   In addition, if the irregularities on the surface of the wavelength conversion layer 8 have an irregular structure such as 1 to 50 nm using RMS measured by an atomic force microscope as an index, the reflection at the back reflective electrode layer 9 is scattered. Use efficiency of reflected light increases.

実施の形態2.
図2は、本実施の形態2にかかる多接合型薄膜光電変換装置を示す概略断面図である。本実施の形態2にかかる薄膜光電変換装置は、実施の形態1の場合と波長変換層8および裏面反射電極層9の形状が異なる。本実施の形態2では、波長変換層8は、表面が、球面や円筒面などの裏面側に凸曲面となる形状に形成されている。また、その上の裏面反射電極層9は、波長変換層8の表面形状に倣い、波長変換層8側に凹曲面9aを有する形状に形成されている。このため、裏面反射電極層9の内側反射面は、反射した光を波長変換層8内に集光させる集光機能を有するものとなる。
Embodiment 2. FIG.
FIG. 2 is a schematic cross-sectional view showing a multi-junction thin-film photoelectric conversion device according to the second embodiment. The thin film photoelectric conversion device according to the second embodiment is different from the first embodiment in the shapes of the wavelength conversion layer 8 and the back surface reflective electrode layer 9. In the second embodiment, the wavelength conversion layer 8 is formed such that the surface has a convex curved surface on the back side such as a spherical surface or a cylindrical surface. Further, the back reflective electrode layer 9 thereon is formed in a shape having a concave curved surface 9 a on the wavelength conversion layer 8 side, following the surface shape of the wavelength conversion layer 8. For this reason, the inner reflective surface of the back surface reflective electrode layer 9 has a condensing function for condensing the reflected light in the wavelength conversion layer 8.

波長変換層8は、例えば、有機材料や樹脂材料で形成される。このような波長変換層8の形状は、粒子が点在するように溶液を塗布噴霧して付着させると簡単に作成できる、また、離散した層状のパターンをマスク加工で形成した後に、熱処理で軟化することでエッジを滑らかにするなどの方法でも良い。   The wavelength conversion layer 8 is made of, for example, an organic material or a resin material. The shape of the wavelength conversion layer 8 can be easily created by applying and spraying a solution so that particles are scattered, and it is softened by heat treatment after a discrete layered pattern is formed by mask processing. It is also possible to smooth the edges by doing so.

裏面反射電極層9は、このような波長変換層8上にスパッタ法などで製膜すると、波長変換層8の表面形状に沿って膜が付着するので、図2に示すような波長変換層8側に凹となる曲面形状となる。   When the back surface reflective electrode layer 9 is formed on such a wavelength conversion layer 8 by sputtering or the like, the film adheres along the surface shape of the wavelength conversion layer 8, so that the wavelength conversion layer 8 as shown in FIG. The curved surface is concave on the side.

このように裏面反射電極層9が波長変換層8側に凹曲面9aを有し、表面側から入射して光電変換層62を透過した光が、波長変換層8を経て、背後の凹曲面9aで波長変換層8内に集光されるように反射される。すなわち、裏面反射電極層9で反射した光が再び波長変換層8を通過する際には、集光されているため、波長変換効率が向上する。凹曲面9aが、例えば、球面や円筒面などの焦点を有する曲面の場合には、その焦点が波長変換層8内にあるようにすることがさらに望ましい。波長変換効率が向上することで、裏面反射電極層9によって反射される光の波長成分のうち、光電変換層62で吸収されやすい波長成分を高めることが可能となるので、光電変換効率が向上する。   Thus, the back surface reflective electrode layer 9 has the concave curved surface 9 a on the wavelength conversion layer 8 side, and the light incident from the front side and transmitted through the photoelectric conversion layer 62 passes through the wavelength conversion layer 8 and is behind the concave curved surface 9 a. Thus, the light is reflected so as to be condensed in the wavelength conversion layer 8. That is, when the light reflected by the back surface reflective electrode layer 9 passes through the wavelength conversion layer 8 again, it is condensed, so that the wavelength conversion efficiency is improved. In the case where the concave curved surface 9a is a curved surface having a focal point such as a spherical surface or a cylindrical surface, it is further desirable that the focal point be in the wavelength conversion layer 8. By improving the wavelength conversion efficiency, it is possible to increase the wavelength component that is easily absorbed by the photoelectric conversion layer 62 out of the wavelength components of the light reflected by the back surface reflective electrode layer 9, thereby improving the photoelectric conversion efficiency. .

実施の形態3.
ついで、実施の形態3について説明する。赤外光を可視光に変換する材料として、二光子吸収によるものだけでなく、多段階の遷移型によって赤外可視変換する材料であってもよい。このような材料として、例えば特開2005−82770号公報によれば、数ミクロン程度の微小な粒径を有する赤外可視変換蛍光体が示されている。Er3+、Tm3+、Ho3+などを含有する蛍光体では、励起状態にあるそれらのイオンが更に光を吸収してより高い励起準位に上がる多段階励起が生じ、これにより赤外を可視光に変換できる。このような材料からなる微細な粒子を絶縁性の透明な樹脂溶液中に分散させ、その液を印刷やスプレーで噴霧塗布により波長変換層を容易に形成することができる。多段階励起型だけでなく、アルカリ土類金属の硫化物あるいはセレン化物を主成分とした赤外輝尽蛍光体の細かい粉末を用いてもよい。
Embodiment 3 FIG.
Next, Embodiment 3 will be described. The material that converts infrared light into visible light is not limited to two-photon absorption, and may be a material that performs infrared-visible conversion by a multi-stage transition type. As such a material, for example, according to Japanese Patent Laid-Open No. 2005-82770, an infrared-visible conversion phosphor having a minute particle size of about several microns is shown. In phosphors containing Er3 +, Tm3 +, Ho3 +, etc., these ions in the excited state further absorb light and cause a multi-step excitation that rises to a higher excitation level, thereby converting infrared to visible light. . The wavelength conversion layer can be easily formed by dispersing fine particles made of such a material in an insulating transparent resin solution and spraying the liquid by printing or spraying. In addition to the multi-stage excitation type, a fine powder of an infrared stimulable phosphor whose main component is a sulfide or selenide of an alkaline earth metal may be used.

図3は、実施の形態3にかかる多接合型薄膜光電変換装置を示す概略断面図である。実施の形態2の場合と波長変換層8および裏面反射電極層9の形状は同様であるが、本実施の形態3の波長変換層8は、透明な樹脂材料8cと硫化物などの蛍光体微粒子8bからなる。蛍光体微粒子8bは、樹脂材料8c中に分散されており、実施の形態2の場合と同様に作成できる。蛍光体微粒子8bのサイズは、例えば、1〜5μmである。   FIG. 3 is a schematic cross-sectional view illustrating a multi-junction thin-film photoelectric conversion device according to the third embodiment. Although the shape of the wavelength conversion layer 8 and the back surface reflecting electrode layer 9 is the same as in the case of the second embodiment, the wavelength conversion layer 8 of the third embodiment is made of a transparent resin material 8c and phosphor fine particles such as sulfides. 8b. The phosphor fine particles 8b are dispersed in the resin material 8c, and can be produced in the same manner as in the second embodiment. The size of the phosphor fine particles 8b is, for example, 1 to 5 μm.

蛍光体微粒子8bは、一般に、角のある材料であるが、樹脂材料8c中に分散したことにより、下地との接着力が良く、また、裏面反射電極層9の蛍光体微粒子8b側に滑らかな凹曲面9aを作成できる。このような凹曲面9aによって集光性能が向上するので、実施の形態2の場合と同様に光電変換効率が向上する。   The phosphor fine particles 8b are generally horny materials, but are dispersed in the resin material 8c, so that the adhesion to the base is good, and the back surface reflective electrode layer 9 is smooth on the phosphor fine particle 8b side. The concave curved surface 9a can be created. Since the condensing performance is improved by such a concave curved surface 9a, the photoelectric conversion efficiency is improved as in the case of the second embodiment.

実施の形態4.
図4は、実施の形態4にかかる多接合型薄膜光電変換装置を示す概略断面図である。本実施の形態4では、波長変換層8中に導電部となる導電性粒子12を分散させた構成としたものである。導電性粒子12は、金属粒子や透明導電材料からなる粒子である。例えば、1〜5μm程度の粒子としてもよい。このため、波長変換層8中に貫通穴や開口部を形成しなくても、導電性粒子12により裏面反射電極層9と透明導電層7とを電気的に接続させることができる。
Embodiment 4 FIG.
FIG. 4 is a schematic cross-sectional view illustrating a multi-junction thin film photoelectric conversion device according to the fourth embodiment. In the fourth embodiment, the conductive particles 12 serving as the conductive part are dispersed in the wavelength conversion layer 8. The conductive particles 12 are particles made of metal particles or a transparent conductive material. For example, it is good also as a particle | grain of about 1-5 micrometers. For this reason, the back reflective electrode layer 9 and the transparent conductive layer 7 can be electrically connected by the conductive particles 12 without forming a through hole or an opening in the wavelength conversion layer 8.

このように波長変換層8中に導電性粒子12を分散させることで、製造が容易となる。また、導電性粒子12が分散されることで、波長変換層8中での散乱作用が高まり、裏面反射電極層9で反射した光が、後方光電変換セル6(光電変換層62)で吸収されやすくなり、光電変換効率が向上する。   As described above, the conductive particles 12 are dispersed in the wavelength conversion layer 8 to facilitate the production. Moreover, the dispersion | distribution of the electroconductive particle 12 increases the scattering effect in the wavelength conversion layer 8, and the light reflected by the back surface reflective electrode layer 9 is absorbed by the back photoelectric conversion cell 6 (photoelectric conversion layer 62). It becomes easy and photoelectric conversion efficiency improves.

なお、特に図示しないが、多光子吸収などの波長変換の現象は、光強度を高めると飛躍的に効率が高まるため、絶縁性透明基板1には、集光レンズ、集光ミラーなどで太陽光を集光させた光を入射するようにした太陽電池とするとさらによい。   Although not shown in particular, the wavelength conversion phenomenon such as multiphoton absorption dramatically increases the efficiency when the light intensity is increased. It is even better if the solar cell is made to receive light that has been condensed.

以上のように、本発明にかかる薄膜光電変換装置は、光電変換層における入射光の一次吸収、裏面反射電極層等による反射光の高次吸収によって発電を行なう場合の光電変換効率の向上に有用である。   As described above, the thin film photoelectric conversion device according to the present invention is useful for improving the photoelectric conversion efficiency when generating power by primary absorption of incident light in the photoelectric conversion layer and high-order absorption of reflected light by the back surface reflective electrode layer or the like. It is.

1 絶縁性透明基板
2 透明導電層
7 透明導電層
8 波長変換層
9 裏面反射電極層
9a 凹曲面
10 導電部
12 導電性粒子
32,42,62 光電変換層
DESCRIPTION OF SYMBOLS 1 Insulating transparent substrate 2 Transparent conductive layer 7 Transparent conductive layer 8 Wavelength conversion layer 9 Back surface reflective electrode layer 9a Concave surface 10 Conductive part 12 Conductive particle 32, 42, 62 Photoelectric conversion layer

Claims (4)

透光性基板上に、第1透明導電層、光電変換層、第2透明導電層、および裏面反射電極層が順に積層された薄膜光電変換装置であって、
前記第2透明導電層と前記裏面反射電極層との間に、波長変換層を有し、
前記波長変換層は、前記透光性基板から入射して前記光電変換層を通過した光の波長をより短い波長に変換する材料を含有し、かつ、層内に前記第2透明導電層と前記裏面反射電極層とを電気的に接続する導電部を有することを特徴とする薄膜光電変換装置。
A thin film photoelectric conversion device in which a first transparent conductive layer, a photoelectric conversion layer, a second transparent conductive layer, and a back surface reflective electrode layer are sequentially laminated on a translucent substrate,
Between the second transparent conductive layer and the back reflective electrode layer, a wavelength conversion layer is provided,
The wavelength conversion layer contains a material that converts the wavelength of light incident from the translucent substrate and passed through the photoelectric conversion layer into a shorter wavelength, and the second transparent conductive layer and the layer are included in the layer. A thin film photoelectric conversion device comprising a conductive portion that electrically connects a back surface reflective electrode layer.
前記裏面反射電極層は、前記波長変換層側に凹曲面を有することを特徴とする請求項1に記載の薄膜光電変換装置。   The thin film photoelectric conversion device according to claim 1, wherein the back reflective electrode layer has a concave curved surface on the wavelength conversion layer side. 前記導電部は、前記波長変換層中に分散させた導電性粒子からなることを特徴とする請求項1に記載の薄膜光電変換装置。   The thin film photoelectric conversion device according to claim 1, wherein the conductive portion is made of conductive particles dispersed in the wavelength conversion layer. 前記波長変換層の下地となる層に対する該波長変換層の被覆率は、概ね80%以下、50%以上であることを特徴とする請求項1〜3のいずれか一つに記載の薄膜光電変換装置。   The thin film photoelectric conversion according to any one of claims 1 to 3, wherein a coverage of the wavelength conversion layer with respect to a layer serving as a base of the wavelength conversion layer is approximately 80% or less and 50% or more. apparatus.
JP2009144491A 2009-06-17 2009-06-17 Thin-film photoelectric conversion device Pending JP2011003663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009144491A JP2011003663A (en) 2009-06-17 2009-06-17 Thin-film photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144491A JP2011003663A (en) 2009-06-17 2009-06-17 Thin-film photoelectric conversion device

Publications (1)

Publication Number Publication Date
JP2011003663A true JP2011003663A (en) 2011-01-06

Family

ID=43561410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144491A Pending JP2011003663A (en) 2009-06-17 2009-06-17 Thin-film photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2011003663A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027509A1 (en) * 2011-08-25 2013-02-28 富士フイルム株式会社 Wavelength conversion film and photoelectric conversion device
CN103367465A (en) * 2012-03-29 2013-10-23 山东华光光电子有限公司 Multi-junction solar cell with metal reflector and preparation method thereof
CN103378182A (en) * 2012-04-25 2013-10-30 新日光能源科技股份有限公司 Light wave conversion layer and solar cell with same
JP2015092563A (en) * 2013-09-30 2015-05-14 積水化学工業株式会社 Organic-inorganic composite thin-film solar cell
JP2015153949A (en) * 2014-02-17 2015-08-24 三菱電機株式会社 Solar cell element and solar cell module
KR101928584B1 (en) * 2012-10-24 2018-12-13 전남대학교산학협력단 Solar cell including phosphors and method for manufacturing the same
WO2023221561A1 (en) * 2022-05-16 2023-11-23 隆基绿能科技股份有限公司 Solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027509A1 (en) * 2011-08-25 2013-02-28 富士フイルム株式会社 Wavelength conversion film and photoelectric conversion device
CN103367465A (en) * 2012-03-29 2013-10-23 山东华光光电子有限公司 Multi-junction solar cell with metal reflector and preparation method thereof
CN103367465B (en) * 2012-03-29 2016-01-06 山东浪潮华光光电子股份有限公司 A kind of multijunction solar cell having metallic mirror and preparation method thereof
CN103378182A (en) * 2012-04-25 2013-10-30 新日光能源科技股份有限公司 Light wave conversion layer and solar cell with same
KR101928584B1 (en) * 2012-10-24 2018-12-13 전남대학교산학협력단 Solar cell including phosphors and method for manufacturing the same
JP2015092563A (en) * 2013-09-30 2015-05-14 積水化学工業株式会社 Organic-inorganic composite thin-film solar cell
JP2015153949A (en) * 2014-02-17 2015-08-24 三菱電機株式会社 Solar cell element and solar cell module
WO2023221561A1 (en) * 2022-05-16 2023-11-23 隆基绿能科技股份有限公司 Solar cell

Similar Documents

Publication Publication Date Title
JP2011003663A (en) Thin-film photoelectric conversion device
TWI446555B (en) Back contact for solar cell
JPWO2007040065A1 (en) Solar cell and solar cell module
CN102709402B (en) Thin film solar cell of graphic based metal substrate and preparation method thereof
KR102540524B1 (en) Laser stop layer for foil-based metallization of solar cells
CN101978507B (en) Solar cell and method for manufacturing metal electrode layer to be used in the solar cell
KR20120002222A (en) Up conversion oxide fluorescent composition for solar cell and method of fabrication of high efficiency solar cell using thereof
EP2645442A2 (en) Multiple light management textures
CN106784232A (en) A kind of method that utilization periodicity diffusing structure improves LED chip light extraction efficiency
KR20090067350A (en) Thin film type solar cell and method for manufacturing the same
CN105981117B (en) Patterned electrodes contact for opto-electronic device
Das et al. Investigating the potential of nanoplasmonics for efficiency enhancement of wafer based crystalline silicon solar cells
CN102082190B (en) Solar battery and manufacturing method thereof
US20110259414A1 (en) Reflective electrode and photoelectric element
KR101197575B1 (en) Solar cell, and manufacturing method therefor
JP2014229904A (en) Solar cell and method for manufacturing the same
JP2014042083A (en) Solar cell
KR101578813B1 (en) Scattering metal-nanostructure-layer covered electrode and solar cell using the same, and a methods of manufacturing them
KR20120137945A (en) Solar cell and manufacturing method of the same
JP2011096730A (en) Thin-film solar cell and method of manufacturing the same
KR20120036115A (en) Flexible solar cell and method of fabricating the same
KR101541108B1 (en) solar cell and manufacturing method thereof
Cabrera‐España et al. Optical and electrical characterization of solar cell with nanowires mimicking antireflection coating layers considering axial and radial PN junctions
KR101557020B1 (en) Scattering metal-layer coated electrode and solar cell using the same, and a method of manufacturing them
KR101120009B1 (en) Solar cell having nano scale pillar, and fabricating method thereof