WO2013027509A1 - Wavelength conversion film and photoelectric conversion device - Google Patents

Wavelength conversion film and photoelectric conversion device Download PDF

Info

Publication number
WO2013027509A1
WO2013027509A1 PCT/JP2012/067936 JP2012067936W WO2013027509A1 WO 2013027509 A1 WO2013027509 A1 WO 2013027509A1 JP 2012067936 W JP2012067936 W JP 2012067936W WO 2013027509 A1 WO2013027509 A1 WO 2013027509A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
quantum dot
wavelength conversion
conversion film
matrix layer
Prior art date
Application number
PCT/JP2012/067936
Other languages
French (fr)
Japanese (ja)
Inventor
蔵町 照彦
笠松 直史
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013027509A1 publication Critical patent/WO2013027509A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a wavelength conversion film and a photoelectric conversion device having an up-conversion function, and particularly to a wavelength conversion film and a photoelectric conversion device having two types of quantum dots and a stimulable light emitting material.
  • a PN junction solar cell configured by bonding a P-type semiconductor and an N-type semiconductor
  • a PIN junction solar cell configured by bonding a P-type semiconductor, an I-type semiconductor, and an N-type semiconductor
  • a PN junction solar cell and a PIN junction solar cell have a single band gap and are called single junction solar cells.
  • a method for improving photovoltaic power generation efficiency has been proposed (Patent Document 1, Non-Patent Document 1, etc.).
  • Patent Document 1 discloses a photovoltaic device that includes a photovoltaic layer that generates an electromotive force by light, and is provided with a wavelength conversion layer made of a wavelength conversion composition on the light incident surface side of the photovoltaic layer. ing.
  • the wavelength conversion layer converts sunlight in the ultraviolet region into the visible light region.
  • the wavelength conversion layer includes a photocurable resin, oxide fine particles dispersed in the photocurable resin, and oxide fine particles. And a wavelength conversion material dispersed in the substrate.
  • the wavelength converting substance is not particularly limited as long as it can convert light in a wavelength region that cannot be absorbed by a photovoltaic device such as ultraviolet or near infrared into light in a wavelength region that can be absorbed and generated by the photovoltaic device.
  • rare earth element-containing substances transition metal-containing substances, semiconductor fine particles, silicon nanocrystals, organic dyes and the like can be mentioned. These may be used alone or in combination, and it is disclosed that the rare earth elements are preferably europium (Eu), erbium (Er), dysprodium (Dy), and neodymium (Nd).
  • Patent Document 1 also discloses a wavelength conversion layer that converts sunlight in the infrared region into a visible light region.
  • Non-Patent Document 1 discloses that a down conversion film is provided on the surface of the Si solar cell, and an up conversion film is provided on the back surface of the Si solar cell.
  • Patent Documents 2 and 3 disclose an upconversion film and an element.
  • Patent Document 1 discloses that power generation efficiency by sunlight is improved by using a wavelength conversion layer (up-conversion film).
  • Patent Document 2 discloses a photostimulable light-emitting device having a semiconductor quantum dot and a base material including the semiconductor quantum dot, and this quantum dot has a group IV, a group III-V, a group II-VI, It is made of a semiconductor including semiconductor quantum dots such as group I-VII, ion crystals such as rare earth ions and metal ions, glass, or a polymer material.
  • Patent Document 3 discloses an up-conversion element that uses quantum dots to absorb particularly long-wavelength light and generate short-wavelength light.
  • an n-type semiconductor (for example, n-type GaAs) layer is formed with a base layer in which quantum dots are formed, and a p-side transparent electrode or a semi-transparent electrode is formed on this layer.
  • a conversion element is disclosed.
  • quantum dots / maternal, GaAs / AlAs, InP / Ga X In 1-X P InAs / GaAs is disclosed.
  • JP 2010-219551 A Japanese Patent Laid-Open No. 2000-21987 JP 2001-196627 A
  • the wavelength conversion layer uses light that could not be absorbed in the band gap of the single junction solar cell, it is desired to form a quantum dot with a relatively low band gap of 1.0 eV or less. .
  • the expression of the upconversion function is being put into practical use as a single particle.
  • the up-conversion function is more efficient due to the loss of thermal energy due to phonon oscillation or recombination loss when excitons move between particles because the energy transfer speed between particles is not as discrete as a single particle. Not expressed.
  • the semiconductor quantum dots can be used to emit many long wavelength photons. After stepwise absorption and higher energy than ⁇ EC, it is necessary to transition to rare earth ions or metal ions. Furthermore, since the probability of energy transition to the low energy side is usually high, energy transition to the low energy side is necessary to efficiently absorb photons with long wavelengths in multiple stages and upconvert to higher energy than ⁇ EC. It is necessary to have a band structure and a material configuration in which the energy transition probability increases to the higher energy side than the probability. For this reason, although a quantum well structure as disclosed in Patent Document 3 has been studied, recombination and interfacial recombination easily occur in a quantum well portion having a small energy gap, and it is difficult to up-convert.
  • An object of the present invention is to provide a wavelength conversion film and a photoelectric conversion device having an up-conversion function that eliminates the problems based on the above-described conventional technology and has excellent conversion efficiency.
  • the present invention provides a matrix layer, a first quantum dot provided in the matrix layer, a second quantum dot provided in the matrix layer, and a matrix layer.
  • the first quantum dot and the second quantum dot have a first ground energy level excited when the first quantum dot is irradiated with multiple light
  • the matrix layer is made of a dielectric or organic material that is larger than the second ground energy level excited when the multiple quantum dots are irradiated with multiple light, and whose band gap is larger than the first ground energy level.
  • a combination of the distance between each quantum dot and the thickness of the matrix layer forms a selective tunnel barrier, and the energy transition probability at an energy level higher than the energy level difference ⁇ EC at which the light-emitting transition of the stimulable luminescent material is high is high.
  • the wavelength conversion film is characterized in that an up-conversion is performed by forming a miniband and transferring energy to a stimulable light emitting material provided in a matrix layer.
  • the minimum energy level difference between the conduction band miniband and the valence band miniband is ⁇ EAB
  • the first quantum dot and the second quantum dot have a diameter of 2 to 20 nm, and the first quantum dot and the second quantum dot are layered at a predetermined distance in the thickness direction of the matrix layer, respectively. It is preferable that they are alternately arranged.
  • the photostimulable luminescent material is disposed at approximately the middle between the first quantum dots and the second quantum dots that are adjacent at least in the thickness direction of the matrix layer.
  • the first quantum dot and the second quantum dot are made of an indirect transition semiconductor.
  • the matrix layer is preferably made of an inorganic material or organic material having a band gap of 3 eV or more, and the stimulable light emitting material is preferably made of rare earth ions or metal ions.
  • the effective refractive index of the wavelength conversion film is n
  • the effective refractive index n is preferably 1.8 ⁇ n ⁇ 4.
  • the first quantum dot is made of Si x Ge (1-x) (X> 0.7), and the second quantum dot is made of Si x Ge (1-x) (X ⁇ 0.7).
  • the rare earth ions are Yb 3+ ions, Er 3+ ions, or Tm 3+ ions, and the metal ions are Mn ions.
  • the matrix layer is preferably made of SiO 2 , SiN X or SiC.
  • the photoelectric conversion apparatus characterized by the above-mentioned is provided.
  • the wavelength conversion film preferably has an optical confinement function that transmits long wavelength light and reflects short wavelength light.
  • the first layer made of a dielectric or organic material and the second layer made of the wavelength conversion film have a laminated structure, and each of the first layer and the second layer has a thickness.
  • a photoelectric conversion device having an optical wavelength order, 0.3 ⁇
  • (A) And (b) is typical sectional drawing which shows the manufacturing method of the wavelength conversion film of embodiment of this invention in order of a process. It is a schematic diagram which shows the energy band structure of the wavelength conversion film of embodiment of this invention. It is a graph which shows the light emission intensity of the wavelength conversion film of embodiment of this invention, and the light emission intensity of the conventional wavelength conversion film. It is a schematic diagram which shows a sunlight spectrum and the spectral sensitivity curve of crystalline Si. It is a graph which shows the difference in the reflectance by the difference in the structure of an antireflection film.
  • (A) is a graph showing the relationship between the content and the refractive index of the quantum dots of the Si in the matrix layer of SiO 2
  • (b) is a distance between the quantum dots of Si in the matrix layer of SiO 2
  • It is a graph which shows the relationship with a refractive index.
  • Is a graph showing the SiO 2 film / Wavelength conversion film (Si quantum dots / SiO 2Mat) / Si substrate reflectivity, a wavelength conversion film having a refractive index of 1.80.
  • FIG. 1 It is typical sectional drawing which shows the photoelectric conversion apparatus of embodiment of this invention.
  • (A) is a typical sectional view showing a photoelectric conversion device of other embodiments of the present invention
  • (b) is a typical perspective view showing an important section of other composition of a wavelength conversion layer.
  • FIG. 1A and FIG. 1B are schematic cross-sectional views showing a method of manufacturing a wavelength conversion film according to an embodiment of the present invention in the order of steps.
  • FIG. 2 is a schematic diagram showing an energy band structure of the wavelength conversion film according to the embodiment of the invention.
  • the wavelength conversion film 10 of the present embodiment includes a first quantum dot 16, a second quantum dot 18, and a stimulable light emitting material 20 in a matrix layer 14. Yes.
  • the wavelength conversion film 10 is formed on the substrate 12, for example.
  • the first quantum dots 16 and the second quantum dots 18 each have a predetermined interval in the thickness direction H of the matrix layer 14 so as to form a miniband in which a plurality of wave functions overlap.
  • the first quantum dots 16 and the second quantum dots 18 form a multiple quantum well structure.
  • the first quantum dot 16 and the second quantum dot 18 form a miniband in which a plurality of wave functions are overlapped except for a part on the conduction band side.
  • the present invention is not limited to the conductor side, and a miniband in which a plurality of wave functions are overlapped may be formed except for a part on the valence band side.
  • the first quantum dot 16 and the second quantum dot 18 each have a diameter d of 2 to 20 nm, preferably 2 nm to 15 nm, more preferably 2 nm to 5 nm.
  • the first quantum dot 16 and the second quantum dot 18 preferably have a particle size (diameter d) variation ⁇ d (standard deviation) of 1 ⁇ d ⁇ d / 5 nm, more preferably 1 ⁇ d ⁇ d / 10 nm.
  • the particle diameter (diameter d) of the 1st quantum dot 16 and the 2nd quantum dot 18 may differ in the range of variation.
  • the first quantum dots 16 and the second quantum dots 18 each have an interval between adjacent particles of 20 nm or less. Further, in the first quantum dots 16 and the second quantum dots 18, the interval in the thickness direction H is also preferably 20 nm or less.
  • the first quantum dot 16 and the second quantum dot 18 are made of, for example, an indirect transition semiconductor.
  • this indirect transition semiconductor for example, SiQD (quantum dot), Si x Ge (1-x) QD (quantum dot) (X> 0.7) is used for the first quantum dot 16, and the second quantum dot 16 is used.
  • the dots 18 GeQD (quantum dots), Si x Ge (1-x) QD (quantum dots) (X ⁇ 0.7) are used.
  • the first quantum dot 16 and the second quantum dot 18 form a miniband in which a plurality of wave functions overlap.
  • the mini-band is an energy level formed by overlapping the level formed by each quantum dot (quantum well) with an adjacent quantum dot (quantum well).
  • the first ground energy level excited when the first quantum dot 16 is irradiated with multiple light is applied to the second quantum dot 18 with multiple light (sunlight (sunlight ( Greater than the second ground energy level excited when irradiated with AM 1.5)).
  • the first base energy level is level SB1
  • the second base energy level is level SB2 (base band).
  • the photostimulable luminescent material 20 is arranged at a substantially intermediate position in the thickness direction H, and the matrix layer 14 Of 20 wt% (mass%) or less.
  • the arrangement of the photostimulable luminescent material 20 is not limited to a substantially intermediate position in the thickness direction H.
  • the photostimulable luminescent material 20 is made of, for example, Yb 2 O 3 .
  • the photostimulable luminescent material 20 is made of, for example, rare earth ions or metal ions.
  • the rare earth ions are, for example, Yb 3+ ions, Er 3+ ions, or Tm 3+ ions
  • the metal ions are, for example, Mn ions, and two or more types of photostimulable luminescent materials may be combined.
  • the matrix layer 14 is made of a dielectric or organic material having a band gap (Eg mat ) larger than a first ground energy level (for example, the level SB2 shown in FIG. 2).
  • the matrix layer 14 becomes a tunneling barrier (tunnel barrier) between the first quantum dots 16 and the second quantum dots 18 that are adjacent in the thickness direction H, and between the second quantum dots 18, that is, between the matrix layers 14.
  • the second quantum dot 18 becomes a barrier.
  • the matrix layer 14 around each quantum dot of the first quantum dot 16 and the second quantum dot 18 includes the band cap (Eg mat ) of the matrix layer 14, the distance between the quantum dots, and the matrix layer.
  • a selective tunnel barrier is formed so as to serve as a barrier for the second quantum dots 18 in the width direction w orthogonal to the thickness direction H of the matrix layer 14.
  • the matrix layer 14 is made of an inorganic material or an organic material having a band gap of 3 eV or more, and is made of, for example, SiO 2 , SiN X or SiC.
  • the layered product 30 is obtained by forming the SiO 2 layer 32, the SiGeO layer 38, the SiO 2 layer 32, the SiO 2 / Yb 2 O 3 layer 34, and the SiO 2 layer 32 in this order.
  • the laminated body 30 is annealed, for example, at about 900 ° C. for 10 minutes in a nitrogen atmosphere. Accordingly, the first quantum dot 16 made of Si x Ge (1-x) QD (X> 0.7) and the second quantum dot made of Si x Ge (1-x) QD (X ⁇ 0.7) are obtained.
  • a stimulable light emitting material 20 composed of dots 18 and Yb 3+ is formed, and the wavelength conversion film 10 shown in FIG. 1B is formed.
  • the wavelength conversion film 10 in order to prevent the occurrence of defects in the interface between the first quantum dots 16 and the matrix layer 14, the interface between the second quantum dots 18 and the matrix layer 14, and the matrix layer 14, It is preferable to have a passivation process such as hydrogen termination in the manufacturing process.
  • the treatment conditions are, for example, H 2 flow rate 300 l / min, vacuum degree 0.9 Torr, microwave 2.5 KW, substrate temperature 300 ° C., treatment time 30 minutes. is there.
  • the SiO 2 layer 32 is formed, for example, by oxidizing Si by reactive sputtering.
  • the film formation conditions for the SiO 2 layer 32 include, for example, an ultimate vacuum of 3.0 ⁇ 10 ⁇ 4 Pa or less, a substrate temperature of room temperature (RT), Si as a target, an input power of 100 W, and a film formation pressure. Is 0.35 Pa, the Ar gas flow rate is 15 sccm, the O 2 gas flow rate is 0.35 sccm, and the film formation time is 2 minutes.
  • the film formation conditions of the SiO 2 / Yb 2 O 3 layer 34 include, for example, an ultimate vacuum of 3.0 ⁇ 10 ⁇ 4 Pa or less, a substrate temperature of room temperature (RT), and a surface area ratio on the surface of the SiO 2 target.
  • Is a pellet (1 mm square piece) with Yb 2 O 3 : SiO 2 1: 1000, input power is 100 W, deposition pressure is 0.35 Pa, Ar gas flow rate is 15 sccm, O 2 gas flow rate is 0 sccm, The membrane time is 2 minutes.
  • SiO 2 layer 32 on the SiO 2 / Yb 2 O 3 layer 34 is formed by sputtering SiO 2.
  • the film formation conditions for the SiO 2 layer 32 on the SiO 2 / Yb 2 O 3 layer 34 are, for example, that the ultimate vacuum is 3.0 ⁇ 10 ⁇ 4 Pa or less, the substrate temperature is room temperature (RT), and the target is SiO 2 2 , the input power is 100 W, the deposition pressure is 0.35 Pa, the Ar gas flow rate is 15 sccm, the O 2 gas flow rate is 1 sccm, and the deposition time is 2 minutes.
  • the Si / SiO 2 layer 36 is formed, for example, by co-sputtering Si and SiO 2 .
  • the film forming conditions for the Si / SiO 2 layer 36 include, for example, an ultimate vacuum of 3.0 ⁇ 10 ⁇ 4 Pa or less, a substrate temperature of room temperature (RT), Si, SiO 2 as a target, and input power. 100 W for Si, 200 W for SiO 2 , a film formation pressure of 0.35 Pa, an Ar gas flow rate of 15 sccm, an O 2 gas flow rate of 0 sccm, and a film formation time of 4 minutes.
  • the SiGeO layer 38 is formed by, for example, co-reactive sputtering of Si and Ge.
  • the film formation conditions for the SiGeO layer 38 include, for example, an ultimate vacuum of 3.0 ⁇ 10 ⁇ 4 Pa or less, a substrate temperature of room temperature (RT), Ge and Si as targets, and an input power of 50 W for Ge.
  • the deposition pressure is 0.3 W
  • the Ar gas flow rate is 15 sccm
  • the O 2 gas flow rate is 0.5 sccm
  • the deposition time is 20 seconds.
  • the SiO 2 layer 32, SiO 2 / Yb 2 O 3 layer 34 and SiO 2 / Yb 2 O 3 layer 34 on the SiO 2 layer 32 of, for example, while sputtering the SiO 2, SiO 2 / Yb 2 O 3
  • the layer 34 can be formed by sputtering Yb 2 O 3 .
  • the first quantum dots 16 form quantum wells 22a, 23a, 22b, and 23b
  • the second quantum dots 18 form quantum wells 24a, 25a, 24b, 25b, 24c, and 25c.
  • the quantum wells 24a, 22a, 24b, 22b, and 24c each have a level SB1, and the quantum wells 24a, 24b, and 24c further have a level SB2 (base level).
  • the quantum wells 25a, 23a, 25b, 23b, and 25c have a level SB3 and a level SB4, respectively.
  • the quantum wells 24a, 22a, 24b, 22b, 24c have overlapping levels SB1, and a miniband is formed.
  • quantum wells 25a, 23a, 25b, 23b, and 25c have overlapping levels SB3 and SB4, and a miniband is formed. Note that the level SB1, the level SB3, and the level SB4 indicate miniband levels.
  • the quantum well 22a between the quantum well 24a and the quantum well 24b does not have a level overlapping with the level SB2 (base level) of the quantum wells 24a and 24b.
  • the quantum well 22b between the quantum well 24b and the quantum well 24c does not have a level overlapping with the level SB2 (base level) of the quantum wells 24b and 24c.
  • the level SB2 is a base band of the second quantum dot 18 (Ge quantum dot (quantum well)).
  • the entire band structure has a type II structure, as described above.
  • the adjacent first quantum dots 16 Si quantum dots (quantum wells)
  • a miniband cannot be formed.
  • the matrix layer 14 becomes a tunneling barrier.
  • the region D where the miniband is not formed is not limited to being provided in the valence band, and may be formed on the conduction band side. When it is provided on the conduction band side, the movement of the electrons e instead of the holes h is suppressed.
  • Eg mat represents the band gap of the matrix layer 14
  • Eg Si represents the band gap of the first quantum dot 16
  • Eg Ge represents the band gap of the second quantum dot 18.
  • Each band gap has a relationship of Eg mat > Eg Si > Eg Ge .
  • the difference in energy level at which the photostimulable luminescent material 20 undergoes emission transition is ⁇ EC, and the conduction band miniband excited between two-photon absorption and the valence band miniband is excited.
  • the minimum energy level difference be ⁇ EAB. In this case, ⁇ EAB ⁇ ⁇ EC.
  • ⁇ EAB is the minimum energy level difference between the conduction band miniband and the valence band miniband, and is between level SB1 and level SB3.
  • ⁇ EAB is between level SB1 and level SB4.
  • the quantum wells 24 a and 24 b of the second quantum dot 18 sandwiching the first quantum dot 16 and between the quantum wells 24 b and 24 c.
  • the region D in which no miniband is formed between the second quantum dots 18, for example there is no level overlapping with the level SB2 (base level) of the quantum wells 24a and 24b, so that the level of the quantum well 24a
  • the holes (holes) h in SB2 are difficult to move to the quantum well 24b.
  • energy transfer to the upper level is suppressed by suppressing charge transport in the thickness direction H (hole h on the valence band side, movement of electron e on the conduction band side). , That is, the probability of up-conversion, selectively extract excitation energy, and suppress non-radiative recombination during charge transport.
  • holes (holes) h in the quantum well 24a of the second quantum dot 18 in the level SB1 absorb the incident incident light L, and the level SB2 one level higher. It rises to (base level), further absorbs incident light L, and rises to level SB3 of quantum well 25a. In this way, the level is raised by two levels.
  • the level SB3 raised by two levels is the same as the level of the photostimulable light emitting material 20 (Yb 2 O 3 (Yb 3+ )) in the matrix layer 14.
  • the electrons e are transported (transitioned) to the stimulable light emitting material 20 (Yb 2 O 3 (Yb 3+ )), and the stimulable light emitting material 20 (Yb on the valence band side from the level corresponding to the level SB3). 2 O 3 (Yb 3+ )) level (corresponding to level SB1).
  • the short wavelength light Ls having a shorter wavelength than the absorbed incident light L is emitted from the stimulable light emitting material 20 in the matrix layer 14. That is, high energy light is generated from the photostimulable luminescent material 20 in the matrix layer 14.
  • the wavelength conversion film 10 is up-converted in this way.
  • holes (holes) h in the quantum well 24b of the second quantum dot 18 in the level SB2 absorb the incident incident light L, and the quantum well 25a one level higher.
  • the level SB3 absorbs the incident incident light L and rises to the level SB4 of the quantum well 25a.
  • the level increases by two levels.
  • the level SB4 in two steps and the level of the stimulable light emitting material 20 are the same.
  • the stimulable luminescent material 20 (Yb 2 O 3 (Yb 3+)), level SB4 valence from the level corresponding to the electron band side of the stimulable luminescent material 20 (Yb 2 O 3 (Yb 3+ )) level (corresponding to level SB2).
  • the short wavelength light Ls having a shorter wavelength than the absorbed incident light L is emitted from the photostimulable light emitting material 20 in the matrix layer 14. That is, high energy light is generated from the photostimulable luminescent material 20 in the matrix layer 14.
  • the wavelength conversion film 10 is up-converted in this way.
  • the wavelength conversion film 10 is up-converted in this way.
  • the level SB1 holes in the quantum well 22b (holes) h will absorb the incident light L incident, beyond the band gap Eg Si, up to level SB3 of the quantum well 23b.
  • the level SB3 and the level of the photostimulable luminescent material 20 are the same.
  • electrons e are transported in the stimulable luminescent material 20 (Yb 2 O 3 (Yb 3+)), level SB3 valence from the level corresponding to the electron band side of the stimulable luminescent material 20 (Yb 2 O 3 (Yb 3+ )) level (corresponding to level SB1).
  • the emission intensity of the wavelength conversion film 10 of the present invention and the conventional wavelength conversion film was examined using light having a wavelength of 1300 nm as excitation light.
  • the wavelength conversion film 10 of the present embodiment was able to wavelength-convert light having a wavelength of 1300 nm to light having a wavelength of about 1010 nm, for example.
  • the wavelength conversion film 10 of the present invention can obtain a sufficiently large emission intensity as compared with the conventional wavelength conversion film, and has an up-conversion function with excellent conversion efficiency.
  • symbol ⁇ indicates the wavelength conversion film 10 of the present invention
  • symbol ⁇ indicates a conventional wavelength conversion film.
  • a conventional wavelength conversion film is shown in FIG.
  • this conventional wavelength conversion film 100 a plurality of Ge quantum dots 104 are provided in a matrix at a predetermined interval in the thickness direction H of the matrix layer 102 in a matrix layer 102 formed on the substrate 12.
  • Is. Yb 2 O 3 particles 106 are provided in layers between the layers of the Ge quantum dots 104 and are doped with rare earths.
  • the energy band structure of the conventional wavelength conversion film 100 has the structure shown in FIG. As shown in FIG. 12, the energy level excited by two-photon absorption or more is equal to the emission transition level energy of the doped rare earth. In this excited energy level, since the transition probability of rare earth is high, it makes a selective transition and tends to make an up-conversion transition. However, conventionally, light emission or non-light emission recombination may occur before two-photon absorption, and the transition probability needs to be improved.
  • the transition probability of up-conversion can be increased, and long wavelength light is converted into short wavelength light, that is, low energy light. Can be converted into high energy light with higher efficiency than in the past.
  • the quantum well 112 is formed by Ge quantum dots (not shown) in the Si matrix layer 110 shown in FIG. 13
  • the light emission path including non-radiative recombination.
  • non-radiative recombination occurs due to defects in the matrix layer 110 between the quantum wells 112.
  • interface recombination also occurs. As shown in FIG. 13, it is necessary to improve the transition probability even in other conventional energy band structures.
  • the wavelength range to be up-converted and the wavelength after conversion are appropriately selected depending on the application of the wavelength conversion film 10.
  • the wavelength conversion film 10 is disposed on a photoelectric conversion layer of a silicon solar cell having an Eg (band gap) of 1.2 eV
  • the wavelength of energy (2.4 eV or more) that is twice or more of 1.2 eV
  • the region has a function of performing wavelength conversion to light having a wavelength of energy corresponding to the band gap.
  • the solar spectrum when the solar spectrum is compared with the spectral sensitivity curve of crystalline Si, the solar spectrum has a low intensity in the wavelength range of the band gap of crystalline Si.
  • a photon having a high energy for example, light of 1.0 eV (wavelength of about 1.0 eV) with respect to a wavelength region (long wavelength light region) smaller than the band gap energy (1.2 eV) of crystalline Si.
  • the wavelength By converting the wavelength to 1300 nm, light effective for photoelectric conversion can be supplied to the photoelectric conversion layer made of crystalline Si. Thereby, the conversion efficiency of a photoelectric conversion apparatus (solar cell) can be made high.
  • the wavelength conversion film 10 may have a function of confining incident light (hereinafter referred to as a light confinement function), for example, an antireflection function.
  • a light confinement function for example, an antireflection function.
  • the photoelectric conversion layer on which the wavelength conversion film 10 is disposed is crystalline Si
  • the refractive index n PV is 3.6.
  • the refractive index n air of the air in which these are arranged is 1.0.
  • a single layer film reference symbol A 1
  • a single layer film reference symbol A 1
  • the effective refractive index n of the wavelength conversion film 10 is such that the refractive index n PV of the photoelectric conversion layer (3.6 for crystalline silicon) and air If the refractive index can be set to a substantially intermediate refractive index, the antireflection function can be exhibited.
  • the effective refractive index n of the wavelength conversion film 10 is set to 1.8 ⁇ n ⁇ 4.0 at a wavelength of 533 nm, for example.
  • the effective refractive index n is preferably 1.8 ⁇ n ⁇ 2.5 at a wavelength of 533 nm.
  • the quantum dots are arranged periodically as described above.
  • the periodic interval of the quantum dots is 10 nm or less, preferably 2 nm to 5 nm.
  • the specific periodic interval of the quantum dots has a variation in the particle diameter of the quantum dots.
  • the arrangement of the matrix layer 14 in the thickness direction H and the width direction w is made different to cause localization of energy. Can be realized.
  • the existence probability of photons can be changed by having the quantum dots have an arrangement different from the above-described periodic arrangement and having a deviation in particle density in a three-dimensional quantum size space of 20 nm square or less.
  • the variation in the particle size of the quantum dots ⁇ d (standard deviation) is different within the range of 1 ⁇ d ⁇ d / 5 nm, preferably 1 ⁇ d ⁇ d / 10 nm. It is.
  • the wavelength conversion film 10 has a multilayer structure
  • the stacking direction of the quantum dots and the arrangement in the direction orthogonal to the stacking direction are similar, that is, In the case where the quantum dots are three-dimensionally arranged at regular intervals in the wavelength conversion film 10 as in the above-described periodic arrangement, energy localization is caused by the deviation in the particle size of the quantum dots, and the photons It can also be realized by changing the existence probability.
  • the particle diameters of the quantum dots vary, and the dispersion of the quantum dot particle diameters ⁇ d (standard deviation) is 1 ⁇ d ⁇ d / 5 nm, preferably 1 ⁇ d ⁇ d / 10 nm. Yes, the quantum dots are varied within the above-mentioned variation range.
  • the effective refractive index n of the wavelength conversion film 10 needs to be 2.4, which is an intermediate value between the photoelectric conversion layer and air, for example. Therefore, the refractive index when the matrix layer 14 is made of SiO 2 and the quantum dots are made of Si was examined by simulation calculation. As a result, as shown in FIG. 6A, the refractive index increases as the content of quantum dots increases. Furthermore, the relationship between the quantum dot spacing and the refractive index was investigated by simulation calculation. As a result, as shown in FIG. 6B, in order to increase the refractive index, it is necessary to narrow the interval between the quantum dots. As shown in FIGS. 6A and 6B, for example, in order to set the effective refractive index n of the wavelength conversion film 10 to 2.4, the interval between the quantum dots is narrow and the matrix layer 14 has a high density. Need to be placed.
  • the wavelength conversion film 10 is a SiO 2 matrix layer 14 provided with Si quantum dots (Si quantum dots / SiO 2 Mat ), and the quantum dots have a uniform particle size.
  • the refractive index of the wavelength conversion film 10 is 1.80.
  • the reflectance can be about 10%.
  • the reflectance was measured using the spectral reflection measuring device (Hitachi U4000).
  • the filling rate was increased and the refractive index of the wavelength conversion film 10 was increased to 2.35.
  • the wavelength conversion film 10 is formed by providing Si quantum dots on the SiO 2 matrix layer 14 (Si quantum dots / SiO 2 Mat ). The result is shown in FIG.
  • the reflectance was measured using the spectral reflection measuring device (Hitachi U4000). As shown in FIG. 8, the reflectance can be further lowered as compared with FIG.
  • the utilization efficiency of the incident light L incident on the wavelength conversion film 10 can be increased.
  • a light confinement layer 54 is provided on the second transparent electrode layer 52.
  • the photoelectric conversion layer 50 passes through without being used for photoelectric conversion, for example, infrared rays and Near-infrared long wavelength light Lu is reflected by the reflection layer 44 and is incident on the wavelength conversion layer 46.
  • long wavelength light Lu that has not been used, for example, light having a wavelength of 1300 nm, is converted into short wavelength light Ls that can be used for photoelectric conversion by the photoelectric conversion layer 50, for example, about 1000 nm, by the up-conversion function. To do.
  • the incident light L can be used effectively, and the utilization efficiency of the incident light L in the photoelectric conversion layer 50 can be increased.
  • the base material 42 is made of a relatively heat-resistant support substrate material when a direct thermal process is performed.
  • surface insulation can be improved by applying oxidation treatment (for example, anodizing treatment) to heat-resistant glass, quartz substrate, stainless steel substrate, metal multilayer substrate laminated with dissimilar metals with stainless steel, or aluminum substrate.
  • oxidation treatment for example, anodizing treatment
  • An aluminum substrate with an oxide film is used.
  • an organic support substrate material or the like can be used. Specifically, saturated polyester / polyethylene terephthalate (PET) resin substrate, polyethylene naphthalate (PEN) resin substrate, cross-linked fumaric acid diester resin substrate, polycarbonate (PC) resin substrate, polyethersulfone (PES) resin substrate , Polysulfone (PSF, PSU) resin substrate, polyarylate (PAR) resin substrate, cyclic polyolefin (COP, COC) resin substrate, cellulose resin substrate, polyimide (PI) resin substrate, polyamideimide (PAI) resin substrate, maleimide -Olefin resin substrate, polyamide (PA) resin substrate, acrylic resin substrate, fluorine resin substrate, epoxy resin substrate, silicone resin film substrate, polybenzazole resin substrate, substrate liquid crystal polymer with episulfide compound (L P) Substrate, cyanate resin substrate, aromatic ether resin substrate, composite plastic material with silicon oxide particles, composite plastic material
  • the first transparent electrode layer 48 is composed of a P-type transparent electrode layer.
  • this first transparent electrode layer 48 P-type transparent electrode layer
  • a composition such as CuAlO 2 , CuGaO 2 , CuInO 2, etc .: when expressed as ABO 2 , A is Cu, Ag, and B is Al , Ga, In, Sb, Bi.
  • an alloy represented by ABO 2 , a solid solution material thereof, and a Delaphosite type microcrystalline body, and two or three kinds of alloys of these materials are used.
  • CuAlS 2 , CuGaS, B-doped SiC, or the like can be used.
  • the second transparent electrode layer 52 is composed of an N-type transparent electrode layer.
  • the second transparent electrode layer for example, Ga 2 O 3 , SnO 2 (ATO, FTO), which is equal to or larger than the band gap of IGZO, a-IGZO (amorphous IGZO) ZnO-based (AZO, GZO), In 2 O 3 -based (ITO,), Zn (O, S) CdO, or two or three alloys of these materials can be used.
  • ATO, FTO Ga 2 O 3 , SnO 2
  • a-IGZO amorphous IGZO
  • ZnO-based AZO, GZO
  • ITO In 2 O 3 -based
  • Zn (O, S) CdO or two or three alloys of these materials
  • MgIn 2 O 4 GaInO 3 , CdSb 3 O 6, or the like can be used as the second transparent electrode layer 52.
  • the photoelectric conversion layer 50 is made of, for example, polycrystalline silicon or single crystal silicon. Moreover, as the photoelectric conversion layer 50, a CIGS type photoelectric conversion layer, a CIS type photoelectric conversion layer, a CdTe type photoelectric conversion layer, a dye-sensitized photoelectric conversion layer, or an organic type photoelectric conversion layer can also be used.
  • the light confinement layer 54 has a light confinement function, for example, an antireflection function.
  • a known antireflection film can be used as the light confinement layer 54.
  • FIG. 10A is a schematic cross-sectional view illustrating a photoelectric conversion device according to another embodiment of the present invention
  • FIG. 10B is a schematic perspective view illustrating a main part of another configuration of the wavelength conversion layer.
  • the photoelectric conversion device 40a illustrated in FIG. 10A is different from the photoelectric conversion device 40 illustrated in FIG. 9 in the configuration of the wavelength conversion layer 56, and other configurations are the same as the photoelectric conversion device 40 illustrated in FIG. Since the configuration is similar, detailed description thereof is omitted.
  • the wavelength conversion layer 56 of the photoelectric conversion device 40a illustrated in FIG. 10A has a stacked structure in which a wavelength conversion unit 58a (second layer) and a resin unit 58b (first layer) are stacked. is there.
  • the wavelength conversion portion 58a (second layer) and the resin portion 58b (first layer) each have an optical wavelength order (several hundred nm).
  • the wavelength conversion layer 56 prevents the long wavelength light Lu that is not used for photoelectric conversion by the photoelectric conversion layer 50 that has passed through the photoelectric conversion layer 50 and the first transparent electrode layer 48 from being emitted from the surface 56 a of the wavelength conversion layer 56. It is to make.
  • the wavelength conversion layer 56 confines the long-wavelength light Lu that is not used for photoelectric conversion in the photoelectric conversion layer 50.
  • a configuration for confining the long-wavelength light Lu for example, the configuration of the antireflection film as shown in FIG. 5 described above can be used.
  • the wavelength conversion part 58a can be set as the same structure as the said wavelength conversion film 10, for example. For this reason, detailed description of the wavelength conversion unit 58a is omitted.
  • the resin portion 58b is made of a dielectric material or an organic material, and is not particularly limited as long as, for example, a photocurable resin and a thermosetting resin are used and transmit light.
  • a photocurable resin and the thermosetting resin for example, an acrylic resin, an epoxy resin, a silicone resin, an ethylene vinyl acetate (EVA) resin, or the like can be used.
  • the silicone resin include commercially available silicone resins for LEDs.
  • the ethylene vinyl acetate (EVA) resin for example, Solar EVA (trademark) manufactured by Mitsui Chemicals Fabro Co., Ltd. can be used.
  • an ionomer resin or the like can be used.
  • the epoxy resin has a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a naphthalene type epoxy resin or a hydrogenated product thereof, an epoxy resin having a dicyclopentadiene skeleton, and a triglycidyl isocyanurate skeleton.
  • Examples thereof include an epoxy resin, an epoxy resin having a cardo skeleton, and an epoxy resin having a polysiloxane structure.
  • (meth) acrylate having two or more functional groups can be used as the acrylic resin.
  • a water-dispersed acrylic resin can be used as the acrylic resin.
  • This water-dispersed acrylic resin is an acrylic monomer, oligomer or polymer dispersed in a dispersion medium containing water as the main component. In a dilute state like an aqueous dispersion, the crosslinking reaction hardly proceeds, but the water is evaporated. If this is done, the crosslinking reaction will proceed and solidify even at room temperature, or it will have a functional group capable of self-crosslinking, and it will be crosslinked and solidified only by heating without using additives such as catalysts, polymerization initiators or reaction accelerators.
  • Acrylic resin is an acrylic monomer, oligomer or polymer dispersed in a dispersion medium containing water as the main component. In a dilute state like an aqueous dispersion, the crosslinking reaction hardly proceeds, but the water is evaporated. If this is done, the crosslink
  • the long-wavelength light Lu that has passed through the photoelectric conversion layer 50 and is not used for photoelectric conversion by the photoelectric conversion layer 50 is not emitted from the surface 56a of the wavelength conversion layer 56, and thus photoelectric conversion is performed. It is not incident on the layer 50 again.
  • the photoelectric conversion layer 50 is not adversely affected.
  • the re-incidence of the long wavelength light Lu that is not used for photoelectric conversion in the photoelectric conversion layer 50 can be suppressed, and the adverse effect of the long wavelength light Lu that is not used for photoelectric conversion can be suppressed.
  • the structure of the wavelength conversion part 58a of the wavelength conversion layer 56 of the photoelectric conversion apparatus 40a is not limited to the said wavelength conversion film 10,
  • the wavelength conversion part 60 shown in FIG.10 (b) is used. it can.
  • the wavelength conversion unit 60 a plurality of quantum dots 64 are periodically arranged on a matrix layer 62.
  • the refractive index of the wavelength conversion unit 60 is adjusted using the relationship between the content of the quantum dots and the refractive index, and combined with the resin unit 58b.
  • the long wavelength light Lu may be confined in the wavelength conversion layer 56.
  • the refractive index nb of the wavelength conversion unit 58a (second layer) is, for example, 1.8 ⁇ n ⁇ 4.0 at a wavelength of 533 nm, which is preferably the same as the effective refractive index n of the wavelength conversion film 10. Is 1.8 ⁇ n ⁇ 2.5 at a wavelength of 533 nm.
  • increasing the refractive index difference narrows the material selection range.
  • the difference in refractive index is about 0.3.
  • the refractive index difference between the effective refractive index na of the resin portion 58b (first layer) and the refractive index nb of the wavelength conversion portion 58a (second layer) is 0.3 ⁇
  • the present invention is basically configured as described above. As described above, the wavelength conversion film and the photoelectric conversion device of the present invention have been described in detail. Of course.

Abstract

Provided is a wavelength conversion film, in which a first quantum dot and a second quantum dot in a matrix layer have a first base energy level which is excited by projecting a multiplexed light upon the first quantum dot which is greater than a second base energy level which is excited by projecting the multiplexed light upon the second quantum dot. The matrix layer is configured of either a dielectric body or an organic material in which the band gap is greater than the first base energy level. When the first quantum dot is joined to the second quantum dot, the energy band structure forms a type II. The matrix layer in the periphery of each quantum dot forms a selective tunnel barrier, forms a mini band wherein an energy transition rate at a higher energy level than an energy level difference at which an optically stimulated luminescent material within the matrix layer transitions in light emission increases, and energy transitions and up-converts within the optically stimulated luminescence material.

Description

波長変換膜および光電変換装置Wavelength conversion film and photoelectric conversion device
 本発明は、アップコンバージョン機能を有する波長変換膜および光電変換装置に関し、特に、2種類の量子ドットと輝尽性発光材とを有する波長変換膜および光電変換装置に関する。 The present invention relates to a wavelength conversion film and a photoelectric conversion device having an up-conversion function, and particularly to a wavelength conversion film and a photoelectric conversion device having two types of quantum dots and a stimulable light emitting material.
 現在、太陽電池について研究が盛んに行われている。太陽電池のうち、P型半導体およびN型半導体を接合して構成されるPN接合型太陽電池、ならびにP型半導体、I型半導体およびN型半導体を接合して構成されるPIN接合型太陽電池は、構成している半導体の伝導帯と価電子帯との間のバンドギャップ(Eg)以上のエネルギーをもつ太陽光を吸収し、価電子帯から伝導体へ電子が励起されて、価電子帯に正孔が生成し、太陽電池に起電力が発生するものである。
 PN接合型太陽電池およびPIN接合型太陽電池は、バンドギャップが単一であり、単接合型太陽電池と呼ばれる。
Currently, research is actively conducted on solar cells. Among solar cells, a PN junction solar cell configured by bonding a P-type semiconductor and an N-type semiconductor, and a PIN junction solar cell configured by bonding a P-type semiconductor, an I-type semiconductor, and an N-type semiconductor, , Absorbs sunlight having energy greater than the band gap (Eg) between the conduction band and the valence band of the constituting semiconductor, and excites electrons from the valence band to the conductor to enter the valence band. Holes are generated and an electromotive force is generated in the solar cell.
A PN junction solar cell and a PIN junction solar cell have a single band gap and are called single junction solar cells.
 PN接合型太陽電池およびPIN接合型太陽電池においては、バンドギャップより小さいエネルギーの光は吸収されることなく透過してしまう。一方、バンドギャップより大きなエネルギーは吸収されるが、吸収されたエネルギーのうち、バンドギャップより大きいエネルギー分はフォノンとして熱エネルギーとして消費される。このため、PN接合型太陽電池およびPIN接合型太陽電池のような単一バンドギャップの単接合型太陽電池は、エネルギー変換効率が悪いという問題点がある。 In a PN junction solar cell and a PIN junction solar cell, light with energy smaller than the band gap is transmitted without being absorbed. On the other hand, energy larger than the band gap is absorbed, but of the absorbed energy, the energy larger than the band gap is consumed as thermal energy as phonons. For this reason, single band gap single junction solar cells such as PN junction solar cells and PIN junction solar cells have a problem of poor energy conversion efficiency.
 この問題点を改善するために、バンドギャップの異なる複数のPN接合、PIN接合を積層し、エネルギーの大きな光から順次吸収されるような構造とすることにより、広範囲の波長域で吸収し、かつ熱エネルギーへの損失を低減し、エネルギー変換効率を改善させる多接合太陽電池が開発されている。
 しかし、この多接合太陽電池は、複数のPN、PIN接合を電気的に直列接合しているため、出力電流は各接合で生成されている最小の電流となる。このため、太陽光スペクトル分布に偏りが生じ、一つのPN接合、PIN接合の出力が低下すると、太陽光スペクトル分布の偏りに影響されない接合の出力も低下し、太陽電池全体として出力が大幅に低下するという課題がある。また、良質な結晶品質を有しハンドギャップの異なる半導体を良質な結晶品質を保ちつつ接合しなければならないために、結晶格子長がほぼ等しい材料にて材料選択をしなければならないことから、材料選択の幅が狭く作成が困難である。
In order to improve this problem, a plurality of PN junctions and PIN junctions having different band gaps are stacked, and a structure that absorbs sequentially from light having a large energy is absorbed in a wide wavelength range, and Multijunction solar cells have been developed that reduce losses to thermal energy and improve energy conversion efficiency.
However, since this multi-junction solar cell has a plurality of PN and PIN junctions electrically connected in series, the output current is the minimum current generated at each junction. For this reason, when the solar spectrum distribution is biased and the output of one PN junction or PIN junction is decreased, the output of the junction that is not affected by the bias of the solar spectrum distribution is also decreased, and the output of the entire solar cell is greatly decreased. There is a problem of doing. In addition, since it is necessary to join semiconductors with good crystal quality and different hand gaps while maintaining good crystal quality, it is necessary to select materials with materials with almost the same crystal lattice length. Selection is narrow and difficult to create.
 このために、結晶Si太陽電池のような単接合型太陽電池において、強化ガラス、またはEVA等の樹脂に希土類の微粒子または希土類の錯体、例えば、Yb3+-Ln3+(Ln3+=Tb3+,Ce3+)共添加ガラス)を添加することにより、単接合型太陽の分光感度特性に適した波長分布に太陽光を波長変化させるダウンコンバージョン膜が知られており、さらに、ダウンコンバージョン膜等を用いて、太陽光発電効率を改善する方法が提案されている(特許文献1、非特許文献1等)。 For this reason, in a single-junction solar cell such as a crystalline Si solar cell, a rare earth fine particle or a rare earth complex such as tempered glass or EVA, for example, Yb 3+ -Ln 3+ (Ln 3+ = Tb 3+ , Ce 3+ ) down-conversion films that change the wavelength of sunlight into a wavelength distribution suitable for the spectral sensitivity characteristics of single-junction solar by adding co-doped glass) are known. A method for improving photovoltaic power generation efficiency has been proposed (Patent Document 1, Non-Patent Document 1, etc.).
 特許文献1には、光により起電力を生じる光起電層を備え、光起電層の光の入射面側に波長変換組成物からなる波長変換層が設けられた光起電装置が開示されている。
 波長変換層は、紫外領域の太陽光線を可視光領域に変換するものであり、波長変換層は、光硬化性樹脂と、光硬化性樹脂内に分散された酸化物微粒子と、酸化物微粒子中に分散された波長変換物質とを備える。波長変換物質としては、紫外、近赤外などの光起電装置が吸収できない波長領域の光を、光起電装置が吸収し発電できる波長領域の光に波長変換する物質であれば、特に制限はされないが、希土類元素を含有する物質、遷移金属を含有する物質、半導体微粒子、シリコンナノクリスタル、有機色素等が挙げられることが開示されている。これらは、単独で用いても、併用しても良く、希土類元素としては、ユーロピウム(Eu)、エルビウム(Er)、ジスプロジウム(Dy)、ネオジウム(Nd)が好ましいことが開示されている。
 また、特許文献1には、赤外領域の太陽光線を可視光領域に変換する波長変換層も開示されている。
Patent Document 1 discloses a photovoltaic device that includes a photovoltaic layer that generates an electromotive force by light, and is provided with a wavelength conversion layer made of a wavelength conversion composition on the light incident surface side of the photovoltaic layer. ing.
The wavelength conversion layer converts sunlight in the ultraviolet region into the visible light region. The wavelength conversion layer includes a photocurable resin, oxide fine particles dispersed in the photocurable resin, and oxide fine particles. And a wavelength conversion material dispersed in the substrate. The wavelength converting substance is not particularly limited as long as it can convert light in a wavelength region that cannot be absorbed by a photovoltaic device such as ultraviolet or near infrared into light in a wavelength region that can be absorbed and generated by the photovoltaic device. Although it is not disclosed, it is disclosed that rare earth element-containing substances, transition metal-containing substances, semiconductor fine particles, silicon nanocrystals, organic dyes and the like can be mentioned. These may be used alone or in combination, and it is disclosed that the rare earth elements are preferably europium (Eu), erbium (Er), dysprodium (Dy), and neodymium (Nd).
Patent Document 1 also discloses a wavelength conversion layer that converts sunlight in the infrared region into a visible light region.
 非特許文献1には、Si太陽電池の表面にダウンコンバージョン膜を設けること、Si太陽電池の裏面にアップコンバージョン膜を設けることが開示されている。 Non-Patent Document 1 discloses that a down conversion film is provided on the surface of the Si solar cell, and an up conversion film is provided on the back surface of the Si solar cell.
 また、エネルギー保存則の観点から通常起こりえない、長波長の光子を吸収して短波長の光子を放出させるために、量子ドットと希土類イオンもしくは金属イオンを組み合わせた構成または2種類の半導体材料組み合わせたMQW構造を形成することにアップコンバージョン膜および素子が提案されている(特許文献2、特許文献3)。
 これに加え、波長変換層(アップコンバージョン膜)を用いることにより太陽光による発電効率を改善することが、特許文献1に開示されている。
In addition, a combination of quantum dots and rare earth ions or metal ions or a combination of two types of semiconductor materials to absorb long wavelength photons and emit short wavelength photons, which cannot normally occur from the viewpoint of energy conservation law In addition, an upconversion film and an element have been proposed for forming an MQW structure (Patent Documents 2 and 3).
In addition to this, Patent Document 1 discloses that power generation efficiency by sunlight is improved by using a wavelength conversion layer (up-conversion film).
 特許文献2には、半導体量子ドットと、半導体量子ドットを包含した母体とを有する輝尽性発光素子が開示されており、この量子ドットは、IV族、III-V族、II-VI族、I-VII族等の半導体量子ドットを含む半導体、希土類イオンおよび金属イオン等のイオン結晶、ガラスまたはポリマー材料からなるものである。 Patent Document 2 discloses a photostimulable light-emitting device having a semiconductor quantum dot and a base material including the semiconductor quantum dot, and this quantum dot has a group IV, a group III-V, a group II-VI, It is made of a semiconductor including semiconductor quantum dots such as group I-VII, ion crystals such as rare earth ions and metal ions, glass, or a polymer material.
 特許文献3には、量子ドットを用いて、特に長波長の光を吸収し、短波長の光を発生させるアップコンバージョン素子が開示されている。この特許文献3には、n形半導体(例えば、n形GaAs)層に、量子ドットが形成された母体からなる層が形成され、この層にp側透明電極または半透明電極が形成されたアップコンバージョン素子が開示されている。量子ドット/母体の組合せとして、GaAs/AlAs,InP/GaIn1-XP,InAs/GaAsが開示されている。 Patent Document 3 discloses an up-conversion element that uses quantum dots to absorb particularly long-wavelength light and generate short-wavelength light. In Patent Document 3, an n-type semiconductor (for example, n-type GaAs) layer is formed with a base layer in which quantum dots are formed, and a p-side transparent electrode or a semi-transparent electrode is formed on this layer. A conversion element is disclosed. As a combination of quantum dots / maternal, GaAs / AlAs, InP / Ga X In 1-X P, InAs / GaAs is disclosed.
特開2010-219551号公報JP 2010-219551 A 特開2000-219877号公報Japanese Patent Laid-Open No. 2000-21987 特開2001-196627号公報JP 2001-196627 A
 波長変換層(アップコンバージョン膜)は、単接合型太陽電池のバンドギャップにて吸収できなかった光を利用するため、1.0eV以下の比較的低バンドギャップの量子ドットを形成することが望まれる。
 しかしながら、非特許文献2に開示のように希土類酸化物量子ドットが離散配置されてエネルギトランスファ速度が抑制された系では、粒子単体としてアップコンバージョン機能の発現は実用化されつつあるが、薄膜は、粒子単体ほど粒子間のエネルギトランスファ速度が抑制された離散配置でないがためにフォノン振動による熱エネルギーとして損失または励起子が粒子間を移動する際の再結合損失の発生により、アップコンバージョン機能が効率よく発現できていない。
Since the wavelength conversion layer (up-conversion film) uses light that could not be absorbed in the band gap of the single junction solar cell, it is desired to form a quantum dot with a relatively low band gap of 1.0 eV or less. .
However, in the system in which the rare earth oxide quantum dots are discretely arranged and the energy transfer rate is suppressed as disclosed in Non-Patent Document 2, the expression of the upconversion function is being put into practical use as a single particle. The up-conversion function is more efficient due to the loss of thermal energy due to phonon oscillation or recombination loss when excitons move between particles because the energy transfer speed between particles is not as discrete as a single particle. Not expressed.
 上述の特許文献2に開示のように、単純に半導体量子ドットと希土類イオンおよび金属イオン等のイオン結晶をガラスまたはポリマー材料に含有した輝尽性発光素子では、希土類イオンおよび金属イオン等のイオン結晶は、吸収断面積が小さいために励起確率が低く、光エネルギーの変換効率が悪い。このため、光子エネルギーを優先的に半導体量子ドットで吸収し希土類イオンまたは金属イオンにエネルギー遷移させ発光してエネルギーを放出することが好ましい。
 また、希土類イオンまたは金属イオンのΔEC(輝尽性発光材の発光遷移するエネルギー準位差)より小さい長波長の光子を吸収して発光させるには、長波長の光子を半導体量子ドットにて多段階的に吸収しΔECより高エネルギーした後に、希土類イオンまたは金属イオンに遷移する必要がある。
 さらに、低エネルギー側へのエネルギー遷移確率が通常高いため、効率よく量子ドットにて長波長の光子を多段的に吸収してΔECより高エネルギーにアップコンバージョンさせるには、低エネルギー側へのエネルギー遷移確率より、高エネルギー側へエネルギー遷移確率が高くなるバンド構造、材料構成にする必要がある。
 このため、特許文献3に開示されているような量子井戸構造が検討されているものの、エネルギーギャップが小さい量子井戸部分での再結合および界面再結合がしやすく、アップコンバージョンさせることは難しい。
As disclosed in the above-mentioned Patent Document 2, in a stimulable light-emitting device in which a semiconductor quantum dot and an ion crystal such as a rare earth ion and a metal ion are simply contained in glass or a polymer material, an ion crystal such as a rare earth ion and a metal ion is used. Has a low absorption cross section, so the excitation probability is low, and the light energy conversion efficiency is poor. For this reason, it is preferable that the photon energy is preferentially absorbed by the semiconductor quantum dots, energy is transferred to rare earth ions or metal ions, and light is emitted to release the energy.
In addition, in order to absorb and emit light having a long wavelength that is smaller than the ΔEC of the rare earth ion or metal ion (difference in energy level of the photostimulable luminescent material), the semiconductor quantum dots can be used to emit many long wavelength photons. After stepwise absorption and higher energy than ΔEC, it is necessary to transition to rare earth ions or metal ions.
Furthermore, since the probability of energy transition to the low energy side is usually high, energy transition to the low energy side is necessary to efficiently absorb photons with long wavelengths in multiple stages and upconvert to higher energy than ΔEC. It is necessary to have a band structure and a material configuration in which the energy transition probability increases to the higher energy side than the probability.
For this reason, although a quantum well structure as disclosed in Patent Document 3 has been studied, recombination and interfacial recombination easily occur in a quantum well portion having a small energy gap, and it is difficult to up-convert.
 本発明の目的は、前記従来技術に基づく問題点を解消し、変換効率が優れたアップコンバージョン機能を有する波長変換膜および光電変換装置を提供することにある。 An object of the present invention is to provide a wavelength conversion film and a photoelectric conversion device having an up-conversion function that eliminates the problems based on the above-described conventional technology and has excellent conversion efficiency.
 上記目的を達成するために、本発明は、マトリクス層と、マトリクス層内に設けられた第1の量子ドットと、マトリクス層内に設けられた第2の量子ドットと、マトリクス層内に設けられた輝尽性発光材とを有し、第1の量子ドットおよび第2の量子ドットは、第1の量子ドットに多重光を照射したときに励起される第1の基底エネルギー準位が、第2の量子ドットに多重光を照射したときに励起される第2の基底エネルギー準位より大きく、マトリクス層は、バンドギャップが第1の基底エネルギー準位よりも大きい誘電体または有機材料で構成されており、第1の量子ドットと第2の量子ドットを接合させた場合、そのエネルギーバンド構造がタイプIIをなし、各量子ドットの周囲のマトリクス層は、マトリクス層のバンドキャップと各量子ドット間距離、マトリクス層の厚さとの組合せにより選択的なトンネル障壁を形成し、かつ輝尽性発光材の発光遷移するエネルギー準位差ΔECより高いエネルギー準位でのエネルギー遷移確率が高くなるミニバンドを形成させ、マトリクス層内に設けられた輝尽性発光材にエネルギー遷移させることにより、アップコンバージョンさせることを特徴とする波長変換膜を提供するものである。 In order to achieve the above object, the present invention provides a matrix layer, a first quantum dot provided in the matrix layer, a second quantum dot provided in the matrix layer, and a matrix layer. The first quantum dot and the second quantum dot have a first ground energy level excited when the first quantum dot is irradiated with multiple light, The matrix layer is made of a dielectric or organic material that is larger than the second ground energy level excited when the multiple quantum dots are irradiated with multiple light, and whose band gap is larger than the first ground energy level. When the first quantum dot and the second quantum dot are joined, the energy band structure is type II, and the matrix layer around each quantum dot is a band cap of the matrix layer. A combination of the distance between each quantum dot and the thickness of the matrix layer forms a selective tunnel barrier, and the energy transition probability at an energy level higher than the energy level difference ΔEC at which the light-emitting transition of the stimulable luminescent material is high is high. The wavelength conversion film is characterized in that an up-conversion is performed by forming a miniband and transferring energy to a stimulable light emitting material provided in a matrix layer.
 タイプIIエネルギーバンド構造において、伝導帯ミニバンドと価電子帯ミニバンド間の最小エネルギー準位差をΔEABとしたとき、ΔEAB≧ΔECであり、少なくとも第2の量子ドットに吸収された長波長の光が、マトリクス層中の輝尽性発光材料から短波長の光を発生させることが好ましい。
 また、第1の量子ドットおよび第2の量子ドットは直径が2~20nmであり、第1の量子ドットおよび第2の量子ドットは、それぞれマトリクス層の厚さ方向に所定の距離をあけて層状に交互に配置されていることが好ましい。
In the type II energy band structure, when the minimum energy level difference between the conduction band miniband and the valence band miniband is ΔEAB, ΔEAB ≧ ΔEC and long wavelength light absorbed by at least the second quantum dot However, it is preferable to generate light having a short wavelength from the photostimulable luminescent material in the matrix layer.
The first quantum dot and the second quantum dot have a diameter of 2 to 20 nm, and the first quantum dot and the second quantum dot are layered at a predetermined distance in the thickness direction of the matrix layer, respectively. It is preferable that they are alternately arranged.
 また、輝尽性発光材は、少なくともマトリクス層の厚さ方向において隣接する第1の量子ドットおよび第2の量子ドット間のほぼ中間に配置されていることが好ましい。
 さらに、第1の量子ドットおよび第2の量子ドットは、間接遷移半導体で構成されていることが好ましい。
 さらにまた、マトリクス層は、バンドギャップが3eV以上の無機材または有機物からなり、輝尽性発光材は、希土類イオンまたは金属イオンからなることが好ましい。
 また、波長変換膜の実効屈折率をnとするとき、実効屈折率nは、1.8≦n≦4であることが好ましい。
 また、第1の量子ドットは、SiGe(1-x)(X>0.7)からなり、第2の量子ドットは、SiGe(1-x)(X<0.7)からなるものであり、希土類イオンはYb3+イオン、Er3+イオン、またはTm3+イオンであり、金属イオンはMnイオンであることが好ましい。
 マトリクス層は、SiO、SiNまたはSiCからなることが好ましい。
Moreover, it is preferable that the photostimulable luminescent material is disposed at approximately the middle between the first quantum dots and the second quantum dots that are adjacent at least in the thickness direction of the matrix layer.
Furthermore, it is preferable that the first quantum dot and the second quantum dot are made of an indirect transition semiconductor.
Furthermore, the matrix layer is preferably made of an inorganic material or organic material having a band gap of 3 eV or more, and the stimulable light emitting material is preferably made of rare earth ions or metal ions.
When the effective refractive index of the wavelength conversion film is n, the effective refractive index n is preferably 1.8 ≦ n ≦ 4.
The first quantum dot is made of Si x Ge (1-x) (X> 0.7), and the second quantum dot is made of Si x Ge (1-x) (X <0.7). It is preferable that the rare earth ions are Yb 3+ ions, Er 3+ ions, or Tm 3+ ions, and the metal ions are Mn ions.
The matrix layer is preferably made of SiO 2 , SiN X or SiC.
 また、上記波長変換膜が、光電変換層の光の入射側とは反対側に配置されていることを特徴とする光電変換装置を提供するものである。
 波長変換膜は、長波長光を透過させ、短波長光を反射させる光閉じ込め機能を有することが好ましい。
 また、誘電体または有機物からなる第1の層と、上記波長変換膜からなる第2の層とが積層された積層構造を有し、第1の層および第2の層は、それぞれ厚さが光学波長オーダであり、第1の層の実効屈折率をnaとし、第2の層の屈折率をnbとするとき、0.3<|nb-na|であることを特徴とする光電変換装置を提供するものである。
Moreover, the said wavelength conversion film is arrange | positioned on the opposite side to the light incident side of a photoelectric converting layer, The photoelectric conversion apparatus characterized by the above-mentioned is provided.
The wavelength conversion film preferably has an optical confinement function that transmits long wavelength light and reflects short wavelength light.
The first layer made of a dielectric or organic material and the second layer made of the wavelength conversion film have a laminated structure, and each of the first layer and the second layer has a thickness. A photoelectric conversion device having an optical wavelength order, 0.3 <| nb−na |, where na is the effective refractive index of the first layer and nb is the refractive index of the second layer. Is to provide.
 本発明によれば、変換効率が優れたアップコンバージョン機能を得ることができる。 According to the present invention, an up-conversion function with excellent conversion efficiency can be obtained.
(a)および(b)は、本発明の実施形態の波長変換膜の製造方法を工程順に示す模式的断面図である。(A) And (b) is typical sectional drawing which shows the manufacturing method of the wavelength conversion film of embodiment of this invention in order of a process. 本発明の実施形態の波長変換膜のエネルギーバンド構造を示す模式図である。It is a schematic diagram which shows the energy band structure of the wavelength conversion film of embodiment of this invention. 本発明の実施形態の波長変換膜の発光強度および従来の波長変換膜の発光強度を示すグラフである。It is a graph which shows the light emission intensity of the wavelength conversion film of embodiment of this invention, and the light emission intensity of the conventional wavelength conversion film. 太陽光スペクトルと結晶Siの分光感度曲線とを示す模式図である。It is a schematic diagram which shows a sunlight spectrum and the spectral sensitivity curve of crystalline Si. 反射防止膜の構成の違いによる反射率の違いを示すグラフである。It is a graph which shows the difference in the reflectance by the difference in the structure of an antireflection film. (a)は、SiOのマトリクス層中のSiの量子ドットの含有量と屈折率との関係を示すグラフであり、(b)は、SiOのマトリクス層中のSiの量子ドットの間隔と屈折率との関係を示すグラフである。(A) is a graph showing the relationship between the content and the refractive index of the quantum dots of the Si in the matrix layer of SiO 2, (b) is a distance between the quantum dots of Si in the matrix layer of SiO 2 It is a graph which shows the relationship with a refractive index. SiO膜/波長変換膜(Si量子ドット/SiO2Mat)/Si基板の反射率を示すグラフであり、波長変換膜は屈折率が1.80である。Is a graph showing the SiO 2 film / Wavelength conversion film (Si quantum dots / SiO 2Mat) / Si substrate reflectivity, a wavelength conversion film having a refractive index of 1.80. SiO膜/波長変換膜(Si量子ドット/SiO2Mat)/Si基板の反射率を示すグラフであり、波長変換膜は屈折率が2.35である。Is a graph showing the SiO 2 film / Wavelength conversion film (Si quantum dots / SiO 2Mat) / Si substrate reflectivity, a wavelength conversion film having a refractive index of 2.35. 本発明の実施形態の光電変換装置を示す模式的断面図である。It is typical sectional drawing which shows the photoelectric conversion apparatus of embodiment of this invention. (a)は、本発明の他の実施形態の光電変換装置を示す模式的断面図であり、(b)は、波長変換層の他の構成の要部を示す模式的斜視図である。(A) is a typical sectional view showing a photoelectric conversion device of other embodiments of the present invention, and (b) is a typical perspective view showing an important section of other composition of a wavelength conversion layer. 従来の波長変換膜を示す模式的断面図である。It is typical sectional drawing which shows the conventional wavelength conversion film. 従来の波長変換膜のエネルギーバンド構造を示す模式図である。It is a schematic diagram which shows the energy band structure of the conventional wavelength conversion film. 従来の他の波長変換膜のエネルギーバンド構造を示す模式図である。It is a schematic diagram which shows the energy band structure of the other conventional wavelength conversion film.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の波長変換膜および光電変換装置を詳細に説明する。
 図1(a)および(b)は、本発明の実施形態の波長変換膜の製造方法を工程順に示す模式的断面図である。図2は、発明の実施形態の波長変換膜のエネルギーバンド構造を示す模式図である。
Hereinafter, a wavelength conversion film and a photoelectric conversion device of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
FIG. 1A and FIG. 1B are schematic cross-sectional views showing a method of manufacturing a wavelength conversion film according to an embodiment of the present invention in the order of steps. FIG. 2 is a schematic diagram showing an energy band structure of the wavelength conversion film according to the embodiment of the invention.
 図1(b)に示すように、本実施形態の波長変換膜10は、マトリクス層14内に、第1の量子ドット16、第2の量子ドット18および輝尽性発光材20が設けられている。波長変換膜10は、例えば、基板12上に形成されている。
 波長変換膜10においては、第1の量子ドット16および第2の量子ドット18は、それぞれ、複数の波動関数が重なり合うミニバンドを形成するように、マトリクス層14の厚さ方向Hにおいて所定の間隔あけて層状に交互に配置されており、第1の量子ドット16および第2の量子ドット18により多重量子井戸構造が構成される。
 後に詳細に説明するように、第1の量子ドット16および第2の量子ドット18により、伝導帯側で一部を除き、複数の波動関数が重なり合うミニバンドが形成されている。しかしながら、伝導体側に限定されるものではなく、価電子帯側の一部を除き、複数の波動関数が重なり合うミニバンドが形成されていてもよい。
As shown in FIG. 1B, the wavelength conversion film 10 of the present embodiment includes a first quantum dot 16, a second quantum dot 18, and a stimulable light emitting material 20 in a matrix layer 14. Yes. The wavelength conversion film 10 is formed on the substrate 12, for example.
In the wavelength conversion film 10, the first quantum dots 16 and the second quantum dots 18 each have a predetermined interval in the thickness direction H of the matrix layer 14 so as to form a miniband in which a plurality of wave functions overlap. The first quantum dots 16 and the second quantum dots 18 form a multiple quantum well structure.
As will be described in detail later, the first quantum dot 16 and the second quantum dot 18 form a miniband in which a plurality of wave functions are overlapped except for a part on the conduction band side. However, the present invention is not limited to the conductor side, and a miniband in which a plurality of wave functions are overlapped may be formed except for a part on the valence band side.
 第1の量子ドット16および第2の量子ドット18は、それぞれ直径dが2~20nmであり、好ましくは2nm~15nmであり、より好ましくは2nm~5nmである。また、第1の量子ドット16および第2の量子ドット18は、粒径(直径d)のバラツキσ(標準偏差)が、1<σ<d/5nmであることが好ましく、より好ましくは、1<σ<d/10nmである。なお、第1の量子ドット16および第2の量子ドット18の粒径(直径d)はバラツキの範囲で異なっていてもよい。
 第1の量子ドット16および第2の量子ドット18は、それぞれ隣り合う粒子との間隔が20nm以下である。また、第1の量子ドット16および第2の量子ドット18においては、厚さ方向Hの間隔も20nm以下であることが好ましい。
The first quantum dot 16 and the second quantum dot 18 each have a diameter d of 2 to 20 nm, preferably 2 nm to 15 nm, more preferably 2 nm to 5 nm. The first quantum dot 16 and the second quantum dot 18 preferably have a particle size (diameter d) variation σ d (standard deviation) of 1 <σ d <d / 5 nm, more preferably 1 <σ d <d / 10 nm. In addition, the particle diameter (diameter d) of the 1st quantum dot 16 and the 2nd quantum dot 18 may differ in the range of variation.
The first quantum dots 16 and the second quantum dots 18 each have an interval between adjacent particles of 20 nm or less. Further, in the first quantum dots 16 and the second quantum dots 18, the interval in the thickness direction H is also preferably 20 nm or less.
 第1の量子ドット16および第2の量子ドット18は、例えば、間接遷移半導体で構成されるものである。この間接遷移半導体として、例えば、第1の量子ドット16にはSiQD(量子ドット)、SiGe(1-x)QD(量子ドット)(X>0.7)が用いられ、第2の量子ドット18には、GeQD(量子ドット)、SiGe(1-x)QD(量子ドット)(X<0.7)が用いられる。 The first quantum dot 16 and the second quantum dot 18 are made of, for example, an indirect transition semiconductor. As this indirect transition semiconductor, for example, SiQD (quantum dot), Si x Ge (1-x) QD (quantum dot) (X> 0.7) is used for the first quantum dot 16, and the second quantum dot 16 is used. As the dots 18, GeQD (quantum dots), Si x Ge (1-x) QD (quantum dots) (X <0.7) are used.
 後に詳細に説明するが、第1の量子ドット16および第2の量子ドット18により、複数の波動関数が重なり合うミニバンドを形成する。
 ここで、ミニバンドとは、各量子ドット(量子井戸)が形成している準位が隣接する量子ドット(量子井戸)と重なり合い、エネルギー準位を形成したものである。
 また、第1の量子ドット16に多重光(太陽光(AM1.5))を照射したときに励起される第1の基底エネルギー準位は、第2の量子ドット18に多重光(太陽光(AM1.5))を照射したときに励起される第2の基底エネルギー準位より大きい。なお、後に詳細に説明するが、例えば、図2において、第1の基底エネルギー準位は、準位SB1であり、第2の基底エネルギー準位は、準位SB2(基底バンド)である。
As will be described in detail later, the first quantum dot 16 and the second quantum dot 18 form a miniband in which a plurality of wave functions overlap.
Here, the mini-band is an energy level formed by overlapping the level formed by each quantum dot (quantum well) with an adjacent quantum dot (quantum well).
Further, the first ground energy level excited when the first quantum dot 16 is irradiated with multiple light (sunlight (AM1.5)) is applied to the second quantum dot 18 with multiple light (sunlight (sunlight ( Greater than the second ground energy level excited when irradiated with AM 1.5)). As will be described in detail later, for example, in FIG. 2, the first base energy level is level SB1, and the second base energy level is level SB2 (base band).
 厚さ方向Hにおいて隣接する第1の量子ドット16および第2の量子ドット18の間に、例えば、厚さ方向Hの略中間の位置に輝尽性発光材20が配置され、マトリクス層14内の20wt%(質量%)以下に含有されている。輝尽性発光材20の配置は、厚さ方向Hの略中間の位置に限定されるものではない。
 輝尽性発光材20は、例えば、Ybで構成される。輝尽性発光材20は、例えば、希土類イオンまたは金属イオンで構成されるものである。希土類イオンは、例えば、Yb3+イオン、Er3+イオンまたはTm3+イオンであり、金属イオンは、例えば、Mnイオンであり、2種類以上の輝尽性発光材を組合せてもよい。
Between the first quantum dots 16 and the second quantum dots 18 that are adjacent in the thickness direction H, for example, the photostimulable luminescent material 20 is arranged at a substantially intermediate position in the thickness direction H, and the matrix layer 14 Of 20 wt% (mass%) or less. The arrangement of the photostimulable luminescent material 20 is not limited to a substantially intermediate position in the thickness direction H.
The photostimulable luminescent material 20 is made of, for example, Yb 2 O 3 . The photostimulable luminescent material 20 is made of, for example, rare earth ions or metal ions. The rare earth ions are, for example, Yb 3+ ions, Er 3+ ions, or Tm 3+ ions, and the metal ions are, for example, Mn ions, and two or more types of photostimulable luminescent materials may be combined.
 マトリクス層14は、バンドギャップ(Egmat)が第1の基底エネルギー準位(例えば、図2に示す準位SB2)よりも大きい誘電体または有機材料で構成されている。マトリクス層14は、厚さ方向Hで隣接する第1の量子ドット16および第2の量子ドット18間では、トンネリング障壁(トンネル障壁)となり、第2の量子ドット18間、すなわち、マトリクス層14の厚さ方向Hと直交する幅方向wでは、第2の量子ドット18の障壁となる。
 本実施形態においては、第1の量子ドット16、第2の量子ドット18の各量子ドットの周囲のマトリクス層14は、マトリクス層14のバンドキャップ(Egmat)と各量子ドット間距離、マトリクス層14の厚さとの組合せにより、マトリクス層14の厚さ方向Hと直交する幅方向wでは、第2の量子ドット18の障壁となるように選択的なトンネル障壁を形成する。
 なお、マトリクス層14は、バンドギャップが3eV以上の無機材または有機物からなるものであり、例えば、SiO、SiNまたはSiCで構成される。
The matrix layer 14 is made of a dielectric or organic material having a band gap (Eg mat ) larger than a first ground energy level (for example, the level SB2 shown in FIG. 2). The matrix layer 14 becomes a tunneling barrier (tunnel barrier) between the first quantum dots 16 and the second quantum dots 18 that are adjacent in the thickness direction H, and between the second quantum dots 18, that is, between the matrix layers 14. In the width direction w perpendicular to the thickness direction H, the second quantum dot 18 becomes a barrier.
In the present embodiment, the matrix layer 14 around each quantum dot of the first quantum dot 16 and the second quantum dot 18 includes the band cap (Eg mat ) of the matrix layer 14, the distance between the quantum dots, and the matrix layer. In combination with the thickness 14, a selective tunnel barrier is formed so as to serve as a barrier for the second quantum dots 18 in the width direction w orthogonal to the thickness direction H of the matrix layer 14.
The matrix layer 14 is made of an inorganic material or an organic material having a band gap of 3 eV or more, and is made of, for example, SiO 2 , SiN X or SiC.
 次に、波長変換膜10の製造方法について説明する。
 まず、基板12上に、SiO層32、SiO/Yb層34、SiO層32、Si/SiO層36、SiO層32、SiO/Yb層34、SiO層32、SiGeO層38、SiO層32、SiO/Yb層34、SiO層32、Si/SiO層36、SiO層32、SiO/Yb層34、SiO層32、SiGeO層38、SiO層32、SiO/Yb層34、SiO層32の順で形成して、積層体30を得る。
 SiO層32、SiO/Yb層34、Si/SiO層36、SiGeO層38の厚さは、例えば、3~6nmである。
Next, a method for manufacturing the wavelength conversion film 10 will be described.
First, on the substrate 12, the SiO 2 layer 32, the SiO 2 / Yb 2 O 3 layer 34, the SiO 2 layer 32, the Si / SiO 2 layer 36, the SiO 2 layer 32, the SiO 2 / Yb 2 O 3 layer 34, the SiO 2 2 layer 32, SiGeO layer 38, SiO 2 layer 32, SiO 2 / Yb 2 O 3 layer 34, SiO 2 layer 32, Si / SiO 2 layer 36, SiO 2 layer 32, SiO 2 / Yb 2 O 3 layer 34, The layered product 30 is obtained by forming the SiO 2 layer 32, the SiGeO layer 38, the SiO 2 layer 32, the SiO 2 / Yb 2 O 3 layer 34, and the SiO 2 layer 32 in this order.
The thicknesses of the SiO 2 layer 32, the SiO 2 / Yb 2 O 3 layer 34, the Si / SiO 2 layer 36, and the SiGeO layer 38 are, for example, 3 to 6 nm.
 次に、積層体30を、例えば、窒素雰囲気中にて約900℃、10分アニールを行う。これにより、SiGe(1-x)QD(X>0.7)からなる第1の量子ドット16、SiGe(1-x)QD(X<0.7)からなる第2の量子ドット18、Yb3+からなる輝尽性発光材20が形成され、図1(b)に示す波長変換膜10が形成される。
 なお、波長変換膜10において、第1の量子ドット16とマトリクス層14との界面、第2の量子ドット18とマトリクス層14との界面、およびマトリクス層14の欠陥の発生を防止するため、その製造工程において水素終端等のパッシベーション工程を有することが好ましい。
 例えば、プラズマ水素処理にて、水素終端を実施する場合、処理条件は、例えば、H流量300l/分、真空度0.9Torr、マイクロ波2.5KW、基板温度300℃、処理時間30分である。
Next, the laminated body 30 is annealed, for example, at about 900 ° C. for 10 minutes in a nitrogen atmosphere. Accordingly, the first quantum dot 16 made of Si x Ge (1-x) QD (X> 0.7) and the second quantum dot made of Si x Ge (1-x) QD (X <0.7) are obtained. A stimulable light emitting material 20 composed of dots 18 and Yb 3+ is formed, and the wavelength conversion film 10 shown in FIG. 1B is formed.
In the wavelength conversion film 10, in order to prevent the occurrence of defects in the interface between the first quantum dots 16 and the matrix layer 14, the interface between the second quantum dots 18 and the matrix layer 14, and the matrix layer 14, It is preferable to have a passivation process such as hydrogen termination in the manufacturing process.
For example, when performing hydrogen termination in plasma hydrogen treatment, the treatment conditions are, for example, H 2 flow rate 300 l / min, vacuum degree 0.9 Torr, microwave 2.5 KW, substrate temperature 300 ° C., treatment time 30 minutes. is there.
 なお、SiO層32は、例えば、Siをリアクティブスパッタにより酸化させることにより形成される。SiO層32の成膜条件としては、例えば、到達真空度を3.0×10-4Pa以下、基板温度を室温(RT)とし、ターゲットにSiを用い、投入電力を100W、成膜圧力を0.35Pa、Arガス流量を15sccm、Oガス流量を0.35sccm、成膜時間を2分とする。 The SiO 2 layer 32 is formed, for example, by oxidizing Si by reactive sputtering. The film formation conditions for the SiO 2 layer 32 include, for example, an ultimate vacuum of 3.0 × 10 −4 Pa or less, a substrate temperature of room temperature (RT), Si as a target, an input power of 100 W, and a film formation pressure. Is 0.35 Pa, the Ar gas flow rate is 15 sccm, the O 2 gas flow rate is 0.35 sccm, and the film formation time is 2 minutes.
 SiO/Yb層34は、例えば、SiOターゲット表面に、表面積比率がYb:SiO=1:1000となるペレット(1mm角小片)をのせた状態で、スパッタすることにより形成される。SiO/Yb層34の成膜条件としては、例えば、到達真空度を3.0×10-4Pa以下、基板温度を室温(RT)とし、ターゲットにSiOターゲット表面に表面積比率がYb:SiO=1:1000となるペレット(1mm角小片)を用い、投入電力を100W、成膜圧力を0.35Pa、Arガス流量を15sccm、Oガス流量を0sccm、成膜時間を2分とする。 The SiO 2 / Yb 2 O 3 layer 34 is sputtered, for example, with a pellet (1 mm square piece) having a surface area ratio of Yb 2 O 3 : SiO 2 = 1: 1000 on the SiO 2 target surface. It is formed by. The film formation conditions of the SiO 2 / Yb 2 O 3 layer 34 include, for example, an ultimate vacuum of 3.0 × 10 −4 Pa or less, a substrate temperature of room temperature (RT), and a surface area ratio on the surface of the SiO 2 target. Is a pellet (1 mm square piece) with Yb 2 O 3 : SiO 2 = 1: 1000, input power is 100 W, deposition pressure is 0.35 Pa, Ar gas flow rate is 15 sccm, O 2 gas flow rate is 0 sccm, The membrane time is 2 minutes.
 SiO/Yb層34上のSiO層32は、例えば、SiOをスパッタすることにより形成される。SiO/Yb層34上のSiO層32の成膜条件としては、例えば、到達真空度を3.0×10-4Pa以下、基板温度を室温(RT)とし、ターゲットにSiOを用い、投入電力を100W、成膜圧力を0.35Pa、Arガス流量を15sccm、Oガス流量を1sccm、成膜時間を2分とする。 SiO 2 layer 32 on the SiO 2 / Yb 2 O 3 layer 34, for example, is formed by sputtering SiO 2. The film formation conditions for the SiO 2 layer 32 on the SiO 2 / Yb 2 O 3 layer 34 are, for example, that the ultimate vacuum is 3.0 × 10 −4 Pa or less, the substrate temperature is room temperature (RT), and the target is SiO 2 2 , the input power is 100 W, the deposition pressure is 0.35 Pa, the Ar gas flow rate is 15 sccm, the O 2 gas flow rate is 1 sccm, and the deposition time is 2 minutes.
 Si/SiO層36は、例えば、SiとSiOを共スパッタすることにより形成される。Si/SiO層36の成膜条件としては、例えば、到達真空度を3.0×10-4Pa以下、基板温度を室温(RT)とし、ターゲットにSi、SiOを用い、投入電力をSiでは100W、SiOでは200W、成膜圧力を0.35Pa、Arガス流量を15sccm、Oガス流量を0sccm、成膜時間を4分とする。 The Si / SiO 2 layer 36 is formed, for example, by co-sputtering Si and SiO 2 . The film forming conditions for the Si / SiO 2 layer 36 include, for example, an ultimate vacuum of 3.0 × 10 −4 Pa or less, a substrate temperature of room temperature (RT), Si, SiO 2 as a target, and input power. 100 W for Si, 200 W for SiO 2 , a film formation pressure of 0.35 Pa, an Ar gas flow rate of 15 sccm, an O 2 gas flow rate of 0 sccm, and a film formation time of 4 minutes.
 SiGeO層38は、例えば、SiとGeとの共リアクティブスパッタにより形成される。SiGeO層38の成膜条件としては、例えば、到達真空度を3.0×10-4Pa以下、基板温度を室温(RT)とし、ターゲットにGe、Siを用い、投入電力をGeでは50W、Siでは100W、成膜圧力を0.35Pa、Arガス流量を15sccm、Oガス流量を0.5sccm、成膜時間を20秒とする。 The SiGeO layer 38 is formed by, for example, co-reactive sputtering of Si and Ge. The film formation conditions for the SiGeO layer 38 include, for example, an ultimate vacuum of 3.0 × 10 −4 Pa or less, a substrate temperature of room temperature (RT), Ge and Si as targets, and an input power of 50 W for Ge. For Si, the deposition pressure is 0.3 W, the Ar gas flow rate is 15 sccm, the O 2 gas flow rate is 0.5 sccm, and the deposition time is 20 seconds.
 また、SiO層32、SiO/Yb層34およびSiO/Yb層34上のSiO層32は、例えば、SiOをスパッタしつつ、SiO/Yb層34形成時に、Ybをスパッタすることにより形成することができる。 Further, the SiO 2 layer 32, SiO 2 / Yb 2 O 3 layer 34 and SiO 2 / Yb 2 O 3 layer 34 on the SiO 2 layer 32 of, for example, while sputtering the SiO 2, SiO 2 / Yb 2 O 3 When the layer 34 is formed, it can be formed by sputtering Yb 2 O 3 .
 本実施形態の波長変換膜10において、第1の量子ドット16と第2の量子ドット18を接合させた場合、図2に示すようなタイプII型(タイプII構造)に近い形態のエネルギーバンド構造となる。第1の量子ドット16により、量子井戸22a、23a、22b、23bが形成され、第2の量子ドット18により、量子井戸24a、25a、24b、25b、24c、25cが形成される。
 量子井戸24a、22a、24b、22b、24cは、それぞれ準位SB1を有し、量子井戸24a、24b、24cは、さらに準位SB2(基底準位)を有する。
 また、量子井戸25a、23a、25b、23b、25cは、それぞれ準位SB3、準位SB4を有する。
In the wavelength conversion film 10 of the present embodiment, when the first quantum dots 16 and the second quantum dots 18 are joined, the energy band structure close to the type II type (type II structure) as shown in FIG. It becomes. The first quantum dots 16 form quantum wells 22a, 23a, 22b, and 23b, and the second quantum dots 18 form quantum wells 24a, 25a, 24b, 25b, 24c, and 25c.
The quantum wells 24a, 22a, 24b, 22b, and 24c each have a level SB1, and the quantum wells 24a, 24b, and 24c further have a level SB2 (base level).
The quantum wells 25a, 23a, 25b, 23b, and 25c have a level SB3 and a level SB4, respectively.
 図2に示すように、価電子帯側では、量子井戸24a、22a、24b、22b、24cは、重なり合う準位SB1があり、ミニバンドが形成される。
 伝導体側では、量子井戸25a、23a、25b、23b、25cは、重なり合う準位SB3、準位SB4があり、ミニバンドが形成される。
 なお、準位SB1、準位SB3、準位SB4は、ミニバンドの準位を示す。
As shown in FIG. 2, on the valence band side, the quantum wells 24a, 22a, 24b, 22b, 24c have overlapping levels SB1, and a miniband is formed.
On the conductor side, quantum wells 25a, 23a, 25b, 23b, and 25c have overlapping levels SB3 and SB4, and a miniband is formed.
Note that the level SB1, the level SB3, and the level SB4 indicate miniband levels.
 一方、価電子帯側において、量子井戸24aと量子井戸24bとの間の量子井戸22aには、量子井戸24a、24bの準位SB2(基底準位)と重なり合う準位がない。また、量子井戸24bと量子井戸24cとの間の量子井戸22bには、量子井戸24b、24cの準位SB2(基底準位)と重なり合う準位がない。
 ここで、準位SB2は、第2の量子ドット18(Ge量子ドット(量子井戸))の基底バンドであり、本実施形態では、全体のバンド構造としてタイプII構造をとっており、上述のように、隣接する第1の量子ドット16(Si量子ドット(量子井戸))には、重なり合う準位がないためにミニバンドを形成することができない。
 このように、量子井戸24a、24bおよび量子井戸24b、24cの準位SB2(基底準位)においてはミニバンドが形成されない領域Dがある。この領域Dでは、マトリクス層14がトンネリング障壁となる。領域Dを設けることにより、量子井戸の厚さ方向Hにおける正孔(ホール)hの移動が抑制される。なお、ミニバンドが形成されてない領域Dは、価電子帯に設けることに限定されるものではなく、伝導帯側に形成してもよい。伝導帯側に設ける場合、正孔(ホール)hではなく電子eの移動が抑制される。
On the other hand, on the valence band side, the quantum well 22a between the quantum well 24a and the quantum well 24b does not have a level overlapping with the level SB2 (base level) of the quantum wells 24a and 24b. The quantum well 22b between the quantum well 24b and the quantum well 24c does not have a level overlapping with the level SB2 (base level) of the quantum wells 24b and 24c.
Here, the level SB2 is a base band of the second quantum dot 18 (Ge quantum dot (quantum well)). In the present embodiment, the entire band structure has a type II structure, as described above. In addition, since the adjacent first quantum dots 16 (Si quantum dots (quantum wells)) do not have overlapping levels, a miniband cannot be formed.
Thus, in the level SB2 (base level) of the quantum wells 24a and 24b and the quantum wells 24b and 24c, there is a region D in which no miniband is formed. In this region D, the matrix layer 14 becomes a tunneling barrier. By providing the region D, the movement of holes h in the thickness direction H of the quantum well is suppressed. Note that the region D where the miniband is not formed is not limited to being provided in the valence band, and may be formed on the conduction band side. When it is provided on the conduction band side, the movement of the electrons e instead of the holes h is suppressed.
 図2において、Egmatは、マトリクス層14のバンドギャップを示し、EgSiは、第1の量子ドット16のバンドギャップを示し、EgGeは第2の量子ドット18のバンドギャップを示す。各バンドギャップは、Egmat>EgSi>EgGeの関係にある。
 図2に示すように、本実施形態において、輝尽性発光材20の発光遷移するエネルギー準位差をΔECとし、2光子吸収以で励起された伝導帯ミニバンドと価電子帯ミニバンド間の最小エネルギー準位差をΔEABとする。
 この場合、ΔEAB≧ΔECである。波長変換膜10では、第2の量子ドット18に長波長の入射光Lが吸収されて、マトリクス層14中の輝尽性発光材20から短波長光Lsが放出される。
 ここで、ΔEABは、伝導帯ミニバンドと価電子帯ミニバンド間の最小エネルギー準位差であり、準位SB1-準位SB3間である。なお、準位SB1がない場合には、ΔEABは、準位SB1-準位SB4間である。
In FIG. 2, Eg mat represents the band gap of the matrix layer 14, Eg Si represents the band gap of the first quantum dot 16, and Eg Ge represents the band gap of the second quantum dot 18. Each band gap has a relationship of Eg mat > Eg Si > Eg Ge .
As shown in FIG. 2, in this embodiment, the difference in energy level at which the photostimulable luminescent material 20 undergoes emission transition is ΔEC, and the conduction band miniband excited between two-photon absorption and the valence band miniband is excited. Let the minimum energy level difference be ΔEAB.
In this case, ΔEAB ≧ ΔEC. In the wavelength conversion film 10, the long wavelength incident light L is absorbed by the second quantum dots 18, and the short wavelength light Ls is emitted from the photostimulable luminescent material 20 in the matrix layer 14.
Here, ΔEAB is the minimum energy level difference between the conduction band miniband and the valence band miniband, and is between level SB1 and level SB3. When there is no level SB1, ΔEAB is between level SB1 and level SB4.
 波長変換膜10においては、価電子帯側において、例えば、第1の量子ドット16を挟んだ第2の量子ドット18の量子井戸24a、24b間、量子井戸24b、24c間のように、隣接する第2の量子ドット18間にミニバンドが形成されない領域Dを設けることにより、例えば、量子井戸24a、24bの準位SB2(基底準位)と重なり合う準位がないため、量子井戸24aの準位SB2にある正孔(ホール)hは、量子井戸24bに移動しにくい。このように、厚さ方向Hの電荷輸送(価電子帯側の場合は正孔(ホール)h、伝導帯側の場合は電子eの移動)を抑制して、上の準位へのエネルギー遷移の確率、すなわち、アップコンバージョンの確率を上げ、選択的に励起エネルギーを取り出すとともに、電荷輸送中の非発光再結合を抑制することができる。 In the wavelength conversion film 10, adjacent to each other on the valence band side, for example, between the quantum wells 24 a and 24 b of the second quantum dot 18 sandwiching the first quantum dot 16 and between the quantum wells 24 b and 24 c. By providing the region D in which no miniband is formed between the second quantum dots 18, for example, there is no level overlapping with the level SB2 (base level) of the quantum wells 24a and 24b, so that the level of the quantum well 24a The holes (holes) h in SB2 are difficult to move to the quantum well 24b. In this way, energy transfer to the upper level is suppressed by suppressing charge transport in the thickness direction H (hole h on the valence band side, movement of electron e on the conduction band side). , That is, the probability of up-conversion, selectively extract excitation energy, and suppress non-radiative recombination during charge transport.
 波長変換膜10においては、例えば、準位SB1にある、第2の量子ドット18の量子井戸24aの正孔(ホール)hが、入射した入射光Lを吸収し、1つ上の準位SB2(基底準位)に上がり、さらに入射光Lを吸収し、量子井戸25aの準位SB3に上がる。このようにして準位を2段階上げる。2段階上げられた準位SB3は、マトリクス層14中の輝尽性発光材20(Yb(Yb3+))の準位と同じである。そして、電子eが輝尽性発光材20(Yb(Yb3+))に輸送(遷移)され、準位SB3に相当する準位から価電子帯側の輝尽性発光材20(Yb(Yb3+))の準位(準位SB1に相当する)に遷移する。このとき、マトリクス層14中の輝尽性発光材20から、吸収した入射光Lよりも波長の短い短波長光Lsが放出される。すなわち、マトリクス層14中の輝尽性発光材20から高いエネルギーの光を発生させる。波長変換膜10は、このようにしてアップコンバートする。 In the wavelength conversion film 10, for example, holes (holes) h in the quantum well 24a of the second quantum dot 18 in the level SB1 absorb the incident incident light L, and the level SB2 one level higher. It rises to (base level), further absorbs incident light L, and rises to level SB3 of quantum well 25a. In this way, the level is raised by two levels. The level SB3 raised by two levels is the same as the level of the photostimulable light emitting material 20 (Yb 2 O 3 (Yb 3+ )) in the matrix layer 14. Then, the electrons e are transported (transitioned) to the stimulable light emitting material 20 (Yb 2 O 3 (Yb 3+ )), and the stimulable light emitting material 20 (Yb on the valence band side from the level corresponding to the level SB3). 2 O 3 (Yb 3+ )) level (corresponding to level SB1). At this time, the short wavelength light Ls having a shorter wavelength than the absorbed incident light L is emitted from the stimulable light emitting material 20 in the matrix layer 14. That is, high energy light is generated from the photostimulable luminescent material 20 in the matrix layer 14. The wavelength conversion film 10 is up-converted in this way.
 また、例えば、準位SB2(基底準位)にある、第2の量子ドット18の量子井戸24bの正孔(ホール)hが、入射した入射光Lを吸収し、1つ上の量子井戸25aの準位SB3に上がり、さらに入射した入射光Lを吸収し、量子井戸25aの準位SB4に上がる。このようにして、準位が2段階上がる。この場合、2段階上の準位SB4と輝尽性発光材20(Yb(Yb3+))の準位とは同じである。そして、電子eが輝尽性発光材20(Yb(Yb3+))に輸送され、準位SB4に相当する準位から価電子帯側の輝尽性発光材20(Yb(Yb3+))の準位(準位SB2に相当する)に遷移する。このとき、吸収した入射光Lよりも、波長の短い短波長光Lsがマトリクス層14中の輝尽性発光材20から放出される。すなわち、マトリクス層14中の輝尽性発光材20から高いエネルギーの光を発生させる。波長変換膜10は、このようにしてアップコンバートする。波長変換膜10は、このようにしてアップコンバートする。 Further, for example, holes (holes) h in the quantum well 24b of the second quantum dot 18 in the level SB2 (base level) absorb the incident incident light L, and the quantum well 25a one level higher. To the level SB3, and further absorbs the incident incident light L and rises to the level SB4 of the quantum well 25a. In this way, the level increases by two levels. In this case, the level SB4 in two steps and the level of the stimulable light emitting material 20 (Yb 2 O 3 (Yb 3+ )) are the same. Then, electrons e are transported in the stimulable luminescent material 20 (Yb 2 O 3 (Yb 3+)), level SB4 valence from the level corresponding to the electron band side of the stimulable luminescent material 20 (Yb 2 O 3 (Yb 3+ )) level (corresponding to level SB2). At this time, the short wavelength light Ls having a shorter wavelength than the absorbed incident light L is emitted from the photostimulable light emitting material 20 in the matrix layer 14. That is, high energy light is generated from the photostimulable luminescent material 20 in the matrix layer 14. The wavelength conversion film 10 is up-converted in this way. The wavelength conversion film 10 is up-converted in this way.
 また、例えば、準位SB1にある、量子井戸22bの正孔(ホール)hが、入射した入射光Lを吸収し、バンドギャップEgSiを超えて、量子井戸23bの準位SB3に上がる。この場合、準位SB3と輝尽性発光材20(Yb(Yb3+))の準位とは同じである。そして、電子eが輝尽性発光材20(Yb(Yb3+))に輸送され、準位SB3に相当する準位から価電子帯側の輝尽性発光材20(Yb(Yb3+))の準位(準位SB1に相当する)に遷移する。このとき、吸収した入射光Lよりも、短波長光Lsがマトリクス層14中の輝尽性発光材20から放出される。すなわち、マトリクス層14中の輝尽性発光材20から高いエネルギーの光を発生させる。波長変換膜10は、このようにしてアップコンバートする。 Further, for example, the level SB1, holes in the quantum well 22b (holes) h will absorb the incident light L incident, beyond the band gap Eg Si, up to level SB3 of the quantum well 23b. In this case, the level SB3 and the level of the photostimulable luminescent material 20 (Yb 2 O 3 (Yb 3+ )) are the same. Then, electrons e are transported in the stimulable luminescent material 20 (Yb 2 O 3 (Yb 3+)), level SB3 valence from the level corresponding to the electron band side of the stimulable luminescent material 20 (Yb 2 O 3 (Yb 3+ )) level (corresponding to level SB1). At this time, shorter wavelength light Ls than the absorbed incident light L is emitted from the stimulable light emitting material 20 in the matrix layer 14. That is, high energy light is generated from the photostimulable luminescent material 20 in the matrix layer 14. The wavelength conversion film 10 is up-converted in this way.
 本発明の波長変換膜10および従来の波長変換膜について、1300nmの波長の光を励起光として、発光強度を調べた。その結果、図3に示すように、本実施形態の波長変換膜10は、例えば、1300nmの波長の光を、約1010nmの波長の光に波長変換することができた。さらに、本発明の波長変換膜10は、従来の波長変換膜に比して十分に大きな発光強度を得ることができ、変換効率が優れたアップコンバージョン機能を有する。なお、図3において符号αは本発明の波長変換膜10を示し、符号βは従来の波長変換膜を示す。 The emission intensity of the wavelength conversion film 10 of the present invention and the conventional wavelength conversion film was examined using light having a wavelength of 1300 nm as excitation light. As a result, as shown in FIG. 3, the wavelength conversion film 10 of the present embodiment was able to wavelength-convert light having a wavelength of 1300 nm to light having a wavelength of about 1010 nm, for example. Furthermore, the wavelength conversion film 10 of the present invention can obtain a sufficiently large emission intensity as compared with the conventional wavelength conversion film, and has an up-conversion function with excellent conversion efficiency. In FIG. 3, symbol α indicates the wavelength conversion film 10 of the present invention, and symbol β indicates a conventional wavelength conversion film.
 なお、従来の波長変換膜とは、図11に示すものである。この従来の波長変換膜100は、基板12上に形成されたマトリクス層102内に、Ge量子ドット104が、マトリクス層102の厚さ方向Hに所定の間隔をあけて層状に複数層設けられたものである。Ge量子ドット104の層間に、Yb粒子106が、層状に設けられており、希土類がドープされたものである。
 従来の波長変換膜100のエネルギーバンド構造は、図12に示す構造を有する。図12に示すように、2光子吸収以上で励起されたエネルギー準位は、ドープされた希土類の発光遷移準位エネルギーと等しい。この励起されたエネルギー準位においては、希土類の遷移確率が高いので選択的に遷移し、アップコンバージョン遷移しやすい。しかしながら、従来から、2光子吸収する以前に発光または非発光再結合することがあり、遷移確率を改善する必要がある。
A conventional wavelength conversion film is shown in FIG. In this conventional wavelength conversion film 100, a plurality of Ge quantum dots 104 are provided in a matrix at a predetermined interval in the thickness direction H of the matrix layer 102 in a matrix layer 102 formed on the substrate 12. Is. Yb 2 O 3 particles 106 are provided in layers between the layers of the Ge quantum dots 104 and are doped with rare earths.
The energy band structure of the conventional wavelength conversion film 100 has the structure shown in FIG. As shown in FIG. 12, the energy level excited by two-photon absorption or more is equal to the emission transition level energy of the doped rare earth. In this excited energy level, since the transition probability of rare earth is high, it makes a selective transition and tends to make an up-conversion transition. However, conventionally, light emission or non-light emission recombination may occur before two-photon absorption, and the transition probability needs to be improved.
 これに対して、本実施形態の波長変換膜10においては、上述の構成にすることにより、アップコンバージョンの遷移確率を上げることができ、長波長光を短波長光に、すなわち、低いエネルギーの光を高いエネルギーの光に、従来に比して高い効率で変換することができる。
 ここで、図13に示すSiのマトリクス層110中にGe量子ドット(図示せず)により量子井戸112が形成された他の従来のエネルギーバンド構造においては、発光経路(非発光再結合を含む)は、励起経路と等しいか多く、光子pを吸収して、2段階遷移以上が必要なアップコンバージョンの確立が低いという問題点がある。また、2光子吸収以上で電子(図示せず)が励起されるものの、量子井戸112間のマトリクス層110の欠陥により、非発光再結合(符号114)が生じる。さらには、界面再結合(符号116)も生じる。図13に示すように、他の従来のエネルギーバンド構造においても、遷移確率を改善する必要がある。
On the other hand, in the wavelength conversion film 10 of the present embodiment, by adopting the above-described configuration, the transition probability of up-conversion can be increased, and long wavelength light is converted into short wavelength light, that is, low energy light. Can be converted into high energy light with higher efficiency than in the past.
Here, in another conventional energy band structure in which the quantum well 112 is formed by Ge quantum dots (not shown) in the Si matrix layer 110 shown in FIG. 13, the light emission path (including non-radiative recombination). Has the problem that the establishment of up-conversion that requires two or more transitions is low by absorbing photons p, which is equal to or more than the excitation path. In addition, although electrons (not shown) are excited by two-photon absorption or more, non-radiative recombination (reference numeral 114) occurs due to defects in the matrix layer 110 between the quantum wells 112. Furthermore, interface recombination (reference numeral 116) also occurs. As shown in FIG. 13, it is necessary to improve the transition probability even in other conventional energy band structures.
 波長変換膜10の波長変換機能については、波長変換膜10の用途により、適宜そのアップコンバートする波長域および変換後の波長が選択される。
 波長変換膜10が、例えば、Eg(バンドギャップ)が1.2eVのシリコン太陽電池の光電変換層上に配置された場合、この1.2eVの2倍以上のエネルギー(2.4eV以上)の波長領域に対して、バンドギャップに相当するエネルギーの波長の光に波長変換する機能を有するものとする。
 図4に示すように、太陽光スペクトルと結晶Siの分光感度曲線とを比べると、太陽スペクトルには結晶Siのバンドギャップの波長域の強度が低い。このため、太陽光のうち、結晶Siのバンドギャップのエネルギー(1.2eV)よりも小さい波長領域(長波長光領域)に対して、高いエネルギーの光子、例えば、1.0eVの光(波長約1300nm)に波長変換することにより、光電変換に有効な光を、結晶Siからなる光電変換層に供給することができる。これにより、光電変換装置(太陽電池)の変換効率を高くすることができる。
Regarding the wavelength conversion function of the wavelength conversion film 10, the wavelength range to be up-converted and the wavelength after conversion are appropriately selected depending on the application of the wavelength conversion film 10.
For example, when the wavelength conversion film 10 is disposed on a photoelectric conversion layer of a silicon solar cell having an Eg (band gap) of 1.2 eV, the wavelength of energy (2.4 eV or more) that is twice or more of 1.2 eV The region has a function of performing wavelength conversion to light having a wavelength of energy corresponding to the band gap.
As shown in FIG. 4, when the solar spectrum is compared with the spectral sensitivity curve of crystalline Si, the solar spectrum has a low intensity in the wavelength range of the band gap of crystalline Si. For this reason, among sunlight, a photon having a high energy, for example, light of 1.0 eV (wavelength of about 1.0 eV) with respect to a wavelength region (long wavelength light region) smaller than the band gap energy (1.2 eV) of crystalline Si. By converting the wavelength to 1300 nm, light effective for photoelectric conversion can be supplied to the photoelectric conversion layer made of crystalline Si. Thereby, the conversion efficiency of a photoelectric conversion apparatus (solar cell) can be made high.
 波長変換膜10は、入射光を閉じ込める機能(以下、光閉込め機能という)、例えば、反射防止機能を有するものであってもよい。この場合、波長変換膜10が配置される光電変換層が、結晶Siの場合には屈折率nPVは3.6である。また、これらが配置される空間の空気の屈折率nairは1.0である。
 ここで、波長変換膜10を反射防止膜として考えた場合、例えば、図5に示すように、屈折率が1.9の単層膜(符号A)、屈折率が1.46/2.35の2層膜(符号A)、屈折率が1.36/1.46/2.35の3層膜(符号A)を比較すると、屈折率が2.35のものがあると、反射率を低減することができる。
 このように、波長変換膜10において、反射防止機能を発揮するためには、波長変換膜10の実効屈折率nが、光電変換層の屈折率nPV(結晶シリコンで3.6)と、空気の屈折率とのほぼ中間の屈折率とすることができれば、反射防止機能を発揮することができる。
 本実施形態では、波長変換膜10の用途等を考慮して、波長変換膜10の実効屈折率nは、例えば、波長533nmにおいて、1.8≦n≦4.0とする。実効屈折率nは、好ましくは、波長533nmにおいて1.8≦n≦2.5である。
The wavelength conversion film 10 may have a function of confining incident light (hereinafter referred to as a light confinement function), for example, an antireflection function. In this case, when the photoelectric conversion layer on which the wavelength conversion film 10 is disposed is crystalline Si, the refractive index n PV is 3.6. The refractive index n air of the air in which these are arranged is 1.0.
Here, when the wavelength conversion film 10 is considered as an antireflection film, for example, as shown in FIG. 5, a single layer film (reference symbol A 1 ) having a refractive index of 1.9 and a refractive index of 1.46 / 2. 35 two-layer film (reference A 2 ) and three-layer film (reference A 3 ) having a refractive index of 1.36 / 1.46 / 2.35 The reflectance can be reduced.
Thus, in order to exhibit the antireflection function in the wavelength conversion film 10, the effective refractive index n of the wavelength conversion film 10 is such that the refractive index n PV of the photoelectric conversion layer (3.6 for crystalline silicon) and air If the refractive index can be set to a substantially intermediate refractive index, the antireflection function can be exhibited.
In the present embodiment, considering the use of the wavelength conversion film 10 and the like, the effective refractive index n of the wavelength conversion film 10 is set to 1.8 ≦ n ≦ 4.0 at a wavelength of 533 nm, for example. The effective refractive index n is preferably 1.8 ≦ n ≦ 2.5 at a wavelength of 533 nm.
 また、光電変換層で利用可能な光に変換するには、基底状態に対して、励起状態のフォトンの存在確率が高くなる反転分布状態を形成するように、量子ドットが配列される必要がある。そこで、量子ドットを上述の如く周期配列とする。この場合、量子ドットの周期間隔が10nm以下であり、好ましくは2nm~5nmである。これにより、励起状態のフォトンがエネルギー移動できる量子ドットの配列となる。また、エネルギーの局在を生じさせるために、量子ドットの特定の周期間隔が、量子ドットの粒径のバラツキを有する。 In addition, in order to convert light into light that can be used in the photoelectric conversion layer, it is necessary to arrange quantum dots so as to form an inversion distribution state in which the existence probability of photons in the excited state is high with respect to the ground state. . Therefore, the quantum dots are arranged periodically as described above. In this case, the periodic interval of the quantum dots is 10 nm or less, preferably 2 nm to 5 nm. As a result, an array of quantum dots capable of transferring energy of excited photons is obtained. Further, in order to cause the localization of energy, the specific periodic interval of the quantum dots has a variation in the particle diameter of the quantum dots.
 また、光電変換層で利用可能な光に変換するには、波長変換膜10において、マトリクス層14の厚さ方向Hと幅方向wの配列を異ならせることにより、エネルギーの局在を生じせることにより実現できる。この場合、量子ドットが上述の周期配列と異なる配列を有し、20nm角以下の3次元量子サイズ空間での粒子密度の偏りを有することにより、フォトンの存在確率を変えることができる。この場合においても、上述のように、量子ドットの粒径のバラツキσ(標準偏差)が、1<σ<d/5nmの範囲で異なること、好ましくは、1<σ<d/10nmである。 Further, in order to convert light into light that can be used in the photoelectric conversion layer, in the wavelength conversion film 10, the arrangement of the matrix layer 14 in the thickness direction H and the width direction w is made different to cause localization of energy. Can be realized. In this case, the existence probability of photons can be changed by having the quantum dots have an arrangement different from the above-described periodic arrangement and having a deviation in particle density in a three-dimensional quantum size space of 20 nm square or less. Also in this case, as described above, the variation in the particle size of the quantum dots σ d (standard deviation) is different within the range of 1 <σ d <d / 5 nm, preferably 1 <σ d <d / 10 nm. It is.
 さらに、光電変換層で利用可能な光に変換するには、波長変換膜10が多層構造である場合、量子ドットの積層方向と、この積層方向と直交する方向の配列が同様な場合、すなわち、量子ドットが波長変換膜10内で、3次元的に上述の周期配列のように均一に等間隔に配列されている場合、量子ドットの粒径の偏りによりエネルギーの局在を生じさせてフォトンの存在確率を変えることにより実現することもできる。この場合でも、量子ドットの粒径がばらつきを有し、量子ドットの粒径のバラツキσ(標準偏差)が、1<σ<d/5nm、好ましくは1<σ<d/10nmであり、量子ドットは、前述のバラツキの範囲で異ならせる。 Furthermore, in order to convert into light that can be used in the photoelectric conversion layer, when the wavelength conversion film 10 has a multilayer structure, when the stacking direction of the quantum dots and the arrangement in the direction orthogonal to the stacking direction are similar, that is, In the case where the quantum dots are three-dimensionally arranged at regular intervals in the wavelength conversion film 10 as in the above-described periodic arrangement, energy localization is caused by the deviation in the particle size of the quantum dots, and the photons It can also be realized by changing the existence probability. Even in this case, the particle diameters of the quantum dots vary, and the dispersion of the quantum dot particle diameters σ d (standard deviation) is 1 <σ d <d / 5 nm, preferably 1 <σ d <d / 10 nm. Yes, the quantum dots are varied within the above-mentioned variation range.
 上述のように、反射防止機能を得るために、波長変換膜10の実効屈折率nを、例えば、光電変換層と空気との中間の値の2.4にする必要がある。そこで、マトリクス層14をSiOで構成し、量子ドットをSiで構成した場合における屈折率をシミュレーション計算により調べた。その結果、図6(a)に示すように、量子ドットの含有量が多くなると屈折率が高くなる。
 さらに、量子ドットの間隔と屈折率との関係をシミュレーション計算により調べた。その結果、図6(b)に示すように、屈折率を高くするには、量子ドットの間隔を狭くする必要がある。
 図6(a)、(b)に示すように、例えば、波長変換膜10の実効屈折率nを2.4にするには、量子ドットの間隔を狭く、かつ高い密度でマトリクス層14内に配置する必要がある。
As described above, in order to obtain the antireflection function, the effective refractive index n of the wavelength conversion film 10 needs to be 2.4, which is an intermediate value between the photoelectric conversion layer and air, for example. Therefore, the refractive index when the matrix layer 14 is made of SiO 2 and the quantum dots are made of Si was examined by simulation calculation. As a result, as shown in FIG. 6A, the refractive index increases as the content of quantum dots increases.
Furthermore, the relationship between the quantum dot spacing and the refractive index was investigated by simulation calculation. As a result, as shown in FIG. 6B, in order to increase the refractive index, it is necessary to narrow the interval between the quantum dots.
As shown in FIGS. 6A and 6B, for example, in order to set the effective refractive index n of the wavelength conversion film 10 to 2.4, the interval between the quantum dots is narrow and the matrix layer 14 has a high density. Need to be placed.
 次に、Si基板上に波長変換膜10を形成し、この波長変換膜10上にSiO膜を形成したものについて反射率を求めた。波長変換膜10は、SiOのマトリクス層14にSiの量子ドットが設けられたもの(Si量子ドット/SiO2Mat)であり、量子ドットの粒径は均一である。このとき、波長変換膜10の屈折率は1.80である。
 この場合、図7に示すように、反射率を約10%にすることができる。なお、反射率は、分光反射測定器(日立製U4000)を用いて測定した。
Next, a wavelength conversion film 10 on the Si substrate, was determined reflectivity for those forming the SiO 2 film on the wavelength conversion film 10. The wavelength conversion film 10 is a SiO 2 matrix layer 14 provided with Si quantum dots (Si quantum dots / SiO 2 Mat ), and the quantum dots have a uniform particle size. At this time, the refractive index of the wavelength conversion film 10 is 1.80.
In this case, as shown in FIG. 7, the reflectance can be about 10%. In addition, the reflectance was measured using the spectral reflection measuring device (Hitachi U4000).
 また、量子ドットの粒径を不均一にすることにより、充填率を高くし、波長変換膜10の屈折率を2.35と高くした。この場合、波長変換膜10は、SiOのマトリクス層14にSiの量子ドットが設けられたもの(Si量子ドット/SiO2Mat)である。その結果を図8に示す。なお、反射率は、分光反射測定器(日立製U4000)を用いて測定した。
 図8に示すように、反射率を図7に比して、さらに低くすることができる。このように、量子ドットの充填率を高くすることにより、屈折率が高くなり、その結果、反射率を低くすることができる。このため、波長変換膜10に入射する入射光Lの利用効率を高くすることができる。
Further, by making the particle size of the quantum dots non-uniform, the filling rate was increased and the refractive index of the wavelength conversion film 10 was increased to 2.35. In this case, the wavelength conversion film 10 is formed by providing Si quantum dots on the SiO 2 matrix layer 14 (Si quantum dots / SiO 2 Mat ). The result is shown in FIG. In addition, the reflectance was measured using the spectral reflection measuring device (Hitachi U4000).
As shown in FIG. 8, the reflectance can be further lowered as compared with FIG. As described above, by increasing the filling rate of the quantum dots, the refractive index is increased, and as a result, the reflectance can be decreased. For this reason, the utilization efficiency of the incident light L incident on the wavelength conversion film 10 can be increased.
 次に、本実施形態の波長変換膜10を有する光電変換装置について説明する。
 図9は、本発明の実施形態の光電変換装置を示す模式的断面図である。
 図9に示す光電変換装置40は、基材42上に反射層44が形成されており、この反射層44上に波長変換層46が設けられている。波長変換層46は、上述の波長変換膜10と同様の構成である。この波長変換層46上に第1の透明電極層48が設けられている。
 第1の透明電極層48上に光電変換層50が設けられており、この光電変換層50上に第2の透明電極層52が設けられている。
Next, a photoelectric conversion device having the wavelength conversion film 10 of this embodiment will be described.
FIG. 9 is a schematic cross-sectional view illustrating the photoelectric conversion device according to the embodiment of the present invention.
In the photoelectric conversion device 40 shown in FIG. 9, a reflective layer 44 is formed on a base material 42, and a wavelength conversion layer 46 is provided on the reflective layer 44. The wavelength conversion layer 46 has the same configuration as the wavelength conversion film 10 described above. A first transparent electrode layer 48 is provided on the wavelength conversion layer 46.
A photoelectric conversion layer 50 is provided on the first transparent electrode layer 48, and a second transparent electrode layer 52 is provided on the photoelectric conversion layer 50.
 さらに、第2の透明電極層52上に光閉込め層54が設けられている。
 本実施形態の光電変換装置40においては、光閉込め層54の表面54a側から入射された入射光Lのうち、光電変換層50で光電変換に利用されることなく通り抜けた、例えば、赤外線および近赤外線の長波長光Luを反射層44で反射させて、波長変換層46に入射させる。この波長変換層46では、利用されなかった長波長光Lu、例えば、波長1300nmの光をアップコンバージョン機能により、光電変換層50で光電変換に利用可能な短波長光Ls、例えば、1000nm程度に変換する。これにより、入射光Lを有効に利用することができるとともに、光電変換層50での入射光Lの利用効率を高くすることができる。
Further, a light confinement layer 54 is provided on the second transparent electrode layer 52.
In the photoelectric conversion device 40 of the present embodiment, among the incident light L incident from the surface 54a side of the light confinement layer 54, the photoelectric conversion layer 50 passes through without being used for photoelectric conversion, for example, infrared rays and Near-infrared long wavelength light Lu is reflected by the reflection layer 44 and is incident on the wavelength conversion layer 46. In this wavelength conversion layer 46, long wavelength light Lu that has not been used, for example, light having a wavelength of 1300 nm, is converted into short wavelength light Ls that can be used for photoelectric conversion by the photoelectric conversion layer 50, for example, about 1000 nm, by the up-conversion function. To do. Thereby, the incident light L can be used effectively, and the utilization efficiency of the incident light L in the photoelectric conversion layer 50 can be increased.
 基材42は、直接熱プロセスを実施する場合には、比較的耐熱性のある支持基板材料が用いられる。例えば、耐熱性ガラス、石英基板、ステンレス基板、もしくはステンレスと異種金属を積層した金属多層基板、アルミニウム基板、または表面に酸化処理(例えば、陽極酸化処理)を施すことで表面の絶縁性を向上してある酸化被膜付きのアルミニウム基板等が使用される。 The base material 42 is made of a relatively heat-resistant support substrate material when a direct thermal process is performed. For example, surface insulation can be improved by applying oxidation treatment (for example, anodizing treatment) to heat-resistant glass, quartz substrate, stainless steel substrate, metal multilayer substrate laminated with dissimilar metals with stainless steel, or aluminum substrate. An aluminum substrate with an oxide film is used.
 低温プロセスにて形成できる方法では、有機支持基板材料等を使用できる。具体的には、飽和ポリエステル/ポリエチレンテレフタレート(PET)系樹脂基板、ポリエチレンナフタレート(PEN)樹脂基板、架橋フマル酸ジエステル系樹脂基板、ポリカーボネート(PC)系樹脂基板、ポリエーテルスルフォン(PES)樹脂基板、ポリスルフォン(PSF、PSU)樹脂基板、ポリアリレート(PAR)樹脂基板、環状ポリオレフィン(COP、COC)樹脂基板、セルロース系樹脂基板、ポリイミド(PI)樹脂基板、ポリアミドイミド(PAI)樹脂基板、マレイミド-オレフィン樹脂基板、ポリアミド(PA)樹脂基板、アクリル系樹脂基板、フッ素系樹脂基板、エポキシ系樹脂基板、シリコーン系樹脂フィルム基板、ポリベンズアゾール系樹脂基板、エピスルフィド化合物による基板液晶ポリマー(LCP)基板、シアネート系樹脂基板、芳香族エーテル系樹脂基板、酸化ケイ素粒子との複合プラスチック材料、金属ナノ粒子、無機酸化物ナノ粒子、無機窒化物ナノ粒子などとの複合プラスチック材料、金属系・無機系のナノファイバー&マイクロファイバーとの複合プラスチック材料、カーボン繊維、カーボンナノチューブとの複合プラスチック材料、ガラスフェレーク、ガラスファイバー、ガラスビーズとの複合プラスチック材料、粘土鉱物と雲母派生結晶構造を有する粒子との複合プラスチック材料、薄いガラスと上記単独有機材料との間に少なくとも1つの接合界面を有する積層プラスチック材料、無機層(例えば、SiO、Al、SiOxNy)と上記有機層を交互に積層することで、少なくとも1つの接合界面を有するバリア性能を有する複合材料等を使用することができる。 In a method that can be formed by a low-temperature process, an organic support substrate material or the like can be used. Specifically, saturated polyester / polyethylene terephthalate (PET) resin substrate, polyethylene naphthalate (PEN) resin substrate, cross-linked fumaric acid diester resin substrate, polycarbonate (PC) resin substrate, polyethersulfone (PES) resin substrate , Polysulfone (PSF, PSU) resin substrate, polyarylate (PAR) resin substrate, cyclic polyolefin (COP, COC) resin substrate, cellulose resin substrate, polyimide (PI) resin substrate, polyamideimide (PAI) resin substrate, maleimide -Olefin resin substrate, polyamide (PA) resin substrate, acrylic resin substrate, fluorine resin substrate, epoxy resin substrate, silicone resin film substrate, polybenzazole resin substrate, substrate liquid crystal polymer with episulfide compound (L P) Substrate, cyanate resin substrate, aromatic ether resin substrate, composite plastic material with silicon oxide particles, composite plastic material with metal nanoparticles, inorganic oxide nanoparticles, inorganic nitride nanoparticles, metal / Composite plastic materials with inorganic nanofibers & microfibers, carbon fibers, composite plastic materials with carbon nanotubes, glass ferkes, glass fibers, composite plastic materials with glass beads, particles with clay mineral and mica derived crystal structure Composite plastic material, laminated plastic material having at least one bonding interface between thin glass and the above-mentioned single organic material, inorganic layer (for example, SiO 2 , Al 2 O 3 , SiOxNy) and the above organic layer alternately By laminating, it has at least one bonding interface. It can be used composite materials having that barrier performance.
 反射層44は、光電変換層50、第1の透明電極層48および波長変換層46を透過した光を反射させて波長変換層46に再度入射させるものであり、光電変換層50で光電変換利用されなかった、例えば、赤外線および近赤外線を反射させる。
 この反射層44は、例えば、厚さが500nmのAl膜により構成される。このAl膜は、例えば、蒸着にて形成される。なお、反射層44は、Au、Agおよび誘電体積層膜で構成することもできる。
The reflective layer 44 reflects the light that has passed through the photoelectric conversion layer 50, the first transparent electrode layer 48, and the wavelength conversion layer 46, and re-enters the wavelength conversion layer 46. The photoelectric conversion layer 50 uses photoelectric conversion. It did not, for example, reflect infrared and near infrared.
The reflection layer 44 is made of, for example, an Al film having a thickness of 500 nm. This Al film is formed by vapor deposition, for example. The reflective layer 44 can also be made of Au, Ag, and a dielectric laminated film.
 第1の透明電極層48は、P型透明電極層で構成される。この第1の透明電極層48(P型透明電極層)としては、例えば、CuAlO、CuGaO、CuInO等の組成:ABOと表記する時、AがCu、Agであり、BがAl、Ga、In、Sb、Biとなる合金である。また、このABOで表わされる合金、その固溶系の材料、およびDelafossite型微結晶体、ならびにこれらの材料の2種または3種の合金が用いられる。なお、第1の透明電極層48には、CuAlS、CuGaS、BドープSiC等を用いることができる。 The first transparent electrode layer 48 is composed of a P-type transparent electrode layer. As this first transparent electrode layer 48 (P-type transparent electrode layer), for example, a composition such as CuAlO 2 , CuGaO 2 , CuInO 2, etc .: when expressed as ABO 2 , A is Cu, Ag, and B is Al , Ga, In, Sb, Bi. In addition, an alloy represented by ABO 2 , a solid solution material thereof, and a Delaphosite type microcrystalline body, and two or three kinds of alloys of these materials are used. For the first transparent electrode layer 48, CuAlS 2 , CuGaS, B-doped SiC, or the like can be used.
 第2の透明電極層52は、N型透明電極層で構成される。この第2の透明電電極層(N型透明電極層)としては、例えば、IGZO、a-IGZO(アモルファスIGZO)のバンドギャップと等しいか大きい、Ga、SnO系(ATO、FTO)、ZnO系(AZO、GZO)、In系(ITO、)、Zn(O、S)CdO、もしくは、これらの材料の2種もしくは3種の合金を用いることができる。さらに、第2の透明電極層52としては、MgIn、GaInO、CdSb等を用いることもできる。 The second transparent electrode layer 52 is composed of an N-type transparent electrode layer. As the second transparent electrode layer (N-type transparent electrode layer), for example, Ga 2 O 3 , SnO 2 (ATO, FTO), which is equal to or larger than the band gap of IGZO, a-IGZO (amorphous IGZO) ZnO-based (AZO, GZO), In 2 O 3 -based (ITO,), Zn (O, S) CdO, or two or three alloys of these materials can be used. Furthermore, as the second transparent electrode layer 52, MgIn 2 O 4 , GaInO 3 , CdSb 3 O 6, or the like can be used.
 光電変換層50は、例えば、多結晶シリコンまたは単結晶シリコンにより構成されるものである。また、光電変換層50として、CIGS系光電変換層、CIS系光電変換層、CdTe系光電変換層、色素増感系光電変換層、または有機系光電変換層を用いることもできる。 The photoelectric conversion layer 50 is made of, for example, polycrystalline silicon or single crystal silicon. Moreover, as the photoelectric conversion layer 50, a CIGS type photoelectric conversion layer, a CIS type photoelectric conversion layer, a CdTe type photoelectric conversion layer, a dye-sensitized photoelectric conversion layer, or an organic type photoelectric conversion layer can also be used.
 光閉込め層54は、光閉込め機能、例えば、反射防止機能を有するものである。この光閉込め層54は、公知の反射防止膜を用いることができる。 The light confinement layer 54 has a light confinement function, for example, an antireflection function. As the light confinement layer 54, a known antireflection film can be used.
 次に、本実施形態の他の光電変換装置について説明する。
 図10(a)は、本発明の他の実施形態の光電変換装置を示す模式的断面図であり、(b)は、波長変換層の他の構成の要部を示す模式的斜視図である。
 図10(a)に示す光電変換装置40aは、図9に示す光電変換装置40に比して、波長変換層56の構成が異なり、それ以外の構成は、図9に示す光電変換装置40と同様の構成であるため、その詳細な説明は省略する。
Next, another photoelectric conversion device of this embodiment will be described.
FIG. 10A is a schematic cross-sectional view illustrating a photoelectric conversion device according to another embodiment of the present invention, and FIG. 10B is a schematic perspective view illustrating a main part of another configuration of the wavelength conversion layer. .
The photoelectric conversion device 40a illustrated in FIG. 10A is different from the photoelectric conversion device 40 illustrated in FIG. 9 in the configuration of the wavelength conversion layer 56, and other configurations are the same as the photoelectric conversion device 40 illustrated in FIG. Since the configuration is similar, detailed description thereof is omitted.
 図10(a)に示す光電変換装置40aの波長変換層56は、波長変換部58a(第2の層)と、樹脂部58b(第1の層)とが積層された積層構造を有するものである。
 波長変換部58a(第2の層)と樹脂部58b(第1の層)とは、それぞれ厚さが光学波長オーダ(数百nm)である。
 波長変換層56は、光電変換層50、第1の透明電極層48を透過した光電変換層50で光電変換に利用されていない長波長光Luを、波長変換層56の表面56aから出射させないようにするものである。すなわち、波長変換層56は、光電変換層50で光電変換に利用されていない長波長光Luを閉じ込めるものである。
 なお、長波長光Luを閉じ込める構成としては、例えば、上述の図5に示すように反射防止膜の構成を利用したものとすることができるため、その詳細な説明は省略する。
 波長変換層56において、波長変換部58aは、例えば、上記波長変換膜10と同じ構成とすることができる。このため、波長変換部58aについて詳細な説明は省略する。
The wavelength conversion layer 56 of the photoelectric conversion device 40a illustrated in FIG. 10A has a stacked structure in which a wavelength conversion unit 58a (second layer) and a resin unit 58b (first layer) are stacked. is there.
The wavelength conversion portion 58a (second layer) and the resin portion 58b (first layer) each have an optical wavelength order (several hundred nm).
The wavelength conversion layer 56 prevents the long wavelength light Lu that is not used for photoelectric conversion by the photoelectric conversion layer 50 that has passed through the photoelectric conversion layer 50 and the first transparent electrode layer 48 from being emitted from the surface 56 a of the wavelength conversion layer 56. It is to make. That is, the wavelength conversion layer 56 confines the long-wavelength light Lu that is not used for photoelectric conversion in the photoelectric conversion layer 50.
As a configuration for confining the long-wavelength light Lu, for example, the configuration of the antireflection film as shown in FIG. 5 described above can be used.
In the wavelength conversion layer 56, the wavelength conversion part 58a can be set as the same structure as the said wavelength conversion film 10, for example. For this reason, detailed description of the wavelength conversion unit 58a is omitted.
 樹脂部58bとしては、誘電体または有機物からなるものであり、例えば、光硬化性樹脂および熱硬化性樹脂が用いられ、光を透過するものであれば特に限定されるものではない。
 光硬化性樹脂および熱硬化性樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、エチレンビニルアセテート(EVA)樹脂等を用いることができる。
 シリコーン樹脂としては、市販のLED用シリコーン樹脂等が挙げられる。エチレンビニルアセテート(EVA)樹脂としては、例えば、三井化学ファブロ株式会社のソーラーエバ(商標)等を用いることができる。さらには、アイオノマー樹脂なども使用することができる。
The resin portion 58b is made of a dielectric material or an organic material, and is not particularly limited as long as, for example, a photocurable resin and a thermosetting resin are used and transmit light.
As the photocurable resin and the thermosetting resin, for example, an acrylic resin, an epoxy resin, a silicone resin, an ethylene vinyl acetate (EVA) resin, or the like can be used.
Examples of the silicone resin include commercially available silicone resins for LEDs. As the ethylene vinyl acetate (EVA) resin, for example, Solar EVA (trademark) manufactured by Mitsui Chemicals Fabro Co., Ltd. can be used. Furthermore, an ionomer resin or the like can be used.
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ナフタレン型エポキシ樹脂またはこれらの水添化物、ジシクロペンタジエン骨格を有するエポキシ樹脂、トリグリシジルイソシアヌレート骨格を有するエポキシ樹脂、カルド骨格を有するエポキシ樹脂、ポリシロキサン構造を有するエポキシ樹脂が挙げられる。 The epoxy resin has a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a naphthalene type epoxy resin or a hydrogenated product thereof, an epoxy resin having a dicyclopentadiene skeleton, and a triglycidyl isocyanurate skeleton. Examples thereof include an epoxy resin, an epoxy resin having a cardo skeleton, and an epoxy resin having a polysiloxane structure.
 アクリル樹脂としては、2つ以上の官能基を有する(メタ)アクリレートを用いることができる。また、アクリル樹脂として水分散型アクリル樹脂を用いることができる。この水分散型アクリル樹脂とは、水を主成分とする分散媒に分散したアクリルモノマー、オリゴマー、またはポリマーで、水分散液のような希薄な状態では架橋反応がほとんど進行しないが、水を蒸発させると常温でも架橋反応が進行し固化するタイプ、または自己架橋可能な官能基を有し、触媒、重合開始剤または反応促進剤などの添加剤を用いなくとも加熱のみで架橋し固化するタイプのアクリル樹脂である。 As the acrylic resin, (meth) acrylate having two or more functional groups can be used. A water-dispersed acrylic resin can be used as the acrylic resin. This water-dispersed acrylic resin is an acrylic monomer, oligomer or polymer dispersed in a dispersion medium containing water as the main component. In a dilute state like an aqueous dispersion, the crosslinking reaction hardly proceeds, but the water is evaporated. If this is done, the crosslinking reaction will proceed and solidify even at room temperature, or it will have a functional group capable of self-crosslinking, and it will be crosslinked and solidified only by heating without using additives such as catalysts, polymerization initiators or reaction accelerators. Acrylic resin.
 光電変換装置40aにおいては、光電変換層50を透過した、光電変換層50で光電変換に利用されていない長波長光Luを、波長変換層56の表面56aから出射されることがなく、光電変換層50に再度入射されることがない。しかも、長波長光Luを、波長変換層56の表面56aから発熱させることなく出射させないため、光電変換層50に悪影響を与えることがない。このように、光電変換装置40aにおいては、光電変換層50で光電変換に利用されない長波長光Luの再入射を抑制し、光電変換に利用されない長波長光Luの悪影響を抑制することができる。 In the photoelectric conversion device 40a, the long-wavelength light Lu that has passed through the photoelectric conversion layer 50 and is not used for photoelectric conversion by the photoelectric conversion layer 50 is not emitted from the surface 56a of the wavelength conversion layer 56, and thus photoelectric conversion is performed. It is not incident on the layer 50 again. In addition, since the long wavelength light Lu is not emitted from the surface 56a of the wavelength conversion layer 56 without generating heat, the photoelectric conversion layer 50 is not adversely affected. Thus, in the photoelectric conversion device 40a, the re-incidence of the long wavelength light Lu that is not used for photoelectric conversion in the photoelectric conversion layer 50 can be suppressed, and the adverse effect of the long wavelength light Lu that is not used for photoelectric conversion can be suppressed.
 なお、光電変換装置40aの波長変換層56の波長変換部58aの構成は、上記波長変換膜10に限定されるものではなく、例えば、図10(b)に示す波長変換部60を用いることができる。
 この波長変換部60は、マトリクス層62に、量子ドット64が複数周期的に配置されたものである。この場合、例えば、図6(a)、(b)に示すように、量子ドットの含有量と屈折率の関係を用いて、波長変換部60の屈折率を調整し、樹脂部58bと組み合わせて、例えば、波長変換層56内に長波長光Luを閉じ込めるようにしてもよい。
In addition, the structure of the wavelength conversion part 58a of the wavelength conversion layer 56 of the photoelectric conversion apparatus 40a is not limited to the said wavelength conversion film 10, For example, using the wavelength conversion part 60 shown in FIG.10 (b) is used. it can.
In the wavelength conversion unit 60, a plurality of quantum dots 64 are periodically arranged on a matrix layer 62. In this case, for example, as shown in FIGS. 6A and 6B, the refractive index of the wavelength conversion unit 60 is adjusted using the relationship between the content of the quantum dots and the refractive index, and combined with the resin unit 58b. For example, the long wavelength light Lu may be confined in the wavelength conversion layer 56.
 なお、光電変換装置40aにおいて、樹脂部58b(第1の層)の実効屈折率をnaとし、波長変換部58a(第2の層)の屈折率をnbとするとき、0.3<|nb-na|であることが好ましい。この場合、波長変換部58a(第2の層)の屈折率nbは、波長変換膜10の実効屈折率nと同じく、例えば、波長533nmにおいて、1.8≦n≦4.0であり、好ましくは、波長533nmにおいて1.8≦n≦2.5である。
 樹脂部58b(第1の層)の実効屈折率naと波長変換部58a(第2の層)の屈折率nbの屈折率差が大きいほど、同じ反射を得るのに層数を少なくすることができる。しかしながら、屈折率差を大きくすると材料選択範囲が狭くなる。波長変換層56の積層数が、例えば、10層程度で、所定の反射率が得られるようにするには、屈折率差は0.3程度である。このため、樹脂部58b(第1の層)の実効屈折率naと波長変換部58a(第2の層)の屈折率nbの屈折率差は、0.3<|nb-na|であることが好ましい。
In the photoelectric conversion device 40a, when the effective refractive index of the resin portion 58b (first layer) is na and the refractive index of the wavelength conversion portion 58a (second layer) is nb, 0.3 <| nb It is preferable that −na |. In this case, the refractive index nb of the wavelength conversion unit 58a (second layer) is, for example, 1.8 ≦ n ≦ 4.0 at a wavelength of 533 nm, which is preferably the same as the effective refractive index n of the wavelength conversion film 10. Is 1.8 ≦ n ≦ 2.5 at a wavelength of 533 nm.
The larger the refractive index difference between the effective refractive index na of the resin portion 58b (first layer) and the refractive index nb of the wavelength converting portion 58a (second layer), the smaller the number of layers for obtaining the same reflection. it can. However, increasing the refractive index difference narrows the material selection range. In order to obtain a predetermined reflectance when the number of wavelength conversion layers 56 is about 10 for example, the difference in refractive index is about 0.3. For this reason, the refractive index difference between the effective refractive index na of the resin portion 58b (first layer) and the refractive index nb of the wavelength conversion portion 58a (second layer) is 0.3 <| nb−na |. Is preferred.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の波長変換膜および光電変換装置について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. As described above, the wavelength conversion film and the photoelectric conversion device of the present invention have been described in detail. Of course.
 10 波長変換膜
 12 基板
 14、62 マトリクス層
 16 第1の量子ドット
 18 第2の量子ドット
 20 輝尽性発光材
 22a、22b、23a、23b、24a、24b、25a、25b 量子井戸
 30 積層体
 32 SiO
 34 SiO/Yb
 36 Si/SiO
 38 SiGeO層
 40 光電変換装置
 42 基材
 44 反射層
 46、56 波長変換層
 48 第1の透明電極層
 50 光電変換層
 52 第2の透明電極層
 54 光閉込め層
 58a、60 波長変換部
 64 量子ドット
DESCRIPTION OF SYMBOLS 10 Wavelength conversion film 12 Substrate 14, 62 Matrix layer 16 1st quantum dot 18 2nd quantum dot 20 Stimulable luminescent material 22a, 22b, 23a, 23b, 24a, 24b, 25a, 25b Quantum well 30 Laminate body 32 SiO 2 layer 34 SiO 2 / Yb 2 O 3 layer 36 Si / SiO 2 layer 38 SiGeO layer 40 photoelectric conversion device 42 base material 44 reflective layer 46, 56 wavelength conversion layer 48 first transparent electrode layer 50 photoelectric conversion layer 52 first 2 transparent electrode layers 54 light confinement layer 58a, 60 wavelength conversion unit 64 quantum dots

Claims (12)

  1.  マトリクス層と、
     前記マトリクス層内に設けられた第1の量子ドットと、
     前記マトリクス層内に設けられた第2の量子ドットと、
     前記マトリクス層内に設けられた輝尽性発光材とを有し、
     前記第1の量子ドットおよび前記第2の量子ドットは、前記第1の量子ドットに多重光を照射したときに励起される第1の基底エネルギー準位が、前記第2の量子ドットに多重光を照射したときに励起される第2の基底エネルギー準位より大きく、
     前記マトリクス層は、バンドギャップが前記第1の基底エネルギー準位よりも大きい誘電体または有機材料で構成されており、
     前記第1の量子ドットと前記第2の量子ドットを接合させた場合、そのエネルギーバンド構造がタイプIIをなし、
     各量子ドットの周囲の前記マトリクス層は、前記マトリクス層の前記バンドキャップと各量子ドット間距離、前記マトリクス層の厚さとの組合せにより選択的なトンネル障壁を形成し、かつ前記輝尽性発光材の発光遷移するエネルギー準位差ΔECより高いエネルギー準位でのエネルギー遷移確率が高くなるミニバンドを形成させ、前記マトリクス層内に設けられた前記輝尽性発光材にエネルギー遷移させることにより、アップコンバージョンさせることを特徴とする波長変換膜。
    A matrix layer;
    A first quantum dot provided in the matrix layer;
    A second quantum dot provided in the matrix layer;
    A stimulable luminescent material provided in the matrix layer,
    The first quantum dot and the second quantum dot have a first ground energy level excited when the first quantum dot is irradiated with multiple light, and the second quantum dot has multiple light. Greater than the second ground energy level excited when irradiated with
    The matrix layer is made of a dielectric or organic material having a band gap larger than the first ground energy level,
    When the first quantum dot and the second quantum dot are joined, the energy band structure is type II,
    The matrix layer around each quantum dot forms a selective tunnel barrier by a combination of the band cap of the matrix layer, the distance between each quantum dot, and the thickness of the matrix layer, and the photostimulable luminescent material By forming a mini-band that has a higher energy transition probability at an energy level higher than the energy level difference ΔEC of the light emission transition of the light source, and making the energy transition to the photostimulable luminescent material provided in the matrix layer A wavelength conversion film characterized by being converted.
  2.  前記エネルギーバンド構造において、伝導帯ミニバンドと価電子帯ミニバンド間の最小エネルギー準位差をΔEABとしたとき、ΔEAB≧ΔECであり、
     少なくとも前記第2の量子ドットに吸収された長波長の光が、前記マトリクス層中の前記輝尽性発光材から短波長の光を発生させる請求項1に記載の波長変換膜。
    In the energy band structure, when the minimum energy level difference between the conduction band miniband and the valence band miniband is ΔEAB, ΔEAB ≧ ΔEC,
    The wavelength conversion film according to claim 1, wherein at least the long-wavelength light absorbed by the second quantum dots generates short-wavelength light from the photostimulable luminescent material in the matrix layer.
  3.  前記第1の量子ドットおよび前記第2の量子ドットは直径が2~20nmであり、
     前記第1の量子ドットおよび第2の量子ドットは、それぞれ前記マトリクス層の厚さ方向に所定の距離をあけて層状に交互に配置されている請求項1または2に記載の波長変換膜。
    The first quantum dot and the second quantum dot have a diameter of 2 to 20 nm,
    3. The wavelength conversion film according to claim 1, wherein the first quantum dots and the second quantum dots are alternately arranged in layers at a predetermined distance in the thickness direction of the matrix layer.
  4.  前記輝尽性発光材は、少なくとも前記マトリクス層の厚さ方向において隣接する第1の量子ドットおよび前記第2の量子ドット間のほぼ中間に配置されている請求項1~3のいずれか1項に記載の波長変換膜。 4. The stimulable luminescent material is disposed at approximately the middle between the first quantum dots and the second quantum dots that are adjacent at least in the thickness direction of the matrix layer. The wavelength conversion film described in 1.
  5.  前記第1の量子ドットおよび前記第2の量子ドットは、間接遷移半導体で構成されている請求項1~4のいずれか1項に記載の波長変換膜。 5. The wavelength conversion film according to claim 1, wherein the first quantum dot and the second quantum dot are made of an indirect transition semiconductor.
  6.  前記マトリクス層は、バンドギャップが3eV以上の無機材または有機物からなり、前記輝尽性発光材は、希土類イオンまたは金属イオンからなる請求項1~5のいずれか1項に記載の波長変換膜。 6. The wavelength conversion film according to claim 1, wherein the matrix layer is made of an inorganic material or an organic material having a band gap of 3 eV or more, and the stimulable light emitting material is made of rare earth ions or metal ions.
  7.  波長変換膜の実効屈折率をnとするとき、実効屈折率nは、1.8≦n≦4である請求項1~6のいずれか1項に記載の波長変換膜。 7. The wavelength conversion film according to claim 1, wherein the effective refractive index n is 1.8 ≦ n ≦ 4, where n is an effective refractive index of the wavelength conversion film.
  8.  前記第1の量子ドットは、SiGe(1-x)(X>0.7)からなり、前記第2の量子ドットは、SiGe(1-x)(X<0.7)からなるものであり、前記希土類イオンはYb3+イオン、Er3+イオン、またはTm3+イオンであり、前記金属イオンはMnイオンである請求項6または7に記載の波長変換膜。 The first quantum dot is made of Si x Ge (1-x) (X> 0.7), and the second quantum dot is made of Si x Ge (1-x) (X <0.7). The wavelength conversion film according to claim 6, wherein the rare earth ions are Yb 3+ ions, Er 3+ ions, or Tm 3+ ions, and the metal ions are Mn ions.
  9.  前記マトリクス層は、SiO、SiNまたはSiCからなる請求項1~8のいずれか1項に記載の波長変換膜。 The wavelength conversion film according to any one of claims 1 to 8, wherein the matrix layer is made of SiO 2 , SiN X, or SiC.
  10.  請求項1~9のいずれか1項に記載の波長変換膜が、光電変換層の光の入射側とは反対側に配置されていることを特徴とする光電変換装置。 10. A photoelectric conversion device, wherein the wavelength conversion film according to claim 1 is disposed on a side opposite to a light incident side of the photoelectric conversion layer.
  11.  前記波長変換膜は、長波長光を透過させ、短波長光を反射させる光閉じ込め機能を有する請求項10に記載の光電変換装置。 The photoelectric conversion device according to claim 10, wherein the wavelength conversion film has a light confinement function of transmitting long wavelength light and reflecting short wavelength light.
  12.  誘電体または有機物からなる第1の層と、請求項1~9のいずれか1項に記載の波長変換膜からなる第2の層とが積層された積層構造を有し、前記第1の層および前記第2の層は、それぞれ厚さが光学波長オーダであり、
     前記第1の層の実効屈折率をnaとし、前記第2の層の屈折率をnbとするとき、0.3<|nb-na|であることを特徴とする光電変換装置。
    A first layer made of a dielectric material or an organic material and a second layer made of the wavelength conversion film according to any one of claims 1 to 9, wherein the first layer has a laminated structure. And each of the second layers has an optical wavelength order of thickness,
    A photoelectric conversion device, wherein 0.3 <| nb−na |, where the effective refractive index of the first layer is na and the refractive index of the second layer is nb.
PCT/JP2012/067936 2011-08-25 2012-07-13 Wavelength conversion film and photoelectric conversion device WO2013027509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-183699 2011-08-25
JP2011183699A JP2013045948A (en) 2011-08-25 2011-08-25 Wavelength conversion film and photoelectric conversion device

Publications (1)

Publication Number Publication Date
WO2013027509A1 true WO2013027509A1 (en) 2013-02-28

Family

ID=47746260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067936 WO2013027509A1 (en) 2011-08-25 2012-07-13 Wavelength conversion film and photoelectric conversion device

Country Status (2)

Country Link
JP (1) JP2013045948A (en)
WO (1) WO2013027509A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400909A (en) * 2013-08-23 2013-11-20 贵州大学 Method and product for improving light-emitting efficiency of semiconductor and manufacturing method of product
CN107827076A (en) * 2015-12-31 2018-03-23 陶氏环球技术有限责任公司 Nano structural material structures and methods
JP2019113765A (en) * 2017-12-25 2019-07-11 東洋インキScホールディングス株式会社 Color conversion layer and image display device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489913B1 (en) 2014-03-13 2015-02-06 한국과학기술연구원 Gap plasmon resonator comprising up-conversion nanoparticles and solar cell using the same
KR102206298B1 (en) * 2019-01-29 2021-01-21 국민대학교산학협력단 Solar cell having light energy up-conversion layer
KR102280819B1 (en) * 2019-04-16 2021-07-22 한국광기술원 Wavelength Conversion Broadband Optical Element and Manufacturing Method Therof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277740A (en) * 2002-01-17 2003-10-02 Japan Science & Technology Corp WHITE LIGHT EMITTING Si:SiO2 FILM AND WHITE LIGHT EMITTING ELEMENT CONTAINING THE SAME
JP2004083740A (en) * 2002-08-27 2004-03-18 Japan Science & Technology Corp BLUE LIGHT-EMITTING Si:SiO2 FILM, BLUE LIGHT-EMITTING ELEMENT HAVING THE SAME AND METHOD FOR PRODUCING BLUE LIGHT-EMITTING Si:SiO2 FILM
JP2006207027A (en) * 2005-01-19 2006-08-10 Sharp Corp Rare earth element-doped silicon/silicon dioxide lattice structure and method for producing the same
JP2010034499A (en) * 2008-06-27 2010-02-12 Univ Of Tokyo Solar cell
JP2010118491A (en) * 2008-11-13 2010-05-27 Seiko Epson Corp Photoelectric conversion device, and electronic apparatus
JP2011003663A (en) * 2009-06-17 2011-01-06 Mitsubishi Electric Corp Thin-film photoelectric conversion device
JP2011054814A (en) * 2009-09-03 2011-03-17 Mitsubishi Rayon Co Ltd Light collecting member for solar cell, and solar cell
JP2011116904A (en) * 2009-12-04 2011-06-16 Sumitomo Bakelite Co Ltd Method for producing composite particle, composite particle, resin composition, wavelength conversion layer, and photovoltaic device
JP2012114419A (en) * 2010-11-04 2012-06-14 Fujifilm Corp Quantum dot structure and method of forming quantum dot structure, and wavelength conversion element, optical converter and photoelectric converter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277740A (en) * 2002-01-17 2003-10-02 Japan Science & Technology Corp WHITE LIGHT EMITTING Si:SiO2 FILM AND WHITE LIGHT EMITTING ELEMENT CONTAINING THE SAME
JP2004083740A (en) * 2002-08-27 2004-03-18 Japan Science & Technology Corp BLUE LIGHT-EMITTING Si:SiO2 FILM, BLUE LIGHT-EMITTING ELEMENT HAVING THE SAME AND METHOD FOR PRODUCING BLUE LIGHT-EMITTING Si:SiO2 FILM
JP2006207027A (en) * 2005-01-19 2006-08-10 Sharp Corp Rare earth element-doped silicon/silicon dioxide lattice structure and method for producing the same
JP2010034499A (en) * 2008-06-27 2010-02-12 Univ Of Tokyo Solar cell
JP2010118491A (en) * 2008-11-13 2010-05-27 Seiko Epson Corp Photoelectric conversion device, and electronic apparatus
JP2011003663A (en) * 2009-06-17 2011-01-06 Mitsubishi Electric Corp Thin-film photoelectric conversion device
JP2011054814A (en) * 2009-09-03 2011-03-17 Mitsubishi Rayon Co Ltd Light collecting member for solar cell, and solar cell
JP2011116904A (en) * 2009-12-04 2011-06-16 Sumitomo Bakelite Co Ltd Method for producing composite particle, composite particle, resin composition, wavelength conversion layer, and photovoltaic device
JP2012114419A (en) * 2010-11-04 2012-06-14 Fujifilm Corp Quantum dot structure and method of forming quantum dot structure, and wavelength conversion element, optical converter and photoelectric converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400909A (en) * 2013-08-23 2013-11-20 贵州大学 Method and product for improving light-emitting efficiency of semiconductor and manufacturing method of product
CN107827076A (en) * 2015-12-31 2018-03-23 陶氏环球技术有限责任公司 Nano structural material structures and methods
JP2019113765A (en) * 2017-12-25 2019-07-11 東洋インキScホールディングス株式会社 Color conversion layer and image display device

Also Published As

Publication number Publication date
JP2013045948A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
WO2013027509A1 (en) Wavelength conversion film and photoelectric conversion device
JP2013149729A (en) Quantum dot structure, wavelength conversion element, and photoelectric conversion device
US20100288344A1 (en) Methods and apparatus for wavelength conversion in solar cells and solar cell covers
US20140007921A1 (en) Wavelength conversion element and photoelectric conversion device
US11152888B2 (en) High efficiency photovoltaic cells with suppressed radiative emission due to chemical nonequilibrium of photoelectrons
EP2184786A1 (en) Photovoltaic force device
JP5538530B2 (en) Hot carrier energy conversion structure and manufacturing method thereof
JP6531953B2 (en) Solar cell module
JP6055619B2 (en) Solar cell
Chen et al. Upconversion of low-energy photons in semiconductor nanostructures for solar energy harvesting
US20120060918A1 (en) Energy conversion device for photovoltaic cells
US20100313940A1 (en) Photovoltaic assembly comprising an optically active glass ceramic
JP2009026887A (en) Solar cell
JP5732410B2 (en) Method for forming quantum dot structure, wavelength conversion element, light-to-light conversion device, and photoelectric conversion device
JP5548878B2 (en) Multi-junction optical element
JP5557721B2 (en) Manufacturing method of solar cell
RU2410796C1 (en) Photovoltaic module design
WO2013031376A1 (en) Quantum dot structure, wavelength conversion element, light photoconversion device, photoelectric conversion device
JP2013051318A (en) Process of manufacturing quantum dot structure, wavelength conversion element and photoelectric conversion device
TW201121060A (en) Solar cells and apparatus comprising the same
JP2011029464A (en) Quantum dot solar cell
JP5487295B2 (en) Solar cell
CN114420772B (en) Double-spectrum thin film type multi-junction photovoltaic device structure
JP6456585B2 (en) Photoelectric conversion element
JP6328891B2 (en) Solar cell and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825611

Country of ref document: EP

Kind code of ref document: A1