WO2012102208A1 - 核酸修飾方法 - Google Patents
核酸修飾方法 Download PDFInfo
- Publication number
- WO2012102208A1 WO2012102208A1 PCT/JP2012/051230 JP2012051230W WO2012102208A1 WO 2012102208 A1 WO2012102208 A1 WO 2012102208A1 JP 2012051230 W JP2012051230 W JP 2012051230W WO 2012102208 A1 WO2012102208 A1 WO 2012102208A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nucleic acid
- sample
- nucleotides
- modifying agent
- dna
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/01—Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6811—Selection methods for production or design of target specific oligonucleotides or binding molecules
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6848—Nucleic acid amplification reactions characterised by the means for preventing contamination or increasing the specificity or sensitivity of an amplification reaction
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
Definitions
- the present invention relates to a method for modifying a nucleic acid that is effective in reducing a signal derived from a nucleic acid contained in a sample in the execution of a nucleic acid detection method, a kit used for the method, and a composition.
- Nucleic acid detection technology is currently a general research technique in the fields of medicine and biology, and is widely used in qualitative and quantitative measurements.
- the combination with the nucleic acid amplification method represented by the PCR method makes it possible to detect the presence of very few cells and microorganisms using these cells and nucleic acids peculiar to microorganisms as a target.
- As basic research it became widely used throughout the industry.
- by using artificially mixed nucleic acids of a specific sequence and labeling substances and articles they are also used for tracking distribution channels and determining authenticity.
- the detection method using the nucleic acid amplification method causes a problem of interference with analysis of other samples by the amplified nucleic acid generated by the nucleic acid amplification reaction during the detection operation.
- amplification products with enormous number of molecules are generated by logarithmic nucleic acid amplification, so incorrect analysis for amplification that occurs using amplification products mixed in other samples, reagents, test instruments and test environments as templates Results may occur.
- Non-patent Document 1 a method in which a photoactivated psoralen compound is covalently bonded to a nucleic acid to prevent the nucleic acid from functioning as a template in a nucleic acid amplification reaction.
- Non-patent Document 2 a method for distinguishing between live and dead cells in which a nucleic acid modifying agent and a nucleic acid amplification method are combined has been reported (Non-patent Document 2, Patent Document 1).
- This nucleic acid-based detection method uses ethidium monoazide (EMA) or propidium monoazide (PMA) as a nucleic acid modifying agent, and combines with nucleic acid amplification methods such as real-time PCR to determine whether or not live cells and dead cells are amplified.
- EMA ethidium monoazide
- PMA propidium monoazide
- EMA has been reported to be activated under visible light to covalently bind to nucleic acids and inhibit nucleic acid amplification reactions.
- nucleic acids derived from living cells into which EMA has not invaded by an intact cell membrane or cell wall are not affected by EMA.
- nucleic acid derived from dead cells invaded by EMA is modified by EMA, and subsequent nucleic acid amplification reaction is inhibited. Therefore, by treating a sample comprising a mixture of living cells and dead cells with the nucleic acid modifying agent, nucleic acids derived from living cells are selectively amplified.
- the nucleic acid modification method has various uses, a method for modifying the nucleic acid more efficiently is demanded.
- An object of the present invention is to provide a method for efficiently modifying a nucleic acid desired to prevent detection, and to improve the accuracy of various nucleic acid-based detection techniques.
- the present inventors have achieved a method for modifying a nucleic acid contained in a sample, which comprises a step of bringing the sample into contact with a nucleic acid modifying agent in the presence of acidic polysaccharides and / or nucleotides.
- the present inventors have found that nucleic acid modification can be carried out more efficiently than in the prior art, and have completed the present invention.
- a method for modifying a nucleic acid contained in a sample comprising a step of contacting the sample with a nucleic acid modifying agent in the presence of acidic polysaccharides and / or nucleotides.
- the nucleic acid modifying agent is a compound that modifies a nucleic acid by photoactivation
- the nucleic acid modifier is a compound selected from ethidium monoazide and propidium monoazide.
- nucleic acid modifier is a compound selected from ethidium monoazide and propidium monoazide.
- the acidic polysaccharide is an acidic polysaccharide selected from sodium alginate and chondroitin sulfate B, or the nucleotides are nucleotides selected from DNA and dNTPs,
- step (b) is performed by a nucleic acid amplification method
- step (b) is performed by real-time PCR
- nucleic acid modifier is a compound selected from ethidium monoazide and propidium monoazide.
- the acidic polysaccharide is an acidic polysaccharide selected from sodium alginate and chondroitin sulfate B, or the nucleotides are nucleotides selected from DNA and dNTPs,
- nucleic acid modifier is a compound selected from ethidium monoazide and propidium monoazide.
- the acidic polysaccharide is an acidic polysaccharide selected from sodium alginate and chondroitin sulfate B, or the nucleotides are nucleotides selected from DNA and dNTPs, [19] (A) a nucleic acid modifying agent; and (b) acidic polysaccharides and / or nucleotides; A composition comprising, [20] The composition according to [19], wherein the nucleic acid modifying agent is a compound that modifies a nucleic acid by photoactivation.
- composition according to [20] wherein the nucleic acid modifier is a compound selected from ethidium monoazide and propidium monoazide, and [22] an acidic polysaccharide in which the acidic polysaccharide is selected from sodium alginate and chondroitin sulfate B Or a composition according to [19], wherein the nucleotides are nucleotides selected from DNA and dNTPs.
- the method of the present invention can improve the efficiency of nucleic acid modification in the treatment of bringing a sample into contact with a nucleic acid modifying agent, and is extremely useful for improving the accuracy of food hygiene tests and clinical tests.
- the method for modifying a nucleic acid of the present invention includes a step of bringing a sample into contact with a nucleic acid modifying agent in the presence of acidic polysaccharides and / or nucleotides, and a method for modifying a nucleic acid contained in a sample. It is.
- the samples to be subjected to the method of the present invention are all samples in which nucleic acids may exist.
- food agricultural products, marine products, biological tissues and body fluids (blood, urine, spinal fluid, pleural effusion, etc.), cell culture solutions, chemical products (pharmaceuticals, agricultural chemicals, reagents, etc.), industrial water, city water, groundwater, river water , Water storage, rainwater, drainage or soil.
- the food includes beverages, confectionery, dairy products, functional foods and the like.
- the sample may be a product, a biological sample, or an environmental sample itself as described above, and may be a sample obtained by pretreatment such as dissolution, suspension, dilution, concentration, or purification. .
- pretreatment examples include heat treatment, filtration, and centrifugation. Further, as a pretreatment, a treatment for reducing impurities such as proteins and fats present in the sample, for example, an enzyme treatment with a proteolytic enzyme and a lipolytic enzyme may be performed.
- the nucleic acid modifying agent used in the present invention is a substance that can be modified to a form in which a nucleic acid cannot be detected by its action. That is, one of a change in the ability to form a hybrid with a complementary strand of nucleic acid, a change in function as a template in complementary strand replication, a change in the original sequence, and a fragmentation of nucleic acid, or a combination of these
- the substance which causes is illustrated.
- the modification of the nucleic acid in the present invention includes intercalation of the nucleic acid modifying agent to the nucleobase pair, covalent bonding of the nucleic acid modifying agent to the nucleic acid, cross-linking of the nucleic acid, substitution of the nucleobase, nucleic acid modification by the nucleic acid modifying agent. Cutting included.
- Suitable nucleic acid modifying agents for the present invention include EMA (ethidium monoazide), PMA (propidium monoazide), ethidium diazide, psoralen compound (psoralen), 4'-AMDMIP (4'-aminomethyl-4,5'- dimethylphosphosoralen), AMIP (5-aminothysoposalene), 5-MIP (5-methysopsoralen), 8-methoxypsoralen, etc.] and propidium iodide.
- modifying agents contained in commercially available kits such as LIVE / DEAD BacLight Bacterial Viability Kit, ViaGram Red + Bacterial Gram Stain, Viability Kit (manufactured by Molecular Probe) can also be used.
- the concentration of the nucleic acid modifying agent used in the present invention and the time of contact with the sample can be appropriately set according to the sample. For example, a plurality of concentrations of the nucleic acid modifying agent are added to the sample, and the time is constant. It can be determined by contacting and analyzing the modification of the nucleic acid after the reaction.
- the nucleic acid is modified under conditions of a final concentration of 1 to 100 ⁇ M, 1 minute to 48 hours, preferably 5 to 70 ⁇ M, 3 minutes to 10 hours, more preferably 10 to 50 ⁇ M, 5 minutes to 5 hours. be able to.
- the step of bringing the sample into contact with the nucleic acid modifying agent may be performed under conditions suitable for the nucleic acid modifying agent to be used.
- the sample is brought into contact with the nucleic acid modifying agent, followed by light irradiation treatment.
- a nucleic acid modifying agent that undergoes photoactivation such as EMA, PMA, psoralen compound, etc.
- the nucleic acid modifying agent is usually added to a sample, and the nucleic acid and the nucleic acid modifying agent are kept at low temperatures (for example, After the contact at room temperature to 0 ° C., light irradiation treatment is performed.
- the wavelength of light used for the light irradiation treatment is not particularly limited as long as it is suitable for the activation of the nucleic acid modifier, and includes, for example, single wavelength light having a wavelength of 350 to 700 nm or wavelength of 350 to 700 nm. Multi-wavelength light can be used.
- the light intensity and irradiation time of the light irradiation treatment can be appropriately set according to the nucleic acid modifier, the light source and the sample to be used. For example, the intensity of the light source and the distance between the sample and the light source can be changed, It can be determined by analyzing the modification of the nucleic acid.
- EMA Light Emitting Diode
- the distance from the sample is set to 1 to 50 cm, and the light irradiation treatment can be performed under the condition of irradiation for 1 to 20 minutes.
- an LED (Light Emitting Diode) lamp with low power consumption and high brightness has been developed and can be used in the present invention.
- the light irradiation treatment is preferably performed at a low temperature (for example, on ice).
- the acidic polysaccharide used in the method of the present invention is a sulfate containing sulfate group typified by sulfated fucose-containing polysaccharide, dextran sulfate, carrageenan, heparin, heparan sulfate, rhamnan sulfate, chondroitin sulfate, chondroitin sulfate B (dermatan sulfate) and the like.
- Polysaccharides, polyuronic acids such as hyaluronic acid, alginic acid and pectin and their salts.
- Examples of the salt of the acidic polysaccharide include alkali metal salts such as sodium dextran sulfate, sodium alginate, sodium heparin, potassium dextran sulfate, and lithium heparin.
- the acidic polysaccharide may be a natural product or a chemically or enzymatically synthesized product. Furthermore, any of an unpurified product, a partially purified product, or a purified product containing an acidic polysaccharide may be used.
- the acidic polysaccharide can be used singly or in combination.
- the concentration of the acidic polysaccharide used in the method of the present invention can be appropriately set and added according to the acidic polysaccharide to be used and the sample.
- the concentration of the acidic polysaccharide is changed to modify the nucleic acid after the treatment.
- the concentration is 1 ⁇ g / mL to 100 mg / mL, preferably 10 ⁇ g / mL to 10 mg / mL, more preferably 100 ⁇ g / mL to 5 mg / mL.
- the concentration is 10 ⁇ g / mL to 1000 mg / mL, preferably 100 ⁇ g / mL to 500 mg / mL, more preferably 1 mg / mL to 100 mg / mL.
- nucleic acid modifying agent When a nucleic acid modifying agent is allowed to act on a sample in the presence of the above acidic polysaccharide, not only free nucleic acids in the sample but also non-free nucleic acids in an environment where the nucleic acid modifying agent can contact, such as biomolecules The rate of modification of nucleic acids, particularly DNA, contained in dead cells with increased permeability to cell membranes or cell membranes is improved. For this reason, it becomes possible to reduce interference derived from these nucleic acids and DNA in the nucleic acid detection method.
- acting a nucleic acid modifying agent on a sample in the presence of acidic polysaccharide means “an act of artificially adding an acidic polysaccharide to a sample and then causing the nucleic acid modifying agent to act”.
- the nucleotides used in the method of the present invention refer to substances containing ribonucleotides, deoxyribonucleotides, and the like constituting nucleic acids as constituents.
- DNA, RNA, oligoribonucleotide, oligodeoxyribonucleotide, monoribonucleotide (for example, monoribonucleoside triphosphate: NTP), monodeoxyribonucleotide (for example, monodeoxyribonucleoside triphosphate: dNTP) is used in the present invention.
- NTP includes monoadenosine triphosphate (ATP), monothymidine triphosphate (TTP), monocytidine triphosphate (CTP), monoguanosine triphosphate (GTP), and monouridine triphosphate (UTP). .
- ATP monoadenosine triphosphate
- TTP monothymidine triphosphate
- CTP monocytidine triphosphate
- GTP monoguanosine triphosphate
- UDP monouridine triphosphate
- dNTPs include monodeoxyadenosine triphosphate (dATP), monodeoxythymidine triphosphate (dTTP), monodeoxycytidine triphosphate (dCTP), and monodeoxyguanosine triphosphate (dGTP).
- the nucleotides in this invention include the salt (for example, alkali metal salt) of the said substance.
- the nucleotides may be natural products or chemically or enzymatically synthesized products. Furthermore, any of an unpurified product, a partially purified product or a purified product containing nucleotides may be used. The nucleotides can be used singly or in combination.
- nucleotides selected from DNA and dNTPs can be used.
- the DNA used in the present invention is not particularly limited, but DNA derived from animals (calf thymus DNA, salmon sperm DNA, etc.) and microorganism-derived DNA (bacterial genomic DNA, bacterio Phage DNA, plasmid DNA, etc.) are exemplified. Calf thymus DNA, ⁇ phage DNA ( ⁇ DNA), and dNTP are commercially available as reagents and are suitable for the present invention.
- the concentration of nucleotides used in the method of the present invention can be appropriately set according to the nucleotides used and the sample to be added.
- the concentration of nucleotides can be changed to modify the nucleic acid after treatment. Can be determined by analyzing.
- the concentration is 10 ng / mL to 10 mg / mL, preferably 100 ng / mL to 1 mg / mL, more preferably 1 ⁇ g / mL to 100 ⁇ g / mL.
- the concentration is 10 ⁇ M to 500 mM, preferably 100 ⁇ M to 100 mM, more preferably 1 mM to 50 mM.
- nucleic acid modifying agent When a nucleic acid modifying agent is allowed to act on a sample in the presence of the above nucleotides, not only free nucleic acids in the sample but also non-free nucleic acids in an environment where the nucleic acid modifying agent can contact, such as biomolecules The rate of modification of nucleic acids, particularly DNA, contained in dead cells with increased permeability to cell membranes or cell membranes is improved. For this reason, it becomes possible to reduce interference derived from these nucleic acids and DNA in the nucleic acid detection method.
- “to make a nucleic acid modifying agent act on a sample in the presence of nucleotides” means “an act of adding a nucleotide to a sample artificially and then causing the nucleic acid modifying agent to act”.
- one or more acidic polysaccharides and one or more nucleotides may be used in combination.
- nucleic acid modification method of the present invention a nucleic acid modifying agent having selectivity for a cell membrane is used to modify a nucleic acid in a cell that can penetrate the nucleic acid modifying agent and has enhanced permeability of the cell wall and cell membrane. be able to.
- nucleic acids in living cells into which a nucleic acid modifying agent cannot enter are not modified. Accordingly, a method for selectively detecting nucleic acid derived from living cells contained in a sample using the present invention is provided.
- live cell means a cell that maintains life activity, that is, a cell that maintains metabolic ability and proliferation ability.
- living cells have no substantial damage to the structure or morphology of the cells.
- a dead cell whose cell wall and / or cell membrane is damaged and whose ability to maintain vital activity is reduced does not proliferate normally even under conditions suitable for the growth of the cell. Such dead cells are in a state in which extracellular substances can enter the cells.
- nucleic acid modification method of the present invention When the nucleic acid modification method of the present invention is applied to a sample in which cells may be present, only the nucleic acid in living cells is not affected by the nucleic acid modifying agent and is detected by a nucleic acid detection method such as a nucleic acid amplification method. Keep. Therefore, it is possible to specifically detect the presence of living cells, for example, living cells of microorganisms, regardless of the presence of dead cells, using the method of the present invention.
- the cells to be subjected to the method of the present invention may be either eukaryotic cells or prokaryotic cells, and include microorganisms such as yeast, fungi and bacteria, animal cells, and plant cells.
- Bacteria include both gram positive and gram negative bacteria. Examples of Gram-positive bacteria include Bacillus bacteria (B. cereus, B. anthracis, etc.), Staphylococcus bacteria (S. aureus, S. epidermidis, etc.), Listeria bacteria (L. monocytogenes, etc.), Clostridium bacteria ( C. botulinum, C. perfringens, etc.), Streptococcus bacteria (S. pneumoniae, etc.), Mycobacterium bacteria and the like.
- Escherichia bacteria Escherichia bacteria [E. E. coli etc.], Salmonella bacteria (S. enteritidis, S. typhimurium etc.), Vibrio bacteria (V. parahaemolyticus etc.), Cronobacter bacteria (former E. sakazakiki etc.), Legionella bacteria (L. pneumophila). Etc.) and Pseudomonas bacteria.
- the method of the present invention can be performed on various samples. However, from the viewpoint of maintaining selectivity, it is necessary to avoid processing that causes damage to the cell membrane of the sample.
- the method for detecting nucleic acid derived from living cells contained in the sample of the present invention is carried out by the following steps (a) and (b).
- the nucleic acid in the sample is modified by bringing the sample and the nucleic acid modifying agent into contact with each other in the presence of acidic polysaccharides and / or nucleotides as described in (1) above. It is a process to implement.
- a nucleic acid can be modified by adding a nucleic acid modifying agent and acidic polysaccharide and / or nucleotides to a sample and placing them under appropriate conditions.
- the light irradiation treatment can be performed simultaneously with step (a) or after step (a). .
- the step (a) and the light irradiation treatment may be repeated a plurality of times, for example, 2 to 5 times. That is, the addition of the nucleic acid modifier and the light irradiation treatment can be repeated.
- an appropriate medium for growing live cells contained in the sample is prepared after the light irradiation treatment.
- the step of culturing living cells can be combined.
- a step of removing the nucleic acid modifying agent can be performed.
- a method for removing the nucleic acid modifying agent a known solid-liquid separation method can be used. For example, a sample is centrifuged to separate a precipitate containing cells and a supernatant containing a nucleic acid modifying agent, and then the supernatant is removed. Is mentioned. In this case, it is possible to add a step of washing the cells after removing the nucleic acid modifying agent.
- a step of lysing live cells and / or a step of extracting nucleic acid can be performed.
- Cell lysis and nucleic acid extraction methods include cell destruction by heat treatment (heat extraction), proteinase K / phenol extraction method, proteinase K / phenol / chloroform extraction method, alkali lysis method, alkali-SDS method, lytic enzyme method Various methods such as For these, a suitable cell lysis method and / or nucleic acid extraction method may be selected according to the nucleic acid detection method performed in the step (b) described later.
- the nucleic acid of the living cell can be specifically detected by selectively detecting the unmodified nucleic acid from the sample after the step (a). That is, in the detection of living cells based on nucleic acids, it is possible to reduce noise due to nucleic acids of dead cells, and it is possible to detect the presence of living cells in a sample with high sensitivity and accuracy.
- the method for selectively detecting an unmodified nucleic acid in the step (b) can be appropriately selected depending on the method for modifying a nucleic acid in the step (a). For example, if a dead cell (and free) DNA is selectively modified and the nucleic acid amplification reaction using the DNA as a template is inhibited, select the nucleic acid amplification method (DNA amplification method) as the nucleic acid detection method. can do.
- the DNA amplification method include PCR method, ICAN method, LAMP method, SDA method, LCR method, RCA method, and SMAP method.
- An unmodified nucleic acid can be selectively detected by subjecting the reaction solution after the nucleic acid amplification reaction to a normal analysis method such as gel electrophoresis and analyzing the amount and base length of the amplified nucleic acid.
- a normal analysis method such as gel electrophoresis
- methods for detecting and quantifying nucleic acids in real time can be used, and examples include intercalator method, TaqMan method, Scorpion method, Cycling probe method, and hybridization probe method.
- the target region of the nucleic acid to be detected can be appropriately set according to the cell to be detected.
- the target region may be set from a genomic sequence of a cell chromosome, or an episomal sequence such as a mitochondrial genome, a chloroplast genome, or a plasmid.
- the target region preferably has a sequence specific to the detection target cell.
- the target area may be one area or a plurality of areas. It is also possible to set a target region specific to the detection target cell and a target region possessed by a wide range of cells.
- the length of the target region is 40 to 5000 bases, preferably 60 to 1000 bases, particularly preferably 70 to 200 bases.
- the primer or probe used in the nucleic acid amplification method or real-time detection method can be designed based on the target region according to the nucleic acid amplification method or real-time detection method.
- the microorganism of the present invention can be detected by targeting the microorganism to detect the living microorganism in the sample.
- the gene / nucleic acid region to be a target in the nucleic acid amplification method is not particularly limited, and may be appropriately selected in consideration of specificity and detection sensitivity.
- a target region can be set from a pathogenic gene in order to distinguish it from a non-pathogenic homologous or genus microorganism. For example, verotoxin type 1 or type 2 gene derived from E.
- coli O-157 heat-stable enterotoxin gene (STh) or heat-labile enterotoxin gene (STp) derived from enterotoxigenic E. coli, invasive factor-related gene derived from Salmonella bacteria ( invA), heat-resistant hemolytic toxin gene derived from Vibrio parahaemolyticus (tdh), cereulide gene (CRS) derived from Bacillus cereus, internalin A gene derived from Listeria spp. (intA), outer membrane protein A derived from Enterobacter sakazaki A gene (ompA), a cell-swelling lethal toxin gene (cdt) derived from Campylobacter, and the like.
- genes encoding ribosomal RNA (16SrRNA, 23SrRNA) commonly used for microorganism detection and their spacer regions can be used as targets.
- the real-time PCR method monitors changes in fluorescence signal.
- a PCR amplification product is obtained, the fluorescence signal intensity increases and an amplification curve is drawn.
- the change in fluorescence intensity from 1 to 10 PCR amplification cycles is a noise level, equal to zero, and considered as a sample blank (baseline).
- a threshold threshold value
- the number of PCR cycles in which the amplification curve exceeds the threshold value is referred to as a cycle threshold value (Ct value).
- Tm analysis melting curve analysis
- Kit and composition of the present invention is a kit for modifying a nucleic acid in a sample by the method of the present invention of (1), (A) a nucleic acid modifying agent; and (b) an acidic polysaccharide and / or nucleotides used with the nucleic acid modifying agent of (a); It is a kit containing.
- kits of the present invention includes a kit for selectively detecting nucleic acid derived from living cells in a sample by the method of the present invention of (2), (A) a nucleic acid modifying agent; (B) acidic polysaccharides and / or nucleotides used with the nucleic acid modifier of (a); and (c) a nucleic acid detection reagent; It is a kit containing.
- the nucleic acid modifying agent, acidic polysaccharide and nucleotides contained in the kit of the present invention are described in (1) above.
- the reagent for nucleic acid detection contained in the kit of the present invention is a reagent used in the nucleic acid detection method described in (2) above.
- a nucleic acid detection reagent when the PCR method is employed as a nucleic acid detection method, includes a reaction buffer, a primer pair for amplifying a target region, a DNA polymerase, a nucleoside, or a magnesium salt. Furthermore, depending on the nucleic acid detection method, an intercalator dye [SYBR (registered trademark) Green I or the like], a detection probe or an enzyme necessary for the detection reaction (for example, RNase H or the like) is included.
- SYBR registered trademark
- a detection probe or an enzyme necessary for the detection reaction for example, RNase H or the like
- the kit of the present invention further includes a reagent for diluting the sample and the nucleic acid modifying agent, a buffer solution for the nucleic acid modification reaction, instructions describing the method of the present invention, and a reagent for removing and washing contaminants from the sample. , Positive controls, negative controls and the like.
- composition of the present invention is used in (1) the method for modifying a nucleic acid of the present invention or (2) the method for selectively detecting a nucleic acid derived from a living cell of the present invention.
- a composition comprising a modifier and (b) an acidic polysaccharide and / or nucleotides.
- the nucleic acid modifier, acidic polysaccharide and nucleotides contained in the composition of the present invention are described in (1) above.
- the method for enhancing the action of a nucleic acid modifying agent containing an acidic polysaccharide and / or nucleotides as an active ingredient or the action enhancing of a nucleic acid modifying agent containing an acidic polysaccharide and / or nucleotides as an active ingredient.
- An agent is provided. This method and enhancer are useful for modifying a target nucleic acid in a sample, and can be applied to various industrial fields.
- Example 1 Effect of acidic polysaccharide Using an Escherichia coli genomic DNA sample to which acidic polysaccharide (sodium alginate or chondroitin sulfate B) was added, EMA treatment was performed once, and detection sensitivity was obtained by real-time PCR using the LacZ gene as a target region. Compared.
- acidic polysaccharide sodium alginate or chondroitin sulfate B
- Genomic DNA prepared from E. coli K-12 was prepared to 1 ⁇ 10 8 copies / 30 ⁇ L with TE buffer (10 mM Tris-HCl (pH 8.0) /0.1 mM EDTA), did. Further, as the acidic polysaccharide, sodium alginate (Sodium Alginate 80-120 cp, manufactured by Wako Pure Chemical Industries, catalog number: 194-13321, hereinafter sometimes referred to as “AlgNa”) 100 ⁇ g, 10 ⁇ g, chondroitin sulfate B (dermatan sulfate, 480 ⁇ g of Sigma, catalog number: C3788) was added, and as a control, a sample solution to which no acidic polysaccharide was added was prepared, and then all the sample solutions were prepared to 50 ⁇ L with sterile water.
- the copy number is a copy number calculated from the weight of the nucleic acid.
- EMA treatment EMA (manufactured by Sigma-Aldrich, ethidium bromide monoazide: catalog number: E2028) was completely dissolved in DMSO to a concentration of 5 mM and stored at -20 ° C. When used, this was thawed and diluted with sterile water to 300 ⁇ M. 5 ⁇ L of this EMA aqueous solution was added to 50 ⁇ L of each sample solution of the genomic DNA and allowed to stand at 4 ° C. for 15 minutes under light shielding.
- each specimen liquid was placed on ice and irradiated with light for 5 minutes using a 500 W photographic illumination lamp (PRS500W: 100 V, 500 W, manufactured by Iwasaki Electric Co., Ltd.) installed at a distance of 20 cm from the specimen liquid (above, The process from addition of the EMA solution to light irradiation may be described as “EMA treatment”).
- PRS500W 100 V, 500 W, manufactured by Iwasaki Electric Co., Ltd.
- a sample solution not subjected to EMA treatment was prepared.
- Each of the sample liquid subjected to EMA treatment and the sample liquid not subjected to EMA treatment was diluted with sterilized water to 100 ⁇ L.
- a PCR reaction solution (total amount 20 ⁇ L) was prepared according to the following composition.
- SYBR Premix Ex Taq (manufactured by Takara Bio Inc., catalog number: RR041A): 10 ⁇ L 4 pmol / ⁇ L
- LazZ-F DNA (SEQ ID NO: 1): 1 ⁇ L 4 pmol / ⁇ L
- LacZ-R DNA (SEQ ID NO: 2): 1 ⁇ L ⁇ Sterile water: 7 ⁇ L
- Template DNA (diluted sample solution): 1 ⁇ L
- Example 1- (2) 1 ⁇ L of each specimen solution prepared in Example 1- (2) was used as template DNA. That includes the template DNA of E. coli genome 106 copies in the reaction solution of 20 [mu] L.
- a reaction solution to which 1 ⁇ L of sterilized water was added instead of the diluted sample solution was prepared.
- PCR was carried out under conditions where 40 cycles of reaction were performed with 95 ° C. for 30 seconds and 95 ° C. for 5 seconds and 60 ° C. for 30 seconds as one cycle.
- a real-time PCR apparatus Thermal Cycler Real Real System System (manufactured by Takara Bio Inc., model number: TP800) or Thermal Cycler Dice Real Time System II (manufactured by Takara Bio Inc., model number: TP900) is used for the reaction.
- the number of cycles exceeding the threshold value (hereinafter referred to as “Ct value”) was measured.
- a melting curve analysis (Tm analysis) of the amplification product was performed after PCR under conditions where the temperature was increased from 60 ° C to 95 ° C.
- Table 1 shows the Ct values and Tm analysis values obtained by PCR in Example 1- (3).
- Example 2 Effect of acidic polysaccharide in 3 times of EMA treatment (1) Sample preparation Genomic DNA prepared from E. coli JM109 was serially diluted 10-fold with TE buffer and 1 ⁇ 10 8 to 1 ⁇ 10 3 copies / 30 ⁇ L. A DNA solution containing the genome was prepared. Otherwise, an E. coli genomic DNA sample solution was prepared in the same manner as in Example 1- (1).
- Example 2- (1) The E. coli genomic DNA sample solution prepared in Example 2- (1) was subjected to EMA treatment in the same manner as in Example 1- (2). Furthermore, 5 ⁇ L of EMA aqueous solution was added to the sample liquid after treatment, and the EMA treatment of irradiating visible light was repeated twice, for a total of 3 times. Therefore, the amount of the sample liquid after the end of the three EMA treatments was 65 ⁇ L.
- a sample solution treated with EMA and a sample solution not subjected to EMA treatment as a control were prepared and prepared with sterile water so as to be 100 ⁇ L.
- PCR using the LacZ gene as a target region PCR was performed in the same manner as in Example 1- (3) using 1 ⁇ L of the diluted solution of each specimen solution prepared in Example 2- (2) as a template DNA and using the LacZ gene as a target region.
- the reaction solution 20 ⁇ L include template DNA of E. coli genome 106 copies to 10 copies.
- Table 2 shows Ct values and Tm analysis values obtained by PCR in Example 2- (3).
- “-” indicates that amplification of the LacZ gene by PCR was not detected.
- Example 3 Effect of acidic polysaccharide in discrimination of live and dead bacteria of E. coli
- Sample preparation 50 ⁇ L of E. coli JM109 competent cell (Takara Bio, catalog number: 9052) was inoculated into 5 mL of LB liquid medium. The cells were cultured with shaking at about 130 rpm for 13 to 16 hours in a 37 ° C. constant temperature water bath. This was defined as a viable cell suspension. Moreover, about 700 ⁇ L of this viable cell suspension was put into a 1.5 mL microtube and heated at 100 ° C. for 5 minutes in a heat block to prepare a dead cell suspension.
- the live cell suspension of the prepared E.coli serially diluted by 10-fold in fresh LB liquid medium to prepare a live cell suspension of 1-10 6-fold dilutions.
- the dead cell suspension was diluted 10 2 times. 10 ⁇ L of dead cell suspension diluted 10 2 each was added to 20 ⁇ L of live cell suspension at each dilution ratio.
- a sample solution prepared by adding 100 ⁇ g of sodium alginate to the live suspension / dead bacteria mixed suspension prepared in this way to prepare 50 ⁇ L with sterilized water, and a sample solution prepared to 50 ⁇ L with sterilized water without adding sodium alginate were prepared.
- Example 3- (1) EMA treatment and DNA extraction step
- Each sample solution prepared in Example 3- (1) was subjected to EMA treatment three times in the same manner as in Example 2- (2). Therefore, the amount of the sample liquid after the end of the three EMA treatments was 65 ⁇ L.
- the sample solution treated with EMA and the sample solution not subjected to EMA treatment as a control were each diluted with sterilized water to 100 ⁇ L, heated at 100 ° C. for 5 minutes in a heat block, and DNA was thermally extracted. .
- Example 3- (3) PCR using the LacZ gene as a target region
- Each hot extract prepared in Example 3- (2) was centrifuged at 15,000 rpm for 2 minutes, 1 ⁇ L of the supernatant was used as template DNA, and PCR using the LacZ gene as a target region was performed as in Example 1- (3). It carried out similarly.
- Table 3 shows the results of the EMA-treated sample solution and the results of the E. coli sample solution that was not EMA-treated for the Ct value and Tm analysis value obtained by PCR in Example 3- (3).
- Table 5 shows an equation indicating a standard curve calculated from the Ct value and a correlation coefficient (R2). In the table, “-” indicates that amplification of the LacZ gene by PCR was not detected.
- AlgNa represents sodium alginate.
- Example 4 Effect of Nucleotides Using an Escherichia coli genomic DNA sample to which ⁇ DNA was added as nucleotides, EMA treatment was performed three times, and the detection sensitivity was compared by a real-time PCR method targeting the LacZ gene.
- sample Genomic DNA prepared from E. coli K-12 was serially diluted 10-fold with TE buffer (10 mM Tris-HCl (pH 8.0) /0.1 mM EDTA), and 5 ⁇ 10 7 copies to 5
- the sample solution was prepared as x10 copies / 20 ⁇ L.
- 250 ng of ⁇ DNA (manufactured by Takara Bio Inc., catalog number: 3010) was added as nucleotides, and a sample solution to which nucleotides were not added was prepared as a control, and then all sample solutions were prepared to 30 ⁇ L with sterile water. .
- the copy number is a copy number calculated from the weight of the genomic DNA.
- Example 2- (2) EMA treatment
- 3 ⁇ L each of the genomic DNA was added to 30 ⁇ L of each sample solution, and the EMA treatment was performed three times in total. Therefore, the amount of the sample liquid after the end of the three EMA treatments was 39 ⁇ L.
- Example 4- (1) After preparing as described in Example 4- (1), a sample solution not subjected to EMA treatment was prepared. Each of the sample liquid subjected to EMA treatment and the sample liquid not subjected to EMA treatment was diluted with sterile water so as to be 50 ⁇ L.
- PCR targeting LacZ gene A PCR reaction solution (total amount 20 ⁇ L) was prepared according to the following composition.
- SYBR Premix Ex Taq manufactured by Takara Bio Inc., catalog number: RR041A
- LazZ-F DNA SEQ ID NO: 1 ⁇ L 4 pmol / ⁇ L
- LacZ-R DNA SEQ ID NO: 2
- 1 ⁇ L of each specimen solution prepared in Example 4- (2) was used as template DNA. That includes the template DNA of E. coli genome 106 copies to 1 copy in the reaction solution of 20 [mu] L.
- a reaction solution to which 1 ⁇ L of sterilized water was added instead of the diluted sample solution was prepared.
- PCR was carried out under conditions where 40 cycles of reaction were performed with 95 ° C. for 30 seconds and 95 ° C. for 5 seconds and 60 ° C. for 30 seconds as one cycle.
- a real-time PCR apparatus Thermal Cycler Real Real System System manufactured by Takara Bio Inc., model number: TP800
- Thermal Cycler Dice Real Time System II manufactured by Takara Bio Inc., model number: TP900
- Ct value, and copy number quantified based on a calibration curve of a sample not subjected to EMA treatment.
- Qty value copy number quantified based on a calibration curve of a sample not subjected to EMA treatment.
- Tm analysis melting curve analysis
- Table 6 shows the Ct values and Tm analysis values obtained by PCR in Example 4- (3).
- “-” indicates that amplification of the LacZ gene by PCR was not detected.
- Example 5 Effect of nucleotides on discrimination of live and dead E. coli
- Sample preparation 50 ⁇ L of E. coli JM109 competent cell (Takara Bio, catalog number: 9052) was inoculated into 5 mL of LB liquid medium. The cells were cultured with shaking at about 130 rpm for 13 to 16 hours in a 37 ° C. constant temperature water bath. This was defined as a viable cell suspension. Moreover, about 700 microliters of this viable cell suspension was put into a 1.5 mL microtube, and it heated at 100 degreeC for 5 minutes with the heat block, and prepared the dead cell suspension.
- the live cell suspension of the prepared E.coli serially diluted by 10-fold in fresh LB liquid medium to prepare a live cell suspension of 1-10 6-fold dilutions.
- the dead cell suspension was diluted 10 2 times. 10 ⁇ L of dead cell suspension diluted 10 2 each was added to 15 ⁇ L of live cell suspension at each dilution ratio.
- a sample solution prepared by adding 250 ⁇ g of ⁇ DNA as nucleotides to 30 ⁇ L of sterilized water and a sample solution prepared by adding 30 ⁇ L of sterilized water without adding ⁇ DNA was prepared.
- Example 5- (1) was subjected to EMA treatment three times in the same manner as in Example 4- (2). Therefore, the amount of the sample liquid after the end of the three EMA treatments was 39 ⁇ L.
- the sample solution treated with EMA and the sample solution not subjected to EMA treatment as a control were each diluted with sterilized water so as to be 50 ⁇ L, and heated in a heat block at 100 ° C. for 5 minutes to perform heat extraction of DNA. .
- Table 7 shows the results of Ct values and Tm analysis values obtained by PCR in Example 5- (3), and further shows an equation showing a standard curve calculated from the Ct values and a correlation coefficient (R2). Table 8 shows. In the table, “-” indicates that amplification of the LacZ gene by PCR was not detected.
- Example 6 Effect of nucleotides EMA treatment was performed using E. coli genomic DNA samples to which dNTPs were added as nucleotides, and the detection sensitivity was compared by a real-time PCR method targeting LacZ gene or 16SrDNA.
- Genomic DNA prepared from E. coli K-12 was serially diluted 10-fold with TE buffer to prepare 1 ⁇ 10 8 copies to 1 ⁇ 10 5 copies / 40 ⁇ L.
- Samples were added to the sample liquid: dATP, dTTP, dCTP and dGTP (manufactured by Takara Bio Inc., catalog number: 4026 to 4029) were added at 250 ⁇ mol each or 125 ⁇ mol each (total amount of deoxynucleotide triphosphate 1000 ⁇ mol or 500 ⁇ mol, respectively).
- Example 6- (1) Each specimen solution prepared in Example 6- (1) was subjected to only one EMA treatment in the same manner as in Example 4- (2) except that 5 ⁇ L of EMA aqueous solution was added.
- Example 6- (1) a sample solution not subjected to EMA treatment was prepared.
- Each of the sample liquid subjected to EMA treatment and the sample liquid not subjected to EMA treatment was diluted with sterilized water to 100 ⁇ L.
- PCR targeting LacZ gene or 16S rDNA A PCR reaction solution (total amount 20 ⁇ L) was prepared according to the following composition.
- SYBR Premix Ex Taq manufactured by Takara Bio Inc., catalog number: RR041A
- 10 ⁇ L -Forward primer 1 ⁇ L
- Reverse primer 1 ⁇ L
- Sterile water 7 ⁇ L
- Template DNA diluted sample solution
- the forward primer and reverse primer were added to the PCR reaction solution in the following three combinations.
- A A combination that amplifies a part 70 bp of the LacZ gene. 4 pmol / ⁇ L, LazZ-F DNA (SEQ ID NO: 1): 1 ⁇ L 4 pmol / ⁇ L, LacZ-R DNA (SEQ ID NO: 2): 1 ⁇ L
- B A combination that amplifies a part 177 bp of the LacZ gene.
- Example 6- (2) 1 ⁇ L of each specimen solution prepared in Example 6- (2) was used as template DNA. That is, 10 6 copies to 10 3 copies of template DNA of the E. coli genome are contained in a 20 ⁇ L reaction solution. Except this, PCR was performed in the same manner as in Example 4- (3).
- the Tm analysis values of the amplification products were 83.0 ⁇ 0.5 for the primer pair in (A), 85.5 ⁇ 0.5 for the primer pair in (B), and 82.0 ⁇ for the primer pair in (C). There was no difference in the sample solution at 0.5.
- kits and compositions to be used are provided and are extremely useful for improving the accuracy of food hygiene tests and clinical tests.
- SEQ ID NO: 1 Nucleotide sequence of LacZ-F
- SEQ ID NO: 2 Nucleotide sequence of LacZ-R
- SEQ ID NO: 3 Nucleotide sequence of LacZ-R_177
- SEQ ID NO: 4 Nucleotide sequence of 16S-F_95
- SEQ ID NO: 5 Nucleotide sequence of 16S-R
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
[1]試料と核酸修飾剤とを酸性多糖及び/又はヌクレオチド類存在下で接触させる工程を含む、試料に含まれる核酸の修飾方法、
[2]核酸修飾剤が光活性化により核酸を修飾する化合物である、[1]に記載の方法、
[3]核酸修飾剤がエチジウムモノアジド及びプロピジウムモノアジドから選択される化合物である、請求項[2]に記載の方法、
[4]酸性多糖がアルギン酸ナトリウム及びコンドロイチン硫酸Bから選択される酸性多糖であるか、あるいはヌクレオチド類がDNA及びdNTPから選択されるヌクレオチド類である、[1]に記載の方法、
[5]試料に含まれる生細胞由来の核酸を選択的に検出する方法であって、以下の工程を含む方法:
(a)[1]記載の方法により試料に含まれる核酸を修飾する工程;及び
(b)工程(a)後の試料より修飾されていない核酸を選択的に検出する工程、
[6]核酸修飾剤が光活性化により核酸を修飾する化合物である、[5]に記載の方法、
[7]核酸修飾剤がエチジウムモノアジド及びプロピジウムモノアジドから選択される化合物である、[6]に記載の方法、
[8]酸性多糖がアルギン酸ナトリウム及びコンドロイチン硫酸Bから選択される酸性多糖であるか、あるいはヌクレオチド類がDNA及びdNTPから選択されるヌクレオチド類である、[5]に記載の方法、
[9]工程(b)が核酸増幅法により実施される、[5]に記載の方法、
[10]工程(b)がリアルタイムPCRにより実施される、[9]に記載の方法、
[11][1]記載の方法により試料中の核酸を修飾するためのキットであって、
(a)核酸修飾剤;及び
(b)(a)の核酸修飾剤とともに使用される酸性多糖及び/又はヌクレオチド類;
を含有するキット、
[12]核酸修飾剤が光活性化により核酸を修飾する化合物である、[11]に記載のキット、
[13]核酸修飾剤がエチジウムモノアジド及びプロピジウムモノアジドから選択される化合物である、[12]に記載のキット、
[14]酸性多糖がアルギン酸ナトリウム及びコンドロイチン硫酸Bから選択される酸性多糖であるか、あるいはヌクレオチド類がDNA及びdNTPから選択されるヌクレオチド類である、[11]に記載のキット、
[15][5]記載の方法により試料中の生細胞由来の核酸を選択的に検出するためのキットであって、
(a)核酸修飾剤;
(b)(a)の核酸修飾剤とともに使用される酸性多糖及び/又はヌクレオチド類;及び
(c)核酸検出用試薬;
を含有するキット、
[16]核酸修飾剤が光活性化により核酸を修飾する化合物である、[15]に記載のキット、
[17]核酸修飾剤がエチジウムモノアジド及びプロピジウムモノアジドから選択される化合物である、[16]に記載のキット、
[18]酸性多糖がアルギン酸ナトリウム及びコンドロイチン硫酸Bから選択される酸性多糖であるか、あるいはヌクレオチド類がDNA及びdNTPから選択されるヌクレオチド類である、[15]に記載のキット、
[19]
(a)核酸修飾剤;及び
(b)酸性多糖及び/又はヌクレオチド類;
を含む組成物、
[20]核酸修飾剤が光活性化により核酸を修飾する化合物である、[19]に記載の組成物、
[21]核酸修飾剤がエチジウムモノアジド及びプロピジウムモノアジドから選択される化合物である、[20]に記載の組成物、及び
[22]酸性多糖がアルギン酸ナトリウム及びコンドロイチン硫酸Bから選択される酸性多糖であるか、あるいはヌクレオチド類がDNA及びdNTPから選択されるヌクレオチド類である、[19]に記載の組成物、に関する。
本発明の核酸の修飾方法は、試料と核酸修飾剤とを酸性多糖及び/又はヌクレオチド類存在下で接触させる工程を含む、試料に含まれる核酸の修飾方法である。
生存可能で増殖可能な細胞と不可逆的に損傷した死細胞とを識別するために重要なのは、細胞膜の完全性である。本発明の核酸修飾方法によれば、細胞膜への選択性を有する核酸修飾剤を使用して、核酸修飾剤が侵入し得る、細胞壁、細胞膜の透過性が亢進した細胞内の核酸をも修飾することができる。一方、核酸修飾剤が侵入できない生細胞内の核酸は修飾を受けない。従って、本発明を利用して試料に含まれる生細胞由来の核酸を選択的に検出する方法が提供される。
(a)本発明の核酸修飾方法により試料に含まれる核酸を修飾する工程;及び
(b)工程(a)後の試料より修飾されていない核酸を選択的に検出する工程。
本発明のキットは前記(1)の本発明の方法により試料中の核酸を修飾するためのキットであって、
(a)核酸修飾剤;及び
(b)(a)の核酸修飾剤とともに使用される酸性多糖及び/又はヌクレオチド類;
を含有するキットである。
また本発明の別のキットとしては前記(2)の本発明の方法により試料中の生細胞由来の核酸を選択的に検出するためのキットが挙げられ、
(a)核酸修飾剤;
(b)(a)の核酸修飾剤とともに使用される酸性多糖及び/又はヌクレオチド類;及び
(c)核酸検出用試薬;
を含有するキットである。
本発明のキットに含まれる核酸修飾剤、酸性多糖及びヌクレオチド類は、前記(1)に記載される。本発明のキットに含まれる核酸検出用試薬は、前記(2)に記載される核酸検出方法に使用される試薬である。例えば、核酸検出法としてPCR法を採用する場合は、核酸検出用試薬として、反応緩衝液、ターゲット領域を増幅するためのプライマー対、DNAポリメラーゼ、ヌクレオシド又はマグネシウム塩等が含まれる。更に、核酸検出方法に応じてインターカレーター色素[SYBR(登録商標)GreenI等]、検出プローブや検出反応に必要な酵素(例えばRNaseH等)が含まれる。
酸性多糖(アルギン酸ナトリウム又はコンドロイチン硫酸B)を添加した大腸菌ゲノムDNAサンプルを用いて、EMA処理を1回実施して、LacZ遺伝子をターゲット領域にしたリアルタイムPCR法により検出感度を比較した。
大腸菌K-12から調製したゲノムDNAを、TEバッファー(10mM Tris-HCl(pH8.0)/0.1mM EDTA)により1×108コピー/30μLに調製し、検体液とした。また、酸性多糖として、アルギン酸ナトリウム(Sodium Alginate 80-120cp、和光純薬社製、カタログ番号:194-13321、以下「AlgNa」と記載することがある)100μg、10μg、コンドロイチン硫酸B(デルマタン硫酸、シグマ社製、カタログ番号:C3788)480μgをそれぞれ加え、また対照として酸性多糖を加えない検体液を用意し、その後すべての検体液を滅菌水で50μLに調製した。なお、コピー数は核酸の重量から算出したコピー数である。
EMA(シグマ-アルドリッチ社製、ethidium bromide monoazide:カタログ番号:E2028)を5mMとなるようにDMSOで完全に溶解し、-20℃に保存した。使用する際はこれを融解し、300μMになるように滅菌水で希釈した。このEMA水溶液を、前記ゲノムDNAの各検体液50μLに5μLずつ添加し、遮光下で、4℃、15分間放置した。その後、各検体液を氷上に置き、検体液から20cmの距離に設置した500Wの写真照明用ランプ(PRS500W:100V、500W、岩崎電気社製)を用いて5分間光を照射した(以上の、EMA溶液の添加から光照射にわたる工程を、「EMA処理」と記載することがある)。
下記の組成によりPCR反応液(全量20μL)を調製した。
・SYBR Premix Ex Taq(タカラバイオ社製、カタログ番号:RR041A):10μL
・4pmol/μL、LazZ-F DNA(配列番号1):1μL
・4pmol/μL、LacZ-R DNA(配列番号2):1μL
・滅菌水:7μL
・鋳型DNA(前記の希釈された検体液):1μL
実施例1-(3)のPCRで得られたCt値及びTm解析値を表1に示す。
(1)試料の調製
大腸菌JM109から調製したゲノムDNAを、TEバッファーにより10倍ずつ段階希釈し、1×108~1×103コピー/30μLで前記ゲノムを含むDNA溶液を調製した。その他は、実施例1-(1)と同様の方法で、大腸菌ゲノムDNA検体液を調製した。
実施例2-(1)で調製した大腸菌ゲノムDNA検体液について、実施例1-(2)と同様にEMA処理を行った。更に、処理後検体液にEMA水溶液を5μLずつ添加し、可視光を照射するEMA処理を2回繰り返し、合計3回EMA処理を行った。従って、3回のEMA処理終了後の検体液量は65μLとなった。
実施例2-(2)で調製した各検体液の希釈液1μLを鋳型DNAとして、LacZ遺伝子をターゲット領域にしたPCRを実施例1-(3)と同様に実施した。なお、20μLの反応液中には大腸菌ゲノム106コピー~10コピーの鋳型DNAが含まれる。
実施例2-(3)のPCRで得られたCt値及びTm解析値を表2に示す。なお、表中の「-」は、PCRによるLacZ遺伝子の増幅が検出されなかったことを示す。
(1)試料の調製
大腸菌JM109コンピテントセル(タカラバイオ社製、カタログ番号:9052)50μLを、LB液体培地5mLに植菌し、37℃恒温水槽で13~16時間130rpm程度で振とう培養した。これを生菌懸濁液とした。また、この生菌懸濁液700μL程度を1.5mL容マイクロチューブに入れ、ヒートブロックにて100℃、5分間加温して死菌懸濁液を調製した。
実施例3-(1)で調製した各検体液について、実施例2-(2)と同様に3回のEMA処理を行った。従って、3回のEMA処理終了後の検体液量は65μLとなった。EMA処理した検体液及び対照としてEMA処理を行わなかった検体液をそれぞれ100μLになるように滅菌水で希釈し、ヒートブロックにて100℃、5分間加温して、DNAの熱抽出を行った。
実施例3-(2)で調製した各熱抽出液を15,000rpmで2分間遠心し、その上清1μLを鋳型DNAとして、LacZ遺伝子をターゲット領域にしたPCRを実施例1-(3)と同様に実施した。
実施例3-(3)のPCRで得られたCt値及びTm解析値について、EMA処理した検体液の結果を表3に、EMA処理しなかった大腸菌検体液の結果を表4に、更にCt値から算出した標準曲線を示す式と相関係数(R2)を表5に示す。なお、表中の「-」は、PCRによるLacZ遺伝子の増幅が検出されなかったことを示す。また、表5中のAlgNaはアルギン酸ナトリウムを示す。
ヌクレオチド類としてλDNAを添加した大腸菌ゲノムDNAサンプルを用いて、EMA処理を3回実施して、LacZ遺伝子をターゲットにしたリアルタイムPCR法により検出感度を比較した。
大腸菌K-12から調製したゲノムDNAを、TEバッファー(10mM Tris-HCl(pH8.0)/0.1mM EDTA)により10倍ずつ段階希釈し、5×107コピー~5×10コピー/20μLに調製し、検体液とした。また、ヌクレオチド類として、λDNA(タカラバイオ社製、カタログ番号:3010)250ngをそれぞれ加え、また対照としてヌクレオチド類を加えない検体液を用意し、その後すべての検体液を滅菌水で30μLに調製した。なお、コピー数はゲノムDNAの重量から算出したコピー数である。
実施例2-(2)と同様にして、前記ゲノムDNAの各検体液30μLに3μLずつ添加し、合計3回EMA処理を行った。従って、3回のEMA処理終了後の検体液量は39μLとなった。
下記の組成によりPCR反応液(全量20μL)を調製した。
・SYBR Premix Ex Taq(タカラバイオ社製、カタログ番号:RR041A):10μL
・4pmol/μL、LazZ-F DNA(配列番号1):1μL
・4pmol/μL、LacZ-R DNA(配列番号2):1μL
・滅菌水:7μL
・鋳型DNA(前記の希釈された検体液):1μL
実施例4-(3)のPCRで得られたCt値及びTm解析値を表6に示す。なお、表中の「-」は、PCRによるLacZ遺伝子の増幅が検出されなかったことを示す。
(1)試料の調製
大腸菌JM109コンピテントセル(タカラバイオ社製、カタログ番号:9052)50μLを、LB液体培地5mLに植菌し、37℃恒温水槽で13~16時間130rpm程度で振とう培養した。これを生菌懸濁液とした。また、この生菌懸濁液700μL程度を1.5mLマイクロチューブに入れ、ヒートブロックにて100℃、5分間加温して死菌懸濁液を調製した。
実施例5-(1)で調製した各検体液について、実施例4-(2)と同様に3回のEMA処理を行った。従って、3回のEMA処理終了後の検体液量は39μLとなった。EMA処理した検体液及び対照としてEMA処理を行わなかった検体液をそれぞれ50μLになるように滅菌水で希釈し、ヒートブロックにて100℃、5分間加温して、DNAの熱抽出を行った。
実施例5-(2)で調製した各熱抽出液を15,000rpmで2分間遠心し、その上清1μLを鋳型DNAとして、LacZ遺伝子をターゲットにしたPCRを実施例4-(3)と同様に実施した。
実施例5-(3)のPCRで得られたCt値及びTm解析値の結果を表7に、更にCt値から算出した標準曲線を示す式と相関係数(R2)を表8に示す。なお、表中の「-」は、PCRによるLacZ遺伝子の増幅が検出されなかったことを示す。
ヌクレオチド類としてdNTPを添加した大腸菌ゲノムDNAサンプルを用いて、EMA処理を実施して、LacZ遺伝子又は16SrDNAをターゲットにしたリアルタイムPCR法により検出感度を比較した。
大腸菌K-12から調製したゲノムDNAを、TEバッファーにより10倍ずつ段階希釈し、1×108コピー~1×105コピー/40μLに調製し、これらに下記のとおりヌクレオチド類を添加して検体液とした:dATP、dTTP、dCTP及びdGTP(タカラバイオ社製、カタログ番号:4026~4029)を各250μmol又は各125μmol(それぞれデオキシヌクレオチド3リン酸の総量1000μmol又は500μmol)加えた検体液;前記の4種のデオキシヌクレオチド3リン酸をそれぞれ単独で500μmol加えた検体液;dATP及びdGTP各250μmolを加えた検体液;対照として各dNTPを加えない検体液。
上記のすべての検体液は滅菌水で50μLに調製後、下記(2)の処理に使用した。
実施例6-(1)で調製した各検体液について、EMA水溶液を5μL添加すること以外は実施例4-(2)と同様にして1回のみのEMA処理を行った。
下記の組成によりPCR反応液(全量20μL)を調製した。
・SYBR Premix Ex Taq(タカラバイオ社製、カタログ番号:RR041A):10μL
・フォワードプライマー:1μL
・リバースプライマー:1μL
・滅菌水:7μL
・鋳型DNA(前記の希釈された検体液):1μL
(A)LacZ遺伝子の一部70bpを増幅する組合せ。
・4pmol/μL、LazZ-F DNA(配列番号1):1μL
・4pmol/μL、LacZ-R DNA(配列番号2):1μL
(B)LacZ遺伝子の一部177bpを増幅する組合せ。
・4pmol/μL、LazZ-F DNA(配列番号1):1μL
・4pmol/μL、LacZ-R_177 DNA(配列番号3):1μL
(C)16SrDNAの一部95bpを増幅する組合せ。
・8pmol/μL、16S-F_95 DNA(配列番号4):1μL
・8pmol/μL、16S-R DNA(配列番号5):1μL
実施例6-(3)のPCRで得られたCt値及びTm解析値について、前記(A)のプライマー対の結果を表9に、前記(B)のプライマー対の結果を表10に、前記(C)のプライマー対の結果を表11及び表12にそれぞれ示す。なお、表中の「-」は、PCRによるLacZ遺伝子又は16SrDNAの増幅が検出されなかったことを示す。
SEQ ID NO:2:Nucleotide sequence of LacZ-R
SEQ ID NO:3:Nucleotide sequence of LacZ-R_177
SEQ ID NO:4:Nucleotide sequence of 16S-F_95
SEQ ID NO:5:Nucleotide sequence of 16S-R
Claims (22)
- 試料と核酸修飾剤とを酸性多糖及び/又はヌクレオチド類存在下で接触させる工程を含む、試料に含まれる核酸の修飾方法。
- 核酸修飾剤が光活性化により核酸を修飾する化合物である、請求項1に記載の方法。
- 核酸修飾剤がエチジウムモノアジド及びプロピジウムモノアジドから選択される化合物である、請求項2に記載の方法。
- 酸性多糖がアルギン酸ナトリウム及びコンドロイチン硫酸Bから選択される酸性多糖であるか、あるいはヌクレオチド類がDNA及びdNTPから選択されるヌクレオチド類である、請求項1に記載の方法。
- 試料に含まれる生細胞由来の核酸を選択的に検出する方法であって、以下の工程を含む方法:
(a)請求項1記載の方法により試料に含まれる核酸を修飾する工程;及び
(b)工程(a)後の試料より修飾されていない核酸を選択的に検出する工程。 - 核酸修飾剤が光活性化により核酸を修飾する化合物である、請求項5に記載の方法。
- 核酸修飾剤がエチジウムモノアジド及びプロピジウムモノアジドから選択される化合物である、請求項6に記載の方法。
- 酸性多糖がアルギン酸ナトリウム及びコンドロイチン硫酸Bから選択される酸性多糖であるか、あるいはヌクレオチド類がDNA及びdNTPから選択されるヌクレオチド類である、請求項5に記載の方法。
- 工程(b)が核酸増幅法により実施される、請求項5に記載の方法。
- 工程(b)がリアルタイムPCRにより実施される、請求項9に記載の方法。
- 請求項1記載の方法により試料中の核酸を修飾するためのキットであって、
(a)核酸修飾剤;及び
(b)(a)の核酸修飾剤とともに使用される酸性多糖及び/又はヌクレオチド類;
を含有するキット。 - 核酸修飾剤が光活性化により核酸を修飾する化合物である、請求項11に記載のキット。
- 核酸修飾剤がエチジウムモノアジド及びプロピジウムモノアジドから選択される化合物である、請求項12に記載のキット。
- 酸性多糖がアルギン酸ナトリウム及びコンドロイチン硫酸Bから選択される酸性多糖であるか、あるいはヌクレオチド類がDNA及びdNTPから選択されるヌクレオチド類である、請求項11に記載のキット。
- 請求項5記載の方法により試料中の生細胞由来の核酸を選択的に検出するためのキットであって、
(a)核酸修飾剤;
(b)(a)の核酸修飾剤とともに使用される酸性多糖及び/又はヌクレオチド類;及び
(c)核酸検出用試薬;
を含有するキット。 - 核酸修飾剤が光活性化により核酸を修飾する化合物である、請求項15に記載のキット。
- 核酸修飾剤がエチジウムモノアジド及びプロピジウムモノアジドから選択される化合物である、請求項16に記載のキット。
- 酸性多糖がアルギン酸ナトリウム及びコンドロイチン硫酸Bから選択される酸性多糖であるか、あるいはヌクレオチド類がDNA及びdNTPから選択されるヌクレオチド類である、請求項15に記載のキット。
- (a)核酸修飾剤;及び
(b)酸性多糖及び/又はヌクレオチド類;
を含む組成物。 - 核酸修飾剤が光活性化により核酸を修飾する化合物である、請求項19に記載の組成物。
- 核酸修飾剤がエチジウムモノアジド及びプロピジウムモノアジドから選択される化合物である、請求項20に記載の組成物。
- 酸性多糖がアルギン酸ナトリウム及びコンドロイチン硫酸Bから選択される酸性多糖であるか、あるいはヌクレオチド類がDNA及びdNTPから選択されるヌクレオチド類である、請求項19に記載の組成物。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280014786.1A CN103443294B (zh) | 2011-01-24 | 2012-01-20 | 用于修饰核酸的方法 |
EP12739127.4A EP2669385B1 (en) | 2011-01-24 | 2012-01-20 | Method for modifying nucleic acids |
JP2012554769A JP5766216B2 (ja) | 2011-01-24 | 2012-01-20 | 核酸修飾方法 |
EP17155621.0A EP3187598B1 (en) | 2011-01-24 | 2012-01-20 | Method for modifying nucleic acids |
US13/980,970 US9458498B2 (en) | 2011-01-24 | 2012-01-20 | Method for modifying nucleic acids |
KR1020137021390A KR101609224B1 (ko) | 2011-01-24 | 2012-01-20 | 핵산 변형 방법 |
US15/252,663 US9670478B2 (en) | 2011-01-24 | 2016-08-31 | Method for modifying nucleic acids |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-012372 | 2011-01-24 | ||
JP2011012372 | 2011-01-24 | ||
JP2011012363 | 2011-01-24 | ||
JP2011-012363 | 2011-01-24 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/980,970 A-371-Of-International US9458498B2 (en) | 2011-01-24 | 2012-01-20 | Method for modifying nucleic acids |
US15/252,663 Division US9670478B2 (en) | 2011-01-24 | 2016-08-31 | Method for modifying nucleic acids |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012102208A1 true WO2012102208A1 (ja) | 2012-08-02 |
Family
ID=46580776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/051230 WO2012102208A1 (ja) | 2011-01-24 | 2012-01-20 | 核酸修飾方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9458498B2 (ja) |
EP (2) | EP3187598B1 (ja) |
JP (1) | JP5766216B2 (ja) |
KR (1) | KR101609224B1 (ja) |
CN (1) | CN103443294B (ja) |
WO (1) | WO2012102208A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016123307A (ja) * | 2014-12-26 | 2016-07-11 | 東洋紡株式会社 | 核酸除去法 |
WO2017010001A1 (ja) * | 2015-07-16 | 2017-01-19 | 森永乳業株式会社 | 微生物検出法及び微生物検出キット |
US10793917B2 (en) | 2014-07-10 | 2020-10-06 | Momentum Bioscience Limited | Method and kit of detecting the absence of micro-organisms |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2630648C2 (ru) * | 2016-02-05 | 2017-09-11 | Общество С Ограниченной Ответственностью "Биомаркер-Ру" | Способ диагностики заболевания, сопровождающегося повышенной гибелью клеток, и набор для его осуществления |
CN109182469A (zh) * | 2018-08-24 | 2019-01-11 | 暨南大学 | 基于数字lamp技术检测阪崎肠杆菌的引物及试剂盒与方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005001469A1 (ja) * | 2003-06-30 | 2005-01-06 | Japan Science And Technology Agency | 酸性多糖類の分析方法および酸性多糖類分析用キット |
JP2008137962A (ja) * | 2006-12-04 | 2008-06-19 | Kyushu Univ | 核酸分解剤および核酸の分解方法 |
JP4127847B2 (ja) | 2006-02-17 | 2008-07-30 | 国立大学法人九州大学 | 微生物検出法及び微生物検出キット |
WO2009022558A1 (ja) | 2007-08-16 | 2009-02-19 | Kyushu University | 微生物検出法及び微生物検出キット |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4302204A (en) * | 1979-07-02 | 1981-11-24 | The Board Of Trustees Of Leland Stanford Junior University | Transfer and detection of nucleic acids |
US4321919A (en) * | 1979-12-11 | 1982-03-30 | Leukocyte Research, Inc. | Method and system for externally treating human blood |
JPH04127847A (ja) | 1990-09-19 | 1992-04-28 | Matsushita Electric Works Ltd | 充電回路 |
EP1816197B1 (en) * | 1998-04-23 | 2009-09-16 | Takara Bio Inc. | Method for synthesizing DNA |
JP4825313B2 (ja) * | 2009-07-24 | 2011-11-30 | 森永乳業株式会社 | 微生物検出法及び微生物検出キット |
-
2012
- 2012-01-20 US US13/980,970 patent/US9458498B2/en active Active
- 2012-01-20 WO PCT/JP2012/051230 patent/WO2012102208A1/ja active Application Filing
- 2012-01-20 EP EP17155621.0A patent/EP3187598B1/en not_active Not-in-force
- 2012-01-20 KR KR1020137021390A patent/KR101609224B1/ko active IP Right Grant
- 2012-01-20 EP EP12739127.4A patent/EP2669385B1/en active Active
- 2012-01-20 JP JP2012554769A patent/JP5766216B2/ja active Active
- 2012-01-20 CN CN201280014786.1A patent/CN103443294B/zh active Active
-
2016
- 2016-08-31 US US15/252,663 patent/US9670478B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005001469A1 (ja) * | 2003-06-30 | 2005-01-06 | Japan Science And Technology Agency | 酸性多糖類の分析方法および酸性多糖類分析用キット |
JP4127847B2 (ja) | 2006-02-17 | 2008-07-30 | 国立大学法人九州大学 | 微生物検出法及び微生物検出キット |
JP2008137962A (ja) * | 2006-12-04 | 2008-06-19 | Kyushu Univ | 核酸分解剤および核酸の分解方法 |
WO2009022558A1 (ja) | 2007-08-16 | 2009-02-19 | Kyushu University | 微生物検出法及び微生物検出キット |
Non-Patent Citations (5)
Title |
---|
APPL. ENVIRON. MICROBIOL., vol. 73, 2007, pages 8028 - 8030 |
NOCKER A. ET AL.: "Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells, J. Microbiol", METH., vol. 67, 2006, pages 310 - 320, XP027926882 * |
NOCKER A. ET AL.: "Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide", APPL. ENVIRON. MICROBIOL., vol. 72, no. 3, 2006, pages 1997 - 2004, XP002541184 * |
NUCLEIC ACIDS RESEARCH, vol. 19, 1991, pages 99 - 107 |
See also references of EP2669385A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10793917B2 (en) | 2014-07-10 | 2020-10-06 | Momentum Bioscience Limited | Method and kit of detecting the absence of micro-organisms |
US11746389B2 (en) | 2014-07-10 | 2023-09-05 | Momentum Bioscience Limited | Method and kit of detecting the absence of micro-organisms |
JP2016123307A (ja) * | 2014-12-26 | 2016-07-11 | 東洋紡株式会社 | 核酸除去法 |
WO2017010001A1 (ja) * | 2015-07-16 | 2017-01-19 | 森永乳業株式会社 | 微生物検出法及び微生物検出キット |
Also Published As
Publication number | Publication date |
---|---|
US20160362676A1 (en) | 2016-12-15 |
CN103443294B (zh) | 2015-09-30 |
KR101609224B1 (ko) | 2016-04-05 |
EP2669385B1 (en) | 2017-03-08 |
US9670478B2 (en) | 2017-06-06 |
EP3187598A1 (en) | 2017-07-05 |
EP3187598B1 (en) | 2018-12-19 |
JPWO2012102208A1 (ja) | 2014-06-30 |
JP5766216B2 (ja) | 2015-08-19 |
US20130295576A1 (en) | 2013-11-07 |
KR20140006878A (ko) | 2014-01-16 |
EP2669385A1 (en) | 2013-12-04 |
US9458498B2 (en) | 2016-10-04 |
EP2669385A4 (en) | 2014-09-03 |
CN103443294A (zh) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lv et al. | Detection and quantification of viable but non-culturable Campylobacter jejuni | |
Fittipaldi et al. | Progress in understanding preferential detection of live cells using viability dyes in combination with DNA amplification | |
Schnetzinger et al. | Use of propidium monoazide and increased amplicon length reduce false-positive signals in quantitative PCR for bioburden analysis | |
JP4127847B2 (ja) | 微生物検出法及び微生物検出キット | |
US9670478B2 (en) | Method for modifying nucleic acids | |
Villarreal et al. | DNase I and Proteinase K eliminate DNA from injured or dead bacteria but not from living bacteria in microbial reference systems and natural drinking water biofilms for subsequent molecular biology analyses | |
CA2666448C (en) | Method and kit for the detection of live microorganism cells in a sample | |
EP3250709B1 (en) | Compositions and methods for rapid detection of salmonella | |
Syafirah et al. | An ambient temperature stable and ready-to-use loop-mediated isothermal amplification assay for detection of toxigenic Vibrio cholerae in outbreak settings | |
Kragh et al. | A long-amplicon quantitative PCR assay with propidium monoazide to enumerate viable Listeria monocytogenes after heat and desiccation treatments | |
Brauge et al. | Viability detection of foodborne bacterial pathogens in food environment by PMA-qPCR and by microscopic observation | |
Chahorm et al. | Application of Reverse Transcriptase-PCR-DGGE as a rapid method for routine determination of Vibrio spp. in foods | |
Liao et al. | Bacterial drug-resistance and viability phenotyping upon disinfectant exposure revealed by single-nucleotide resolved-allele specific isothermal RNA amplification | |
Martin et al. | Pre-PCR treatments as a key factor on the probability of detection of Listeria monocytogenes and Salmonella in ready-to-eat meat products by real-time PCR | |
WO2017176469A1 (en) | Process for cell lysis and nucleic acid amplification | |
JP4217797B2 (ja) | 微生物検出法及び微生物検出キット | |
JP4217795B2 (ja) | 微生物検出法及び微生物検出キット | |
RU2395583C2 (ru) | Способ детекции микроорганизма и набор для детекции микроорганизма | |
JP4217796B2 (ja) | 微生物検出法及び微生物検出キット | |
Sen et al. | Effect Of Maternal Age On Placental Characteristic And Kıd Birth Weight | |
BR102012019512A2 (pt) | Método de detectação e quantificação de microrganismos viáveis em amostras de alimentos | |
NZ564847A (en) | Method for detection of microorganism and kit for detection of microorganism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12739127 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012554769 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13980970 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137021390 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2012739127 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012739127 Country of ref document: EP |