WO2012101673A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2012101673A1
WO2012101673A1 PCT/JP2011/000411 JP2011000411W WO2012101673A1 WO 2012101673 A1 WO2012101673 A1 WO 2012101673A1 JP 2011000411 W JP2011000411 W JP 2011000411W WO 2012101673 A1 WO2012101673 A1 WO 2012101673A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat medium
heat
heat exchanger
concentration
Prior art date
Application number
PCT/JP2011/000411
Other languages
English (en)
French (fr)
Inventor
裕之 森本
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/882,779 priority Critical patent/US20130233006A1/en
Priority to PCT/JP2011/000411 priority patent/WO2012101673A1/ja
Priority to JP2012554479A priority patent/JP5642202B2/ja
Priority to EP11856852.6A priority patent/EP2669607B1/en
Publication of WO2012101673A1 publication Critical patent/WO2012101673A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02732Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves

Definitions

  • the present invention relates to an air conditioner applied to, for example, a building multi air conditioner.
  • Some air conditioners include a heat source unit (outdoor unit) arranged outside a building and an indoor unit arranged inside a building, such as a building multi-air conditioner.
  • the refrigerant circulating in the refrigerant circuit of such an air conditioner radiates heat (heat absorption) to the air supplied to the heat exchanger of the indoor unit, and heats or cools the air.
  • the heated or cooled air is sent into the air-conditioning target space for heating or cooling.
  • a building normally has a plurality of indoor spaces, and accordingly, the indoor unit also includes a plurality of indoor units.
  • the refrigerant pipe connecting the outdoor unit and the indoor unit may be 100 m. When the length of the pipe connecting the outdoor unit and the indoor unit is long, the amount of refrigerant charged in the refrigerant circuit increases accordingly.
  • JP 2000-320936 A see, for example, paragraphs [0024] to [0033] and FIGS. 2 to 4 of the specification.
  • Patent Document 1 uses carbon dioxide as a refrigerant and stops the system when a carbon dioxide refrigerant leak occurs like a conventional refrigerant leak. No measures are taken against leaks. In other words, when carbon dioxide is used as a refrigerant, it is necessary to take some measures to reduce refrigerant leakage on the premise that the human body is not adversely affected. Similarly, since the flammable refrigerant has flammability, it is necessary to provide some kind of safety device as in the case of carbon dioxide in order to ensure the safety of the system.
  • HFC refrigerants with high global warming potential for example, R410A, R404A, R407C, R134a, etc.
  • refrigerants with low global warming potential for example, An air conditioner using HFO1234yf, R32, HC, carbon dioxide and the like has been proposed.
  • HFO1234yf, R32, and HC flammable refrigerants
  • carbon dioxide a large amount of refrigerant is required, so measures should be taken when the refrigerant leaks into the indoor space. I have to leave.
  • the air conditioner according to the present invention has been made in response to the above-described problems, and aims to provide an effective measure for refrigerant leakage in the refrigeration cycle apparatus.
  • An air conditioner includes a compressor, a heat source side heat exchanger, a throttling device, and a load side heat exchanger, which are connected to each other by a refrigerant pipe and have a refrigeration cycle.
  • a shut-off device that passes or blocks the refrigerant circulating in the refrigeration cycle, a detection unit that detects a refrigerant leak with a resistance value that changes according to the concentration of the plurality of leaked refrigerants, and a leak based on the resistance value of the detection unit
  • a concentration calculation unit that calculates the concentration of the refrigerant, a concentration detection unit that outputs the calculation result of the concentration calculation unit for use in control of the cutoff device, and controls the cutoff device based on the output of the concentration detection unit And a shut-off control device.
  • the air conditioner according to the present invention has the above configuration, the safety of the air conditioner can be improved.
  • concentration is shown according to the kind of refrigerant
  • the another refrigerant circuit structural example of the air conditioning apparatus which concerns on embodiment of this invention is shown.
  • FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus 100 according to an embodiment of the present invention. Based on FIG. 1, the installation example of the air conditioning apparatus 100 is demonstrated.
  • the air-conditioning apparatus 100 according to the present embodiment detects the leakage when the refrigerant leaks, and flows into the outdoor unit 1 and the refrigerant flow flowing out of the outdoor unit 1 (heat source unit). It has a function of blocking the flow of the refrigerant. Thus, the amount of refrigerant leaking from the air conditioning apparatus 100 is reduced, and user safety is achieved.
  • the air conditioning apparatus 100 includes a refrigerant circulation circuit A (see FIG. 2) that is a refrigeration cycle for circulating the heat source side refrigerant and a heat medium circulation circuit B (see FIG. 2) that circulates the heat medium.
  • a refrigerant circulation circuit A (see FIG. 2) that is a refrigeration cycle for circulating the heat source side refrigerant
  • a heat medium circulation circuit B (see FIG. 2) that circulates the heat medium.
  • Each indoor unit can select a cooling operation mode or a heating operation mode as an operation mode.
  • the air conditioner 100 employs a method (indirect method) in which a refrigerant (heat source side refrigerant) is indirectly used. That is, the air conditioning apparatus 100 according to the present embodiment transmits the cold or warm heat stored in the heat source side refrigerant to a refrigerant (hereinafter referred to as a heat medium) different from the heat source side refrigerant, and the cold heat stored in the heat medium. Alternatively, the air-conditioning space is cooled or heated with heat.
  • a refrigerant heat source side refrigerant
  • an air conditioner 100 flows through the indoor unit 2 by using one outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and the cold or hot heat of the heat-source-side refrigerant that flows through the outdoor unit 1. It has a heat medium converter 3 for transmitting to the heat medium.
  • the heat medium relay unit 3 exchanges heat between the heat source side refrigerant and the heat medium.
  • the outdoor unit 1 and the heat medium relay unit 3 are configured by being connected by a refrigerant pipe 4 that conducts the heat source side refrigerant.
  • the heat medium relay unit 3 and the indoor unit 2 are connected by a heat medium pipe 5 that conducts the heat medium.
  • the cold or warm heat generated by the outdoor unit 1 is transmitted to the heat medium of the heat medium converter 3 and delivered to the indoor unit 2.
  • the air conditioning apparatus 100 which concerns on this Embodiment is provided with the 1st cutoff device 37 and the 2nd cutoff device 38 (refer FIG. 2) inside the outdoor unit 1.
  • the outdoor unit 1 is usually disposed in an outdoor space 6 that is a space (for example, a rooftop) outside a building 9 such as a building, and supplies cold or hot energy to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is arranged at a position where cooling air or heating air can be supplied to the indoor space 7 that is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 that is the air-conditioning target space. Alternatively, heating air is supplied.
  • the heat medium relay unit 3 is configured as a separate housing from the outdoor unit 1 and the indoor unit 2 and is configured to be installed at a position different from the outdoor space 6 and the indoor space 7. Is connected to the refrigerant pipe 4 and the heat medium pipe 5, respectively, and transmits cold heat or hot heat supplied from the outdoor unit 1 to the indoor unit 2.
  • an outdoor unit 1 and a heat medium converter 3 are connected via a refrigerant pipe 4, and the heat medium converter 3 and each indoor unit 2 are connected to each other. Are connected via the heat medium pipe 5.
  • each unit (the outdoor unit 1, the indoor unit 2, and the heat medium converter 3) is connected using the refrigerant pipe 4 and the heat medium pipe 5, and the construction is easy. ing.
  • the heat medium converter 3 is inside the building 9 but is a space other than the indoor space 7 such as a ceiling (for example, a space such as a ceiling behind the building 9, hereinafter, An example of a state where it is installed in the space 8) is shown.
  • the heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
  • the indoor unit 2 is a ceiling cassette type
  • mold is shown as an example, it is not limited to this, It is directly or directly in the indoor space 7, such as a ceiling embedded type and a ceiling suspended type. There is no particular limitation as long as heating air or cooling air can be supplied to the indoor space 7 by a duct or the like.
  • the outdoor unit 1 is installed in the outdoor space 6 as an example, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the exhaust heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used.
  • the heat medium converter 3 may be installed in the vicinity of the outdoor unit 1 and away from the indoor unit 2. However, if the distance from the heat medium converter 3 to the indoor unit 2 is increased, the power (energy) necessary for transporting the heat medium is considerably increased, so that the energy saving effect is reduced. 3 should be installed. Furthermore, the number of connected units of the outdoor unit 1, the indoor unit 2, and the heat medium relay unit 3 is not particularly limited, and the number may be determined according to the building 9.
  • FIG. 2 is a refrigerant circuit configuration example of the air-conditioning apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 2, the refrigerant circuit structure of the air conditioning apparatus 100 will be described. As shown in FIG. 2, the outdoor unit 1, and the heat exchanger related to heat medium 15 a and the heat exchanger related to heat medium 15 b provided in the heat medium converter 3 are connected to the refrigerant pipe 4 (high-pressure side refrigerant pipe 4 a ( 2) and the low-pressure side refrigerant pipe 4b (2)). Further, the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b are connected to the indoor unit 2a to the indoor unit 2d (also simply referred to as the indoor unit 2) via the heat medium pipe 5. .
  • the indoor unit 2d also simply referred to as the indoor unit 2d
  • the outdoor unit 1 includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, an accumulator 19, a first shut-off device 37, and a second shut-off device 38. They are connected by piping.
  • the compressor 10 sucks in the refrigerant, compresses the refrigerant to a high temperature and high pressure state, and conveys the refrigerant to the refrigerant circuit A.
  • the compressor 10 has a discharge side connected to the first refrigerant flow switching device 11 and a suction side connected to an accumulator 19.
  • the compressor 10 may be composed of, for example, an inverter compressor capable of capacity control.
  • the first refrigerant flow switching device 11 includes a discharge side of the compressor 10, a check valve 13b, a heat source side heat exchanger 12, and an accumulator in the heating only operation mode and the heating main operation mode of the mixed heating and cooling operation mode. 19 suction sides are connected. Further, the first refrigerant flow switching device 11 is provided with the discharge side of the compressor 10, the heat source side heat exchanger 12, the check valve 13d, and the accumulator in the cooling operation mode and the cooling main operation mode of the mixed cooling and heating operation mode. The suction side of the lator 19 is connected.
  • the first refrigerant flow switching device 11 may be configured with, for example, a four-way valve.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a radiator (gas cooler) during cooling operation, and exchanges heat between air and refrigerant supplied from a blower such as a fan (not shown). Is to do.
  • One side of the heat source side heat exchanger 12 is connected to the check valve 13 c and the other side is connected to the suction side of the accumulator 19 in the heating operation mode.
  • one of the heat source side heat exchangers 12 is connected to the discharge side of the compressor 10 and the other is connected to the check valve 13a.
  • the heat source side heat exchanger 12 may be configured by, for example, a plate fin and tube heat exchanger that can exchange heat between the refrigerant flowing through the refrigerant pipe and the air passing through the fins.
  • the accumulator 19 stores surplus refrigerant due to a difference between the heating operation mode and the cooling operation mode, and surplus refrigerant with respect to a transient operation change (for example, a change in the number of operating indoor units 2).
  • the accumulator 19 has a suction side connected to the heat source side heat exchanger 12 and a discharge side connected to the suction side of the compressor 10 in the heating operation mode.
  • the accumulator 19 has a suction side connected to the check valve 13d and a discharge side connected to the suction side of the compressor 10 in the cooling operation mode.
  • the outdoor unit 1 is provided with a first connection pipe 42a, a second connection pipe 42b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d.
  • first connection pipe 42a, the second connection pipe 42b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d By providing the first connection pipe 42a, the second connection pipe 42b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d, the outdoor unit regardless of the heating operation mode or the cooling operation mode.
  • the flow of the heat source side refrigerant flowing from 1 to the heat medium relay unit 3 can be in a certain direction. That is, the refrigerant discharged from the compressor 10 flows into the high-pressure side refrigerant pipe 4a (2).
  • the refrigerant that has flowed into the high-pressure side refrigerant pipe 4 a (2) flows into the heat medium relay unit 3.
  • the refrigerant that has flowed through the heat medium relay unit 3 flows into the outdoor unit 1 from the low-pressure side refrigerant pipe 4b (2).
  • the high-pressure side refrigerant pipe 4a (1) is a pipe in the outdoor unit 1 and refers to a pipe downstream from the point P2 illustrated in FIG.
  • the high-pressure side refrigerant pipe 4 a (2) is a pipe connected to the high-pressure side refrigerant pipe 4 a (1) in the refrigerant pipe 4.
  • the low-pressure side refrigerant pipe 4b (1) is a pipe in the outdoor unit 1 and refers to a pipe upstream from the point P3 illustrated in FIG.
  • the low pressure side refrigerant pipe 4 b (2) is a pipe connected to the low pressure side refrigerant pipe 4 b (1) in the refrigerant pipe 4.
  • the first shut-off device 37 and the second shut-off device 38 flow the refrigerant (open state) or block the refrigerant flow (closed state) based on the operation of the shut-off control device 40 described later.
  • the first blocking device 37 and the second blocking device 38 are preferably provided in the outdoor unit 1 or in the vicinity of the outdoor unit 1. That is, the first shut-off device 37 may be connected to the high-pressure side refrigerant pipe 4a (1), and the second shut-off device 38 may be connected to the low-pressure side refrigerant pipe 4b (1).
  • the 1st cutoff device 37 may be connected to the high voltage
  • the 2nd cutoff device 38 may be connected to the low voltage
  • the first shut-off device 37 and the second shut-off device 38 may be configured by, for example, a valve body, a sealing material that seals the valve body, and a two-way valve that has a coil that opens and closes the valve body with electromagnetic force.
  • the first shut-off device 37 and the second shut-off device 38 are two-way valves having a valve body, a sealing material that seals the valve body, and a coil that opens and closes the valve body with electromagnetic force. explain.
  • the air conditioning apparatus 100 includes a concentration detection unit 39 having a detection member (not shown) whose resistance value changes according to the refrigerant concentration, and a concentration calculation unit that calculates the refrigerant concentration based on the resistance value of the detection member. 41 and a shut-off control device 40 that controls opening and closing of the first shut-off device 37 and the second shut-off device 38 based on the calculated refrigerant concentration. Further, the concentration detection unit 39 outputs a predetermined signal to the cutoff control device 40 based on the calculation result of the refrigerant concentration of the concentration calculation unit 41.
  • the predetermined signal is not output to the cutoff control device 40.
  • the calculation result of the refrigerant concentration of the concentration calculation unit 41 is equal to or greater than a predetermined concentration value, a predetermined signal is output to the cutoff control device 40.
  • the concentration detection unit 39 is electrically connected to the concentration calculation unit 41 and the cutoff control device 40.
  • the output to the cutoff control device 40 is not particularly limited, but may be, for example, a DC voltage (5V, 12V, 24V, etc.), an AC voltage, a current, or other output.
  • blocking control apparatus 40 is demonstrated as what is DC5V.
  • the predetermined concentration corresponds to the refrigerant leakage limit concentration or explosion limit lower limit value employed in the air conditioner 100.
  • the predetermined concentration when carbon dioxide is used as the refrigerant is preferably set to about 1/10 of the leakage limit concentration.
  • the predetermined concentration when the flammable refrigerant (HFO1234yf, R32, HC) is used is set to about 1/10 of the lower limit of explosion limit.
  • the position where the detection member of the concentration detection unit 39 is provided is not particularly limited, but for example, in the outdoor unit 1 illustrated in FIG. 1, in the vicinity of the outdoor unit 1, in the heat medium converter 3, and in the outdoor space. 6. It is good to install in indoor space 7, space 8, etc.
  • FIG. 7 shows the relationship between the resistance value of the detection member of the concentration detection unit 39 and the refrigerant concentration for each type of refrigerant.
  • This detection member is preferably composed of, for example, a tin oxide (SnO 2 ) semiconductor. As shown in FIG. 7, it can be seen that the resistance value of the tin oxide (SnO 2 ) semiconductor gradually decreases as the gas concentration of the refrigerant increases. That is, the refrigerant concentration can be uniquely determined by calculating the resistance value of the detection member.
  • the detection member with tin oxide (SnO 2) semiconductor, major refrigerant (R410A, R407C, R32, HFO1234yf ) relationship of the resistance value and the refrigerant concentration is, it can be seen that substantially the same tendency. That is, the refrigerant concentration can be detected with the same calibration curve for the main refrigerant. In other words, the concentration of a plurality of refrigerants can be detected with one detection member, and the concentration detection unit 39 can be standardized. In addition, when the concentration detection unit 39 can be standardized in this way, it is not necessary to provide a plurality of detection members for each type of refrigerant, so that the cost of the air conditioner 100 can be reduced.
  • the chemical formula of HFO1234yf is CF 3 —CF ⁇ CH 2 .
  • the chemical formula of HFO1234ze which is an isomer of HFO1234yf, is CHF 2 —CF ⁇ CHF, and its chemical characteristics are very similar to HFO1234yf, so that the electrical resistance characteristics of the detection part of the concentration detection part 39 of the present invention show almost the same characteristics. . Therefore, it can be detected by the concentration detector 39 according to the present embodiment.
  • R32 and HFO1234yf are mixed, it becomes a non-azeotropic refrigerant mixture. When such a refrigerant leaks, the amount of leakage of R32, which is a low boiling point component, increases.
  • R32 reaches the limit concentration sooner than HFO1234yf. Therefore, the refrigerant leakage can be detected on the safe side by detecting the refrigerant leakage by measuring the leakage of R32. Even when other mixed refrigerants are used, if any one component of R410A, R407C, R32, HFO1234yf, and HFO1234ze is included, the electric resistance of the detection member changes. It can be detected. That is, by using the concentration detection unit 39 according to the present embodiment, it is possible to detect refrigerant leakage of the refrigerant mixture including HFC, HFO, HFC, and HFO.
  • the calibration curve of FIG. 7 can be prepared by creating a calibration curve for each refrigerant.
  • each calibration curve corresponding to the type of refrigerant may be used without using the same calibration curve.
  • the concentration calculation unit 41 calculates (calculates) the refrigerant concentration based on the resistance value of the detection member of the concentration detection unit 39.
  • the concentration calculation unit 41 is electrically connected to the concentration detection unit 39. As shown in FIG. 7, the concentration calculation unit 41 stores the relationship between the refrigerant concentration and the resistance value of the detection member. Thereby, the density
  • the position where the concentration calculation unit 41 is provided is not particularly limited, but may be installed, for example, in the outdoor unit 1 or in the vicinity of the outdoor unit 1. Hereinafter, the air conditioning apparatus 100 will be described with reference to FIG. 2 again.
  • the shutoff control device 40 controls the opening and closing of the first shutoff device 37 and the second shutoff device 38 based on the output (predetermined signal) of the concentration detector 39.
  • a predetermined signal is output from the concentration detection unit 39 to the cutoff control device 40.
  • the electrical connection between the voltage source (not shown) and the first cutoff device 37 and the second cutoff device 38 is cut off. That is, no voltage is supplied from the voltage source to the first cutoff device 37 and the second cutoff device 38 (power is not supplied).
  • the valve body is closed. That is, both the 1st cutoff device 37 and the 2nd cutoff device 38 will be in a closed state.
  • the concentration detection unit 39 when the refrigerant concentration is less than the predetermined concentration value, no voltage is output from the concentration detection unit 39 to the cutoff control device 40.
  • a voltage source illustrated omitted
  • the 1st cutoff device 37 and the 2nd cutoff device 38 are electrically connected. That is, a voltage is supplied (powered) from the voltage source to the first cutoff device 37 and the second cutoff device 38.
  • the valve body is opened. That is, both the 1st cutoff device 37 and the 2nd cutoff device 38 will be in an open state.
  • the position at which the shutoff control device 40 is provided is not particularly limited, but may be installed in, for example, the outdoor unit 1 or in the vicinity of the outdoor unit 1.
  • the first shut-off device 37 and the second shut-off device 38 are two-way valves having a valve body, a sealing material for sealing the valve body, and a coil for opening and closing the valve body by electromagnetic force as described above.
  • Each coil of the first shut-off device 37 and the second shut-off device 38 is connected to a voltage source via the shut-off control device 40.
  • the shut-off control device 40 When the air-conditioning apparatus 100 is in normal operation, the shut-off control device 40 is in a state (energized state) in which the voltage source and the first shut-off device 37 and the second shut-off device 38 are electrically connected.
  • each coil of the 1st cutoff device 37 and the 2nd cutoff device 38 is supplied with a voltage from a voltage source, and becomes an electromagnet. And each valve body is attracted
  • the shutoff control device 40 electrically shuts off the voltage source and the first shutoff device 37 and the second shutoff device 38 (non-energized state).
  • the coils of the first cutoff device 37 and the second cutoff device 38 are not supplied with voltage from the voltage source.
  • the respective valve bodies are not attracted to the coil, and the first cutoff device 37 and the second cutoff device 38 are closed.
  • a combustible refrigerant (HFO1234yf, R32, HC) is adopted as the refrigerant.
  • sparks may be generated and the refrigerant may be ignited. Therefore, when a flammable refrigerant is employed, an SRR (solid state relay) that is a non-contact relay using a semiconductor element may be employed for the shutoff control device 40.
  • SRR solid state relay
  • the coils for opening and closing the valve bodies of the first shut-off device 37 and the second shut-off device 38 may be excited with direct current. This is because the life of the coil can be extended by exciting with direct current. Therefore, it demonstrates as what supplies a DC voltage to the 1st cutoff device 37 and the 2nd cutoff device 38 as an operating voltage.
  • the operation voltage is described as being DC 12V, but may be DC 24V or the like and is not limited.
  • the shutoff control device 40 also includes a converter that can convert a commercial power supply (AC, AC 200 V in the present embodiment) into a predetermined DC voltage (DC 12 V in the present embodiment).
  • the voltage source described above corresponds to a commercial power source and a converter.
  • the first shut-off device 37 and the second shut-off device 38 are installed in the main pipe (refrigerant piping 4) of a refrigerant circuit, it is necessary to enlarge a diameter. That is, it is necessary to increase the flow coefficient Cv value. Therefore, the first shut-off device 37 and the second shut-off device 38 may be pilot-type valves instead of direct acting types.
  • the Cv value of the first shut-off device 37 through which the high-pressure refrigerant passes is preferably 1 or more, for example, and the Cv value of the second shut-off device 38 through which the low-pressure refrigerant passes is, for example, 5 or more.
  • the pressure loss can be reduced, so that the performance degradation can be reduced. That is, the amount of refrigerant circulating in the refrigerant circuit A during normal operation decreases.
  • the sealing material for sealing the valve body is preferably composed of rubber or PTFE (polytetrafluoroethylene).
  • PTFE polytetrafluoroethylene
  • the valve body and the sealing material can be easily adapted (adhered to each other) immediately when driven in an emergency. That is, the leakage of the refrigerant when the first blocking device 37 and the second blocking device 38 are closed is reduced.
  • the 1st cutoff device 37 and the 2nd cutoff device 38 do not open and close frequently like a normal valve. Therefore, a metal seal excellent in durability may not be used as the sealing material.
  • first shut-off device 37 and the second shut-off device 38 are preferably configured such that the refrigerant leakage amount in the closed state is, for example, 1.0 ⁇ 10 ⁇ 6 [m 3 / s] or less. The reason for this will be described below. If a large amount of refrigerant leaks into the space, there is a danger of combustion, lack of oxygen, etc., and a limit concentration that is the maximum concentration of the amount of refrigerant that can be safely used is defined for each type of refrigerant.
  • the first shut-off device 37 and the second shut-off device 38 installed in the refrigerant pipe are closed to prevent the refrigerant from leaking.
  • the prevention means for preventing the leakage of the refrigerant after the refrigerant reaches the limit concentration is not in time, so when the refrigerant concentration in the room reaches 95% of the limit concentration, the first shut-off device 37 and the first 2 Assume that the shut-off device 38 is closed. That is, after the first shut-off device 37 and the second shut-off device 38 are closed, the amount that the refrigerant may further leak before reaching the limit concentration is 5%.
  • the first shut-off device 37 and the second shut-off device 38 are operated because it is expected that the space is closed with the window closed, without being aware of refrigerant leakage such as when sleeping.
  • the first operating device 37 and the second operating device 38 may have a minimum operating pressure difference of, for example, about 0 (kgf / cm 2 ).
  • the concentration calculation unit 41 calculates the concentration of the leaked refrigerant.
  • the concentration detection unit 39 does not output a predetermined signal to the cutoff control device 40. Accordingly, since the predetermined signal is not output to the shutoff control device 40, the shutoff control device 40 maintains the electrical connection between the voltage source and the first shutoff device 37 and the second shutoff device 38. That is, voltage is supplied from the voltage source to the coils of the first cutoff device 37 and the second cutoff device 38. Thereby, the valve body of the 1st cutoff device 37 and the 2nd cutoff device 38 maintains the open state. That is, both the 1st cutoff device 37 and the 2nd cutoff device 38 will be in an open state.
  • the concentration detection unit 39 outputs a predetermined signal to the cutoff control device 40. Based on this output (predetermined signal), the shutoff control device 40 shuts off the electrical connection between the voltage source and the first shutoff device 37 and the second shutoff device 38. That is, no voltage is supplied from the voltage source to the coils of the first cutoff device 37 and the second cutoff device 38. Thereby, the valve body of the 1st cutoff device 37 and the 2nd cutoff device 38 closes. That is, both the 1st cutoff device 37 and the 2nd cutoff device 38 will be in a closed state.
  • the indoor unit 2 includes use side heat exchangers 26a to 26d (also simply referred to as use side heat exchangers 26).
  • the use-side heat exchanger 26 includes heat medium flow control devices 25 a to 25 d (also simply referred to as heat medium flow control devices 25) via the heat medium pipe 5, and the second heat transfer device 25 via the heat medium pipe 5. It is connected to the medium flow path switching devices 23a to 23d (also simply referred to as the second heat medium flow path switching device 23).
  • the use-side heat exchanger 26 performs heat exchange between air supplied from a blower such as a fan (not shown) and a heat medium, and generates heating air or cooling air to be supplied to the indoor space 7. To do.
  • FIG. 2 shows an example in which four indoor units 2a to 2d are connected to the heat medium relay unit 3 via the heat medium pipe 5. Further, in accordance with the indoor units 2a to 2d, the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchanger 26d from the lower side of the drawing. And Note that the number of connected indoor units 2 is not limited to four.
  • the heat medium relay 3 includes two heat medium heat exchangers 15a and 15b (sometimes simply referred to as the heat medium heat exchanger 15) and two expansion devices 16a and 16b (also simply referred to as the expansion device 16).
  • Two open / close devices 17a and 17b also simply referred to as open / close device 17
  • two second refrigerant flow switching devices 18a and 18b also simply referred to as second refrigerant flow switching device 18.
  • Two pumps 21a and 21b also simply referred to as pump 21
  • four first heat medium flow switching devices 22a to 22d also simply referred to as first heat medium flow switching device 22.
  • Four heat medium flow switching devices 23a to 23d also simply referred to as second heat medium flow switching device 23
  • four heat medium flow control devices 25a to 25d (simply simply). Heat medium flow And also) be referred to as an adjustment device 25, it is mounted.
  • the heat exchanger related to heat medium 15 functions as a condenser (heat radiator) or an evaporator, performs heat exchange between the heat source side refrigerant and the heat medium, and is generated by the outdoor unit 1 and is generated on the heat source side.
  • the cold or warm heat stored in the refrigerant is transmitted to the heat medium.
  • the heat exchanger related to heat medium 15a is connected between pipes connecting the expansion device 16a and the second refrigerant flow switching device 18a in the refrigerant circuit A shown in FIG. At times, the heat medium is cooled.
  • the heat exchanger related to heat medium 15b is connected between pipes connecting the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circuit A shown in FIG. Sometimes the heating medium is heated.
  • the expansion device 16 has a function as a pressure reducing valve or an expansion valve, and expands the heat source side refrigerant by reducing the pressure.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the expansion device 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the opening / closing device 17 opens and closes the flow path in which it is provided.
  • the opening / closing device 17a is provided on the upstream side of the expansion device 16 in the flow of the heat source side refrigerant in the cooling only operation mode.
  • the opening / closing device 17b is provided on the downstream side of the expansion device 16a in the flow of the heat source side refrigerant in the heating only operation mode.
  • the opening / closing device 17 may be constituted by, for example, a two-way valve.
  • the second refrigerant flow switching device 18 switches the refrigerant flow during the heating only operation mode, the refrigerant flow during the cooling only operation mode, and the refrigerant flow during the cooling / heating mixed operation mode.
  • the second refrigerant flow switching device 18b is configured to connect the high-pressure side refrigerant pipe 4a (2) and the heat exchanger related to heat medium 15b in the heating only operation mode.
  • the second refrigerant flow switching device 18a is configured to connect the heat exchanger related to heat medium 15a and the low-pressure side refrigerant pipe 4b (2) in the cooling only operation mode and the cooling / heating mixed operation mode.
  • the second refrigerant flow switching device 18 may be constituted by a four-way valve or the like, for example.
  • the pump 21 circulates the heat medium flowing through the heat medium pipe 5.
  • the pump 21 a is connected between pipes connecting the heat exchanger 15 a between heat exchangers 15 a and the second heat medium flow switching device 23 in the heat medium pipe 5.
  • the pump 21 b is connected between pipes connecting the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23 in the heat medium pipe 5.
  • the two pumps 21 may be constituted by, for example, pumps capable of capacity control.
  • FIG. Moreover, you may connect the pump 21b between the piping which connects the heat exchanger 15b between heat exchangers 15b and the 1st heat carrier flow switching apparatus 22 among the heat carrier piping 5.
  • the first heat medium flow switching device 22 switches the flow path of the heat medium.
  • the first heat medium flow switching device 22 is provided in a number (here, four) according to the number of indoor units 2 installed.
  • one of the three sides is in the heat exchanger 15a, one of the three is in the heat exchanger 15b, and one of the three is in the heat medium flow rate.
  • Each is connected to the adjusting device 25 and provided on the outlet side of the heat medium flow path of the use side heat exchanger 26.
  • the switching device 22d is assumed.
  • the first heat medium flow switching device 22 may be configured with, for example, a three-way valve.
  • the second heat medium flow switching device 23 switches the flow path of the heat medium.
  • the number of the second heat medium flow switching devices 23 is set according to the number of installed indoor units 2 (here, four).
  • the heat exchanger is connected to the exchanger 26 and provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the second heat medium flow switching device 23a, the second heat medium flow switching device 23b, the second heat medium flow switching device 23c, and the second heat medium flow from the lower side of the drawing. It is assumed that the switching device 23d.
  • the second heat medium flow switching device 23 may be constituted by, for example, a three-way valve.
  • the heat medium flow control device 25 adjusts the flow rate of the heat medium flowing through the heat medium pipe 5.
  • the number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case).
  • One of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22, and is connected to the outlet side of the heat medium flow channel of the use side heat exchanger 26. Is provided.
  • the heat medium flow adjustment device 25 a, the heat medium flow adjustment device 25 b, the heat medium flow adjustment device 25 c, and the heat medium flow adjustment device 25 d are illustrated from the lower side of the drawing.
  • the heat medium flow control device 25 may be provided on the inlet side of the heat medium flow path of the use side heat exchanger 26.
  • the heat medium flow control device 25 may be composed of, for example, a two-way valve that can control the opening area.
  • the heat medium converter 3 includes various detection means (in FIG. 5, two first temperature sensors 31a and 31b, four second temperature sensors 34a to 34d, four third temperature sensors 35a to 35d, and A pressure sensor 36) is provided. Information (temperature information, pressure information) detected by these various detection means is sent to a control device (not shown) that performs overall control of the operation of the air conditioner 100, and the drive frequency of the compressor 10, heat source side heat exchange.
  • a control device not shown
  • the rotation speed of a blower (not shown) provided near the heat exchanger 12 and the use-side heat exchanger 26, switching of the first refrigerant flow switching device 11, driving frequency of the pump 21, switching of the second refrigerant flow switching device 18, heat This is used for control such as switching of the flow path of the medium circuit.
  • the two first temperature sensors 31 a and 31 b are the heat medium flowing out from the heat exchanger related to heat medium 15, that is, the heat medium at the outlet of the heat exchanger related to heat medium 15. The temperature is detected.
  • the first temperature sensor 31a is provided in the heat medium pipe 5 on the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the heat medium pipe 5 on the inlet side of the pump 21b.
  • the first temperature sensor 31 may be composed of, for example, a thermistor.
  • the four second temperature sensors 34a to 34d are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25. The temperature of the heat medium flowing out from the use side heat exchanger 26 is detected.
  • the number of the second temperature sensors 34 (four here) according to the number of indoor units 2 installed is provided. In correspondence with the indoor unit 2, the second temperature sensor 34a, the second temperature sensor 34b, the second temperature sensor 34c, and the second temperature sensor 34d are illustrated from the lower side of the drawing.
  • the second temperature sensor 34 may be composed of, for example, a thermistor.
  • the four third temperature sensors 35a to 35d are provided on the inlet side or the outlet side of the heat source side refrigerant in the heat exchanger related to heat medium 15, The temperature of the heat source side refrigerant flowing into the intermediate heat exchanger 15 or the temperature of the heat source side refrigerant flowing out of the intermediate heat exchanger 15 is detected.
  • the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
  • the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
  • the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the third temperature sensor 35 may be composed of, for example, a thermistor.
  • the pressure sensor 36 is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the flowing heat source side refrigerant is detected.
  • a main controller (not shown) is configured by a microcomputer or the like, and based on detection information from various detection means and instructions from a remote controller, the driving frequency of the compressor 10 and the blower (not shown) Rotational speed (including ON / OFF), switching of the first refrigerant flow switching device, driving of the pump 21, opening of the expansion device 16, opening / closing of the opening / closing device 17, switching of the second refrigerant flow switching device 18, first The switching of the heat medium flow switching device 22, the switching of the second heat medium flow switching device 23, the opening degree of the heat medium flow control device 25, and the like are controlled, and each operation mode described later is executed. Yes.
  • the control device may be provided for each unit, or may be provided in the outdoor unit 1 or the heat medium relay unit 3.
  • the heat medium pipe 5 through which the heat medium flows is composed of one connected to the heat exchanger related to heat medium 15a and one connected to the heat exchanger related to heat medium 15b.
  • the heat medium pipe 5 is branched (here, four branches each) according to the number of indoor units 2 connected to the heat medium converter 3.
  • the heat medium pipe 5 is connected to the first heat medium flow switching device 22 and the second heat medium flow switching device 23.
  • the refrigerant circulation circuit A is configured by connecting the passage, the second refrigerant flow switching device 18 and the accumulator 19 with the refrigerant pipe 4. Further, the heat medium flow path of the intermediate heat exchanger 15, the pump 21, the first heat medium flow switching device 22, the heat medium flow control device 25, the use side heat exchanger 26, and the second heat medium flow path
  • the switching device 23 is connected by the heat medium pipe 5 to constitute the heat medium circulation circuit B. That is, a plurality of usage-side heat exchangers 26 are connected in parallel to each of the heat exchangers between heat media 15, and the heat medium circulation circuit B has a plurality of systems.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3.
  • the heat medium converter 3 and the indoor unit 2 are connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. That is, in the air conditioner 100, the heat source side refrigerant circulating in the refrigerant circuit A and the heat medium circulating in the heat medium circuit B exchange heat in the intermediate heat exchanger 15a and the intermediate heat exchanger 15b. It is like that.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
  • the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation.
  • each operation mode is demonstrated with the flow of a heat-source side refrigerant
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling only operation mode.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the piping represented with the thick line has shown the piping through which a refrigerant
  • the flow direction of the heat source side refrigerant is indicated by a solid line arrow, and the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium is circulated between each of the heat exchanger related to heat medium 15a and the second heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a high-pressure liquid refrigerant, radiating heat to outdoor air with the heat source side heat exchanger 12.
  • the high-pressure liquid refrigerant that has flowed out of the heat source-side heat exchanger 12 flows out of the outdoor unit 1 through the pipe provided with the check valve 13a and the high-pressure side refrigerant pipe 4a (1), and the high-pressure side refrigerant pipe 4a (2 ) To the heat medium relay unit 3.
  • the high-pressure liquid refrigerant flowing into the heat medium relay unit 3 is branched after passing through the opening / closing device 17a and expanded by the expansion device 16a and the expansion device 16b to become a low-temperature / low-pressure two-phase refrigerant.
  • the opening / closing device 17b is closed.
  • the low-temperature / low-pressure two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator.
  • the low-temperature / low-pressure two-phase refrigerant absorbs heat from the heat medium circulating in the heat medium circuit B and becomes a low-temperature / low-pressure gas refrigerant while cooling the heat medium.
  • the gas refrigerant flowing out from the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b flows out from the heat medium converter 3 via the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b.
  • the aperture of the expansion device 16a is controlled so that the superheat (superheat degree) obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. .
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchangers between heat exchangers 15a and 15b, and the cooled heat medium is transferred by the pumps 21a and 21b.
  • the inside of the heat medium pipe 5 is allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
  • the heat medium flows out of the use side heat exchanger 26a and the use side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a passes through the first heat medium flow switching device 22a, flows into the heat exchanger related to heat medium 15a and the heat exchanger related to second heat medium 15b, and is again pump 21a. And sucked into the pump 21b.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. By controlling so as to keep the difference between the two as a target value, it can be covered.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature of these may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 have a flow path that flows to both the heat medium heat exchanger 15a and the second heat medium heat exchanger 15b. As shown in FIG.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the heating only operation mode.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes represented by the thick lines indicate the pipes through which the refrigerant (heat source side refrigerant and heat medium) flows.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11, the first connection pipe 42a, and the refrigerant pipe 4a (1).
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the high-pressure side refrigerant pipe 4a (2).
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 is branched and passed through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, and the heat exchanger related to heat medium 15a and the heat medium. It flows into each of the intermediate heat exchangers 15b.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b becomes a high-pressure refrigerant whose temperature decreases while radiating heat to the heat medium circulating in the heat medium circuit B.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b to become a low-temperature, low-pressure two-phase refrigerant.
  • the low-temperature / low-pressure two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b and flows into the outdoor unit 1 again through the low-pressure side refrigerant pipe 4b (2).
  • the opening / closing device 17a is closed and the opening / closing device 17b is open.
  • the refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12 that functions as an evaporator via the low-pressure side refrigerant pipe 4b (1) and the second connection pipe 42b. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16a is opened so that a subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant.
  • the degree is controlled.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Be controlled.
  • the temperature at the intermediate position of the heat exchanger related to heat medium 15 can be measured, the temperature at the intermediate position may be used instead of the pressure sensor 36, and the system can be configured at low cost.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the heated heat medium is heated by the pump 21a and the pump 21b.
  • the inside of the pipe 5 is allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
  • the heat medium flows out of the use side heat exchanger 26a and the use side heat exchanger 26b, and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. By controlling so as to keep the difference between the two as a target value, it can be covered.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • the usage-side heat exchanger 26a should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b. By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 100 is in the cooling main operation mode.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • a pipe represented by a thick line shows a pipe through which the refrigerant (heat source side refrigerant and heat medium) circulates.
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium is circulated between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. And it becomes a liquid refrigerant, dissipating heat to outdoor air with the heat source side heat exchanger 12.
  • the high-pressure liquid refrigerant that has flowed out of the heat source-side heat exchanger 12 flows out of the outdoor unit 1 through the pipe provided with the check valve 13a and the high-pressure side refrigerant pipe 4a (1), and the high-pressure side refrigerant pipe 4a (2 ) To the heat medium relay unit 3.
  • the high-pressure liquid refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the opening / closing device 17 is closed.
  • the refrigerant that has flowed into the heat exchanger related to heat medium 15b becomes a refrigerant whose temperature is further lowered while radiating heat to the heat medium circulating in the heat medium circuit B.
  • the refrigerant flowing out from the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the heat medium.
  • the gas refrigerant that has flowed out of the heat exchanger related to heat medium 15a flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and returns to the outdoor unit 1 again via the low-pressure side refrigerant pipe 4b (2). Inflow.
  • the refrigerant flowing into the outdoor unit 1 is again supplied to the compressor 10 via the low-pressure side refrigerant pipe 4b (1), the pipe provided with the check valve 13d, the first refrigerant flow switching device 11, and the accumulator 19. Inhaled.
  • the opening of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant.
  • the expansion device 16a is fully open, and the opening / closing device 17a and the opening / closing device 17b are closed.
  • the expansion device 16b controls the opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. May be.
  • the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the indoor space 7 is cooled by the heat medium absorbing heat from the indoor air.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21a.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching is performed from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side. A heat medium flows in the direction to the device 22.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
  • FIG. 6 is a refrigerant circuit diagram showing a refrigerant flow when the air-conditioning apparatus 100 is in the heating main operation mode.
  • the heating main operation mode will be described by taking as an example a case where a thermal load is generated in the use side heat exchanger 26a and a cold load is generated in the use side heat exchanger 26b.
  • the piping represented with the thick line has shown the piping through which a refrigerant
  • coolant a heat-source side refrigerant
  • the flow direction of the heat source side refrigerant is indicated by solid line arrows, and the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 uses the heat source side refrigerant discharged from the compressor 10 without passing through the heat source side heat exchanger 12. It switches so that it may flow into converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the use-side heat exchanger 26b, and between the heat exchanger related to heat medium 15b and the use-side heat exchanger 26a.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows out of the outdoor unit 1 through the first refrigerant flow switching device 11, the first connection pipe 42a, and the refrigerant pipe 4a (1).
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the high-pressure side refrigerant pipe 4a (2).
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser via the second refrigerant flow switching device 18b.
  • the opening / closing device 17 is closed.
  • the gas refrigerant flowing into the heat exchanger related to heat medium 15b becomes a refrigerant whose temperature is lowered in a supercritical state while dissipating heat to the heat medium circulating in the heat medium circuit B.
  • the refrigerant flowing out from the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • the low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant flowing into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the heat medium circulating in the heat medium circuit B, thereby cooling the heat medium.
  • This low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and passes through the low-pressure side refrigerant pipe 4b (2). It flows into the outdoor unit 1 again.
  • the refrigerant flowing into the outdoor unit 1 flows into the heat source side heat exchanger 12 acting as an evaporator via the low-pressure side refrigerant pipe 4b (1) and the second connection pipe 42b. And the refrigerant
  • the low-temperature and low-pressure gas refrigerant flowing out from the heat source side heat exchanger 12 is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion device 16b is controlled so that the subcool obtained as a difference between the value detected by the pressure sensor 36 and converted into the saturation temperature and the temperature detected by the third temperature sensor 35b is constant. . Further, the expansion device 16a is fully opened and the opening / closing device 17b is closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
  • the heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15b, and the heated heat medium is caused to flow in the heat medium pipe 5 by the pump 21b.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in the heat exchanger related to heat medium 15a, and the cooled heat medium is caused to flow in the heat medium pipe 5 by the pump 21a.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Moreover, in the use side heat exchanger 26a, the heat medium radiates heat to the indoor air, thereby heating the indoor space 7.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25b and the first heat medium flow switching device 22b, and again.
  • the heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15b through the heat medium flow control device 25a and the first heat medium flow switching device 22a, and again. It is sucked into the pump 21b.
  • the warm heat medium and the cold heat medium are not mixed by the action of the first heat medium flow switching device 22 and the second heat medium flow switching device 23, and the use side has a heat load and a heat load, respectively. It is introduced into the heat exchanger 26.
  • the first heat medium flow switching is performed from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side. A heat medium flows in the direction to the device 22.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a as a target value.
  • the air conditioner 100 has several operation modes. In these operation modes, the heat source side refrigerant flows through the refrigerant pipe 4 that connects the outdoor unit 1 and the heat medium relay unit 3.
  • Heat medium piping 5 In some operation modes executed by the air-conditioning apparatus 100 according to the present embodiment, a heat medium such as water or antifreeze flows through the heat medium pipe 5 that connects the heat medium converter 3 and the indoor unit 2. .
  • Heat source side refrigerant In the air conditioning apparatus 100 according to the present embodiment, it is assumed that a refrigerant having a small global warming potential is employed as the heat source side refrigerant.
  • a refrigerant having a small global warming potential examples include HFO1234yf, a mixed refrigerant of HFO1234yf, HFO1234ze, other tetrafluoropropene-based refrigerants, R32, HC, carbon dioxide, a mixed refrigerant containing at least one component of the aforementioned refrigerant.
  • Heat medium for example, brine (antifreeze), water, a mixed solution of brine and water, a mixed solution of water and an additive having a high anticorrosive effect, or the like can be used. Therefore, in the air conditioning apparatus 100, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, it contributes to the improvement of safety because a highly safe heat medium is used. Become.
  • the air-conditioning apparatus 100 adopting the configuration as described above 2 can detect refrigerant leakage from the refrigerant circuit (refrigerant circulation circuit A), and greatly improves safety. Moreover, since the air conditioning apparatus 100 uses what changed to a supercritical state for a refrigerant
  • the air conditioning apparatus 100 has been described as being capable of mixed cooling and heating operation, the present invention is not limited to this.
  • the present invention can be applied even to configurations that can only be performed.
  • the present invention can be applied even when only one use side heat exchanger 26 and one heat medium flow control device 25 are connected. Furthermore, it goes without saying that a plurality of heat exchangers 15 and the expansion device 16 that move in the same manner may be installed. Further, the case where the heat medium flow control device 25 is built in the heat medium converter 3 has been described as an example. However, the heat medium flow control device 25 is not limited thereto, and may be built in the indoor unit 2. 3 and the indoor unit 2 may be configured separately.
  • the heat source side heat exchanger 12 and the use side heat exchanger 26 are provided with a blower, and in many cases, condensation or evaporation is promoted by blowing air, but this is not restrictive.
  • the use side heat exchanger 26 may be a panel heater using radiation, and the heat source side heat exchanger 12 is of a water-cooled type that moves heat by water or antifreeze. Can also be used. That is, the heat source side heat exchanger 12 and the use side heat exchanger 26 can be used regardless of the type as long as they have a structure capable of radiating heat or absorbing heat.
  • the case where there are four use-side heat exchangers 26 has been described as an example, but the number is not particularly limited. Moreover, although the case where the number of heat exchangers between heat media 15 is two has been described as an example, the number of heat exchangers is naturally not limited to this. If the heat medium can be cooled or / and heated, the number of heat exchangers 15 may be set. Also good. Furthermore, the number of pumps 21a and 21b is not limited to one, and a plurality of small-capacity pumps may be connected in parallel.
  • FIG. 8 shows another refrigerant circuit configuration example of the air-conditioning apparatus 100 according to the embodiment of the present invention.
  • the difference between the refrigerant circuit of FIG. 8 and FIGS. 2 to 6 is that it is a directly expanded air conditioner that does not have the heat medium circulation circuit B. Further, four aperture devices 14a to 14d are provided.
  • the concentration detector 39, the concentration calculator 41, the first shut-off device 37, the second shut-off device 38, and the shut-off control device 40 are the same as in the case of FIGS. There is an effect.
  • the concentration detection unit 39 is disposed in or near the outdoor unit 1 (heat source unit) has been described so far
  • the concentration detection unit 39 may be disposed in or near the indoor unit 2. Good. Thereby, it is possible to cope with refrigerant leakage of the indoor unit 2.

Abstract

 圧縮機10、熱源側熱交換器12、絞り装置16、及び負荷側熱交換器15を有し、これらが冷媒配管で接続されて構成された冷凍サイクルを有する空気調和装置100において、冷凍サイクルを循環する冷媒を通過又は遮断する遮断装置37、38と、漏洩した複数の種類の冷媒濃度に応じて変化する抵抗値で冷媒漏洩を検知する検知部と、検知部の抵抗値に基づいて漏洩した冷媒の濃度を算出する濃度算出部41と、濃度算出部41の算出結果を遮断装置37、38の制御に利用するために出力する濃度検出部39と、濃度検出部39の出力に基づいて、遮断装置37、38を制御する遮断制御装置40とを有した。

Description

空気調和装置
 本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置に関するものである。
 空気調和装置には、ビル用マルチエアコンなどのように、熱源機(室外機)が建物外に配置され、室内機が建物の室内に配置されたものがある。このような空気調和装置の冷媒回路を循環する冷媒は、室内機の熱交換器に供給される空気に放熱(吸熱)して、当該空気を加温又は冷却する。そして、加温又は冷却された空気が、空調対象空間に送り込まれて暖房又は冷房が行われるようになっている。
 このような空気調和装置は、通常ビルが室内空間を複数有しているので、それに応じて室内機も複数からなる。また、ビルの規模が大きい場合には、室外機と室内機とを接続する冷媒配管が100mになる場合がある。室外機と室内機とを接続する配管長が長いと、その分だけ冷媒回路に充填される冷媒量が増加する。
 そして、冷媒回路に充填された冷媒が、何らかの原因によって、冷媒漏れを起こしてしまうと、漏れた冷媒が室内空間に流出する恐れがある。その場合、冷媒が引火性を有する場合には火災につながる恐れがある。また冷媒が、有毒性を有する場合には人体に悪影響を及ぼすことが想定される。
 そこで、従来の空気調和装置には、冷媒が漏洩したときに、圧縮機の運転を停止するようにしたものが提案されている(たとえば、特許文献1参照)。特許文献1に記載の技術は、二酸化炭素を冷媒として用い、二酸化炭素冷媒の漏れが発生した場合に、圧縮機を停止するものである。
特開2000-320936号公報(たとえば、明細書の段落[0024]~[0033]、図2~図4参照)
 特許文献1に記載されている技術は、二酸化炭素を冷媒として用い、二酸化炭素冷媒の漏れが従来冷媒の漏れのように発生した場合に、システムを停止するようにしているが、二酸化炭素冷媒の漏れに対する何らかの方策を講じていない。すなわち、冷媒として二酸化炭素を用いる場合には、人体に悪影響を与えないことを大前提とし、冷媒漏れを低減させる何らかの方策を講じる必要がある。また、同様に可燃性冷媒は、可燃性を有しているため、システムの安全性を確保するためには、二酸化炭素と同様、何らかの安全装置を具備する必要がある。
 近年、地球温暖化の観点から、地球温暖化係数が高いHFC系冷媒(たとえば、R410Aや、R404A、R407C、R134a等)の使用を制限する動きがあり、地球温暖化係数が小さい冷媒(たとえば、HFO1234yf、R32、HC及び二酸化炭素等)を用いた空気調和装置が提案されている。可燃性冷媒(HFO1234yf、R32及びHC)や二酸化炭素をビル用マルチエアコンに冷媒として用いた場合においても、多量の冷媒を必要とするため、その冷媒が室内空間に漏れた時の対策を講じておかなければならない。
 本発明に係る空気調和装置は、上記の課題に対応して成されたもので、冷凍サイクル装置における冷媒漏れのための有効な対策を提供することを目的とする。
 本発明に係る空気調和装置は、圧縮機、熱源側熱交換器、絞り装置、及び負荷側熱交換器を有し、これらが冷媒配管で接続されて構成された冷凍サイクルを有する空気調和装置において、冷凍サイクルを循環する冷媒を通過又は遮断する遮断装置と、漏洩した複数の種類の冷媒濃度に応じて変化する抵抗値で冷媒漏洩を検知する検知部と、検知部の抵抗値に基づいて漏洩した冷媒の濃度を算出する濃度算出部と、濃度算出部の算出結果を、遮断装置の制御に利用するために出力する濃度検出部と、濃度検出部の出力に基づいて、遮断装置を制御する遮断制御装置と、を有したものである。
 本発明に係る空気調和装置によれば、上記構成を有しているので、空気調和装置の安全性を向上することができる。
本発明の実施の形態に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態に係る空気調和装置の冷媒回路構成例である。 図2に示す空気調和装置の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。 図2に示す空気調和装置の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。 濃度検出部の検知部材の抵抗値と冷媒濃度との関係を冷媒の種類別に示したものである。 本発明の実施の形態に係る空気調和装置の別の冷媒回路構成例を示すものである。
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態
 図1は、本発明の実施の形態に係る空気調和装置100の設置例を示す概略図である。図1に基づいて、空気調和装置100の設置例について説明する。
 本実施の形態に係る空気調和装置100は、冷媒が漏洩してしまった場合に、当該漏洩を検知して、室外機1(熱源機)から流出する冷媒の流れと、室外機1に流入する冷媒の流れとを遮断する機能を有している。これにより、空気調和装置100から冷媒が漏洩してしまう量を低減して、ユーザーの安全を図っている。
 また、本実施の形態に係る空気調和装置100は、熱源側冷媒を循環させる冷凍サイクルである冷媒循環回路A(図2参照)及び熱媒体を循環させる熱媒体循環回路B(図2参照)を有しており、各室内機が運転モードとして冷房運転モード、暖房運転モードを選択できるものである。
 空気調和装置100では、冷媒(熱源側冷媒)を間接的に利用する方式(間接方式)を採用している。つまり、本実施の形態に係る空気調和装置100は、熱源側冷媒に貯えた冷熱または温熱を、熱源側冷媒とは異なる冷媒(以下、熱媒体と称する)に伝達し、熱媒体に貯えた冷熱または温熱で空調対象空間を冷房または暖房するようになっている。
 図1においては、空気調和装置100は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1を流れる熱源側冷媒の冷熱又は温熱を、室内機2を流れる熱媒体に伝達するための熱媒体変換機3を有している。熱媒体変換機3は、熱源側冷媒と熱媒体を熱交換させるものである。室外機1と熱媒体変換機3とは、熱源側冷媒を導通する冷媒配管4で接続されて構成されている。熱媒体変換機3と室内機2とは、熱媒体を導通する熱媒体配管5で接続されている。そして、室外機1で生成された冷熱又は温熱は、熱媒体変換機3の熱媒体に伝達され、室内機2に配送されるようになっている。また図2で説明するが、本実施の形態に係る空気調和装置100は、室外機1の内部に、第1遮断装置37及び第2遮断装置38(図2参照)を備えている。
 室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2とは冷媒配管4及び熱媒体配管5でそれぞれ接続され、室外機1から供給される冷熱あるいは温熱を室内機2に伝達するものである。
 図1に示すように、実施の形態に係る空気調和装置100においては、室外機1と熱媒体変換機3とが冷媒配管4を介して接続され、熱媒体変換機3と各室内機2とが熱媒体配管5を介して接続されている。このように、空気調和装置100では、冷媒配管4及び熱媒体配管5を用いて各ユニット(室外機1、室内機2及び熱媒体変換機3)を接続するものであり、施工が容易となっている。
 なお、図1においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏等の空間(たとえば、建物9における天井裏などのスペース、以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーター等がある共用空間等に設置することも可能である。また、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を室内空間7に供給することができれば、特に、限定されるものではない。
 また、図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いる場合にも建物9の内部に設置するようにしてもよい。
 熱媒体変換機3は、室外機1の近傍であって室内機2から離れた位置に設置してもよい。但し、熱媒体変換機3から室内機2までの距離が長くなると、熱媒体の搬送に必要な動力(エネルギー)がかなり大きくなるため、省エネの効果は薄れることに留意して、熱媒体変換機3を設置するとよい。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数の台数は、特に、限定されるものではなく、建物9に応じて台数を決定すればよい。
 図2は、本発明の実施の形態1に係る空気調和装置100の冷媒回路構成例である。図2に基づいて、空気調和装置100の冷媒回路構成について説明する。図2に示すように、室外機1と、熱媒体変換機3に備えられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bとが、冷媒配管4(高圧側冷媒配管4a(2)及び低圧側冷媒配管4b(2))を介して接続されている。また、熱媒体間熱交換器15a及び熱媒体間熱交換器15bと室内機2a~室内機2d(単に室内機2とも称することもある)とが、熱媒体配管5を介して接続されている。
[室外機1の構成]
 室外機1には、圧縮機10と、第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19と、第1遮断装置37と、第2遮断装置38とが、冷媒配管で接続されて設けられている。
 圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして冷媒循環回路Aに搬送するものである。この圧縮機10は、吐出側が第1冷媒流路切替装置11に接続され、吸引側がアキュムレーター19に接続されている。圧縮機10は、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。
 第1冷媒流路切替装置11は、全暖房運転モード時及び冷暖房混在運転モードの暖房主体運転モード時において、圧縮機10の吐出側と逆止弁13b、及び熱源側熱交換器12とアキュムレーター19の吸引側を接続するようにするものである。また、第1冷媒流路切替装置11は、冷房運転モード時及び冷暖房混在運転モードの冷房主体運転モード時において、圧縮機10の吐出側と熱源側熱交換器12、及び逆止弁13dとアキュムレーター19の吸引側を接続するようにするものである。第1冷媒流路切替装置11は、たとえば四方弁等で構成するとよい。
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には放熱器(ガスクーラー)として機能し、図示省略のファン等の送風機から供給される空気と冷媒との間で熱交換を行なうものである。この熱源側熱交換器12は、暖房運転モード時において、一方が逆止弁13cに接続され、他方がアキュムレーター19の吸引側に接続される。また、熱源側熱交換器12は、冷房運転モード時において、一方が圧縮機10の吐出側に接続され、他方が逆止弁13aに接続される。熱源側熱交換器12は、たとえば冷媒配管を流れる冷媒とフィンを通過する空気との間で熱交換ができるようなプレートフィンアンドチューブ型熱交換器で構成するとよい。
 アキュムレーター19は、暖房運転モード時と冷房運転モード時の違いによる余剰冷媒、過渡的な運転の変化(たとえば、室内機2の運転台数の変化)に対する余剰冷媒を蓄えるものである。このアキュムレーター19は、暖房運転モード時において、吸引側が熱源側熱交換器12に接続され、吐出側が圧縮機10の吸引側に接続される。また、アキュムレーター19は、冷房運転モード時において、吸引側が逆止弁13dに接続され、吐出側が圧縮機10の吸引側に接続される。
 また、室外機1には、第1接続配管42a、第2接続配管42b、逆止弁13a、逆止弁13b、逆止弁13c、及び逆止弁13dが設けられている。第1接続配管42a、第2接続配管42b、逆止弁13a、逆止弁13b、逆止弁13c、及び逆止弁13dを設けることで、暖房運転モードや冷房運転モードに関わらず、室外機1から熱媒体変換機3に流入させる熱源側冷媒の流れを一定方向にすることができる。
 つまり、圧縮機10から吐出された冷媒は、高圧側冷媒配管4a(2)に流入する。高圧側冷媒配管4a(2)に流入した冷媒は、熱媒体変換機3に流入する。熱媒体変換機3を流れた冷媒は、低圧側冷媒配管4b(2)から室外機1に流入する。
 なお、高圧側冷媒配管4a(1)とは、室外機1内の配管であって、図4に図示された点P2より下流側の配管をさす。高圧側冷媒配管4a(2)とは、冷媒配管4のうち高圧側冷媒配管4a(1)に接続された配管である。
 また、低圧側冷媒配管4b(1)とは、室外機1内の配管であって、図4に図示された点P3より上流側の配管をさす。低圧側冷媒配管4b(2)とは、冷媒配管4のうち低圧側冷媒配管4b(1)に接続された配管である。
 第1遮断装置37及び第2遮断装置38は、後述する遮断制御装置40の動作に基づいて、冷媒を流し(開状態)、又は冷媒の流れを遮断(閉状態)するものである。
 第1遮断装置37及び第2遮断装置38は、室外機1内又は室外機1の近傍に設けられている方がよい。つまり、第1遮断装置37は、高圧側冷媒配管4a(1)に接続され、第2遮断装置38が、低圧側冷媒配管4b(1)に接続されているとよい。また、第1遮断装置37は、高圧側冷媒配管4a(2)に接続され、第2遮断装置38が、低圧側冷媒配管4b(2)に接続されていてもよい。
 第1遮断装置37及び第2遮断装置38は、たとえば弁体、当該弁体をシールするシール材、及び当該弁体を電磁力で開閉するコイルを有する2方弁等で構成するとよい。以下の説明では、第1遮断装置37及び第2遮断装置38が、弁体、当該弁体をシールするシール材、及び当該弁体を電磁力で開閉するコイルを有する2方弁であるものとして説明する。
[室外機1の濃度検出機構]
 本空気調和装置100には、冷媒の濃度に応じて抵抗値が変化する検知部材(図示省略)を有する濃度検出部39と、検知部材の抵抗値に基づいて冷媒の濃度を算出する濃度算出部41と、算出された冷媒の濃度に基づいて第1遮断装置37及び第2遮断装置38の開閉を制御する遮断制御装置40とを有している。
 また、濃度検出部39は、濃度算出部41の冷媒濃度の算出結果に基づいて、所定信号を遮断制御装置40に出力する。
 具体的には、濃度算出部41の冷媒濃度の算出結果が所定濃度値未満であった場合には、所定信号を遮断制御装置40に出力しないようになっている。
 一方、濃度算出部41の冷媒濃度の算出結果が所定濃度値以上であった場合には、所定信号を遮断制御装置40に出力するようになっている。
 濃度検出部39は、濃度算出部41及び遮断制御装置40に電気的に接続されている。遮断制御装置40への出力は、特に、限定されるものではないが、たとえば直流電圧(5V、12V、24V等)、交流電圧、電流やその他の出力でもよい。なお、本実施の形態に係る空気調和装置100では、遮断制御装置40への出力をDC5Vであるものとして説明する。
 なお、所定濃度とは、空気調和装置100に採用された冷媒の漏洩限界濃度若しくは爆発限界下限値に対応するものである。たとえば、二酸化炭素を冷媒として用いる場合の所定濃度は、漏洩限界濃度の1/10程度に設定されると好ましい。また、可燃性冷媒(HFO1234yf、R32、HC)を用いた場合の所定濃度は、爆発限界下限値の1/10程度に設定されると好ましい。
 濃度検出部39の検知部材が設けられる位置は、特に、限定されるものではないが、たとえば図1に図示された室外機1内、室外機1の付近、熱媒体変換機3内、室外空間6、室内空間7、空間8等に設置するとよい。
 図7は、濃度検出部39の検知部材の抵抗値と冷媒濃度との関係を冷媒の種類別に示したものである。この検知部材は、たとえば酸化スズ(SnO)半導体で構成するとよい。図7に示すように、冷媒のガス濃度が上昇するにつれて、酸化スズ(SnO)半導体の抵抗値が徐々に低下するのがわかる。すなわち、検知部材の抵抗値を算出することで、一義的に冷媒の濃度を求めることができる。
 なお、検知部材を酸化スズ(SnO)半導体で構成した場合には、主要な冷媒(R410A、R407C、R32、HFO1234yf)の抵抗値と冷媒濃度の関係が、ほぼ同じ傾向となることが分かる。すなわち、主要な冷媒に対して、同じ検量線で冷媒濃度を検出することができる。言い換えれば、1つの検知部材で、複数の冷媒の濃度を検出可能となり、濃度検出部39の標準化を図ることが可能となる。
 また、このように濃度検出部39の標準化を図ることができると、冷媒の種類別に複数の検知部材を設ける必要がなくなるので、空気調和装置100の低コスト化を図ることができる。
 HFO1234yfの化学式はCF-CF=CHである。HFO1234yfの異性体であるHFO1234zeの化学式はCHF-CF=CHFであり、HFO1234yfと化学特性は良く似ているため、本発明の濃度検出部39の検知部の電気抵抗特性はほほ同じ特性を示す。従って、本実施の形態に係る濃度検出部39によって検出可能である。
 また、R32とHFO1234yfとを混合させた場合、非共沸混合冷媒となり、このような冷媒が漏れた場合、低沸点成分であるR32の漏れ量が多くなる。つまり、R32の方が、HFO1234yfに比べると早く限界濃度に到達するので、R32の漏れを測定することによって冷媒漏れを検知することで、冷媒漏れを安全側で検知することができる。
 また、他の混合冷媒を用いた場合においても、R410A、R407C、R32、HFO1234yf、及びHFO1234zeのいずれか一成分が含まれておれば、検知部材の電気抵抗は変化するため、濃度検出部39で検知可能である。すなわち、本実施の形態に係る濃度検出部39を用いることによって、HFC、HFO、HFCとHFOとを含む混合冷媒の冷媒漏れを検知することができる。
 一方、濃度検出部39の検知精度向上をさらに図るときには、図7の検量線を冷媒ごとの検量線を作成することで対応できる。言い換えれば、同じ検量線を使うことなく、冷媒の種類に対応したそれぞれの検量線を利用すればよい
 濃度算出部41は、濃度検出部39の検知部材の抵抗値に基づいて冷媒の濃度を算出(演算)するものである。濃度算出部41は、濃度検出部39に電気的に接続されている。
 濃度算出部41は、図7に図示されるように、冷媒濃度と検知部材の抵抗値の関係が記憶されている。これにより、濃度検出部39の検知部材の抵抗値に基づいて、空気調和装置100に採用された冷媒の濃度を算出することができるようになっている。
 なお、濃度算出部41が設けられる位置は、特に、限定されるものではないが、たとえば室外機1内、室外機1の付近等に設置するとよい。以下、再び図2に基づいて空気調和装置100の説明をするものとする。
 遮断制御装置40は、濃度検出部39の出力(所定信号)に基づいて、第1遮断装置37及び第2遮断装置38の開閉を制御するものである。
 冷媒濃度が所定濃度値以上である場合において、遮断制御装置40には、濃度検出部39から所定信号が出力される。これにより、電圧源(図示省略)と第1遮断装置37及び第2遮断装置38との電気的な接続が遮断される。つまり電圧源から第1遮断装置37及び第2遮断装置38に電圧が供給されなくなる(給電されなくなる)。すると、第1遮断装置37及び第2遮断装置38のコイルが励磁されなくなるので、弁体が閉じる。つまり、第1遮断装置37及び第2遮断装置38は、共に閉状態となる。
 一方、冷媒濃度が所定濃度値未満である場合において、遮断制御装置40には、濃度検出部39から電圧が出力されない。これにより、電圧源(図示省略)と第1遮断装置37及び第2遮断装置38とが電気的に接続される。つまり、電圧源から第1遮断装置37及び第2遮断装置38に電圧が供給される(給電される)。すると、第1遮断装置37及び第2遮断装置38のコイルが励磁されるので、弁体が開く。つまり、第1遮断装置37及び第2遮断装置38は、共に開状態となる。
 なお、遮断制御装置40が設けられる位置は、特に、限定されるものではないが、たとえば室外機1内、室外機1の付近等に設置するとよい。
 第1遮断装置37及び第2遮断装置38は、上記のように弁体、当該弁体をシールするシール材、及び当該弁体を電磁力で開閉するコイルを有する2方弁である。
 第1遮断装置37及び第2遮断装置38のそれぞれのコイルは、遮断制御装置40を介して電圧源に接続されている。そして、空気調和装置100が通常運転時には、遮断制御装置40が、電圧源と第1遮断装置37及び第2遮断装置38とを電気的に接続した状態(通電状態)としている。これにより、第1遮断装置37及び第2遮断装置38のそれぞれのコイルは、電圧源から電圧が供給されて電磁石となる。そして、それぞれの弁体が電磁力により引きつけられて、第1遮断装置37及び第2遮断装置38が開状態となる。
 一方、空気調和装置100の冷媒が漏洩したと検知されると、遮断制御装置40が、電圧源と第1遮断装置37及び第2遮断装置38とを電気的に遮断する(非通電状態)。これにより、第1遮断装置37及び第2遮断装置38のそれぞれのコイルは、電圧源から電圧が供給されなくなる。そして、それぞれの弁体がコイルに引きつけられなくなり、第1遮断装置37及び第2遮断装置38が閉状態となる。
 なお、電圧源と第1遮断装置37及び第2遮断装置38との電気的な接続を切り替えるのに機械的な電磁石のリレーを採用すると、可燃性冷媒(HFO1234yf、R32、HC)が冷媒として採用された場合に、火花が発生して冷媒を発火させるおそれがある。したがって、可燃性冷媒が採用された場合には、遮断制御装置40に半導体素子を用いた無接点リレーであるSRR(ソリッドステート・リレー)を採用するとよい。これにより、機械的な動作が無くなるので、火花が発生する可能性を低減することができる。これにより、可燃性冷媒が室外機1に漏洩しても、電圧源と第1遮断装置37及び第2遮断装置38との電気的な接続を、安全に切り替えることができる。
 また、第1遮断装置37及び第2遮断装置38の弁体を開閉させるためのコイルは、直流で励磁させるとよい。直流で励磁させる方が、コイルの寿命を長くすることができるためである。したがって、第1遮断装置37及び第2遮断装置38には、動作電圧として直流電圧を供給するものとして説明する。なお、動作電圧は、DC12Vであるものとして説明するがDC24V等でもよく、限定されるものではない。
 また、遮断制御装置40は、商用電源(交流、本実施の形態ではAC200V)から所定の直流電圧(本実施の形態ではDC12V)に変換できる変換機も備えている。上記した電圧源は、商用電源及び変換機に対応するものである。
 第1遮断装置37及び第2遮断装置38は、冷媒回路の主管(冷媒配管4)に設置されるため、口径を大きくする必要がある。すなわち、流量係数Cv値を大きくする必要がある。そこで、第1遮断装置37及び第2遮断装置38には、直動タイプではなく、パイロット式の弁を採用するとよい。
 そして、高圧の冷媒が通過する第1遮断装置37のCv値をたとえば1以上とし、低圧の冷媒が通過する第2遮断装置38のCv値をたとえば5以上とするとよい。
 以上のようなCv値を用いることによって、第1遮断装置37及び第2遮断装置38を冷媒回路に設けても、圧力損失を小さくすることができるため、性能の低下を小さくすることができる。すなわち、通常運転時の冷媒循環回路Aの冷媒循環量が低下する。
 また、弁体をシールするためのシール材は、ゴムまたはPTFE(ポリテトラフルオロエチレン)で構成するとよい。これにより、緊急時に駆動した際にすぐに弁体とシール材とが馴染みやすくなる(密着する)。つまり、第1遮断装置37及び第2遮断装置38が閉じた際に、冷媒が漏洩してしまうことが低減される。
 なお、第1遮断装置37及び第2遮断装置38は通常の弁のように頻繁に開閉するものではない。従って、シール材には、耐久性に優れた金属シールを採用しないでもよい。
 また、第1遮断装置37及び第2遮断装置38は、閉状態のときの冷媒の漏れ量が、たとえば1.0×10-6 [m/s]以下となるようにするとよい。この理由について以下で説明する。
 多くの冷媒が空間に漏れると、燃焼や酸欠等の危険があり、各冷媒の種類毎に、安全に使用できる漏洩冷媒量の最大濃度である限界濃度というものが定義されている。限界濃度は、たとえばR410Aでは0.44[m/kg]、R32では0.061[m/kg]、HFO1234yfでは0.0578[m/kg]、プロパンは0.008[m/kg]となっている。
 冷媒が室内に漏れた時に、冷媒配管に設置された第1遮断装置37及び第2遮断装置38を閉じて、冷媒の漏洩を防止することを考える。この時、冷媒が限界濃度まで至ってから冷媒の漏洩を防ぐ防止手段を講じていたのでは間に合わないので、室内の冷媒の濃度が限界濃度の95%に達した時に、第1遮断装置37及び第2遮断装置38を閉じるものとする。すなわち、第1遮断装置37及び第2遮断装置38を閉じた後に、冷媒が限界濃度に達するまでに、更に漏れてもよい量は5%ということになる。
 ここで、ビル用マルチエアコンの据付が予想される場所を、最も小さい部屋、ホテルのシングルルームとした場合に、この部屋の容積を25mとし、第1遮断装置37及び第2遮断装置38が作動したときの前後差圧が1.0MPaだとし、ユニットバスやその他も物を除いた室内の実質的な空間容積が0.5×25=12.5mであるものとする。この場合には、第1遮断装置37及び第2遮断装置38閉止後に、冷媒が漏れても良い量は、12.5m×0.05=0.625mとなる。就寝中など冷媒漏洩に気付かず、窓が閉まった状態で密閉された空間になっていることが予想されるため、第1遮断装置37及び第2遮断装置38が動作してから、24時間以内は限界濃度に達しない漏れ量を求めると、0.625/(24×60×60)=7.2×10-6[m/s]となり、第1遮断装置37及び第2遮断装置38閉止後の漏れ量が、この値未満であれば、安全であるということになる。
 また、冷媒が漏れる箇所は、高圧配管であったり、液配管であったりと、どこで漏れるか、不明であるため、高圧配管で漏れることを想定し、5MPa程度の差圧においても、上記漏れ量を確保しなければならないとすると、流体力学で一般周知であるベルヌーイの定理より、冷媒の漏れ量は差圧の0.5乗に比例するため、冷媒の漏れ量は、7.2×10-6[m/s] / ( 5/1) 0.5 =3.2×10-6となり、漏れ量がこの値未満であれば安全である。よって、更に安全を見て、漏れ量を1.0×10-6[m/s] 以下に抑えるものとする。
 なお、第1遮断装置37及び第2遮断装置38は、最低動作圧力差が、たとえば約0(kgf/cm)とするとよい。
 熱源側冷媒が循環する流路(冷媒循環回路A)から熱源側冷媒が漏洩すると、その漏洩に対応する外部(図1の室外空間6、室内空間7及び空間8を参照)の冷媒濃度が上昇する。その漏洩した冷媒の濃度に応じて、濃度検出部39の検知部材の抵抗値が変化する。そして、その抵抗値に基づいて、濃度算出部41が漏洩した冷媒の濃度を算出する。
 濃度算出部41の算出結果が、冷媒漏洩とみなされない所定濃度値未満である場合には、濃度検出部39が、所定信号を遮断制御装置40に出力しない。従って、遮断制御装置40には所定信号が出力されないので、遮断制御装置40は、電圧源と第1遮断装置37及び第2遮断装置38との電気的な接続を維持する。つまり、電圧源から第1遮断装置37及び第2遮断装置38のそれぞれのコイルに電圧が供給される。これにより、第1遮断装置37及び第2遮断装置38の弁体は開いた状態を保つ。つまり、第1遮断装置37及び第2遮断装置38は、共に開状態となる。
 濃度算出部41の算出結果が、冷媒漏洩とみなされる所定濃度値以上であると、濃度検出部39が、所定信号を遮断制御装置40に出力する。そして、この出力(所定信号)に基づいて、遮断制御装置40は、電圧源と第1遮断装置37第2遮断装置38との電気的な接続を遮断する。つまり、電圧源から第1遮断装置37及び第2遮断装置38のそれぞれのコイルに電圧が供給されなくなる。これにより、第1遮断装置37及び第2遮断装置38の弁体は閉じる。つまり、第1遮断装置37及び第2遮断装置38は、共に閉状態となる。
 これにより、室外機1から流出する冷媒の流れと、室外機1に流入する冷媒の流れとが遮断される。つまり、熱源側冷媒が冷媒循環回路Aを循環することが抑制される。これにより、冷媒が漏洩してしまう量が低減されるので、空気調和装置100の安全性を向上することができる。
[室内機2]
 室内機2には、利用側熱交換器26a~26d(単に利用側熱交換器26とも称することもある)が備えられている。この利用側熱交換器26は、熱媒体配管5を介して熱媒体流量調整装置25a~25d(単に熱媒体流量調整装置25とも称することもある)と、熱媒体配管5を介して第2熱媒体流路切替装置23a~23d(単に、第2熱媒体流路切替装置23とも称することもある)に接続するようになっている。この利用側熱交換器26は、図示省略のファン等の送風機から供給される空気と熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
 図2においては、4台の室内機2a~2dが、熱媒体変換機3に熱媒体配管5を介して接続されている場合を例に示している。また、室内機2a~2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとする。なお、室内機2の接続台数は、4台に限定されるものではない。
[熱媒体変換機3]
 熱媒体変換機3には、2つの熱媒体間熱交換器15a、15b(単に熱媒体間熱交換器15とも称することもある)と、2つの絞り装置16a、16b(単に絞り装置16とも称することもある)と、2つの開閉装置17a、17b(単に開閉装置17と称することもある)と、2つの第2冷媒流路切替装置18a、18b(単に第2冷媒流路切替装置18とも称することもある)と、2つのポンプ21a、21b(単にポンプ21とも称することもある)と、4つの第1熱媒体流路切替装置22a~22d(単に第1熱媒体流路切替装置22とも称することもある)と、4つの第2熱媒体流路切替装置23a~23d(単に第2熱媒体流路切替装置23とも称することもある)と、4つの熱媒体流量調整装置25a~25d(単に熱媒体流量調整装置25と称することもある)と、が搭載されている。
 熱媒体間熱交換器15(負荷側熱交換器)は、凝縮器(放熱器)又は蒸発器として機能し、熱源側冷媒と熱媒体とで熱交換を行ない、室外機1で生成され熱源側冷媒に貯えられた冷熱又は温熱を熱媒体に伝達するものである。熱媒体間熱交換器15aは、図2に示す冷媒循環回路Aにおける絞り装置16aと、第2冷媒流路切替装置18aと、を接続する配管の間に接続されており、冷房暖房混在運転モード時において熱媒体を冷却するものである。熱媒体間熱交換器15bは、図2に示す冷媒循環回路Aにおける絞り装置16bと、第2冷媒流路切替装置18bと、を接続する配管の間に接続されており、冷房暖房混在運転モード時において熱媒体を加熱するものである。
 絞り装置16は、減圧弁や膨張弁としての機能を有し、熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、全冷房運転モード時の熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。
 開閉装置17は、それが設けられている流路を開閉するものである。開閉装置17aは、全冷房運転モード時の熱源側冷媒の流れにおいて絞り装置16の上流側に設けられている。開閉装置17bは、全暖房運転モード時の熱源側冷媒の流れにおいて絞り装置16aの下流側に設けられている。開閉装置17は、たとえば二方弁等で構成するとよい。
 第2冷媒流路切替装置18は、全暖房運転モード時における冷媒の流れと、全冷房運転モード時における冷媒の流れと、冷暖房混在運転モード時における冷媒の流れとを切り替えるものである。第2冷媒流路切替装置18bは、全暖房運転モード時において、高圧側冷媒配管4a(2)と熱媒体間熱交換器15bを接続するようにするものである。第2冷媒流路切替装置18aは、全冷房運転モード時及び冷暖房混在運転モード時において、熱媒体間熱交換器15a及び低圧側冷媒配管4b(2)を接続するようにするものである。第2冷媒流路切替装置18は、たとえば四方弁等で構成するとよい。
 ポンプ21は、熱媒体配管5に流れる熱媒体を循環させるものである。ポンプ21aは、熱媒体配管5のうち、熱媒体間熱交換器15aと第2熱媒体流路切替装置23とを接続する配管の間に接続されている。ポンプ21bは、熱媒体配管5のうち、熱媒体間熱交換器15bと第2熱媒体流路切替装置23とを接続する配管の間に接続されている。2つのポンプ21は、たとえば容量制御可能なポンプ等で構成するとよい。なお、ポンプ21aを、熱媒体配管5のうち、熱媒体間熱交換器15aと第1熱媒体流路切替装置22とを接続する配管の間に接続してもよい。また、ポンプ21bを、熱媒体配管5のうち、熱媒体間熱交換器15bと第1熱媒体流路切替装置22とを接続する配管の間に接続してもよい。
 第1熱媒体流路切替装置22は、熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第1熱媒体流路切替装置22は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが熱媒体流量調整装置25に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22b、第1熱媒体流路切替装置22c、第1熱媒体流路切替装置22dとする。第1熱媒体流路切替装置22は、たとえば三方弁等で構成するとよい。
 第2熱媒体流路切替装置23は、熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。第2熱媒体流路切替装置23は、三方のうちの一つが熱媒体間熱交換器15aに、三方のうちの一つが熱媒体間熱交換器15bに、三方のうちの一つが利用側熱交換器26に、それぞれ接続され、利用側熱交換器26の熱媒体流路の入口側に設けられている。なお、室内機2に対応させて、紙面下側から第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23b、第2熱媒体流路切替装置23c、第2熱媒体流路切替装置23dとする。第2熱媒体流路切替装置23は、たとえば三方弁等で構成するとよい。
 熱媒体流量調整装置25は、熱媒体配管5に流れる熱媒体の流量を調整するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。熱媒体流量調整装置25は、一方が利用側熱交換器26に、他方が第1熱媒体流路切替装置22に、それぞれ接続され、利用側熱交換器26の熱媒体流路の出口側に設けられている。なお、室内機2に対応させて、紙面下側から熱媒体流量調整装置25a、熱媒体流量調整装置25b、熱媒体流量調整装置25c、熱媒体流量調整装置25dとして図示している。また、熱媒体流量調整装置25を利用側熱交換器26の熱媒体流路の入口側に設けてもよい。熱媒体流量調整装置25は、たとえば開口面積を制御できる二方弁等で構成するとよい。
 また、熱媒体変換機3には、各種検出手段(図5では、2つの第1温度センサー31a、31b、4つの第2温度センサー34a~34d、4つの第3温度センサー35a~35d、及び、圧力センサー36)が設けられている。これらの各種検出手段で検出された情報(温度情報、圧力情報)は、空気調和装置100の動作を統括制御する制御装置(図示省略)に送られ、圧縮機10の駆動周波数、熱源側熱交換器12及び利用側熱交換器26近傍に設けられる図示省略の送風機の回転数、第1冷媒流路切替装置11の切り替え、ポンプ21の駆動周波数、第2冷媒流路切替装置18の切り替え、熱媒体回路の流路の切替等の制御に利用される。
 2つの第1温度センサー31a、31b(単に第1温度センサー31とも称することもある)は、熱媒体間熱交換器15から流出した熱媒体、つまり熱媒体間熱交換器15の出口における熱媒体の温度を検出するものである。第1温度センサー31aは、ポンプ21aの入口側における熱媒体配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における熱媒体配管5に設けられている。第1温度センサー31は、たとえばサーミスター等で構成するとよい。
 4つの第2温度センサー34a~第2温度センサー34d(単に第2温度センサー34と称することもある)は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した熱媒体の温度を検出するものである。第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられている。なお、室内機2に対応させて、紙面下側から第2温度センサー34a、第2温度センサー34b、第2温度センサー34c、第2温度センサー34dとして図示している。第2温度センサー34は、たとえばサーミスター等で構成するとよい。
 4つの第3温度センサー35a~第3温度センサー35d(単に第3温度センサー35と称することもある)は、熱媒体間熱交換器15の熱源側冷媒の入口側または出口側に設けられ、熱媒体間熱交換器15に流入する熱源側冷媒の温度または熱媒体間熱交換器15から流出した熱源側冷媒の温度を検出するものである。第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。第3温度センサー35は、たとえばサーミスター等で構成するとよい。
 圧力センサー36は、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる熱源側冷媒の圧力を検出するものである。
 また、図示省略の主制御装置が、マイコン等で構成されて設けられており、各種検出手段での検出情報及びリモコンからの指示に基づいて、圧縮機10の駆動周波数、送風機(図示省略)の回転数(ON/OFF含む)、第1冷媒流路切替装置の切り替え、ポンプ21の駆動、絞り装置16の開度、開閉装置17の開閉、第2冷媒流路切替装置18の切り替え、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、及び、熱媒体流量調整装置25の開度等を制御し、後述する各運転モードを実行するようになっている。なお、制御装置は、ユニット毎に設けてもよく、室外機1または熱媒体変換機3に設けてもよい。
 熱媒体が流れる熱媒体配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。熱媒体配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、熱媒体配管5は、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23に接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが設定されるようになっている。
 そして、空気調和装置100では、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、絞り装置16、熱媒体間熱交換器15のうち熱源側冷媒の流路、第2冷媒流路切替装置18及びアキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。また、熱媒体間熱交換器15の熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び、第2熱媒体流路切替装置23を、熱媒体配管5で接続して熱媒体循環回路Bを構成している。つまり、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26が並列に接続され、熱媒体循環回路Bを複数系統としているのである。
 よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2が、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体とが熱交換するようになっている。
 この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房暖房混在運転モードとしての冷房主体運転モード、及び、暖房負荷の方が大きい冷房暖房混在運転モードとしての暖房主体運転モードがある。以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
 図3は、空気調和装置100の全冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図3では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図3に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び第2熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら高圧の液冷媒となる。
 熱源側熱交換器12から流出した高圧の液冷媒は、逆止弁13aが設けられた配管及び高圧側冷媒配管4a(1)を介して室外機1から流出し、高圧側冷媒配管4a(2)を介して熱媒体変換機3に流入する。
 熱媒体変換機3に流入した高圧の液冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。なお、開閉装置17bは閉となっている。
 低温・低圧の二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。そして低温・低圧の二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。
 熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを介し、熱媒体変換機3から流出し、低圧側冷媒配管4b(2)を介して再び室外機1へ流入する。
 室外機1に流入したガス冷媒は、低圧側冷媒配管4b(1)、逆止弁13dが接続された配管、第1冷媒流路切替装置11、及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器15a及び第2熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって熱媒体配管5内を流動させられる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。
 熱媒体流量調整装置25aから流出した熱媒体は、第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15a及び第2熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の熱媒体配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31a及び第1温度センサー31bのうちのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び第2熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
 全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図3においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c及び利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
 なお、このオペレーションは、他の運転モードにおいても同様に適用してもよい。
[全暖房運転モード]
 図4は、空気調和装置100の全暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の流れる配管を示している。また、図4では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図4に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11、第1接続配管42a、及び冷媒配管4a(1)を介して、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、高圧側冷媒配管4a(2)を介して熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、分岐されて第2冷媒流路切替装置18a、第2冷媒流路切替装置18bを介して、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
 熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら温度が低下した高圧の冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。低温・低圧の二相冷媒は、開閉装置17bを介して、熱媒体変換機3から流出し、低圧側冷媒配管4b(2)を介して、再び室外機1へ流入する。なお、開閉装置17aは閉、開閉装置17bは開となっている。
 室外機1に流入した冷媒は、低圧側冷媒配管4b(1)及び第2接続配管42bを介して、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 なお、低圧側冷媒配管4b(1)に流入した冷媒は、第2接続配管42b側(逆止弁13c)に流れるが、逆止弁13dに流れないようになっている。これは、図4に図示される点P1側を流れる冷媒は、点P3側を流れる冷媒に対して高圧となっているので、逆止弁13dの弁が閉じてしまうからである。
 第2接続配管42bに流入した冷媒は、熱源側熱交換器12に流れるが、逆止弁13aに流れないようになっている。これは、図4に図示される点P4側を流れる冷媒は、点P2側を流れる冷媒に対して高圧となっているので、逆止弁13aの弁が閉じてしまうからである。
 絞り装置16aは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21a及びポンプ21bによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱することで、室内空間7の暖房を行なう。
 それから熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の熱媒体配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値として保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31aまたは第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
 このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
[冷房主体運転モード]
 図5は、空気調和装置100の冷房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図5では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図5では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図5に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間を、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら液冷媒となる。熱源側熱交換器12から流出した高圧の液冷媒は、逆止弁13aが設けられた配管及び高圧側冷媒配管4a(1)を介して室外機1から流出し、高圧側冷媒配管4a(2)を介して熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧の液冷媒は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。なお、開閉装置17は、閉となっている。
 熱媒体間熱交換器15bに流入した冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら、さらに温度が低下した冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧の二相冷媒となる。低圧の二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧の二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低圧のガス冷媒となる。熱媒体間熱交換器15aから流出したガス冷媒は、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、低圧側冷媒配管4b(2)を介して再び室外機1へ流入する。室外機1に流入した冷媒は、低圧側冷媒配管4b(1)、逆止弁13dが設けられた配管、第1冷媒流路切替装置11、及びアキュムレーター19を介して、圧縮機10へ再度吸入される。
 絞り装置16bは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aと開閉装置17bは閉となっている。なお、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒートまたはサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の熱媒体配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。
[暖房主体運転モード]
 図6は、空気調和装置100の暖房主体運転モード時における冷媒の流れを示す冷媒回路図である。この図6では、利用側熱交換器26aで温熱負荷が発生し、利用側熱交換器26bで冷熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(熱源側冷媒及び熱媒体)の循環する配管を示している。また、図6では、熱源側冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図6に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26bとの間を、熱媒体間熱交換器15bと利用側熱交換器26aとの間を、それぞれ熱媒体が循環するようにしている。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の冷媒が圧縮機10によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11、第1接続配管42a、及び冷媒配管4a(1)を介して、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、高圧側冷媒配管4a(2)を介して熱媒体変換機3に流入する。熱媒体変換機3に流入した高温・高圧のガス冷媒は、第2冷媒流路切替装置18bを介して凝縮器として作用する熱媒体間熱交換器15bに流入する。なお、開閉装置17は、閉となっている。
 熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら超臨界状態で温度が低下した冷媒となる。熱媒体間熱交換器15bから流出した冷媒は、絞り装置16bで膨張させられて低圧の二相冷媒となる。低圧の二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧の二相冷媒は、熱媒体循環回路Bを循環する熱媒体から吸熱することで蒸発し、熱媒体を冷却する。この低圧の二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、低圧側冷媒配管4b(2)を通って再び室外機1へ流入する。
 室外機1に流入した冷媒は、低圧側冷媒配管4b(1)及び第2接続配管42bを介して、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10へ再度吸入される。
 絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
 次に、熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器15bで熱源側冷媒の温熱が熱媒体に伝えられ、暖められた熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
 この間、暖かい熱媒体と冷たい熱媒体とは、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23の作用により、混合することなく、それぞれ温熱負荷、冷熱負荷がある利用側熱交換器26へ導入される。なお、利用側熱交換器26の熱媒体配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値として保つように制御することにより、賄うことができる。
[冷媒配管4]
 以上説明したように、本実施の形態に係る空気調和装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する冷媒配管4には熱源側冷媒が流れている。
[熱媒体配管5]
 本実施の形態に係る空気調和装置100が実行する幾つかの運転モードにおいては、熱媒体変換機3と室内機2を接続する熱媒体配管5には水や不凍液等の熱媒体が流れている。
[熱源側冷媒]
 本実施の形態に係る空気調和装置100においては、熱源側冷媒として、地球温暖化係数が小さい冷媒を採用しているものとする。そのようなものには、たとえばHFO1234yf、HFO1234yfの混合冷媒、HFO1234ze、その他のテトラフルオロプロペン系の冷媒、R32、HC、二酸化炭素、前述した冷媒が少なくとも一成分含む混合冷媒等がある。
[熱媒体]
 熱媒体としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液等を用いることができる。したがって、空気調和装置100においては、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
 以上説明2たような構成を採用した空気調和装置100は、冷媒回路(冷媒循環回路A)からの冷媒漏れを検知することが可能となり、安全性を大きく向上させたものとなる。また、空気調和装置100は、冷媒に超臨界状態に遷移するものを使用しているので、環境負荷を小さくすることができる。
 空気調和装置100は、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。たとえば、熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整装置25が並列に接続され、冷房運転か暖房運転のいずれかしか行なえない構成であっても本発明が適用できる。
 また、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも本発明が適用できる。更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていてもよいことは言うまでもない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
 また、一般的に、熱源側熱交換器12及び利用側熱交換器26には、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば、利用側熱交換器26としては放射を利用したパネルヒーターのようなものを用いることもできるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものを用いることもできる。つまり、熱源側熱交換器12及び利用側熱交換器26としては、放熱あるいは吸熱をできる構造のものであれば種類を問わず、用いることができる。
 本実施の形態に係る空気調和装置100では、利用側熱交換器26が4つである場合を例に説明したが、その個数を特に限定するものではない。また、熱媒体間熱交換器15が2つである場合を例に説明したが、当然、これに限るものではなく、熱媒体を冷却又は/及び加熱できるように構成すれば、幾つ設置してもよい。さらに、ポンプ21a、ポンプ21bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べて接続してもよい。
 図8は、本発明の実施の形態に係る空気調和装置100の別の冷媒回路構成例を示すものである。図8と図2~図6との冷媒回路の相違点は、熱媒体循環回路Bを有していない直膨形の空気調和装置である点である。さらに、4つの絞り装置14a~14dが設けられている。この構成の空気調和装置100においても、濃度検出部39、濃度算出装置41、第1遮断装置37、第2遮断装置38、及び遮断制御装置40の作用により図2~図6の場合と同様の効果を奏する。
 なお、これまでは室外機1(熱源機)の内部又はその近傍に濃度検出部39を配置した例を説明したが、濃度検出部39を室内機2の内部、又はその近傍に配置してもよい。これにより、室内機2の冷媒漏洩にも対処することができる。
 1 室外機、2 室内機、2a~2d 室内機、3 熱媒体変換機、4 冷媒配管、4a(1)、4a(2) 高圧側冷媒配管、 4b(1)、4b(2) 低圧側冷媒配管、5 熱媒体配管、6 室外空間、7 室内空間、8 空間、9 建物、10 圧縮機、11 第1冷媒流路切替装置、12 熱源側熱交換器、13a~13d 逆止弁、15 熱媒体間熱交換器、14a~14d 絞り装置、15a、15b 熱媒体間熱交換器、16 絞り装置、16a、16b 絞り装置、17 開閉装置、17a、17b 開閉装置、18 第2冷媒流路切替装置、18a、18b 第2冷媒流路切替装置、19 アキュムレーター、21 ポンプ、21a、21b ポンプ、22 第1熱媒体流路切替装置、22a~22d 第1熱媒体流路切替装置、23 第2熱媒体流路切替装置、23a~23d 第2熱媒体流路切替装置、25 熱媒体流量調整装置、25a~25d 熱媒体流量調整装置、26 利用側熱交換器、26a~26d 利用側熱交換器、31 第1温度センサー、31a、31b 第1温度センサー、34 第2温度センサー、34a~34d 第2温度センサー、35 第3温度センサー、35a~35d 第3温度センサー、36 圧力センサー、37 第1遮断装置、38 第2遮断装置、39 濃度検出部、40 遮断制御装置、41 濃度算出部、42a 第1接続配管、42b 第2接続配管、100 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (16)

  1.  圧縮機、熱源側熱交換器、絞り装置、及び負荷側熱交換器を有し、これらが冷媒配管で接続されて構成された冷凍サイクルを有する空気調和装置において、
     前記冷凍サイクルを循環する冷媒を通過又は遮断する遮断装置と、
     漏洩した複数の種類の冷媒濃度に応じて変化する抵抗値で冷媒漏洩を検知する検知部と、
     前記検知部の抵抗値に基づいて漏洩した冷媒の濃度を算出する濃度算出部と、
     前記濃度算出部の算出結果を、前記遮断装置の制御に利用するために出力する濃度検出部と、
     前記濃度検出部の出力に基づいて、前記遮断装置を制御する遮断制御装置と、
    を有した
     ことを特徴とする空気調和装置。
  2.  前記検知部は、酸化スズ(SnO)半導体で構成した
     ことを特徴とする請求項1に記載の空気調和装置。
  3.  少なくともR410A、R407C、R32、R404A、HFO1234yf、HFO1234ze、R32とHFO1234yfとを含む混合冷媒、及び前記冷媒のいずれか一成分を含む混合冷媒のすべてを、同一の前記検知部にて検知可能である
     ことを特徴とする請求項1~2に記載の空気調和装置。
  4.  前記濃度算出部は、
     R410A、R407C、R32、HFO1234yf、HFO1234ze、R32とHFO1234yfとを含む混合冷媒、及び前記冷媒のいずれか一成分を含む混合冷媒のすべてに対し、同一の抵抗変化と濃度変化との関係式を用いて、冷媒の漏洩濃度を算出可能である
     ことを特徴とする請求項3に記載の空気調和装置。
  5.  前記濃度検出部は、
     前記濃度算出部の冷媒濃度の算出結果が、所定値以上である場合に前記遮断制御装置に
    前記遮断装置により前記冷媒の循環を遮断するための所定信号を出力する
     ことを特徴とする請求項1~4のいずれか一項に記載の空気調和装置。
  6.  前記所定信号は、1(V)~24(V)である
     ことを特徴とする請求項5に記載の空気調和装置。
  7.  前記圧縮機及び前記熱源側熱交換器を有する室外機を備え、
     前記遮断装置は、
     前記室外機内又は前記室外機の近傍に設けられている
     ことを特徴とする請求項1~6のいずれか一項に記載の空気調和装置。
  8.  前記遮断制御装置は、半導体素子から構成される無接点式リレーとした
     ことを特徴とする請求項1~7のいずれか一項に記載に空気調和装置。
  9.  前記遮断装置は、通電時には開状態、非通電時には閉状態にしている
     ことを特徴とする請求項1~8に記載の空気調和装置。
  10.  前記遮断装置は、
     前記室外機からの冷媒の流出口、及び室外機への冷媒流入口にそれぞれ少なくとも1つ以上設けられている
     ことを特徴とする請求項7~9のいずれか一項に記載の空気調和装置。
  11.  前記遮断装置は、弁体、当該弁体をシールするシール材、及び当該弁体を電磁力で開閉コイルを有する2方弁とした
     ことを特徴とする請求項1~10のいずれか一項に記載の空気調和装置。
  12.  前記シール材を、ゴムまたはPTFE(ポリテトラフルオロエチレン)で構成した
     ことを特徴とする請求項11のいずれか一項に記載の空気調和装置。
  13.  前記遮断装置は、
     閉状態のときの熱源側冷媒の漏れ量が、1.0×10-6(m/sec)以下である
     ことを特徴とする請求項1~12のいずれか一項に記載の空気調和装置。
  14.  前記圧縮機の吐出側を上流と定義したとき、
     前記遮断装置のうち前記熱媒体間熱交換器の下流側の遮断装置の流量係数Cv値を1以上とし、
     前記遮断装置のうち前記熱媒体間熱交換器の上流側の遮断装置の流量係数Cv値を5以上とする
     ことを特徴とする請求項1~13のいずれか一項に記載の空気調和装置。
  15.  前記コイルには、直流電圧を供給する
     ことを特徴とする請求項11~14のいずれか一項に記載の空気調和装置。
  16.  前記コイルに供給する直流電圧は、12(V)~24(V)とした
     ことを特徴とする請求項15に記載の空気調和装置。
PCT/JP2011/000411 2011-01-26 2011-01-26 空気調和装置 WO2012101673A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/882,779 US20130233006A1 (en) 2011-01-26 2011-01-26 Air-conditioning apparatus
PCT/JP2011/000411 WO2012101673A1 (ja) 2011-01-26 2011-01-26 空気調和装置
JP2012554479A JP5642202B2 (ja) 2011-01-26 2011-01-26 空気調和装置
EP11856852.6A EP2669607B1 (en) 2011-01-26 2011-01-26 Air conditioner device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000411 WO2012101673A1 (ja) 2011-01-26 2011-01-26 空気調和装置

Publications (1)

Publication Number Publication Date
WO2012101673A1 true WO2012101673A1 (ja) 2012-08-02

Family

ID=46580289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000411 WO2012101673A1 (ja) 2011-01-26 2011-01-26 空気調和装置

Country Status (4)

Country Link
US (1) US20130233006A1 (ja)
EP (1) EP2669607B1 (ja)
JP (1) JP5642202B2 (ja)
WO (1) WO2012101673A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140123685A1 (en) * 2012-11-02 2014-05-08 Jeonghun Kim Air conditioner and a method of controlling an air conditioner
WO2016129027A1 (ja) * 2015-02-09 2016-08-18 三菱電機株式会社 空気調和装置
WO2018158860A1 (ja) * 2017-02-28 2018-09-07 三菱電機株式会社 ヒートポンプ利用機器
WO2018158886A1 (ja) * 2017-03-01 2018-09-07 三菱電機株式会社 冷凍サイクル装置
WO2019064566A1 (ja) * 2017-09-29 2019-04-04 ダイキン工業株式会社 冷凍装置
JP2020085414A (ja) * 2018-11-30 2020-06-04 日立ジョンソンコントロールズ空調株式会社 漏洩検知装置
WO2022009262A1 (ja) * 2020-07-06 2022-01-13 ヤマハファインテック株式会社 ガス混合装置
US11326788B2 (en) 2018-02-28 2022-05-10 Mitsubishi Electric Corporation Air-conditioning apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2905552B1 (en) * 2012-10-01 2019-04-17 Mitsubishi Electric Corporation Air conditioning device
CN109952479A (zh) * 2016-11-22 2019-06-28 三菱电机株式会社 空调装置以及空调系统
CN106440584B (zh) * 2016-11-23 2018-10-19 青岛海信日立空调系统有限公司 一种冷媒泄露的检测装置、方法和空调
US10816247B2 (en) 2017-12-01 2020-10-27 Johnson Controls Technology Company Heating, ventilation, and air conditioning control system
JPWO2020004108A1 (ja) * 2018-06-25 2021-07-15 ダイキン工業株式会社 空気調和システム
JP2020051736A (ja) * 2018-09-28 2020-04-02 ダイキン工業株式会社 熱負荷処理システム
US11732916B2 (en) 2020-06-08 2023-08-22 Emerson Climate Technologies, Inc. Refrigeration leak detection
US11359846B2 (en) * 2020-07-06 2022-06-14 Emerson Climate Technologies, Inc. Refrigeration system leak detection
US11885516B2 (en) 2020-08-07 2024-01-30 Copeland Lp Refrigeration leak detection

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277769U (ja) * 1985-11-01 1987-05-18
JPH05118720A (ja) * 1991-10-30 1993-05-14 Hitachi Ltd 冷凍装置の制御方法
JPH0651657U (ja) * 1992-12-23 1994-07-15 株式会社堀場製作所 電磁石応用装置駆動回路
JPH0755267A (ja) * 1993-08-20 1995-03-03 Matsushita Electric Ind Co Ltd 空気調和機
JPH0835746A (ja) * 1994-07-21 1996-02-06 Fuji Koki Seisakusho:Kk 冷凍サイクル
JP2002195718A (ja) * 2000-12-28 2002-07-10 Nakano Refrigerators Co Ltd ショーケース等の集中管理装置
JP2005291679A (ja) * 2004-04-06 2005-10-20 Tgk Co Ltd 冷凍システム
JP2008249234A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 冷凍サイクル装置の故障診断装置及びそれを搭載した冷凍サイクル装置
WO2010050007A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4359709A (en) * 1979-07-06 1982-11-16 Matsushita Electric Industrial Co., Ltd. Combustible gas sensor
US5440919A (en) * 1994-08-29 1995-08-15 Spectronics Corporation Method of introducing leak detection dye into an air conditioning or refrigeration system
US5918475A (en) * 1995-10-11 1999-07-06 Denso Corporation Air conditioning apparatus for vehicle, using a flammable refrigerant
US6837480B1 (en) * 1999-08-17 2005-01-04 Belimo Holding Ag Ball valve with adjustable flow coefficient
CN1161570C (zh) * 2000-09-26 2004-08-11 大金工业株式会社 空调机
JP3712186B2 (ja) * 2001-02-08 2005-11-02 株式会社デンソー 電磁弁
US20050086952A1 (en) * 2001-09-19 2005-04-28 Hikaru Nonaka Refrigerator-freezer controller of refrigenator-freezer, and method for determination of leakage of refrigerant
EP1475588A4 (en) * 2002-01-15 2008-04-09 Toshiba Kk COOLING DEVICE WITH WARNING DEVICE FOR WARNING OF COOLANT LEAKAGE
KR100471723B1 (ko) * 2002-05-17 2005-03-08 삼성전자주식회사 공기 조화기 및 그 제어 방법
JP4042481B2 (ja) * 2002-06-26 2008-02-06 株式会社デンソー 空調装置
US6907748B2 (en) * 2003-02-28 2005-06-21 Delphi Technologies, Inc. HVAC system with refrigerant venting
TWI303491B (en) * 2004-02-20 2008-11-21 Toshiba Kk Semiconductor relay apparatus and wiring board fabrication method
US7306008B2 (en) * 2004-04-05 2007-12-11 Tornay Paul G Water leak detection and prevention systems and methods
US8156751B2 (en) * 2005-05-24 2012-04-17 Emerson Climate Technologies, Inc. Control and protection system for a variable capacity compressor
US7814757B2 (en) * 2006-09-12 2010-10-19 Delphi Technologies, Inc. Operating algorithm for refrigerant safety system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277769U (ja) * 1985-11-01 1987-05-18
JPH05118720A (ja) * 1991-10-30 1993-05-14 Hitachi Ltd 冷凍装置の制御方法
JPH0651657U (ja) * 1992-12-23 1994-07-15 株式会社堀場製作所 電磁石応用装置駆動回路
JPH0755267A (ja) * 1993-08-20 1995-03-03 Matsushita Electric Ind Co Ltd 空気調和機
JPH0835746A (ja) * 1994-07-21 1996-02-06 Fuji Koki Seisakusho:Kk 冷凍サイクル
JP2002195718A (ja) * 2000-12-28 2002-07-10 Nakano Refrigerators Co Ltd ショーケース等の集中管理装置
JP2005291679A (ja) * 2004-04-06 2005-10-20 Tgk Co Ltd 冷凍システム
JP2008249234A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 冷凍サイクル装置の故障診断装置及びそれを搭載した冷凍サイクル装置
WO2010050007A1 (ja) * 2008-10-29 2010-05-06 三菱電機株式会社 空気調和装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140123685A1 (en) * 2012-11-02 2014-05-08 Jeonghun Kim Air conditioner and a method of controlling an air conditioner
WO2016129027A1 (ja) * 2015-02-09 2016-08-18 三菱電機株式会社 空気調和装置
JPWO2016129027A1 (ja) * 2015-02-09 2017-10-12 三菱電機株式会社 空気調和装置
GB2549897A (en) * 2015-02-09 2017-11-01 Mitsubishi Electric Corp Air conditioning device
GB2549897B (en) * 2015-02-09 2020-07-22 Mitsubishi Electric Corp Air conditioning apparatus
JPWO2018158860A1 (ja) * 2017-02-28 2019-11-07 三菱電機株式会社 ヒートポンプ利用機器
WO2018158860A1 (ja) * 2017-02-28 2018-09-07 三菱電機株式会社 ヒートポンプ利用機器
WO2018158886A1 (ja) * 2017-03-01 2018-09-07 三菱電機株式会社 冷凍サイクル装置
US11340001B2 (en) 2017-03-01 2022-05-24 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN111094871A (zh) * 2017-09-29 2020-05-01 大金工业株式会社 冷冻装置
WO2019064566A1 (ja) * 2017-09-29 2019-04-04 ダイキン工業株式会社 冷凍装置
EP3690352A4 (en) * 2017-09-29 2020-09-09 Daikin Industries, Ltd. REFRIGERATION DEVICE
JPWO2019064566A1 (ja) * 2017-09-29 2020-10-22 ダイキン工業株式会社 冷凍装置
AU2017434397B2 (en) * 2017-09-29 2021-03-11 Daikin Industries, Ltd. Refrigeration apparatus
CN111094871B (zh) * 2017-09-29 2021-09-17 大金工业株式会社 冷冻装置
US11293674B2 (en) 2017-09-29 2022-04-05 Daikin Industries, Ltd. Refrigeration apparatus with multiple utilization units and refrigerant flow control
US11326788B2 (en) 2018-02-28 2022-05-10 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2020085414A (ja) * 2018-11-30 2020-06-04 日立ジョンソンコントロールズ空調株式会社 漏洩検知装置
WO2022009262A1 (ja) * 2020-07-06 2022-01-13 ヤマハファインテック株式会社 ガス混合装置
JP7433675B2 (ja) 2020-07-06 2024-02-20 ヤマハファインテック株式会社 ガス混合装置

Also Published As

Publication number Publication date
EP2669607A1 (en) 2013-12-04
JP5642202B2 (ja) 2014-12-17
JPWO2012101673A1 (ja) 2014-06-30
EP2669607A4 (en) 2017-04-26
EP2669607B1 (en) 2020-04-15
US20130233006A1 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP5642202B2 (ja) 空気調和装置
JP5813107B2 (ja) 空気調和装置
WO2012098584A1 (ja) 空気調和装置
JP5465338B2 (ja) 空気調和装置
ES2780181T3 (es) Acondicionador de aire
WO2011099063A1 (ja) 空気調和装置
WO2012172613A1 (ja) 空気調和装置
JP5865381B2 (ja) 空気調和装置
US9857113B2 (en) Air-conditioning apparatus
WO2012172605A1 (ja) 空気調和装置
WO2013008278A1 (ja) 空気調和装置
WO2011099058A1 (ja) 空気調和装置
WO2013080255A1 (ja) 空気調和装置
JP5657140B2 (ja) 空気調和装置
JPWO2014083652A1 (ja) 空気調和装置
JP6062030B2 (ja) 空気調和装置
WO2018042490A1 (ja) 冷凍サイクル装置
JPWO2013008365A1 (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13882779

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012554479

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011856852

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE