WO2012100710A1 - 一种终端开机的频偏调整方法及装置 - Google Patents

一种终端开机的频偏调整方法及装置 Download PDF

Info

Publication number
WO2012100710A1
WO2012100710A1 PCT/CN2012/070567 CN2012070567W WO2012100710A1 WO 2012100710 A1 WO2012100710 A1 WO 2012100710A1 CN 2012070567 W CN2012070567 W CN 2012070567W WO 2012100710 A1 WO2012100710 A1 WO 2012100710A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
terminal
frequency
temperature
dcxo
Prior art date
Application number
PCT/CN2012/070567
Other languages
English (en)
French (fr)
Inventor
刘俊英
牟秀红
Original Assignee
意法•爱立信半导体(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 意法•爱立信半导体(北京)有限公司 filed Critical 意法•爱立信半导体(北京)有限公司
Publication of WO2012100710A1 publication Critical patent/WO2012100710A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/026Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using a memory for digitally storing correction values

Definitions

  • the invention belongs to the field of mobile communications, and particularly relates to a digital compensation crystal oscillator
  • transceivers including a voltage controlled crystal oscillator (VCXO) or an all-digital controlled crystal oscillator are commonly used in the terminal's clock interface circuit.
  • VCXO voltage controlled crystal oscillator
  • the VCXO itself has a temperature compensation circuit that automatically compensates for frequency variations due to temperature changes.
  • DCXOs digitally compensated crystal oscillators Due to the lower cost and smaller size of digitally compensated crystal oscillators (DCXOs), DCXOs are being used in terminals to generate system reference clocks. However, the DCXO itself does not automatically adjust the frequency according to the temperature change. Therefore, in order to ensure the performance of the cell search and the peer when the terminal is powered on, it is necessary to adjust the frequency offset caused by the temperature change after the terminal is powered on, but in the prior art, A scheme for frequency offset adjustment for terminals using DCXO has not been provided. Summary of the invention
  • the object of the present invention is to provide a frequency offset adjustment method and device for starting a terminal, which compensates for the frequency offset caused by the temperature change, so as to ensure the performance of the cell search and the peer when the terminal is powered on.
  • the present invention provides the following technical solutions.
  • a frequency offset adjustment method for terminal startup is applied to a terminal including a digital compensation crystal oscillator DCXO for generating a reference clock, including:
  • the above frequency offset adjustment method wherein: And obtaining a first frequency offset value corresponding to the first temperature of the DCXO after the terminal is powered on: querying, from the crystal curve of the DCXO, a first frequency offset value corresponding to the first temperature;
  • the second frequency offset value corresponding to the second temperature of the DCXO when the terminal is calibrated is: querying a second frequency offset value corresponding to the second temperature from a crystal curve of the DCXO.
  • the frequency offset control method corresponding to the difference between the first frequency offset value and the second frequency offset value includes:
  • the difference is multiplied by the frequency offset adjustment length obtained by the terminal calibration to obtain a frequency offset control word corresponding to the difference.
  • the frequency offset adjustment length is a frequency offset adjustment length corresponding to a working frequency band of the terminal.
  • a frequency offset adjusting device for starting a terminal is applied to a terminal including a digital compensation crystal oscillator DCXO for generating a reference clock, including:
  • a first acquiring module configured to acquire a first frequency offset value corresponding to the first temperature of the DCXO after the terminal is powered on;
  • a second acquiring module configured to acquire a second frequency offset value corresponding to the second temperature of the DCXO when the terminal is calibrated
  • a third acquiring module configured to acquire a frequency offset control word corresponding to a difference between the first frequency offset value and the second frequency offset value
  • a frequency offset adjustment module configured to add a frequency offset control word corresponding to the difference value to a frequency offset control word obtained by terminal calibration, and write the added frequency offset control word to a frequency control register corresponding to the DCXO Medium, adjust the reference clock frequency.
  • the first obtaining module is further configured to: query a first frequency offset value corresponding to the first temperature from a crystal curve of the DCXO;
  • the second obtaining module is further configured to: query a second frequency offset value corresponding to the second temperature from a crystal curve of the DCXO.
  • the above-mentioned frequency offset adjusting device wherein if the calibration temperature is not recorded when the terminal is calibrated, the The value of the second temperature is 25 degrees.
  • the difference is multiplied by the frequency offset adjustment length obtained by the terminal calibration to obtain a frequency offset control word corresponding to the difference.
  • the frequency offset adjustment length is a frequency offset adjustment length corresponding to a working frequency band of the terminal.
  • the invention calibrates the frequency offset control word and the terminal corresponding to the temperature change according to the difference between the first temperature of the DCXO in the terminal after the terminal is powered on and the second temperature of the DCXO when the terminal is calibrated.
  • the frequency offset control word is simultaneously compensated into the frequency control register of the DCXO to adjust the system reference clock frequency, thereby ensuring cell search and peer-to-peer nature when the terminal is powered on.
  • FIG. 1 is a flowchart of a frequency offset adjustment method for a terminal to be powered on according to an embodiment of the present invention
  • FIG. 2 is a crystal graph corresponding to a DCXO used by a terminal according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of a frequency offset adjusting apparatus for starting a terminal according to an embodiment of the present invention. detailed description
  • FIG. 1 is a flowchart of a frequency offset adjustment method for a terminal to be powered on according to an embodiment of the present invention, where the frequency offset adjustment method is applied to a terminal including DCX0 for generating a reference clock.
  • the frequency offset adjustment method includes the following steps:
  • Step 101 Acquire a first frequency offset value corresponding to a first temperature of the DCX0 in the terminal after the terminal is powered on;
  • the temperature measurement of DCX0 is immediately scheduled.
  • the frequency offset adjustment task is set to the highest priority and cannot be interrupted.
  • the crystal curve of the DCX0 stored in advance is queried (the crystal curve is as shown in FIG. 2, the abscissa is the temperature value, and the ordinate is The frequency offset value is provided by the crystal manufacturer, and different crystal types have different crystal curves), and the frequency offset value corresponding to the temperature value 7 is obtained.
  • Step 102 Obtain a second frequency offset value corresponding to a second temperature of the DCX0 when the terminal is calibrated;
  • each terminal Since each terminal is factory-calibrated, it will be frequency-biased, and the frequency offset control word FC ⁇ obtained by frequency offset calibration and the temperature value ⁇ 2 during frequency offset calibration will be recorded. Then, the terminal queries the crystal curve of the DCX0 according to the recorded temperature value ⁇ 2 at the time of frequency calibration, and obtains the frequency offset value corresponding to the temperature value ⁇ 2 /"
  • Step 103 Obtain a frequency offset corresponding to the current temperature corresponding to the difference between the first frequency offset value and the second frequency offset value, and a frequency offset corresponding to the temperature at the frequency offset calibration/ 2 .
  • the length O £ (this value is obtained by frequency offset calibration) obtains the corresponding frequency offset adjustment control word:
  • FOE ⁇ ⁇ .
  • Step 104 Add a frequency offset control word corresponding to the difference value to a frequency offset control word obtained by terminal calibration, and write the added frequency offset control word into a frequency control register corresponding to the DCX0, and perform Adjustment of the reference clock frequency.
  • auxiliary DAC (AuxDAC) writes the control word ⁇ (FC tota ) to the frequency control register corresponding to the DCXO to adjust the reference clock frequency.
  • FIG. 3 is a structural diagram of a frequency offset adjusting apparatus for starting a terminal according to an embodiment of the present invention, where the frequency offset adjusting apparatus is applied to a terminal including DCX0 for generating a reference clock.
  • the frequency offset adjustment apparatus includes a first acquisition module 10, a second acquisition module 20, a third acquisition module 30, and a frequency offset adjustment module 40, where:
  • the first obtaining module 10 is configured to acquire a first frequency offset value corresponding to the first temperature of the DCX0 in the terminal after the terminal is powered on.
  • the first acquisition module 10 After the terminal is powered on, the first acquisition module 10 immediately schedules the temperature measurement of the DCX0. At this time, the frequency offset adjustment task is set to the highest priority and cannot be interrupted.
  • the crystal curve of the DCX0 stored in advance is queried (the crystal curve is as shown in FIG. 2, the abscissa is the temperature value, and the ordinate is the frequency offset value, which is provided by the crystal manufacturer, and is different The crystal type has a different crystal curve), and the frequency offset value corresponding to the temperature value 7 is obtained.
  • the second obtaining module 20 is configured to acquire a second frequency offset value corresponding to the second temperature of the DCX0 when the terminal is calibrated.
  • each terminal Since each terminal is factory-calibrated, it will be frequency-biased, and the frequency offset control word FC ⁇ obtained by frequency offset calibration and the temperature value ⁇ 2 during frequency offset calibration will be recorded. Then, the second obtaining module 20 queries the crystal curve of the DCXO according to the recorded temperature value ⁇ 2 at the time of frequency calibration, and obtains a temperature value.
  • the third obtaining module 30 is configured to acquire a frequency offset control word corresponding to the difference between the first frequency offset value and the second frequency offset value.
  • the frequency offset adjustment module 40 is configured to obtain the frequency offset control word corresponding to the difference and the terminal calibration The frequency offset control words are added, and the added frequency offset control words are written into the frequency control register corresponding to the DCX0, and the reference clock frequency is adjusted.
  • the frequency offset adjustment process of the frequency offset adjustment apparatus should be completed after the terminal is powered on and before the radio frequency of the terminal starts working.
  • the present invention controls the frequency offset corresponding to the temperature change according to the difference between the first temperature of the DCX0 in the terminal after the terminal is powered on and the second temperature of the DCX0 when the terminal is calibrated.
  • the frequency offset control word obtained by the word and terminal calibration is simultaneously compensated into the frequency control register of the DCX0 to realize the adjustment of the system reference clock frequency, thereby ensuring the performance of the cell search and the peer when the terminal is powered on.

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

本发明提供一种终端开机的频偏调整方法及装置,应用于包括用于产生基准时钟的数字补偿晶体振荡器(DCXO)的终端中,所述频偏调整方法包括:获取所述DCXO在所述终端开机后的第一温度对应的第一频偏值;获取所述DCXO在所述终端校准时的第二温度对应的第二频偏值;获取所述第一频偏值与所述第二频偏值的差值对应的频偏控制字;将所述差值对应的频偏控制字与终端校准得到的频偏控制字相加,将相加得到的频偏控制字写入到所述DCXO对应的频率控制寄存器中,进行基准时钟频率的调整。本发明通过对温度变化引起的频偏进行补偿,能够保证终端开机时小区搜索和同步的性能。

Description

一种终端开机的频偏调整方法及装置 技术领域
本发明属于移动通信领域, 特别涉及一种采用数字补偿晶体振荡器
(DCXO) 的终端开机的频偏调整方法及装置。 背景技术
目前, 在终端的时钟接口电路中, 普遍使用包含电压控制晶体振荡器 (VCXO) 或者全数字控制晶体振荡器的收发器, VCXO 自身具有温度补偿 电路, 能够自动补偿由于温度变化引起的频率变化。
由于数字补偿晶体振荡器 (DCXO) 的成本更低、 体积更小, 因此, 在 终端中陆续开始采用 DCXO来产生系统基准时钟。但是, DCXO自身没有根 据温度变化自动调节频率的功能, 因此, 为了保证终端开机时小区搜索和同 歩的性能, 需要在终端开机后, 对温度变化引起的频偏进行调整, 而现有技 术中尚未提供针对采用 DCXO的终端进行频偏调整的方案。 发明内容
本发明的目的是提供一种终端开机的频偏调整方法及装置, 通过对温度 变化引起的频偏进行补偿, 来保证终端开机时小区搜索和同歩的性能。
为实现上述目的, 本发明提供技术方案如下
一种终端开机的频偏调整方法, 应用于包括用于产生基准时钟的数字补 偿晶体振荡器 DCXO的终端中, 包括:
获取所述 DCXO在所述终端开机后的第一温度对应的第一频偏值; 获取所述 DCXO在所述终端校准时的第二温度对应的第二频偏值; 获取所述第一频偏值与所述第二频偏值的差值对应的频偏控制字; 将所述差值对应的频偏控制字与终端校准得到的频偏控制字相加, 将相 加得到的频偏控制字写入到所述 DCXO对应的频率控制寄存器中, 进行基准 时钟频率的调整。
上述的频偏调整方法, 其中: 所述获取所述 DCXO 在所述终端开机后的第一温度对应的第一频偏值 为: 从所述 DCXO的晶体曲线中查询所述第一温度对应的第一频偏值; 所述获取所述 DCXO 在所述终端校准时的第二温度对应的第二频偏值 为: 从所述 DCXO的晶体曲线中查询所述第二温度对应的第二频偏值。
上述的频偏调整方法, 其中, 若终端校准时未记录校准温度, 则所述第 二温度的取值为 25度。
上述的频偏调整方法, 其中, 所述获取所述第一频偏值与所述第二频偏 值的差值对应的频偏控制字包括:
将所述差值与终端校准得到的频偏调整歩长相乘, 得到所述差值对应的 频偏控制字。
上述的频偏调整方法, 其中, 所述频偏调整歩长为终端的工作频段对应 的频偏调整歩长。
一种终端开机的频偏调整装置, 应用于包括用于产生基准时钟的数字补 偿晶体振荡器 DCXO的终端中, 包括:
第一获取模块, 用于获取所述 DCXO在所述终端开机后的第一温度对应 的第一频偏值;
第二获取模块, 用于获取所述 DCXO在所述终端校准时的第二温度对应 的第二频偏值;
第三获取模块, 用于获取所述第一频偏值与所述第二频偏值的差值对应 的频偏控制字;
频偏调整模块, 用于将所述差值对应的频偏控制字与终端校准得到的频 偏控制字相加, 将相加得到的频偏控制字写入到所述 DCXO对应的频率控制 寄存器中, 进行基准时钟频率的调整。
上述的频偏调整装置, 其中:
所述第一获取模块进一歩用于: 从所述 DCXO的晶体曲线中查询所述第 一温度对应的第一频偏值;
所述第二获取模块进一歩用于: 从所述 DCXO的晶体曲线中查询所述第 二温度对应的第二频偏值。
上述的频偏调整装置, 其中, 若终端校准时未记录校准温度, 则所述第 二温度的取值为 25度。
上述的频偏调整装置, 其中, 所述第三获取模块进一歩用于:
将所述差值与终端校准得到的频偏调整歩长相乘, 得到所述差值对应的 频偏控制字。
上述的频偏调整装置, 其中, 所述频偏调整歩长为终端的工作频段对应 的频偏调整歩长。
与现有技术相比, 本发明的有益效果是:
本发明根据终端中的 DCXO在所述终端开机后的第一温度与所述 DCXO 在所述终端校准时的第二温度之间的差值, 将温度变化对应的频偏控制字和 终端校准得到的频偏控制字同时补偿到所述 DCXO的频率控制寄存器中, 实 现系统基准时钟频率的调整, 从而能够保证终端开机时小区搜索和同歩的性
附图说明
图 1为本发明实施例的终端开机的频偏调整方法流程图;
图 2为本发明实施例中终端采用的 DCXO对应的晶体曲线图; 图 3为本发明实施例的终端开机的频偏调整装置结构图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图及具体 实施例对本发明进行详细描述。
图 1为本发明实施例的终端开机的频偏调整方法流程图, 所述频偏调整 方法应用于包括用于产生基准时钟的 DCX0的终端中。 参照图 1, 所述频偏调 整方法包括如下歩骤:
歩骤 101 : 获取终端中的 DCX0在所述终端开机后的第一温度对应的第一 频偏值;
终端上电稳定后, 立即调度对 DCX0的温度测量, 此时将频偏调整任务设 置为最高优先级, 不能被打断。 当收到反馈的温度值 7时, 查询预先存储的 所述 DCX0的晶体曲线(该晶体曲线如图 2所示, 横坐标为温度值, 纵坐标为 频偏值, 由晶体厂商提供, 且不同晶体类型具有不同的晶体曲线), 得到温度 值 7对应的频偏值 ;。
歩骤 102 : 获取所述 DCX0在所述终端校准时的第二温度对应的第二频偏 值;
由于每个终端在出厂时, 都会对其进行频偏校准, 并记录频偏校准得到 的频偏控制字 FC^ ,和频偏校准时的温度值 Γ2。 于是, 终端根据记录的在频 率校准时的温度值 Γ2, 查询所述 DCX0的晶体曲线, 得到温度值 Γ2对应的频偏 值/"
如果在频偏校准时没有记录温度值, 则选择默认的校准温度为 Γ2 =25度。 歩骤 103 : 获取所述第一频偏值与所述第二频偏值的差值对应的频偏控 终端根据当前温度对应的频偏 ;和频偏校准时温度对应的频偏 /2, 得到 温度变化引起的频偏值为 Δ/ = -/2。 再根据终端当前的工作频段对应的频 偏调整歩长 O£ (该值由频偏校准得到) 得到相应的频偏调整控制字: AFCtemperature = -AfxFOEstep, 此即温度变化对应的频偏控制字。
补充说明, 在终端出厂前的频偏校准过程中, 获取所述频偏调整歩长 O£ 的过程如下:
将频偏控制字 C1写入到 DCX0对应的频率控制寄存器中,并采用仪器来测 量 DCX0的本振频率 f ;
将不同于 C1的频偏控制字 C2写入到 DCX0对应的频率控制寄存器中, 并 采用仪器来测量 DCX0的本振频率 2
按照如下公式计算所述频偏调整歩长: FOE^ = ^^。 以上过程是针对不同的频段来进行的, gp, 不同的频段对应不同的频偏 调整歩长。
歩骤 104: 将所述差值对应的频偏控制字与终端校准得到的频偏控制字 相加, 将相加得到的频偏控制字写入到所述 DCX0对应的频率控制寄存器中, 进行基准时钟频率的调整。
终端将频偏校准得到的频偏控制字 FCim fl;和温度变化对应的频偏控制
, 并通过三线 (SPI ) 或者辅助 DAC (AuxDAC ) 将该控制字^ (FCtota,写入到 DCXO对应的频率控制寄存 器中, 从而实现对基准时钟频率的调整。
需要说明的是, 上述频偏调整过程应当在终端开机后、 终端的射频开始 工作之前完成。
图 3为本发明实施例的终端开机的频偏调整装置结构图, 所述频偏调整 装置应用于包括用于产生基准时钟的 DCX0的终端中。 参照图 3, 所述频偏调 整装置包括第一获取模块 10、 第二获取模块 20、 第三获取模块 30和频偏调 整模块 40, 其中:
第一获取模块 10用于获取终端中的 DCX0在所述终端开机后的第一温度 对应的第一频偏值。
终端上电稳定后, 第一获取模块 10立即调度对 DCX0的温度测量, 此时 将频偏调整任务设置为最高优先级, 不能被打断。 当收到反馈的温度值 7时, 查询预先存储的所述 DCX0的晶体曲线(该晶体曲线如图 2所示, 横坐标为温 度值, 纵坐标为频偏值, 由晶体厂商提供, 且不同晶体类型具有不同的晶体 曲线), 得到温度值 7对应的频偏值 _;。
第二获取模块 20用于获取所述 DCX0在所述终端校准时的第二温度对应 的第二频偏值。
由于每个终端在出厂时, 都会对其进行频偏校准, 并记录频偏校准得到 的频偏控制字 FC^ ,和频偏校准时的温度值 Γ2。 于是, 第二获取模块 20 根 据记录的在频率校准时的温度值 Γ2, 查询所述 DCXO的晶体曲线, 得到温度值
Γ2对应的频偏值 /2。 如果在频偏校准时没有记录温度值, 则选择默认的校准 温度为 Γ2 =25度。
第三获取模块 30 用于获取所述第一频偏值与所述第二频偏值的差值对 应的频偏控制字。
第三获取模块 30根据当前温度对应的频偏 ;和频偏校准时温度对应的频 偏 /2, 得到温度变化引起的频偏值为 Δ/ = -/2。 再根据终端当前的工作频段 对应的频偏调整歩长 O£ (该值由频偏校准得到) 得到相应的频偏调整控 制字: AFC—re = -^fxFOEstep, 此即温度变化对应的频偏控制字。
频偏调整模块 40 用于将所述差值对应的频偏控制字与终端校准得到的 频偏控制字相加,将相加得到的频偏控制字写入到所述 DCX0对应的频率控制 寄存器中, 进行基准时钟频率的调整。
频偏调整模块 40将频偏校准得到的频偏控制字^ (FQ^,和温度变化对应 的频偏控制字 Ctewre累加起来, 得到 AFCt tal = AFCinWal + AFCtemperat 并通过 三线(SPI )或者辅助 DAC (AuxDAC)将该控制字 FQ^写入到 DCX0对应的频 率控制寄存器中, 从而实现对基准时钟频率的调整。
需要说明的是, 上述频偏调整装置的频偏调整过程应当在终端开机后、 终端的射频开始工作之前完成。
综上所述,本发明根据终端中的 DCX0在所述终端开机后的第一温度与所 述 DCX0在所述终端校准时的第二温度之间的差值,将温度变化对应的频偏控 制字和终端校准得到的频偏控制字同时补偿到所述 DCX0 的频率控制寄存器 中, 实现系统基准时钟频率的调整, 从而能够保证终端开机时小区搜索和同 歩的性能。
最后应当说明的是, 以上实施例仅用以说明本发明的技术方案而非限制, 本领域的普通技术人员应当理解, 可以对本发明的技术方案进行修改或者等 同替换, 而不脱离本发明技术方案的精神范围, 其均应涵盖在本发明的权利 要求范围当中。

Claims

权 利 要 求 书
1. 一种终端开机的频偏调整方法, 应用于包括用于产生基准时钟的数字 补偿晶体振荡器 DCXO的终端中, 其特征在于, 包括:
获取所述 DCXO在所述终端开机后的第一温度对应的第一频偏值; 获取所述 DCXO在所述终端校准时的第二温度对应的第二频偏值; 获取所述第一频偏值与所述第二频偏值的差值对应的频偏控制字; 将所述差值对应的频偏控制字与终端校准得到的频偏控制字相加, 将相 加得到的频偏控制字写入到所述 DCXO对应的频率控制寄存器中, 进行基准 时钟频率的调整。
2. 如权利要求 1所述的频偏调整方法, 其特征在于:
所述获取所述 DCXO 在所述终端开机后的第一温度对应的第一频偏值 为: 从所述 DCXO的晶体曲线中查询所述第一温度对应的第一频偏值; 所述获取所述 DCXO 在所述终端校准时的第二温度对应的第二频偏值 为: 从所述 DCXO的晶体曲线中查询所述第二温度对应的第二频偏值。
3. 如权利要求 1所述的频偏调整方法, 其特征在于:
若终端校准时未记录校准温度, 则所述第二温度的取值为 25度。
4. 如权利要求 1所述的频偏调整方法, 其特征在于, 所述获取所述第一 频偏值与所述第二频偏值的差值对应的频偏控制字包括:
将所述差值与终端校准得到的频偏调整歩长相乘, 得到所述差值对应的 频偏控制字。
5. 如权利要求 4所述的频偏调整方法, 其特征在于:
所述频偏调整歩长为终端的工作频段对应的频偏调整歩长。
6. 一种终端开机的频偏调整装置, 应用于包括用于产生基准时钟的数字 补偿晶体振荡器 DCXO的终端中, 其特征在于, 包括:
第一获取模块, 用于获取所述 DCXO在所述终端开机后的第一温度对应 的第一频偏值;
第二获取模块, 用于获取所述 DCXO在所述终端校准时的第二温度对应 的第二频偏值; 第三获取模块, 用于获取所述第一频偏值与所述第二频偏值的差值对应 的频偏控制字;
频偏调整模块, 用于将所述差值对应的频偏控制字与终端校准得到的频 偏控制字相加, 将相加得到的频偏控制字写入到所述 DCXO对应的频率控制 寄存器中, 进行基准时钟频率的调整。
7. 如权利要求 6所述的频偏调整装置, 其特征在于:
所述第一获取模块进一歩用于: 从所述 DCXO的晶体曲线中查询所述第 一温度对应的第一频偏值;
所述第二获取模块进一歩用于: 从所述 DCXO的晶体曲线中查询所述第 二温度对应的第二频偏值。
8. 如权利要求 6所述的频偏调整装置, 其特征在于:
若终端校准时未记录校准温度, 则所述第二温度的取值为 25度。
9. 如权利要求 6所述的频偏调整装置, 其特征在于, 所述第三获取模块 进一歩用于:
将所述差值与终端校准得到的频偏调整歩长相乘, 得到所述差值对应的 频偏控制字。
10. 如权利要求 9所述的频偏调整装置, 其特征在于:
所述频偏调整歩长为终端的工作频段对应的频偏调整歩长。
PCT/CN2012/070567 2011-01-26 2012-01-19 一种终端开机的频偏调整方法及装置 WO2012100710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110028865.5 2011-01-26
CN2011100288655A CN102185561A (zh) 2011-01-26 2011-01-26 一种终端开机的频偏调整方法及装置

Publications (1)

Publication Number Publication Date
WO2012100710A1 true WO2012100710A1 (zh) 2012-08-02

Family

ID=44571647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070567 WO2012100710A1 (zh) 2011-01-26 2012-01-19 一种终端开机的频偏调整方法及装置

Country Status (2)

Country Link
CN (1) CN102185561A (zh)
WO (1) WO2012100710A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104143960A (zh) * 2014-07-11 2014-11-12 钜泉光电科技(上海)股份有限公司 一种校正mems计时时钟的溢出补偿方法及装置
DE102013109132B4 (de) 2012-08-23 2022-12-29 Intel Deutschland Gmbh Kommunikationsvorrichtung und Verfahren zum Erfassen eines Funksignals

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185561A (zh) * 2011-01-26 2011-09-14 意法·爱立信半导体(北京)有限公司 一种终端开机的频偏调整方法及装置
CN102710270B (zh) * 2012-06-15 2014-04-30 深圳国人通信有限公司 射频拉远单元及其自动频率预控方法及装置
CN106603167B (zh) * 2015-10-15 2020-03-27 普天信息技术有限公司 一种终端的占空比与输出频率对应关系表校正的方法和装置
CN109039574B (zh) * 2018-08-21 2021-11-23 维沃移动通信有限公司 一种减小频偏的方法及其终端设备
CN110855978B (zh) * 2019-10-30 2021-12-21 晶晨半导体(深圳)有限公司 一种通过soc测试hdmi的pll稳定性的方法
CN110932718B (zh) * 2019-11-29 2023-01-24 紫光展讯通信(惠州)有限公司 晶振的时钟频率的校准方法、装置、设备及存储介质
CN112235219B (zh) * 2020-10-14 2023-02-10 紫光展锐(重庆)科技有限公司 定时同步检测方法及装置
CN113285671B (zh) * 2021-05-14 2023-08-22 广东虹勤通讯技术有限公司 数字晶体振荡器频率-温度补偿曲线校准的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441925A (zh) * 2000-05-16 2003-09-10 艾利森公司 使用一基础参考信号和具有比该基础参考信号更准确的一不连续校准参考信号,用于校准一电子时钟的方法、系统、无线终端以及计算机程序产品
CN101488752A (zh) * 2009-02-11 2009-07-22 凯涛电子(上海)有限公司 温度频率校正装置
US7579919B1 (en) * 2007-10-13 2009-08-25 Weixun Cao Method and apparatus for compensating temperature changes in an oscillator-based frequency synthesizer
US20100216407A1 (en) * 2009-02-24 2010-08-26 Eden Rock Communications, Llc Systems and methods for dynamic temperature calibration of a frequency reference
CN102185561A (zh) * 2011-01-26 2011-09-14 意法·爱立信半导体(北京)有限公司 一种终端开机的频偏调整方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2360404B (en) * 2000-03-17 2004-03-10 Ericsson Telefon Ab L M Electronic circuit
US7332975B2 (en) * 2006-02-27 2008-02-19 Silicon Laboratories Inc. Reference-less clock circuit
CN100527597C (zh) * 2006-03-28 2009-08-12 青岛硅盛微电子有限公司 高精度温度补偿晶体振荡器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1441925A (zh) * 2000-05-16 2003-09-10 艾利森公司 使用一基础参考信号和具有比该基础参考信号更准确的一不连续校准参考信号,用于校准一电子时钟的方法、系统、无线终端以及计算机程序产品
US7579919B1 (en) * 2007-10-13 2009-08-25 Weixun Cao Method and apparatus for compensating temperature changes in an oscillator-based frequency synthesizer
CN101488752A (zh) * 2009-02-11 2009-07-22 凯涛电子(上海)有限公司 温度频率校正装置
US20100216407A1 (en) * 2009-02-24 2010-08-26 Eden Rock Communications, Llc Systems and methods for dynamic temperature calibration of a frequency reference
CN102185561A (zh) * 2011-01-26 2011-09-14 意法·爱立信半导体(北京)有限公司 一种终端开机的频偏调整方法及装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013109132B4 (de) 2012-08-23 2022-12-29 Intel Deutschland Gmbh Kommunikationsvorrichtung und Verfahren zum Erfassen eines Funksignals
CN104143960A (zh) * 2014-07-11 2014-11-12 钜泉光电科技(上海)股份有限公司 一种校正mems计时时钟的溢出补偿方法及装置
CN104143960B (zh) * 2014-07-11 2017-03-22 钜泉光电科技(上海)股份有限公司 一种校正mems计时时钟的溢出补偿方法及装置

Also Published As

Publication number Publication date
CN102185561A (zh) 2011-09-14

Similar Documents

Publication Publication Date Title
WO2012100710A1 (zh) 一种终端开机的频偏调整方法及装置
US8660596B2 (en) Electronic apparatus and associated frequency adjusting method
US8306174B2 (en) Fractional interpolative timing advance and retard control in a transceiver
EP2027657B1 (en) Method and system for maintaining autonomous system clock accuracy for a mobile radio terminal
JP2006191585A (ja) 通信システムで使用される水晶のための周波数オフセット補正技術
WO2012092866A1 (zh) 终端的频偏的调整方法、终端以及tdd系统
US7720469B2 (en) Frequency calibration of wireless telecommunication device
WO2011157025A1 (zh) 一种控制晶振输出时钟的方法及装置
JP2011199481A (ja) クロックシステム
TWI506384B (zh) 具有時鐘校正功能的電子裝置及其時鐘校正方法
JP4321529B2 (ja) クロック共有回路、クロック共有方法及び通信機器
US9838023B2 (en) Slow-clock calibration method and unit, clock circuit, and mobile communication terminal
US7924100B2 (en) Crystal-less communications device and self-calibrated clock generation method
CN113114108A (zh) 一种估计晶振频率的方法
JP2009194778A (ja) 周波数補正方法及び装置
JP2004023634A (ja) 高周波発振回路、高周波発振回路の温度補償方法、及び無線通信機
JP2012058115A (ja) 管理装置、管理方法、及び管理プログラム
JP2003207586A (ja) 電子機器、及び、その内部時刻情報制御方法
US11134490B2 (en) Electronic apparatus
JP2007013878A (ja) 同期式発振装置及び同期式発振方法
TW201145836A (en) Device and method for locking and calibrating a frequency
JP2017020852A (ja) 組込装置
JP2004282264A (ja) 携帯電話機及び携帯電話機のrtc補正方法
JP2000183648A (ja) 周波数補正機能を有する圧電発振器
US8994466B2 (en) Methods for addressing aging of XO crystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.01.14)

122 Ep: pct application non-entry in european phase

Ref document number: 12739164

Country of ref document: EP

Kind code of ref document: A1