WO2012100645A1 - 基于米氏散射及微扰驱动的散斑消除装置 - Google Patents

基于米氏散射及微扰驱动的散斑消除装置 Download PDF

Info

Publication number
WO2012100645A1
WO2012100645A1 PCT/CN2012/000044 CN2012000044W WO2012100645A1 WO 2012100645 A1 WO2012100645 A1 WO 2012100645A1 CN 2012000044 W CN2012000044 W CN 2012000044W WO 2012100645 A1 WO2012100645 A1 WO 2012100645A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
incident
perturbation
mie scattering
reflection cavity
Prior art date
Application number
PCT/CN2012/000044
Other languages
English (en)
French (fr)
Inventor
陈旭远
高文宏
石云波
徐美芳
Original Assignee
中北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中北大学 filed Critical 中北大学
Priority to US13/982,023 priority Critical patent/US10078229B2/en
Priority to JP2013550744A priority patent/JP5763214B2/ja
Publication of WO2012100645A1 publication Critical patent/WO2012100645A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0091Reflectors for light sources using total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/32Systems for obtaining speckle elimination

Definitions

  • the invention relates to the field of display technology using coherent light as a light source, in particular to a speckle elimination device driven by Mie scattering and perturbation (generally referred to as weak vibration), mainly for laser display technology and optical dispersion existing in optical instruments Spot phenomenon.
  • a speckle elimination device driven by Mie scattering and perturbation generally referred to as weak vibration
  • the technical solution for successfully eliminating the spot by controlling the laser time coherence to achieve practical requirements is basically based on multi-light source superposition; 2.
  • Eliminating speckle by controlling the spatial coherence of the laser beam is currently eliminated.
  • the main method of speckle the basic principle is to adjust the phase distribution of the elementary light wave in the laser beam, thereby changing the spatial distribution of the speckle, and superimposing the plurality of speckle images in the integration time of the human eye to obtain a uniform distribution of light energy.
  • the image in turn, achieves the purpose of eliminating speckle.
  • the specific methods are: using a rotating scatterer, a vibrating screen, and vibration
  • the patent discloses "a scattering-based dephasing debranching device" that requires the use of a scattering medium having particles having a diameter that must be less than one tenth of the wavelength of the incident light to effect Rayleigh scattering of the incident laser.
  • an inorganic salt or an aqueous solution of an organic alcohol such as NaCl, KCK KN0 3 or ZnS0 4 aqueous solution
  • the inorganic salt or organic alcohol aqueous solution is present in the form of hydrated ions or macromolecules, which is much smaller than the laser wavelength.
  • the speckle was removed by a light pipe filled with a saturated NaCl aqueous solution at a temperature of 50 mm at room temperature. As a result, as shown in Fig. 1, the speckle contrast was 70%, which hardly played. Reduce the effect of speckle.
  • the present invention provides a speckle elimination device based on Mie scattering and perturbation driving in order to solve the problems of poor speckle removal, complex structure, easy damage, and high cost in the existing speckle elimination method.
  • a speckle elimination device based on Mie scattering and perturbation driving comprising an optical reflection cavity provided with an incident light coupling device and a transmission exit surface for realizing a laser incident optical reflection cavity
  • the optical device is disposed on the incident light coupling device of the optical reflection cavity;
  • the inner wall of the optical reflection cavity except the inner wall of the transmission exit surface is a "mirror" inner wall (ie, the inner wall has high reflectivity characteristics and can be "total reflection” a laser beam incident on the optical reflection cavity, a transparent substance filled in the optical reflection cavity, and a transparent medium containing medium particles whose linearity can cause Mie scattering of the incident laser;
  • the cavity and the optical device are respectively provided with a micro-interference for sensitive external perturbation, and the incident state (including incident angle, incident position, incident optical path, etc.) when the incident light beam is incident on the optical reflection cavity.
  • Disturbing sensitive devices can be It is either ambient perturbation (eg, a cooling fan in the
  • the perturbation sensitive device can be implemented in a variety of configurations, which is readily available to those skilled in the art, for example: using a cantilever beam structure, or a microspring or the like;
  • the optical device may employ a mirror, a scanning micromirror, or an optical lens
  • the transparent substance is a transparent solid substance having no transmission loss to the incident laser light, such as a polymer gel; or a solution or a sol, the solution being an organic solution or an inorganic solution; and the sol is an aerosol or a sol.
  • the laser beam emitted by the laser light source is incident on the transparent substance in the optical reflection cavity through the incident light coupling device on the optical reflection cavity, and the Mie scattering is caused by the medium particles dispersed in the transparent substance.
  • the scattered light intensity scattered by the incident laser 101 is distributed over a wide range of angles, mainly focusing on the forward scattered light 104, 105, 106, generally account for more than 90% of total scattering; backscattered light 102 only accounts for a small portion, usually less than 10%; scattered light 105 along the direction of incident laser light is the strongest, vertical scattered light 103, 107
  • the inner wall of the reflective cavity reflects or re-exists with the particles of the medium dispersed in the transparent material, and the scattered light splits into more scattered light.
  • the light After multiple Mie scattering, the light is scattered.
  • the transmission exit surface of the reflective cavity exits; due to the setting of the perturbation sensitive device, the optical reflective cavity and the optical device can be sensitive to the external perturbation and follow-up, thereby causing the incident state (including the incident angle, incidence) when the light beam is incident on the optical reflective cavity.
  • Continuous change of position, incident optical path, etc. so that the scattered light of the incident laser at each moment randomly changes the propagation direction and path in the transparent material, and finally the exit surface of the optical reflective cavity
  • the phase distribution and scattering angle distribution of the scattered light emitted are randomly changed.
  • the scattered light at different times has different phase distribution and scattering angle distribution.
  • the invention adopts an optical reflection cavity with a transparent substance, and the medium particles dispersed in the transparent substance in the optical reflection cavity cause Mich scattering of the incident laser, perform scattering and splitting, and set the perturbation sensitive device.
  • the external perturbation can cause a continuous change of the incident state when the beam is incident on the optical reflection cavity, randomly change the propagation direction and path of the scattered beam in the optical reflection cavity, and reduce the spatial coherence of the incident laser so that the exit surface of the optical reflection cavity is at different times. Distributing the scattered light of the incident laser with different phase distributions and scattering angles; thereby changing the spatial distribution of speckle after projection, so that multiple speckle images are superimposed in the integration time of the human eye, and a light energy distribution is obtained.
  • the image in turn, effectively eliminates speckle.
  • the speckle contrast of the image can be less than 4%, as shown in FIG. 5, the speckle contrast of the image is 3.98%, and the speckle elimination effect is excellent; wherein, the external environment is generated
  • the micron-level disturbance can trigger the perturbation sensitive device.
  • the vibration of the ordinary projector fan can meet the disturbance amplitude and frequency requirements required to trigger the perturbation sensitive device; and can improve the external perturbation intensity and the medium in the transparent substance.
  • the concentration of the particles is used to improve the speckle elimination effect; the present invention performs "total reflection" on the incident laser in the optical reflection cavity, and the total light energy loss of the incident laser is minimal, ensuring high utilization of the laser, and in "total reflection” In the process, the purpose of homogenizing is achieved; in addition, the structure of the optical reflecting cavity used in the invention is very common, and the transparent material does not need to select a special material, and has the advantage of low cost. ⁇ The invention has reasonable structure, compactness, easy realization, low cost, good speckle elimination effect, high laser utilization rate, stable performance, safety and reliability, and uniform light function.
  • DRAWINGS 1 is a graph showing test results obtained by eliminating speckle using a prior art
  • Figure 3 is a diagram showing the angular distribution of light intensity of Mie scattering
  • FIG. 4 is a schematic view showing a transmission state of a light beam in the device of the present invention.
  • Figure 5 is a graph showing test results obtained by using the apparatus of the present invention to eliminate speckle
  • FIG. 6 is a schematic diagram of application of the device of the present invention in a point scan display system
  • FIG. 7 is a schematic diagram of application of the device of the present invention in a full frame display system
  • 300-speckle elimination device 301-incident light coupling device; 302-optical reflection cavity; 303-transmission exit face; 304-incident light hole; 305, 306, 307-speckle elimination device; 308-optical device;
  • a speckle reduction device based on Mie scattering and perturbation driving includes an optical reflection cavity 302 on which an incident light coupling device 301 and a transmission exit surface 303 are disposed, and a laser incident optical reflection cavity 302 is realized.
  • Optics 308, the optical device 308 is disposed opposite the incident light coupling device 301 of the optical reflective cavity 302; the inner wall of the optical reflective cavity 302 except the inner wall of the transmission exit surface 303 is a "mirror" inner wall (ie The inner wall has a high reflectivity characteristic, and is capable of "total reflection" of the laser beam incident on the optical reflection cavity 302.
  • the optical reflection cavity 302 is provided with a transparent substance 401 filling the entire optical reflection cavity 302, and the transparent substance 401 is dispersed therein.
  • the linearity of the dielectric particles 402 that cause the incident laser to cause Mie scattering; the optical reflective cavity 302 and the optical device 308 are respectively provided for sensitive external perturbation, and the incident light is incident on the optical reflective cavity 302.
  • a perturbation sensitive device (not specifically shown in the drawing) of the incident state (including incident angle, incident position, incident optical path, etc.) when the device 301 is coupled.
  • the perturbation sensitive device can be implemented in a variety of configurations, which is readily available to those skilled in the art, for example: using a cantilever beam structure, or a microspring or the like;
  • the optical device 308 can employ a mirror, a scanning micromirror, or an optical lens;
  • the transparent substance 402 is a transparent solid substance having no transmission loss to the incident laser light, such as: a polymer gel; or a solution or a sol, the solution is an organic solution or an inorganic solution; the sol is an aerosol or a sol;
  • the medium particles 402 may be made of medium particles such as polystyrene microspheres and titanium dioxide particles (Ti0 2 );
  • the optical reflection cavity 302 is mostly made of metal, a flat mirror, a transparent plastic or glass, and the shape thereof is not required.
  • a tubular cavity is generally used;
  • the surface of the transmission exit surface 303 of the optical reflection cavity 302 is mostly made of transparent plastic or glass, and is mostly a rectangular plane or a circular plane, and the surface is provided with an increase in matching with the incident laser band.
  • the incident light coupling device 301 on the optical reflection cavity 302 can be realized by adopting a transmission incident surface and having an anti-reflection film matching the incident beam band on the surface; or adopting an incident aperture structure, such as an optical reflection cavity. If the transparent substance 401 in 302 is a solution or a sol, an optical coupling element (such as a lens) needs to be disposed on the incident aperture 304 to form a closed optical reflection cavity.
  • an optical coupling element such as a lens
  • the speckle elimination device of the present invention can be applied to a laser projection display technology, for example:
  • the display is applied to a Raster-Scanned Displays system, and the signal sources 601, 602, 603 respectively modulate the output power of the three primary color lasers 501, 502, 503 according to the information of each pixel on the two-dimensional image;
  • the mirrors 504, 505, 506 are coupled to the speckle reduction device 300 of the present invention, modulated, and then derived from the exit surface, projected onto the screen 800 by a lens 700 and a Scan Mirror 701.
  • the micro-scanning mirror 701 scans the screen on a pixel-by-pixel basis from the two-dimensional image.
  • This application example is suitable for point-scan laser projectors and laser TV displays.
  • three primary color lasers 501, 502, 503 output a constant power laser beam, respectively coupled and introduced into the speckle elimination device 305, 306, 307 of the present invention.
  • the relay lenses 701, 704, 707, the plane mirror 708 and the TIR prisms 703, 705, 709 converge to the light modulators DLP 702, 706, 710; the light modulators DLP 702, 706, 710 according to each frame 2
  • the dimensional image information is modulated to produce a monochrome image; the three primary color images are blended by prism 711 and projected by lens 700 onto screen 800.
  • This application example is suitable for laser projectors and laser TV displays based on optical modulators such as DMD and LCOS.

Description

技术领域
本发明涉及以相干光为光源的显示技术领域,具体是一种基于米氏散射及 微扰(一般指微弱振动)驱动的散斑消除装置, 主要针对激光显示技术及光学 仪器中存在的光学散斑现象。
背景技术
以激光为光源照射屏幕时, 由于激光的相干性及屏幕的粗糙, 导致人眼看 到被散斑覆盖的图像, 严重影响图像显示质量, 阻碍观察者从图像中提取有用 信息。 因此, 如何消除散斑一直是以激光为光源的光学仪器领域和显示技术领 域中的研发热点。而就目前的研究结果来看, 为消除散斑所用的方法大致可以 分为两大类: 一、通过控制激光光源的时间相干性来降低散斑, 其原理是通过 调整激光波长 (或者频率)及多波长光源产生沸腾散斑, 目前通过控制激光时间 相干性成功消除光斑达到实用要求的技术方案基本上以多光源叠加为主; 二、 通过控制激光光束空间相干性消除散斑, 是目前消除散斑的主要方法, 基本原 理是调整激光光束中基元光波的相位分布, 从而改变散斑的空间分布, 将多个 散斑图像在人眼积分时间内相叠加, 得到一个光能分布均匀的图像, 进而实现 消除散斑的目的。 具体的方法有: 采用旋转散射体、 振动屏幕、 振动具有
Hadamard 图形散射体、 高频振动光纤等。 上述方法, 或要借助机械振动, 甚 至需要高频或大幅振动, 或要集成多光源, 实现结构复杂、 易损坏、 成本高, 更主要的是散斑消除效果不佳。
也有未借助机械振动的技术方案,例如:专利号为 200820122639.7的中国 专利公开了"一种基于散射的消相干勾场装置", 要求使用含有直径必须小于入 射光波长十分之一的颗粒的散射介质, 以实现对入射激光形成瑞利散射。专利 中利用无机盐或有机醇水溶液 (如 NaCl、 KCK KN03或 ZnS04水溶液)作为散 射介质, 基于无机盐或有机醇水溶液的存在形式是水合离子或大分子, 相对于 激光波长小很多, 会对入射激光形成瑞利散射, 以此实现入射激光分束, 并在 光导管内传导, 以期降低入射激光的相干性来消除散斑, 同时利用光导管的混 光作用, 将上述分束光进行匀化来匀场消相干。但按该申请所述技术方法进行 试验, 在室温下, 利用长度为 50mm、 充满饱和 NaCl水溶液的光导管消除散 斑, 结果如图 1所示, 其散斑对比度为 70%, 几乎没有起到降低散斑的作用。
发明内容
本发明为了解决现有散斑消除方法存在的消除散斑效果不佳、实现结构复 杂、 易损坏、 成本高等问题, 提供了一种基于米氏散射及微扰驱动的散斑消除 装置。
本发明是采用如下技术方案实现的:基于米氏散射及微扰驱动的散斑消除 装置, 包括其上设有入射光耦合装置和透射出射面的光学反射腔、用于实现激 光入射光学反射腔的光学器件,光学器件正对光学反射腔的入射光耦合装置设 置; 光学反射腔除透射出射面内壁之外的内壁皆为"镜面"内壁(即内壁具有高 反射率特性, 能"全反射"入射于光学反射腔内的激光光束) , 光学反射腔内设 有填满整个光学反射腔的透明物质,且透明物质内散布有其线度能引起入射激 光发生米氏散射的介质粒子;光学反射腔和光学器件分别或仅其一配设有用于 敏感外界微扰、并随动改变光束入射光学反射腔入射光耦合装置时的入射状态 (包括入射角度、 入射位置、 入射光程等) 的微扰敏感装置。 所述外界微扰可 以是环境微扰(如:系统中的散热风扇),或者由专用设置的微扰产生装置(如: 压电微震微扰设备) 提供。
所述微扰敏感装置可以采用多种结构实现,对于本领域的技术人员来说是 很容易的, 例如: 采用悬臂梁结构实现、 或者微弹簧等;
所述光学器件可以采用反射镜、 扫描微镜、 或者光学透镜;
所述透明物质为对入射激光无透射损失的透明固态物质,如:高分子凝胶; 或者为溶液或溶胶, 所述溶液为有机溶液或无机溶液; 所述溶胶为气溶胶或液 溶胶。
应用时, 如图 4所示, 由激光光源发射的激光光束经光学反射腔上的入射 光耦合装置入射到光学反射腔内的透明物质中,与透明物质中散布的介质粒子 作用发生米氏散射 (如图 3所示, 当入射激光 101照射介质粒子 402发生米氏散 射时, 入射激光 101散射后的散射光光强分布于一个很宽的角度范围内, 主要 集中于前向散射光 104、 105、 106, 一般占总散射 90%以上; 后向散射光 102只 占很小部分, 通常小于 10%; 沿入射激光前进方向的散射光 105光强最强, 垂 直方向的散射光 103、 107最弱, 因此入射激光经介质粒子 402散射后, 分束成 多个强度不等的散射光, 同时散射光的散射角分布扩大) , 分束成多个强度不 等的散射光, 或经光学反射腔内壁反射, 或再次与透明物质中散布的介质粒子 作用发生米氏散射, 散射光分束为更多的散射光, 经多次米氏散射后, 由光学 反射腔的透射出射面出射; 由于微扰敏感装置的设置, 使得光学反射腔和光学 器件能敏感到外界微扰并发生随动,进而引起光束入射光学反射腔时入射状态 (包括入射角度、 入射位置、 入射光程等) 的连续改变, 使得各时刻入射激光 的散射光会随机改变在透明物质中传播方向和路径,最终在光学反射腔出射面 出射的散射光的相位分布、散射角分布随机变化。而不同时刻的出射散射光具 有不同的相位分布、 散射角分布, 经投影后, 分别会对应产生一个散斑图像; 在人眼积分时间(50ms) 内, 多个散斑图像相叠加, 会得到一个光能分布均匀 的图像, 进而实现了消除散斑现象的目的。
与现有技术相比, 本发明采用内置透明物质的光学反射腔, 在光学反射腔 内以透明物质中散布的介质粒子引起入射激光发生米氏散射, 进行散射分束, 并设置微扰敏感装置,使外界微扰能引起光束入射光学反射腔时入射状态的连 续改变, 随机改变散射光束在光学反射腔中的传播方向和路径, 降低入射激光 空间相干性,使得光学反射腔出射面在不同时间以不同的相位分布和散射角分 布出射入射激光的散射光; 从而改变投影后产生散斑的空间分布, 使多个散斑 图像在人眼积分时间内相叠加, 得到一个光能分布均勾的图像, 进而有效消除 散斑。 且经试验测试, 应用本发明所述装置后, 图像的散斑对比度可低于 4%, 如图 5所示, 图像的散斑对比度为 3.98%, 散斑消除效果极好; 其中, 外界产生 的微米级扰动即能触发微扰敏感装置, 例如: 普通投影机风扇的震动即可满足 触发微扰敏感装置所需的扰动幅度及频率要求; 并可以通过提高外界微扰强 度、透明物质中介质粒子的浓度来提高散斑消除效果; 本发明于光学反射腔中 对入射激光进行"全反射", 入射激光的总体光能损失甚微, 保证了激光的高利 用率, 并在"全反射 "过程中实现了匀光目的; 此外, 本发明所用光学反射腔结 构极为普通, 且透明物质也无须选择特殊材料, 具有低造价的优势。 ― 本发明结构合理、 紧凑, 易实现, 造价低, 散斑消除效果好, 激光利用率 高, 性能稳定, 安全可靠, 并具有匀光功能。
附图说明 图 1为利用一现有技术消除散斑获得的测试结果图;
图 2为本发明的结构示意图;
图 3为米氏散射的光强角分布图;
图 4为本发明所述装置内光束的传输状态示意图;
图 5为利用本发明所述装置消除散斑获得的测试结果图;
图 6为本发明所述装置在点扫描显示系统中的应用示意图;
图 7为本发明所述装置在全帧显示系统中的应用示意图;
图中: 101-入射激光; 102、 103、 104、 105、 106、 107-散射光;
300-散斑消除装置; 301-入射光耦合装置; 302-光学反射腔; 303-透射出 射面; 304-入射光孔; 305、 306、 307-散斑消除装置; 308-光学器件;
401-溶液或溶胶; 402-介质粒子;
501、 502、 503-激光器; 504、 505、 506-镜子;
601、 602、 603-信号源;
700-透镜; 701-中继透镜; 702-光调制器 DLP; 703-TIR棱镜; 704-中继透 镜; 705-TIR棱镜; 706-光调制器 DLP; 707-中继透镜; 708-平面镜; 709-TIR 棱镜; 710-光调制器 DLP; 711-棱镜; 712-微扫描镜;
800-屏幕。
具体实施方式
如图 2所示, 基于米氏散射及微扰驱动的散斑消除装置, 包括其上设有入 射光耦合装置 301和透射出射面 303的光学反射腔 302、 用于实现激光入射光学 反射腔 302的光学器件 308,光学器件 308正对光学反射腔 302的入射光耦合装置 301设置;光学反射腔 302除透射出射面 303内壁之外的内壁皆为"镜面"内壁(即 内壁具有高反射率特性, 能"全反射 "入射于光学反射腔 302内的激光光束) , 光学反射腔 302内设有填满整个光学反射腔 302的透明物质 401,且透明物质 401 内散布有其线度能引起入射激光发生米氏散射的介质粒子 402;光学反射腔 302 和光学器件 308分别或仅其一配设有用于敏感外界微扰、 并随动改变光束入射 光学反射腔 302入射光耦合装置 301时的入射状态 (包括入射角度、 入射位置、 入射光程等) 的微扰敏感装置 (附图中未专门画出) 。
所述微扰敏感装置可以采用多种结构实现,对于本领域的技术人员来说是 很容易的, 例如: 采用悬臂梁结构实现、 或者微弹簧等;
所述光学器件 308可以采用反射镜、 扫描微镜、 或者光学透镜;
所述透明物质 402为对入射激光无透射损失的透明固态物质, 如: 高分子 凝胶; 或者为溶液或溶胶, 所述溶液为有机溶液或无机溶液; 所述溶胶为气溶 胶或液溶胶;
具体实施时, 所述介质粒子 402可以采用聚苯乙烯微球、 二氧化钛粒子 (Ti02) 等介质粒子; 所述光学反射腔 302多选用金属、 平面镜、 透明塑料或 玻璃加工制作,且其形状无需特别限定,一般多采用管状腔体;光学反射腔 302 的透射出射面 303表面多选用透明塑料或玻璃加工制作, 且多为矩形平面或圆 形平面, 且表面设有与入射激光波段匹配的增透膜;
所述光学反射腔 302上的入射光耦合装置 301可以按如下结构实现:采用透 射入射面, 并在表面设有与入射光束波段匹配的增透膜; 或者采用入射光孔结 构, 如光学反射腔 302内透明物质 401为溶液或溶胶, 则需要在入射光孔 304上 配设光学耦合元件 (如: 透镜) , 以便形成封闭式光学反射腔。
本发明所述散斑消除装置能应用于激光投影显示技术中, 例如: 如图 6所 示, 应用于点扫描投影 (Raster-Scanned Displays)系统, 信号源 601、 602、 603 根据二维图像上每个像素的信息分别调制三基色激光器 501、 502、 503输出功 率; 三个入射激光通过镜子 504、 505、 506耦合入射本发明所述散斑消除装置 300, 经调制后于出射面导出, 通过透镜 700和微扫描镜 (Scan Mirror)701投影到 屏幕 800。在电信号的驱动下,微扫描镜 701根据二维图像逐像素扫描到屏幕上。 本应用实例适用于点扫描的激光投影仪和激光电视显示。
如图 7所示, 应用于全帧显示投影 (Full-Frame Displays)系统, 三基色激光 器 501、 502、 503输出恒定功率激光光束, 分别耦合导入本发明所述散斑消除 装置 305、 306、 307; 经调制后, 由中继透镜 701、 704、 707, 平面镜 708及 TIR 棱镜 703、 705、 709汇聚到光调制器 DLP 702、 706、 710; 光调制器 DLP 702、 706、 710根据每帧 2维图像信息调制生成单色图像;三基色图像经棱镜 711融和, 由透镜 700投影至屏幕 800。 本应用实例适用于基于 DMD、 LCOS等光调制器 件的激光投影仪和激光电视显示。

Claims

权利要求书
1、 一种基于米氏散射及微扰驱动的散斑消除装置, 其特征在于: 包括其 上设有入射光耦合装置 (301 ) 和透射出射面 (303 ) 的光学反射腔 (302) 、 用于实现激光入射光学反射腔 (302) 的光学器件 (308 ) , 光学器件 (308) 正对光学反射腔 (302) 的入射光耦合装置 (301 ) 设置; 光学反射腔 (302) 除透射出射面 (303 ) 内壁之外的内壁皆为"镜面"内壁, 光学反射腔 (302) 内 设有填满整个光学反射腔 (302) 的透明物质 (401 ) , 且透明物质 (401 ) 内 散布有其线度能引起入射激光发生米氏散射的介质粒子 (402) ; 光学反射腔
(302)和光学器件(308)分别或仅其一配设有用于敏感外界微扰、 并随动改 变光束入射光学反射腔(302)入射光耦合装置(301 ) 时的入射状态的微扰敏 感装置。
2、根据权利要求 1所述的基于米氏散射及微扰驱动的散斑消除装置, 其特 征在于: 所述光学器件 (308) 采用反射镜、 或者扫描微镜、 或者光学透镜。
3、根据权利要求 1所述的基于米氏散射及微扰驱动的散斑消除装置, 其特 征在于: 所述透明物质 (401 ) 为对入射激光无透射损失的透明固态物质。
4、根据权利要求 1所述的基于米氏散射及微扰驱动的散斑消除装置, 其特 征在于: 所述透明物质 (401 ) 为溶液或溶胶, 所述溶液为有机溶液或无机溶 液; 所述溶胶为气溶胶或液溶胶。
5、根据权利要求 1所述的基于米氏散射及微扰驱动的散斑消除装置, 其特 征在于: 所述介质粒子 (402) 采用聚苯乙烯微球、 或者二氧化钛粒子。
6、根据权利要求 1所述的基于米氏散射及微扰驱动的散斑消除装置, 其特 征在于: 光学反射腔(302) 的透射出射面(303 )表面设有与入射激光波段匹 配的增透膜。
PCT/CN2012/000044 2011-01-29 2012-01-10 基于米氏散射及微扰驱动的散斑消除装置 WO2012100645A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/982,023 US10078229B2 (en) 2011-01-29 2012-01-10 Speckle reduction apparatus based on Mie scattering, perturbation drive, and optical reflective chamber
JP2013550744A JP5763214B2 (ja) 2011-01-29 2012-01-10 ミー散乱および摂動駆動に基づくスペックル低減装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110031520A CN102053383B (zh) 2011-01-29 2011-01-29 基于米氏散射及微扰驱动的散斑消除装置
CN201110031520.5 2011-01-29

Publications (1)

Publication Number Publication Date
WO2012100645A1 true WO2012100645A1 (zh) 2012-08-02

Family

ID=43957883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000044 WO2012100645A1 (zh) 2011-01-29 2012-01-10 基于米氏散射及微扰驱动的散斑消除装置

Country Status (4)

Country Link
US (1) US10078229B2 (zh)
JP (1) JP5763214B2 (zh)
CN (1) CN102053383B (zh)
WO (1) WO2012100645A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053383B (zh) 2011-01-29 2012-09-26 中北大学 基于米氏散射及微扰驱动的散斑消除装置
CN102053382B (zh) * 2011-01-29 2013-06-05 中北大学 基于米氏散射及光学器件的散斑消除装置
DE102016123974A1 (de) * 2016-12-09 2018-06-14 Leica Microsystems Cms Gmbh Beleuchtungseinrichtung für ein konfokales Mikroskop und Konfokalmikroskop
US11175625B2 (en) * 2016-12-09 2021-11-16 Imec Vzw Method and an imaging system for holographic imaging
CN106950713B (zh) * 2017-05-26 2023-11-24 北京知它视觉科技有限公司 激光散斑消除方法和装置
CN107676684A (zh) * 2017-10-31 2018-02-09 横店集团得邦照明股份有限公司 一种新型结构led面板灯及其实现方法
CN108508626A (zh) * 2018-03-16 2018-09-07 山西大学 一种运动散射颗粒的静态散射片及消散斑方法
CN110244443A (zh) * 2019-07-01 2019-09-17 达科为(深圳)医疗设备有限公司 一种用于显微物镜阵列的集成化光源装置
CN112631055A (zh) * 2020-12-25 2021-04-09 四川长虹电器股份有限公司 一种固液双态消散斑装置及激光投影光源

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060238743A1 (en) * 2005-04-21 2006-10-26 Lizotte Todd E Speckle reduction optical mount device
CN101120284A (zh) * 2005-02-25 2008-02-06 松下电器产业株式会社 二维图像形成装置
CN101464557A (zh) * 2009-01-14 2009-06-24 福州高意通讯有限公司 一种消激光散斑光学结构
CN201285473Y (zh) * 2008-09-22 2009-08-05 北京中视中科光电技术有限公司 一种基于散射的消相干匀场装置
CN101529288A (zh) * 2005-09-21 2009-09-09 纳伊夫·M·阿布-阿吉尔 减小激光散斑的方法和设备
CN101634752A (zh) * 2008-07-25 2010-01-27 北京中视中科光电技术有限公司 一种消相干和匀场装置
CN101685181A (zh) * 2008-09-22 2010-03-31 北京中视中科光电技术有限公司 一种基于散射的消相干匀场装置
CN102053383A (zh) * 2011-01-29 2011-05-11 中北大学 基于米氏散射及微扰驱动的散斑消除装置
CN202075498U (zh) * 2011-01-29 2011-12-14 中北大学 基于米氏散射及微扰驱动的散斑消除装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218726A (ja) * 1998-02-04 1999-08-10 Minolta Co Ltd スペックル除去手段及びそれを用いた映像提示装置
AU2003211414A1 (en) * 2002-03-08 2003-09-22 Sharp Kabushiki Kaisha Light source apparatus and optical communication module comprising it
CN100480777C (zh) * 2003-12-10 2009-04-22 松下电器产业株式会社 光学元件、激光光源和二维图像形成装置
US20080043490A1 (en) * 2005-09-09 2008-02-21 Fusion Optix Inc. Enhanced Light Guide
WO2006104203A1 (ja) * 2005-03-29 2006-10-05 Fujifilm Corporation 導光部材及びそれを用いた面状照明装置、並びに棒状照明装置
JP2007163926A (ja) * 2005-12-15 2007-06-28 Seiko Epson Corp 照明装置及びプロジェクタ
US7751670B2 (en) * 2006-02-28 2010-07-06 Lg Electronics Inc. Laser display device and optical coupler therefor
JP5414224B2 (ja) * 2007-10-19 2014-02-12 富士フイルム株式会社 面状照明装置
WO2009104392A1 (ja) * 2008-02-20 2009-08-27 パナソニック株式会社 光源装置、照明装置及び画像表示装置
GB2462444A (en) * 2008-08-06 2010-02-10 Optyka Ltd Image projection apparatus and method
WO2010047089A1 (ja) * 2008-10-23 2010-04-29 日本化薬株式会社 レーザー光用の光拡散セル、これを用いた光源装置および画像表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101120284A (zh) * 2005-02-25 2008-02-06 松下电器产业株式会社 二维图像形成装置
US20060238743A1 (en) * 2005-04-21 2006-10-26 Lizotte Todd E Speckle reduction optical mount device
CN101529288A (zh) * 2005-09-21 2009-09-09 纳伊夫·M·阿布-阿吉尔 减小激光散斑的方法和设备
CN101634752A (zh) * 2008-07-25 2010-01-27 北京中视中科光电技术有限公司 一种消相干和匀场装置
CN201285473Y (zh) * 2008-09-22 2009-08-05 北京中视中科光电技术有限公司 一种基于散射的消相干匀场装置
CN101685181A (zh) * 2008-09-22 2010-03-31 北京中视中科光电技术有限公司 一种基于散射的消相干匀场装置
CN101464557A (zh) * 2009-01-14 2009-06-24 福州高意通讯有限公司 一种消激光散斑光学结构
CN102053383A (zh) * 2011-01-29 2011-05-11 中北大学 基于米氏散射及微扰驱动的散斑消除装置
CN202075498U (zh) * 2011-01-29 2011-12-14 中北大学 基于米氏散射及微扰驱动的散斑消除装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FALKO RIECHERT ET AL.: "Laser speckle reduction via colloidal-dispersion-filled projection screens", APPLIED OPTICS, vol. 48, no. 19, 1 July 2009 (2009-07-01), pages 3742 - 3748 *
YOUNG L. KIM ET AL.: "Origin of low-coherence enhanced backscattering", OPTICS LETTERS, vol. 31, no. 10, 15 May 2006 (2006-05-15), pages 1459 - 1461 *

Also Published As

Publication number Publication date
JP5763214B2 (ja) 2015-08-12
CN102053383B (zh) 2012-09-26
US10078229B2 (en) 2018-09-18
CN102053383A (zh) 2011-05-11
US20130308195A1 (en) 2013-11-21
JP2014509403A (ja) 2014-04-17

Similar Documents

Publication Publication Date Title
WO2012100645A1 (zh) 基于米氏散射及微扰驱动的散斑消除装置
JP5191730B2 (ja) 二次元画像形成装置
EP3175293B1 (en) Image and wave field projection through diffusive media
US9851581B2 (en) Optical scanning device, illumination device, projection apparatus and optical device
JP5482789B2 (ja) 投射型画像表示装置およびその制御方法
US20120062850A1 (en) Laser-scanning virtual image display
KR20100106487A (ko) 광학계 및 방법
JP2011508286A (ja) 光信号の偏光変調のためのシステム及び方法
KR102618430B1 (ko) 가상 및 증강 현실 시스템들 및 방법들에서의 스페클-감소
CN103123419B (zh) 基于旋转反射面和散射体的匀场消相干装置
WO2012100640A1 (zh) 基于米氏散射及布朗运动的散斑消除装置
WO2012100644A1 (zh) 基于米氏散射和场致形变类聚合物的散斑消除装置
CN102053386A (zh) 激光显示技术中激光光源用散斑抑制装置
CN106353890A (zh) 光束调控光纤消散斑方法及装置
CN202075495U (zh) 基于米氏散射及光学器件的散斑消除装置
CN102053384B (zh) 基于场致形变类聚合物的散斑消除装置
WO2012100643A1 (zh) 基于米氏散射及光学器件的散斑消除装置
CN202075498U (zh) 基于米氏散射及微扰驱动的散斑消除装置
CN110082928A (zh) 一种基于偏振多样性与角度多样性结合的激光消散斑装置
CN202075500U (zh) 基于场致形变类聚合物的散斑消除装置
CN202075496U (zh) 基于米氏散射及布朗运动的散斑消除装置
CN202075497U (zh) 基于米氏散射及场致形变类聚合物的散斑消除装置
WO2012100642A1 (zh) 基于米氏散射及磁控粒子运动的散斑消除装置
CN210803959U (zh) 一种利用光声效应实现空气成像的装置及系统
CN202075499U (zh) 基于米氏散射及磁控粒子运动的散斑消除装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550744

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13982023

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739358

Country of ref document: EP

Kind code of ref document: A1