WO2012100435A1 - 无线电力传输系统及其控制方法 - Google Patents

无线电力传输系统及其控制方法 Download PDF

Info

Publication number
WO2012100435A1
WO2012100435A1 PCT/CN2011/070814 CN2011070814W WO2012100435A1 WO 2012100435 A1 WO2012100435 A1 WO 2012100435A1 CN 2011070814 W CN2011070814 W CN 2011070814W WO 2012100435 A1 WO2012100435 A1 WO 2012100435A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
frequency
coil
control
power transmission
Prior art date
Application number
PCT/CN2011/070814
Other languages
English (en)
French (fr)
Inventor
李聃
董秀莲
秦超
娄兵兵
李明
Original Assignee
海尔集团公司
海尔集团技术研发中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔集团公司, 海尔集团技术研发中心 filed Critical 海尔集团公司
Priority to US13/821,563 priority Critical patent/US20130300203A1/en
Priority to PCT/CN2011/070814 priority patent/WO2012100435A1/zh
Priority to JP2013550731A priority patent/JP5650336B2/ja
Priority to PT11856967T priority patent/PT2639932T/pt
Priority to CN201180009163.0A priority patent/CN103688441B/zh
Priority to EP11856967.2A priority patent/EP2639932B1/en
Publication of WO2012100435A1 publication Critical patent/WO2012100435A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the invention relates to a wireless power transmission system with good thermal stability and a control method thereof. Background technique
  • wireless power transmission technology is becoming more and more widely used, and people's lives will become easier and easier, and will no longer be smashed by various power cords.
  • some small electronic devices have begun to be charged by wireless power.
  • Electronic devices such as wireless chargers, wireless charging mice, and mobile phones can be automatically charged by a wireless power supply.
  • the primary side (transmitting end) and the secondary side (receiving end) are in a deep coupled synchronous working state, and the resonant circuit is used as an output stage. Due to factors such as component parameters and environment, the resonant frequency of the coil will drift. The system does not transmit energy at the frequency point, which reduces the energy transmission efficiency. The energy loss causes the coil and the device to heat up. The parameters of the functional device change due to the environment. And the change, the constant accumulation of such changes will also cause the frequency to drift, thus forming a vicious circle. Eventually it will cause a system failure, which may cause serious damage to the equipment.
  • An object of the present invention is to provide a wireless power transmission system with good thermal stability and a control method thereof. Achieve stable temperature rise, improve system transmission efficiency, and reduce system thermal load.
  • the technical scheme of the invention is to control the system through software, reduce the frequency and drift problem caused by the parameters of the component itself and the ambient temperature parameter, accurately control the frequency and AC frequency characteristics of the wireless transmission circuit, and reduce the heating problem of the key component. Improve the transmission efficiency of wireless power transmission circuits.
  • the method uses software real-time control to adjust the working frequency of the primary coil, so that the system works stably at the frequency point, improves the transmission of active power, reduces the generation of reactive power, thereby improving wireless
  • the transmission efficiency of the power supply system at the same time, reduces the heat generation of the coil and the device.
  • the method is implemented by an integrated circuit, which simplifies circuit design and improves system security and stability.
  • the specific realization path of the object of the invention is: controlling the frequency of the transmitting coil by software, compared with the realization of the hardware circuit, reducing the frequency drift caused by the difference of the parameters of the component itself; adjusting the frequency of the coil according to the real-time phase tracking by software, continuously frequency-to-frequency
  • the approximation of the point can make the system work stably at the frequency point, improve the transmission efficiency of the system, and reduce the heat generation problem.
  • the software can be used to control the opening and closing of the switch tube in the inverter circuit, so as to avoid the formation of a large current in the system loop at the same time.
  • the coil and the device are heated; the energy transmission discontinuity caused by simultaneous opening or closing is avoided.
  • the control method of the wireless power transmission system of the present invention includes the following steps:
  • the driving circuit turns on or off the switching tube according to P1 and P2, so that alternating voltage is formed at both ends of the coil, and the transmitting coil starts high-frequency oscillation;
  • the frequency f signal of the coil is processed through a phase locked loop circuit, and the phase difference signal is fed back to the control circuit;
  • the control circuit adjusts the outputs of the control signals P1 and P2 according to the feedback signal
  • the wireless power transmission system of the present invention includes a transmitting coil frequency generating portion and a coil frequency phase tracking feedback portion.
  • the transmitting coil frequency generating portion is composed of a control circuit, a driving circuit and an inverter circuit;
  • the coil frequency phase tracking feedback portion is composed of a frequency detecting and a phase locked loop circuit.
  • the transmitting coil frequency generating part, the control circuit is controlled by software to output two completely opposite control signals. After the driving circuit, respectively, the opening and closing of one switching tube are respectively controlled, and the voltages VI and V2 are alternately generated to the transmitting coil, forming a high in the coil. Frequency oscillation, energy transmission.
  • the control circuit provides two signals P1 and P2 according to the resonance frequency. Software control can achieve the exact opposite of Pl and P2, and it is more accurate than pure hardware and C circuit. In this way, a standard alternating voltage is formed at both ends of the transmitting coil.
  • the coil frequency phase tracking feedback part, the voltages VI and V2 across the transmitting coil are sampled, and the oscillation frequency f in the coil is obtained by the voltage comparison circuit.
  • the specific implementation method is: if V1>V2, the voltage comparator outputs a high level, and if V V2, the voltage comparator outputs a low level, thereby The oscillation frequency f of the transmitting coil is obtained.
  • the oscillating frequency f of the transmitting coil is obtained by the phase comparator and the VCO (Voltage Controlled Oscillator) circuit to obtain f0.
  • f0 f due to the action of the phase locked loop.
  • f and f0 also generate a phase difference signal ⁇ during the comparison.
  • the oscillation frequency f of the transmitting coil and the phase difference signal ⁇ are fed back to the control circuit, and the control circuit compares f0 with the fixed frequency point fk to obtain the value of the frequency drift, and then adjusts the P1 and P2 signals according to the least squares method or the median method.
  • the control circuit is used to fine tune the delay time of the output P1, ⁇ 2 signals according to ⁇ .
  • phase-locked loop The role of the phase-locked loop is to solve the drift caused by the clock delay in the chip. By connecting the frequency signal to the phase-locked loop so that the phase frequency of the signal is consistent with the reference signal, there will be no data drift.
  • a wireless power transmission system with good thermal stability includes a transmitting coil frequency generating circuit and a coil frequency phase tracking feedback circuit, and the transmitting coil frequency generating circuit is composed of a control circuit, a driving circuit and an inverter circuit;
  • the tracking feedback circuit consists of a frequency detection and phase-locked loop circuit.
  • the control circuit is controlled by software to output two completely opposite control signals, and through the driving circuit, respectively controls the opening and closing of one switching tube, alternately generates voltages VI and V2 for the transmitting coil, and forms a high frequency in the coil. Shock.
  • the control circuit provides two signals P1 and ⁇ 2 according to the resonance frequency.
  • Software control can achieve the exact opposite of Pl and ⁇ 2, which is more accurate than pure hardware and C circuit. In this way, a standard alternating voltage is formed across the transmitting coil.
  • the parameters of the system device are inconsistent, or the system parameters change due to the heat generated by the system, which also causes the frequency to drift.
  • the phase tracking circuit is used to solve the problem of frequency drift.
  • the switching tubes can be opened or closed at the same time. If the switching tubes in the inverter circuit are turned on at the same time, a large current is formed in the circuit, and the temperature of the device and the coil is increased, and the system is heated. When the switch is turned on or off at the same time, the transmitting coil will not oscillate, so energy transfer cannot be performed.
  • the delay of the control signal will be delayed, which will cause the frequency point to drift, and also has the phenomenon of energy transmission interruption.
  • the software precisely controls the inverter circuit to maximize the active power of the system and minimize the loss of reactive power, which not only improves the energy transmission efficiency of the system, but also reduces the system heat generation caused by reactive power.
  • the invention has the advantages of controlling the frequency of the transmitting coil by software, and reducing the frequency drift caused by the difference of the parameters of the component itself compared with the realization of the hardware circuit;
  • the system can be stably operated at the frequency point, which improves the transmission efficiency of the system and reduces the heat generation problem;
  • Use CPLD to achieve precise control of the frequency of the wireless transmission circuit, including frequency and timing; use software to control the opening and closing of the switch tube in the inverter circuit, avoiding the simultaneous opening of the system circuit to form a large current, the coil and the device heat; The energy transmission caused by simultaneous opening or closing is discontinuous.
  • the frequency of the coil is quickly moved closer to the frequency point, and the work is stably performed
  • Figure 1 is a block diagram showing the overall structure of the primary side of the present invention.
  • FIG. 2 is a block diagram showing the structure of the control, drive, and inverter sections of the present invention.
  • Figure 3 is a diagram showing the standard alternating voltage waveform formed at both ends of the primary side inverter output.
  • Figure 4 is an alternating voltage waveform diagram caused by the unsynchronization of the hardware switches.
  • Figure 5 is a delayed tail waveform of the device causing the control signal.
  • Figure 6 is a block diagram of a coil frequency phase tracking feedback portion of the present invention.
  • FIG. 7 is a main flow chart of the control of the present invention. detailed description
  • the wireless power transmission system of the present invention includes a transmitting coil frequency generating portion and a coil frequency Phase tracking feedback section.
  • the transmitting coil frequency generating portion is composed of a control circuit, a driving circuit and an inverter circuit;
  • the coil frequency phase tracking feedback portion is composed of a frequency detecting and a phase locked loop circuit.
  • connection structure is:
  • the control circuit refers to the microprogram controller (MCU) and its related circuits, the output port is connected to the driver circuit, and the output of the driver circuit is respectively connected with the switching transistor control pole of the inverter circuit to form a software control.
  • the control circuit is controlled by software to output two completely opposite control signals. After the driving circuit, it controls the opening and closing of one switching tube respectively, and alternately generates voltages VI and V2 for the transmitting coil, forming high frequency oscillation in the coil, and performing energy. transmission.
  • the control circuit provides two signals P1 and P2 according to the resonant frequency. Software control can achieve the exact opposite of Pl and P2, and it is more accurate than pure hardware L and C circuits. In this way, a standard alternating voltage is formed across the transmitting coil.
  • the coil frequency phase tracking feedback section includes a frequency voltage sampling and a phase-locked loop circuit.
  • the signal output terminal of the phase-locked loop circuit is connected to the control port of the control circuit.
  • the coil frequency phase tracking feedback part, the voltages VI and V2 across the transmitting coil are sampled, and the oscillation frequency f in the coil is obtained by the voltage comparison circuit.
  • the specific implementation method is: if V1>V2, the voltage comparator outputs a high level, and if V V2, the voltage comparator outputs a low level, thereby obtaining the oscillation frequency f of the transmitting coil.
  • the transmitting coil oscillating frequency f is obtained by the phase comparator and the voltage controlled oscillator (VCO) circuit.
  • the oscillation frequency f of the transmitting coil and the phase difference signal ⁇ are fed back to the control circuit, and the control circuit compares fO with the fixed frequency point fk to obtain the value of the frequency drift, and then adjusts the P1 and P2 signals according to the least squares method or the median method.
  • the control circuit is used to fine tune the delay time of the output P1, ⁇ 2 signals according to ⁇ .
  • phase-locked loop The role of the phase-locked loop is to solve the drift caused by the clock delay in the chip. By connecting the frequency signal to the phase-locked loop so that the phase frequency of the signal is consistent with the reference signal, there will be no data drift.
  • a wireless power transmission system with good thermal stability includes a transmitting coil frequency generating circuit and a coil frequency phase tracking feedback circuit, and the transmitting coil frequency generating circuit is composed of a control circuit, a driving circuit and an inverter circuit; Phase tracking feedback circuit by frequency detection and The phase-locked loop circuit is composed.
  • the control circuit is controlled by software to output two completely opposite control signals, and through the driving circuit, respectively controls the opening and closing of one of the switching tubes to form a high frequency oscillation in the coil.
  • the control circuit provides two signals P1 and P2 according to the resonance frequency.
  • Software control can achieve the exact opposite of Pl and P2, and it is more accurate than pure hardware L and C circuits.
  • a standard alternating voltage is formed across the transmitting coil.
  • phase tracking circuit is used to solve the problem of frequency drift.
  • the switching tubes can be opened or closed at the same time, see Figure 4. If the switching tubes in the inverter circuit are turned on at the same time, a large current is formed in the circuit, and the temperature of the device and the coil is increased, and the system is heated. When the switch is turned on or off at the same time, the transmitting coil will not oscillate, so energy transfer cannot be performed.
  • the delay of the control signal will be delayed, which will cause the frequency drift, and also the energy transmission interruption.
  • control method of the wireless power transmission system of the present invention includes the following steps:
  • the driving circuit turns on or off the switching tube according to P1 and P2, so that alternating voltage is formed at both ends of the coil, and the transmitting coil starts high-frequency oscillation;
  • the control circuit adjusts the outputs of the control signals P1 and P2 according to the feedback signal
  • the software precisely controls the inverter circuit to maximize the active power of the system, and minimizes the loss of reactive power, which not only improves the energy transmission efficiency of the system, but also reduces the system heat generation caused by reactive power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Description

无线电力传输系统及其控制方法
技术领域
本发明涉及一种热稳定性好的无线电力传输系统及其控制方法。 背景技术
随着科技的进步, 无线电力传输技术的应用日益广泛, 人们的生活会 变得更简便轻松, 不再被各式各样的电源线所羁绊。 目前, 已有一些小型 电子装置开始釆用无线供电的方式来充电。 如无线充电器、 无线充电鼠标、 手机等电子设备可以通过无线供电装置自动充电。
对于中功率(数百瓦) 的无线供电系统, 由于功率大, 原边(发送端) 与副边 (接收端) 处于深度耦合同步工作状态, 多釆用谐振回路作为输出 级。 由于元器件参数及环境等因素的影响, 会造成线圈谐振频率的漂移, 系统不在频点下进行能量传输, 降低了能量传输效率; 能量损耗会使线圈 和器件发热, 功能器件的参数由于环境变化而变化, 这种变化的不断累积 也会造成频率的漂移, 由此形成恶性循环。 最后会引起系统故障, 严重的 有可能烧毁设备。
目前, 解决上述问题的方案集中在稳定频率上, 由于器件本身的物理 性能存在固有的性质, 难以从根本上解决问题。 发明内容
本发明目的在于提供一种热稳定性好的无线电力传输系统及其控制方 法。 实现稳定温升、 提升系统传输效率、 降低系统热负荷问题。
本发明的技术方案是通过软件对系统的控制,减少因元器件自身参数、 环境温度参数引起的频,、漂移问题, 精确控制无线输电电路的频点及交流 频率特性, 减少关键元件器发热问题, 提高无线电力传输电路输电效率。
该方法使用软件实时控制调节初级线圈的工作频率, 使得系统稳定在 频点下工作, 提高有功功率的传输, 降低无功功率的产生, 由此提升无线 供电系统的传输效率, 同时, 降低线圈及器件的生热问题。 该方法由集成 电路实现, 简化了电路设计, 提高了系统的安全性和稳定性。
本发明目的具体实现途径: 用软件控制发射线圈的频率, 同硬件电路 实现相比, 减少了由于元器件自身参数的不同造成频率的漂移; 用软件根 据实时相位跟踪调整线圈的频率, 不断向频点进行逼近, 能使系统稳定在 频点下工作, 提升了系统传输效率, 降低生热问题; 用软件控制逆变电路 中开关管的打开和闭合, 避免了同时开启造成系统回路形成大的电流, 线 圈及器件发热; 避免了同时开启或关闭造成的能量传输不连续。
本发明的无线电力传输系统的控制方法包括以下步骤:
控制电路根据频点给出控制信号 P1和 P2 , fp=fk;
驱动电路根据 P1和 P2打开或关闭开关管, 使得线圈两端形成交变电 压, 发射线圈开始高频振荡;
经过电压比较电路的电压取样, 得出线圈的频率 f;
将线圈的频率 f 信号经过锁相环电路进行处理, 相位差信号反馈到控 制电路;
控制电路根据反馈信号调整控制信号 P1和 P2的输出;
反复上述步骤, 系统稳定在频点下进行工作。
本发明的无线电力传输系统, 包括发射线圈频率生成部分和线圈频率 相位跟踪反馈部分。 发射线圈频率生成部分由控制电路、 驱动电路和逆变 电路组成; 线圈频率相位跟踪反馈部分由频率检测和锁相环电路组成。
发射线圈频率生成部分, 控制电路由软件控制输出两路完全相反的控 制信号, 经过驱动电路之后, 分别控制一路开关管的打开和闭合, 给发射 线圈交替产生电压 VI和 V2 , 在线圈内形成高频振荡, 进行能量的传输。 由控制电路根据谐振频率提供 P1和 P2两路信号。 软件控制可以做到 Pl、 P2的完全相反, 比纯硬件 、 C电路实现更精准。 这样, 会在发射线圈两 端形成标准的交变电压。
线圈频率相位跟踪反馈部分, 发射线圈两端的电压 VI、 V2进行取样 , 经电压比较电路得出线圈中的振荡频率 f。 具体实现方法为, 如果 V1>V2, 则电压比较器输出高电平, 如果 V V2, 则电压比较器输出低电平, 由此 得出发射线圈的振荡频率 f。 发射线圈振荡频率 f 经过相位比较器和 VCO (电压控制振荡器) 电路得出 f0 , 由于锁相环的作用, 最终 f0=f。 f 和 f0 在比较过程中也会生成相位差信号 Δφ。 发射线圈的振荡频率 f 和相位差信 号 Δφ反馈到控制电路, 控制电路将 f0和固定的频点 fk进行比较, 得出频 率漂移的值, 再根据最小二乘法或中值法调整 P1和 P2信号的频率 fp, 系 统不断地比较调整, 最终使得 f= fk , 系统稳定在频点进行能量的传输。 控制电路根据 Δφ用来微调输出 Pl、 Ρ2信号的延迟时间。
锁相环的作用就是解决芯片中时钟延迟造成的漂移现象。 将频率信号 接入锁相环, 使信号的相位频率与参考信号保持一致, 就不会有数据漂移 的现象了。
综上所述, 一种热稳定性好的无线电力传输系统包括发射线圈频率生 成电路和线圈频率相位跟踪反馈电路 ,发射线圈频率生成电路由控制电路、 驱动电路和逆变电路组成; 线圈频率相位跟踪反馈电路由频率检测和锁相 环电路组成。
其特征是所述的控制电路由软件控制输出两路完全相反的控制信号, 经过驱动电路, 分别控制一路开关管的打开和闭合, 给发射线圈交替产生 电压 VI和 V2, 在线圈内形成高频震荡。
由控制电路根据谐振频率提供 P1和 Ρ2两路信号。 软件控制可以做到 Pl、 Ρ2的完全相反, 比纯硬件 、 C电路实现更精准。 这样, 会在发射线 圈两端形成标准的交变电压。
系统器件的参数不一致, 或者系统生热造成器件参数变化, 也会造成 频率的漂移, 相位跟踪电路就是用于解决频率漂移的问题。
由于硬件开关的不同步, 会造成开关管的同时打开或闭合。 逆变电路 中的开关管如果同时开的话, 就会在回路中形成大的电流, 形成器件及线 圈的温度升高, 系统发热。 开关管同时打开或关闭, 都会造成发射线圈不 能振荡, 因此不能进行能量的传输。
由于器件参数的不同, 或者由于环境因素影响器件的参数, 会造成控 制信号的延迟拖尾, 这样会造成频点的漂移, 并且也具有能量传输中断的 现象。 软件精确控制逆变电路使系统的有功功率达到最大, 无功功率的损耗 降到最低, 既提高了系统的能量传输效率, 同时降低了无功功率造成的系 统生热。
本发明的优点是用软件控制发射线圈的频率, 同硬件电路实现相比, 减少了由于元器件自身参数的不同造成频率的漂移;
用软件根据实时跟踪调整线圈的频率, 不断向频点进行逼近, 能使系 统稳定在频点下工作, 提升了系统传输效率, 降低生热问题;
用 CPLD实现对无线输电电路频点的精确控制, 包括频率和时序; 用软件控制逆变电路中开关管的打开和闭合, 避免了同时开启造成系 统回路形成大的电流, 线圈及器件发热; 避免了同时开启或关闭造成的能 量传输不连续。
1.通过软件减少因元器件自身参数、 环境温度参数引起的频点漂移问 题, 实现对无线输电电路的频点及交流频率特性的精确控制;
2.通过软件控制方法, 使得线圈的频率迅速地向频点靠拢, 并进行稳 定地工作;
3.减少关键元件器发热问题, 降低整个系统的无功功率, 延长电路寿 命, 提高无线电力传输电路输电效率。 附图说明
图 1是本发明原边的整体结构框图。
图 2是本发明控制、 驱动以及逆变部分的结构框图。
图 3是原边逆变输出两端形成标准的交变电压波形图。
图 4是硬件开关不同步导致的交变电压波形图。
图 5是器件引起控制信号的延迟拖尾波形图。
图 6是本发明的线圈频率相位跟踪反馈部分框图。
图 7是本发明的控制主流程图。 具体实施方式
本发明的无线电力传输系统, 包括发射线圈频率生成部分和线圈频率 相位跟踪反馈部分。 发射线圈频率生成部分由控制电路、 驱动电路和逆变 电路组成; 线圈频率相位跟踪反馈部分由频率检测和锁相环电路组成。
具体连接结构为:
参见图 1 , 发射线圈频率生成部分, 控制电路指微程序控制器(MCU ) 及其相关电路, 输出端口连接驱动器电路, 驱动器电路输出端分别与逆变 电路的开关管控制极连接, 构成软件控制的频率生成和可控逆变电路。 控 制电路由软件控制输出两路完全相反的控制信号, 经过驱动电路之后, 分 别控制一路开关管的打开和闭合, 给发射线圈交替产生电压 VI和 V2 , 在 线圈内形成高频震荡, 进行能量的传输。 由控制电路根据谐振频率提供 P1 和 P2 两路信号。 软件控制可以做到 Pl、 P2的完全相反, 比纯硬件 L、 C 电路实现更精准。 这样, 会在发射线圈两端形成标准的交变电压。
参见图 2和 6 , 线圈频率相位跟踪反馈部分, 包括频率电压取样、 锁 相环电路, 锁相环电路的信号输出端与控制电路的控制端口连接。
线圈频率相位跟踪反馈部分, 发射线圈两端的电压 VI、 V2进行取样 , 经电压比较电路得出线圈中的振荡频率 f。 具体实现方法为, 如果 V1>V2, 则电压比较器输出高电平, 如果 V V2, 则电压比较器输出低电平, 由此 得出发射线圈的振荡频率 f。发射线圈振荡频率 f经过相位比较器和电压控 制振荡器 (VCO ) 电路得出 fO , 由于锁相环的作用, 最终 f0=f。 f和 fO在 比较过程中也会生成相位差信号 Δφ。 发射线圈的振荡频率 f 和相位差信号 Δφ反馈到控制电路, 控制电路将 fO和固定的频点 fk进行比较, 得出频率 漂移的值, 再根据最小二乘法或中值法调整 P1和 P2信号的频率 fp, 系统 不断地比较调整, 最终使得f= fk, 系统稳定在频点进行能量的传输。 控制 电路根据 Δφ用来微调输出 Pl、 Ρ2信号的延迟时间。
锁相环的作用就是解决芯片中时钟延迟造成的漂移现象。 将频率信号 接入锁相环, 使信号的相位频率与参考信号保持一致, 就不会有数据漂移 的现象了。
综上所述, 一种热稳定性好的无线电力传输系统, 包括发射线圈频率 生成电路和线圈频率相位跟踪反馈电路, 发射线圈频率生成电路由控制电 路、 驱动电路和逆变电路组成; 线圈频率相位跟踪反馈电路由频率检测和 锁相环电路组成。 所述的控制电路由软件控制输出两路完全相反的控制信 号, 经过驱动电路, 分别控制一路开关管的打开和闭合, 在线圈内形成高 频振荡。
由控制电路根据谐振频率提供 P1和 P2两路信号。 软件控制可以做到 Pl、 P2的完全相反, 比纯硬件 L、 C电路实现更精准。 这样, 参见图 3 , 会在发射线圈两端形成标准的交变电压。
系统器件的参数不一致, 或者系统生热造成器件参数变化, 也会造成 频率的漂移, 参见图 5。 相位跟踪电路就是用于解决频率漂移的问题。
由于硬件开关的不同步, 会造成开关管的同时打开或闭合, 参见图 4。 逆变电路中的开关管如果同时开的话, 就会在回路中形成大的电流, 形成 器件及线圈的温度升高, 系统发热。 开关管同时打开或关闭, 都会造成发 射线圈不能振荡, 因此不能进行能量的传输。
由于器件参数的不同, 或者由于环境因素影响器件的参数, 会造成控 制信号的延迟拖尾, 这样会造成频点的漂移, 并且也具有能量传输中断的 现象。
参见图 7 , 本发明的无线电力传输系统的控制方法, 包括以下步骤: 控制电路根据频点给出控制信号 P1和 P2 , fp=fk;
驱动电路根据 P1和 P2打开或关闭开关管, 使得线圈两端形成交变电 压, 发射线圈开始高频振荡;
经过电压比较电路的电压取样, 得出线圈的频率 f;
将线圈的频率 f 信号经过锁相环电路进行处理, 连同相位差信号反馈 到控制电路;
控制电路根据反馈信号调整控制信号 P1和 P2的输出;
反复上述步骤, 系统稳定在频点下进行工作。
软件精确控制逆变电路使系统的有功功率达到最大, 无功功率的损耗 降到最低, 既提高了系统的能量传输效率, 同时降低了无功功率造成的系 统生热。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明, 任何熟悉本专业的技术人员, 在不脱离本发明技术方案范围内, 当可 利用上述揭示的技术内容作出些许更动或修饰为等同变化的等效实施例, 但凡是未脱离本发明技术方案内容, 依据本发明的技术实质对以上实施例 所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的范围 内。

Claims

权利要求书
1、 一种无线电力传输系统, 包括发射线圈频率生成电路和线圈频率相 位跟踪反馈电路, 发射线圈频率生成电路由控制电路、 驱动电路和逆变电 路组成; 其特征是:
所述的控制电路由软件控制输出两路完全相反的控制信号, 经过驱动 电路, 分别控制一路开关管的打开和闭合在线圈内形成高频震荡。
2、 根据权利要求 1所述的无线电力传输系统, 其特征是: 所述发射线 圈频率生成电路的控制电路包括微程序控制器 (MCU ) , 输出端口连接驱 动电路, 驱动电路输出端分别与逆变电路的开关管控制极连接, 构成软件 控制的频率生成和可控逆变电路。
3、 根据权利要求 1所述的无线电力传输系统, 其特征是: 所述线圈频 率相位跟踪反馈电路包括频率电压取样、 锁相环电路, 锁相环电路的信号 输出端与控制电路的控制端口连接。
4、 一种无线电力传输系统的控制方法, 其特征在于包括以下步骤: 控制电路根据频点给出控制信号 P1和 P2 , fp=fk;
驱动电路根据 P1和 P2打开或关闭开关管, 使得线圈两端形成交变电 压, 发射线圈开始高频振荡;
经过电压比较电路的电压取样, 得出线圈的频率 f;
将线圈的频率 f 信号经过锁相环电路进行处理, 相位差信号反馈到控 制电路;
控制电路根据反馈信号调整控制信号 P1和 P2的输出;
反复上述步骤, 系统稳定在频点下进行工作。
PCT/CN2011/070814 2011-01-30 2011-01-30 无线电力传输系统及其控制方法 WO2012100435A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/821,563 US20130300203A1 (en) 2011-01-30 2011-01-30 Wireless electrical power transmission system and its control method
PCT/CN2011/070814 WO2012100435A1 (zh) 2011-01-30 2011-01-30 无线电力传输系统及其控制方法
JP2013550731A JP5650336B2 (ja) 2011-01-30 2011-01-30 ワイヤレス電力伝送システム及びその制御方法
PT11856967T PT2639932T (pt) 2011-01-30 2011-01-30 Sistema de transmissão de energia elétrica sem fios e seu método de controlo
CN201180009163.0A CN103688441B (zh) 2011-01-30 2011-01-30 无线电力传输系统及其控制方法
EP11856967.2A EP2639932B1 (en) 2011-01-30 2011-01-30 Wireless electrical power transmission system and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/070814 WO2012100435A1 (zh) 2011-01-30 2011-01-30 无线电力传输系统及其控制方法

Publications (1)

Publication Number Publication Date
WO2012100435A1 true WO2012100435A1 (zh) 2012-08-02

Family

ID=46580209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070814 WO2012100435A1 (zh) 2011-01-30 2011-01-30 无线电力传输系统及其控制方法

Country Status (6)

Country Link
US (1) US20130300203A1 (zh)
EP (1) EP2639932B1 (zh)
JP (1) JP5650336B2 (zh)
CN (1) CN103688441B (zh)
PT (1) PT2639932T (zh)
WO (1) WO2012100435A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102312096B1 (ko) * 2015-02-06 2021-10-13 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
CN104716752B (zh) * 2015-04-12 2017-11-17 湖南大学 一种感应电能传输控制装置及其控制方法
CN107171452B (zh) * 2017-04-21 2020-02-07 西安电子科技大学 一种射频能量采集电路中的π型阻抗自动匹配系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996711A (zh) * 2006-12-08 2007-07-11 广州电器科学研究院 感应耦合式无线电能传输装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5450305A (en) * 1991-08-12 1995-09-12 Auckland Uniservices Limited Resonant power supplies
JPH1092673A (ja) * 1996-07-26 1998-04-10 Tdk Corp 非接触電力伝送装置
JP2004248365A (ja) * 2003-02-12 2004-09-02 Yazaki Corp 無接点電力伝送装置、無接点電力伝送方法
US7187226B2 (en) * 2004-07-01 2007-03-06 Analog Devices, Inc. Anti-cross conduction drive control circuit and method
US7208912B2 (en) * 2004-09-24 2007-04-24 Lear Corporation Inductive battery recharging system with peak voltage detection
JP2006230028A (ja) * 2005-02-15 2006-08-31 Meidensha Corp アクティブフィルタの補償電流制御方式
JP4308858B2 (ja) * 2007-02-16 2009-08-05 セイコーエプソン株式会社 送電制御装置、受電制御装置、無接点電力伝送システム、送電装置、受電装置および電子機器
US8947041B2 (en) * 2008-09-02 2015-02-03 Qualcomm Incorporated Bidirectional wireless power transmission
JP4620151B2 (ja) * 2008-12-12 2011-01-26 東光株式会社 非接触電力伝送回路
JP4893755B2 (ja) * 2009-01-14 2012-03-07 セイコーエプソン株式会社 送電制御装置、送電装置、電子機器及び負荷状態検出回路
JP5369693B2 (ja) * 2009-01-15 2013-12-18 日産自動車株式会社 非接触給電装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1996711A (zh) * 2006-12-08 2007-07-11 广州电器科学研究院 感应耦合式无线电能传输装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU, WENZHEN ET AL.: "Study on Frequency-tracking Wireless Power Transfer System by Resonant Coupling", THE WORLD OF INVERTERS, August 2009 (2009-08-01), pages 2658 - 2663, XP031485111 *
See also references of EP2639932A4 *

Also Published As

Publication number Publication date
EP2639932B1 (en) 2018-10-10
EP2639932A1 (en) 2013-09-18
US20130300203A1 (en) 2013-11-14
CN103688441B (zh) 2017-03-22
EP2639932A4 (en) 2016-11-16
CN103688441A (zh) 2014-03-26
JP2014506774A (ja) 2014-03-17
JP5650336B2 (ja) 2015-01-07
PT2639932T (pt) 2019-01-17

Similar Documents

Publication Publication Date Title
US9991748B2 (en) Wireless power transmission system and power transmission device
CN110401350B (zh) 双有源全桥双向dc-dc变换器的全负载范围zvs的移相控制方法
TWI450467B (zh) 磁場耦合式非接觸電能傳輸裝置
CN102868300B (zh) 开关调节器及其控制设备
TWI474589B (zh) 諧振轉換器混合控制方法、諧振轉換器系統及混合控制器
CN104052161A (zh) 适应多负载动态切换的无线电能传输系统
TW201737609A (zh) 無線電能傳輸及相關領域系統諧振頻率的動態監測及補償技術
CN101557227A (zh) 用于非接触电能传输的自适应谐振控制方法
Liu et al. Study on frequency tracking for wireless power transfer system using magnetic resonant coupling
US12057711B2 (en) Tuner and rectifier circuit for wireless power receiver
WO2012100435A1 (zh) 无线电力传输系统及其控制方法
US10644540B2 (en) Contactless power transmission device and power transfer system
JP2024041944A (ja) 高解像度fet vdsゼロボルト交差タイミング検出方式
CN112260549A (zh) 减小谐振式无线电能传输系统原边侧逆变器损耗的方法
CN103036446A (zh) 大功率变压器软启动装置及方法
CN111614256B (zh) 一种非隔离dcdc谐振变换控制电路及控制方法
CN115173579A (zh) 一种基于发射端电流电压检测的自动调谐方法
CN207559699U (zh) 一种磁耦合并联谐振式无线电能传输装置
WO2016000654A1 (zh) 一种数字输出缓冲器及其控制方法
US20190260359A1 (en) Tuner and rectifier apparatus for wireless power transfer receiver
TWI757724B (zh) 無線電力傳輸器及電力供應系統
CN108199495A (zh) 一种用于无线电能传输的双向能量主动注入式发射装置
CN110739876B (zh) 一种逆变器控制方法和装置
CN110601380B (zh) 一种应用于感应电能传输系统待机模式切换的控制电路及控制方法
CN114079385B (zh) 基于同步驱动的llc谐振电路串并联转换的电源电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856967

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821563

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011856967

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013550731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE