WO2012100421A1 - 用于控制柴油发动机的空气系统的设备和方法 - Google Patents

用于控制柴油发动机的空气系统的设备和方法 Download PDF

Info

Publication number
WO2012100421A1
WO2012100421A1 PCT/CN2011/070696 CN2011070696W WO2012100421A1 WO 2012100421 A1 WO2012100421 A1 WO 2012100421A1 CN 2011070696 W CN2011070696 W CN 2011070696W WO 2012100421 A1 WO2012100421 A1 WO 2012100421A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
air
target
valve
cylinder
Prior art date
Application number
PCT/CN2011/070696
Other languages
English (en)
French (fr)
Inventor
胡广地
孙少军
佟德辉
张晓琳
Original Assignee
潍柴动力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 潍柴动力股份有限公司 filed Critical 潍柴动力股份有限公司
Priority to PCT/CN2011/070696 priority Critical patent/WO2012100421A1/zh
Priority to US13/984,450 priority patent/US9212629B2/en
Publication of WO2012100421A1 publication Critical patent/WO2012100421A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • Embodiments of the present invention generally relate to diesel engines and, more particularly, to apparatus and methods for controlling an air system of a diesel engine. Background technique
  • exhaust gas recirculation (EGR) systems have become an important part of diesel engines.
  • Exhaust gas from diesel engines usually contains a large amount of nitrogen oxides (NOx), which is a major source of air pollution.
  • NOx nitrogen oxides
  • the EGR system a portion of the exhaust produced by the diesel engine is sent back to the cylinder. Since the recirculated exhaust gas is inert, it will delay the combustion process and slow down the combustion rate, which in turn will cause the pressure formation process in the combustion chamber to slow down, thereby effectively reducing nitrogen oxides.
  • increasing the exhaust gas recirculation rate will reduce the total air flow, so the total pollutant output in the exhaust emissions will be reduced.
  • the matching of the exhaust gas recirculation rate (EGR rate) during transients with the fresh air entering the engine is the key to the transient process emissions of the diesel engine air system.
  • many diesel engines use a turbocharger system to accelerate the response of the air system during transients.
  • the turbocharged system can improve the dynamic performance of diesel engines and improve combustion. It is one of the important components in modern diesel engines.
  • the Variable Geometry Turbocharger is a common turbocharger system.
  • the turbocharging system is essentially an air compression system that uses compressed air to increase the intake air volume of the diesel engine cylinders. It is driven by the momentum of the exhaust gas from the engine, and the pressure is transmitted to the air compressor through a device such as a booster shaft, so that the newly entering air is effectively pressurized before entering the cylinder.
  • the change in the opening degree of the EGR valve itself also affects the EGR flow rate.
  • changes in the opening of the EGR valve also have an effect on the inlet flow rate of the input supercharger. That is to say, the exhaust gas recirculation system and the supercharging system are two interdependent, mutually influential systems, that is, having coupling characteristics.
  • the matching between the EGR rate and the fresh air during transients is the key to the transient emission process.
  • the independent control strategy of the exhaust gas recirculation system and the supercharging system that is, the supercharging pressure is the control target, and the VGT valve is driven by the PID (proportional-integral derivative) control plus transient feedforward control strategy to achieve the actual supercharging pressure.
  • the VGT valve is driven by the PID (proportional-integral derivative) control plus transient feedforward control strategy to achieve the actual supercharging pressure.
  • Target value with air flow as the control target, the EGR valve is driven by the PID control plus transient feedforward control strategy to achieve the actual air flow rate to the target value.
  • the controller design method based on the non-analytical model is based on the intake air flow rate and the boost pressure as the control target: such as the fuzzy logic control method, the control method according to the neural network, and the like.
  • the model predictive control method is adopted, that is, the mathematical model of the controlled object is integrated in the controller, and the future multi-step system output is predicted by the model, according to the predicted value and Deviation of the target value constructs the objective function,
  • the objective function is minimized by iteratively solving the optimal value of the current control amount.
  • the air system derating and decoupling control strategy is adopted, that is, the transfer function matrix of the air system is reduced in some cases, therefore, two The control target has a certain relationship, and the original two-dimensional control strategy can be transformed into a simple one-dimensional control strategy.
  • the main advantages of the above independent PID control strategy (1) according to air flow and boost pressure are that the structure is simple and a good steady state control effect can be achieved, and the test workload for parameter calibration is small.
  • the disadvantage of independent closed-loop PID control is that the control effect of the dynamic process is not ideal due to the coupling characteristics of the system itself, and smoke is likely to occur during the acceleration process.
  • Another disadvantage of closed-loop control of independent operation is that the EGR operating range is limited because the EGR valve can only be used when the vortex pressure is higher than the boost pressure, so it can only be used for medium and low load and medium and low speed conditions. Companies such as Nissan, Toyota, and Cummins did not use air flow and boost pressure as target values in actual use, but adopted a control strategy that uses EGR rate instead of boost pressure as the target value.
  • Control strategy with intake air flow and boost pressure as control targets (2) - (4) The existence of air system control strategy accuracy requirements and simplicity requirements constitute an obvious contradiction. This contradiction is directly derived from the strong coupling and nonlinear correlation of the exhaust gas recirculation system and the supercharging system. Independent closed-loop control strategies based on air flow and boost pressure and its deformation are unable to meet steady-state and transient performance requirements. Various theoretical research results are due to the complexity of the control strategy, the requirements for controlling the hardware, and the difficulty of parameter calibration. The factors are not suitable for the actual control system.
  • the prior art control strategy for the diesel engine air system does not satisfactorily meet the requirements of the actual operating steady state and transient operating conditions of the diesel engine, as well as emissions and diesel engine control unit (ECU) calibration requirements.
  • ECU emissions and diesel engine control unit
  • embodiments of the present invention provide an apparatus and method for controlling an air system of a diesel engine.
  • an apparatus for controlling an air system of a diesel engine including an exhaust gas recirculation EGR system and a turbocharger system, wherein the EGR system includes an EGR valve, and the turbine is provided
  • the booster system includes an air compressor and a boost valve
  • the apparatus comprising: a condition acquisition device configured to acquire a measured value of a cylinder exhaust pressure of the diesel engine and an air flow rate through the air compressor a measured value; a target flow determining device coupled to the condition acquiring device, configured to acquire a measured value obtained by the operating device according to the operating condition, and a target value and flow according to a cylinder exhaust pressure of the diesel engine a target value of air flow of the air compressor, using a nonlinear physical model characterizing the air system to determine a target exhaust flow rate through the EGR valve and a target exhaust flow through the boost valve; and a signal a generating device coupled to the target flow determining device, configured to determine, according to the target flow determining device Target exhaust gas flow through the EGR
  • the target flow rate determining device further includes: a slip control-based determining device configured to determine a target exhaust gas flow rate through the EGR valve and flow through the increase based on a slip control strategy The target exhaust gas flow rate of the pressure valve.
  • the signal generating device further includes: an EGR valve target opening degree determining device configured to determine a target opening degree of the EGR valve according to the target exhaust gas flow rate flowing through the EGR valve And a booster valve target opening determining device configured to determine a target opening degree of the boosting valve according to the target exhaust gas flow rate flowing through the boosting valve.
  • the first drive signal is used to control the opening of the EGR valve, and wherein the second drive signal is used to control the opening of the boost valve.
  • the device is implemented using a system on chip SoC or an integrated circuit IC.
  • the nonlinear physical model is related to the following aspects of the diesel engine: intake pressure, exhaust pressure, air flow, gas flow into the cylinder, cylinder exhaust wide outlet flow, advance Air valve flow coefficient, rotational speed, cylinder displacement, intake heat constant, intake air temperature, intake pipe equivalent volume, exhaust heat constant, exhaust temperature, exhaust pipe equivalent volume, supercharger machinery of the EGR system Efficiency, turbocharger turbine efficiency, turbocharger turbine heat capacity, atmospheric ambient temperature, atmospheric ambient pressure, intake air heat capacity ratio, exhaust heat capacity ratio, compressor efficiency, supercharger shaft moment of inertia, supercharger speed, increase Pressure turbine exhaust energy, booster compressed air energy, compressed air heat capacity, and fuel injection flow.
  • the non-linear physical form is further associated with a dynamic disturbance source of the air system of the diesel engine.
  • a diesel engine comprising: a cylinder; an intake duct coupled to an inlet end of the cylinder, configured to deliver gas to the cylinder; an exhaust conduit coupled to the cylinder Outlet end configured to discharge the cylinder for combustion An exhaust gas; a fuel injection system coupled to the cylinder, configured to inject fuel into the cylinder; an air system; and a control unit including the apparatus for controlling the air system.
  • the air system includes: an exhaust gas recirculation EGR system coupled to the exhaust conduit and the intake conduit, and including an EGR valve configured to pass a portion of exhaust gas from the exhaust conduit An intake conduit is delivered back to the cylinder; a turbocharger system coupled to the exhaust conduit and including an air compressor and a boost valve, the turbocharger system configured to utilize from the exhaust conduit Exhaust gas increases the intake pressure through the cylinder.
  • a method for controlling an air system of a diesel engine including an exhaust gas recirculation EGR system and a turbocharger system, wherein the EGR system includes an EGR valve, and The turbocharger system includes an air compressor and a booster valve.
  • the method includes: obtaining a measured value of a cylinder exhaust pressure of the diesel engine and a measured value of an air flow flowing through the air compressor; based on the acquired measured value, and according to a cylinder exhaust of the diesel engine a target value of pressure and a target value of air flow through the air compressor, using a nonlinear physical model characterizing the air system to determine a target exhaust gas flow through the EGR valve and flowing through the boost valve a target exhaust gas flow rate; and generating a first drive signal for the EGR system and for the turbine based on the target exhaust gas flow through the EGR valve and a target exhaust gas flow through the boost valve The second drive signal of the booster system.
  • the determining further comprises: determining a target exhaust gas flow rate through the EGR valve and a target exhaust gas flow rate through the boost valve based on a slip control strategy.
  • the method further comprises: determining a target opening degree of the EGR valve according to the target exhaust gas flow rate flowing through the EGR valve; and according to the target flowing through the pressure increasing valve The exhaust gas flow rate determines a target opening of the boost valve.
  • the first driving signal is used to control an opening degree of the EGR valve
  • the second driving signal is used to control the pressure increasing valve Opening degree
  • the nonlinear physical model is related to the following aspects of the diesel engine: intake pressure, exhaust pressure, air flow ', gas flow into the cylinder, cylinder exhaust valve outlet flow, Inlet valve flow coefficient, rotational speed, cylinder displacement, intake heat constant, intake air temperature, intake pipe equivalent volume, exhaust heat constant, exhaust temperature, exhaust pipe equivalent volume, supercharger of the EGR system Mechanical efficiency, turbocharger turbine efficiency, turbocharger turbine heat capacity, atmospheric ambient temperature, atmospheric ambient pressure, intake air heat capacity ratio, exhaust heat capacity ratio, compressor efficiency, supercharger shaft moment of inertia, supercharger speed, Turbocharger turbine exhaust energy, booster compressed air energy, compressed air heat capacity, and fuel injection flow.
  • the nonlinear physical model is also associated with a dynamic source of interference of the air system of the diesel engine.
  • a computer program medium comprising computer program code embodied to implement the method according to the above.
  • a novel and efficient apparatus and method for controlling an air system in particular, an EGR system and a turbocharger system
  • an air system in particular, an EGR system and a turbocharger system
  • a physical model characterizing the air system can be established, which can be used effectively under various working conditions (including instant The steady state control of the EGR system and the turbocharger system such that the air flow through the air compressor and the cylinder exhaust pipe pressure are as close as possible to the desired target value.
  • the apparatus according to the embodiment of the present invention has a simple structure and is easy to implement.
  • embodiments of the present invention can significantly improve the control of diesel engine air systems.
  • Figure 1 shows a schematic structural view of a diesel engine including both an exhaust gas recirculation system and a turbocharger system;
  • FIG. 2 shows a schematic structural view of a control device 200 for controlling an air system of a diesel engine according to an embodiment of the present invention
  • SoC system on a chip
  • air system includes at least an exhaust gas recirculation EGR system and a turbocharger system.
  • turbocharging systems such as variable geometry turbocharging systems (VGTs), referred to herein, are for illustrative and exemplary purposes only. Embodiments of the present invention are equally applicable to any turbocharged system now known or later developed for operation with engine exhaust. The scope of the invention is not limited in this respect.
  • VCTs variable geometry turbocharging systems
  • the term “parameter” means any value that indicates the physical quantity of the engine's (target or actual) physical state or operating condition. Moreover, in this context, “parameters” are used interchangeably with the physical quantities they represent. For example, “parameters indicating speed” and “speed” have equivalent meanings in this document. Moreover, in this paper, let A denote a certain physical quantity, then the person represents A's derivation of time, that is, the rate of change of A with time.
  • acquisition is used to include currently known or future development.
  • Various means such as measuring, reading, estimating, estimating, and so on.
  • FIG. 1 a schematic block diagram of a diesel engine 100 equipped with an exhaust gas recirculation and turbocharger system is shown. It should be understood that only the portion of the diesel engine 100 that is relevant to embodiments of the present invention is shown in FIG. Diesel engine 100 may also include any number of other components.
  • diesel engine 100 includes: a cylinder 108; an intake conduit 106 coupled to an inlet end of cylinder 108 for dispensing gas to cylinder 108; an exhaust conduit 12 coupled to an outlet end of cylinder 108, Exhaust gas configured to exhaust combustion of the cylinder 108; a fuel injection system 1 10 coupled to the cylinder 108 configured to inject fuel thereto; an air system; and a control unit (ECU) 1 14 for effecting control of the diesel engine 100 .
  • ECU control unit
  • the air system includes: an exhaust gas recirculation system (eg, including an EGR valve 116, an EGR cooler 18, and other necessary components) coupled to the exhaust conduit 1 12 and the intake conduit 106 for configuration to be from A portion of the exhaust of the exhaust conduit 1 12 is delivered back to the cylinder 108 through the intake conduit 106; and a turbocharger system (eg, including the supercharger 120, the booster shaft 124, the air compressor 102, the air intercooler 104, and other A component) coupled to the exhaust conduit 1 12 for utilizing exhaust from the exhaust conduit 1 12 to increase intake pressure through the cylinder 108.
  • an exhaust gas recirculation system eg, including an EGR valve 116, an EGR cooler 18, and other necessary components
  • a turbocharger system eg, including the supercharger 120, the booster shaft 124, the air compressor 102, the air intercooler 104, and other A component
  • both the helium recirculation system and the turbocharger system receive exhaust gas from the exhaust conduit 1 12, the intake air flow being controlled by the EGR valve 116 and the boost valve 122, respectively.
  • a diesel engine electronic control unit (ECU) 114 generates a corresponding EGR valve drive signal and booster valve drive signal for controlling the opening of the EGR valve 116 and the boost valve 122, respectively, based on engine operating conditions.
  • the performance of the exhaust gas recirculation system and the turbocharger system affect each other, so that it is necessary to effectively control the opening degrees of the exhaust gas recirculation valve 116 and the pressure increasing valve 122.
  • the key issue is how to accurately, flexibly and effectively characterize the air system of a diesel engine, in particular how to characterize the cylinder discharge pressure, the air flow through the air compressor, the exhaust flow through the EGR valve, and The interaction and effect between the four key characteristics of the exhaust gas flow through the booster valve. If it can be effectively The above four characteristics are characterized and modeled to achieve effective control of the air system that is not possible in the prior art. To this end, as detailed below, embodiments of the present invention establish a nonlinear physical model that characterizes the four critical system characteristics of the air system and use it to control the air system of a diesel engine.
  • control device 200 for controlling an air system of a diesel engine in accordance with an embodiment of the present invention. It will be appreciated that control device 200 can be implemented as diesel engine ECU 114 or a portion thereof as shown in FIG. Alternatively, the control device 200 can also be implemented as a control device specifically for the air system of a diesel engine.
  • control device 200 includes condition acquisition device 202 that is configurable to obtain measurements (parameters) indicative of actual operating conditions of a diesel engine (eg, diesel engine 100 shown in FIG. 1).
  • condition acquisition device 202 may be configured to acquire a measurement of the cylinder exhaust pressure of the diesel engine (denoted as P em ) and flow through the turbocharger system. The measured air flow of the air compressor (denoted as W c ).
  • condition acquisition device 202 can obtain measurements indicative of engine operating conditions through actual measurements. Alternatively or additionally, the condition acquisition device 202 may also obtain measurements indicative of engine operating conditions by estimation or estimation based on actual conditions. The scope of the invention is not limited in this respect.
  • the control device 200 further includes a target flow determining device 204 coupled to the condition acquiring device 202, configured to acquire P em according to the working condition obtaining device 202. And W c , and a target value (P em , d ) according to the cylinder exhaust pressure of the diesel engine and a target value (W e , d ) of the air flow through the air compressor, using a nonlinear physical model characterizing the air system , determine the target exhaust flow rate (W egr ) flowing through the EGR valve and the target exhaust flow rate (W t ) flowing through the boost valve.
  • the target flow determining device 204 uses the (multiple input/multiple output) nonlinear physical model characterizing the air system, with the P em and W c acquired by the condition acquiring device 202 as inputs. Determine the two critical exhaust flows in the air system to satisfy P em , d and W c , d .
  • P em , d and W c , d are critical exhaust flows in the air system to satisfy P em , d and W c , d .
  • the nonlinear physical model may be related to one or more aspects of a diesel engine.
  • face includes both the inherent properties of the engine and the real-time conditions during engine operation, including but not limited to: intake pressure, exhaust pressure, air flow, gas flow into the cylinder, cylinder bank Valve outlet flow, intake valve flow coefficient, speed, cylinder displacement, intake heat constant, intake air temperature, intake manifold equivalent volume, exhaust heat constant, exhaust temperature, exhaust pipe equivalent volume, EGR system Turbocharger mechanical efficiency, turbocharger turbine efficiency, turbocharger turbine heat capacity, atmospheric ambient temperature, atmospheric ambient pressure, intake air heat capacity ratio, exhaust heat capacity ratio, compressor efficiency, supercharger shaft moment of inertia, supercharging Turbine speed, turbocharger turbine exhaust energy, booster compressed air energy, compressed air heat capacity, and fuel injection flow.
  • the physical model can also take into account unmodeled dynamic interference factors.
  • a non-linear physical model for air system control can be established based on the above aspects of the engine using various means.
  • a preferred embodiment of the invention is described below.
  • the mass balance equation of the intake system can be expressed as: ⁇ ⁇ two k ira (W c + W egr - W ei ) ( 1 ) And where: ⁇ represents the intake pressure of the engine cylinder; R a represents the intake heat constant; T im represents the intake air temperature; ⁇ denotes the equivalent volume of the intake pipe; W c denotes the air flow of the air compressor flowing through the turbocharger system; W egr denotes the flow rate of the exhaust gas flowing through the EGR valve; W ei indicates the flow of gas into the engine cylinder.
  • F em represents the exhaust pressure of the engine cylinder
  • R e represents the exhaust heat constant
  • T em represents the exhaust temperature
  • V era represents the exhaust pipe equivalent volume
  • W e Indicates the cylinder exhaust valve outlet flow
  • W t represents the flow through the boost valve exhaust gas
  • represents the flow of exhaust gas through the EGR valve.
  • turbocharger inertia balance equation for a turbocharged system of a diesel engine can be expressed as: Where: J t represents the moment of inertia of the turbocharger; t represents the speed of the supercharger; P t represents the exhaust energy of the turbocharger of the supercharger; ⁇ denotes the supercharger mechanical efficiency; P C denotes the supercharger compressed air energy.
  • turbocharger turbine exhaust energy Pt can be expressed as:
  • w f represents the flow rate through the booster valve
  • n t represents the turbocharger turbine efficiency
  • c pe represents the turbocharger turbine heat capacity
  • represents the exhaust temperature
  • P amb represents the atmospheric ambient pressure
  • ? indicates the exhaust pressure of the engine cylinder; and Ye indicates the exhaust heat capacity ratio.
  • P c represents the supercharger compressed air energy
  • Tic represents the overall efficiency of the air compressor
  • W c represents the air flow of the air compressor flowing through the turbocharger system
  • c pa represents the compressed air heat capacity
  • T amb represents the atmosphere Ambient temperature
  • represents the intake pressure of the engine cylinder
  • P amb atmospheric ambient pressure
  • intake air heat capacity ratio
  • a turbocharger quasi-steady state characteristic curve is taken into consideration in accordance with an embodiment of the present invention.
  • the quasi-steady-state characteristic of the turbocharger describes the characteristics of the air flow of the compressor, which can be predetermined, for example, from the turbocharger manufacturer. Although this curve describes the operating characteristics of the supercharger at quasi-steady state, it is also true under transient conditions from a qualitative point of view.
  • W c is a function of engine cylinder intake pressure P hll and turbine speed ⁇ , ie:
  • the nonlinear physical model not only takes into account various intrinsic characteristics of the engine, but also takes into account the influence of the external dynamic disturbance source, thereby making it more robust to the air system. control.
  • the embodiments of the present invention can also be applied without considering external sources of interference.
  • embodiments of the present invention establish a relationship between cylinder exhaust pressure indicative of a diesel engine, air flow through an air compressor, exhaust flow through an EGR valve, and helium flow through a boost valve. Multi-input/multi-output, nonlinear physical model.
  • condition acquisition device 202 may further include one or more (sub) devices (not shown in FIG. 2), each of which is configured to acquire a measurement value of the corresponding working condition and transmit it to the target flow rate determination.
  • Device 204 is for use.
  • the flow determining device 204 can determine the target exhaust gas flow through the EGR valve and the booster in accordance with any suitable control strategy currently known or developed in the future.
  • the target flow determining device 204 further includes a slip control based determining device (not shown in FIG. 2) configured to determine flow through the EGR valve and the boost valve based on the slip control strategy The device for the target exhaust gas flow.
  • the slip control based determining device is configurable to define the sliding surface S-0, ie:
  • the target flow rate determining means 204 can determine the target exhaust gas flow rate through the EGR valve and the boost valve.
  • the target flow determining device 204 can include any suitable sub-device configured to employ any suitable control strategy to determine the target flowing through the EGR valve and the boost valve Exhaust flow, such as robust adaptive control strategies, robust nonlinear control strategies, and the like.
  • the control device 200 further includes a signal generating device 206 coupled to the target flow determining device 204 for configuring a target exhaust gas flow and flow through the EGR determined by the target flow determining device 204.
  • the target exhaust flow of the boost valve produces a first drive signal for the EGR system and a second drive signal for the turbocharger system.
  • the first drive signal is used to control the opening degree of the EGR valve
  • the second drive signal is used to control the opening degree of the pressure increasing valve.
  • the signal generating device 206 may further include an EGR valve opening degree determining device 2062 and a boosting valve opening degree determining device 2064, which are respectively configured to determine based on data from the target flow rate determining device 204. The target opening of the EGR valve and the target opening of the boost valve.
  • the correspondence between the two is obtained based on the corresponding map.
  • the EGR valve opening degree determining means 2062 determines the EGR valve based on the relationship between the exhaust flow rate of the EGR valve and the EGR valve opening degree.
  • Target opening the boost valve opening determining means 2064 can also determine the target opening of the boost valve based on the map. Accordingly, signal generating device 206 will generate a control signal to drive the opening of the EGR valve and the boost valve.
  • control device 200 in accordance with the present invention has been described above in connection with a number of specific embodiments. It should be understood from the above description that, according to an embodiment of the present invention, the control device 200 can employ a nonlinear physical model of the air system to effectively control the EGR system and the turbocharger system, thereby realizing the actual operating conditions of the air system. As close as possible to the desired target conditions.
  • control device 200 illustrated in Figure 2 and described above can be implemented in a variety of manners.
  • device 200 can be implemented as an integrated circuit (IC) chip.
  • device 200 may be implemented by a system on a chip (SoC) and corresponding software and/or firmware.
  • SoC system on a chip
  • the device 200 can also be implemented using a software module, ie as a computer program product. The scope of the invention is not limited in this respect.
  • the SoC 300 may include a condition acquisition block 302, a target flow determination block 304, and a signal generation block 306, which respectively correspond to the condition acquisition device 202, the target flow determination device 204, described above with reference to FIG. Signal generating device 206.
  • the blocks may also include sub-blocks corresponding to the sub-devices included in the various devices depicted in FIG.
  • These blocks 302-306 and their sub-blocks may operate as hardware, software, and/or firmware modules, either independently or in conjunction with other entities, such as signal processing and control circuitry, to implement the various embodiments described herein and/or Or feature.
  • the SoC 300 includes various components such as input/output (I/O) logic 310 (e.g., to include electronic circuitry) and a microprocessor 312 (e.g., any microcontroller or digital signal processor).
  • the SoC 300 also includes a memory 314, which can be any type of random access memory (RAM), low latency nonvolatile memory (e.g., flash memory), read only memory (ROM), and/or other suitable electronic data storage.
  • the SoC 300 may also include various firmware and/or software, such as operating system 316, which may be computer executable instructions maintained by memory 314 and executed by microprocessor 312.
  • the SoC 300 can also include various other communication interfaces and components, network interface components, other hardware, firmware, and/or software.
  • the SoC 300 can be associated with electronic circuitry, microprocessors, memory, input/output (I/O) logic, communication interfaces and components, other hardware required to run the entire device, firmware, and/or in accordance with embodiments of the present invention. Software integration.
  • the SoC 300 can also include an integrated data bus (not shown) that couples the various components of the SoC for data communication between the components.
  • Devices including the SoC 300 can also be implemented with multiple combinations of different components.
  • step S402 a measurement of the cylinder exhaust pressure is obtained, and flow through the air compressor Measurement of air flow.
  • a target physical flow rate through the EGR valve is determined using a nonlinear physical model characterizing the air system based on the measured values of the cylinder exhaust pressure and the air flow rate through the air compressor and the corresponding target value. And the target exhaust gas flow through the booster valve.
  • various control strategies can be utilized to determine target exhaust gas flow through the EGR and target exhaust flow through the boost valve, such as slip control, adaptive control, nonlinear control , and many more.
  • a drive signal for the EGR system and the turbocharger system is generated based on the determined target exhaust gas flow rate through the EGR valve and the target exhaust gas flow rate through the boost valve.
  • the target opening of the EGR valve and the boost valve may be determined separately based on the two target exhaust flow rates (eg, based on a map), and the drive signal may drive the EGR valve and the boost valve accordingly .
  • the method 400 described with reference to Figure 4 can be implemented by a computer program product.
  • the computer program product can include at least one computer readable storage medium having computer readable program code portions stored thereon.
  • the computer readable code portion is executed by, for example, a processor, it is used to perform the steps of method 400.
  • a physical model characterizing a diesel engine air system can be established that can be used to effectively control an EGR system and a turbocharger system under various operating conditions, including transients and steady state conditions, thereby The air flow through the air compressor and the cylinder exhaust pipe pressure are as close as possible to the desired target value.
  • the coupling between the EGR system and the turbocharger system can be taken into account while resisting external disturbance sources and unmodeled dynamics.
  • the structure of the device according to the embodiment of the present invention is Easy to implement. Thus, embodiments of the present invention can significantly improve the control of diesel engine air systems.
  • embodiments of the present invention may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware portion can be implemented using dedicated logic; the software portion can be stored in memory and executed by a suitable instruction execution system, such as a microprocessor or dedicated design hardware.
  • a suitable instruction execution system such as a microprocessor or dedicated design hardware.
  • processor control code such as a carrier medium such as a magnetic disk, CD or DVD-ROM, such as a read only memory.
  • Such code is provided on a programmable memory (firmware) or on a data carrier such as an optical or electronic signal carrier.
  • the apparatus of the present invention and its modules can be implemented by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, and the like. It can also be implemented by software executed by various types of processors, or by a combination of the above-described hardware circuits and software such as firmware.

Description

用于控制柴油发动机的空气系统的设备和方法 技术领域
本发明的实施方式总体上涉及柴油发动机, 更具体地, 涉及用 于控制柴油发动机的空气系统的设备和方法。 背景技术
随着 '发动机理论和技术的不断发展, 废气再循环(EGR )系统已 经成为柴油发动机中的重要組成部分。 在柴油发动机排出的废气中, 通常含有大量的氮氧化合物 (NOx ) , 它是造成大气污染的一个主 要.来源。利用 EGR系统,柴油发动机产生的一部分废气被送回气缸。 由于再循环废气具有惰性, 因此它将会延緩燃烧过程, 使燃烧速度 有所减慢, 进而导致燃烧室中的压力形成过程减慢, 从而有效地减 少氮氧化合物。 另外, 提高废气再循环率会使总的空气流量降低, 因此废气排放中总的污染物输出量将得以减少。
在配备有 EGR系统的柴油发动机中, 瞬态过程中的废气再循环 率 (EGR率) 与进入发动机的新鲜空气的匹配关系, 是柴油发动机 空气系统的瞬态过程排放的关键。 为此, 很多柴油发动机采用涡轮 增压系统来加快瞬时过程中空气系统的响应。 此外, 涡轮增压系统 还可以提高柴油发动机的动力性能、 改善燃烧, 它是现代柴油发动 机中的重要组成部分之一。 例如, 可变几何涡轮增压器 (VGT ) 是 一种常见的涡轮增压系统。 涡轮增压系统本质上是一种空气压缩系 统, 通过压缩空气来增加柴油发动机气缸的进气量。 它由发动机排 出的废气的冲力来驱动, 通过增压器转轴等装置将压力传递至空气 压缩机, 从而使新进入的空气在进入气缸前被有效地增压。
在同时配备有 EGR和涡轮增压系统的柴油发动机中, 这二者之 间的耦合特性给空气系统的控制提出了挑战。 在配备有废气再循环 系统 EGR和涡轮增压系统的柴油发动机中, 对于 EGR系统而言, 精确控制 EGR率和进气温度是改善 NOx排放、 以及降低其对颗粒 物及动力和经济性影响的关键。 在这种发动机中, EGR冷却器的输 入废气的流量由 EGR阀控制, EGR阀的入口端与涡轮增压器的涡轮 入口端二者都接收从排气管道排出的发动机废气。可以理解,除 EGR 阀自身的开度变化外, 增压系统所导致的增压压力和排气背压的变 化也会对 EGR流量率产生影响。 另一方面, EGR阀的开度变化也会 对输入增压器的入口流量产生影响。 也就是说, 废气再循环系统和 增压系统是两个相互依赖、 相互影响的系统, 即, 具有耦合特性。 特别地, 在柴油发动机的空气系统控制中, 瞬态过程中的 EGR率与 新鲜空气之间的匹配, 是瞬态排放过程的关键。
废气再循环系统和增压系统所具有的耦合特性始终是柴油发动 机空气系统控制的难点, 同时控制两者的多变量控制策略也一直是 柴油发动机空气系统控制策略的研究热点。 在现有技术中, 几种已 知的控制策略简单概括如下:
( 1 )废气再循环系统和增压系统的独立控制策略, 即以增压压 力为控制目标, 通过 PID (比例-积分微分)控制加瞬态前馈控制策 略驱动 VGT阀使实际增压压力达到目标值;以空气流量为控制目标, 通过 PID控制加瞬态前馈的控制策略驱动 EGR阀使实际空气流量达 到目标值。
( 2 ) 以进气空气流量和增压压力为控制目标, 根据对空气系统 平均值模型进行局部线性化, 根据线性模型设计最优或鲁棒控制器, 再进一步扩展到整个工况范围从而得到非线性控制策略的方法:如 H 无穷控制, 根据 Lyapunov稳定性理论的控制器设计方法, 最小二次 型最优状态反馈的控制律, 滑模控制器等。
( 3 ) 以进气空气流量和增压压力为控制目标, 根据非解析模型 的控制器设计方法: 如模糊逻辑控制方法, 根据神经网络的控制方 法等。
( 4 ) 以进气空气流量和增压压力为控制目标, 采用模型预测控 制方法, 即在控制器中集成被控对象的数学模型, 通过模型对未来 多步系统输出进行预测, 根据预测值与目标值的偏差构造目标函数, 通过迭代求解当前控制量的最优值使目标函数最小化。
( 5 ) 以空然比和进气管内废气盾量分数为控制目标, 采用空气 系统降秩解耦控制策略, 即空气系统的传递函数矩阵在某些情况下 是降秩的, 因此, 两个控制目标具有一定的关系, 可以将原有的二 维控制策略转化为较简单的一維控制策略。
上述根据空气流量和增压压力的独立 PID控制策略( 1 ) 的主要 优点是结构简单并能实现良好的稳态控制效果, 且用于参数的标定 的试验工作量小。 独立闭环 PID控制的缺点是由于系统本身的耦合 特性使得其动态过程的控制效果不理想, 在加速的过程中容易出现 冒烟现象。独立工作的闭环控制的另一个缺点是 EGR工作范围有限, 原因在于 EGR阀只能在涡前压力高于增压压力时, 因此只能用于中 低负荷和中低转速工况。 Nissan, Toyota, Cummins等公司在实际使 用中并未采用空气流量和增压压力作为目标值, 而采用了以 EGR率 代替增压压力作为目标值的控制策略。
这几种方法一个共性的问题是 EGR的流量估计。由于 EGR流量 传感器无论从精度还是可靠性上都远不能满足实际使用需要, 使得 EGR流量主要通过估计得到。而影响 EGR流量的排气管温度和压力, EGR管道节流系数, 冷却效率等都需要大量的试验才能得到满意的 估计效果, 因此使得根据此方法的控制系统试验非常巨大。 以上控 制策略虽然都能在稳态控制中取得较好的效果, 但是由于废气再循 环系统和增压系统同时作用于进气管, 存在耦合特性, 而控制策略 中并没有针对这种耦合特性设计瞬态控制策略, 所以, 瞬态控制效 果往往并不理想。
以进气空气流量和增压压力为控制目标的控制策略 (2 ) - ( 4 ) 存在空气系统控制策略的精确性要求和简洁性要求构成一个明显的 矛盾。 该矛盾直接来源于废气再循环系统和增压系统的强耦合和非 线性关联。 根据空气流量和增压压力的独立闭环控制策略以及它的 变形都无法满足稳态和瞬态性能的要求。 各种理论研究成果由于控 制策略的复杂性, 对控制硬件的要求, 以及参数标定的困难等多方 面的因素, 也不适应实际控制系统的要求。
而对于以采用空然比和进气管内废气质量分数作为控制目标的 控制策略(5 ) , 在实际使用过程中, 缺乏直接测量空燃比与进气管 内废气质量分数的成熟商用传感器, 所以不能实现直接以谅参数为 控制目标的反馈控制。 而空气流量与增压压力都非常容易由现有传 感器测量, 因此可以建立根据空气流量与增压压力的反馈控制策略, 空然比与进气管内废气质量分数作为中间变量通过观测器得到。 而 状态观测器将引入时延和误差, 对瞬态工况控制是不利的。
综上所述, 现有技术中针对柴油发动机空气系统的控制策略无 法很好地同时满足柴油发动机实际运行稳态和瞬态工况性能, 以及 排放和柴油发动机控制单元 (ECU ) 标定的要求。
因此, 在本领域中, 需要一种能够满足柴油发动机的实际运行 工况、 相对简单且易于实现和标定的空气系统控制策略。 发明内容
为了克服现有技术中存在的上述缺陷, 本发明的实施方式提供 用于控制柴油发动机的空气系统的设备和方法。
根据本发明的一方面,提供一种用于控制柴油发动机的空气系统 的设备, 所述空气系统包括废气再循环 EGR系统和涡轮增压系统, 其中所述 EGR系统包括 EGR阀, 并且所述涡轮增压系统包括空气 压缩机和增压阀, 所述设备包括: 工况获取装置, 配置用于获取所 述柴油发动机的气缸排气压力的测量值以及流经所述空气压缩机的 空气流量的测量值; 目标流量确定装置, 其耦合至所述工况获取装 置, 配置用于根据所述工况获取装置获取的测量值, 以及根据所述 柴油发动机的气缸排气压力的目标值和流经所述空气压缩机的空气 流量的目标值, 使用表征所述空气系统的非线性物理模型来确定流 经所述 EGR阀的目标废气流量和流经所述增压阀的目标废气流量; 以及信号产生装置, 其耦合至所述目标流量确定装置, 配置用于根 据所述目标流量确定装置确定的所述流经所述 EGR阀的目标废气流 量和流经所述增压阀的目标废气流量, 产生用于所述 EGR系统的第 一驱动信号和用于所述涡轮增压系统的第二驱动信号。
在本发明的一个实施例中, 所述目标流量确定装置进一步包括: 基于滑动控制的确定装置, 配置用于基于滑动控制策略来确定流经 所述 EGR阀的目标废气流量和流经所述增压阀的目标废气流量。
在本发明的一个实施例中, 所述信号产生装置进一步包括: EGR 阀目标开度确定装置, 配置用于根据所述流经所述 EGR阀的目标废 气流量确定所述 EGR阀的目标开度;以及增压阀目标开度确定装置, 配置用于根据所述流经所述增压阀的目标废气流量确定所述增压阀 的目标开度。
在本发明的一个实施例中, 所述第一驱动信号用于控制所述 EGR阀的开度, 并且其中所述第二驱动信号用于控制所述增压阀的 开度。
在本发明的一个实施例中, 所述设备利用片上系统 SoC或集成 电路 IC来实现。
在本发明的一个实施例中,所述非线性物理模型与所述柴油发动 机的以下方面相关: 进气压力, 排气压力, 空气流量, 进入气缸的 气体流量, 气缸排气阔出口流量, 进气阀流量系数, 转速, 气缸位 移, 进气热常数, 进气温度, 进气管等效容积, 排气热常数, 排气 温度, 排气管等效容积, 所述 EGR系统的增压器机械效率, 增压器 涡轮效率, 增压器涡轮热容量, 大气环境温度, 大气环境压力, 进 气空气热容量比, 排气热容量比, 压缩机效率, 增压器转轴转动惯 量, 增压器转速, 增压器涡轮排气能量, 增压器压缩空气能量, 压 缩空气热容量, 以及燃油喷射流量。 在本发明的一个实施例中, 所 述非线性物理 型进一步与所述柴油发动机的所述空气系统的动态 千扰源相关。
根据本发明的另一方面, 提供一种柴油发动机, 包括: 气缸; 进 气管道, 耦合至所述气缸的入口端, 配置用于向所述气缸输送气体; 排气管道, 耦合至所述气缸的出口端, 配置用于排出所述气缸燃烧 的废气; 燃油喷射系统, 耦合至所述气缸, 配置用于向所述气缸喷 射燃油; 空气系统; 以及控制单元, 包括上述设备, 以用于控制所 述空气系统。 所述空气系统包括: 废气再循环 EGR系统, 耦合至所 述排气管道和所述进气管道, 并且包括 EGR阀, 所述 EGR系统配 置用于将来自所述排气管道的部分废气通过所述进气管道输送回所 述气缸; 涡轮增压系统, 耦合至所述排气管道, 并且包括空气压缩 机和增压阀, 所述涡轮增压系统配置用于利用来自所述排气管道的 废气来增大通过所述气缸的进气压力。
根据本发明的另一方面, 提供一种用于控制柴油发动机的空气 系统的方法, 所述空气系统包括废气再循环 EGR系统和涡轮增压系 统, 其中所述 EGR系统包括 EGR阀, 并且所述涡轮增压系统包括 空气压缩机和增压阀。 所述方法包括: 获取所述柴油发动机的气缸 排气压力的测量值以及流经所述空气压缩机的空气流量的测量值; 根据所获取的测量值, 以及根据所述柴油发动机的气缸排气压力的 目标值和流经所述空气压缩机的空气流量的目标值, 使用表征所述 空气系统的非线性物理模型来确定流经所述 EGR阀的目标废气流量 和流经所述增压阀的目标废气流量; 以及根据所述流经所述 EGR阀 的目标废气流量和流经所述增压阀的目标废气流量, 产生用于所述 EGR 系统的第一驱动信号和用于所述涡轮增压系统的第二驱动信 号。
在本发明的一个实施例中, 所述确定进一步包括: 基于滑动控 制策略来确定流经所述 EGR阀的目标废气流量和流经所述增压阀的 目标废气流量。
在本发明的一个实施例中, 该方法进一步包括: 根据所述流经 所述 EGR阀的目标废气流量确定所述 EGR阀的目标开度; 以及根 据所述流经所述增压阀的目标废气流量确定所述增压阀的目标开 度。
在本发明的一个实施例中, 所述第一驱动信号用于控制所述 EGR阀的开度, 并且其中所述第二驱动信号用于控制所述增压阀的 开度。
在本发明的一个实施例中, 所述非线性物理模型与所述柴油发 动机的以下方面相关: 进气压力, 排气压力, 空气流量', 进入气缸 的气体流量, 气缸排气阀出口流量, 进气阀流量系数, 转速, 气缸 位移, 进气热常数, 进气温度, 进气管等效容积, 排气热常数, 排 气温度, 排气管等效容积, 所述 EGR系统的增压器机械效率, 增压 器涡轮效率, 增压器涡轮热容量, 大气环境温度, 大气环境压力, 进气空气热容量比, 排气热容量比, 压缩机效率, 增压器转轴转动 惯量, 增压器转速, 增压器涡轮排气能量, 增压器压缩空气能量, 压缩空气热容量, 以及燃油喷射流量。
在本发明的一个实施例中, 所述非线性物理模型还与所述柴油 发动机的所述空气系统的动态干扰源相关。
根据本发明的另一方面, 提供一种计算机程序介质, 包括被执 行用于实现根据上述方法的计算机程序代码。
根椐本发明的实施方式, 提出了一种用于控制空气系统 (具体 地, EGR系统和涡轮增压系统)的新颖有效的设备和方法。 具体地, 利用配备有 EGR系统和涡轮增压系统的柴油发动机的准稳态特性关 系曲线, 可以建立表征空气系统的物理模型, 其可被用于有效地在 各种工况条件下(包括瞬悉和稳态)控制 EGR系统和涡轮增压系统, 从而使经过空气压缩机的空气流量和气缸排气管压力尽可能接近于 期望的目标值。
以此方式, 能够在抵抗外界干扰源和未建模的动态特性的同时, 兼顾 EGR系统与涡轮增压系统之间的耦合性。 而且, 根据本发明实 施方式的设备结构简单, 易于实现。 因此, 本发明的实施方式可以 显著地改善柴油发动机空气系统的控制。 附图说明
通过参考附图阅读下文的详细描述, 本发明实施方式的上述以 及其他目的、 特征和优点将变得易于理解。 在附图中, 以示例性而 非限制性的方式示出了本发明的若干实施方式, 其中:
图 1 示出了包括废气再循环系统和涡轮增压系统二者的柴油发 动机的示意性结构图;
图 2 示出了根据本发明实施方式的用于控制柴油发动机的空气 系统的控制设备 200的示意性结构图;
图 3示出了适合于用来实践图 2中的控制设备 200的片上系统 ( SoC ) 300的示意性结构图; 以及 的控制方法 400的流程图。
在附图中, 相同或对应的标号表示相同或对应的部分。 具体实施方式
下面将参考若干示例性实施方式来描述本发明的原理和精神。 应当理解, 给出这些实施方式仅仅是为了使本领域技术人员能够更 好地理解进而实现本发明, 而并非以任何方式限制本发明的范围。
根据本发明的实施方式, 提出了一种用于控制柴油发动机的空 气系统的设备和方法。 应当注意, 在本文中, 所使用的术语"空气系 统"至少包括废气再循环 EGR系统和涡轮增压系统。
还应注意, 在本文中提及的例如可变几何涡轮增压系统 (VGT ) 等具体涡轮增压系统, 仅仅是出于说明和示范目的。 本发明的实施 方式同样适用于利用发动机废气进行工作的现在已知或将来开发的 任何涡轮增压系统。 本发明的范围在此方面不受限制。
另外, 在本文中, 所使用的术语 "参数 "表示任何能够指示发动机 的 ( 目标或实际) 物理状态或运行状况的物理量的值。 而且, 在本 文中, "参数 "与其所表示的物理量可以互换使用。 例如, "指示转速 的参数 "与"转速"在本文中具有等同的含义。 而且, 在本文中, 设 A 表示某个特定的物理量, 则人表示 A对时间的求导, 即 A随时间的 变化率。
此外, 在本文中, 所使用的术语 "获取 "包括目前已知或将来开发 的各种手段, 例如测量、 读取、 估计、 估算, 等等。
下面参考本发明的若干代表性实施方式, 详细阐释本发明的原 理和精神。 首先参考图 1, 如上文所述, 其示出了配备有废气再循环 和涡轮增压系统的柴油发动机 100的示意性结构图。应当理解, 图 1 中仅仅是示出了柴油发动机 100中与本发明的实施方式有关的部分。 柴油发动机 100还可以包括任意数目的其他部件。
如图 1所示, 柴油发动机 100包括: 气缸 108; 进气管道 106, 耦合至气缸 108的入口端, 配置用于向气缸 108输送气体; 排气管 道 1 12, 耦合至气缸 108的出口端, 配置用于排出气缸 108燃烧的废 气; 燃油喷射系统 1 10, 耦合至气缸 108 , 配置用于向其喷射燃油; 空气系统; 以及控制单元 (ECU ) 1 14, 用于实现对柴油发动机 100 的控制。如上所述, 空气系统包括: 废气再循环系统(例如包括 EGR 阀 1 16、 EGR冷却器 1 18以及其他必要部件) , 其耦合至排气管道 1 12和进气管道 106 , 配置用于将来自排气管道 1 12的部分废气通过 进气管道 106输送回气缸 108; 以及涡轮增压系统(例如包括增压器 120、 增压器转轴 124、 空气压缩机 102、 空气中冷器 104 以及其他 必要部件) , 其耦合至排气管道 1 12, 用于利用来自排气管道 1 12 的废气, 增大通过气缸 108的进气压力。
从图 1 中可见, 廒气再循环系统和涡轮增压系统都接收来自排 气管道 1 12的废气, 其进气流量分别由 EGR阀 1 16和增压阀 122来 控制。 在操作中, 柴油发动机电子控制单元(ECU ) 114根据发动机 的工况产生相应的 EGR阀驱动信号和增压阀驱动信号, 分别用于控 制 EGR阀 1 16和增压阀 122的开度。 如上所述, 废气再循环系统和 涡轮增压系统的性能彼此影响, 因此需要对废气再循环阀 1 16和增 压阀 122的开度进行有效的控制。
根据本发明的思想, 关键的问题是如何准确、 灵活、 有效地表 征柴油发动机的空气系统, 特别是如何表征气缸排气压力、 流经空 气压缩机的空气流量、 流经 EGR阀的废气流量以及流经增压阀的废 气流量这四个关键特性之间的相互影响和作用。 如果能够有效地对 上述四个特性进行表征和建模, 便能够实现现有技术中所无法实现 的对空气系统的有效控制。 为此, 如下文详述的, 本发明的实施方 式建立了表征空气系统的上述四个关键系统特性的非线性物理模 型, 并使用它来控制柴油发动机的空气系统。
参考图 2,其示出了根据本发明实施方式的用于控制柴油发动机 的空气系统的控制设备 200 的示意性结构图。 可以理解, 控制设备 200可以作为图 1 中示出的柴油发动机 ECU 114或其部分而付诸实 践。 备选地, 控制设备 200也可以实现为专门针对柴油发动机的空 气系统的控制设备。
如图 2所示, 控制设备 200包括工况获取装置 202 , 其可配置用 于获取指示柴油发动机(例如, 图 1所示的柴油发动机 100 )的实际 工况的测量值 (参数) 。 特别地, 在本发明的某些实施方式中, 工 况获取装置 202可以配置用于获取柴油发动机的气缸排气压力的测 量值(记为 Pem ) , 以及流经涡轮增压系统所包含的空气压缩机的空 气流量的测量值 (记为 Wc ) 。
应当理解, 工况获取装置 202 可以通过实际测量来获取指示发 动机工况的测量值。 备选地或附加地, 工况获取装置 202也可以才艮 据实际条件通过估计或估算来获取指示发动机工况的测量值。 本发 明的范围在此方面不受限制。
如图 2所述, 根据本发明的实施方式, 控制设备 200还包括目 标流量确定装置 204, 其耦合至所述工况获取装置 202, 配置用于根 据所述工况获取装置 202获取的 Pem和 Wc, 以及根据柴油发动机的 气缸排气压力的目标值(Pemd )和流经空气压缩机的空气流量的目标 值 (We,d ) , 使用表征空气系统的非线性物理模型, 确定流经 EGR 阀的目标废气流量 (Wegr ) 和流经增压阀的目标废气流量 (Wt ) 。
可以看到, 根据本发明的实施方式, 目标流量确定装置 204 使 用表征空气系统的 (多输入 /多输出的) 非线性物理模型, 以工况获 取装置 202获取的 Pem和 Wc为输入,确定为了满足 Pem,d和 Wcd所应 具有的, 空气系统中的两个关键废气流量。 实际上, 在本领域中, 尚无现有技术尝试通过这种面向控制的非线性物理模型来表征和控 制柴油发动机的空气系统。 下面将详细介绍根据本发明实施方式的 面向空气系统控制的非线性物理模型。
根据本发明的实施方式, 该非线性物理模型可以与柴油发动机 的一个或多个方面相关。 这里所称的 "方面" 既包括发动机的固有 属性, 也包括发动机运转过程中的实时工况, 例如包括但不限于: 进气压力, 排气压力, 空气流量, 进入气缸的气体流量, 气缸排气 阀出口流量, 进气阀流量系数, 转速, 气缸位移, 进气热常数, 进 气温度, 进气管等效容积, 排气热常数, 排气温度, 排气管等效容 积, EGR 系统的增压器机械效率, 增压器涡轮效率, 增压器涡轮热 容量, 大气环境温度, 大气环境压力, 进气空气热容量比, 排气热 容量比, 压缩机效率, 增压器转轴转动惯量, 增压器转速, 增压器 涡轮排气能量, 增压器压縮空气能量, 压缩空气热容量, 以及燃油 喷射流量。 不仅如此, 如下文所述, 在优选实施方式中, 该物理模 型还可以将未建模的动态干扰因素纳入考虑。
根据本发明的实施方式, 可以利用各种手段基于发动机的上述 方面来建立面向空气系统控制的非线性物理模型。 下面描述本发明 的一种优选实施方式。
首先, 如本领域已知的, 对于给定的柴油发动机而言, 进气系 统的质量平衡方程可表示为: ΐ ^ 二 kira(Wc + Wegr—Wei) ( 1 )
Figure imgf000013_0001
并且其中: ^表示发动机气缸的进气压力; Ra表示进气热常数; Tim 表示进气温度; !^表示进气管等效容积; Wc表示流经涡轮增压系统 的空气压缩机的空气流量; Wegr表示流经 EGR阀的废气流量; 并且 Wei表示进入发动机气缸内的气体流量。
此 2 1外, 柴油发动机的排气系统的盾量平衡方程可表示为:
¾m = kem(Weo - Wt - Wegr) ( 2 ) 其中
ReT(
k 二
Figure imgf000014_0001
并且其中: Fem表示发动机气缸的排气压力; Re表示排气热常数; Tem 表示排气温度; Vera表示排气管等效容积; We。表示气缸排气阀出口 流量; 并且 Wt表示流经增压阀废气流量; ^表示流经 EGR阀的废 气流量。
而且, 柴油发动机的涡轮增压系统的增压器惯性平衡方程可表 示为:
Figure imgf000014_0002
其中: Jt表示增压器转轴转动惯量; t表示增压器的转速; Pt表示增 压器涡轮排气能量; !^表示增压器机械效率; PC表示增压器压缩空 气能量。
进一步, 仍然如本领域中已知的, 增压器涡轮排气能量 Pt可以表 示为:
Figure imgf000014_0003
其中: wf表示流经增压阀废气流量; nt表示增压器涡轮效率; cpe表 示增压器涡轮热容量; ?^表示排气温度; Pamb表示大气环境压力;
? 表示发动机气缸的排气压力; 并且 Ye表示排气热容量比。
而且, 由于增压器的机械效率、 热效率等在实际情况中不可能 达到 100%, 因此实际的增压器压縮空气能量可表示为
Figure imgf000015_0001
其中: Pc表示增压器压缩空气能量; Tic表示空气压縮机的综合效率; Wc表示流经涡轮增压系统的空气压缩机的空气流量; cpa表示压缩空 气热容量; Tamb表示大气环境温度; ^表示发动机气缸的进气压力;
Pamb表示大气环境压力; 并且 进气空气热容量比。
以上的公式 ( 1 ) - ( 5 ) 从不同的角度描述了与柴油发动机的空 气系统有关的方面。 然而, 在现有技术中, 缺乏有效的手段来表征 和利用这些方面之间的耦合性和相互作用。 为了解决这一问题, 在 本发明的实施方式中, 建立了面向控制的空气系统非线性物理模型。
具体地, 除上述方面之外, 根据本发明的实施方式, 还将涡轮 增压器准稳态特性曲线納入考虑。 涡轮增压器的准稳态特性曲线描 述了压缩机的空气流量的特性, 它是可以预先确定的, 例如可以从 增压器制造厂商处获得。 虽然该曲线描述的是增压器在准稳态下的 工作特性, 但是从定性的角度考虑, 它在瞬态工况下同样成立。
根据涡轮增压器准稳态特性曲线可知: 流经压缩机的空气流量
Wc是发动机气缸进气压力 Phll与涡轮转速^^的函数, 即:
Wc 二 Wc ( Pim i ωί ) ( 6 ) 由此, 可以得到:
Figure imgf000015_0002
为简化起见, 在公式 (6 ) 中, 设: a、 =
Figure imgf000016_0001
二者是发动机气缸进气压力 Pim与涡轮转速 ^的函数。 特别地, 可以 看到, 公式 (7) 中还包含记为 。的一项, 它表示柴油发动机空气 系统的动态干扰源, 即未被建模的动态特性。 根据本发明的实施方 式, 读 Ac可以表示为:
Figure imgf000016_0002
由此, 在本发明的这种实施方式中, 非线性物理模型不但考虑 了发动机的各种内在特性, 而且还可以兼顾外部动态千扰源的影响, 从而可以实现对空气系统更为鲁棒的控制。 当然, 这只是本发明的 优选实施方式, 在可选实施方式中, 本发明的实施方式同样可以在 不考虑外部动悉干扰源的情况下适用
特别地, 如本领域技术人员可以理解的, 未建模的动态特征 Ac 显然是有界的, 即:
Α \≤ε (9) 其中 S为常量。
由此, 根据公式 ( 1 ) - (9) , 可以导出
Figure imgf000016_0003
( 10) 经整理可得: Wc =a + alki W +a4W[+Ac C 11 )
Figure imgf000017_0001
进一步整理可得:
a 5,-k em W esr -k em W tf ( 12)
Figure imgf000017_0002
由此, 可以得到
-k em
Figure imgf000017_0004
Figure imgf000017_0003
为表示的简便, 可将公式 ( 14) 进一步整理为以下形式: = f (x) + g(x) + Δ ( 15) 其中:
Figure imgf000018_0001
Figure imgf000018_0002
egr、
u =
w.
J
Figure imgf000018_0003
这样, 本发明的实施方式建立了一种表征柴油发动机的气缸排 气压力、 流经空气压缩机的空气流量、 流经 EGR阀的废气流量以及 流经增压阀的廒气流量之间关系的多输入 /多输出的、 非线性的物理 模型。
当然, 应当理解, 上文给出的仅是面向控制的空气系统物理模 型的一种优选实施方式。 读模型的各种变形是可能的。 例如, 在某 些工况奈件下, 在物理模型中可以不考虑上文提及的一个或多个方 面, 和 /或增加与发动机有关的新的方面。 又如, 如上文所述, 在某 些实施方式中, 可以不考虑未建模的动态干扰源。 实际上, 基于本 发明给出的如上启示和教导, 本领域技术人员可以结合其具体需求 和条件, 设计实现任何适当的物理模型来表征柴油发动机的空气系 统。
此外, 如上所述, 物理模型中所涉及到的这些方面某些属于发 动机的固有属性, 而某些则是发动机的实时工况。 对于发动机的固 有属性, 它们是可以预先确定和获得的。 而对于实时工况, 则可能 需要在发动机的运转过程中实时获取。 为此, 工况获取装置 202可 以进一步包含一个或多个 (子) 装置 (图 2 中未示出) , 每个子装 置配置用于获取相应工况的测量值, 并将其传递给目标流量确定装 置 204以供使用。
根据本发明的实施方式, 基于上述物理模型, 给定气缸排气压 力和流经空气压缩机的空气流量的实际测量值 Pem和 Wc以及目标值 Pem,d和 We,d, 目标流量确定装置 204可以按照目前已知或将来开发 的任何适当控制策略, 确定流经 EGR阀和增压岡的目标废气流量。
下面, 将以滑动控制策略为例, 详细描述本发明的一类优选实 施方式。 具体地, 在此类实施方式中, 目标流量确定装置 204进一 步包括基于滑动控制的确定装置 (图 2 中未示出) , 配置用于基于 滑动控制策略来确定流经 EGR阀和增压阀的目标废气流量的装置。 在操作过程中, 该基于滑动控制的确定装置可配置用于定义滑动面 S-0 , 即:
其中
Figure imgf000019_0001
此时, 根据公式 ( 15 ) 所限定的空气系统非线性模型, 有:
—― (sTs) = sT = sT (f (x) + g(x)u +Δ) ( 16 )
2 dt 继而, 设滑动控制的控制律为: U ( 17)
Figure imgf000020_0001
其中 sgn表示符号函数, 即
sgn( ) = 1, y > 0
sgn( ) =— 1, y < 0 则有
1 d
(sl s) < - \ s] ( 18)
2 dt
其中 λ> 0。
由此得到:
Figure imgf000020_0002
( 19) 以及
Figure imgf000020_0003
c c,dJ b c c, 1 'm、 5 em e
(20) 以此方式, 目标流量确定装置 204可以确定流经 EGR阀和增压阀的 目标废气流量。
应当理解, 上文基于滑动控制策略的实施方式仅仅是示例性的。 在建立了面向控制的空气系统非线性物理模型的情况下, 目标流量 确定装置 204 可以包含任意适当的子装置, 配置用于采用任何适当 的控制策略来确定流经 EGR阀和增压阀的目标废气流量, 例如鲁棒 自适应控制策略、 鲁棒非线性控制策略, 等等。 本发明的范围在此 方面不受限制。 继续参考图 2 , 控制设备 200还包括信号产生装置 206, 其耦合 至目标流量确定装置 204,配置用于根据目标流量确定装置 204所确 定的流经所述 EGR岡的目标废气流量和流经所述增压阀的目标废气 流量, 产生用于 EGR系统的第一驱动信号和用于涡轮增压系统的第 二驱动信号。
特别地, 根据本发明的实施方式, 第一驱动信号用于控制 EGR 阀的开度, 并且第二驱动信号用于控制增压阀的开度。 为此, 根据 本发明的实施方式, 信号产生装置 206可以进一步包括 EGR阀开度 确定装置 2062和增压阀开度确定装置 2064,二者分别配置用于基于 来自目标流量确定装置 204的数据确定 EGR阀的目标开度和增压阀 的目标开度。
如本领域技术人员已知的, 流经上述两个阀的废气流量与这两 个阀的开度之间分别存在着可确定的对应关系。 例如, 在本发明的 某些实施方式中, 二者之间的对应关系是基于相应的脉谱图获得的。 换言之, EGR阀开度确定装置 2062在从目标流量确定装置 204接收 流经 EGR阀的目标废气流量之后, 基于 EGR阀的废气流量与 EGR 阀开度之间的脉谱图关系, 确定 EGR阀的目标开度。 类似地, 增压 阀开度确定装置 2064 同样可以基于脉谱图来确定增压阀的目标开 度。 相应地, 信号产生装置 206将产生控制信号来驱动 EGR阀和增 压阀的开度。
上文已经结合若干具体实施方式描述了根据本发明的控制设备 200的结构和操作。 通过上文的描述应当理解, 根据本发明的实施方 式, 控制设备 200 可以采用空气系统的非线性物理模型, 有效地实 现对 EGR系统和涡轮增压系统的控制, 从而使得空气系统的实际工 况尽可能地接近期望的目标工况。
应当理解, 图 2 中示出并在上文描述的控制设备 200可以利用 多种方式来实施。 例如, 在某些实施方式中, 设备 200 可以实现为 集成电路 (IC ) 芯片。 在另一些实施方式中, 设备 200 可以通过片 上系统(SoC ) 以及相应的软件和 /或固件来实现。 备选地或附加地, 设备 200还可以利用软件模块来实现, 即实现为计算机程序产品。 本发明的范围在此方面不受限制。
参考图 3,其示出了适于用来实施图 2所示的控制设备 200的片 上系统 (SoC ) 300的结构框图。 如图 3所示, SoC 300可以包括工 况获取块 302、 目标流量确定块 304和信号产生块 306 , 其分别对应 于上文参考图 2描述的工况获取装置 202、 目标流量确定装置 204、 信号产生装置 206。 此外, 尽管在图 3中未示出, 但是根据本发明的 实施方式, 这些块还可以包括子块, 对应于图 2 中描述的各装置所 包含的子装置。 这些块 302- 306及其子块可以作为硬件、 软件和 /或 固件模块, 独立地或者与信号处理和控制电路等其他实体相集成地 操作, 用以实现在此描述的各种实施方式和 /或特征。
此外, SoC 300 包括各种组件, 诸如输入输出 (I/O ) 逻辑 310 (例如用以包括电子电路)以及微处理器 312 (例如, 任何微控制器 或者数字信号处理器) 。 SoC 300还包括存储器 314, 其可以是任何 类型的随机访问存储器 (RAM ) , 低延迟非易失性存储器 (例如, 闪存)、只读存储器(ROM )和 /或其他适当的电子数据存储。 SoC 300 还可以包括各种固件和 /或软件, 诸如操作系统 316, 其可以是由存 储器 314维护并由微处理器 312执行的计算机可执行指令。 SoC 300 还可以包括其他各种通信接口和组件、 网络接口組件、 其他硬件、 固件和 /或软件。
应当理解, 根据本发明的实施方式, SoC 300可以与电子电路、 微处理器、 存储器、 输入输出 (I/O ) 逻辑、 通信接口和组件、 运行 整个设备所需的其他硬件、 固件和 /或软件集成。 SoC 300还可以包 括集成数据总线 (未示出) , 其耦合 SoC的各个组件以用于组件之 间的数据通信。 包括 SoC 300的设备还可以利用不同组件的多个组 合来实现。
下面参考图 4,其示出了根据本发明实施方式的用于柴油发动机 的空气系统的非线性控制的方法 400的流程图。 方法 400开始之后, 在步骤 S402, 获取气缸排气压力的测量值, 以及流经空气压缩机的 空气流量的测量值。
接下来, 在步骤 S404, 根据气缸排气压力和流经空气压缩机的 空气流量的测量值以及对应的目标值, 使用表征空气系统的非线性 物理模型, 确定流经 EGR阀的目标庞气流量和流经增压阀的目标废 气流量。 如上文所述, 根据本发明的实施方式, 可以利用多种控制 策略来确定流经 EGR阔的目标废气流量和流经增压阀的目标废气流 量, 例如滑动控制、 自适应控制、 非线性控制, 等等。
而后, 在步骤 S406 , 基于所确定的流经 EGR阀的目标废气流量 和流经增压阀的目标废气流量, 产生用于 EGR系统和涡轮增压系统 的驱动信号。 例如, 在某些实施方式中, 可以基于两个目标废气流 量分别确定 EGR阀和增压阀的目标开度 (例如, 基于脉谱图) , 并 且驱动信号可以相应地驱动 EGR阀和增压阀。
可以理解, 方法 400 中记载的步骤与上文参考图 2描述的控制 设备 200中的装置分别完全对应一致。 由此, 上文参考控制设备 200 的各个装置而描述的操作、 功能和 /或特征同样适用于方法 400的各 个步骤。 而且, 方法 400 中记载的各个步骤可以按照不同的顺序执 行和 /或并行执行。
另外, 应当理解, 参考图 4描述的方法 400可以通过计算机程 序产品来实现。 例如, 该计算机程序产品可以包括至少一个计算机 可读存储介质, 其具有存储于其上的计算机可读程序代码部分。 当 计算机可读代码部分由例如处理器执行时, 其用于执行方法 400 的 步骤。
上文已经结合若干具体实施方式阐释了本发明的精神和原理。 根据本发明的实施方式, 可以建立表征柴油发动机空气系统的物理 模型, 其可被用于有效地在各种工况条件下 (包括瞬态和稳态) 控 制 EGR系统和涡轮增压系统, 从而使经过空气压缩机的空气流量和 气缸排气管压力尽可能接近于期望的目标值。 以此方式, 能够在抵 抗外界干扰源和未建模的动态特性的同时, 兼顾 EGR系统与涡轮增 压系统之间的耦合性。 而且, 根据本发明实施方式的设备结构筒单, 易于实现。 因此, 本发明的实施方式可以显著地改善柴油发动机空 气系统的控制。
应当注意, 本发明的实施方式可以通过硬件、 软件或者软件和 硬件的结合来实现。 硬件部分可以利用专用逻辑来实现; 软件部分 可以存储在存储器中, 由适当的指令执行系统, 例如微处理器或者 专用设计硬件来执行。 本领域的普通技术人员可以理解上述的设备 和方法可以使用计算机可执行指令和 /或包含在处理器控制代码中来 实现, 例如在诸如磁盘、 CD或 DVD-ROM的载体介质、 诸如只读存 储器 (固件) 的可编程的存储器或者诸如光学或电子信号载体的数 据载体上提供了这样的代码。 本发明的设备及其模块可以由诸如超 大规模集成电路或门阵列、 诸如逻辑芯片、 晶体管等的半导体、 或 者诸如现场可编程门阵列、 可编程逻辑设备等的可编程硬件设备的 硬件电路实现, 也可以用由各种类型的处理器执行的软件实现, 也 可以由上述硬件电路和软件的结合例如固件来实现。
应当注意, 尽管在上文详细描述中提及了控制设备的若干装置 或子装置, 但是这种划分仅仅并非强制性的。 实际上, 根据本发明 的实施方式, 上文描述的两个或更多装置的特征和功能可以在一个 装置中具体化。 反之, 上文描述的一个装置的特征和功能可以进一 步划分为由多个装置来具体化。
此外, 尽管在附图中以特定顺序描述了本发明方法的操作, 但 是, 这并非要求或者暗示必须按照该特定顺序来执行这些操作, 或 是必须执行全部所示的操作才能实现期望的结果。 相反, 流程图中 描绘的步骤可以改变执行顺序。 附加地或备选地, 可以省略某些步 骤, 将多个步骤合并为一个步骤执行, 和 /或将一个步骤分解为多个 步驟执行。
虽然已经参考若干具体实施方式描述了本发明, 但是应该理解, 本发明并不限于所公开的具体实施方式。 本发明旨在涵盖所附权利 要求的精神和范围内所包括的各种修改和等同布置。 所附权利要求 的范围符合最宽泛的解释, 从而包含所有这样的修改及等同结构和 功能。

Claims

权 利 要 求 书
1. 一种用于控制柴油发动机的空气系统的设备, 所述空气系统 包括废气再循环 EGR系统和涡轮增压系统, 其中所述 EGR系统包 括 EGR阀, 并且所述涡轮增压系统包括空气压缩机和增压阀, 所述 设备包括:
工况获取装置,配置用于获取所述柴油发动机的气缸排气压力的 测量值以及流经所述空气压缩机的空气流量的测量值;
目标流量确定装置, 其耦合至所述工况获取装置, 配置用于根据 所述工况获取装置获取的测量值, 以及根据所述柴油发动机的气缸 排气压力的目标值和流经所述空气压缩机的空气流量的目标值, 使 用表征所述空气系统的非线性物理模型来确定流经所述 EGR阀的目 标废气流量和流经所述增压岡的目标废气流量; 以及
信号产生装置, 其耦合至所述目标流量确定装置, 配置用于根据 所述目标流量确定装置确定的所述流经所述 EGR阀的目标废气流量 和流经所述增压阀的目标废气流量, 产生用于所述 EGR系统的第一 驱动信号和用于所述涡轮增压系统的第二驱动信号。
2. 如权利要求 1 所述的设备, 其中所述目标流量确定装置进一 步包括:
基于滑动控制的确定装置,配置用于基于滑动控制策略来确定流 经所述 EGR阀的目标废气流量和流经所述增压阀的目标废气流量。
3. 如权利要求 1 所述的设备, 其中所述信号产生装置进一步包 括:
EGR阀目标开度确定装置, 配置用于根据所述流经所述 EGR阀 的目标废气流量确定所述 EGR阀的目标开度; 以及
增压阀目标开度确定装置,配置用于根据所述流经所述增压阀的 目标废气流量确定所述增压阀的目标开度。
4. 如权利要求 3 所述的设备, 其中所述第一驱动信号用于控制 所述 EGR阀的开度, 并且其中所述第二驱动信号用于控制所述增压 阀的开度。
5. 如权利要求 1 所述的设备, 其中所述设备利用片上系统 SoC 或集成电路 IC来实现。
6. 如权利要求 1 所述的设备, 其中所述非线性物理模型与所述 柴油发动机的以下方面相关:
进气压力, 排气压力, 空气流量, 进入气缸的气体流量, 气缸排 气阀出口流量, 进气阀流量系数, 转速, 气缸位移, 进气热常数, 进气温度, 进气管等效容积, 排气热常数, 排气温度, 排气管等效 容积, 所述 EGR系统的增压器机械效率, 增压器涡轮效率, 增压器 涡轮热容量, 大气环境温度, 大气环境压力, 进气空气热容量比, 排气热容量比, 压缩机效率, 增压器转轴转动惯量, 增压器转速, 增压器涡轮排气能量, 增压器压缩空气能量, 压缩空气热容量, 以 及燃油喷射流量。
7. 如权利要求 6所述的设备, 其中所述非线性物理模型进一步 与所述柴油发动机的所述空气系统的动态干扰源相关。
8. 一种柴油发动机, 包括:
气缸;
进气管道,耦合至所述气缸的入口端, 配置用于向所述气缸输送 气体;
排气管道, 耦合至所述气缸的出口端, 配置用于排出所述气缸燃 烧的废气;
燃油喷射系统,耦合至所述气缸,配置用于向所述气缸喷射燃油; 空气系统, 包括:
废气再循环 EGR系统, 耦合至所述排气管道和所述进气管 道, 并且包括 EGR阀, 所述 EGR系统配置用于将来自所述排气 管道的部分废气通过所述进气管道输送回所述气缸;
涡轮增压系统, 耦合至所述排气管道, 并且包括空气压缩机 和增压阀, 所述涡轮增压系统配置用于利用来自所述排气管道 的废气来增大通过所述气缸的进气压力; 以及 控制单元, 包括如权利要求 1所述的设备, 以用于控制所述空气 系统。
9. 一种用于控制柴油发动机的空气系统的方法, 所述空气系统 包括废气再循环 EGR系统和涡轮增压系统, 其中所述 EGR 系统包 括 EGR阀, 并且所述涡仑增压系统包括空气压缩机和增压阀, 所述 方法包括:
获取所述柴油发动机的气缸排气压力的测量值以及流经所述空 气压缩机的空气流量的测量值;
根据所获取的测量值, 以及根据所述柴油发动机的气缸排气压 力的目标值和流经所述空气压缩机的空气流量的目标值, 使用表征 所述空气系统的非线性物理模型来确定流经所述 EGR阀的目标废气 流量和流经所述增压阀的目标废气流量; 以及
根据所述流经所述 EGR阀的目标废气流量和流经所述增压阀的 目标废气流量, 产生用于所述 EGR系统的第一驱动信号和用于所述 涡轮增压系统的第二驱动信号。
10. 如权利要求 9所述的方法, 其中所述确定进一步包括: 基于滑动控制策略来确定流经所述 E G R阀的目标廈气流量和流 经所述增压阀的目标废气流量。
1 1. 如权利要求 9所述的方法, 进一步包括:
根据所述流经所述 EGR阀的目标废气流量确定所述 EGR阀的目 标开度; 以及
根据所述流经所述增压阀的目标废气流量确定所述增压阔的目 标开度。
12. 如权利要求 11 所述的方法, 其中所述第一驱动信号用于控 制所述 EGR阀的开度, 并且其中所述第二驱动信号用于控制所述增 压阀的开度。
13. 如权利要求 9所述的方法,其中所述非线性物理模型与所述 柴油发动机的以下方面相关:
进气压力, 排气压力, 空气流量, 进入气缸的气体流量, 气缸 排气阀出口流量, 进气阀流量系数, 转速, 气缸位移, 进气热常数, 进气温度, 进气管等效容积, 排气热常数, 排气温度, 排气管等效 容积, 所述 EGR系统的增压器机械效率, 增压器涡轮效率, 增压器 涡轮热容量, 大气环境温度, 大气环境压力, 进气空气热容量比, 排气热容量比, 压缩机效率, 增压器转轴转动惯量, 增压器转速, 增压器涡轮排气能量, 增压器压缩空气能量, 压缩空气热容量, 以 及燃油喷射流量。
14. 如权利要求 13所述的方法, 其中所述非线性物理模型还与 所述柴油发动机的所述空气系统的动态干扰源相关。
15. 一种计算机程序介盾, 包括被执行用于实现根据权利要求 9- 14任意一个的方法的计算机程序代码。
PCT/CN2011/070696 2011-01-27 2011-01-27 用于控制柴油发动机的空气系统的设备和方法 WO2012100421A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/070696 WO2012100421A1 (zh) 2011-01-27 2011-01-27 用于控制柴油发动机的空气系统的设备和方法
US13/984,450 US9212629B2 (en) 2011-01-27 2011-01-27 Equipment and method for controlling air system of diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/070696 WO2012100421A1 (zh) 2011-01-27 2011-01-27 用于控制柴油发动机的空气系统的设备和方法

Publications (1)

Publication Number Publication Date
WO2012100421A1 true WO2012100421A1 (zh) 2012-08-02

Family

ID=46580196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070696 WO2012100421A1 (zh) 2011-01-27 2011-01-27 用于控制柴油发动机的空气系统的设备和方法

Country Status (2)

Country Link
US (1) US9212629B2 (zh)
WO (1) WO2012100421A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102792A (zh) * 2013-04-05 2015-11-25 沃尔沃卡车集团 用于控制具有egr和涡轮增压器的发动机的方法和装置
CN114810337A (zh) * 2022-04-12 2022-07-29 潍柴动力股份有限公司 一种增压器的控制方法及相关装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029216A1 (zh) * 2011-08-26 2013-03-07 潍柴动力股份有限公司 用于控制柴油发动机的空气系统的设备和方法
JP6156429B2 (ja) * 2014-05-26 2017-07-05 トヨタ自動車株式会社 内燃機関の制御装置
US9951701B2 (en) 2014-09-22 2018-04-24 General Electric Company Method and systems for EGR control
US20160131089A1 (en) * 2014-11-12 2016-05-12 Deere And Company Variable geometry turbocharger feed forward control system and method
US20160131057A1 (en) 2014-11-12 2016-05-12 Deere And Company Fresh air flow and exhaust gas recirculation control system and method
US9835094B2 (en) 2015-08-21 2017-12-05 Deere & Company Feed forward exhaust throttle and wastegate control for an engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1366579A (zh) * 2000-05-18 2002-08-28 日产自动车株式会社 柴油发动机控制
CN1644900A (zh) * 2004-01-20 2005-07-27 株式会社电装 发动机控制系统
CN101809274A (zh) * 2007-09-24 2010-08-18 克诺尔商用车制动系统有限公司 用于改善内燃机的废气再循环的方法和设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656518B2 (ja) * 2000-05-18 2005-06-08 日産自動車株式会社 ディーゼルエンジンの制御装置
JP2005264785A (ja) * 2004-03-17 2005-09-29 Nissan Motor Co Ltd ディーゼルエンジンの排気後処理装置
WO2008048909A2 (en) * 2006-10-18 2008-04-24 Eden Innovations Ltd. Dba/Aka Brehon Energy Plc System and method of stoichiometric combustion for hydrogen fueled internal combustion engines
KR20090124222A (ko) * 2008-05-29 2009-12-03 현대자동차주식회사 디젤 차량의 후처리 장치 및 재생방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1366579A (zh) * 2000-05-18 2002-08-28 日产自动车株式会社 柴油发动机控制
CN1644900A (zh) * 2004-01-20 2005-07-27 株式会社电装 发动机控制系统
CN101809274A (zh) * 2007-09-24 2010-08-18 克诺尔商用车制动系统有限公司 用于改善内燃机的废气再循环的方法和设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102792A (zh) * 2013-04-05 2015-11-25 沃尔沃卡车集团 用于控制具有egr和涡轮增压器的发动机的方法和装置
US10859014B2 (en) 2013-04-05 2020-12-08 Volvo Truck Corporation Method and apparatus for controlling an engine with EGR and a turbocharger
CN114810337A (zh) * 2022-04-12 2022-07-29 潍柴动力股份有限公司 一种增压器的控制方法及相关装置

Also Published As

Publication number Publication date
US20140000573A1 (en) 2014-01-02
US9212629B2 (en) 2015-12-15

Similar Documents

Publication Publication Date Title
WO2012100421A1 (zh) 用于控制柴油发动机的空气系统的设备和方法
WO2012100420A1 (zh) 用于控制柴油发动机的空气系统的设备和方法
Jung et al. Parameterization and transient validation of a variable geometry turbocharger for mean-value modeling at low and medium speed-load points
JP5143170B2 (ja) 内燃機関の制御方法
US20180372011A1 (en) Controller and control method for internal combustion engine
CN108730055B (zh) 内燃机的控制装置
Xue et al. Potentials of electrical assist and variable geometry turbocharging system for heavy-duty diesel engine downsizing
Terdich et al. Off-road diesel engine transient response improvement by electrically assisted turbocharging
CN102889124B (zh) 估计内燃机进气充量温度的系统和方法
CN111608790B (zh) 电辅助涡轮增压柴油机气路优化控制系统
JP6630814B2 (ja) 内燃機関のegr制御装置及びegr制御方法
CN107620651B (zh) 一种发动机空气管理系统的鲁棒非线性控制方法
Chasse et al. Double stage turbocharger control strategies development
JP2017096209A (ja) 内燃機関の制御装置
Canova et al. Model-based characterization and analysis of diesel engines with two-stage turbochargers
Jiang et al. Parameterization and simulation for a turbocharged spark ignition direct injection engine with variable valve timing
WO2013029216A1 (zh) 用于控制柴油发动机的空气系统的设备和方法
CN102182576B (zh) 用于控制柴油发动机的空气系统的设备和方法
CN201953488U (zh) 用于控制柴油发动机的空气系统的设备以及柴油发动机
CN102182575B (zh) 用于控制柴油发动机的空气系统的设备和方法
Canova et al. Modeling and analysis of a turbocharged diesel engine with variable geometry compressor system
Eastwood et al. Estimation of deviations in NO and soot emissions between steady-state and EUDC transient operation of a common-rail diesel engine
Bresch-Pietri et al. Practical delay modeling of externally recirculated burned gas fraction for spark-ignited engines
CN115929461A (zh) 发动机系统和控制发动机系统中的涡轮增压器的方法
Lee et al. Egr rate estimation for cylinder air charge in a turbocharged diesel engine using an adaptive observer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13984450

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11857072

Country of ref document: EP

Kind code of ref document: A1