WO2012100406A1 - 一种低压控制电源电路及其产生方法 - Google Patents

一种低压控制电源电路及其产生方法 Download PDF

Info

Publication number
WO2012100406A1
WO2012100406A1 PCT/CN2011/070546 CN2011070546W WO2012100406A1 WO 2012100406 A1 WO2012100406 A1 WO 2012100406A1 CN 2011070546 W CN2011070546 W CN 2011070546W WO 2012100406 A1 WO2012100406 A1 WO 2012100406A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
circuit
power supply
unit
control circuit
Prior art date
Application number
PCT/CN2011/070546
Other languages
English (en)
French (fr)
Inventor
孙建宁
Original Assignee
深圳矽睿芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳矽睿芯科技有限公司 filed Critical 深圳矽睿芯科技有限公司
Priority to EP11856668.6A priority Critical patent/EP2555398A4/en
Priority to US13/641,362 priority patent/US20130033110A1/en
Priority to PCT/CN2011/070546 priority patent/WO2012100406A1/zh
Priority to JP2013549693A priority patent/JP2014503168A/ja
Publication of WO2012100406A1 publication Critical patent/WO2012100406A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters

Definitions

  • the invention belongs to the field of electronic technology, and in particular relates to a low voltage control power supply circuit and a method for generating the same.
  • AC-DC or DC-DC conversion power supply in electronic equipment, such as charger, LED Drive power, notebook power, etc., and in this type of power supply, it also contains internal control circuits that require a low-voltage power supply.
  • the control power supply in the AC-DC or high-voltage DC-DC conversion power supply on the market is basically generated by the following two methods: through the rectified high-voltage direct current, after being stepped down by the resistor or the high-voltage MOSFET, and then supplied to the control power supply, or through the transformer
  • the auxiliary winding of the auxiliary winding or inductor is obtained by diode rectification.
  • the power supply efficiency of the first method is very low, and the circuit structure of the second method is complicated and costly.
  • the object of the present invention is to provide a low-voltage control power supply circuit, which aims to solve the problems of low power supply efficiency, complicated circuit structure and high cost.
  • Another object of the present invention is to provide a switching power supply using the above low voltage control power supply circuit.
  • Another object of the present invention is to provide a method of generating a low voltage control power supply circuit.
  • the present invention is implemented in such a manner that a low voltage control power supply circuit is connected between the rectifier circuit and the current adjustment unit, and the circuit includes:
  • An auxiliary power source wherein an input end of the auxiliary power source is connected to an output end of the rectifier circuit;
  • a high voltage starting unit an input end of the high voltage starting unit is connected to an output end of the auxiliary power source;
  • a switching circuit a first control end of the switch circuit is connected to an output end of the auxiliary power source, an input end of the switch circuit is connected to an output end of the current adjusting unit, and a first sampling end of the switch circuit is Connecting the output of the high voltage starting unit;
  • a control circuit a main control end of the control circuit is connected to a first control end of the switch circuit, and an energy storage control end of the control circuit is connected to a second control end of the switch circuit, and a current of the control circuit a sampling control end is connected to the third control end of the switch circuit, a capacitance sampling end of the control circuit is connected to a first sampling end of the switch circuit, and a current sampling end of the control circuit and a Two sampling ends are connected, and a peak-to-valley detecting end of the control circuit is connected to an output end of the current adjusting unit;
  • the switch circuit When the auxiliary power source is powered on, the switch circuit is charged by the high voltage starting unit to start the control circuit, and after the power is turned on, the control circuit dynamically controls the switch circuit to perform charging.
  • the control circuit provides a low voltage power supply.
  • the invention provides a method for generating a low voltage control power supply circuit, the method comprising the following steps:
  • the high voltage starting unit charges the switch circuit to activate the control circuit
  • the control circuit dynamically controls the switch circuit to perform charging
  • the switching circuit provides a DC low voltage power supply to the control circuit.
  • the invention activates the control circuit through the auxiliary power source, and creatively supplies the DC low-voltage power supply to the control circuit by charging the storage capacitor in the switch circuit, which simplifies the circuit and reduces the cost without reducing the power supply efficiency.
  • FIG. 1 is a circuit diagram of an AC-DC LED DC power supply device according to a first embodiment of the present invention
  • FIG. 2 is a view showing the internal structure of a high voltage starting unit according to a second embodiment of the present invention.
  • FIG. 3 is a block diagram showing the internal structure of a control circuit according to a third embodiment of the present invention.
  • the present invention activates a control circuit through an auxiliary power source and creatively provides a DC low voltage power supply to the control circuit by charging a storage capacitor in the switching circuit.
  • the low-voltage control power supply circuit provided by the first embodiment of the present invention is connected between the rectifier circuit and the current adjustment unit, and the low-voltage control power supply circuit includes:
  • An auxiliary power source wherein an input end of the auxiliary power source is connected to an output end of the rectifier circuit;
  • a high voltage starting unit an input end of the high voltage starting unit is connected to an output end of the auxiliary power source;
  • a switching circuit a first control end of the switch circuit is connected to an output end of the auxiliary power source, an input end of the switch circuit is connected to an output end of the current adjusting unit, and a first sampling end of the switch circuit is Connecting the output of the high voltage starting unit;
  • a control circuit a main control end of the control circuit is connected to a first control end of the switch circuit, and an energy storage control end of the control circuit is connected to a second control end of the switch circuit, and a current of the control circuit a sampling control end is connected to the third control end of the switch circuit, a capacitance sampling end of the control circuit is connected to a first sampling end of the switch circuit, and a current sampling end of the control circuit and a Two sampling ends are connected, and a peak-to-valley detecting end of the control circuit is connected to an output end of the current adjusting unit;
  • the switch circuit When the auxiliary power source is powered on, the switch circuit is charged by the high voltage starting unit to start the control circuit, and after the power is turned on, the control circuit dynamically controls the switch circuit to perform charging.
  • the control circuit provides a low voltage power supply.
  • FIG. 1 is an AC-DC according to a first embodiment of the present invention.
  • the circuit diagram of the LED direct current power supply unit shows only the parts related to the present invention for convenience of explanation.
  • the AC power source is connected to the input end of the rectifier circuit 13 through the overvoltage protection unit 11 and the AC input filter unit 12.
  • the output terminals of the rectifier circuit 13 are respectively connected to the input terminal of the auxiliary power source 16 and the current adjustment unit 17.
  • the input terminal is connected, the connection point is node C, and the rectifier circuit 13 can adopt a bridge rectifier circuit.
  • the auxiliary power supply 16 includes a diode D1 connected in series, a current limiting resistor R1, a smoothing capacitor C2, and a clamping diode Z2 connected in parallel with the smoothing capacitor C2.
  • the anode of the diode D1 is an input terminal of the auxiliary power source 16, and the cathode of the diode D1 passes.
  • the current limiting resistor R1 and the smoothing capacitor C2 are grounded, the anode of the clamping diode Z2 is grounded, and the cathode of the clamping diode Z2 is the output terminal of the auxiliary power source 16.
  • the current adjustment unit 17 includes a power inductor L2, a rectifier diode D4, and a filter capacitor C3, wherein one end of the power inductor L2 is connected as an input end of the current adjustment unit 17 to an output end of the rectifier circuit 13, and the other end is connected to an anode of the rectifier diode D4.
  • the connection point is node D
  • the cathode of the rectifier diode D4 is connected to one end of the filter capacitor C3
  • the connection point is the node K
  • the other end of the filter capacitor C3 serves as the input end of the current adjustment unit 17 and the output of the rectifier circuit 13
  • the terminals are connected, and both ends of the filter capacitor C3 are connected to the DC load 14 as an output terminal of the current adjustment unit 17.
  • the adjustment terminals of the current adjustment unit 17 are respectively connected to the input terminal of the switch circuit 18 and the peak-to-valley detection terminal of the control circuit 15.
  • the switch circuit 18 includes:
  • the main switch S1 the control end of the main switch S1 is connected to the first control end of the switch circuit 18 and the output end of the auxiliary power source 16, the connection point is the node E, and the input end of the main switch S1 is the input of the switch circuit 18.
  • the terminal is connected to the current adjustment unit 17, and its connection point is node D;
  • the control control unit S2 the control end of the drive control tube S2 is connected to the second control end of the switch circuit 18 and the energy storage control end of the control circuit 15, the connection point is the node G, and the input end of the drive control tube S2 is connected to the main
  • the output end of the switch S1 is connected to the node F.
  • the output end of the drive control tube S2 is the first sampling end of the switch circuit 18 grounded through the storage capacitor C4, and the connection point between the drive control tube S2 and the storage capacitor C4 is a node. P;
  • Drive control tube S3 the control end of the drive control tube S3 is the third control end of the switch circuit 18 and the current sampling control end of the control circuit 15, the connection point is the node H, and the input end of the drive control tube S3 is connected to the main switch
  • the output end of S1 the output end of the drive control tube S3 is the second sampling end of the switch circuit 18 is grounded through the sampling resistor R2, and the connection point of the drive control tube S3 and the sampling resistor R2 is the node U.
  • the high voltage starting unit 19 includes:
  • the anode of the current source CS1 is connected to the anode of the current source CS2, and the cathode of the current source CS1 is connected to the forward input of the comparator A1 and the forward input of the comparator A2.
  • the comparator A1 is connected.
  • the reverse input terminal is connected to the anode of the Zener diode Z12, the cathode of the Zener diode Z12 is connected to the anode of the Zener diode Z11, the cathode of the Zener diode Z11 is connected to the anode of the current source CS1, and the reverse input terminal of the comparator A1 is further Connected to the cathode of the Zener diode Z13, the anode of the Zener diode Z13 is grounded, the output end of the comparator A1 is connected to the control end of the start control tube P1, the input end of the start control tube P1 is connected to the negative pole of the current source CS2, and the control tube P1 is activated.
  • the output end is connected to the input end of the start control tube N1, the control end of the start control tube N1 is connected to the output end of the comparator A2, and the output end of the start control tube N1 is the reverse end of the output end of the high voltage start unit 19 and the comparator A2.
  • the input terminal is connected, the forward input terminal of the comparator A2 is connected to the cathode of the Zener diode Z14, and the anode of the Zener diode Z14 is grounded.
  • the control circuit 15 includes:
  • the main control unit 151 has an energy storage control output end as an energy storage control end of the control circuit, and a current control output end thereof is a current sampling control end of the control circuit;
  • the energy storage potential sampling unit 152 has an input end of a capacitance sampling end of the control circuit
  • a current sampling unit 153 having an input terminal of a current sampling end of the control circuit
  • the peak-to-valley detecting unit 154 has an input terminal of a peak-to-valley detecting end of the control circuit.
  • Low dropout regulator unit (low dropout The regulator (LDO) 20 has an input terminal connected to the first sampling end of the switch circuit 18, and an output terminal connected to the power input end of the control circuit 15, the low drop voltage regulator unit 20 Obtain a fixed DC output voltage from the storage capacitor C4 to provide a stable low voltage operating power for the control circuit 15.
  • the fuse F1 may be connected in series between the neutral ACN and the overvoltage protection unit 11, and a clamping diode Z1 may be connected in series between the output end of the rectifier circuit 13 and the ground.
  • the anode of Z1 is grounded, and the cathode is grounded through a smoothing capacitor C1.
  • the main switch S1 and the drive control tube S2 and the drive control tube S3 can be either discrete devices or integrated tubes, and can be either MOSFETs or triodes.
  • AC-DC After the LED DC power supply device is powered on, the AC power supply is protected by the fuse F1, the overvoltage protection unit 11, and input to the AC input filter unit 12 for filtering, and the output is rectified by the rectifier circuit 13, and the clamp diode Z1 can make C
  • the point potential is stable, and the rectifying and filtering capacitor C1 re-converts the full-wave rectified current to form a stable pulsating DC high voltage.
  • the pulsed DC high voltage power is used as an input of the auxiliary power source 16, and the smoothing capacitor C2 is charged by the diode D1 and the current limiting resistor R1 to raise the level of the E point of the auxiliary power source 16 output, that is, the internal high voltage level.
  • Clamping diode Z2 clamps the level of point E to a fixed value that is greater than or equal to the threshold voltage of main switch S1.
  • the high voltage starting unit 19 starts, and charges the storage capacitor C4, so that the voltage across the storage capacitor C4 gradually rises, and when the voltage across the storage capacitor C4 rises to the setting.
  • the LDO starts normal operation, outputs a stable DC voltage, can provide a starting voltage for the control circuit 15, the control circuit 15 is activated, and the main control unit 151 controls the main switch S1 to be turned on, and its conduction time and the power inductance L2 are The output current is proportional.
  • the current sampling unit 153 detects the current on the sampling resistor R2, and processes the current signal to obtain current average information outputted to the DC load 14, and then inputs the information to the main control unit 151, and presets. After the value comparison, it is decided to increase or decrease the on-time of the main switch S1, and finally the output current is the same as the set value. Regardless of whether the DC load 14 or the input voltage fluctuates, the main control unit 151 can dynamically adjust the switching time of the main switch S1 to obtain a desired output current.
  • the startup process of the high voltage starting circuit 19 is detailed as follows:
  • the preset voltage is a series voltage of the Zener diode Z11, the Zener diode Z12, and the Zener diode Z13.
  • the process of the main control unit 151 dynamically adjusting the main switch S1 is as follows:
  • the main control unit 151 turns off the main switch S1.
  • the main switch S1 When the main switch S1 is turned off, the main switch S1 and the rectifying diode D4 are parasitized. The influence of the capacitance, the node D voltage gradually rises from 0V.
  • the rectifier diode D4 When the node D potential rises above the potential of the node K, the rectifier diode D4 is turned on, and the current of the power inductor L2 is output to the DC load 14 through the rectifier D4, and the power inductor L2 The current begins to drop from the peak.
  • the potential of the node D begins to decrease due to the resonance of the parasitic capacitance of the rectifier diode D4 and the main switch S1 and the power inductor L2. After a period of time, the voltage of the node D will have a peak-to-valley value. And detecting the voltage of the node D by the peak and valley detecting unit 154, When the voltage has a peak-to-valley value, the detected result is sent to the main control unit 151, and the main control unit 151 drives the main switch S1 by driving the control tube S2 or driving the control tube S3, at which time "0" is realized. The voltage is turned on with low switching losses.
  • the main control unit 151 detects the voltage of the node P by the energy storage potential sampling unit 152 to control the selection of the drive control tube S2 or the drive control tube S3 to drive the main switch S1, as follows:
  • the stored energy potential sampling unit 152 detects whether the voltage of the node P (ie, the low voltage control power supply voltage) is within a set range. If the voltage of the node P is within the set range, the main control unit 151 drives the main switch S1 through the drive control tube S3. Otherwise, the main control unit 151 drives the main switch S1 to be turned on by driving the control tube S2 to charge the low voltage control power supply while the main circuit is operating normally.
  • the voltage of the node P ie, the low voltage control power supply voltage
  • the operating power of the control circuit 15 itself is also derived from the storage capacitor C4.
  • the voltage of the node P gradually decreases due to the consumption of the operating current of the control circuit itself.
  • the main control circuit 151 selects the drive control tube S2 to control the on and off of the S1.
  • the main control circuit 151 controls the driving control tube S2 to drive the main switch S1 to conduct, the current flows to the power inductor L2 and the main switch S1 through the node C, and drives the control tube S2 to the storage capacitor.
  • C4 is charged.
  • the switch control tube S2 is turned off, and the switch control tube S3 is turned on, and is switched to the normal switch state.
  • the control circuit 15 when the whole circuit is powered on, since the storage capacitor C4 has a low potential, the control circuit 15 does not have a DC power supply, and the entire control circuit 15 does not work. Only the auxiliary power supply 16 works, and gradually increases. When the potential of the E point reaches the preset value, the high voltage starting unit 19 charges the storage capacitor C4, and after the fixed value of the potential of the storage capacitor C4 increases, the control circuit 15 starts to work.
  • the main control unit 151 can also adjust the hysteresis value of the detection circuit in the energy storage potential sampling unit 152 as needed.
  • Fig. 3 shows the connection structure of the voltage VDD1 detection comparison unit with the hysteresis function, and for convenience of explanation, only the parts related to the embodiment of the present invention are shown.
  • the stored energy potential sampling unit 152 includes a voltage VDD1 detection and comparison unit 1 with a hysteresis function
  • the main control unit 151 includes: an inverter INV1, a NAND gate NAND1, a NAND gate NAND2, and a driving.
  • the voltage VDD1 detects that one input terminal Vref of the comparison unit 1 is connected to the reference signal inside the control circuit 15, the voltage VDD1 detects that the other input terminal of the comparison unit 1 is connected to the node P, and the voltage VDD1 detects that the control terminal of the comparison unit 1 is connected to other parts of the control circuit.
  • the output of the voltage VDD1 detecting and comparing unit 1 is connected to one input terminal of the NAND gate NAND1, and is connected to one input terminal of the NAND gate NAND2 through the inverter INV1, and the other input terminal of the NAND gate NAND1 and the NAND gate NAND2.
  • the output end of the NAND gate NAND1 is connected to the input end of the drive circuit DRV1, and the output end of the drive circuit DRV1 is connected to the control end of the drive control tube S2, the connection point is the node G, the output of the NAND gate NAND2
  • the input end of the driving circuit DRV2 is connected to the control end of the driving control tube S3, and the connection point is the node H.
  • the inverter INV1 When the voltage VDD1 with the hysteresis function is compared with the detection unit outputting a high level, and the pulse width modulation signal PWM input is at a low level, the inverter INV1 outputs a low level, the NAND gate NAND2 outputs a high level, and the driving circuit DRV2 outputs Low level, at the same time, the NAND gate NAND1 outputs a high level, and DRV1 also outputs a low level. At this time, the switch control tube S2 and the switch control tube S3 are turned off.
  • the low-voltage power supply circuit provided by the embodiment of the present invention can be applied to any type of conversion power supply including an AC-DC conversion power supply and a DC-DC conversion power supply, and is particularly suitable for application in an LED driving circuit.
  • the third embodiment of the present invention provides an implementation flow of a driving control method for an optoelectronic device, and the steps are as follows:
  • the high voltage starting unit charges the switch circuit to activate the control circuit
  • the control circuit dynamically controls the switch circuit to perform charging
  • the switching circuit provides a DC low voltage power supply to the control circuit.
  • the auxiliary unit starts the high voltage starting unit by charging the smoothing capacitor C2; the high voltage starting unit starts the control circuit by charging the storage capacitor C4; the control circuit controls the main The switching time of the switch S1 and the driving control tube S2 is controlled to control the switching circuit to perform charging; the switching circuit detects a potential through the control circuit, and when the potential is lower than the preset voltage, the main is controlled by driving the control tube S2 The switch S1 charges the storage capacitor C4. When the potential is higher than the preset voltage, the main switch S1 is gated through the drive control tube S2 to obtain a stable DC low voltage.
  • the invention activates the control circuit through the auxiliary power source, and creatively provides a stable low-voltage power supply for the control circuit by charging the storage capacitor in the switch circuit and further regulating the LDO, thereby simplifying the circuit without reducing the power supply efficiency. , reducing costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

一种低压控制电源电路及其产生方法 技术领域
本发明属于电子技术领域,尤其涉及一种低压控制电源电路及其产生方法。
背景技术
通常在电子设备中需要使用AC-DC或DC-DC转换电源,如充电器,LED 驱动电源,笔记本电源等,而在这类电源中,又包含了内部控制电路,这些电路需要一个低压电源。目前市场上的AC-DC或高压DC-DC转换电源中的控制电源基本上由以下两种方式产生:通过整流后的高压直流,经过电阻或高压MOSFET降压后提供给控制电源,或者通过变压器的辅助绕组或电感的藕合线圈,经二极管整流后获得。但是,第一种方式的电源效率很低,而第二种方式的电路结构又比较复杂、成本也很高。
技术问题
本发明的目的在于提供一种低压控制电源电路,旨在解决电源效率低,电路结构复杂,成本高的问题。
本发明的另一目的在于提供一种采用上述低压控制电源电路的转换电源。
本发明的另一目的在于提供一种低压控制电源电路的产生方法。
技术解决方案
本发明是这样实现的,一种低压控制电源电路,连接于整流电路与电流调整单元之间,所述电路包括:
辅助电源,所述辅助电源的输入端与整流电路的输出端连接;
高压启动单元,所述高压启动单元的输入端与所述辅助电源的输出端连接;
开关电路,所述开关电路的第一控制端与所述辅助电源的输出端连接,所述开关电路的输入端与所述电流调整单元的输出端连接,所述开关电路的第一采样端与所述高压启动单元的输出端连接;以及
控制电路,所述控制电路的主控制端与所述开关电路的第一控制端连接,所述控制电路的储能控制端与所述开关电路的第二控制端连接,所述控制电路的电流采样控制端与所述开关电路的第三控制端连接,所述控制电路的电容采样端与所述开关电路的第一采样端连接,所述控制电路的电流采样端与所述开关电路的第二采样端连接,所述控制电路的峰谷检测端与所述电流调整单元的输出端连接;
所述辅助电源在电路上电时,通过所述高压启动单元对所述开关电路充电,以启动所述控制电路,上电完成后,由所述控制电路动态控制所述开关电路进行充电,为所述控制电路提供低压电源。
本发明提供了一种低压控制电源电路的产生方法,所述方法包括下述步骤:
对所述辅助电源充电,启动所述高压启动单元;
所述高压启动单元对所述开关电路充电,以启动所述控制电路;
所述控制电路动态控制所述开关电路进行充电;
所述开关电路为所述控制电路提供直流低压电源。
有益效果
本发明通过辅助电源启动控制电路,并创造性地通过对开关电路中的储能电容充电,为控制电路提供直流低压电源,在不降低电源效率的同时,简化了电路,降低了成本。
附图说明
图1是本发明第一实施例提供的AC-DC LED直流电源装置的电路图;
图2是本发明第二实施例提供的高压启动单元内部结构图;
图3是本发明第三实施例提供的控制电路内部结构图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明通过辅助电源启动控制电路,并创造性地通过对开关电路中的储能电容充电,为控制电路提供直流低压电源。
作为本发明第一实施例提供的低压控制电源电路,连接于整流电路与电流调整单元之间,所述低压控制电源电路包括:
辅助电源,所述辅助电源的输入端与整流电路的输出端连接;
高压启动单元,所述高压启动单元的输入端与所述辅助电源的输出端连接;
开关电路,所述开关电路的第一控制端与所述辅助电源的输出端连接,所述开关电路的输入端与所述电流调整单元的输出端连接,所述开关电路的第一采样端与所述高压启动单元的输出端连接;以及
控制电路,所述控制电路的主控制端与所述开关电路的第一控制端连接,所述控制电路的储能控制端与所述开关电路的第二控制端连接,所述控制电路的电流采样控制端与所述开关电路的第三控制端连接,所述控制电路的电容采样端与所述开关电路的第一采样端连接,所述控制电路的电流采样端与所述开关电路的第二采样端连接,所述控制电路的峰谷检测端与所述电流调整单元的输出端连接;
所述辅助电源在电路上电时,通过所述高压启动单元对所述开关电路充电,以启动所述控制电路,上电完成后,由所述控制电路动态控制所述开关电路进行充电,为所述控制电路提供低压电源。
以下结合具体实施例对本发明的实现进行详细说明。
图1为本发明第一实施例提供的AC-DC LED直流电源装置的电路图,为了便于说明,仅示出了与本发明相关的部分。
在本发明实施例中,交流电源通过过压保护单元11、交流输入滤波单元12与整流电路13的输入端连接,整流电路13的输出端分别与辅助电源16的输入端、电流调整单元17的输入端连接,其连接点为节点C,该整流电路13可以采用桥式整流电路。
辅助电源16包括:依次串联的二极管D1、限流电阻R1、平滑电容C2以及与平滑电容C2并联的钳位二极管Z2,其中,二极管D1的阳极为辅助电源16的输入端,二极管D1的阴极通过限流电阻R1和平滑电容C2接地,钳位二极管Z2的阳极接地,钳位二极管Z2的阴极为辅助电源16的输出端。
电流调整单元17包括:功率电感L2、整流二极管D4以及滤波电容C3,其中,功率电感L2的一端作为电流调整单元17的输入端与整流电路13的输出端连接,另一端与整流二极管D4的阳极连接,其连接点为节点D,整流二极管D4的阴极与滤波电容C3的一端连接,其连接点为节点K,滤波电容C3的另一端同时作为电流调整单元17的输入端与整流电路13的输出端连接,并且,滤波电容C3的两端作为电流调整单元17的输出端连接直流负载14。
电流调整单元17的调节端分别与开关电路18的输入端、控制电路15的峰谷检测端连接。
开关电路18包括:
主开关S1,该主开关S1的控制端为开关电路18的第一控制端与辅助电源16的输出端连接,其连接点为节点E,,该主开关S1的输入端为开关电路18的输入端与电流调整单元17连接,其连接点为节点D;
驱动控制管S2,该驱动控制管S2的控制端为开关电路18的第二控制端与控制电路15的储能控制端连接,其连接点为节点G,该驱动控制管S2的输入端连接主开关S1的输出端,其连接点为节点F,驱动控制管S2的输出端为开关电路18的第一采样端通过储能电容C4接地,驱动控制管S2与储能电容C4的连接点为节点P;
驱动控制管S3,该驱动控制管S3的控制端为开关电路18的第三控制端与控制电路15的电流采样控制端连接,其连接点为节点H,驱动控制管S3的输入端连接主开关S1的输出端,驱动控制管S3的输出端为开关电路18的第二采样端通过采样电阻R2接地,驱动控制管S3与采样电阻R2的连接点为节点U。
高压启动单元19包括:
比较器A1、比较器A2、启动控制管P1、启动控制管N1、电流源CS1、电流源CS2、齐纳二极管Z11、齐纳二极管Z12、齐纳二极管Z13及齐纳二极管Z14;
电流源CS1的正极为高压启动单元19的输入端与电流源CS2的正极连接,电流源CS1的负极同时与比较器A1的正向输入端、比较器A2的正向输入端连接,比较器A1的反向输入端连接齐纳二极管Z12的阳极,齐纳二极管Z12的阴极连接齐纳二极管Z11的阳极,齐纳二极管Z11的阴极与电流源CS1的正极连接,比较器A1的反向输入端还与齐纳二极管Z13的阴极连接,齐纳二极管Z13的阳极接地,比较器A1的输出端连接启动控制管P1的控制端,启动控制管P1的输入端连接电流源CS2的负极,启动控制管P1的输出端与启动控制管N1的输入端连接,启动控制管N1的控制端连接比较器A2的输出端,启动控制管N1的输出端为高压启动单元19的输出端与比较器A2的反向输入端连接,比较器A2的正向输入端与齐纳二极管Z14的阴极连接,齐纳二极管Z14的阳极接地。
控制电路15包括:
主控单元151,其储能控制输出端为所述控制电路的储能控制端,其电流控制输出端为所述控制电路的电流采样控制端;
储能电位采样单元152,其输入端为所述控制电路的电容采样端;
电流采样单元153,其输入端为所述控制电路的电流采样端;以及
峰谷检测单元154,其输入端为所述控制电路的峰谷检测端。
低压差稳压单元(low dropout regulator,LDO)20,其输入端与开关电路18的第一采样端连接,输出端与控制电路15的电源输入端连接,该低压差稳压单元 20从储能电容C4上获取一个固定直流输出电压,为控制电路15提供稳定的低压工作电源。
作为本发明一实施例,可以于零线ACN与过压保护单元11之间串联保护熔丝F1,还可以于整流电路13的输出端与地之间串联一钳位二极管Z1,该钳位二极管Z1的阳极接地,阴极通过平滑电容C1接地。
作为本发明一优选实施例,主开关S1和驱动控制管S2、驱动控制管S3既可以为分立器件,也可以为集成管,既可以为MOSFET,也可以为三极管。
在本发明实施例中,AC-DC LED直流电源装置上电后,交流电源经保护熔丝F1,过压保护单元11,输入到交流输入滤波单元12进行滤波,其输出再由整流电路13对其整流,钳位二极管Z1可以使C点电位稳定,整流滤波电容C1则对全波整流后的电流再次整流,形成稳定的脉动直流高压电。
脉冲直流高压电作为辅助电源16的输入,通过二极管D1、限流电阻R1对平滑电容C2充电,以抬升辅助电源16输出E点的电平,即内部高压电平。钳位二极管Z2将E点的电平钳位在一固定值,该值大于或等于主开关S1的阈值电压。
当E端的充电电压达到设定值后,高压启动单元19启动,并对储能电容C4充电,使储能电容C4两端的电压逐渐升高,当储能电容C4两端电压升高到设定值后,LDO开始正常工作,输出稳定的直流电压,可以为控制电路15提供启动电压,控制电路15启动,由主控单元151控制主开关S1导通,其导通时间与对功率电感L2的输出电流成正比关系。此时,电流采样单元153检测采样电阻R2上的电流,并对这个电流信号进行处理,以获得输出到直流负载14的电流平均值信息,再将此信息输入到主控单元151,与预设值比较以后决定增加或者减少主开关S1的导通时间,最终使输出电流与设定值相同。无论直流负载14或者输入电压是否有波动,主控单元151都可以动态调整主开关S1的开关时间以获得期望的输出电流。
在本实施例中,高压启动电路19的启动过程详述如下:
当电路上电时,E点电平未达到预设高电压时,启动控制管P1不导通;当E点电平达到预设高电压瞬间,启动控制管P1导通,此时P点电平,即内部低压电平,低于齐纳二极管Z14的临界电压,从而启动控制管N1导通,电流源CS2对储能电容C4充电,将P点电平抬升,直到比较器A2翻转,令控制管N1截止,完成上电过程,控制电路15启动,参见图2。
作为本发明一实施例,该预设电压为齐纳二极管Z11、齐纳二极管Z12及齐纳二极管Z13的串联电压。
在本发明实施例中,主控单元151动态调整主开关S1的过程详述如下:
在主开关S1导通后,功率电感L2电流上升,导通一定时间以后,主控单元151会关断主开关S1,当主开关S1关断时,由于主开关S1和整流二级管D4的寄生电容的影响,节点D电压从0V逐渐上升,当节点D电位上升到超过节点K的电位时,整流二极管D4导通,功率电感L2的电流经过整流管D4输出到直流负载14,功率电感L2的电流从峰值开始下降。当功率电感L2电流下降到0V时,由于整流二极管D4和主开关S1的寄生电容与功率电感L2的谐振作用,节点D的电位开始下降,经过一段时间,节点D的电压会出现峰谷值,并由峰谷检测单元154检测节点D的电压, 当电压出现峰谷值时,将检测到的结果送到主控制单元151, 主控单元151通过驱动控制管S2或者驱动控制管S3来驱动主开关S1,此时实现“0” 电压导通,具有低开关损耗。
在主开关S1导通期间,主控单元151通过储能电位采样单元152检测节点P的电压来控制选择驱动控制管S2或者驱动控制管S3驱动主开关S1,详述如下:
储能电位采样单元152检测节点P的电压(即低压控制电源电压),是否处于设定范围,如节点P的电压处于设定范围,主控制单元151通过驱动控制管S3来驱动主开关S1导通,否则,主控制单元151通过驱动控制管S2来驱动主开关S1导通,在主电路正常工作的同时,为低压控制电源充电。
另外,控制电路15本身工作电源也来自于储能电容C4, 正常工作时节点P的电压由于控制电路本身工作电流的消耗,会逐渐降低,当节点P的电压低于预设值时,主控电路151选择驱动控制管S2来控制S1的导通和关断,当节点D的电压出现峰谷值时,主控电路151控制驱动控制管S2驱动主开关S1导通,电流经节点C流至功率电感L2、主开关S1,驱动控制管S2对储能电容C4充电,当节点P端电压达到预设上限值后,开关控制管S2关断,开关控制管S3导通,转入正常开关状态。
在本发明实施例中,整个电路上电的时候,由于储能电容C4上为低电位,因此,控制电路15上没有直流电源,整个控制电路15不工作,只有辅助电源16工作,在逐步提高 E点电位直到达到预设值时,高压启动单元19对储能电容C4充电,储能电容C4电位提高的固定值以后,控制电路15才开始工作。
作为本发明第二实施例,主控制单元151还可以根据需要,调节储能电位采样单元152中检测电路的回差值。
图3示出了带回差功能的电压VDD1检测比较单元的连接结构,为了便于说明,仅示出了与本发明实施例相关的部分。
在本发明实施例中,储能电位采样单元152中包括带回差功能的电压VDD1检测比较单元1,主控单元151中包括:倒相器INV1、与非门NAND1、与非门NAND2、驱动电路DRV1、驱动电路DRV2。
电压VDD1检测比较单元1的一个输入端Vref连接控制电路15内部的基准信号,电压VDD1检测比较单元1的另一个输入端连接节点P,电压VDD1检测比较单元1的控制端与控制电路其他部分连接,电压VDD1检测比较单元1的输出端连接与非门NAND1的一个输入端,并通过倒相器INV1与非门NAND2的一个输入端连接,与非门NAND1、与非门NAND2的另一个输入端分别连接控制电路其他部分,与非门NAND1的输出端连接驱动电路DRV1的输入端,驱动电路DRV1的输出端连接驱动控制管S2的控制端,其连接点为节点G,与非门NAND2的输出端驱动电路DRV2的输入端,驱动电路DRV2的输出端连接驱动控制管S3的控制端,其连接点为节点H。
当带回差功能的电压VDD1比较检测单元输出高电平,且脉冲宽度调制信号PWM输入为低电平时,倒向器INV1输出低电平,与非门NAND2输出高电平,驱动电路DRV2输出低电平,同时,与非门NAND1输出高电平,DRV1也输出低电平,此时,开关控制管S2与开关控制管S3关断。当带回差功能的电压VDD1比较检测单元输出高电平,且脉冲宽度调制信号PWM输入为高电平时,驱动电路DRV2输出低电平,开关控制管S3继续关断,但由于与非门NAND1输出低电平,DRV1输出高电平,主开关驱动控制管S2导通,外部电流经过整流滤波电容C1的上端,经功率电感L2,主开关S1,驱动控制管S2给VDD1端的储能电容C4充电。
本发明实施例提供的低压电源电路可以应用于包括AC-DC转换电源和DC-DC转换电源在内的任何型号的转换电源中,尤其适合应用于LED驱动电路中。
本发明第三实施例提供了光电设备的驱动控制方法的实现流程,步骤具体如下:
对所述辅助电源充电,启动所述高压启动单元;
所述高压启动单元对所述开关电路充电,以启动所述控制电路;
所述控制电路动态控制所述开关电路进行充电;
所述开关电路为所述控制电路提供直流低压电源。
作为本发明一优选实施例,所述辅助单元通过对平滑电容C2充电启动所述高压启动单元;所述高压启动单元通过对储能电容C4充电启动所述控制电路;所述控制电路通过控制主开关S1和驱动控制管S2的导通时间来控制所述开关电路进行充电;所述开关电路通过所述控制电路检测电位,当该电位低于预设电压时,通过驱动控制管S2选通主开关S1,对储能电容C4充电,当该电位高于预设电压时,通过驱动控制管S2选通主开关S1,以获得稳定的直流低压。
本发明通过辅助电源启动控制电路,并创造性地通过对开关电路中的储能电容充电,以及LDO的进一步稳压,为控制电路提供稳定的低压电源,在不降低电源效率的同时,简化了电路,降低了成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种低压控制电源电路,连接于整流电路与电流调整单元之间,其特征在于,所述电路包括:
    辅助电源,所述辅助电源的输入端与整流电路的输出端连接;
    高压启动单元,所述高压启动单元的输入端与所述辅助电源的输出端连接;
    开关电路,所述开关电路的第一控制端与所述辅助电源的输出端连接,所述开关电路的输入端与所述电流调整单元的输出端连接,所述开关电路的第一采样端与所述高压启动单元的输出端连接;以及
    控制电路,所述控制电路的主控制端与所述开关电路的第一控制端连接,所述控制电路的储能控制端与所述开关电路的第二控制端连接,所述控制电路的电流采样控制端与所述开关电路的第三控制端连接,所述控制电路的电容采样端与所述开关电路的第一采样端连接,所述控制电路的电流采样端与所述开关电路的第二采样端连接,所述控制电路的峰谷检测端与所述电流调整单元的输出端连接;
    所述辅助电源在电路上电时,通过所述高压启动单元对所述开关电路充电,以启动所述控制电路,上电完成后,由所述控制电路动态控制所述开关电路进行充电,为所述控制电路提供低压电源。
  2. 如权利要求1所述的低压控制电源电路,其特征在于,所述低压控制电源电路还包括:
    为所述控制电路提供稳定低压电源的低压差稳压单元,所述低压差稳压单元的输入端与所述开关电路的第一采样端连接,所述低压差稳压单元的输出端与所述控制电路的电源输入端连接。
  3. 如权利要求1所述的低压控制电源电路,其特征在于,所述辅助电源包括:
    依次串联的二极管D1、限流电阻R1、平滑电容C2以及与平滑电容C2并联的钳位二极管Z2,其中,所述二极管D1的阳极为所述辅助电源的输入端,所述二极管D1的阴极通过所述限流电阻R1和所述平滑电容C2接地,所述钳位二极管Z2的阳极接地,所述钳位二极管Z2的阴极为辅助电源的输出端。
  4. 如权利要求1所述的低压控制电源电路,其特征在于,所述开关电路包括:
    主开关S1,其控制端为所述开关电路的第一控制端,其输入端为所述开关电路的输入端;
    驱动控制管S2,其控制端为所述开关电路的第二控制端,其输入端连接所述主开关S1的输出端,其输出端为所述开关电路的第一采样端通过储能电容C4接地;
    驱动控制管S3,其控制端为所述开关电路的第三控制端,其输入端连接所述主开关S1的输出端,其输出端为所述开关电路的第二采样端通过采样电阻R2接地。
  5. 如权利要求4所述的低压控制电源电路,其特征在于,所述主开关S1、驱动控制管S2、驱动控制管S3均为分立器件或者集成管。
  6. 如权利要求1所述的低压控制电源电路,其特征在于,所述控制电路包括:
    主控单元,其储能控制输出端为所述控制电路的储能控制端,其电流控制输出端为所述控制电路的电流采样控制端;
    储能电位采样单元,其输入端为所述控制电路的电容采样端;
    电流采样单元,其输入端为所述控制电路的电流采样端;以及
    峰谷检测单元,其输入端为所述控制电路的峰谷检测端。
  7. 如权利要求1所述的低压控制电源电路,其特征在于,所述高压启动单元包括:
    比较器A1、比较器A2、启动控制管P1、启动控制管N1、电流源CS1、电流源CS2、齐纳二极管Z11、齐纳二极管Z12、齐纳二极管Z13及齐纳二极管Z14;
    所述电流源CS1的正极为所述高压启动单元的输入端与所述电流源CS2的正极连接,所述电流源CS1的负极同时与所述比较器A1的正向输入端、所述比较器A2的正向输入端连接,所述比较器A1的反向输入端连接所述齐纳二极管Z12的阳极,所述齐纳二极管Z12的阴极连接所述齐纳二极管Z11的阳极,所述齐纳二极管Z11的阴极与所述电流源CS1的正极连接,所述比较器A1的反向输入端还与所述齐纳二极管Z13的阴极连接,所述齐纳二极管Z13的阳极接地,所述比较器A1的输出端连接所述启动控制管P1的控制端,所述启动控制管P1的输入端连接所述电流源CS2的负极,所述启动控制管P1的输出端与所述启动控制管N1的输入端连接,所述启动控制管N1的控制端连接所述比较器A2的输出端,所述启动控制管N1的输出端为所述高压启动单元的输出端与所述比较器A2的反向输入端连接,所述比较器A2的正向输入端与所述齐纳二极管Z14的阴极连接,所述齐纳二极管Z14的阳极接地。
  8. 一种转换电源,其特征在于,所述转换电源包括如权利要求1至7任一项所述的低压控制电源电路。
  9. 一种低压控制电源的驱动控制方法,其特征在于,所述方法包括下述步骤:
    对所述辅助电源充电,启动所述高压启动单元;
    所述高压启动单元对所述开关电路充电,以启动所述控制电路;
    所述控制电路动态控制所述开关电路进行充电;
    所述开关电路为所述控制电路提供直流低压电源。
  10. 如权利要求9所述的方法,其特征在于,所述辅助单元通过对平滑电容C2充电启动所述高压启动单元;所述高压启动单元通过对储能电容C4充电启动所述控制电路;所述控制电路通过控制主开关S1和驱动控制管S2的导通时间来控制所述开关电路进行充电;所述开关电路通过所述控制电路检测电位,当该电位低于预设电压时,通过驱动控制管S2选通主开关S1,对储能电容C4充电,当该电位高于预设电压时,通过驱动控制管S2选通主开关S1,以获得稳定的直流低压。
PCT/CN2011/070546 2011-01-24 2011-01-24 一种低压控制电源电路及其产生方法 WO2012100406A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11856668.6A EP2555398A4 (en) 2011-01-24 2011-01-24 POWER SUPPLY CIRCUIT WITH LOW VOLTAGE CONTROL AND MANUFACTURING METHOD THEREFOR
US13/641,362 US20130033110A1 (en) 2011-01-24 2011-01-24 Power supply circuit with low-voltage control and producing method thereof
PCT/CN2011/070546 WO2012100406A1 (zh) 2011-01-24 2011-01-24 一种低压控制电源电路及其产生方法
JP2013549693A JP2014503168A (ja) 2011-01-24 2011-01-24 低電圧制御電源回路及びその駆動制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/070546 WO2012100406A1 (zh) 2011-01-24 2011-01-24 一种低压控制电源电路及其产生方法

Publications (1)

Publication Number Publication Date
WO2012100406A1 true WO2012100406A1 (zh) 2012-08-02

Family

ID=46580181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070546 WO2012100406A1 (zh) 2011-01-24 2011-01-24 一种低压控制电源电路及其产生方法

Country Status (4)

Country Link
US (1) US20130033110A1 (zh)
EP (1) EP2555398A4 (zh)
JP (1) JP2014503168A (zh)
WO (1) WO2012100406A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166175B (zh) * 2013-04-10 2015-08-19 重庆四联光电科技有限公司 Led驱动电源输入过压保护电路
CN110650468B (zh) * 2013-08-05 2022-08-30 北京三星通信技术研究有限公司 一种小小区架构中支持业务本地分流的方法、系统和设备
US9270266B1 (en) 2014-11-21 2016-02-23 Lg Chem, Ltd. High voltage switching circuit
CN108093453B (zh) * 2016-11-21 2020-03-03 北京小米移动软件有限公司 小区重选方法及装置
JP6673949B2 (ja) * 2018-01-29 2020-04-01 ファナック株式会社 モータ駆動装置および判定方法
CN108767944B (zh) * 2018-08-22 2023-11-03 上海艾为电子技术股份有限公司 一种开关充电电路
CN109462264B (zh) * 2018-11-19 2024-03-12 富满微电子集团股份有限公司 一种ac-dc芯片自供电电路及充电器
CN111555643B (zh) * 2020-06-05 2024-02-27 上海晶丰明源半导体股份有限公司 开关电源控制器、开关电源系统及开关电源系统供电方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201118440Y (zh) * 2007-11-29 2008-09-17 深圳市同洲电子股份有限公司 一种开机电路及电子设备
CN101552545A (zh) * 2009-02-25 2009-10-07 成都芯源系统有限公司 Ac-dc变换电路及用于该变换电路的启动电路和方法
JP2010063272A (ja) * 2008-09-04 2010-03-18 Nichicon Corp スイッチング電源装置
JP2010068638A (ja) * 2008-09-11 2010-03-25 Seiko Epson Corp Acアダプタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5949154A (en) * 1996-11-15 1999-09-07 Thomson Consumer Electronics, Inc. Auxiliary power supply control
US5812383A (en) * 1997-07-31 1998-09-22 Philips Electronics North North America Corporation Low power stand-by for switched-mode power supply circuit with burst mode operation
DE10001394A1 (de) * 2000-01-14 2001-07-26 Infineon Technologies Ag Schaltungsanordnung zum Anlegen einer Versorgungsspannung an eine Last
ITTO20070860A1 (it) * 2007-11-29 2009-05-30 St Microelectronics Srl Circuito e relativo metodo di auto-alimentazione per un convertitore di tensione
CN102754531B (zh) * 2010-12-02 2015-01-21 上舜照明(中国)有限公司 一种led驱动电源电路、驱动电源和照明装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201118440Y (zh) * 2007-11-29 2008-09-17 深圳市同洲电子股份有限公司 一种开机电路及电子设备
JP2010063272A (ja) * 2008-09-04 2010-03-18 Nichicon Corp スイッチング電源装置
JP2010068638A (ja) * 2008-09-11 2010-03-25 Seiko Epson Corp Acアダプタ
CN101552545A (zh) * 2009-02-25 2009-10-07 成都芯源系统有限公司 Ac-dc变换电路及用于该变换电路的启动电路和方法

Also Published As

Publication number Publication date
EP2555398A4 (en) 2014-07-09
EP2555398A1 (en) 2013-02-06
US20130033110A1 (en) 2013-02-07
JP2014503168A (ja) 2014-02-06

Similar Documents

Publication Publication Date Title
WO2012100406A1 (zh) 一种低压控制电源电路及其产生方法
WO2012071733A1 (zh) 一种led驱动电源电路、驱动电源和照明装置
WO2015010475A1 (zh) 一种开关电源驱动芯片及开关电源驱动电路
WO2017076006A1 (zh) 恒压恒流同步输出电源及电视机
WO2018227965A1 (zh) 供电装置和照明系统
WO2015066940A1 (zh) 过压保护电路、led背光驱动电路以及液晶显示器
JP2011222267A (ja) 点灯装置及びそれを用いた照明器具
WO2014107926A1 (zh) Led驱动电路
CN201142635Y (zh) 一种dc-ac逆变升压电路
CN103152896A (zh) 具有创新架构的大功率led智能电源驱动器
CN102185468B (zh) 高压启动开关和检测晶体管复用电路及开关电源
CN206389593U (zh) 一种单火线取电装置及单火线开关
WO2018040132A1 (zh) 用于高压灯带的非隔离开关电源
WO2023207442A1 (zh) 一种电源电路及电源适配器
WO2018157418A1 (zh) 一种保护电路及led驱动电路
CN202026239U (zh) 高压启动开关和检测晶体管复用电路及应用该电路的开关电源
CN116131637A (zh) 一种低成本高效率交流到直流转换拓扑及转换方法
WO2014059736A1 (zh) Dc/dc变换电路的输出电压检测电路
CN105430829A (zh) 一种自供电升降压led驱动电源装置及其方法
CN114400620A (zh) 一种应用于电力行业的反激架构输入欠过压保护电路
CN209217955U (zh) 一种高压输入低压输出的直流电源自启动电路
TW202303343A (zh) 待機狀態供電方法
CN110366286B (zh) 双驱动电路及led灯驱动装置
CN206790351U (zh) 一种dc‑dc开关电源
TWI783536B (zh) 防雷擊保護的電源供應器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856668

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011856668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011856668

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013549693

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13641362

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE