WO2012098923A1 - Transmittance improving film - Google Patents

Transmittance improving film Download PDF

Info

Publication number
WO2012098923A1
WO2012098923A1 PCT/JP2012/050012 JP2012050012W WO2012098923A1 WO 2012098923 A1 WO2012098923 A1 WO 2012098923A1 JP 2012050012 W JP2012050012 W JP 2012050012W WO 2012098923 A1 WO2012098923 A1 WO 2012098923A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
fine particles
film
silica fine
improving film
Prior art date
Application number
PCT/JP2012/050012
Other languages
French (fr)
Japanese (ja)
Inventor
寛 田代
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to KR1020137019267A priority Critical patent/KR101892770B1/en
Priority to CN201280000023.1A priority patent/CN102753998B/en
Priority to JP2012553646A priority patent/JP5987693B2/en
Publication of WO2012098923A1 publication Critical patent/WO2012098923A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/107Porous materials, e.g. for reducing the refractive index
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a transmittance improving film applied to, for example, the back surface of a position input device constituting a touch panel.
  • Such a touch panel has two functions of display and input, and generally has a configuration in which a display device such as a liquid crystal panel and a position input device such as a touch pad are combined.
  • a display device such as a liquid crystal panel
  • a position input device such as a touch pad
  • the position input device is interposed between the user and the display device, there is a problem that the total light transmittance of the touch panel is low and the visibility is poor. Therefore, a method is generally adopted in which a transparency improving film is bonded to the back surface of the position input device via a double-sided tape to improve visibility.
  • an antireflection layer is laminated on this type of transmittance improving film, and the antireflection layer is formed by laminating a plurality of high refractive index layers and low refractive index layers in order to improve the total light transmittance.
  • a multi-layer configuration was common. However, if a material having a lower refractive index is used, reflection can be suppressed even in a single-layer structure having only a low refractive index layer.
  • Patent Document 1 is configured as a single-layer antireflection film in which a low refractive index layer is laminated on the surface of a transparent substrate film via an easy-adhesion layer.
  • An anti-reflection film having a refractive index of 1.50 to 1.65 and a thickness of 1 to 50 nm and a refractive index of a low refractive index layer of 1.20 to 1.50 is known. Yes.
  • Patent Document 1 has a problem that no measures are taken against the scratch resistance and the scratch resistance is poor. Further, no treatment is applied to the surface of the transparent base film opposite to the low refractive index layer. Therefore, when incorporating the transmittance improving film into the position input device or when combining with the display device after being incorporated into the position input device, if there is a heat treatment step, the haze of the transmittance enhancing film increases after the heat treatment. There is a problem.
  • an object of the present invention is to provide a transmittance improving film that is excellent in adhesiveness to a double-sided tape, total light transmittance, and scratch resistance and in which uneven reflection on the appearance is suppressed.
  • a low refractive index layer having a refractive index lower than that of the transparent substrate film is directly laminated on the surface of the transparent substrate film.
  • the low refractive index layer is composed of hollow silica fine particles, an active energy ray-curable resin not containing fluorine atoms, a photopolymerization initiator, and alumina fine particles.
  • the hollow silica fine particles are 28.0 to 69.0 wt%, the fluorine atoms are based on 100 wt% in total of the hollow silica fine particles, the active energy ray-curable resin not containing fluorine atoms, the photopolymerization initiator, and the alumina fine particles.
  • the low refractive index layer does not contain a surface conditioner made of a fluororesin or a silicon resin that positively develops antifouling properties.
  • the overcoat layer is composed of an active energy ray-curable resin not containing fluorine atoms, silica fine particles, and a photopolymerization initiator.
  • the silica fine particles mean both solid (non-hollow) silica fine particles and hollow silica fine particles.
  • the active energy ray-curable resin containing no fluorine atom is 85.0 to 95.0 wt% with respect to a total of 100 wt% of the active energy ray-curable resin not containing fluorine atom, silica fine particles, and photopolymerization initiator.
  • the silica fine particles are contained in an amount of 1.0 to 10.0 wt%, and the photopolymerization initiator is contained in an amount of 1.0 to 9.0 wt%. That is, the overcoat layer does not contain a surface conditioner made of a fluororesin or a silicon resin that positively develops antifouling properties. Furthermore, the optical film thickness of the overcoat layer is k ⁇ / 4 (where ⁇ is the wavelength of light of 400 to 700 nm and k is 1 or 3 or 5).
  • the low refractive index layer is directly laminated on the surface of the transparent substrate film, it is excellent in the total light transmittance of a transmittance improving film and a touch panel provided with the film, and can suppress reflection unevenness in appearance.
  • the low refractive index layer is composed of hollow silica fine particles, an active energy ray-curable resin not containing fluorine atoms, a photopolymerization initiator, and alumina fine particles, so that it has adhesiveness to double-sided tape and scratch resistance. Excellent.
  • the overcoat layer is formed on the back surface of the transparent substrate film, the haze of the transmittance improving film does not increase after the heat treatment. Furthermore, if the optical film thickness of the overcoat layer is k ⁇ / 4 (where ⁇ is the wavelength of light of 400 to 700 nm and k is 1, 3 or 5), in addition to the above effects, the total light transmittance is further excellent. .
  • a low refractive index layer is directly laminated on a transparent substrate film. Furthermore, an overcoat layer can be laminated on the back surface of the transmittance improving film.
  • the transparent substrate film is a substrate (base material) for the transmittance improving film.
  • a transparent resin film or the like is used, and there is no particular limitation except that there is no easy adhesion layer on the surface on which the low refractive index layer is laminated. This is because when the easy adhesion layer is formed between the low refractive index layer and the transparent substrate film, unevenness in appearance occurs.
  • the refractive index (n) of the transparent substrate film is preferably 1.55 to 1.70.
  • a triacetate cellulose resin or a polyethylene terephthalate resin is preferable from the viewpoint of versatility.
  • the thickness of the transparent substrate film is usually 10 to 500 ⁇ m, preferably 25 to 200 ⁇ m.
  • “(meth) acrylic resin” means acrylic resin or methacrylic resin. The same applies to “(meth) acrylic acid” and “(meth) acryloyl group” described later.
  • the low refractive index layer is a layer that functions as an antireflection layer.
  • the low refractive index layer is composed of hollow silica fine particles, an active energy ray-curable resin that does not contain fluorine atoms, a photopolymerization initiator, and alumina nanoparticles. (UV) cured to form.
  • the blending amount of each of the above compositions is such that the total of the hollow silica fine particles, the active energy ray-curable resin not containing fluorine atoms, the photopolymerization initiator, and the alumina fine particles is 100 wt%.
  • the low refractive index layer coating liquid usually contains a diluting solvent from the viewpoint of coating properties.
  • the low refractive index layer is adjusted so that the refractive index is 1.35 to 1.47 depending on the relative relationship between the refractive index of the hollow silica fine particles and the refractive index of the active energy ray-curable resin not containing fluorine atoms. It is preferable.
  • the film thickness after drying and curing is preferably 50 to 130 nm, more preferably 80 to 125 nm. When the refractive index and film thickness are outside this range, the minimum reflectance wavelength at which the reflectance in the visible region at 5 ° specular reflection is the minimum value is outside the range of 450 to 650 nm, and no improvement in the total light transmittance is observed. .
  • the refractive index of the hollow silica fine particles used for the low refractive index layer is preferably 1.2 to 1.4.
  • the active energy ray-curable resin containing no fluorine atom preferably has a refractive index of 1.3 to 1.7.
  • the refractive index of the hollow silica fine particles is larger than 1.4, the mixing amount of the active energy ray-curable resin containing no fluorine atom becomes relatively small, and the coating film strength becomes weak. That is, there is a tendency for the scratch resistance to deteriorate. Further, when the refractive index of the hollow silica fine particles is smaller than 1.2, the strength of the hollow silica is weak and the scratch resistance tends to be deteriorated.
  • the blending amount of the hollow silica fine particles is 28.0 to 69.0 wt%.
  • the refractive index of the low refractive index layer is 1.47 or more, which is not suitable.
  • the amount is more than 69.0 wt%, the amount of the active energy ray-curable resin containing no fluorine atom is small, and the strength as a coating film becomes weak.
  • the average particle diameter of the hollow silica fine particles does not greatly exceed the thickness of the low refractive index layer.
  • the average particle diameter of the hollow silica fine particles is preferably 0.1 ⁇ m or less.
  • the “average particle size” means a particle size distribution measuring device (PAR-III, manufactured by Otsuka Electronics Co., Ltd.), and the average particle size is determined by a dynamic light scattering method using laser light. It is a value obtained by measuring.
  • the hollow silica fine particles used in the low refractive index layer can also be synthesized by a method for producing hollow spherical silica-based fine particles having a cavity inside the outer shell, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-21938. That is, the silica-based fine particles are produced through the following steps (a), (b), (d) and (e).
  • the surface of the hollow silica fine particle is modified with a silane coupling agent having a (meth) acryloyl group.
  • a silane coupling agent having a (meth) acryloyl group By modifying the surface of the hollow silica fine particles with a silane coupling agent having a (meth) acryloyl group, a covalent bond with an active energy ray-curable resin containing no fluorine atom occurs, and the coating strength tends to increase. It is done.
  • an active energy ray-curable resin that does not contain fluorine atoms for the purpose of reducing the refractive index is used.
  • the fluorine atom is contained, the surface energy of the transmittance improving film due to the fluorine atom is lowered, and the adhesive force with the double-sided tape is deteriorated.
  • an active energy ray-curable resin one or more kinds selected from a monofunctional monomer and a polyfunctional monomer are used.
  • (meth) acrylic acid alkyl ester, (meth) acrylic acid (poly) ethylene glycol group-containing (meth) acrylic acid ester and the like are preferable as the monofunctional monomer.
  • the polyfunctional monomer include ester compounds of polyhydric alcohol and (meth) acrylic acid, polyfunctional polymerizable compounds containing two or more (meth) acryloyl groups such as urethane-modified acrylate, and the like.
  • the blending amount of the active energy ray-curable resin containing no fluorine atom is 27.0 to 69.0 wt%. When it is less than 27.0 wt%, the coating film strength tends to be weak, which is not preferable. On the other hand, when it is more than 69.0 wt%, the refractive index of the low refractive index layer is 1.47 or more, which is not suitable.
  • the alumina fine particles used in the low refractive index layer are used for the purpose of improving scratch resistance. It is preferable that the average particle diameter of the alumina fine particles does not greatly exceed the thickness of the low refractive index layer. Specifically, the average particle diameter of the alumina fine particles is preferably 0.1 ⁇ m or less. When the average particle diameter of the alumina fine particles greatly exceeds the thickness of the low refractive index layer, the optical performance of the low refractive index layer tends to deteriorate, such as light scattering.
  • the amount of alumina fine particles is 0.1 to 0.9 wt%. If it is less than 0.1 wt%, it will not contribute to the improvement of scratch resistance. On the other hand, when the content is more than 0.9 wt%, scattering due to the refractive index difference between the active energy ray-curable resin not containing fluorine atoms and the alumina fine particles occurs, and the optical performance of the low refractive index layer tends to decrease. is there.
  • the photopolymerization initiator used in the low refractive index layer is used for curing the coating solution for the low refractive index layer with ultraviolet rays (UV).
  • the blending amount of the photopolymerization initiator is 1.0 to 9.0 wt%. If it is less than 1.0 wt%, curing will be insufficient. On the other hand, when it is more than 9.0 wt%, it increases unnecessarily, and the optical performance of the low refractive index layer tends to be lowered.
  • Examples of such a photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, and the like.
  • the overcoat layer is composed of an active energy ray-curable resin containing no fluorine atom, silica fine particles, and a photopolymerization initiator.
  • the overcoat layer is formed by curing an overcoat layer coating liquid obtained by mixing them with ultraviolet rays (UV).
  • UV ultraviolet rays
  • the blending amount of each of the above compositions is such that the total of the active energy ray-curable resin not containing fluorine atoms, the silica fine particles, and the photopolymerization initiator is 100 wt%, and the active energy ray-curable resin 85 not containing fluorine atoms is included.
  • the overcoat layer coating solution usually contains a diluting solvent from the viewpoint of coating properties.
  • the optical film thickness after drying and curing of the overcoat layer is k ⁇ / 4 (where ⁇ is the light wavelength of 400 to 700 nm, k is 1, 3, or 5), and the refractive index is 1.3 to 1.7. It is. If the film thickness and refractive index are outside this range, the minimum reflectance wavelength at which the reflectance in the visible region at 5 ° specular reflection becomes the minimum value is outside the range of 450 to 650 nm, and no improvement in the total light transmittance is observed. .
  • the optical thickness of the overcoat layer is thinner than 1 ⁇ / 4
  • the transmittance improving film is incorporated into a position input device or the like, or when it is combined with the display device after being incorporated into the transmittance improving film, the heat treatment When there is a process, the haze of the transmittance improving film increases.
  • it is thicker than 5 ⁇ / 4 it is not preferable because it becomes unnecessarily thick.
  • heat treatment when the transmittance improving film is incorporated in a position input device or when it is combined with the display device after being incorporated in the transmittance enhancing film, it may be performed at about 50 to 150 ° C. for about 1 to 60 minutes. Good.
  • the difference in haze before and after heat treatment ((haze after heat treatment) ⁇ (haze before heat treatment)) is preferably less than 0.5%.
  • an active energy ray-curable resin that does not contain fluorine atoms for the purpose of reducing the refractive index is used.
  • the fluorine atom is contained, the surface energy of the transmittance improving film due to the fluorine atom is lowered, and the adhesiveness to the double-sided tape is deteriorated.
  • an active energy ray-curable resin one or more kinds selected from a monofunctional monomer and a polyfunctional monomer are used.
  • (meth) acrylic acid alkyl ester, (meth) acrylic acid (poly) ethylene glycol group-containing (meth) acrylic acid ester and the like are preferable as the monofunctional monomer.
  • the polyfunctional monomer include ester compounds of polyhydric alcohol and (meth) acrylic acid, polyfunctional polymerizable compounds containing two or more (meth) acryloyl groups such as urethane-modified acrylate, and the like.
  • the blending amount of the active energy ray-curable resin not containing fluorine atoms is 85.0 to 95.0 wt%.
  • the amount is less than 85.0 wt%, the optical performance tends to decrease, for example, the amount of silica fine particles increases and light scattering occurs.
  • the content is more than 95.0 wt%, when the transmittance improving film is produced by roll-to-roll, blocking occurs, which is not preferable.
  • Silica fine particles are added to the overcoat layer in order to prevent blocking when the transmittance improving film is produced roll-to-roll. That is, the silica fine particles here are not intended to actively lower the refractive index of the overcoat layer. Therefore, the silica fine particles used in the overcoat layer may have a higher refractive index than the silica fine particles used in the low refractive index layer. Specifically, in addition to hollow silica fine particles, solid silica fine particles having a higher refractive index can be used. The hollow silica fine particles have a refractive index of 1.2 to 1.4, whereas the solid silica fine particles have a refractive index of 1.4 to 1.5.
  • the refractive index of the silica fine particles When the refractive index of the silica fine particles is larger than 1.5, light scattering due to the refractive index difference between the active energy ray-curable resin not containing fluorine atoms and the silica fine particles tends to occur, and the optical performance tends to deteriorate.
  • the refractive index of the silica fine particles is smaller than 1.2, the strength of the hollow silica fine particles is weak and the scratch resistance tends to deteriorate, but the amount of silica fine particles used in the overcoat layer is small, so the scratch resistance The impact on gender deterioration is small. Therefore, there is no technical problem even if the refractive index of the silica fine particles is 1.2 or less.
  • the amount of silica fine particles is 1.0 to 10.0 wt%.
  • the content is less than 1.0 wt%, when the transmittance improving film is produced by roll-to-roll, blocking occurs, which is not preferable.
  • the content is more than 10.0 wt%, light scattering is caused by the difference in refractive index between the active energy ray-curable resin not containing fluorine atoms and the silica fine particles, and the optical performance tends to be lowered.
  • the photopolymerization initiator used in the overcoat layer is used to cure the overcoat layer coating liquid with ultraviolet rays (UV).
  • the blending amount of the photopolymerization initiator is 1.0 to 9.0 wt%. If it is less than 1.0 wt%, curing will be insufficient. On the other hand, when the amount is more than 9.0 wt%, the amount increases unnecessarily, and the optical performance of the overcoat layer tends to deteriorate.
  • Examples of such a photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.
  • the application method of the coating liquid for the low refractive index layer or the overcoat layer is not particularly limited, and a commonly applied application method such as a roll coating method, a spin coating method, a dip coating method, a spray coating method, or a bar coating method. Any known method such as a knife coating method, a die coating method, an ink jet method, or a gravure coating method may be employed.
  • pretreatment such as corona discharge treatment can be applied to the surface of the transparent substrate film in advance.
  • the active energy ray source used for irradiation of active energy rays for example, a high pressure mercury lamp, a halogen lamp, a xenon lamp, a nitrogen laser, an electron beam accelerator, a radioactive element or the like is used.
  • the irradiation amount of the active energy ray is preferably 50 to 5000 mJ / cm 2 as an integrated light amount at a wavelength of 365 nm of ultraviolet rays.
  • the irradiation amount is less than 50 mJ / cm 2 , curing of the coating liquid becomes insufficient, which is not preferable.
  • it exceeds 5000 mJ / cm 2 the active energy ray-curable resin tends to be colored, which is not preferable.
  • the obtained transmittance improving film is applied to, for example, a back surface of a position input device constituting the touch panel in a touch panel such as a capacitive touch panel or a resistive touch panel.
  • the transmittance improving film of each Example and Comparative Example has a structure in which a low refractive index layer is directly laminated on a transparent base film, and an overcoat layer is laminated on the back surface of the transmittance improving film. It is. Moreover, the adhesive strength, total light transmittance, scratch resistance, reflection unevenness, and haze increase after heat treatment in each example were measured by the methods shown below.
  • the low refractive index layer surface of the transmittance improving film is a double-sided tape manufactured by Nitto Denko Corporation. Paste to 500.
  • Haze meter Haze value and total light transmittance were measured using NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.
  • ⁇ Haze rise after heat treatment> A heat treatment at 150 ° C. for 60 minutes is performed on the transmittance improving film. The difference in haze before and after heat treatment ((haze after heat treatment) ⁇ (haze before heat treatment)) was evaluated.
  • Photopolymerization initiator I-907 manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Alumina fine particles NANOBYK-3601 made by Big Chemie Japan Co., Ltd.
  • NANOBYK-3610 Solvent Isopropyl alcohol
  • overcoat layer coating solution The following raw materials were used as the overcoat layer coating solution, and the respective raw materials were mixed in the composition shown in Table 3 to prepare overcoat layer coating solutions O-1 to O-7.
  • the numerical value in Table 3 is wt%.
  • Active energy ray-curable resin containing no fluorine atom DPHA manufactured by Nippon Kayaku Co., Ltd.
  • Silica fine particles Acrylic modified hollow silica fine particles V8208 manufactured by JGC Catalysts & Chemicals Co., Ltd. Acrylic modified hollow silica fine particle through rear NAU manufactured by JGC Catalysts & Chemicals Co., Ltd.
  • Photopolymerization initiator I-907 manufactured by Ciba Specialty Chemicals Co., Ltd.
  • Solvent Isopropyl alcohol
  • Example 1-1 The low refractive index layer coating liquid (L-1) was directly applied onto a polyethylene terephthalate (PET) film having a thickness of 50 ⁇ m as a transparent substrate film with a roll coater so that the film thickness after curing was 100 nm. After drying, ultraviolet rays were irradiated with a 120 W high-pressure mercury lamp (manufactured by Nippon Battery Co., Ltd.) (accumulated light amount 400 mJ / cm 2 ) and cured to prepare a transmittance improving film.
  • PET polyethylene terephthalate
  • Example 1-2 A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was L-2 and the film thickness after curing was 125 nm.
  • Example 1-3 A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was L-3 and the film thickness after curing was 80 nm.
  • Example 1-4 A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-4.
  • Example 1-5 A transmittance improving film was produced in the same manner as in Example 1-1 except that the low refractive index layer coating solution was changed to L-5.
  • Example 1-6 A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-6.
  • Example 1--7 A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-7.
  • Example 1-1 A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was L-8.
  • Example 1-2 A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was L-9.
  • Example 1-3 A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-10.
  • Example 1-4 A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-11.
  • Example 1-6 A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-13.
  • a 120 W high-pressure mercury lamp manufactured by Nippon Battery Co., Ltd.
  • Example 2-4 A transmittance improving film was produced in the same manner as in Example 2-1, except that the overcoat layer coating solution was O-4.
  • Example 2-5 A transmittance improving film was produced in the same manner as in Example 2-1, except that the overcoat layer coating solution was O-5.
  • Example 2-1 A transmittance improving film was produced in the same manner as in Example 2-1, except that the overcoat layer coating solution was O-6.
  • Example 2-2 A transmittance improving film was produced in the same manner as in Example 2-1, except that the overcoat layer coating solution was O-7.
  • the transmittance improving films of Examples 1-1 to 7 are excellent in adhesiveness to the double-sided tape, total light transmittance, and scratch resistance, and uneven reflection on the appearance. I realized that there was nothing. Further, the transmittance improving films of Examples 2-1 to 5 were more excellent in total light transmittance because the overcoat layer was formed on the back surface of the transmittance improving film with a predetermined optical film thickness. Can not rise.
  • Comparative Example 1-1 the amount of hollow silica fine particles was small and the total light transmittance was poor. Comparative Example 1-2 resulted in a large amount of hollow silica fine particles and poor scratch resistance (surface). Comparative Example 1-3 resulted in poor scratch resistance (surface) because alumina fine particles were not blended. In Comparative Example 1-4, the amount of alumina fine particles was large and the total light transmittance was poor. In Comparative Example 1-5, since no photopolymerization initiator was blended, the scratch resistance (surface) was poor. In Comparative Example 1-6, the amount of the photopolymerization initiator was large, and the total light transmittance was poor.
  • Comparative Example 2-1 resulted in poor blocking properties because silica fine particles were not blended.
  • Comparative Example 2-2 resulted in poor scratch resistance (back surface) because no photopolymerization initiator was blended.

Abstract

A transmittance improving film in which a low refractive index layer is directly laminated on the surface of a transparent base film, said low refractive index layer having a lower refractive index than the transparent base film. The low refractive index layer is composed of hollow silica fine particles, an active energy ray-curable resin that does not contain a fluorine atom, a photopolymerization initiator and alumina fine particles. Relative to 100 wt% of the total of the above-described components, 28.0-69.0 wt% of the hollow silica fine particles, 27.0-69.0 wt% of the active energy ray-curable resin that does not contain a fluorine atom, 1.0-9.0 wt% of the photopolymerization initiator and 0.1-0.9 wt% of the alumina fine particles are contained. An overcoat layer may optionally be laminated on the back surface of the transparent base film.

Description

透過率向上フィルムTransmission enhancement film
 本発明は、例えばタッチパネルを構成する位置入力装置の裏面等に適用される透過率向上フィルムに関するものである。 The present invention relates to a transmittance improving film applied to, for example, the back surface of a position input device constituting a touch panel.
 画面上の操作説明に入力動作が対応するタッチパネルは、直感的に分かりやすく操作が簡単であることから、広く普及している。このようなタッチパネルは、表示と入力の二つの機能を備え、一般的に、液晶パネルのような表示装置とタッチパッドのような位置入力装置を組合せた構成となっている。しかし、位置入力装置が使用者と表示装置との間に介在するため、タッチパネルの全光線透過率が低く視認性が悪いことが問題となっている。そのため、位置入力装置の裏面に両面テープを介して透過率向上フィルムを貼り合せ、視認性を高める方法が一般的に採用されている。 * Touch panels that support input operations for explanations of operations on the screen are widely used because they are intuitive and easy to operate. Such a touch panel has two functions of display and input, and generally has a configuration in which a display device such as a liquid crystal panel and a position input device such as a touch pad are combined. However, since the position input device is interposed between the user and the display device, there is a problem that the total light transmittance of the touch panel is low and the visibility is poor. Therefore, a method is generally adopted in which a transparency improving film is bonded to the back surface of the position input device via a double-sided tape to improve visibility.
 従来、この種の透過率向上フィルムには反射防止層が積層されるが、当該反射防止層は、全光線透過率を向上させるために高屈折率層と低屈折率層とを複数層積層させた多層構成が一般的であった。しかし、より低屈折率である材料を用いれば、低屈折率層だけの単層構成でも反射を抑えることが可能となる。 Conventionally, an antireflection layer is laminated on this type of transmittance improving film, and the antireflection layer is formed by laminating a plurality of high refractive index layers and low refractive index layers in order to improve the total light transmittance. A multi-layer configuration was common. However, if a material having a lower refractive index is used, reflection can be suppressed even in a single-layer structure having only a low refractive index layer.
 特許文献1には、単層構成の反射防止フィルムとして、透明基材フィルムの表面に易接着層を介して低屈折率層が積層されて構成されている。前記易接着層は屈折率が1.50~1.65で厚みが1~50nmであり、且つ、低屈折率層の屈折率が1.20~1.50である反射防止フィルムが知られている。 Patent Document 1 is configured as a single-layer antireflection film in which a low refractive index layer is laminated on the surface of a transparent substrate film via an easy-adhesion layer. An anti-reflection film having a refractive index of 1.50 to 1.65 and a thickness of 1 to 50 nm and a refractive index of a low refractive index layer of 1.20 to 1.50 is known. Yes.
特開2010-170089号JP 2010-170089
 特許文献1方法では、全光線透過率は満足するが、易接着層を介して低屈折率層を形成しているため、易接着層に起因した外観上のムラが問題である。この反射防止フィルムは、タッチパネルの最表面での使用を想定している。そこで、防汚性を得るために、低屈折率層の材料としてフッ素原子を含有した活性エネルギー線硬化型樹脂を用いることも推奨されている。しかし、フッ素原子を含有する活性エネルギー線硬化型樹脂を用いた場合、フッ素原子によって反射防止フィルム表面の表面エネルギーが低下する。これでは、両面テープとの粘着力が悪くなるといった問題がある。更に、特許文献1の方法では、耐擦傷性に対する対策がなんら施されておらず、耐擦傷性に乏しいといった問題がある。また、透明基材フィルムの低屈折率層と反対側の面には何ら処理を施していない。そのため、当該透過率向上フィルムを位置入力装置に組み込む際、若しくは位置入力装置に組み込んだ後に表示装置と合わせる際に、加熱処理工程がある場合は、加熱処理後に透過率向上フィルムのヘイズが上昇するといった課題がある。 In the method of Patent Document 1, the total light transmittance is satisfactory, but since the low refractive index layer is formed via the easy-adhesion layer, there is a problem of uneven appearance due to the easy-adhesion layer. This antireflection film is assumed to be used on the outermost surface of the touch panel. Therefore, in order to obtain antifouling properties, it is also recommended to use an active energy ray curable resin containing fluorine atoms as a material for the low refractive index layer. However, when an active energy ray-curable resin containing fluorine atoms is used, the surface energy of the antireflection film surface is lowered by the fluorine atoms. In this case, there is a problem that the adhesive strength with the double-sided tape is deteriorated. Furthermore, the method of Patent Document 1 has a problem that no measures are taken against the scratch resistance and the scratch resistance is poor. Further, no treatment is applied to the surface of the transparent base film opposite to the low refractive index layer. Therefore, when incorporating the transmittance improving film into the position input device or when combining with the display device after being incorporated into the position input device, if there is a heat treatment step, the haze of the transmittance enhancing film increases after the heat treatment. There is a problem.
 そこで、本発明の目的とするところは、両面テープとの粘着性、全光線透過率、及び耐擦傷性に優れ、外観上の反射ムラが抑制された透過率向上フィルムを提供することにある。 Therefore, an object of the present invention is to provide a transmittance improving film that is excellent in adhesiveness to a double-sided tape, total light transmittance, and scratch resistance and in which uneven reflection on the appearance is suppressed.
 上記課題を解決する手段としては透明基材フィルムの表面に、該透明基材フィルムよりも屈折率の低い低屈折率層を直接積層する。当該低屈折率層は、中空シリカ微粒子と、フッ素原子を含まない活性エネルギー線硬化型樹脂と、光重合開始剤と、アルミナ微粒子とからなる。該中空シリカ微粒子、フッ素原子を含まない活性エネルギー線硬化型樹脂、光重合開始剤、及びアルミナ微粒子の合計100wt%に対して、前記中空シリカ微粒子を28.0~69.0wt%、前記フッ素原子を含まない活性エネルギー線硬化型樹脂を27.0~69.0wt%、前記光重合開始剤を1.0~9.0wt%、前記アルミナ微粒子を0.1~0.9wt%含有する。すなわち、低屈折率層は、防汚性を積極的に発現するようなフッ素樹脂やシリコン樹脂からなる表面調整剤を含んでいない。 As a means for solving the above problems, a low refractive index layer having a refractive index lower than that of the transparent substrate film is directly laminated on the surface of the transparent substrate film. The low refractive index layer is composed of hollow silica fine particles, an active energy ray-curable resin not containing fluorine atoms, a photopolymerization initiator, and alumina fine particles. The hollow silica fine particles are 28.0 to 69.0 wt%, the fluorine atoms are based on 100 wt% in total of the hollow silica fine particles, the active energy ray-curable resin not containing fluorine atoms, the photopolymerization initiator, and the alumina fine particles. 27.0 to 69.0 wt% of the active energy ray-curable resin not containing benzene, 1.0 to 9.0 wt% of the photopolymerization initiator, and 0.1 to 0.9 wt% of the alumina fine particles. That is, the low refractive index layer does not contain a surface conditioner made of a fluororesin or a silicon resin that positively develops antifouling properties.
 前記透明基材フィルムの裏面には、オーバーコート層を積層することが好ましい。当該オーバーコート層は、フッ素原子を含まない活性エネルギー線硬化型樹脂と、シリカ微粒子と、光重合開始剤とからなる。なお、ここでのシリカ微粒子は、中実(非中空)シリカ微粒子と中空シリカ微粒子の双方を意味する。該フッ素原子を含まない活性エネルギー線硬化型樹脂、シリカ微粒子、及び光重合開始剤の合計100wt%に対して、前記フッ素原子を含まない活性エネルギー線硬化型樹脂を85.0~95.0wt%、前記シリカ微粒子を1.0~10.0wt%、前記光重合開始剤を1.0~9.0wt%含有する。すなわち、オーバーコート層は、防汚性を積極的に発現するようなフッ素樹脂やシリコン樹脂からなる表面調整剤を含んでいない。更に、前記オーバーコート層の光学膜厚はkλ/4(但し、λは光の波長400~700nm、kは1又は3又は5)である。 It is preferable to laminate an overcoat layer on the back surface of the transparent substrate film. The overcoat layer is composed of an active energy ray-curable resin not containing fluorine atoms, silica fine particles, and a photopolymerization initiator. Here, the silica fine particles mean both solid (non-hollow) silica fine particles and hollow silica fine particles. The active energy ray-curable resin containing no fluorine atom is 85.0 to 95.0 wt% with respect to a total of 100 wt% of the active energy ray-curable resin not containing fluorine atom, silica fine particles, and photopolymerization initiator. The silica fine particles are contained in an amount of 1.0 to 10.0 wt%, and the photopolymerization initiator is contained in an amount of 1.0 to 9.0 wt%. That is, the overcoat layer does not contain a surface conditioner made of a fluororesin or a silicon resin that positively develops antifouling properties. Furthermore, the optical film thickness of the overcoat layer is kλ / 4 (where λ is the wavelength of light of 400 to 700 nm and k is 1 or 3 or 5).
 透明基材フィルムの表面に低屈折率層が直接積層されていれば、透過率向上フィルム延いてはこれを備えるタッチパネル等の全光線透過率に優れ、且つ外観上の反射ムラを抑制できる。加えて、前記低屈折率層は中空シリカ微粒子、フッ素原子を含まない活性エネルギー線硬化型樹脂、光重合開始剤、及びアルミナ微粒子からなることから、両面テープとの粘着性、且つ耐擦傷性に優れる。 If the low refractive index layer is directly laminated on the surface of the transparent substrate film, it is excellent in the total light transmittance of a transmittance improving film and a touch panel provided with the film, and can suppress reflection unevenness in appearance. In addition, the low refractive index layer is composed of hollow silica fine particles, an active energy ray-curable resin not containing fluorine atoms, a photopolymerization initiator, and alumina fine particles, so that it has adhesiveness to double-sided tape and scratch resistance. Excellent.
 透明基材フィルムの裏面にオーバーコート層が形成されていれば、加熱処理後に透過率向上フィルムのヘイズが上昇しない。更に、オーバーコート層の光学膜厚がkλ/4(但し、λは光の波長400~700nm、kは1又は3又は5)であれば、上記効果に加えて、更に全光線透過率に優れる。 If the overcoat layer is formed on the back surface of the transparent substrate film, the haze of the transmittance improving film does not increase after the heat treatment. Furthermore, if the optical film thickness of the overcoat layer is kλ / 4 (where λ is the wavelength of light of 400 to 700 nm and k is 1, 3 or 5), in addition to the above effects, the total light transmittance is further excellent. .
 以下、本発明を具体化した実施形態について詳細に説明する。透過率向上フィルムは、透明基材フィルム上に低屈折率層が直接積層されている。更に、透過率向上フィルムの裏面にオーバーコート層を積層することもできる。 Hereinafter, embodiments embodying the present invention will be described in detail. In the transmittance improving film, a low refractive index layer is directly laminated on a transparent substrate film. Furthermore, an overcoat layer can be laminated on the back surface of the transmittance improving film.
〔透明基材フィルム〕
 透明基材フィルムは、透過率向上フィルムの基材(ベース材)となるものである。透明基材フィルムとしては、透明樹脂フィルム等が用いられ、低屈折率層が積層される面に易接着層が無いこと以外は特に制限されない。低屈折率層と透明基材フィルムとの間に易接着層が形成されると、外観上のムラが発生するからである。光の反射を抑えるためには、透明基材フィルムの屈折率(n)は1.55~1.70が好ましい。透明基材フィルムの具体的材料としては、例えばポリ(メタ)アクリル系樹脂、トリアセテートセルロース(TAC、n=1.49)系樹脂、ポリエチレンテレフタレート(PET、n=1.65)系樹脂、ポリカーボネート(PC、n=1.59)系樹脂、ポリアリレート(PAR、n=1.60)及びポリエーテルスルフォン(PES、n=1.65)等が挙げられる。これらの中でも、汎用性などの観点からトリアセテートセルロース系樹脂又はポリエチレンテレフタレート系樹脂が好ましい。透明基材フィルムの厚みは、通常10~500μm、好ましくは25~200μmである。なお、本明細書において「(メタ)アクリル系樹脂」とは、アクリル系樹脂又はメタクリル系樹脂を意味する。後述の「(メタ)アクリル酸」や「(メタ)アクリロイル基」等も同様である。
[Transparent substrate film]
The transparent substrate film is a substrate (base material) for the transmittance improving film. As the transparent substrate film, a transparent resin film or the like is used, and there is no particular limitation except that there is no easy adhesion layer on the surface on which the low refractive index layer is laminated. This is because when the easy adhesion layer is formed between the low refractive index layer and the transparent substrate film, unevenness in appearance occurs. In order to suppress the reflection of light, the refractive index (n) of the transparent substrate film is preferably 1.55 to 1.70. Specific materials for the transparent substrate film include, for example, poly (meth) acrylic resin, triacetate cellulose (TAC, n = 1.49) resin, polyethylene terephthalate (PET, n = 1.65) resin, polycarbonate ( PC, n = 1.59) resin, polyarylate (PAR, n = 1.60), polyether sulfone (PES, n = 1.65) and the like. Among these, a triacetate cellulose resin or a polyethylene terephthalate resin is preferable from the viewpoint of versatility. The thickness of the transparent substrate film is usually 10 to 500 μm, preferably 25 to 200 μm. In the present specification, “(meth) acrylic resin” means acrylic resin or methacrylic resin. The same applies to “(meth) acrylic acid” and “(meth) acryloyl group” described later.
〔低屈折率層〕
 低屈折率層は、反射防止層として機能する層である。低屈折率層は、中空シリカ微粒子と、フッ素原子を含まない活性エネルギー線硬化型樹脂と、光重合開始剤と、アルミナナノ粒子とからなり、これらを混合した低屈折率層用塗液を紫外線(UV)硬化させて形成される。上記各組成物の配合量は、中空シリカ微粒子、フッ素原子を含まない活性エネルギー線硬化型樹脂、光重合開始剤、及びアルミナ微粒子の合計を100wt%として、その内中空シリカ微粒子を28.0~69.0wt%、フッ素原子を含まない活性エネルギー線硬化型樹脂を27.0~69.0wt%、光重合開始剤を1.0~9.0wt%、アルミナ微粒子を0.1~0.9wt%含有し、その他の成分は含まない。従って、防汚性を積極的に発現するようなフッ素樹脂やシリコン樹脂からなる表面調整剤を含んでいない。その他の成分を含むと、両面テープとの粘着力が弱くなる。但し、低屈折率層用塗液中には、塗工性の観点から通常希釈溶剤が含まれる。
(Low refractive index layer)
The low refractive index layer is a layer that functions as an antireflection layer. The low refractive index layer is composed of hollow silica fine particles, an active energy ray-curable resin that does not contain fluorine atoms, a photopolymerization initiator, and alumina nanoparticles. (UV) cured to form. The blending amount of each of the above compositions is such that the total of the hollow silica fine particles, the active energy ray-curable resin not containing fluorine atoms, the photopolymerization initiator, and the alumina fine particles is 100 wt%. 69.0 wt%, 27.0-69.0 wt% of active energy ray-curable resin not containing fluorine atoms, 1.0-9.0 wt% of photopolymerization initiator, 0.1-0.9 wt of alumina fine particles % Content, other components are not included. Therefore, it does not contain a surface conditioner composed of a fluororesin or a silicon resin that positively exhibits antifouling properties. When other components are included, the adhesive strength with the double-sided tape is weakened. However, the low refractive index layer coating liquid usually contains a diluting solvent from the viewpoint of coating properties.
 低屈折率層は、中空シリカ微粒子の屈折率とフッ素原子を含まない活性エネルギー線硬化型樹脂の屈折率との相対関係によって、屈折率が1.35~1.47になるように調整されることが好ましい。乾燥硬化後の膜厚は好ましくは50~130nm、より好ましくは80~125nmである。屈折率と膜厚がこの範囲外では、5°正反射での可視領域における反射率が最低値となる最小反射率波長が450~650nmの範囲外となり、全光線透過率の向上が見られない。 The low refractive index layer is adjusted so that the refractive index is 1.35 to 1.47 depending on the relative relationship between the refractive index of the hollow silica fine particles and the refractive index of the active energy ray-curable resin not containing fluorine atoms. It is preferable. The film thickness after drying and curing is preferably 50 to 130 nm, more preferably 80 to 125 nm. When the refractive index and film thickness are outside this range, the minimum reflectance wavelength at which the reflectance in the visible region at 5 ° specular reflection is the minimum value is outside the range of 450 to 650 nm, and no improvement in the total light transmittance is observed. .
 低屈折率層に用いられる中空シリカ微粒子の屈折率は、1.2~1.4が好ましい。一方、フッ素原子を含まない活性エネルギー線硬化型樹脂としては、屈折率が1.3~1.7であることが好ましい。中空シリカ微粒子の屈折率が1.4より大きい場合、フッ素原子を含まない活性エネルギー線硬化型樹脂の混合量が相対的に少量となり、塗膜強度が弱くなる。即ち、耐擦傷性が悪くなる傾向が見られる。また、中空シリカ微粒子の屈折率が1.2より小さい場合においては、中空シリカの強度が弱く、耐擦傷性が悪くなる傾向が見られる。 The refractive index of the hollow silica fine particles used for the low refractive index layer is preferably 1.2 to 1.4. On the other hand, the active energy ray-curable resin containing no fluorine atom preferably has a refractive index of 1.3 to 1.7. When the refractive index of the hollow silica fine particles is larger than 1.4, the mixing amount of the active energy ray-curable resin containing no fluorine atom becomes relatively small, and the coating film strength becomes weak. That is, there is a tendency for the scratch resistance to deteriorate. Further, when the refractive index of the hollow silica fine particles is smaller than 1.2, the strength of the hollow silica is weak and the scratch resistance tends to be deteriorated.
 中空シリカ微粒子の配合量は、28.0~69.0wt%とする。28.0wt%より少ない場合は、低屈折率層の屈折率が1.47以上となるため相応しくない。一方、69.0wt%より多い場合は、フッ素原子を含まない活性エネルギー線硬化型樹脂の量が少なく、塗膜としての強度が弱くなるため好ましくない。 The blending amount of the hollow silica fine particles is 28.0 to 69.0 wt%. When it is less than 28.0 wt%, the refractive index of the low refractive index layer is 1.47 or more, which is not suitable. On the other hand, when the amount is more than 69.0 wt%, the amount of the active energy ray-curable resin containing no fluorine atom is small, and the strength as a coating film becomes weak.
 また、中空シリカ微粒子の平均粒子径は低屈折率層の厚みを大きく超えないことが好ましい。具体的には、中空シリカ微粒子の平均粒子径は0.1μm以下であることが好ましい。中空シリカ微粒子の平均粒子径が低屈折率層の厚みを大きく超えると、光の散乱が生じる等、低屈折率層の光学性能が低下する傾向にある。なお、本明細書において「平均粒子径」とは、粒子径分布測定装置〔大塚電子(株)製、PAR-III〕を使用し、レーザー光を用いた動的光散乱法により平均粒子径を測定することで求めた値である。 Further, it is preferable that the average particle diameter of the hollow silica fine particles does not greatly exceed the thickness of the low refractive index layer. Specifically, the average particle diameter of the hollow silica fine particles is preferably 0.1 μm or less. When the average particle diameter of the hollow silica fine particles greatly exceeds the thickness of the low refractive index layer, the optical performance of the low refractive index layer tends to deteriorate, such as light scattering. In the present specification, the “average particle size” means a particle size distribution measuring device (PAR-III, manufactured by Otsuka Electronics Co., Ltd.), and the average particle size is determined by a dynamic light scattering method using laser light. It is a value obtained by measuring.
 低屈折率層に用いられる中空シリカ微粒子は、例えば特開2006-21938号公報に開示された、外殻内部に空洞を有する中空で球状のシリカ系微粒子の製造方法により合成することもできる。すなわち、シリカ系微粒子は下記の工程(a)、(b)、(d)及び(e)を経て製造される。
 工程(a):珪酸塩の水溶液又は酸性珪酸液と、アルカリ可溶の無機化合物水溶液とをアルカリ水溶液中に所定の比率で添加して複合酸化物微粒子分散液を調製する際に電解質塩を添加する工程。
 工程(b):前記複合酸化物微粒子分散液に酸を加えてシリカ系微粒子分散液とする工程。
 工程(d):前記シリカ系微粒子分散液を常温~300℃の範囲で熟成する工程。
 工程(e):50~300℃の範囲で水熱処理する工程。
The hollow silica fine particles used in the low refractive index layer can also be synthesized by a method for producing hollow spherical silica-based fine particles having a cavity inside the outer shell, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-21938. That is, the silica-based fine particles are produced through the following steps (a), (b), (d) and (e).
Step (a): An electrolyte salt is added when preparing a composite oxide fine particle dispersion by adding an aqueous solution of silicate or acidic silicate and an aqueous solution of an alkali-soluble inorganic compound in a predetermined ratio to an aqueous alkaline solution. Process.
Step (b): A step of adding an acid to the composite oxide fine particle dispersion to obtain a silica-based fine particle dispersion.
Step (d): A step of aging the silica-based fine particle dispersion in the range of from room temperature to 300 ° C.
Step (e): A hydrothermal treatment in the range of 50 to 300 ° C.
 更に、中空シリカ微粒子は、(メタ)アクリロイル基を有するシランカップリング剤等により表面が修飾されることが望ましい。(メタ)アクリロイル基を有するシランカップリング剤等で中空シリカ微粒子表面を修飾することにより、フッ素原子を含まない活性エネルギー線硬化型樹脂との共有結合が生じ、塗膜強度が強くなる傾向が見られる。 Furthermore, it is desirable that the surface of the hollow silica fine particle is modified with a silane coupling agent having a (meth) acryloyl group. By modifying the surface of the hollow silica fine particles with a silane coupling agent having a (meth) acryloyl group, a covalent bond with an active energy ray-curable resin containing no fluorine atom occurs, and the coating strength tends to increase. It is done.
 低屈折率層で用いられるフッ素原子を含まない活性エネルギー線硬化型樹脂としては、屈折率の低減を目的としたフッ素原子を含んでいない、活性エネルギー線硬化型樹脂が用いられる。フッ素原子を含んでいると、フッ素原子に起因した透過率向上フィルム表面の表面エネルギーの低下が生じ、両面テープとの粘着力が悪くなる。このような活性エネルギー線硬化型樹脂としては、単官能単量体、多官能単量体の中から1種又は2種以上が選択して用いられる。単官能単量体として具体的には、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸(ポリ)エチレングリコール基含有(メタ)アクリル酸エステル等が好ましい。多官能単量体としては、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン変性アクリレート等の(メタ)アクリロイル基を2個以上含む多官能重合性化合物等が挙げられる。 As the active energy ray-curable resin that does not contain fluorine atoms used in the low refractive index layer, an active energy ray-curable resin that does not contain fluorine atoms for the purpose of reducing the refractive index is used. When the fluorine atom is contained, the surface energy of the transmittance improving film due to the fluorine atom is lowered, and the adhesive force with the double-sided tape is deteriorated. As such an active energy ray-curable resin, one or more kinds selected from a monofunctional monomer and a polyfunctional monomer are used. Specifically, (meth) acrylic acid alkyl ester, (meth) acrylic acid (poly) ethylene glycol group-containing (meth) acrylic acid ester and the like are preferable as the monofunctional monomer. Examples of the polyfunctional monomer include ester compounds of polyhydric alcohol and (meth) acrylic acid, polyfunctional polymerizable compounds containing two or more (meth) acryloyl groups such as urethane-modified acrylate, and the like.
 フッ素原子を含まない活性エネルギー線硬化型樹脂の配合量は、27.0~69.0wt%とする。27.0wt%より少ない場合は、塗膜強度が弱くなる傾向があり好ましくない。一方、69.0wt%より多い場合は、低屈折率層の屈折率が1.47以上となるため相応しくない。 The blending amount of the active energy ray-curable resin containing no fluorine atom is 27.0 to 69.0 wt%. When it is less than 27.0 wt%, the coating film strength tends to be weak, which is not preferable. On the other hand, when it is more than 69.0 wt%, the refractive index of the low refractive index layer is 1.47 or more, which is not suitable.
 低屈折率層で用いられるアルミナ微粒子は、耐擦傷性向上を目的に用いられる。アルミナ微粒子の平均粒子径は低屈折率層の厚みを大きく超えないことが好ましい。具体的には、アルミナ微粒子の平均粒子径は、0.1μm以下であることが好ましい。アルミナ微粒子の平均粒子径が低屈折率層の厚みを大きく超えると光の散乱が生じる等、低屈折率層の光学性能が低下する傾向にある。 The alumina fine particles used in the low refractive index layer are used for the purpose of improving scratch resistance. It is preferable that the average particle diameter of the alumina fine particles does not greatly exceed the thickness of the low refractive index layer. Specifically, the average particle diameter of the alumina fine particles is preferably 0.1 μm or less. When the average particle diameter of the alumina fine particles greatly exceeds the thickness of the low refractive index layer, the optical performance of the low refractive index layer tends to deteriorate, such as light scattering.
 アルミナ微粒子の配合量は、0.1~0.9wt%とする。0.1wt%よりも少ないと、耐擦傷性向上に寄与しない。一方、0.9wt%よりも多い場合は、フッ素原子を含まない活性エネルギー線硬化型樹脂とアルミナ微粒子との屈折率差に起因した散乱が生じ、低屈折率層の光学性能が低下する傾向にある。 The amount of alumina fine particles is 0.1 to 0.9 wt%. If it is less than 0.1 wt%, it will not contribute to the improvement of scratch resistance. On the other hand, when the content is more than 0.9 wt%, scattering due to the refractive index difference between the active energy ray-curable resin not containing fluorine atoms and the alumina fine particles occurs, and the optical performance of the low refractive index layer tends to decrease. is there.
 低屈折率層で用いられる光重合開始剤は、低屈折率層用塗液を紫外線(UV)硬化させるために用いられる。光重合開始剤の配合量は、1.0~9.0wt%とする。1.0wt%より少ないと、硬化が不十分となる。一方、9.0wt%よりも多い場合は、不必要に多くなり、低屈折率層の光学性能が低下する傾向にある。そのような光重合開始剤としては、例えば1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が用いられる。 The photopolymerization initiator used in the low refractive index layer is used for curing the coating solution for the low refractive index layer with ultraviolet rays (UV). The blending amount of the photopolymerization initiator is 1.0 to 9.0 wt%. If it is less than 1.0 wt%, curing will be insufficient. On the other hand, when it is more than 9.0 wt%, it increases unnecessarily, and the optical performance of the low refractive index layer tends to be lowered. Examples of such a photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, and the like.
〔オーバーコート層〕
 オーバーコート層は、フッ素原子を含まない活性エネルギー線硬化型樹脂と、シリカ微粒子と、光重合開始剤とからなる。オーバーコート層は、これらを混合したオーバーコート層用塗液を紫外線(UV)硬化させて形成される。上記各組成物の配合量は、フッ素原子を含まない活性エネルギー線硬化型樹脂、シリカ微粒子、及び光重合開始剤の合計を100wt%として、その内フッ素原子を含まない活性エネルギー線硬化型樹脂85.0~95.0wt%、シリカ微粒子1.0~10.0wt%、光重合開始剤1.0~9.0wt%であり、その他の成分は含まない。従って、防汚性を積極的に発現するようなフッ素樹脂やシリコン樹脂からなる表面調整剤を含んでいない。その他の成分を含むと、位置入力装置と透過率向上フィルムとを粘着剤を備える両面テープで貼合した際に、両面テープとの粘着力が弱く、位置入力装置の剥れが生じるおそれがある。但し、オーバーコート層用塗液中には、塗工性の観点から通常希釈溶剤が含まれる。
[Overcoat layer]
The overcoat layer is composed of an active energy ray-curable resin containing no fluorine atom, silica fine particles, and a photopolymerization initiator. The overcoat layer is formed by curing an overcoat layer coating liquid obtained by mixing them with ultraviolet rays (UV). The blending amount of each of the above compositions is such that the total of the active energy ray-curable resin not containing fluorine atoms, the silica fine particles, and the photopolymerization initiator is 100 wt%, and the active energy ray-curable resin 85 not containing fluorine atoms is included. 0.0 to 95.0 wt%, silica fine particles 1.0 to 10.0 wt%, photopolymerization initiator 1.0 to 9.0 wt%, and other components are not included. Therefore, it does not contain a surface conditioner composed of a fluororesin or a silicon resin that positively exhibits antifouling properties. When other components are included, when the position input device and the transmittance improving film are bonded with a double-sided tape provided with an adhesive, the adhesive force with the double-sided tape is weak, and the position input device may peel off. . However, the overcoat layer coating solution usually contains a diluting solvent from the viewpoint of coating properties.
 オーバーコート層の乾燥硬化後の光学膜厚は、kλ/4(但し、λは光の波長400~700nm、kは1、3、又は5)であり、屈折率は1.3~1.7である。膜厚と屈折率がこの範囲外では、5°正反射での可視領域における反射率が最低値となる最小反射率波長が450~650nmの範囲外となり、全光線透過率の向上が見られない。また、オーバーコート層の光学膜厚が1λ/4より薄い場合は、透過率向上フィルムを位置入力装置等に組み込む際、若しくは、透過率向上フィルムへ組み込んだ後に表示装置と合わせる際に、加熱処理工程がある場合は透過率向上フィルムのヘイズが上昇する。一方、5λ/4よりも厚い場合は、不必要に厚くなるのみで好ましくない。 The optical film thickness after drying and curing of the overcoat layer is kλ / 4 (where λ is the light wavelength of 400 to 700 nm, k is 1, 3, or 5), and the refractive index is 1.3 to 1.7. It is. If the film thickness and refractive index are outside this range, the minimum reflectance wavelength at which the reflectance in the visible region at 5 ° specular reflection becomes the minimum value is outside the range of 450 to 650 nm, and no improvement in the total light transmittance is observed. . In addition, when the optical thickness of the overcoat layer is thinner than 1λ / 4, when the transmittance improving film is incorporated into a position input device or the like, or when it is combined with the display device after being incorporated into the transmittance improving film, the heat treatment When there is a process, the haze of the transmittance improving film increases. On the other hand, when it is thicker than 5λ / 4, it is not preferable because it becomes unnecessarily thick.
 なお、透過率向上フィルムを位置入力装置等に組み込む際や、透過率向上フィルムへ組み込んだ後に表示装置と合わせる際に加熱処理を行う場合は、50~150℃程度で1~60分程度行えばよい。加熱処理前後のヘイズの差((加熱処理後のヘイズ)-(加熱処理前のヘイズ))は、0.5%未満であることが好ましい。 When heat treatment is performed when the transmittance improving film is incorporated in a position input device or when it is combined with the display device after being incorporated in the transmittance enhancing film, it may be performed at about 50 to 150 ° C. for about 1 to 60 minutes. Good. The difference in haze before and after heat treatment ((haze after heat treatment) − (haze before heat treatment)) is preferably less than 0.5%.
 オーバーコート層で用いられるフッ素原子を含まない活性エネルギー線硬化型樹脂としては、屈折率の低減を目的としたフッ素原子を含んでいない、活性エネルギー線硬化型樹脂が用いられる。フッ素原子を含んでいると、フッ素原子に起因した透過率向上フィルム表面の表面エネルギーの低下が生じ、両面テープとの粘着性が悪くなる。そのような活性エネルギー線硬化型樹脂としては、単官能単量体、多官能単量体の中から1種又は2種以上が選択して用いられる。単官能単量体として具体的には、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸(ポリ)エチレングリコール基含有(メタ)アクリル酸エステル等が好ましい。多官能単量体としては、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン変性アクリレート等の(メタ)アクリロイル基を2個以上含む多官能重合性化合物等が挙げられる。 As the active energy ray-curable resin that does not contain fluorine atoms used in the overcoat layer, an active energy ray-curable resin that does not contain fluorine atoms for the purpose of reducing the refractive index is used. When the fluorine atom is contained, the surface energy of the transmittance improving film due to the fluorine atom is lowered, and the adhesiveness to the double-sided tape is deteriorated. As such an active energy ray-curable resin, one or more kinds selected from a monofunctional monomer and a polyfunctional monomer are used. Specifically, (meth) acrylic acid alkyl ester, (meth) acrylic acid (poly) ethylene glycol group-containing (meth) acrylic acid ester and the like are preferable as the monofunctional monomer. Examples of the polyfunctional monomer include ester compounds of polyhydric alcohol and (meth) acrylic acid, polyfunctional polymerizable compounds containing two or more (meth) acryloyl groups such as urethane-modified acrylate, and the like.
 フッ素原子を含まない活性エネルギー線硬化型樹脂の配合量は、85.0~95.0wt%とする。85.0wt%より少ない場合は、シリカ微粒子の配合量が多くなり光の散乱が生じる等、光学性能が低下する傾向にある。95.0wt%より多い場合は、透過率向上フィルムをロールtoロールで製造する場合、ブロッキングが生じ好ましくない。 The blending amount of the active energy ray-curable resin not containing fluorine atoms is 85.0 to 95.0 wt%. When the amount is less than 85.0 wt%, the optical performance tends to decrease, for example, the amount of silica fine particles increases and light scattering occurs. When the content is more than 95.0 wt%, when the transmittance improving film is produced by roll-to-roll, blocking occurs, which is not preferable.
 オーバーコート層には、透過率向上フィルムをロールtoロールで製造する場合のブロッキングを防止するために、シリカ微粒子が添加される。すなわち、ここでのシリカ微粒子はオーバーコート層の屈折率を積極的に低下させるためのものではない。したがって、オーバーコート層で使用するシリカ微粒子は、低屈折率層で使用するシリカ微粒子よりも屈折率は高くてもよい。具体的には、中空シリカ微粒子のほか、これよりも屈折率の高い中実シリカ微粒子を使用することもできる。中空シリカ微粒子の屈折率は1.2~1.4であることに対し、中実シリカ微粒子の屈折率は1.4~1.5である。シリカ微粒子の屈折率が1.5より大きい場合、フッ素原子を含まない活性エネルギー線硬化型樹脂とシリカ微粒子の屈折率差に起因した光の散乱が生じ、光学性能が低下する傾向にある。シリカ微粒子の屈折率が1.2より小さい場合、中空シリカ微粒子の強度が弱く、耐擦傷性が悪くなる傾向が見られるが、オーバーコート層に用いられるシリカ微粒子の配合量は少ないため、耐擦傷性悪化への影響は小さい。よって、シリカ微粒子の屈折率は1.2以下でも技術的には問題無い。 Silica fine particles are added to the overcoat layer in order to prevent blocking when the transmittance improving film is produced roll-to-roll. That is, the silica fine particles here are not intended to actively lower the refractive index of the overcoat layer. Therefore, the silica fine particles used in the overcoat layer may have a higher refractive index than the silica fine particles used in the low refractive index layer. Specifically, in addition to hollow silica fine particles, solid silica fine particles having a higher refractive index can be used. The hollow silica fine particles have a refractive index of 1.2 to 1.4, whereas the solid silica fine particles have a refractive index of 1.4 to 1.5. When the refractive index of the silica fine particles is larger than 1.5, light scattering due to the refractive index difference between the active energy ray-curable resin not containing fluorine atoms and the silica fine particles tends to occur, and the optical performance tends to deteriorate. When the refractive index of the silica fine particles is smaller than 1.2, the strength of the hollow silica fine particles is weak and the scratch resistance tends to deteriorate, but the amount of silica fine particles used in the overcoat layer is small, so the scratch resistance The impact on gender deterioration is small. Therefore, there is no technical problem even if the refractive index of the silica fine particles is 1.2 or less.
 シリカ微粒子の配合量は、1.0~10.0wt%である。1.0wt%より少ない場合は、透過率向上フィルムをロールtoロールで製造する場合、ブロッキングが生じ好ましくない。一方、10.0wt%より多い場合は、フッ素原子を含まない活性エネルギー線硬化型樹脂とシリカ微粒子の屈折率差に起因した光の散乱が生じ、光学性能が低下する傾向にある。 The amount of silica fine particles is 1.0 to 10.0 wt%. When the content is less than 1.0 wt%, when the transmittance improving film is produced by roll-to-roll, blocking occurs, which is not preferable. On the other hand, when the content is more than 10.0 wt%, light scattering is caused by the difference in refractive index between the active energy ray-curable resin not containing fluorine atoms and the silica fine particles, and the optical performance tends to be lowered.
 オーバーコート層で用いられる光重合開始剤は、オーバーコート層用塗液を紫外線(UV)硬化させるために用いられる。光重合開始剤の配合量は、1.0~9.0wt%とする。1.0wt%より少ないと、硬化が不十分となる。一方、9.0wt%よりも多い場合は、不必要に多くなり、オーバーコート層の光学性能が低下する傾向にある。このような光重合開始剤としては、例えば1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が用いられる。 The photopolymerization initiator used in the overcoat layer is used to cure the overcoat layer coating liquid with ultraviolet rays (UV). The blending amount of the photopolymerization initiator is 1.0 to 9.0 wt%. If it is less than 1.0 wt%, curing will be insufficient. On the other hand, when the amount is more than 9.0 wt%, the amount increases unnecessarily, and the optical performance of the overcoat layer tends to deteriorate. Examples of such a photopolymerization initiator include 1-hydroxy-cyclohexyl-phenyl-ketone and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one.
 低屈折率層用やオーバーコート層用の塗液の塗布方法は特に制限されず、通常行なわれている塗布方法、例えばロールコート法、スピンコート法、ディップコート法、スプレーコート法、バーコート法、ナイフコート法、ダイコート法、インクジェット法、グラビアコート法等公知のいかなる方法も採用される。塗布に際しては、密着性を向上させるために、予め透明基材フィルム表面にコロナ放電処理等の前処理を施すことができる。 The application method of the coating liquid for the low refractive index layer or the overcoat layer is not particularly limited, and a commonly applied application method such as a roll coating method, a spin coating method, a dip coating method, a spray coating method, or a bar coating method. Any known method such as a knife coating method, a die coating method, an ink jet method, or a gravure coating method may be employed. In application, in order to improve adhesion, pretreatment such as corona discharge treatment can be applied to the surface of the transparent substrate film in advance.
 活性エネルギー線の照射に用いられる活性エネルギー線源としては、例えば高圧水銀ランプ、ハロゲンランプ、キセノンランプ、窒素レーザ、電子線加速装置、放射性元素等の線源等が使用される。この場合、活性エネルギー線の照射量は、紫外線の波長365nmでの積算光量として50~5000mJ/cmであることが好ましい。照射量が50mJ/cm未満のときには、塗液の硬化が不十分となるため好ましくない。一方、5000mJ/cmを超えるときには、活性エネルギー線硬化型樹脂が着色する傾向を示すため好ましくない。 As an active energy ray source used for irradiation of active energy rays, for example, a high pressure mercury lamp, a halogen lamp, a xenon lamp, a nitrogen laser, an electron beam accelerator, a radioactive element or the like is used. In this case, the irradiation amount of the active energy ray is preferably 50 to 5000 mJ / cm 2 as an integrated light amount at a wavelength of 365 nm of ultraviolet rays. When the irradiation amount is less than 50 mJ / cm 2 , curing of the coating liquid becomes insufficient, which is not preferable. On the other hand, when it exceeds 5000 mJ / cm 2 , the active energy ray-curable resin tends to be colored, which is not preferable.
 得られた透過率向上フィルムは、静電容量式タッチパネルや抵抗膜式タッチパネル等のタッチパネルにおいて、例えばタッチパネルを構成する位置入力装置の裏面等に適用される。 The obtained transmittance improving film is applied to, for example, a back surface of a position input device constituting the touch panel in a touch panel such as a capacitive touch panel or a resistive touch panel.
 以下に、製造例、実施例及び比較例を挙げて本発明の実施形態をさらに具体的に説明する。ここで、各実施例及び比較例の透過率向上フィルムは、透明基材フィルム上に直接低屈折率層が積層され、更に、透過率向上フィルムの裏面にオーバーコート層が積層された構成のものである。また、各例における粘着力、全光線透過率、耐擦傷性、反射ムラ、加熱処理後のヘイズ上昇については、下記に示す方法により測定した。 Hereinafter, embodiments of the present invention will be described more specifically with reference to production examples, examples, and comparative examples. Here, the transmittance improving film of each Example and Comparative Example has a structure in which a low refractive index layer is directly laminated on a transparent base film, and an overcoat layer is laminated on the back surface of the transmittance improving film. It is. Moreover, the adhesive strength, total light transmittance, scratch resistance, reflection unevenness, and haze increase after heat treatment in each example were measured by the methods shown below.
<粘着力>
(1)透過率向上フィルムの低屈折率層面を、日東電工(株)製の両面テープ No.500に貼合する。
(2)JIS Z0237に準拠し、卓上型材料試験機 株式会社オリエンテック製STA-1150を使用し、引きはがし角度90°で低屈折率層面と両面テープとの粘着力を測定。
<Adhesive strength>
(1) The low refractive index layer surface of the transmittance improving film is a double-sided tape manufactured by Nitto Denko Corporation. Paste to 500.
(2) In accordance with JIS Z0237, using a desktop material tester STA-1150 manufactured by Orientec Co., Ltd., measuring the adhesive strength between the low refractive index layer surface and the double-sided tape at a peeling angle of 90 °.
<ヘイズ値・全光線透過率>
 ヘイズメーター 日本電色工業(株)製、NDH2000を用いてヘイズ値・全光線透過率を測定した。
<Haze value / total light transmittance>
Haze meter Haze value and total light transmittance were measured using NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.
<耐擦傷性>
 (株)本光製作所製消しゴム摩耗試験機の先端に、#0000のスチールウールを固定し、2.5N(255gf)の荷重をかけて、被擦傷体であるフィルムの表面を10往復摩擦した後の表面の傷を目視で観察し、下記の3段階で評価した。
 ○:ほぼ傷なし(傷4本以下)
 △:少数の傷あり(傷5~15本)
 ×:多数の傷あり(傷16本以上)
<Abrasion resistance>
After fixing # 0000 steel wool to the tip of an eraser abrasion tester manufactured by Honko Seisakusho and applying a load of 2.5 N (255 gf), the surface of the film as a scratched object was rubbed 10 times. The surface scratches were visually observed and evaluated in the following three stages.
○: Almost no scratch (less than 4 scratches)
Δ: Small number of scratches (5 to 15 scratches)
×: Many scratches (16 or more scratches)
<反射ムラ>
 三波長光源下、作成した反射防止フィルムの裏面に黒色粘着層を施したフィルムを貼合して目視で観察し、以下の3段階で評価した。
○ :ほぼムラ無し
△ :弱いムラ有り
× :強いムラ有り
<Reflection unevenness>
Under a three-wavelength light source, a film with a black adhesive layer was bonded to the back surface of the antireflection film thus prepared, observed visually, and evaluated in the following three stages.
○: Almost non-uniform Δ: Weak unevenness ×: Strong unevenness
<加熱処理後のヘイズ上昇>
 透過率向上フィルムに対し、150℃60分の加熱処理を実施。加熱処理前後のヘイズの差((加熱処理後のヘイズ)-(加熱処理前のヘイズ))を評価した。
<Haze rise after heat treatment>
A heat treatment at 150 ° C. for 60 minutes is performed on the transmittance improving film. The difference in haze before and after heat treatment ((haze after heat treatment) − (haze before heat treatment)) was evaluated.
〔低屈折率層用塗液の調製〕
 低屈折率層用塗液として次の原料を使用し、各原料を表1、2に記載した組成で混合して、低屈折率層用塗液L-1~L13を調整した。なお、表1、2中の数値はwt%である。
 中空シリカ微粒子:
  日揮触媒化成(株)製 アクリル修飾中空シリカ微粒子スルーリアNAU
  日揮触媒化成(株)製 アクリル修飾中空シリカ微粒子V8208
 フッ素原子を含まない活性エネルギー線硬化型樹脂:日本化薬(株)製 DPHA
 光重合開始剤:チバ・スペシャルティ・ケミカルズ(株)製I-907
 アルミナ微粒子:
  ビックケミー・ジャパン(株)製NANOBYK-3601
  ビックケミー・ジャパン(株)製NANOBYK-3602
  ビックケミー・ジャパン(株)製NANOBYK-3610
 溶媒:イソプロピルアルコール
(Preparation of coating solution for low refractive index layer)
The following raw materials were used as the coating solution for the low refractive index layer, and the respective raw materials were mixed with the compositions shown in Tables 1 and 2 to prepare the coating solutions L-1 to L13 for the low refractive index layer. The numerical values in Tables 1 and 2 are wt%.
Hollow silica fine particles:
Acrylic modified hollow silica fine particle through rear NAU manufactured by JGC Catalysts & Chemicals Co., Ltd.
Acrylic modified hollow silica fine particles V8208 manufactured by JGC Catalysts & Chemicals Co., Ltd.
Active energy ray-curable resin containing no fluorine atom: DPHA manufactured by Nippon Kayaku Co., Ltd.
Photopolymerization initiator: I-907 manufactured by Ciba Specialty Chemicals Co., Ltd.
Alumina fine particles:
NANOBYK-3601 made by Big Chemie Japan Co., Ltd.
NANOBYK-3602 manufactured by Big Chemie Japan K.K.
Big Chemie Japan Co., Ltd. NANOBYK-3610
Solvent: Isopropyl alcohol
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〔オーバーコート層用塗液の調製〕
 オーバーコート層用塗液として次の原料を使用し、各原料を表3に記載した組成で混合して、オーバーコート層用塗液O-1~O-7を調整した。なお、表3中の数値はwt%である。
 フッ素原子を含まない活性エネルギー線硬化型樹脂:日本化薬(株)製 DPHA
 シリカ微粒子:
  日揮触媒化成(株)製 アクリル修飾中空シリカ微粒子V8208
  日揮触媒化成(株)製 アクリル修飾中空シリカ微粒子スルーリアNAU
 光重合開始剤:チバ・スペシャルティ・ケミカルズ(株)製 I-907
 溶媒:イソプロピルアルコール
[Preparation of overcoat layer coating solution]
The following raw materials were used as the overcoat layer coating solution, and the respective raw materials were mixed in the composition shown in Table 3 to prepare overcoat layer coating solutions O-1 to O-7. In addition, the numerical value in Table 3 is wt%.
Active energy ray-curable resin containing no fluorine atom: DPHA manufactured by Nippon Kayaku Co., Ltd.
Silica fine particles:
Acrylic modified hollow silica fine particles V8208 manufactured by JGC Catalysts & Chemicals Co., Ltd.
Acrylic modified hollow silica fine particle through rear NAU manufactured by JGC Catalysts & Chemicals Co., Ltd.
Photopolymerization initiator: I-907 manufactured by Ciba Specialty Chemicals Co., Ltd.
Solvent: Isopropyl alcohol
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例1-1)
 低屈折率層用塗液(L-1)を、透明基材フィルムとして厚み50μmのポリエチレンテレフタレート(PET)フィルム上に直接、硬化後の膜厚が100nmとなるようにロールコーターにて塗布し、乾燥後、120W高圧水銀灯〔日本電池(株)製〕により紫外線を照射し(積算光量400mJ/cm)、硬化させて透過率向上フィルムを作製した。
Example 1-1
The low refractive index layer coating liquid (L-1) was directly applied onto a polyethylene terephthalate (PET) film having a thickness of 50 μm as a transparent substrate film with a roll coater so that the film thickness after curing was 100 nm. After drying, ultraviolet rays were irradiated with a 120 W high-pressure mercury lamp (manufactured by Nippon Battery Co., Ltd.) (accumulated light amount 400 mJ / cm 2 ) and cured to prepare a transmittance improving film.
(実施例1-2)
 低屈折率層用塗液をL-2とし、硬化後の膜厚を125nmとした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
Example 1-2
A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was L-2 and the film thickness after curing was 125 nm.
(実施例1-3)
 低屈折率層用塗液をL-3とし、硬化後の膜厚を80nmとした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Example 1-3)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was L-3 and the film thickness after curing was 80 nm.
(実施例1-4)
 低屈折率層用塗液をL-4とした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Example 1-4)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-4.
(実施例1-5)
 低屈折率層用塗液をL-5とした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Example 1-5)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the low refractive index layer coating solution was changed to L-5.
(実施例1-6)
 低屈折率層用塗液をL-6とした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Example 1-6)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-6.
(実施例1-7)
 低屈折率層用塗液をL-7とした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Example 1-7)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-7.
(比較例1-1)
 低屈折率層用塗液をL-8とした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Comparative Example 1-1)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was L-8.
(比較例1-2)
 低屈折率層用塗液をL-9とした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Comparative Example 1-2)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was L-9.
(比較例1-3)
 低屈折率層用塗液をL-10とした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Comparative Example 1-3)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-10.
(比較例1-4)
 低屈折率層用塗液をL-11とした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Comparative Example 1-4)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-11.
(比較例1-5)
 低屈折率層用塗液をL-12とした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Comparative Example 1-5)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the low refractive index layer coating solution was changed to L-12.
(比較例1-6)
 低屈折率層用塗液をL-13とした以外は、実施例1-1と同様にして透過率向上フィルムを作製した。
(Comparative Example 1-6)
A transmittance improving film was produced in the same manner as in Example 1-1 except that the coating solution for the low refractive index layer was changed to L-13.
(実施例2-1)
 実施例1-1で作製した透過率向上フィルムの裏面に、オーバーコート層用塗液(O-1)を、硬化後の光学膜厚がkλ/4(k:1、λ:550nm)=138nmとなるようにロールコーターにて塗布し、乾燥後、120W高圧水銀灯〔日本電池(株)製〕により紫外線を照射し(積算光量400mJ/cm)、硬化させて透過率向上フィルムを作製した。
Example 2-1
The coating film for overcoat layer (O-1) is applied to the back surface of the transmittance improving film produced in Example 1-1, and the optical film thickness after curing is kλ / 4 (k: 1, λ: 550 nm) = 138 nm. Then, the film was applied with a roll coater, dried, and then irradiated with ultraviolet rays using a 120 W high-pressure mercury lamp (manufactured by Nippon Battery Co., Ltd.) (integrated light amount 400 mJ / cm 2 ) and cured to prepare a transmittance improving film.
(実施例2-2)
 オーバーコート層用塗液をO-2とし、オーバーコート層の膜厚をkλ/4(k:3、λ:550nm)=412nmとした以外は、実施例2-1と同様にして透過率向上フィルムを作製した。
(Example 2-2)
The transmittance is improved in the same manner as in Example 2-1, except that the overcoat layer coating solution is O-2 and the overcoat layer thickness is kλ / 4 (k: 3, λ: 550 nm) = 412 nm. A film was prepared.
(実施例2-3)
 オーバーコート層用塗液をO-3とし、オーバーコート層の膜厚をkλ/4(k:5、λ:550nm)=688nmとした以外は、実施例2-1と同様にして透過率向上フィルムを作製した。
(Example 2-3)
The transmittance is improved in the same manner as in Example 2-1, except that the overcoat layer coating solution is O-3 and the overcoat layer thickness is kλ / 4 (k: 5, λ: 550 nm) = 688 nm. A film was prepared.
(実施例2-4)
 オーバーコート層用塗液をO-4とした以外は、実施例2-1と同様にして透過率向上フィルムを作製した。
(Example 2-4)
A transmittance improving film was produced in the same manner as in Example 2-1, except that the overcoat layer coating solution was O-4.
(実施例2-5)
 オーバーコート層用塗液をO-5とした以外は、実施例2-1と同様にして透過率向上フィルムを作製した。
(Example 2-5)
A transmittance improving film was produced in the same manner as in Example 2-1, except that the overcoat layer coating solution was O-5.
(比較例2-1)
 オーバーコート層用塗液をO-6とした以外は、実施例2-1と同様にして透過率向上フィルムを作製した。
(Comparative Example 2-1)
A transmittance improving film was produced in the same manner as in Example 2-1, except that the overcoat layer coating solution was O-6.
(比較例2-2)
 オーバーコート層用塗液をO-7とした以外は、実施例2-1と同様にして透過率向上フィルムを作製した。
(Comparative Example 2-2)
A transmittance improving film was produced in the same manner as in Example 2-1, except that the overcoat layer coating solution was O-7.
 各実施例の各試験結果を表4~6に示す。
Figure JPOXMLDOC01-appb-T000004
The test results of each example are shown in Tables 4-6.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3、4に示した結果より、実施例1-1~7の透過率向上フィルムは、両面テープとの粘着性、全光線透過率、耐擦傷性の全てに優れるうえ、外観上の反射ムラも無いことを実現できた。また、実施例2-1~5の透過率向上フィルムは、オーバーコート層を透過率向上フィルムの裏面に所定の光学膜厚で形成したことから全光線透過率がより優れ、更に加熱処理後にヘイズが上昇しないことを実現できた。 From the results shown in Tables 3 and 4, the transmittance improving films of Examples 1-1 to 7 are excellent in adhesiveness to the double-sided tape, total light transmittance, and scratch resistance, and uneven reflection on the appearance. I realized that there was nothing. Further, the transmittance improving films of Examples 2-1 to 5 were more excellent in total light transmittance because the overcoat layer was formed on the back surface of the transmittance improving film with a predetermined optical film thickness. Could not rise.
 一方、比較例1-1は、中空シリカ微粒子の配合量が少なく、全光線透過率が悪かった。比較例1-2は、中空シリカ微粒子の配合量が多く、耐擦傷性(表面)が悪い結果となった。比較例1-3は、アルミナ微粒子が配合されてないことから耐擦傷性(表面)が悪い結果となった。比較例1-4は、アルミナ微粒子の配合量が多く、全光線透過率が悪い結果となった。比較例1-5は、光重合開始剤が配合されてないことから耐擦傷性(表面)が悪い結果となった。比較例1-6は、光重合開始剤の配合量が多く、全光線透過率が悪い結果となった。 On the other hand, in Comparative Example 1-1, the amount of hollow silica fine particles was small and the total light transmittance was poor. Comparative Example 1-2 resulted in a large amount of hollow silica fine particles and poor scratch resistance (surface). Comparative Example 1-3 resulted in poor scratch resistance (surface) because alumina fine particles were not blended. In Comparative Example 1-4, the amount of alumina fine particles was large and the total light transmittance was poor. In Comparative Example 1-5, since no photopolymerization initiator was blended, the scratch resistance (surface) was poor. In Comparative Example 1-6, the amount of the photopolymerization initiator was large, and the total light transmittance was poor.
 比較例2-1は、シリカ微粒子が配合されてないことからブロッキング性が悪い結果となった。比較例2-2は、光重合開始剤が配合されてないことから耐擦傷性(裏面)が悪い結果となった。
 
Comparative Example 2-1 resulted in poor blocking properties because silica fine particles were not blended. Comparative Example 2-2 resulted in poor scratch resistance (back surface) because no photopolymerization initiator was blended.

Claims (6)

  1.  透明基材フィルムの表面に、該透明基材フィルムよりも屈折率の低い低屈折率層が直接積層されている透過率向上フィルムであって、
     前記低屈折率層は、中空シリカ微粒子、フッ素原子を含まない活性エネルギー線硬化型樹脂、光重合開始剤、及びアルミナ微粒子からなり、
     該中空シリカ微粒子、フッ素原子を含まない活性エネルギー線硬化型樹脂、光重合開始剤、及びアルミナ微粒子の合計100wt%に対して、
     前記中空シリカ微粒子を28.0~69.0wt%、
     前記フッ素原子を含まない活性エネルギー線硬化型樹脂を27.0~69.0wt%、
     前記光重合開始剤を1.0~9.0wt%、
     前記アルミナ微粒子を0.1~0.9wt%含有する、透過率向上フィルム。
    A transmittance improving film in which a low refractive index layer having a refractive index lower than that of the transparent substrate film is directly laminated on the surface of the transparent substrate film,
    The low refractive index layer is composed of hollow silica fine particles, an active energy ray-curable resin not containing fluorine atoms, a photopolymerization initiator, and alumina fine particles,
    For a total of 100 wt% of the hollow silica fine particles, the active energy ray-curable resin not containing fluorine atoms, the photopolymerization initiator, and the alumina fine particles,
    28.0 to 69.0 wt% of the hollow silica fine particles,
    27.0 to 69.0 wt% of the active energy ray-curable resin containing no fluorine atom,
    1.0 to 9.0 wt% of the photopolymerization initiator,
    A transmittance improving film containing 0.1 to 0.9 wt% of the alumina fine particles.
  2.  請求項1に記載の透過率向上フィルムであって、
     前記透明基材フィルムの屈折率が1.55~1.70であり、
     前記低屈折率層の屈折率が1.35~1.47である、透過率向上フィルム。
    The transmittance improving film according to claim 1,
    The transparent substrate film has a refractive index of 1.55 to 1.70,
    A transmittance improving film, wherein the low refractive index layer has a refractive index of 1.35 to 1.47.
  3.  請求項1または請求項2に記載の透過率向上フィルムであって、
     前記低屈折率層の膜厚が50~130nmであり、
     前記中空シリカ微粒子及びアルミナ微粒子の平均粒子径が0.1μm以下である、透過率向上フィルム。
    The transmittance improving film according to claim 1 or 2,
    The low refractive index layer has a thickness of 50 to 130 nm,
    The transmittance improving film, wherein the hollow silica fine particles and the alumina fine particles have an average particle size of 0.1 μm or less.
  4.  請求項1ないし請求項3のいずれかに記載の透過率向上フィルムであって、
     前記透明基材フィルムの裏面にオーバーコート層が積層されており、
     前記オーバーコート層は、フッ素原子を含まない活性エネルギー線硬化型樹脂、シリカ微粒子、及び光重合開始剤からなり、
     該フッ素原子を含まない活性エネルギー線硬化型樹脂、シリカ微粒子、及び光重合開始剤の合計100wt%に対して、
     前記フッ素原子を含まない活性エネルギー線硬化型樹脂を85.0~95.0wt%、
     前記シリカ微粒子を1.0~10.0wt%、
     前記光重合開始剤を1.0~9.0wt%含有し、
     前記オーバーコート層の光学膜厚はkλ/4(但し、λは光の波長400~700nm、kは1、3、又は5)である、透過率向上フィルム。
    The transmittance improving film according to any one of claims 1 to 3,
    An overcoat layer is laminated on the back surface of the transparent substrate film,
    The overcoat layer is composed of an active energy ray-curable resin containing no fluorine atom, silica fine particles, and a photopolymerization initiator,
    For a total of 100 wt% of the active energy ray-curable resin not containing fluorine atoms, silica fine particles, and photopolymerization initiator,
    85.0-95.0 wt% of the active energy ray-curable resin containing no fluorine atom,
    1.0 to 10.0 wt% of the silica fine particles,
    Containing 1.0 to 9.0 wt% of the photopolymerization initiator,
    The transmittance improving film, wherein the optical thickness of the overcoat layer is kλ / 4 (where λ is a wavelength of light of 400 to 700 nm, and k is 1, 3, or 5).
  5.  請求項4に記載の透過率向上フィルムであって、
     前記オーバーコート層の屈折率が1.3~1.7である、透過率向上フィルム。
    The transmittance improving film according to claim 4,
    A transmittance improving film, wherein the overcoat layer has a refractive index of 1.3 to 1.7.
  6.  請求項1ないし請求項5のいずれかに記載の透過率向上フィルムであって、
     タッチパネルを構成する位置入力装置の裏面に適用される、透過率向上フィルム。

                                                                                    
    It is the transmittance | permeability improvement film in any one of Claim 1 thru | or 5, Comprising:
    A transmittance improving film applied to the back surface of a position input device constituting a touch panel.

PCT/JP2012/050012 2011-01-20 2012-01-04 Transmittance improving film WO2012098923A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137019267A KR101892770B1 (en) 2011-01-20 2012-01-04 Transmittance improving film
CN201280000023.1A CN102753998B (en) 2011-01-20 2012-01-04 Transmittance improving film
JP2012553646A JP5987693B2 (en) 2011-01-20 2012-01-04 Transmission enhancement film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009609 2011-01-20
JP2011009609 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012098923A1 true WO2012098923A1 (en) 2012-07-26

Family

ID=46515555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050012 WO2012098923A1 (en) 2011-01-20 2012-01-04 Transmittance improving film

Country Status (5)

Country Link
JP (1) JP5987693B2 (en)
KR (1) KR101892770B1 (en)
CN (1) CN102753998B (en)
TW (1) TWI451967B (en)
WO (1) WO2012098923A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605162A3 (en) * 2018-07-31 2020-05-13 Samsung Display Co., Ltd. Low refractive layer and electronic device including the same
TWI835828B (en) 2018-07-31 2024-03-21 南韓商三星顯示器有限公司 Low refractive layer and electronic device including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200698A (en) * 2014-04-04 2015-11-12 日東電工株式会社 Transparent resin layer, polarizing film with adhesive layer, and image display device
CN107632330B (en) 2016-07-14 2019-11-01 株式会社Lg化学 Antireflection film
JP7000017B2 (en) * 2016-11-16 2022-01-19 リンテック株式会社 Writing quality improvement film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258613A (en) * 1999-03-10 2000-09-22 Dainippon Printing Co Ltd Antidazzle sheet, display device and production of antidazzle sheet
JP2001330707A (en) * 2000-05-19 2001-11-30 Nof Corp Electrically conductive reflection reducing material, producing method and use
JP2003266606A (en) * 2002-03-13 2003-09-24 Sumitomo Chem Co Ltd Transparent base with cured film
JP2009056674A (en) * 2007-08-31 2009-03-19 Kaneka Corp Transfer antireflection film
JP2009069429A (en) * 2007-09-12 2009-04-02 Dainippon Printing Co Ltd Optical laminate, manufacturing method of optical laminate, polarizing plate, and image display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000066005A (en) * 1998-08-24 2000-03-03 Matsushita Electric Works Ltd Laminated plate
JP4836316B2 (en) * 1999-09-29 2011-12-14 富士フイルム株式会社 Antireflection film, polarizing plate, and image display device
JP5055763B2 (en) * 2005-12-20 2012-10-24 日油株式会社 Optical article and display device using the same
JP2008003359A (en) * 2006-06-23 2008-01-10 Konica Minolta Opto Inc Antireflection film, polarizing plate and liquid crystal display device
JP2009075360A (en) * 2007-09-20 2009-04-09 Fujifilm Corp Optical film, polarizing plate, image display apparatus and method of manufacturing optical film
JP2009204728A (en) * 2008-02-26 2009-09-10 Nof Corp Antiglare laminate and display equipped with the same
JP2010170089A (en) 2008-12-22 2010-08-05 Nof Corp Reflection preventing film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000258613A (en) * 1999-03-10 2000-09-22 Dainippon Printing Co Ltd Antidazzle sheet, display device and production of antidazzle sheet
JP2001330707A (en) * 2000-05-19 2001-11-30 Nof Corp Electrically conductive reflection reducing material, producing method and use
JP2003266606A (en) * 2002-03-13 2003-09-24 Sumitomo Chem Co Ltd Transparent base with cured film
JP2009056674A (en) * 2007-08-31 2009-03-19 Kaneka Corp Transfer antireflection film
JP2009069429A (en) * 2007-09-12 2009-04-02 Dainippon Printing Co Ltd Optical laminate, manufacturing method of optical laminate, polarizing plate, and image display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3605162A3 (en) * 2018-07-31 2020-05-13 Samsung Display Co., Ltd. Low refractive layer and electronic device including the same
US11650363B2 (en) 2018-07-31 2023-05-16 Samsung Display Co., Ltd. Low refractive layer and electronic device including the same
TWI835828B (en) 2018-07-31 2024-03-21 南韓商三星顯示器有限公司 Low refractive layer and electronic device including the same

Also Published As

Publication number Publication date
CN102753998B (en) 2014-10-15
CN102753998A (en) 2012-10-24
KR101892770B1 (en) 2018-08-28
KR20130140122A (en) 2013-12-23
TWI451967B (en) 2014-09-11
JPWO2012098923A1 (en) 2014-06-09
TW201231272A (en) 2012-08-01
JP5987693B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5789951B2 (en) Optical film and display panel
KR101207176B1 (en) Optical laminate and hardcoat film
KR101151503B1 (en) Anti-glare hardcoat film and polarizing plate using the same
US9405040B2 (en) Optical layered body, method of producing the same, polarizer and image display device
JP4906283B2 (en) Infrared absorption film
JP4853813B2 (en) Anti-reflection laminate
KR20100103390A (en) Optical film
JP5486840B2 (en) Antireflection film and polarizing plate using the same
JP2002036452A (en) Highly minute antidazzle hard coating film
WO2006078053A1 (en) Reflection preventing film
KR101646780B1 (en) Antiglare hardcoat film and polarizer using the same
JP5154773B2 (en) Antireflection film
JPWO2019107036A1 (en) Hard coat film, optical laminate and image display device
JP2008026492A (en) Antireflection film
JP5987693B2 (en) Transmission enhancement film
KR20110097636A (en) Antiglare hard coat film and polarizing plate using the same
JP2009222801A (en) Optical film
KR20100074024A (en) Reflection preventing film
KR101249597B1 (en) Infrared-ray absorption film
JP2007025201A (en) Reflection preventive material and its manufacturing method
JP6171300B2 (en) Transparent conductive film, and transparent conductive film with transparent adhesive layer laminated
JP2010025996A (en) Anti-reflection film and method for manufacturing the same
JP2013237244A (en) Color tone correction film and transparent conductive film using the same
JP6171299B2 (en) Transparent conductive film
JP2005043647A (en) Antistatic hard coat film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000023.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736115

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553646

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137019267

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736115

Country of ref document: EP

Kind code of ref document: A1