WO2012098912A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2012098912A1
WO2012098912A1 PCT/JP2012/000367 JP2012000367W WO2012098912A1 WO 2012098912 A1 WO2012098912 A1 WO 2012098912A1 JP 2012000367 W JP2012000367 W JP 2012000367W WO 2012098912 A1 WO2012098912 A1 WO 2012098912A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
heat exchanger
flat
flat tube
pipe
Prior art date
Application number
PCT/JP2012/000367
Other languages
French (fr)
Japanese (ja)
Inventor
正憲 神藤
好男 織谷
宏和 藤野
俊光 鎌田
菊池 芳正
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US13/980,600 priority Critical patent/US20130292098A1/en
Priority to EP12736601.1A priority patent/EP2667134A4/en
Priority to KR1020137021966A priority patent/KR101451057B1/en
Priority to JP2012553645A priority patent/JP5617935B2/en
Priority to CN2012800052132A priority patent/CN103339457A/en
Priority to AU2012208118A priority patent/AU2012208118A1/en
Publication of WO2012098912A1 publication Critical patent/WO2012098912A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05308Assemblies of conduits connected side by side or with individual headers, e.g. section type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/30Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0444Condensers with an integrated receiver where the flow of refrigerant through the condenser receiver is split into two or more flows, each flow following a different path through the condenser receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/04Assemblies of fins having different features, e.g. with different fin densities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • the present invention relates to a heat exchanger and an air conditioner that include a flat tube and fins and exchange heat with air flowing in the flat tube.
  • Patent Document 1 discloses an air conditioner configured by this type of refrigeration apparatus.
  • the outdoor heat exchanger functions as a condenser
  • the indoor heat exchanger functions as an evaporator.
  • the indoor heat exchanger functions as a condenser and the outdoor heat exchanger functions as an evaporator.
  • Patent Document 2 also discloses an air conditioner that performs a refrigeration cycle.
  • the refrigerant circuit of this air conditioner is provided with an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air.
  • This outdoor heat exchanger is constituted by a heat exchanger having two headers each formed in a cylindrical shape and a number of flat heat transfer tubes provided between the two headers.
  • a heat exchanger having a header and a flat heat transfer tube is also disclosed in Patent Document 3.
  • the heat exchanger of patent document 3 functions as a condenser.
  • a main heat exchanging section for condensation and an auxiliary heat exchanging section for supercooling are formed.
  • the refrigerant that has flowed into the heat exchanger is condensed while passing through the main heat exchanging section to be substantially in a liquid single-phase state, and thereafter flows into the auxiliary heat exchanging section to be further cooled.
  • the auxiliary heat exchange part is the main heat exchange part.
  • the number of flow paths is smaller than that of the heat exchange section, and the flow velocity increases in the auxiliary heat exchange section, and the pressure loss may increase in the auxiliary heat exchange section.
  • the present invention has been made paying attention to the above problems, and in a heat exchanger having a header and a flat tube and having a main heat exchange part for condensation and an auxiliary heat exchange part for supercooling, It aims at enabling it to reduce the pressure loss in an auxiliary heat exchange part.
  • the first invention is: Between a plurality of flat tubes (53,58) in which a plurality of fluid flow paths (49) are formed inside, and the adjacent flat tubes (53,58) arranged side by side so as to face each other A heat exchanger comprising a plurality of fins (54, 59) partitioned into a plurality of ventilation paths through which air flows, A first header collecting pipe (51, 56); A second header collecting pipe (52, 57), Each of the flat tubes (53, 58) has one end connected to the first header collecting pipe (51, 56) and the other end connected to the second header collecting pipe (52, 57).
  • Some flat tubes (53) of the plurality of flat tubes (53,58) constitute the main heat exchange part (50), and the remaining flat tubes (58) constitute the auxiliary heat exchange part (55).
  • the number of flat tubes (58) constituting the auxiliary heat exchange section (55) is less than the number of flat tubes (53) constituting the main heat exchange section (50),
  • the total cross-sectional area of the flow path (49) per flat pipe (58) in the auxiliary heat exchange section (55) is the flow path per flat pipe (53) in the main heat exchange section (50) ( 49) greater than the total cross-sectional area of
  • the number of flat tubes (58) constituting the auxiliary heat exchange section (55) is smaller than the number of flat tubes (53) constituting the main heat exchange section (50).
  • the total cross-sectional area of the flow path (49) per one flat tube (58) in the auxiliary heat exchange section (55) is the flow path per one flat pipe (53) in the main heat exchange section (50). It is configured to be larger than the total cross-sectional area of (49). Therefore, when the heat exchanger is a condenser, the flow rate of the refrigerant in the auxiliary heat exchanging part (55) as compared with a heat exchanger in which the main heat exchanging part and the auxiliary heat exchanging part are configured by one type of flat tube. It becomes possible to slow down.
  • the width (W2) of the flat tube (58) of the auxiliary heat exchanger (55) is larger than the width (W1) of the flat tube (53) of the main heat exchanger (50),
  • the number of flow paths per flat tube (58) of the auxiliary heat exchange section (55) is larger than the number of flow paths per flat pipe (53) of the main heat exchange section (50).
  • the third invention In the heat exchanger of the first or second invention, A plurality of grooves are formed in the flow path (49) of the flat tube (53) of the main heat exchange part (50),
  • the flat tube (58) of the auxiliary heat exchange part (55) is a bare tube.
  • the fourth invention is in any one of the heat exchangers of the first to third inventions.
  • the fins (236) are formed in a plate shape provided with a plurality of notches (245) for inserting the flat tubes (53, 58), and are predetermined to each other in the extending direction of the flat tubes (53, 58).
  • the flat tube (53,58) is sandwiched at the periphery of the notch (245),
  • the fin (236) is characterized in that a portion between the vertically adjacent cutout portions (245) constitutes a heat transfer portion (237).
  • the plurality of fins (236) formed in a plate shape are arranged at predetermined intervals in the extending direction of the flat tube (53, 58).
  • Each fin (236) is formed with a plurality of notches (245) for inserting the flat tubes (53, 58).
  • the peripheral part of the notch (245) has pinched the flat tube (53,58).
  • the part between the notch parts (245) adjacent up and down comprises a heat-transfer part (237).
  • the fifth invention In the heat exchanger of the fourth invention, the ends in the width direction of the flat tubes (53, 58) are aligned with the ends on the entrance side of the notches (245).
  • the end in the width direction of the flat tube (53, 58) is aligned with the end on the notch (245) side. Therefore, when the brazing material for joining the fin (236) and the heat transfer tube (53, 58) is arranged on the side of the notch (245), it can be easily set.
  • the heat exchanger is connected to the refrigerant circuit (20).
  • the refrigerant circulating in the refrigerant circuit (20) flows through the flow path (49) of the flat tube (53, 58) and exchanges heat with the air flowing through the ventilation path.
  • the flow rate of the refrigerant in the auxiliary heat exchanging section (55) can be reduced, and therefore in the auxiliary heat exchanging section (55). Pressure loss can be reduced.
  • the total cross-sectional area of the flow path (49) in the flat tube (53) for main heat exchange parts (50), and the flat tube (58) for auxiliary heat exchange parts (55) can be easily set.
  • the shape of the flow path (49) is different between the main heat exchange section (50) and the auxiliary heat exchange section (55), and the difference in the flow path (49) shape can be identified visually.
  • the flat tubes (53) for the main heat exchanger (50) and the flat tubes (58) for the auxiliary heat exchanger (55) have different widths (W1, W2). Therefore, both can be easily identified visually.
  • the third invention in the flat tube (53) for the main heat exchange section (50), it becomes possible to improve the heat exchange efficiency in the main heat exchange section (50). Further, in the flat tube (58) for the auxiliary heat exchange section (55), the pressure loss due to the shape can be further reduced.
  • the brazing material for joining the fin (236) and the heat transfer tube (53, 58) can be easily set, so that both can be joined more reliably. Also, since the end of the flat tube (53,58) is aligned with the end of the notch (245) at the entrance side, when using flat tubes (53,58) with different widths, The depth of the notch (245) may be set according to 58). That is, even if a plurality of types of flat tubes (53, 58) having different widths are used, the fin (236) can be shared.
  • FIG. 1 is a refrigerant circuit diagram of the air conditioner of Embodiment 1, and shows a state during cooling operation.
  • FIG. 2 is a refrigerant circuit diagram of the air conditioner of Embodiment 1, and shows a state during heating operation.
  • FIG. 3 is a schematic perspective view of a heat exchanger unit constituting the outdoor heat exchanger of the first embodiment.
  • FIG. 4 is a schematic front view showing a heat exchanger unit constituting the outdoor heat exchanger of the first embodiment.
  • FIG. 5 is an enlarged perspective view showing a main part of the heat exchange unit of Embodiment 1 with a part thereof omitted.
  • FIG. 6 is a diagram schematically illustrating an example of a cross-sectional shape of a flat tube.
  • FIG. 7A is a diagram for explaining an example of a cross-sectional shape of a refrigerant flow path in a flat tube for a main heat exchange section
  • FIG. 7B is a refrigerant in a refrigerant flow path in a flat tube for an auxiliary heat exchange section. It is a figure explaining an example of the section shape of a channel.
  • FIG. 8 is a diagram illustrating a part of a cross section of the heat exchanger according to the first modification of the first embodiment.
  • FIG. 9 is a schematic perspective view of fins provided in the heat exchanger of the first modification.
  • FIG. 10 is a view showing the heat transfer section provided on the fin of the heat exchanger of the first modification, wherein (A) is a front view of the heat transfer section, and (B) is a B- It is sectional drawing which shows B cross section.
  • FIG. 11A is a cross-sectional view of a part of the heat exchanger of the second modification
  • FIG. 11B is a cross-sectional view of the fin showing the VV cross section of FIG. 11A.
  • FIG. 12 is a diagram illustrating a part of a cross section of the heat exchanger according to the third modification of the first embodiment.
  • FIGS. 13A and 13B are views showing the main parts of the fins of the heat exchanger of the third modification, wherein FIG.
  • FIG. 13A is a front view of the fins
  • FIG. 13B is a cross-sectional view showing a GG cross section of FIG. It is.
  • FIG. 14A is a cross-sectional view of a part of the heat exchanger according to the fourth modification
  • FIG. 14B is a cross-sectional view of the fin showing the XX cross section of FIG. 14A.
  • FIG. 15 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the second embodiment.
  • FIG. 16 is a partial cross-sectional view illustrating the front of the outdoor heat exchanger according to the second embodiment.
  • FIG. 17 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the third embodiment.
  • FIG. 18 is a partial cross-sectional view illustrating the front of the outdoor heat exchanger according to the third embodiment.
  • FIG. 19 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the fourth embodiment.
  • FIG. 20 is a partial cross-sectional view illustrating the front of the outdoor heat exchanger according to the fourth embodiment.
  • FIG. 21 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the fifth embodiment.
  • FIG. 22 is a partial cross-sectional view showing the front of the outdoor heat exchanger of the fifth embodiment.
  • FIG. 23 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the sixth embodiment.
  • FIG. 24 is a partial cross-sectional view illustrating the front of the outdoor heat exchanger according to the sixth embodiment.
  • FIG. 25 is a diagram illustrating a part of a cross section of the outdoor heat exchanger according to the seventh embodiment.
  • Embodiment 1 of the Invention A first embodiment of the present invention will be described.
  • the present embodiment is an air conditioner configured by a refrigeration apparatus.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner (10) according to Embodiment 1 of the present invention, and shows a state during cooling operation.
  • FIG. 2 is a refrigerant circuit diagram of the air conditioner (10) of the first embodiment, and shows a state during heating operation.
  • the air conditioner (10) of the present embodiment includes an indoor unit (12) that is a use side unit and an outdoor unit (11) that is a heat source side unit.
  • the refrigerant circuit (20) is formed by connecting the outdoor unit (11) and the indoor unit (12) with a pipe.
  • the number of indoor units (12) and outdoor units (11) is just an example. That is, in the air conditioner (10) of the present embodiment, the refrigerant circuit (20) may be formed by connecting a plurality of indoor units (12) to a single outdoor unit (11), The refrigerant circuit (20) may be formed by connecting a plurality of outdoor units (11) and a plurality of indoor units (12) to each other.
  • the refrigerant circuit (20) includes a compressor (31), an outdoor heat exchanger (40) that is a heat source side heat exchanger, an indoor heat exchanger (32) that is a use side heat exchanger, an expansion valve ( 33) and a four-way selector valve (34).
  • the compressor (31), the outdoor heat exchanger (40), the expansion valve (33), and the four-way switching valve (34) are accommodated in the outdoor unit (11).
  • the indoor heat exchanger (32) is accommodated in the indoor unit (12).
  • the outdoor unit (11) is provided with an outdoor fan for supplying outdoor air to the outdoor heat exchanger (40), and the indoor unit (12) is connected to the indoor heat exchanger (32) indoors.
  • An indoor fan for supplying air is provided.
  • Compressor (31) is a hermetic rotary compressor or scroll compressor.
  • the compressor (31) has a discharge pipe connected to the first port of the four-way switching valve (34) via a pipe, and a suction pipe connected to the second port of the four-way switching valve (34). Connected through a pipe.
  • the outdoor heat exchanger (40) includes a first header member (46) and a second header member (47) which are erected, and a large number of heat transfer tubes (53, 58) (hereinafter also referred to as flat tubes). Then, the refrigerant exchanges heat with outdoor air.
  • the indoor heat exchanger (32) is a so-called cross fin type fin-and-tube heat exchanger, and exchanges heat between the refrigerant and room air.
  • the expansion valve (33) is a so-called electronic expansion valve (33).
  • the four-way switching valve (34) has four ports, the first state where the first port communicates with the third port and the second port communicates with the fourth port (the state shown in FIG. 1), The first port is switched to the second state (the state shown in FIG. 2) in which the first port communicates with the fourth port and the second port communicates with the third port.
  • the refrigerant circuit (20) is provided with a first gas side pipe (21), a second gas side pipe (22), and a liquid side pipe (23).
  • the first gas side pipe (21) has one end connected to the third port of the four-way switching valve (34) and the other end connected to the upper end of the first header member (46) of the outdoor heat exchanger (40).
  • the second gas side pipe (22) has one end connected to the fourth port of the four-way switching valve (34) and the other end connected to the gas side end of the indoor heat exchanger (32).
  • One end of the liquid side pipe (23) is connected to the lower end of a first header collecting pipe (56) described later, and the other end is connected to the liquid side end of the indoor heat exchanger (32).
  • An expansion valve (33) is provided in the middle of the liquid side pipe (23).
  • FIG. 3 is a schematic perspective view of a heat exchanger unit constituting the outdoor heat exchanger of the first embodiment.
  • FIG. 4 is a schematic front view showing a heat exchanger unit constituting the outdoor heat exchanger of the first embodiment.
  • FIG. 5 is an enlarged perspective view showing a main part of the heat exchange unit of Embodiment 1 with a part thereof omitted.
  • the outdoor heat exchanger (40) of the present embodiment is constituted by one heat exchanger unit (45).
  • the heat exchanger unit (45) constituting the outdoor heat exchanger (40) includes one first header member (46), one second header member (47), and A large number of heat transfer tubes (53,58) and a large number of fins (54,59) are provided.
  • the first header member (46), the second header member (47), the flat tubes (53, 58), and the fins (54, 59) are all made of an aluminum alloy and are joined to each other by brazing. ing. These fins (54, 59) partition between adjacent flat tubes (53, 58) into a plurality of ventilation paths through which air flows.
  • the first header member (46) and the second header member (47) are both formed in an elongated hollow cylindrical shape with both ends closed.
  • the first header member (46) is erected at the left end of the heat exchanger unit (45)
  • the second header member (47) is erected at the right end of the heat exchanger unit (45). That is, the first header member (46) and the second header member (47) are installed in a posture in which the respective axial directions are in the vertical direction.
  • FIG. 6 is a diagram schematically showing an example of a cross-sectional shape of the flat tube (53, 58).
  • the width (W2) of the flat tube (58) is larger than the width (W1) of the flat tube (53).
  • the number of channels per flat tube (58) is larger than the number of channels per flat tube (53).
  • FIG. 7 is a diagram for explaining an example of the cross-sectional shape of the refrigerant flow path (49) in the flat tube (53) for the main heat exchange section (50) described later, and (B) is described later. It is a figure explaining an example of the section shape of the refrigerant channel (49) of the refrigerant channel (49) in the flat tube (58) for the auxiliary heat exchanging part (55).
  • the flat tube (53) has a plurality of grooves (49a) formed in the respective refrigerant flow paths (49).
  • the flat tube (58) is a so-called bare tube (inner surface smooth tube) and has a circular cross section.
  • the groove (49a) is not formed in each refrigerant channel (49) of the flat tube (58).
  • the refrigerant channel (49) of the flat tube (58) has a diameter of approximately 0.5 mm.
  • the cross-sectional shapes of these refrigerant flow paths (49) are merely examples, and other shapes (for example, a square cross-section shown in FIG. 6 and the like) can be adopted.
  • the flat tubes (53, 58) have the first header member (46) and the second header member (47) in a posture in which the respective axial directions are in the left-right direction and the side surfaces face each other. Are arranged at predetermined intervals in the axial direction. That is, in the heat exchanger unit (45), the flat tubes (53, 58) are arranged in parallel to each other from the first header member (46) to the second header member (47). Each flat tube (53, 58) has one end inserted into the first header member (46) and the other end inserted into the second header member (47). One end of the refrigerant flow path (49) in each flat tube (53, 58) communicates with the internal space of the first header member (46), and the other end communicates with the internal space of the second header member (47). is doing.
  • the fins (54, 59) are provided between the adjacent flat tubes (53, 58).
  • Each fin (54, 59) is formed in the shape of a corrugated plate that snakes up and down, and is installed in such a posture that the ridge line of the corrugation is the front-rear direction of the heat exchanger unit (45) (the direction perpendicular to the paper surface of FIG. 4). Has been. In the heat exchanger unit (45), air passes in a direction perpendicular to the paper surface of FIG.
  • the first header member (46) is provided with a disc-shaped partition plate (48).
  • the internal space of the first header member (46) is partitioned up and down by a partition plate (48).
  • the internal space of the second header member (47) is a single undivided space.
  • the upper part of the partition plate (48) constitutes the main heat exchange part (50), and the lower part of the partition plate (48) is the auxiliary heat exchange part (55). Is configured.
  • the upper part of the partition plate (48) constitutes the first header collecting pipe (51) of the main heat exchange section (50), and the partition plate (48)
  • the lower part constitutes the first header collecting pipe (56) of the auxiliary heat exchange part (55).
  • the flat tubes (53,58) provided in the heat exchanger unit (45) are connected to the first header collecting pipe (51) of the main heat exchange section (50), and the flat tubes of the main heat exchange section (50).
  • the pipe (53) that is connected to the first header collecting pipe (56) of the auxiliary heat exchange section (55) is the flat pipe (58) of the auxiliary heat exchange section (55).
  • the fins (54, 59) provided in the heat exchanger unit (45) are provided between the flat tubes (53) of the main heat exchange part (50), and the main heat exchange part (50)
  • the fin (54) of the auxiliary heat exchanger (55) is provided between the flat tubes (58) of the auxiliary heat exchanger (55).
  • the portion where the flat tube (53) of the main heat exchange part (50) is inserted constitutes the second header collecting pipe (52) of the main heat exchange part (50), and the auxiliary heat
  • the part where the flat pipe (58) of the exchange part (55) is inserted constitutes the second header collecting pipe (57) of the auxiliary heat exchange part (55).
  • the number of flat tubes (53, 58) that can be provided in the outdoor heat exchanger (40) is limited. Therefore, for example, the number of flat tubes (58) is set to the number obtained by subtracting the number of flat tubes (53) from the maximum number that can be provided.
  • the width (W2) of the flat tube (58), the number of refrigerant flow paths (49), and the cross-sectional area of the refrigerant flow path (49) are required for the auxiliary heat exchange section (55). Set according to ability.
  • the number of flat tubes (58) of the auxiliary heat exchange unit (55) is equal to the number of flat tubes (53) of the main heat exchange unit (50). Less than.
  • the total cross-sectional area of the flow path (49) per one flat tube (58) provided in the auxiliary heat exchange part (55) is equal to one flat tube (53) provided in the main heat exchange part (50). It is formed larger than the total cross-sectional area of the perimeter flow path (49).
  • the outdoor heat exchanger (40) can be provided with 60 flat tubes (53, 58).
  • the number of flat tubes (58) in the auxiliary heat exchange section (55) is 10, and the number of flat tubes (53) in the main heat exchange section (50) is 50. That is, the number of flat tubes (58) of the auxiliary heat exchange section (55) is 1/5 of the number of flat tubes (53) of the main heat exchange section (50).
  • the number of flat tubes (53,58) shown in FIGS. 3 and 4 is different from the number of flat tubes (53,58) provided in the actual outdoor heat exchanger (40).
  • the first gas side pipe (21) is at the upper end of the first header member (46), and the liquid side pipe (23) is at the lower end of the first header member (46).
  • the first gas side pipe (21) is connected to the first header collecting pipe (51) of the main heat exchanging part (50), and the first header set of the auxiliary heat exchanging part (55).
  • a liquid side pipe (23) is connected to the pipe (56).
  • the operation of the air conditioner (10) will be described.
  • the air conditioner (10) performs a cooling operation that is a cooling operation and a heating operation that is a heating operation.
  • the four-way selector valve (34) is set to the first state.
  • the opening degree of the expansion valve (33) is adjusted so that the degree of superheat of the refrigerant flowing out from the gas side end of the indoor heat exchanger (32) becomes a predetermined target value (for example, 5 ° C.).
  • a predetermined target value for example, 5 ° C.
  • the refrigerant discharged from the compressor (31) sequentially passes through the four-way switching valve (34) and the first gas side pipe (21), and then passes through the first heat exchanger (50). 1 flows into the header collecting pipe (51).
  • the refrigerant that has flowed into the first header collecting pipe (51) is divided into the flat pipes (53) of the main heat exchange section (50) and flows through the refrigerant flow paths (49) of the flat pipes (53). In the meantime, it dissipates heat to the outdoor air and condenses.
  • the refrigerant that has passed through each flat tube (53) flows into and merges with the second header collecting pipe (52) of the main heat exchange section (50), and then the second header collecting pipe ( 57).
  • the refrigerant that has flowed into the second header collecting pipe (57) is divided into the flat pipes (58) of the auxiliary heat exchange section (55) and flows through the refrigerant flow paths (49) of the flat pipes (58). In the meantime, heat is dissipated to the outdoor air and it becomes supercooled.
  • the refrigerant that has passed through each flat tube (58) flows into and merges with the first header collecting tube (56) of the auxiliary heat exchange section (55).
  • the refrigerant flowing into the liquid side pipe (23) from the first header collecting pipe (56) of the auxiliary heat exchanger (55) expands (pressure drop) when passing through the expansion valve (33), and then the indoor heat exchanger. It flows into the liquid side end of (32).
  • the refrigerant flowing into the indoor heat exchanger (32) absorbs heat from the indoor air and evaporates.
  • the indoor unit (12) supplies the sucked room air to the indoor heat exchanger (32), and sends the room air cooled in the indoor heat exchanger (32) back into the room.
  • the refrigerant evaporated in the indoor heat exchanger (32) flows into the second gas side pipe (22) from the gas side end of the indoor heat exchanger (32). Thereafter, the refrigerant is sucked into the compressor (31) through the four-way switching valve (34).
  • the compressor (31) compresses the sucked refrigerant and discharges it.
  • the four-way selector valve (34) is set to the second state.
  • the opening degree of the expansion valve (33) is adjusted so that the degree of superheat of the refrigerant flowing out from the outdoor heat exchanger (40) becomes a predetermined target value (for example, 5 ° C.). Further, during the heating operation, outdoor air is supplied to the outdoor heat exchanger (40) by the outdoor fan, and indoor air is supplied to the indoor heat exchanger (32) by the indoor fan.
  • the refrigerant discharged from the compressor (31) sequentially passes through the four-way switching valve (34) and the second gas side pipe (22), and then the gas in the indoor heat exchanger (32). It flows into the side edge.
  • the refrigerant flowing into the indoor heat exchanger (32) dissipates heat to the indoor air and condenses.
  • the indoor unit (12) supplies the sucked indoor air to the indoor heat exchanger (32), and sends the indoor air heated in the indoor heat exchanger (32) back into the room.
  • the refrigerant flowing into the liquid side pipe (23) from the liquid side end of the indoor heat exchanger (32) expands (pressure drop) when passing through the expansion valve (33), and then enters the auxiliary heat exchanger (55). It flows into the first header collecting pipe (56).
  • the refrigerant that has flowed into the first header collecting pipe (56) of the auxiliary heat exchange section (55) is divided and flows into the flat pipe (58) of the auxiliary heat exchange section (55).
  • the refrigerant flowing into the flat tube (58) absorbs heat from the outdoor air while passing through the refrigerant flow path (49), and part of it evaporates.
  • the refrigerant evaporated in the flat pipe (58) flows into the second header collecting pipe (52), and flows into the flat pipe (53) of the main heat exchange section (50).
  • the refrigerant flowing into the flat tube (53) absorbs heat from the outdoor air and evaporates while passing through the refrigerant flow path (49).
  • each flat tube (53) of the main heat exchange section (50) flows into and merges with the first header collecting pipe (51) of the main heat exchange section (50), and then the first gas side pipe It flows into (21).
  • the refrigerant flowing through the first gas side pipe (21) passes through the four-way switching valve (34) and is sucked into the compressor (31).
  • the compressor (31) compresses the sucked refrigerant and discharges it.
  • the number of flat tubes (58) constituting the auxiliary heat exchange section (55) is smaller than the number of flat tubes (53) constituting the main heat exchange section (50).
  • the total cross-sectional area of the flow path (49) per one flat tube (58) provided in the auxiliary heat exchanger (55) is equal to one flat tube (53) provided in the main heat exchanger (50). ) Larger than the total cross-sectional area of the channel (49).
  • the heat exchanger is a condenser
  • a heat exchanger in which a main heat exchange unit and an auxiliary heat exchange unit are configured by one type of flat tube hereinafter, for convenience of explanation, a conventional heat exchanger and
  • the refrigerant flow rate in the auxiliary heat exchanging section (55) can be made slower than that of the auxiliary heat exchange section (55). Therefore, according to the present embodiment, it is possible to reduce the pressure loss in the auxiliary heat exchange section (55).
  • the number of flow paths per one flat pipe (53,58) and the width (W1, W2) are adjusted, and the refrigerant flow path (49 per one flat pipe (53,58)).
  • Total cross section is set. Therefore, the total cross-sectional area of the refrigerant flow path (49) in the flat tube (53) for the main heat exchange section (50) and the refrigerant flow path (49) in the flat pipe (58) for the auxiliary heat exchange section (55) The total cross-sectional area can be set easily.
  • each refrigerant flow path (49) of the flat tube (53) in the main heat exchange section (50) is provided with a groove (49a). Therefore, in the flat tube (53), the surface area per refrigerant channel (49) can be increased. That is, it becomes possible to improve the heat exchange efficiency in the main heat exchange section (50).
  • the flat tube (58) of the auxiliary heat exchanger (55) is a so-called bare tube, the pressure loss due to the shape can be made smaller than the flat tube (53) of the main heat exchanger (50). It becomes possible.
  • the refrigerant flow path (49) has a very small diameter as described above, when the outdoor heat exchanger (40) is manufactured at the factory, for example, a flat pipe having the same width is used as the main heat exchange section. If the auxiliary heat exchange part is configured, it is difficult to visually identify the presence or absence of the groove (49a) in the refrigerant flow path (49).
  • the flat tubes (53) for the main heat exchange section (50) and the flat tubes (58) for the auxiliary heat exchange section (55) have different widths (W1, W2). The presence or absence of the groove (49a) in the flow path (49) can be easily identified.
  • FIG. 8 is a diagram illustrating a part of a cross section of the heat exchanger (40) according to the first modification of the first embodiment.
  • the fins (235) are corrugated fins meandering up and down, and are arranged between flat tubes (53, 58) (heat transfer tubes) adjacent to each other in the vertical direction.
  • a plurality of heat transfer sections (237) and intermediate plate sections (241) are formed on the fin (235).
  • the intermediate plate (241) is joined to the flat tube (53, 58) by brazing.
  • FIG. 9 is a schematic perspective view of the fin (235) provided in the heat exchanger (40) of the first modification.
  • the fin (235) is a corrugated fin formed by bending a metal plate having a constant width, and has a shape meandering up and down.
  • heat transfer portions (237) and intermediate plate portions (241) are alternately formed along the extending direction of the flat tubes (53, 58). That is, the fin (235) is provided with a plurality of heat transfer portions (237) arranged between the adjacent flat tubes (53, 58) and arranged in the extending direction of the flat tubes (53, 58).
  • the fin (235) is formed with a protruding plate portion (242).
  • louvers (250, 260, 270) and a water guiding rib (271) described later are not shown.
  • the heat transfer portion (237) is a plate-like portion extending from one side of the flat tube (53, 58) adjacent to the top and bottom to the other. In the heat transfer section (237), the windward end is the leading edge (238). Although not shown in FIG. 9, a plurality of louvers (250, 260) are formed in the heat transfer section (237).
  • the intermediate plate portion (241) is a plate-like portion along the flat side surface of the flat tube (53,58), and is continuous with the upper ends or lower ends of the heat transfer portions (237) adjacent to the left and right. Yes.
  • the angle formed by the heat transfer section (237) and the intermediate plate section (241) is substantially a right angle.
  • the protruding plate portion (242) is a plate-like portion formed continuously at the leeward end of each heat transfer portion (237).
  • the projecting plate portion (242) is formed in an elongated plate shape extending vertically and projects further to the leeward side than the flat tube (53, 58). Further, the upper end of the protruding plate portion (242) protrudes above the upper end of the heat transfer portion (237), and the lower end protrudes below the lower end of the heat transfer portion (237).
  • the protruding plate portions (242) of the fins (235) that are adjacent vertically with the flat tubes (53, 58) interposed therebetween contact each other.
  • the projecting plate portion (242) of the fin (235) is formed with a water guiding rib (271).
  • the water guiding rib (271) is a long and narrow groove extending vertically along the leeward side end portion of the protruding plate portion (242).
  • FIG. 10 is a view showing the heat transfer section (237) provided on the fin (235) of the heat exchanger (40) of Modification 1, and (A) is a front view of the heat transfer section, B) is a sectional view showing a BB section of (A).
  • a plurality of louvers 250, 260, 270 are formed on the heat transfer section (237) and the protruding plate section (242) of the fin (235).
  • Each louver (250, 260, 270) is formed by cutting and raising the heat transfer part (237) and the protruding plate part (242).
  • each louver (250, 260, 270) is formed by making a plurality of slit-like cuts in the heat transfer part (237) and the protruding plate part (242) and plastically deforming so as to twist the part between the adjacent cuts. ing.
  • FIG. 11A is a cross-sectional view of a part of the heat exchanger 40 according to the second modification
  • FIG. 11B is a cross-sectional view of the fin showing the VV cross section of FIG. 11A.
  • a plurality of waffle portions (251, 252 and 253) are formed instead of the louvers (250, 260 and 270) shown in the first modification.
  • a plurality of waffle portions (251, 252, 253) are formed on the heat transfer portion (237) and the protruding plate portion (242) of the fin (235).
  • the waffle portion (251, 252, 253) bulges toward the side that becomes the ventilation path, and constitutes a bulge portion that is vertically formed vertically.
  • the waffle part (251, 252, 253) is formed by plastically deforming a part of the heat transfer part (237) by press working or the like.
  • Each waffle portion (251, 252, 253) extends in a direction inclined obliquely with respect to the vertical direction so that its lower end portion is located closer to the lee than the upper end portion.
  • Each waffle part (251,252,253) has a pair of vertically long trapezoidal surfaces (254,254) and a pair of flat triangular surfaces (255,255) vertically.
  • the pair of trapezoidal surfaces (254, 254) are adjacent to each other in the ventilation direction so as to form a mountain fold (256) forming a ridge line between them.
  • the pair of triangular surfaces (255, 255) are formed up and down across the mountain fold (256).
  • a plurality of waffle sections (251, 252 and 253) are formed side by side from the leeward side to the leeward side.
  • These waffle parts (251, 252 and 253) are composed of one windward waffle part (251) formed on the leeward side of the heat transfer part (237) and two leeward sides formed on the leeward side of the heat transfer part (237).
  • the waffle portion (253, 253) and one intermediate waffle portion (252) formed between the windward waffle portion (251) and the leeward waffle portion (253) are configured.
  • the windward waffle portion (251) constitutes the windward bulge portion formed on the most windward side among the plurality of waffle portions (251, 252, 253).
  • the leeward waffle portion (253,253) constitutes the leeward bulge portion formed on the most leeward side among the plurality of waffle portions (251,252,253).
  • the upper end of the leeward waffle part (251) is lower than the upper end of the leeward waffle part (253). Further, the upper end of the intermediate waffle portion (252) and the upper end of the leeward waffle portion (253) are substantially at the same height. The upper end of the windward waffle portion (251), the upper end of the intermediate waffle portion (252), and the upper end of the leeward waffle portion (253) are substantially parallel to the flat surface of the upper flat tube (53,58). .
  • the lower end of the leeward waffle part (251) is higher than the lower end of the leeward waffle part (253).
  • the lower end of the windward waffle portion (251) is inclined obliquely so that the leeward side is lower than the windward side.
  • the lower end of the intermediate waffle portion (252) is also inclined obliquely so that the leeward side is lower than the leeward side.
  • the lower end of the leeward waffle portion (253) is substantially parallel to the flat surface of the flat tube (53, 58).
  • FIG. 12 is a diagram illustrating a part of a cross section of the heat exchanger (40) according to the third modification of the first embodiment.
  • the fin (236) is a vertically long plate-like fin formed by pressing a metal plate.
  • the fin (236) is formed with a number of elongated notches (245) extending in the width direction of the fin (236) from the front edge (238) of the fin (236).
  • a large number of notches (245) are formed at regular intervals in the longitudinal direction of the fin (236).
  • the portion closer to the lee of the notch (245) constitutes the tube insertion portion (246).
  • the tube insertion portion (246) has a vertical width substantially equal to the thickness of the flat tube (53, 58).
  • the length (depth) of the tube insertion portion (246) is substantially equal to the width of the flat tube (58) having the wider width.
  • the type of the fin (236) can be made one by matching the depth of the tube insertion portion (246) with the width of the flat tube (58) having the wider width. That is, it is not necessary to prepare a plurality of types of molds for manufacturing the fin (236), and a reduction in manufacturing cost can be expected.
  • Each flat tube (53, 58) is inserted into the tube insertion portion (246) of the fin (236) and joined to the peripheral portion of the tube insertion portion (246) by brazing.
  • the ends in the width direction of the flat tubes (53, 58) are aligned with the ends on the entrance side of the notches (245). Since the length of the tube insertion portion (246) is adjusted to the width (W2) of the flat tube (58), the tube insertion portion (246) is inserted into the tube insertion portion (246) into which the flat tube (53) is inserted. There will be a gap in the back of the.
  • the brazing of the fin (236) and the flat tube (53, 58) is performed as follows, for example. First, the notch (245) side (left side in FIG. 12) of the fin (236) is faced up, and the end of the flat tube (53,58) in the width direction is more specifically the entrance side of the notch (245). Are set to be aligned with the inlet end (left end in FIG. 12) of the tube insertion portion (246). As the brazing material, a linear material is placed at the position (A) shown in FIG. In FIG. 12, the installation position (A) is representatively shown only for one flat tube (53), but the same applies to the other flat tubes (53, 58).
  • the brazing material is dropped into the tube insertion portion (246) during brazing, and it is difficult to set.
  • the end in the width direction of the flat tube (53, 58) is aligned with the end on the entrance side of the notch (245), so the brazing material can be easily set. is there.
  • the heat exchanger (40) is placed in a heating furnace (not shown) to melt the brazing material. Thereby, the brazing material flows along the flat tube (53, 58), and the fin (236) and the flat tube (53, 58) are joined.
  • the part between the adjacent notches (245) constitutes the heat transfer part (237), and the leeward part of the pipe insertion part (246) constitutes the leeward side plate part (247).
  • the fin (236) is connected to a plurality of heat transfer portions (237) that are vertically adjacent to each other with the flat tube (53, 58) interposed therebetween, and one end that is continuous to the leeward end of each heat transfer portion (237).
  • Two leeward side plate portions (247) are provided.
  • the heat transfer parts (237) of the fins (236) are arranged between the flat tubes (53, 58) lined up and down, and the leeward plate (247) is connected to the flat tubes (53, 58). It protrudes leeward from 58).
  • FIG. 13 is a figure which shows the principal part of the fin (236) of the heat exchanger (40) of the modification 3, Comprising: (A) is a front view of a fin (236), (B) is (A). It is sectional drawing which shows the GG cross section. As shown in FIG. 13, a plurality of louvers (250, 260) are formed on the heat transfer section (237) and the leeward side plate section (247) of the fin (236). Each louver (250, 260) is formed by cutting up the heat transfer section (237) and the leeward side plate section (247).
  • FIG. 14A is a cross-sectional view of a part of the heat exchanger (40) of Modification 4
  • FIG. 14 (B) is a cross-section of the fin (236) showing the XX cross-section of FIG. 14 (A).
  • FIG. 14 in this example waffle portions (251, 252 and 253) are formed on the plate-like fins described in the third modification instead of the louvers (250 and 260). These waffle portions (251, 252, 253) have the same configuration as that described in the second modification.
  • FIG. 15 is a front view illustrating a schematic configuration of the outdoor heat exchanger (40) of the second embodiment.
  • FIG. 16 is a partial cross-sectional view showing the front of the outdoor heat exchanger (40) of the second embodiment.
  • the outdoor heat exchanger (40) is divided into three heat exchange sections (350a to 350c). Specifically, the outdoor heat exchanger (40) includes a first heat exchange part (350a), a second heat exchange part (350b), and a third heat exchange part (350c) in order from bottom to top. And are formed.
  • each of the first header collecting pipe (360) and the second header collecting pipe (370) is divided into three communication spaces (361a to 361a) by partitioning the internal space with a partition plate (339). 361c, 371a-371c) are formed.
  • the communication spaces (361a to 361c) of the first header collecting pipe (360) are further partitioned vertically by a partition plate (339).
  • the lower space is the lower partial space (362a to 362c) which is the first partial space
  • the upper space is the second partial space.
  • a certain upper partial space (363a to 363c) is formed.
  • Each heat exchange section (350a to 350c) of the outdoor heat exchanger (40) has a main heat exchange area (351a to 351c) (main heat exchange section) and an auxiliary heat exchange area (352a to 352c) (auxiliary heat exchange section). It is divided into.
  • eleven flat tubes (53) communicating with the upper partial spaces (363a to 363c) of the corresponding first header collecting pipe (360) are the main heat exchange sections (351a to 350c). 351c), and the three flat tubes (58) communicating with the lower partial spaces (362a to 362c) of the corresponding first header collecting pipe (360) constitute the auxiliary heat exchange section (352a to 352c). ing.
  • the width of the flat tube (58) provided in each auxiliary heat exchange section (352a to 352c) is provided in the main heat exchange section (351a to 351c).
  • the number of channels per flat tube (58) provided in the auxiliary heat exchange section (352a to 352c) is larger than the width of the flat pipe (53), and is provided in the main heat exchange section (351a to 351c). More than the number of channels per flat tube (53).
  • fins (235) corrugated fins
  • the outdoor heat exchanger (40) is provided with a liquid side connecting member (380) and a gas side header (385).
  • the liquid side connection member (380) and the gas side header (385) are attached to the first header collecting pipe (360).
  • the liquid side connection member (380) includes one shunt (381) and three small diameter tubes (382a to 382c).
  • a pipe connecting the outdoor heat exchanger (40) and the expansion valve (33) is connected to the lower end of the flow divider (381).
  • One end of each small diameter tube (382a to 382c) is connected to the upper end of the flow divider (381).
  • the pipe connected to the lower end portion thereof communicates with the small diameter pipes (382a to 382c).
  • the other end of each small diameter pipe (382a to 382c) is connected to the first header collecting pipe (360) and communicates with the corresponding lower partial space (362a to 362c).
  • the gas side header (385) includes one main body pipe part (386) and three connection pipe parts (387a to 387c).
  • the main body pipe portion (386) is formed in a relatively large-diameter tubular shape whose upper end portion is bent in an inverted U shape.
  • a pipe connecting the outdoor heat exchanger (40) and the third port of the four-way switching valve (34) is connected to the upper end of the main body pipe (386).
  • the lower end of the main body pipe part (386) is closed.
  • the connecting pipe portions (387a to 387c) protrude laterally from the linear portion of the main body pipe portion (386).
  • the refrigerant flows in the direction of the arrow shown in FIG. 15 during the cooling operation. Further, during the heating operation, the refrigerant flows in the direction opposite to the arrow shown in FIG.
  • FIG. 17 is a front view illustrating a schematic configuration of the outdoor heat exchanger (40) of the third embodiment.
  • FIG. 18 is a partial cross-sectional view showing the front of the outdoor heat exchanger (40) of the third embodiment.
  • the outdoor heat exchanger (40) includes one first header collecting pipe (460), one second header collecting pipe (470), and a number of flat tubes (53, 53). 58) and a number of fins (235).
  • the flat tubes (53, 58) of the outdoor heat exchanger (40) are divided into two heat exchange regions (451, 452) in the vertical direction. That is, the outdoor heat exchanger (40) has an upper heat exchange region (451) and a lower heat exchange region (452). Each heat exchanging region (451, 452) is divided into three upper and lower heat exchanging portions (451a to 451c, 452a to 452c). Specifically, in the upper heat exchange region (451), the first main heat exchange part (451a), the second main heat exchange part (451b), and the third main heat exchange part in order from bottom to top. (451c) is formed.
  • each main heat exchange section (451a to 451c) has eleven flat tubes (53), and each auxiliary heat exchange section (452a to 452c) has three flat tubes ( 58).
  • the number of heat exchanging portions (451a to 451c, 452a to 452c) formed in each heat exchanging region (451, 452) may be two, or four or more.
  • the width of the flat tube (58) provided in each auxiliary heat exchange section (452a to 452c) is provided in the main heat exchange section (451a to 451c).
  • the number of channels per flat tube (58) that is larger than the width of the flat tube (53) and is provided in the auxiliary heat exchanger (452a to 452c) is provided in the main heat exchanger (451a to 451c). More than the number of channels per flat tube (53).
  • the internal space of the first header collecting pipe (460) and the second header collecting pipe (470) is partitioned vertically by a plurality of partition plates (439).
  • the internal space of the first header collecting pipe (460) includes an upper space (461) corresponding to the upper heat exchange region (451) and a lower space (462) corresponding to the lower heat exchange region (452). ).
  • the upper space (461) is a single space corresponding to all the main heat exchange units (451a to 451c) in common. That is, the upper space (461) communicates with the flat tubes (53) of all the main heat exchange sections (451a to 451c).
  • the lower space (462) is further divided by a partition plate (439) into the same number (three) of communication spaces (462a) as the auxiliary heat exchange portions (452a to 452c) corresponding to the auxiliary heat exchange portions (452a to 452c). To 462c).
  • the first communication space (462a) communicating with the flat tube (58) of the first auxiliary heat exchange section (452a), and the flat tube of the second auxiliary heat exchange section (452b) ( 58) and a second communication space (462b) communicating with the flat tube (58) of the third auxiliary heat exchange section (452c) are formed.
  • the internal space of the second header collecting pipe (470) is divided into five communication spaces (471a to 471e) in the vertical direction. Specifically, the inner space of the second header collecting pipe (470) is the uppermost in the first main heat exchanging portion (451a) and the lower heat exchanging region (452) located at the lowermost position in the upper heat exchanging region (451).
  • the fourth communication space (471d) and the fifth communication space (471e), and the first communication space (471a) and the second communication space (471b) are in pairs. It has become. Specifically, the first communication space (471a) and the fourth communication space (471d) are paired, and the second communication space (471b) and the fifth communication space (471e) are paired.
  • the second header collecting pipe (470) includes a first communication pipe (472) connecting the first communication space (471a) and the fourth communication space (471d), a second communication space (471b), and a second communication space. A second communication pipe (473) that connects the five communication spaces (471e) is provided.
  • the first main heat exchange part (451a) and the third auxiliary heat exchange part (452c) are paired, and the second main heat exchange part (451b) and the first The auxiliary heat exchange part (452a) is paired, and the third main heat exchange part (451c) and the second auxiliary heat exchange part (452b) are paired.
  • the number of heat exchange units (451a to 451c, 452a to 452c) formed in the outdoor heat exchanger (40) is the number of pairs of main heat exchange units (451a to 451c) and auxiliary heat exchange units (
  • the total height of 452a to 452c) is appropriately set according to the height of the outdoor heat exchanger (40) so as to be approximately 350 mm or less (preferably about 300 to 350 mm).
  • the outdoor heat exchanger (40) is provided with a liquid side connection member (480) and a gas side connection member (485).
  • the liquid side connection member (480) and the gas side connection member (485) are attached to the first header collecting pipe (460).
  • the liquid side connection member (480) includes one shunt (481) and three small diameter tubes (482a to 482c).
  • a pipe connecting the outdoor heat exchanger (40) and the expansion valve (33) is connected to the lower end of the flow divider (481).
  • One end of each small diameter pipe (482a to 482c) is connected to the upper end of the flow divider (481).
  • Inside the shunt (481) the pipe connected to the lower end thereof communicates with the small diameter pipes (482a to 482c).
  • the other end of each small diameter pipe (482a to 482c) is connected to the lower space (462) of the first header collecting pipe (460) and communicates with the corresponding communication space (462a to 462c).
  • each small-diameter pipe (482a to 482c) opens in a portion near the lower end of the corresponding communication space (462a to 462c). That is, the first small diameter pipe (482a) opens in a portion near the lower end of the first communication space (462a), and the second small diameter pipe (482b) opens in a portion near the lower end of the second communication space (462b).
  • the third small-diameter pipe (482c) opens at a portion near the lower end of the third communication space (462c).
  • the lengths of the small diameter tubes (482a to 482c) are individually set so that the difference in the flow rate of the refrigerant flowing into the auxiliary heat exchange units (452a to 452c) is as small as possible.
  • the gas side connecting member (485) is composed of a single pipe having a relatively large diameter. One end of the gas side connection member (485) is connected to a pipe connecting the outdoor heat exchanger (40) and the third port of the four-way switching valve (34). The other end of the gas side connection member (485) opens in a portion near the upper end of the upper space (461) in the first header collecting pipe (460).
  • the refrigerant flows in the direction of the arrow shown in FIG. 17 during the cooling operation. Further, during the heating operation, the refrigerant flows in the direction opposite to the arrow shown in FIG.
  • FIG. 19 is a front view illustrating a schematic configuration of the outdoor heat exchanger (40) of the fourth embodiment.
  • FIG. 20 is a partial cross-sectional view showing the front of the outdoor heat exchanger (40) of the fourth embodiment.
  • the flat tubes (53, 58) of the outdoor heat exchanger (40) have an upper heat exchanging region (451) and a lower heat exchanging region (452) vertically as in the third embodiment. It is divided into.
  • the upper heat exchange area (451) is divided into three main heat exchange sections (451a to 451c) arranged vertically, and the lower heat exchange area (452) is composed of one auxiliary heat exchange section (452a). Yes. That is, in the upper heat exchange region (451), the first main heat exchange unit (451a), the second main heat exchange unit (451b), and the third main heat exchange unit (451c) are sequentially arranged from bottom to top. ) And are formed. As shown in FIG.
  • each main heat exchange section (451a to 451c) has eleven flat tubes (53), and the auxiliary heat exchange section (452a) has nine flat tubes (58).
  • the number of main heat exchange portions (451a to 451c) formed in the upper heat exchange region (451) may be two, or may be four or more.
  • the internal space of the first header collecting pipe (460) and the second header collecting pipe (470) is divided up and down by a partition plate (439).
  • the flat tubes (58) provided in the respective auxiliary heat exchange sections (452a) have the same width as the flat tubes provided in the main heat exchange sections (451a to 451c).
  • the number of flow paths per flat tube (58) provided in the auxiliary heat exchange section (452a) is larger than the width of (53), and the number of flow paths per flat pipe provided in the main heat exchange sections (451a to 451c) More than the number of channels per tube (53).
  • the internal space of the first header collecting pipe (460) includes an upper space (461) corresponding to the upper heat exchange region (451) and a lower space (462) corresponding to the lower heat exchange region (452). ) (Communication space (462a)).
  • the upper space (461) is a single space corresponding to all the main heat exchange units (451a to 451c) in common. That is, the upper space (461) communicates with the flat tubes (53) of all the main heat exchange sections (451a to 451c).
  • the lower space (462) (communication space (462a)) is a single space corresponding to one auxiliary heat exchange part (452a) and communicates with the flat tube (58) of the auxiliary heat exchange part (452a). ing.
  • the internal space of the second header collecting pipe (470) is divided into four communication spaces (471a to 471d) in the vertical direction.
  • the internal space of the second header collecting pipe (470) includes three communication spaces (471b, 471c, 471d) corresponding to the main heat exchange portions (451a to 451c) of the upper heat exchange region (451). And a single communication space (471a) corresponding to the auxiliary heat exchange section (452a) of the lower heat exchange region (452). That is, in the internal space of the second header collecting pipe (470), the first communication space (471a) communicating with the flat pipe (58) of the auxiliary heat exchange section (452a) and the first main heat exchange section (451a).
  • a fourth communication space (471d) communicating with the flat tube (53) of (451c) is formed.
  • the second header collecting pipe (470) is provided with a communication member (475).
  • the communication member (475) includes one shunt (476), one main pipe (477), and three small diameter pipes (478a to 478c).
  • One end of the main pipe (477) is connected to the lower end of the flow divider (476), and the other end is connected to the first communication space (471a) of the second header collecting pipe (470).
  • One end of each small diameter pipe (478a to 478c) is connected to the upper end of the flow divider (476).
  • the main pipe (477) and the small diameter pipes (478a to 478c) communicate with each other.
  • the other ends of the small diameter tubes (478a to 478c) communicate with the corresponding second to fourth communication spaces (471b to 471d) of the second header collecting tube (470).
  • each small-diameter pipe (478a to 478c) is opened in a portion near the lower end of the corresponding second to fourth communication space (471b to 471d). That is, the first small diameter pipe (478a) opens at a portion near the lower end of the second communication space (471b), and the second small diameter pipe (478b) opens at a portion near the lower end of the third communication space (471c). The third small-diameter pipe (478c) opens at a portion near the lower end of the fourth communication space (471d).
  • the lengths of the small diameter tubes (478a to 478c) are individually set so that the difference in the flow rate of the refrigerant flowing into the main heat exchange sections (451a to 451c) becomes as small as possible.
  • the communication member (475) of the second header collecting pipe (470) extends from the first communication space (471a) to the second to fourth communication spaces (451a to 451c) corresponding to the main heat exchange units (451a to 451c). 471b to 471d). That is, in the second header collecting pipe (470), the communication space (471a) corresponding to the lower heat exchange region (452) and the communication spaces (471b, 471c, 471d) corresponding to the upper heat exchange region (451) Are communicating.
  • the outdoor heat exchanger (40) is provided with a liquid side connecting member (486) and a gas side connecting member (485).
  • the liquid side connection member (486) and the gas side connection member (485) are attached to the first header collecting pipe (460).
  • the liquid side connection member (486) is composed of a single pipe having a relatively large diameter.
  • One end of the liquid side connection member (486) is connected to a pipe connecting the outdoor heat exchanger (40) and the expansion valve (33).
  • the other end of the liquid side connection member (486) is opened in a portion near the lower end of the lower space (462) (communication space (462a)) in the first header collecting pipe (460).
  • the gas side connection member (485) is comprised by one piping with a comparatively large diameter.
  • One end of the gas side connection member (485) is connected to a pipe connecting the outdoor heat exchanger (40) and the third port of the four-way switching valve (34).
  • the other end of the gas side connection member (485) opens in a portion near the upper end of the upper space (461) in the first header collecting pipe (460).
  • the refrigerant flows in the direction of the arrow shown in FIG. 19 during the cooling operation. Further, during the heating operation, the refrigerant flows in the direction opposite to the arrow shown in FIG.
  • Embodiment 5 of the Invention will be described.
  • the present embodiment is obtained by changing the configuration of the second header collecting pipe (470) in the outdoor heat exchanger (40) of the third embodiment, and the other configurations are the same as those of the third embodiment.
  • the present embodiment only the configuration of the second header collecting pipe (470) of the outdoor heat exchanger (40) will be described with reference to FIGS. 21 and 22 as appropriate.
  • FIG. 21 is a front view showing a schematic configuration of the outdoor heat exchanger (40) of the fifth embodiment.
  • FIG. 22 is a partial cross-sectional view showing the front of the outdoor heat exchanger (40) of the fifth embodiment.
  • the internal space of the second header collecting pipe (470) of the outdoor heat exchanger (40) is divided into three communication spaces (471a to 471c) on the left and right by two partition plates (439). ing.
  • a first communication space (471a), a second communication space (471b), and a third communication space (471c) are formed in order from the right side in FIG. ing.
  • the first communication space (471a) communicates with the flat tube (53) of the third main heat exchange unit (451c) and the end of the flat tube (58) of the first auxiliary heat exchange unit (452a).
  • the second communication space (471b) communicates with the flat tube (53) of the second main heat exchange unit (451b) and the end of the flat tube (58) of the second auxiliary heat exchange unit (452b).
  • the third communication space (471c) communicates with the flat tube (53) of the first main heat exchange unit (451a) and the end of the flat tube (58) of the third auxiliary heat exchange unit (452c).
  • the third main heat exchange part (451c) and the first auxiliary heat exchange part (452a) are paired, and the second main heat exchange part (451b) and the second auxiliary heat exchange part (452b) ) As a pair, and the first main heat exchange part (451a) and the third auxiliary heat exchange part (452c) form a pair.
  • the second header collecting pipe (470) in the outdoor heat exchanger (40) of the present embodiment includes the main heat exchange units (451a to 451c) in the upper heat exchange region (451) and the lower heat exchange region ( 452), each auxiliary heat exchanging part (452a to 452c) is paired with each other, and a single communication space (45a to 451c, 452a to 452c) corresponding to the two common heat exchanging parts (451a to 451c) 471a to 471c) are formed in the same number (three) as the number of pairs.
  • the flat pipes (53,58) of the main heat exchange sections (451a to 451c) and the auxiliary heat exchange sections (452a) that form a pair are the second header set. It communicates directly in the internal space of the tube (470).
  • the width of the flat tube (58) provided in each auxiliary heat exchange section (452a to 452c) is provided in the main heat exchange section (451a to 451c).
  • the number of channels per flat tube (58) that is larger than the width of the flat tube (53) and is provided in the auxiliary heat exchanger (452a to 452c) is provided in the main heat exchanger (451a to 451c). More than the number of channels per flat tube (53).
  • the refrigerant flows in the direction of the arrow shown in FIG. 21 during the cooling operation. Further, during the heating operation, the refrigerant flows in the direction opposite to the arrow shown in FIG.
  • Embodiment 6 of the Invention Embodiment 6 of the present invention will be described.
  • the configuration of the outdoor heat exchanger (40) of the third embodiment is changed.
  • a different point from the said Embodiment 3 is demonstrated, referring FIG.23 and FIG.24 suitably.
  • the internal space of the second header collecting pipe (470) of the present embodiment is partitioned into five communication spaces (471a to 471e) in the vertical direction as in the third embodiment.
  • the first communication space (471a) and the fifth communication space (471e) are paired, and the second communication space (471b) and the fourth communication space (471d).
  • the second header collecting pipe (470) includes a first communication pipe (472) connecting the second communication space (471b) and the fourth communication space (471d), a first communication space (471a), and a second communication space.
  • a second communication pipe (473) that connects the five communication spaces (471e) is provided.
  • the first main heat exchange part (451a) and the third auxiliary heat exchange part (452c) are paired, and the second main heat exchange part (451b) and the second The auxiliary heat exchange part (452b) is a pair, and the third main heat exchange part (451c) and the first auxiliary heat exchange part (452a) are a pair.
  • the connection position of the gas side connection member (485) in the first header collecting pipe (460) is changed. Specifically, the gas side connection member (485) opens in a central portion (center in the vertical direction) of the upper space (461) in the first header collecting pipe (460). Furthermore, as shown in FIG. 24, in the outdoor heat exchanger (40) of the present embodiment, the inner diameter B1 of the first header collecting pipe (460) is larger than the inner diameter B2 of the second header collecting pipe (470). With this configuration, the gas refrigerant flowing from the gas side connection member (485) into the upper space (461) of the first header collecting pipe (460) is evenly distributed to the three main heat exchange parts (451a to 451c). Can be shunted.
  • the inner diameters of the two header collecting pipes (460, 470) may be the same, and the gas side connection member (485) is used as the first header collecting pipe (460). You may make it open in the part near the upper end of upper side space (461).
  • FIG. 25 is a diagram illustrating a part of a cross section of the outdoor heat exchanger (40) of the seventh embodiment.
  • the width of the flat tube (53) of the main heat exchange part (50) and the width of the flat tube (58) of the auxiliary heat exchange part (55) are the same.
  • the number of flat tubes (58) in the auxiliary heat exchange section (55) is smaller than the number of flat tubes (53) in the main heat exchange section (50).
  • coolant flow path (49) per one flat tube (58) provided in the auxiliary heat exchange part (55) is one flat tube ( It is larger than the total cross-sectional area of the refrigerant flow path (49) per 53).
  • the aforementioned bare pipe inner surface smooth pipe, see FIG. 7B
  • Each refrigerant channel (49) has a circular cross section.
  • the flat tube (58) of the auxiliary heat exchange section (55) has a plurality of grooves formed in the respective refrigerant flow paths (49) (see FIG. 7A). Even in this configuration, it is possible to reduce the flow rate of the refrigerant in the auxiliary heat exchange section (55). Therefore, also in this embodiment, it becomes possible to reduce the pressure loss in the auxiliary heat exchange section (55).
  • Embodiment 8 of the Invention >> Also in the outdoor heat exchanger (40) of Embodiment 8, the width of the flat tube (53) of the main heat exchange part (50) and the width of the flat tube (58) of the auxiliary heat exchange part (55) are the same. . Further, the number of flat tubes (58) in the auxiliary heat exchange section (55) is smaller than the number of flat tubes (53) in the main heat exchange section (50).
  • coolant flow path (49) per one flat tube (58) provided in the auxiliary heat exchange part (55) is one flat tube ( It is larger than the total cross-sectional area of the refrigerant channel (49) per 53).
  • the number of refrigerant flow paths (49) in the flat tube (53) of the main heat exchange section (50) is determined from the number of refrigerant flow paths (49) in the flat pipe (58) of the auxiliary heat exchange section (55). Less. Even in this configuration, it is possible to reduce the flow rate of the refrigerant in the auxiliary heat exchange section (55). Therefore, also in this embodiment, it becomes possible to reduce the pressure loss in the auxiliary heat exchange section (55).
  • each heat exchanger tube (53,58) in a main heat exchange part (50) and an auxiliary heat exchange part (55) may be provided with a groove
  • each outdoor heat exchanger (40) of Embodiments 2 to 8 various fins such as the fins (54, 59, 235, 236) described in Embodiment 1 and its modifications can be adopted.
  • the present invention includes a flat tube and fins, and is useful as a heat exchanger and an air conditioner for exchanging heat between fluid flowing in the flat tube and air.
  • Air conditioner 40 Outdoor heat exchanger (heat exchanger) 49 Refrigerant flow path (flow path) 50 Main heat exchanger 51, 56 First header collecting pipe 52, 57 Second header collecting pipe 53 Flat pipe 54, 59 Fin 55 Auxiliary heat exchanging section 58 Flat pipe

Abstract

A plurality of flat tubes (53, 58), first header/collector tubes (51, 56), and second header/collector tubes (52, 57) are provided to reduce pressure loss in an auxiliary heat exchange unit. Each flat tube (53, 58) has one end thereof connected to a first header/collector tube (51, 56), and the other end thereof connected to a second header/collector tube (52, 57). Of the plurality of flat tubes (53, 58), the flat tubes (53) configure a principal heat exchange unit (50), while the remaining flat tubes (58) configure an auxiliary heat exchange unit (55). The flat tubes (58) in the auxiliary heat exchange unit (55) comprise a smaller number of tubes than the flat tubes (53) in the principal heat exchange unit (50). The total cross-sectional area of a channel (49) per one flat tube (58) provided in the auxiliary heat exchange unit (55) is greater than the total cross-sectional area of the channel (49) per one flat tube (53) provided in the principal heat exchange unit (50).

Description

熱交換器および空気調和機Heat exchanger and air conditioner
 本発明は、扁平管とフィンとを備え、扁平管内を流れる流体を空気と熱交換させる熱交換器および空気調和機に関するものである。 The present invention relates to a heat exchanger and an air conditioner that include a flat tube and fins and exchange heat with air flowing in the flat tube.
 従来より、冷媒回路で冷媒を循環させて冷凍サイクルを行い、対象物(例えば、空気や水など)を冷媒で冷却する動作と、対象物を冷媒で加熱する動作とを実行可能な冷凍装置が知られている。例えば、特許文献1には、この種の冷凍装置によって構成された空気調和機が開示されている。室内空気を冷却する冷房運転中の空気調和機では、室外熱交換器が凝縮器として機能し、室内熱交換器が蒸発器として機能する。一方、室内空気を加熱する暖房運転中の空気調和機では、室内熱交換器が凝縮器として機能し、室外熱交換器が蒸発器として機能する。 Conventionally, a refrigeration apparatus capable of performing a refrigeration cycle by circulating a refrigerant in a refrigerant circuit and cooling an object (for example, air or water) with the refrigerant and an operation for heating the object with the refrigerant. Are known. For example, Patent Document 1 discloses an air conditioner configured by this type of refrigeration apparatus. In an air conditioner during cooling operation that cools indoor air, the outdoor heat exchanger functions as a condenser, and the indoor heat exchanger functions as an evaporator. On the other hand, in an air conditioner during heating operation that heats indoor air, the indoor heat exchanger functions as a condenser and the outdoor heat exchanger functions as an evaporator.
 特許文献2にも、冷凍サイクルを行う空気調和機が開示されている。この空気調和機の冷媒回路には、冷媒を室外空気と熱交換させる室外熱交換器が設けられている。この室外熱交換器は、それぞれが筒状に形成された二つのヘッダと、二つのヘッダの間に設けられた多数の扁平な伝熱管とを有する熱交換器によって構成されている。 Patent Document 2 also discloses an air conditioner that performs a refrigeration cycle. The refrigerant circuit of this air conditioner is provided with an outdoor heat exchanger that exchanges heat between the refrigerant and outdoor air. This outdoor heat exchanger is constituted by a heat exchanger having two headers each formed in a cylindrical shape and a number of flat heat transfer tubes provided between the two headers.
 また、ヘッダと扁平な伝熱管とを有する熱交換器は、特許文献3にも開示されている。特許文献3の熱交換器は、凝縮器として機能する。この熱交換器には、凝縮用の主熱交換部と、過冷却用の補助熱交換部とが形成されている。そして、この熱交換器へ流入した冷媒は、主熱交換部を通過する間に凝縮して実質的に液単相状態となり、その後に補助熱交換部へ流入して更に冷却される。 A heat exchanger having a header and a flat heat transfer tube is also disclosed in Patent Document 3. The heat exchanger of patent document 3 functions as a condenser. In this heat exchanger, a main heat exchanging section for condensation and an auxiliary heat exchanging section for supercooling are formed. The refrigerant that has flowed into the heat exchanger is condensed while passing through the main heat exchanging section to be substantially in a liquid single-phase state, and thereafter flows into the auxiliary heat exchanging section to be further cooled.
特開2008-064447号公報JP 2008-064447 A 特開平09-014698号公報Japanese Patent Laid-Open No. 09-014698 特開2010-025447号公報JP 2010-025447 A
 しかしながら、ヘッダと扁平な伝熱管(扁平管)とを有する熱交換器において凝縮用の主熱交換部と過冷却用の補助熱交換部とを形成する場合には、補助熱交換部は、主熱交換部よりも流路数を少なくするのが一般的であり、補助熱交換部において流速が増加し、該補助熱交換部において圧力損失が大きくなる可能性がある。 However, in a heat exchanger having a header and a flat heat transfer tube (flat tube), when the main heat exchange part for condensation and the auxiliary heat exchange part for supercooling are formed, the auxiliary heat exchange part is the main heat exchange part. Generally, the number of flow paths is smaller than that of the heat exchange section, and the flow velocity increases in the auxiliary heat exchange section, and the pressure loss may increase in the auxiliary heat exchange section.
 本発明は前記の問題に着目してなされたものであり、ヘッダと扁平管とを有し凝縮用の主熱交換部と過冷却用の補助熱交換部とが形成された熱交換器において、補助熱交換部における圧力損失を低減できるようにすることを目的としている。 The present invention has been made paying attention to the above problems, and in a heat exchanger having a header and a flat tube and having a main heat exchange part for condensation and an auxiliary heat exchange part for supercooling, It aims at enabling it to reduce the pressure loss in an auxiliary heat exchange part.
 前記の課題を解決するため、第1の発明は、
 側面が対向するように上下に配列され、内部に複数の流体の流路(49)が形成される複数の扁平管(53,58)と、隣り合う前記扁平管(53,58)の間を空気が流れる複数の通風路に区画する複数のフィン(54,59)とを備えた熱交換器であって、
 第1ヘッダ集合管(51,56)と、
 第2ヘッダ集合管(52,57)とを備え、
 それぞれの前記扁平管(53,58)は、一端が前記第1ヘッダ集合管(51,56)に接続されて他端が前記第2ヘッダ集合管(52,57)に接続され、
 複数の扁平管(53,58)のうちの一部の扁平管(53)は、主熱交換部(50)を構成し、残りの扁平管(58)が補助熱交換部(55)を構成し、
 前記補助熱交換部(55)を構成する扁平管(58)の本数は、前記主熱交換部(50)を構成する扁平管(53)の本数よりも少なく、
 前記補助熱交換部(55)における1つの扁平管(58)あたりの流路(49)の総断面積は、前記主熱交換部(50)における1つの扁平管(53)あたりの流路(49)の総断面積よりも大きく、
 該熱交換器が凝縮器となる場合には、前記主熱交換部(50)で冷媒が凝縮し、前記補助熱交換部(55)で冷媒が過冷却されることを特徴とする。
In order to solve the above problem, the first invention is:
Between a plurality of flat tubes (53,58) in which a plurality of fluid flow paths (49) are formed inside, and the adjacent flat tubes (53,58) arranged side by side so as to face each other A heat exchanger comprising a plurality of fins (54, 59) partitioned into a plurality of ventilation paths through which air flows,
A first header collecting pipe (51, 56);
A second header collecting pipe (52, 57),
Each of the flat tubes (53, 58) has one end connected to the first header collecting pipe (51, 56) and the other end connected to the second header collecting pipe (52, 57).
Some flat tubes (53) of the plurality of flat tubes (53,58) constitute the main heat exchange part (50), and the remaining flat tubes (58) constitute the auxiliary heat exchange part (55). And
The number of flat tubes (58) constituting the auxiliary heat exchange section (55) is less than the number of flat tubes (53) constituting the main heat exchange section (50),
The total cross-sectional area of the flow path (49) per flat pipe (58) in the auxiliary heat exchange section (55) is the flow path per flat pipe (53) in the main heat exchange section (50) ( 49) greater than the total cross-sectional area of
When the heat exchanger is a condenser, the refrigerant is condensed in the main heat exchange section (50), and the refrigerant is supercooled in the auxiliary heat exchange section (55).
 この構成では、補助熱交換部(55)を構成する扁平管(58)の本数は、前記主熱交換部(50)を構成する扁平管(53)の本数よりも少ない。しかしながら、補助熱交換部(55)における1つの扁平管(58)あたりの流路(49)の総断面積は、前記主熱交換部(50)における1つの扁平管(53)あたりの流路(49)の総断面積よりも大きく構成されている。そのため、該熱交換器が凝縮器となる場合には、一種類の扁平管で主熱交換部と補助熱交換部を構成した熱交換器と比べ、補助熱交換部(55)における冷媒の流速を遅くすることが可能になる。 In this configuration, the number of flat tubes (58) constituting the auxiliary heat exchange section (55) is smaller than the number of flat tubes (53) constituting the main heat exchange section (50). However, the total cross-sectional area of the flow path (49) per one flat tube (58) in the auxiliary heat exchange section (55) is the flow path per one flat pipe (53) in the main heat exchange section (50). It is configured to be larger than the total cross-sectional area of (49). Therefore, when the heat exchanger is a condenser, the flow rate of the refrigerant in the auxiliary heat exchanging part (55) as compared with a heat exchanger in which the main heat exchanging part and the auxiliary heat exchanging part are configured by one type of flat tube. It becomes possible to slow down.
 また、第2の発明は、
 第1の発明の熱交換器において、
 前記補助熱交換部(55)の扁平管(58)の幅(W2)は、前記主熱交換部(50)の扁平管(53)の幅(W1)よりも大きく、
 前記補助熱交換部(55)の1つの扁平管(58)あたりの流路数は、前記主熱交換部(50)の1つの扁平管(53)あたりの流路数よりも多いことを特徴とする。
In addition, the second invention,
In the heat exchanger of the first invention,
The width (W2) of the flat tube (58) of the auxiliary heat exchanger (55) is larger than the width (W1) of the flat tube (53) of the main heat exchanger (50),
The number of flow paths per flat tube (58) of the auxiliary heat exchange section (55) is larger than the number of flow paths per flat pipe (53) of the main heat exchange section (50). And
 この構成では、1つの扁平管(53,58)あたりの流路数、及び幅(W1,W2)を調整して、1つの扁平管(53,58)あたりの流路(49)の総断面が設定される。 In this configuration, the total number of channels per flat tube (53,58) and the width (W1, W2) are adjusted, and the total cross section of the flow channel (49) per flat tube (53,58) Is set.
 また、第3の発明は、
 第1又は第2の発明の熱交換器において、
 前記主熱交換部(50)の扁平管(53)の流路(49)には複数の溝が形成され、
 前記補助熱交換部(55)の扁平管(58)は、ベア管であることを特徴とする。
In addition, the third invention,
In the heat exchanger of the first or second invention,
A plurality of grooves are formed in the flow path (49) of the flat tube (53) of the main heat exchange part (50),
The flat tube (58) of the auxiliary heat exchange part (55) is a bare tube.
 この構成では、主熱交換部(50)用の扁平管(53)では、溝(49a)を設けることで、1つの冷媒流路(49)あたりの表面積を、より大きくすることが可能になる。 In this configuration, in the flat tube (53) for the main heat exchange section (50), it is possible to further increase the surface area per one refrigerant flow path (49) by providing the groove (49a). .
 また、第4の発明は、
 第1から3の発明の何れか一つの熱交換器において、
 前記フィン(236)は、前記扁平管(53,58)を差し込むための切り欠き部(245)が複数設けられた板状に形成され、前記扁平管(53,58)の伸長方向に互いに所定の間隔をおいて配置され、前記切り欠き部(245)の周縁で前記扁平管(53,58)を挟んでおり、
 前記フィン(236)では、上下に隣り合う切り欠き部(245)の間の部分が伝熱部(237)を構成していることを特徴とする。
In addition, the fourth invention is
In any one of the heat exchangers of the first to third inventions,
The fins (236) are formed in a plate shape provided with a plurality of notches (245) for inserting the flat tubes (53, 58), and are predetermined to each other in the extending direction of the flat tubes (53, 58). The flat tube (53,58) is sandwiched at the periphery of the notch (245),
The fin (236) is characterized in that a portion between the vertically adjacent cutout portions (245) constitutes a heat transfer portion (237).
 この構成では、板状に形成された複数のフィン(236)が、扁平管(53,58)の伸長方向に互いに所定の間隔をおいて配置される。各フィン(236)には、扁平管(53,58)を差し込むための複数の切り欠き部(245)が形成される。各フィン(236)は、切り欠き部(245)の周縁部が扁平管(53,58)を挟み込んでいる。そして、各フィン(236)では、上下に隣り合う切り欠き部(245)の間の部分が、伝熱部(237)を構成する。 In this configuration, the plurality of fins (236) formed in a plate shape are arranged at predetermined intervals in the extending direction of the flat tube (53, 58). Each fin (236) is formed with a plurality of notches (245) for inserting the flat tubes (53, 58). As for each fin (236), the peripheral part of the notch (245) has pinched the flat tube (53,58). And in each fin (236), the part between the notch parts (245) adjacent up and down comprises a heat-transfer part (237).
 また、第5の発明は、
 第4の発明の熱交換器において、
 前記扁平管(53,58)の幅方向の端は、前記切り欠き部(245)の入り口側の端で揃えられていることを特徴とする。
In addition, the fifth invention,
In the heat exchanger of the fourth invention,
The ends in the width direction of the flat tubes (53, 58) are aligned with the ends on the entrance side of the notches (245).
 この構成では、前記扁平管(53,58)の幅方向の端は、前記切り欠き部(245)側の端で揃えられている。そのため、切り欠き部(245)側に、フィン(236)と伝熱管(53,58)の接合用のロウ材を並べる際に、容易にセットできる。 In this configuration, the end in the width direction of the flat tube (53, 58) is aligned with the end on the notch (245) side. Therefore, when the brazing material for joining the fin (236) and the heat transfer tube (53, 58) is arranged on the side of the notch (245), it can be easily set.
 また、第6の発明は、
 第1から5の発明の何れか一つに記載の熱交換器(40)が設けられた冷媒回路(20)を備え、
 上記冷媒回路(20)において冷媒を循環させて冷凍サイクルを行うことを特徴とする。
In addition, the sixth invention,
A refrigerant circuit (20) provided with the heat exchanger (40) according to any one of the first to fifth inventions;
In the refrigerant circuit (20), the refrigerant is circulated to perform a refrigeration cycle.
 この構成では、前記の熱交換器が冷媒回路(20)に接続される。熱交換器において、冷媒回路(20)を循環する冷媒は、扁平管(53,58)の通流路(49)を流れ、通風路を流れる空気と熱交換する。 In this configuration, the heat exchanger is connected to the refrigerant circuit (20). In the heat exchanger, the refrigerant circulating in the refrigerant circuit (20) flows through the flow path (49) of the flat tube (53, 58) and exchanges heat with the air flowing through the ventilation path.
 第1の発明によれば、該熱交換器が凝縮器となる場合には、補助熱交換部(55)における冷媒の流速を遅くすることが可能になるので、補助熱交換部(55)における圧力損失を低減することが可能になる。 According to the first invention, when the heat exchanger is a condenser, the flow rate of the refrigerant in the auxiliary heat exchanging section (55) can be reduced, and therefore in the auxiliary heat exchanging section (55). Pressure loss can be reduced.
 また、第2の発明によれば、主熱交換部(50)用の扁平管(53)における流路(49)の総断面積や、補助熱交換部(55)用の扁平管(58)における流路(49)の総断面積を容易に設定できる。また、例えば、主熱交換部(50)用と補助熱交換部(55)用とで流路(49)の形状が異なっていて、目視で流路(49)形状の相違を識別することが困難な場合であっても、主熱交換部(50)用の扁平管(53)と補助熱交換部(55)用の扁平管(58)とは、幅(W1,W2)が異なっているので、目視で両者を容易に識別することができる。 Moreover, according to 2nd invention, the total cross-sectional area of the flow path (49) in the flat tube (53) for main heat exchange parts (50), and the flat tube (58) for auxiliary heat exchange parts (55) The total cross-sectional area of the flow path (49) can be easily set. Further, for example, the shape of the flow path (49) is different between the main heat exchange section (50) and the auxiliary heat exchange section (55), and the difference in the flow path (49) shape can be identified visually. Even in difficult cases, the flat tubes (53) for the main heat exchanger (50) and the flat tubes (58) for the auxiliary heat exchanger (55) have different widths (W1, W2). Therefore, both can be easily identified visually.
 また、第3の発明によれば、主熱交換部(50)用の扁平管(53)では、主熱交換部(50)における熱交換効率を向上させることが可能になる。また、補助熱交換部(55)用の扁平管(58)では、形状を要因とした圧力損失を、より小さくすることが可能になる。 Further, according to the third invention, in the flat tube (53) for the main heat exchange section (50), it becomes possible to improve the heat exchange efficiency in the main heat exchange section (50). Further, in the flat tube (58) for the auxiliary heat exchange section (55), the pressure loss due to the shape can be further reduced.
 また、第5の発明によれば、フィン(236)と伝熱管(53,58)の接合用のロウ材を容易にセットできるので、より確実に両者を接合できる。また、切り欠き部(245)の入り口側の端で、扁平管(53,58)の端を揃えるので、幅の異なる扁平管(53,58)を用いる場合には、幅の広い扁平管(58)にあわせて切り欠き部(245)の奥行きを設定すればよい。すなわち、幅が異なる複数種類の扁平管(53,58)を用いたとしても、フィン(236)は共通化できる。 Further, according to the fifth invention, the brazing material for joining the fin (236) and the heat transfer tube (53, 58) can be easily set, so that both can be joined more reliably. Also, since the end of the flat tube (53,58) is aligned with the end of the notch (245) at the entrance side, when using flat tubes (53,58) with different widths, The depth of the notch (245) may be set according to 58). That is, even if a plurality of types of flat tubes (53, 58) having different widths are used, the fin (236) can be shared.
図1は、実施形態1の空気調和機の冷媒回路図であって、冷房運転時の状態を示すものである。FIG. 1 is a refrigerant circuit diagram of the air conditioner of Embodiment 1, and shows a state during cooling operation. 図2は、実施形態1の空気調和機の冷媒回路図であって、暖房運転時の状態を示すものである。FIG. 2 is a refrigerant circuit diagram of the air conditioner of Embodiment 1, and shows a state during heating operation. 図3は、実施形態1の室外熱交換器を構成する熱交換器ユニットの概略斜視図である。FIG. 3 is a schematic perspective view of a heat exchanger unit constituting the outdoor heat exchanger of the first embodiment. 図4は、実施形態1の室外熱交換器を構成する熱交換器ユニットを示す概略正面図である。FIG. 4 is a schematic front view showing a heat exchanger unit constituting the outdoor heat exchanger of the first embodiment. 図5は、実施形態1の熱交換ユニットの要部をその一部を省略して示す拡大斜視図である。FIG. 5 is an enlarged perspective view showing a main part of the heat exchange unit of Embodiment 1 with a part thereof omitted. 図6は、扁平管の断面形状の一例を模式的に示す図である。FIG. 6 is a diagram schematically illustrating an example of a cross-sectional shape of a flat tube. 図7は、(A)が主熱交換部用の扁平管における冷媒流路の断面形状の一例を説明する図であり、(B)が補助熱交換部用の扁平管における冷媒流路の冷媒流路の断面形状の一例を説明する図である。7A is a diagram for explaining an example of a cross-sectional shape of a refrigerant flow path in a flat tube for a main heat exchange section, and FIG. 7B is a refrigerant in a refrigerant flow path in a flat tube for an auxiliary heat exchange section. It is a figure explaining an example of the section shape of a channel. 図8は、実施形態1の変形例1にかかる熱交換器の断面の一部を示す図である。FIG. 8 is a diagram illustrating a part of a cross section of the heat exchanger according to the first modification of the first embodiment. 図9は、変形例1の熱交換器に設けられたフィンの概略斜視図である。FIG. 9 is a schematic perspective view of fins provided in the heat exchanger of the first modification. 図10は、変形例1の熱交換器のフィンに設けられた伝熱部を示す図であって、(A)は伝熱部の正面図であり、(B)は(A)のB-B断面を示す断面図である。FIG. 10 is a view showing the heat transfer section provided on the fin of the heat exchanger of the first modification, wherein (A) is a front view of the heat transfer section, and (B) is a B- It is sectional drawing which shows B cross section. 図11(A)は、変形例2の熱交換器の一部分の断面図であり、図11(B)は、図11(A)のV-V断面を示すフィンの断面図である。FIG. 11A is a cross-sectional view of a part of the heat exchanger of the second modification, and FIG. 11B is a cross-sectional view of the fin showing the VV cross section of FIG. 11A. 図12は、実施形態1の変形例3にかかる熱交換器の断面の一部を示す図である。FIG. 12 is a diagram illustrating a part of a cross section of the heat exchanger according to the third modification of the first embodiment. 図13は、変形例3の熱交換器のフィンの要部を示す図であって、(A)はフィンの正面図であり、(B)は(A)のG-G断面を示す断面図である。FIGS. 13A and 13B are views showing the main parts of the fins of the heat exchanger of the third modification, wherein FIG. 13A is a front view of the fins, and FIG. 13B is a cross-sectional view showing a GG cross section of FIG. It is. 図14(A)は、変形例4の熱交換器の一部分の断面図であり、図14(B)は、図14(A)のX-X断面を示すフィンの断面図である。FIG. 14A is a cross-sectional view of a part of the heat exchanger according to the fourth modification, and FIG. 14B is a cross-sectional view of the fin showing the XX cross section of FIG. 14A. 図15は、実施形態2の室外熱交換器の概略構成を示す正面図である。FIG. 15 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the second embodiment. 図16は、実施形態2の室外熱交換器の正面を示す一部断面図である。FIG. 16 is a partial cross-sectional view illustrating the front of the outdoor heat exchanger according to the second embodiment. 図17は、実施形態3の室外熱交換器の概略構成を示す正面図である。FIG. 17 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the third embodiment. 図18は、実施形態3の室外熱交換器の正面を示す一部断面図である。FIG. 18 is a partial cross-sectional view illustrating the front of the outdoor heat exchanger according to the third embodiment. 図19は、実施形態4の室外熱交換器の概略構成を示す正面図である。FIG. 19 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the fourth embodiment. 図20は、実施形態4の室外熱交換器の正面を示す一部断面図である。FIG. 20 is a partial cross-sectional view illustrating the front of the outdoor heat exchanger according to the fourth embodiment. 図21は、実施形態5の室外熱交換器の概略構成を示す正面図である。FIG. 21 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the fifth embodiment. 図22は、実施形態5の室外熱交換器の正面を示す一部断面図である。FIG. 22 is a partial cross-sectional view showing the front of the outdoor heat exchanger of the fifth embodiment. 図23は、実施形態6の室外熱交換器の概略構成を示す正面図である。FIG. 23 is a front view illustrating a schematic configuration of the outdoor heat exchanger according to the sixth embodiment. 図24は、実施形態6の室外熱交換器の正面を示す一部断面図である。FIG. 24 is a partial cross-sectional view illustrating the front of the outdoor heat exchanger according to the sixth embodiment. 図25は、実施形態7の室外熱交換器の断面の一部を示す図である。FIG. 25 is a diagram illustrating a part of a cross section of the outdoor heat exchanger according to the seventh embodiment.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
 《発明の実施形態1》
 本発明の実施形態1について説明する。本実施形態は、冷凍装置によって構成された空気調和機である。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described. The present embodiment is an air conditioner configured by a refrigeration apparatus.
 〈空気調和機の全体構成〉
 図1は、本発明の実施形態1の空気調和機(10)の冷媒回路図であって、冷房運転時の状態を示すものである。また、図2は、実施形態1の空気調和機(10)の冷媒回路図であって、暖房運転時の状態を示すものである。図1に示すように、本実施形態の空気調和機(10)は、利用側ユニットである室内ユニット(12)と、熱源側ユニットである室外ユニット(11)とを一つずつ備えている。この空気調和機(10)では、室外ユニット(11)と室内ユニット(12)を配管で接続することによって冷媒回路(20)が形成されている。
<Overall configuration of air conditioner>
FIG. 1 is a refrigerant circuit diagram of an air conditioner (10) according to Embodiment 1 of the present invention, and shows a state during cooling operation. FIG. 2 is a refrigerant circuit diagram of the air conditioner (10) of the first embodiment, and shows a state during heating operation. As shown in FIG. 1, the air conditioner (10) of the present embodiment includes an indoor unit (12) that is a use side unit and an outdoor unit (11) that is a heat source side unit. In the air conditioner (10), the refrigerant circuit (20) is formed by connecting the outdoor unit (11) and the indoor unit (12) with a pipe.
 なお、室内ユニット(12)及び室外ユニット(11)の台数は、単なる一例である。つまり、本実施形態の空気調和機(10)では、一台の室外ユニット(11)に複数台の室内ユニット(12)を接続することで冷媒回路(20)が形成されていてもよいし、複数台の室外ユニット(11)と複数台の室内ユニット(12)を互いに接続することで冷媒回路(20)が形成されていてもよい。 The number of indoor units (12) and outdoor units (11) is just an example. That is, in the air conditioner (10) of the present embodiment, the refrigerant circuit (20) may be formed by connecting a plurality of indoor units (12) to a single outdoor unit (11), The refrigerant circuit (20) may be formed by connecting a plurality of outdoor units (11) and a plurality of indoor units (12) to each other.
 冷媒回路(20)には、圧縮機(31)と、熱源側熱交換器である室外熱交換器(40)と、利用側熱交換器である室内熱交換器(32)と、膨張弁(33)と、四方切換弁(34)とが設けられている。圧縮機(31)、室外熱交換器(40)、膨張弁(33)、及び四方切換弁(34)は、室外ユニット(11)に収容されている。室内熱交換器(32)は、室内ユニット(12)に収容されている。また、図示しないが、室外ユニット(11)には室外熱交換器(40)へ室外空気を供給するための室外ファンが設けられ、室内ユニット(12)には室内熱交換器(32)へ室内空気を供給するための室内ファンが設けられている。 The refrigerant circuit (20) includes a compressor (31), an outdoor heat exchanger (40) that is a heat source side heat exchanger, an indoor heat exchanger (32) that is a use side heat exchanger, an expansion valve ( 33) and a four-way selector valve (34). The compressor (31), the outdoor heat exchanger (40), the expansion valve (33), and the four-way switching valve (34) are accommodated in the outdoor unit (11). The indoor heat exchanger (32) is accommodated in the indoor unit (12). Although not shown, the outdoor unit (11) is provided with an outdoor fan for supplying outdoor air to the outdoor heat exchanger (40), and the indoor unit (12) is connected to the indoor heat exchanger (32) indoors. An indoor fan for supplying air is provided.
 圧縮機(31)は、密閉型のロータリ圧縮機またはスクロール圧縮機である。冷媒回路(20)において、圧縮機(31)は、その吐出管が四方切換弁(34)の第1ポートに配管を介して接続され、その吸入管が四方切換弁(34)の第2ポートに配管を介して接続される。 Compressor (31) is a hermetic rotary compressor or scroll compressor. In the refrigerant circuit (20), the compressor (31) has a discharge pipe connected to the first port of the four-way switching valve (34) via a pipe, and a suction pipe connected to the second port of the four-way switching valve (34). Connected through a pipe.
 室外熱交換器(40)は、立設された第1ヘッダ部材(46)及び第2ヘッダ部材(47)と、多数の伝熱管(53,58)(以下、扁平管とも呼ぶ)とを備え、冷媒を室外空気と熱交換させる。室外熱交換器(40)の詳細な構造については、後述する。室内熱交換器(32)は、いわゆるクロスフィン型のフィン・アンド・チューブ型熱交換器であって、冷媒を室内空気と熱交換させる。 The outdoor heat exchanger (40) includes a first header member (46) and a second header member (47) which are erected, and a large number of heat transfer tubes (53, 58) (hereinafter also referred to as flat tubes). Then, the refrigerant exchanges heat with outdoor air. The detailed structure of the outdoor heat exchanger (40) will be described later. The indoor heat exchanger (32) is a so-called cross fin type fin-and-tube heat exchanger, and exchanges heat between the refrigerant and room air.
 膨張弁(33)は、いわゆる電子膨張弁(33)である。四方切換弁(34)は、四つのポートを備えており、第1ポートが第3ポートと連通し且つ第2ポートが第4ポートと連通する第1状態(図1に示す状態)と、第1ポートが第4ポートと連通し且つ第2ポート第3ポートと連通がする第2状態(図2に示す状態)とに切り換わる。 The expansion valve (33) is a so-called electronic expansion valve (33). The four-way switching valve (34) has four ports, the first state where the first port communicates with the third port and the second port communicates with the fourth port (the state shown in FIG. 1), The first port is switched to the second state (the state shown in FIG. 2) in which the first port communicates with the fourth port and the second port communicates with the third port.
 冷媒回路(20)には、第1ガス側配管(21)と、第2ガス側配管(22)と、液側配管(23)とが設けられている。第1ガス側配管(21)は、その一端が四方切換弁(34)の第3ポートに接続され、その他端が室外熱交換器(40)の第1ヘッダ部材(46)の上端部に接続されている。第2ガス側配管(22)は、その一端が四方切換弁(34)の第4ポートに接続され、その他端が室内熱交換器(32)のガス側端に接続されている。液側配管(23)は、その一端が、後述の第1ヘッダ集合管(56)の下端部に接続され、その他端が室内熱交換器(32)の液側端に接続されている。この液側配管(23)の途中には、膨張弁(33)が設けられている。 The refrigerant circuit (20) is provided with a first gas side pipe (21), a second gas side pipe (22), and a liquid side pipe (23). The first gas side pipe (21) has one end connected to the third port of the four-way switching valve (34) and the other end connected to the upper end of the first header member (46) of the outdoor heat exchanger (40). Has been. The second gas side pipe (22) has one end connected to the fourth port of the four-way switching valve (34) and the other end connected to the gas side end of the indoor heat exchanger (32). One end of the liquid side pipe (23) is connected to the lower end of a first header collecting pipe (56) described later, and the other end is connected to the liquid side end of the indoor heat exchanger (32). An expansion valve (33) is provided in the middle of the liquid side pipe (23).
 〈室外熱交換器の構造〉
 室外熱交換器(40)の詳細な構造について、図3,4,5を参照しながら説明する。なお、図3は、実施形態1の室外熱交換器を構成する熱交換器ユニットの概略斜視図である。図4は、実施形態1の室外熱交換器を構成する熱交換器ユニットを示す概略正面図である。また、図5は、実施形態1の熱交換ユニットの要部をその一部を省略して示す拡大斜視図である。
<Structure of outdoor heat exchanger>
The detailed structure of the outdoor heat exchanger (40) will be described with reference to FIGS. FIG. 3 is a schematic perspective view of a heat exchanger unit constituting the outdoor heat exchanger of the first embodiment. FIG. 4 is a schematic front view showing a heat exchanger unit constituting the outdoor heat exchanger of the first embodiment. FIG. 5 is an enlarged perspective view showing a main part of the heat exchange unit of Embodiment 1 with a part thereof omitted.
 本実施形態の室外熱交換器(40)は、一つの熱交換器ユニット(45)によって構成されている。 The outdoor heat exchanger (40) of the present embodiment is constituted by one heat exchanger unit (45).
 図3及び図4に示すように、室外熱交換器(40)を構成する熱交換器ユニット(45)は、一つの第1ヘッダ部材(46)と、一つの第2ヘッダ部材(47)と、多数の伝熱管(53,58)と、多数のフィン(54,59)とを備えている。第1ヘッダ部材(46)、第2ヘッダ部材(47)、扁平管(53,58)、及びフィン(54,59)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。これらのフィン(54,59)は、隣り合う扁平管(53,58)の間を、空気が流れる複数の通風路に区画する。 As shown in FIGS. 3 and 4, the heat exchanger unit (45) constituting the outdoor heat exchanger (40) includes one first header member (46), one second header member (47), and A large number of heat transfer tubes (53,58) and a large number of fins (54,59) are provided. The first header member (46), the second header member (47), the flat tubes (53, 58), and the fins (54, 59) are all made of an aluminum alloy and are joined to each other by brazing. ing. These fins (54, 59) partition between adjacent flat tubes (53, 58) into a plurality of ventilation paths through which air flows.
 第1ヘッダ部材(46)と第2ヘッダ部材(47)は、何れも両端が閉塞された細長い中空円筒状に形成されている。図4では、熱交換器ユニット(45)の左端に第1ヘッダ部材(46)が立設され、熱交換器ユニット(45)の右端に第2ヘッダ部材(47)が立設されている。つまり、第1ヘッダ部材(46)と第2ヘッダ部材(47)は、それぞれの軸方向が上下方向となる姿勢で設置されている。 The first header member (46) and the second header member (47) are both formed in an elongated hollow cylindrical shape with both ends closed. In FIG. 4, the first header member (46) is erected at the left end of the heat exchanger unit (45), and the second header member (47) is erected at the right end of the heat exchanger unit (45). That is, the first header member (46) and the second header member (47) are installed in a posture in which the respective axial directions are in the vertical direction.
 図5に示すように、伝熱管(53,58)は、扁平な形状にされており、その内部に複数の冷媒流路(49)が一列に形成されている。以下では、伝熱管(53,58)を扁平管とも呼ぶ。図6は、扁平管(53,58)の断面形状の一例を模式的に示す図である。この例では、図6に示すように、扁平管(58)の幅(W2)は、扁平管(53)の幅(W1)よりも大きい。また、1つの扁平管(58)あたりの流路数は、1つの扁平管(53)あたりの流路数よりも多い。 As shown in FIG. 5, the heat transfer tubes (53, 58) have a flat shape, and a plurality of refrigerant flow paths (49) are formed in a row therein. Below, a heat exchanger tube (53,58) is also called a flat tube. FIG. 6 is a diagram schematically showing an example of a cross-sectional shape of the flat tube (53, 58). In this example, as shown in FIG. 6, the width (W2) of the flat tube (58) is larger than the width (W1) of the flat tube (53). Further, the number of channels per flat tube (58) is larger than the number of channels per flat tube (53).
 また、図7は、(A)が後述の主熱交換部(50)用の扁平管(53)における冷媒流路(49)の断面形状の一例を説明する図であり、(B)が後述の補助熱交換部(55)用の扁平管(58)における冷媒流路(49)の冷媒流路(49)の断面形状の一例を説明する図である。図7に示した例では、扁平管(53)は、それぞれの冷媒流路(49)に複数の溝(49a)が形成されている。一方、扁平管(58)は、いわゆるベア管(内面平滑管)であり、円形の断面を有している。すなわち、扁平管(58)の各冷媒流路(49)には溝(49a)は形成されていない。なお、この例では、扁平管(58)の冷媒流路(49)は、概ね0.5mmの直径を有している。勿論、これらの冷媒流路(49)の断面形状は例示であり、他の形状(例えば図6等に示した方形断面)の採用も可能である。 FIG. 7 is a diagram for explaining an example of the cross-sectional shape of the refrigerant flow path (49) in the flat tube (53) for the main heat exchange section (50) described later, and (B) is described later. It is a figure explaining an example of the section shape of the refrigerant channel (49) of the refrigerant channel (49) in the flat tube (58) for the auxiliary heat exchanging part (55). In the example shown in FIG. 7, the flat tube (53) has a plurality of grooves (49a) formed in the respective refrigerant flow paths (49). On the other hand, the flat tube (58) is a so-called bare tube (inner surface smooth tube) and has a circular cross section. That is, the groove (49a) is not formed in each refrigerant channel (49) of the flat tube (58). In this example, the refrigerant channel (49) of the flat tube (58) has a diameter of approximately 0.5 mm. Of course, the cross-sectional shapes of these refrigerant flow paths (49) are merely examples, and other shapes (for example, a square cross-section shown in FIG. 6 and the like) can be adopted.
 熱交換器ユニット(45)において、扁平管(53,58)は、それぞれの軸方向が左右方向となり且つ互いの側面が向かい合う姿勢で、第1ヘッダ部材(46)及び第2ヘッダ部材(47)の軸方向に所定の間隔をおいて配列されている。つまり、熱交換器ユニット(45)において、扁平管(53,58)は、第1ヘッダ部材(46)から第2ヘッダ部材(47)に亘って互いに平行に配置されている。各扁平管(53,58)は、その一端部が第1ヘッダ部材(46)に挿入され、その他端部が第2ヘッダ部材(47)に挿入されている。各扁平管(53,58)内の冷媒流路(49)は、その一端が第1ヘッダ部材(46)の内部空間に連通し、その他端が第2ヘッダ部材(47)の内部空間に連通している。 In the heat exchanger unit (45), the flat tubes (53, 58) have the first header member (46) and the second header member (47) in a posture in which the respective axial directions are in the left-right direction and the side surfaces face each other. Are arranged at predetermined intervals in the axial direction. That is, in the heat exchanger unit (45), the flat tubes (53, 58) are arranged in parallel to each other from the first header member (46) to the second header member (47). Each flat tube (53, 58) has one end inserted into the first header member (46) and the other end inserted into the second header member (47). One end of the refrigerant flow path (49) in each flat tube (53, 58) communicates with the internal space of the first header member (46), and the other end communicates with the internal space of the second header member (47). is doing.
 フィン(54,59)は、隣り合った扁平管(53,58)の間に設けられている。各フィン(54,59)は、上下に蛇行する波板状に形成され、その波形の稜線が熱交換器ユニット(45)の前後方向(図4の紙面に垂直な方向)となる姿勢で設置されている。熱交換器ユニット(45)では、図4の紙面に垂直な方向へ空気が通過する。 The fins (54, 59) are provided between the adjacent flat tubes (53, 58). Each fin (54, 59) is formed in the shape of a corrugated plate that snakes up and down, and is installed in such a posture that the ridge line of the corrugation is the front-rear direction of the heat exchanger unit (45) (the direction perpendicular to the paper surface of FIG. 4). Has been. In the heat exchanger unit (45), air passes in a direction perpendicular to the paper surface of FIG.
 図4に示すように、第1ヘッダ部材(46)には、円板状の仕切板(48)が設けられている。第1ヘッダ部材(46)の内部空間は、仕切板(48)によって上下に仕切られている。一方、第2ヘッダ部材(47)の内部空間は、仕切られていない一つの空間となっている。 As shown in FIG. 4, the first header member (46) is provided with a disc-shaped partition plate (48). The internal space of the first header member (46) is partitioned up and down by a partition plate (48). On the other hand, the internal space of the second header member (47) is a single undivided space.
 熱交換器ユニット(45)では、仕切板(48)よりも上側の部分が主熱交換部(50)を構成し、仕切板(48)よりも下側の部分が補助熱交換部(55)を構成している。 In the heat exchanger unit (45), the upper part of the partition plate (48) constitutes the main heat exchange part (50), and the lower part of the partition plate (48) is the auxiliary heat exchange part (55). Is configured.
 具体的に、第1ヘッダ部材(46)では、仕切板(48)よりも上側の部分が主熱交換部(50)の第1ヘッダ集合管(51)を構成し、仕切板(48)よりも下側の部分が補助熱交換部(55)の第1ヘッダ集合管(56)を構成している。熱交換器ユニット(45)に設けられた扁平管(53,58)は、主熱交換部(50)の第1ヘッダ集合管(51)に接続するものが主熱交換部(50)の扁平管(53)となり、補助熱交換部(55)の第1ヘッダ集合管(56)に接続するものが補助熱交換部(55)の扁平管(58)となっている。また、熱交換器ユニット(45)に設けられたフィン(54,59)は、主熱交換部(50)の扁平管(53)の間に設けられているものが主熱交換部(50)のフィン(54)となり、補助熱交換部(55)の扁平管(58)の間に設けられているものが補助熱交換部(55)のフィン(59)となっている。第2ヘッダ部材(47)では、主熱交換部(50)の扁平管(53)が挿入された部分が主熱交換部(50)の第2ヘッダ集合管(52)を構成し、補助熱交換部(55)の扁平管(58)が挿入された部分が補助熱交換部(55)の第2ヘッダ集合管(57)を構成している。 Specifically, in the first header member (46), the upper part of the partition plate (48) constitutes the first header collecting pipe (51) of the main heat exchange section (50), and the partition plate (48) The lower part constitutes the first header collecting pipe (56) of the auxiliary heat exchange part (55). The flat tubes (53,58) provided in the heat exchanger unit (45) are connected to the first header collecting pipe (51) of the main heat exchange section (50), and the flat tubes of the main heat exchange section (50). The pipe (53) that is connected to the first header collecting pipe (56) of the auxiliary heat exchange section (55) is the flat pipe (58) of the auxiliary heat exchange section (55). The fins (54, 59) provided in the heat exchanger unit (45) are provided between the flat tubes (53) of the main heat exchange part (50), and the main heat exchange part (50) The fin (54) of the auxiliary heat exchanger (55) is provided between the flat tubes (58) of the auxiliary heat exchanger (55). In the second header member (47), the portion where the flat tube (53) of the main heat exchange part (50) is inserted constitutes the second header collecting pipe (52) of the main heat exchange part (50), and the auxiliary heat The part where the flat pipe (58) of the exchange part (55) is inserted constitutes the second header collecting pipe (57) of the auxiliary heat exchange part (55).
 室外熱交換器(40)では、冷暖房に必要な熱交換能力の要件から主熱交換部(50)の扁平管(53)の幅(W1)、冷媒流路(49)の数、冷媒流路(49)の断面積、扁平管(53)の本数等を決定する。一般的には、室外熱交換器(40)に設けることができる扁平管(53,58)の本数には制限がある。そこで、例えば、扁平管(58)の本数は、設けることが可能な最大数から扁平管(53)の本数を差し引いた本数にする。そして、決まった本数を基に、扁平管(58)の幅(W2)、冷媒流路(49)の数、冷媒流路(49)の断面積は、補助熱交換部(55)に必要な能力に応じて設定する。 In the outdoor heat exchanger (40), the width (W1) of the flat tube (53), the number of refrigerant channels (49), the number of refrigerant channels, Determine the cross-sectional area of (49), the number of flat tubes (53), etc. Generally, the number of flat tubes (53, 58) that can be provided in the outdoor heat exchanger (40) is limited. Therefore, for example, the number of flat tubes (58) is set to the number obtained by subtracting the number of flat tubes (53) from the maximum number that can be provided. Based on the determined number, the width (W2) of the flat tube (58), the number of refrigerant flow paths (49), and the cross-sectional area of the refrigerant flow path (49) are required for the auxiliary heat exchange section (55). Set according to ability.
 具体的には、本実施形態の室外熱交換器(40)では、補助熱交換部(55)の扁平管(58)の本数が、主熱交換部(50)の扁平管(53)の本数よりも少なくなっている。補助熱交換部(55)に設けられた1つの扁平管(58)あたりの流路(49)の総断面積は、前記主熱交換部(50)に設けられた1つの扁平管(53)あたりの流路(49)の総断面積よりも大きく形成している。 Specifically, in the outdoor heat exchanger (40) of the present embodiment, the number of flat tubes (58) of the auxiliary heat exchange unit (55) is equal to the number of flat tubes (53) of the main heat exchange unit (50). Less than. The total cross-sectional area of the flow path (49) per one flat tube (58) provided in the auxiliary heat exchange part (55) is equal to one flat tube (53) provided in the main heat exchange part (50). It is formed larger than the total cross-sectional area of the perimeter flow path (49).
 この例では、室外熱交換器(40)には、60本の扁平管(53,58)を設けることができる。そして、補助熱交換部(55)の扁平管(58)の本数は10本であり、主熱交換部(50)の扁平管(53)の本数は50本である。すなわち、補助熱交換部(55)の扁平管(58)の本数は、主熱交換部(50)の扁平管(53)の本数の1/5となっている。なお、図3及び図4に図示された扁平管(53,58)の本数は、実際の室外熱交換器(40)に設けられた扁平管(53,58)の本数とは異なっている。 In this example, the outdoor heat exchanger (40) can be provided with 60 flat tubes (53, 58). The number of flat tubes (58) in the auxiliary heat exchange section (55) is 10, and the number of flat tubes (53) in the main heat exchange section (50) is 50. That is, the number of flat tubes (58) of the auxiliary heat exchange section (55) is 1/5 of the number of flat tubes (53) of the main heat exchange section (50). The number of flat tubes (53,58) shown in FIGS. 3 and 4 is different from the number of flat tubes (53,58) provided in the actual outdoor heat exchanger (40).
 上述したように、冷媒回路(20)では、第1ガス側配管(21)が第1ヘッダ部材(46)の上端部に、液側配管(23)が第1ヘッダ部材(46)の下端部に、それぞれ接続されている(図1を参照)。つまり、室外熱交換器(40)では、主熱交換部(50)の第1ヘッダ集合管(51)に第1ガス側配管(21)が、補助熱交換部(55)の第1ヘッダ集合管(56)に液側配管(23)がそれぞれ接続されている。 As described above, in the refrigerant circuit (20), the first gas side pipe (21) is at the upper end of the first header member (46), and the liquid side pipe (23) is at the lower end of the first header member (46). Are connected to each other (see FIG. 1). That is, in the outdoor heat exchanger (40), the first gas side pipe (21) is connected to the first header collecting pipe (51) of the main heat exchanging part (50), and the first header set of the auxiliary heat exchanging part (55). A liquid side pipe (23) is connected to the pipe (56).
 〈運転動作〉
 空気調和機(10)の運転動作について説明する。この空気調和機(10)は、冷却動作である冷房運転と、加熱動作である暖房運転とを行う。
<Driving operation>
The operation of the air conditioner (10) will be described. The air conditioner (10) performs a cooling operation that is a cooling operation and a heating operation that is a heating operation.
 〈冷房運転〉
 冷房運転時の空気調和機(10)の運転動作について、図1を参照しながら説明する。
<Cooling operation>
The operation of the air conditioner (10) during the cooling operation will be described with reference to FIG.
 冷房運転時には、四方切換弁(34)が第1状態に設定される。また、膨張弁(33)の開度は、室内熱交換器(32)のガス側端から流出する冷媒の過熱度が所定の目標値(例えば、5℃)となるように調節される。また、冷房運転時には、室外ファンによって室外空気が室外熱交換器(40)へ供給され、室内ファンによって室内空気が室内熱交換器(32)へ供給される。 During the cooling operation, the four-way selector valve (34) is set to the first state. The opening degree of the expansion valve (33) is adjusted so that the degree of superheat of the refrigerant flowing out from the gas side end of the indoor heat exchanger (32) becomes a predetermined target value (for example, 5 ° C.). Further, during the cooling operation, outdoor air is supplied to the outdoor heat exchanger (40) by the outdoor fan, and indoor air is supplied to the indoor heat exchanger (32) by the indoor fan.
 冷媒回路(20)において、圧縮機(31)から吐出された冷媒は、四方切換弁(34)と第1ガス側配管(21)を順に通過し、その後に主熱交換部(50)の第1ヘッダ集合管(51)へ流入する。この第1ヘッダ集合管(51)へ流入した冷媒は、主熱交換部(50)の各扁平管(53)へ分かれて流入し、各扁平管(53)の冷媒流路(49)を通過する間に室外空気へ放熱して凝縮する。各扁平管(53)を通過した冷媒は、主熱交換部(50)の第2ヘッダ集合管(52)へ流れ込んで合流し、その後に補助熱交換部(55)の第2ヘッダ集合管(57)へと流れ落ちる。この第2ヘッダ集合管(57)へ流入した冷媒は、補助熱交換部(55)の各扁平管(58)へ分かれて流入し、各扁平管(58)の冷媒流路(49)を通過する間に室外空気へ放熱して過冷却状態となる。各扁平管(58)を通過した冷媒は、補助熱交換部(55)の第1ヘッダ集合管(56)へ流れ込んで合流する。 In the refrigerant circuit (20), the refrigerant discharged from the compressor (31) sequentially passes through the four-way switching valve (34) and the first gas side pipe (21), and then passes through the first heat exchanger (50). 1 flows into the header collecting pipe (51). The refrigerant that has flowed into the first header collecting pipe (51) is divided into the flat pipes (53) of the main heat exchange section (50) and flows through the refrigerant flow paths (49) of the flat pipes (53). In the meantime, it dissipates heat to the outdoor air and condenses. The refrigerant that has passed through each flat tube (53) flows into and merges with the second header collecting pipe (52) of the main heat exchange section (50), and then the second header collecting pipe ( 57). The refrigerant that has flowed into the second header collecting pipe (57) is divided into the flat pipes (58) of the auxiliary heat exchange section (55) and flows through the refrigerant flow paths (49) of the flat pipes (58). In the meantime, heat is dissipated to the outdoor air and it becomes supercooled. The refrigerant that has passed through each flat tube (58) flows into and merges with the first header collecting tube (56) of the auxiliary heat exchange section (55).
 補助熱交換部(55)の第1ヘッダ集合管(56)から液側配管(23)へ流入した冷媒は、膨張弁(33)を通過する際に膨張(圧力降下)した後に室内熱交換器(32)の液側端へ流入する。室内熱交換器(32)へ流入した冷媒は、室内空気から吸熱して蒸発する。室内ユニット(12)は、吸い込んだ室内空気を室内熱交換器(32)へ供給し、室内熱交換器(32)において冷却された室内空気を室内へ送り返す。 The refrigerant flowing into the liquid side pipe (23) from the first header collecting pipe (56) of the auxiliary heat exchanger (55) expands (pressure drop) when passing through the expansion valve (33), and then the indoor heat exchanger. It flows into the liquid side end of (32). The refrigerant flowing into the indoor heat exchanger (32) absorbs heat from the indoor air and evaporates. The indoor unit (12) supplies the sucked room air to the indoor heat exchanger (32), and sends the room air cooled in the indoor heat exchanger (32) back into the room.
 室内熱交換器(32)において蒸発した冷媒は、室内熱交換器(32)のガス側端から第2ガス側配管(22)へ流入する。その後、冷媒は、四方切換弁(34)を通って圧縮機(31)へ吸入される。圧縮機(31)は、吸入した冷媒を圧縮してから吐出する。 The refrigerant evaporated in the indoor heat exchanger (32) flows into the second gas side pipe (22) from the gas side end of the indoor heat exchanger (32). Thereafter, the refrigerant is sucked into the compressor (31) through the four-way switching valve (34). The compressor (31) compresses the sucked refrigerant and discharges it.
 〈暖房運転〉
 暖房運転時の空気調和機(10)の運転動作について、図2を参照しながら説明する。
<Heating operation>
The operation of the air conditioner (10) during the heating operation will be described with reference to FIG.
 暖房運転時には、四方切換弁(34)が第2状態に設定される。また、膨張弁(33)の開度は、室外熱交換器(40)から流出する冷媒の過熱度が所定の目標値(例えば、5℃)となるように調節される。また、暖房運転時には、室外ファンによって室外空気が室外熱交換器(40)へ供給され、室内ファンによって室内空気が室内熱交換器(32)へ供給される。 During the heating operation, the four-way selector valve (34) is set to the second state. The opening degree of the expansion valve (33) is adjusted so that the degree of superheat of the refrigerant flowing out from the outdoor heat exchanger (40) becomes a predetermined target value (for example, 5 ° C.). Further, during the heating operation, outdoor air is supplied to the outdoor heat exchanger (40) by the outdoor fan, and indoor air is supplied to the indoor heat exchanger (32) by the indoor fan.
 冷媒回路(20)において、圧縮機(31)から吐出された冷媒は、四方切換弁(34)と第2ガス側配管(22)を順に通過し、その後に室内熱交換器(32)のガス側端へ流入する。室内熱交換器(32)へ流入した冷媒は、室内空気へ放熱して凝縮する。室内ユニット(12)は、吸い込んだ室内空気を室内熱交換器(32)へ供給し、室内熱交換器(32)において加熱された室内空気を室内へ送り返す。 In the refrigerant circuit (20), the refrigerant discharged from the compressor (31) sequentially passes through the four-way switching valve (34) and the second gas side pipe (22), and then the gas in the indoor heat exchanger (32). It flows into the side edge. The refrigerant flowing into the indoor heat exchanger (32) dissipates heat to the indoor air and condenses. The indoor unit (12) supplies the sucked indoor air to the indoor heat exchanger (32), and sends the indoor air heated in the indoor heat exchanger (32) back into the room.
 室内熱交換器(32)の液側端から液側配管(23)へ流入した冷媒は、膨張弁(33)を通過する際に膨張(圧力降下)した後に、補助熱交換部(55)の第1ヘッダ集合管(56)へ流入する。補助熱交換部(55)の第1ヘッダ集合管(56)へ流入した冷媒は、補助熱交換部(55)の扁平管(58)へ分かれて流入する。扁平管(58)へ流入した冷媒は、冷媒流路(49)を通過する間に室外空気から吸熱し、その一部が蒸発する。扁平管(58)で蒸発した冷媒は第2ヘッダ集合管(52)に流入し、主熱交換部(50)の扁平管(53)へ分かれて流入する。扁平管(53)へ流入した冷媒は、冷媒流路(49)を通過する間に室外空気から吸熱して蒸発する。 The refrigerant flowing into the liquid side pipe (23) from the liquid side end of the indoor heat exchanger (32) expands (pressure drop) when passing through the expansion valve (33), and then enters the auxiliary heat exchanger (55). It flows into the first header collecting pipe (56). The refrigerant that has flowed into the first header collecting pipe (56) of the auxiliary heat exchange section (55) is divided and flows into the flat pipe (58) of the auxiliary heat exchange section (55). The refrigerant flowing into the flat tube (58) absorbs heat from the outdoor air while passing through the refrigerant flow path (49), and part of it evaporates. The refrigerant evaporated in the flat pipe (58) flows into the second header collecting pipe (52), and flows into the flat pipe (53) of the main heat exchange section (50). The refrigerant flowing into the flat tube (53) absorbs heat from the outdoor air and evaporates while passing through the refrigerant flow path (49).
 主熱交換部(50)の各扁平管(53)を通過した冷媒は、主熱交換部(50)の第1ヘッダ集合管(51)へ流入して合流し、その後に第1ガス側配管(21)へ流入する。第1ガス側配管(21)を流れる冷媒は、四方切換弁(34)を通過後に圧縮機(31)へ吸入される。圧縮機(31)は、吸入した冷媒を圧縮してから吐出する。 The refrigerant that has passed through each flat tube (53) of the main heat exchange section (50) flows into and merges with the first header collecting pipe (51) of the main heat exchange section (50), and then the first gas side pipe It flows into (21). The refrigerant flowing through the first gas side pipe (21) passes through the four-way switching valve (34) and is sucked into the compressor (31). The compressor (31) compresses the sucked refrigerant and discharges it.
 〈本実施形態における効果〉
 本実施形態では、補助熱交換部(55)を構成する扁平管(58)の本数は、主熱交換部(50)を構成する扁平管(53)の本数よりも少ない。しかしながら、補助熱交換部(55)に設けられた1つの扁平管(58)あたりの流路(49)の総断面積は、主熱交換部(50)に設けられた1つの扁平管(53)あたりの流路(49)の総断面積よりも大きい。そのため、該熱交換器が凝縮器となる場合には、例えば一種類の扁平管で主熱交換部と補助熱交換部を構成した熱交換器(以下、説明の便宜上、従来の熱交換器と呼ぶ)と比べ、補助熱交換部(55)における冷媒の流速を遅くすることが可能になる。したがって、本実施形態によれば、補助熱交換部(55)における圧力損失を低減することが可能になる。
<Effect in this embodiment>
In the present embodiment, the number of flat tubes (58) constituting the auxiliary heat exchange section (55) is smaller than the number of flat tubes (53) constituting the main heat exchange section (50). However, the total cross-sectional area of the flow path (49) per one flat tube (58) provided in the auxiliary heat exchanger (55) is equal to one flat tube (53) provided in the main heat exchanger (50). ) Larger than the total cross-sectional area of the channel (49). Therefore, when the heat exchanger is a condenser, for example, a heat exchanger in which a main heat exchange unit and an auxiliary heat exchange unit are configured by one type of flat tube (hereinafter, for convenience of explanation, a conventional heat exchanger and The refrigerant flow rate in the auxiliary heat exchanging section (55) can be made slower than that of the auxiliary heat exchange section (55). Therefore, according to the present embodiment, it is possible to reduce the pressure loss in the auxiliary heat exchange section (55).
 また、本実施形態では、1つの扁平管(53,58)あたりの流路数、及び幅(W1,W2)を調整して、1つの扁平管(53,58)あたりの冷媒流路(49)の総断面を設定するようにした。そのため、主熱交換部(50)用の扁平管(53)における冷媒流路(49)の総断面積や、補助熱交換部(55)用の扁平管(58)における冷媒流路(49)の総断面積を容易に設定できる。 In the present embodiment, the number of flow paths per one flat pipe (53,58) and the width (W1, W2) are adjusted, and the refrigerant flow path (49 per one flat pipe (53,58)). ) Total cross section is set. Therefore, the total cross-sectional area of the refrigerant flow path (49) in the flat tube (53) for the main heat exchange section (50) and the refrigerant flow path (49) in the flat pipe (58) for the auxiliary heat exchange section (55) The total cross-sectional area can be set easily.
 また、本実施形態では、主熱交換部(50)における扁平管(53)の各冷媒流路(49)には溝(49a)を設けてある。そのため、扁平管(53)では、1つの冷媒流路(49)あたりの表面積を、より大きくすることが可能になる。すなわち、主熱交換部(50)における熱交換効率を向上させることが可能になる。 In the present embodiment, each refrigerant flow path (49) of the flat tube (53) in the main heat exchange section (50) is provided with a groove (49a). Therefore, in the flat tube (53), the surface area per refrigerant channel (49) can be increased. That is, it becomes possible to improve the heat exchange efficiency in the main heat exchange section (50).
 また、補助熱交換部(55)の扁平管(58)は、いわゆるベア管なので、形状を要因とした圧力損失を、主熱交換部(50)の扁平管(53)よりも小さくすることが可能になる。 Moreover, since the flat tube (58) of the auxiliary heat exchanger (55) is a so-called bare tube, the pressure loss due to the shape can be made smaller than the flat tube (53) of the main heat exchanger (50). It becomes possible.
 また、冷媒流路(49)は、既述の通り非常に小さな直径を有しているので、工場で室外熱交換器(40)を製造するときには、例えば同じ幅の扁平管で主熱交換部と補助熱交換部を構成すると、冷媒流路(49)における溝(49a)の有無を目視で識別するのは難しい。しかしながら、本実施形態では、主熱交換部(50)用の扁平管(53)と補助熱交換部(55)用の扁平管(58)とは、幅(W1,W2)が異なっているので、流路(49)の溝(49a)の有無を容易に識別することができる。 In addition, since the refrigerant flow path (49) has a very small diameter as described above, when the outdoor heat exchanger (40) is manufactured at the factory, for example, a flat pipe having the same width is used as the main heat exchange section. If the auxiliary heat exchange part is configured, it is difficult to visually identify the presence or absence of the groove (49a) in the refrigerant flow path (49). However, in this embodiment, the flat tubes (53) for the main heat exchange section (50) and the flat tubes (58) for the auxiliary heat exchange section (55) have different widths (W1, W2). The presence or absence of the groove (49a) in the flow path (49) can be easily identified.
 《実施形態1の変形例1》
 なお、フィン(54,59)の構成は例示であり、熱交換器(40)には種々のフィンを採用することが可能である。例えば、上記のフィン(54,59)に代えて、図8に示すフィンの採用も可能である。図8は、実施形態1の変形例1にかかる熱交換器(40)の断面の一部を示す図である。フィン(235)は、上下に蛇行するコルゲートフィンであって、上下に隣り合う扁平管(53,58)(伝熱管)の間に配置されている。詳しくは後述するが、フィン(235)には、伝熱部(237)と中間板部(241)とが複数ずつ形成されている。各フィン(235)では、その中間板部(241)がロウ付けによって扁平管(53,58)に接合される。
<< Variation 1 of Embodiment 1 >>
In addition, the structure of a fin (54,59) is an illustration, and it is possible to employ | adopt a various fin for a heat exchanger (40). For example, instead of the fins (54, 59), it is possible to employ the fins shown in FIG. FIG. 8 is a diagram illustrating a part of a cross section of the heat exchanger (40) according to the first modification of the first embodiment. The fins (235) are corrugated fins meandering up and down, and are arranged between flat tubes (53, 58) (heat transfer tubes) adjacent to each other in the vertical direction. As will be described in detail later, a plurality of heat transfer sections (237) and intermediate plate sections (241) are formed on the fin (235). In each fin (235), the intermediate plate (241) is joined to the flat tube (53, 58) by brazing.
 〈フィンの構成〉
 図9は、変形例1の熱交換器(40)に設けられたフィン(235)の概略斜視図である。図9に示すように、フィン(235)は、一定幅の金属板を折り曲げることによって形成されたコルゲートフィンであって、上下に蛇行する形状となっている。フィン(235)には、扁平管(53,58)の伸長方向に沿って、伝熱部(237)と中間板部(241)とが交互に形成されている。つまり、フィン(235)には、隣り合う扁平管(53,58)の間に配置されて扁平管(53,58)の伸長方向に並ぶ複数の伝熱部(237)が設けられている。また、フィン(235)には、突出板部(242)が形成されている。なお、図9では、後述するルーバー(250,260,270)と導水用リブ(271)の図示を省略している。
<Fin configuration>
FIG. 9 is a schematic perspective view of the fin (235) provided in the heat exchanger (40) of the first modification. As shown in FIG. 9, the fin (235) is a corrugated fin formed by bending a metal plate having a constant width, and has a shape meandering up and down. In the fin (235), heat transfer portions (237) and intermediate plate portions (241) are alternately formed along the extending direction of the flat tubes (53, 58). That is, the fin (235) is provided with a plurality of heat transfer portions (237) arranged between the adjacent flat tubes (53, 58) and arranged in the extending direction of the flat tubes (53, 58). The fin (235) is formed with a protruding plate portion (242). In FIG. 9, louvers (250, 260, 270) and a water guiding rib (271) described later are not shown.
 伝熱部(237)は、上下に隣り合う扁平管(53,58)の一方から他方に亘る板状の部分である。伝熱部(237)では、風上側の端部が前縁(238)となっている。図9では図示を省略するが、伝熱部(237)には、複数のルーバー(250,260)が形成されている。中間板部(241)は、扁平管(53,58)の平坦な側面に沿った板状の部分であって、左右に隣り合う伝熱部(237)の上端同士または下端同士に連続している。伝熱部(237)と中間板部(241)のなす角度は、概ね直角となっている。 The heat transfer portion (237) is a plate-like portion extending from one side of the flat tube (53, 58) adjacent to the top and bottom to the other. In the heat transfer section (237), the windward end is the leading edge (238). Although not shown in FIG. 9, a plurality of louvers (250, 260) are formed in the heat transfer section (237). The intermediate plate portion (241) is a plate-like portion along the flat side surface of the flat tube (53,58), and is continuous with the upper ends or lower ends of the heat transfer portions (237) adjacent to the left and right. Yes. The angle formed by the heat transfer section (237) and the intermediate plate section (241) is substantially a right angle.
 突出板部(242)は、各伝熱部(237)の風下側の端部に連続して形成された板状の部分である。突出板部(242)は、上下に延びる細長い板状に形成され、扁平管(53,58)よりも風下側に突出している。また、突出板部(242)は、その上端が伝熱部(237)の上端よりも上方に突き出し、その下端が伝熱部(237)の下端よりも下方に突き出ている。図8に示すように、熱交換器(40)では、扁平管(53,58)を挟んで上下に隣り合うフィン(235)の突出板部(242)が、互いに接触する。フィン(235)の突出板部(242)には、導水用リブ(271)が形成されている。導水用リブ(271)は、突出板部(242)の風下側の端部に沿って上下に延びる細長い凹溝である。 The protruding plate portion (242) is a plate-like portion formed continuously at the leeward end of each heat transfer portion (237). The projecting plate portion (242) is formed in an elongated plate shape extending vertically and projects further to the leeward side than the flat tube (53, 58). Further, the upper end of the protruding plate portion (242) protrudes above the upper end of the heat transfer portion (237), and the lower end protrudes below the lower end of the heat transfer portion (237). As shown in FIG. 8, in the heat exchanger (40), the protruding plate portions (242) of the fins (235) that are adjacent vertically with the flat tubes (53, 58) interposed therebetween contact each other. The projecting plate portion (242) of the fin (235) is formed with a water guiding rib (271). The water guiding rib (271) is a long and narrow groove extending vertically along the leeward side end portion of the protruding plate portion (242).
 図10は、変形例1の熱交換器(40)のフィン(235)に設けられた伝熱部(237)を示す図であって、(A)は伝熱部の正面図であり、(B)は(A)のB-B断面を示す断面図である。図10に示すように、フィン(235)の伝熱部(237)及び突出板部(242)には、複数のルーバー(250,260,270)が形成されている。各ルーバー(250,260,270)は、伝熱部(237)及び突出板部(242)を切り起こすことによって形成されている。つまり、各ルーバー(250,260,270)は、伝熱部(237)及び突出板部(242)に複数のスリット状の切り込みを入れ、隣り合う切り込みの間の部分を捩るように塑性変形させることによって形成されている。 FIG. 10 is a view showing the heat transfer section (237) provided on the fin (235) of the heat exchanger (40) of Modification 1, and (A) is a front view of the heat transfer section, B) is a sectional view showing a BB section of (A). As shown in FIG. 10, a plurality of louvers (250, 260, 270) are formed on the heat transfer section (237) and the protruding plate section (242) of the fin (235). Each louver (250, 260, 270) is formed by cutting and raising the heat transfer part (237) and the protruding plate part (242). In other words, each louver (250, 260, 270) is formed by making a plurality of slit-like cuts in the heat transfer part (237) and the protruding plate part (242) and plastically deforming so as to twist the part between the adjacent cuts. ing.
 《実施形態1の変形例2》
 図11(A)は、変形例2の熱交換器(40)の一部分の断面図であり、図11(B)は、図11(A)のV-V断面を示すフィンの断面図である。この例では、変形例1で示したルーバー(250,260,270)に代えて、複数のワッフル部(251,252,253)が形成されている。図11に示すように、フィン(235)の伝熱部(237)及び突出板部(242)には、複数のワッフル部(251,252,253)が形成されている。ワッフル部(251,252,253)は、通風路となる側に向かって膨出し、且つ上下に縦長に形成された膨出部を構成している。ワッフル部(251,252,253)は、伝熱部(237)の一部をプレス加工等により塑性変形させることで成形される。各ワッフル部(251,252,253)は、その下端部が上端部よりも風下寄りに位置するように、鉛直方向に対して斜めに傾斜する方向に延びている。
<< Modification 2 of Embodiment 1 >>
FIG. 11A is a cross-sectional view of a part of the heat exchanger 40 according to the second modification, and FIG. 11B is a cross-sectional view of the fin showing the VV cross section of FIG. 11A. . In this example, a plurality of waffle portions (251, 252 and 253) are formed instead of the louvers (250, 260 and 270) shown in the first modification. As shown in FIG. 11, a plurality of waffle portions (251, 252, 253) are formed on the heat transfer portion (237) and the protruding plate portion (242) of the fin (235). The waffle portion (251, 252, 253) bulges toward the side that becomes the ventilation path, and constitutes a bulge portion that is vertically formed vertically. The waffle part (251, 252, 253) is formed by plastically deforming a part of the heat transfer part (237) by press working or the like. Each waffle portion (251, 252, 253) extends in a direction inclined obliquely with respect to the vertical direction so that its lower end portion is located closer to the lee than the upper end portion.
 各ワッフル部(251,252,253)は、上下に縦長の一対の台形面(254,254)と、上下に扁平な一対の三角面(255,255)とを有している。一対の台形面(254,254)は、これらの間に稜線をなす山折り部(256)を形成するように通風方向に隣り合っている。一対の三角面(255,255)は、山折り部(256)を挟んで上下に形成されている。 Each waffle part (251,252,253) has a pair of vertically long trapezoidal surfaces (254,254) and a pair of flat triangular surfaces (255,255) vertically. The pair of trapezoidal surfaces (254, 254) are adjacent to each other in the ventilation direction so as to form a mountain fold (256) forming a ridge line between them. The pair of triangular surfaces (255, 255) are formed up and down across the mountain fold (256).
 伝熱部(237)では、風上側から風下側に向かって複数のワッフル部(251,252,253)が並んで形成されている。これらのワッフル部(251,252,253)は、伝熱部(237)の風上側に形成される1つの風上側ワッフル部(251)と、伝熱部(237)の風下側に形成される2つの風下側ワッフル部(253,253)と、風上側ワッフル部(251)と風下側ワッフル部(253)との間に形成される1つの中間ワッフル部(252)とで構成されている。風上側ワッフル部(251)は、複数のワッフル部(251,252,253)のうち最も風上側に形成される風上側膨出部を構成している。風下側ワッフル部(253,253)は、複数のワッフル部(251,252,253)のうち最も風下側に形成される風下側膨出部を構成している。 In the heat transfer section (237), a plurality of waffle sections (251, 252 and 253) are formed side by side from the leeward side to the leeward side. These waffle parts (251, 252 and 253) are composed of one windward waffle part (251) formed on the leeward side of the heat transfer part (237) and two leeward sides formed on the leeward side of the heat transfer part (237). The waffle portion (253, 253) and one intermediate waffle portion (252) formed between the windward waffle portion (251) and the leeward waffle portion (253) are configured. The windward waffle portion (251) constitutes the windward bulge portion formed on the most windward side among the plurality of waffle portions (251, 252, 253). The leeward waffle portion (253,253) constitutes the leeward bulge portion formed on the most leeward side among the plurality of waffle portions (251,252,253).
 風上側ワッフル部(251)の上端は、風下側ワッフル部(253)の上端よりも低い位置にある。また、中間ワッフル部(252)の上端と風下側ワッフル部(253)の上端とは、概ね同じ高さにある。風上側ワッフル部(251)の上端、中間ワッフル部(252)の上端、及び風下側ワッフル部(253)の上端は、上側の扁平管(53,58)の平坦面と略平行となっている。 The upper end of the leeward waffle part (251) is lower than the upper end of the leeward waffle part (253). Further, the upper end of the intermediate waffle portion (252) and the upper end of the leeward waffle portion (253) are substantially at the same height. The upper end of the windward waffle portion (251), the upper end of the intermediate waffle portion (252), and the upper end of the leeward waffle portion (253) are substantially parallel to the flat surface of the upper flat tube (53,58). .
 風上側ワッフル部(251)の下端は、風下側ワッフル部(253)の下端よりも高い位置にある。風上側ワッフル部(251)の下端は、風上側よりも風下側の方が低い位置となるように、斜めに傾斜している。中間ワッフル部(252)の下端も、風上側よりも風下側の方が低い位置となるように、斜めに傾斜している。風下側ワッフル部(253)の下端は、扁平管(53,58)の平坦面と略平行となっている。 The lower end of the leeward waffle part (251) is higher than the lower end of the leeward waffle part (253). The lower end of the windward waffle portion (251) is inclined obliquely so that the leeward side is lower than the windward side. The lower end of the intermediate waffle portion (252) is also inclined obliquely so that the leeward side is lower than the leeward side. The lower end of the leeward waffle portion (253) is substantially parallel to the flat surface of the flat tube (53, 58).
 《実施形態1の変形例3》
 上記のフィン(54,59)に代えて、図12に示すフィンの採用も可能である。図12は、実施形態1の変形例3にかかる熱交換器(40)の断面の一部を示す図である。
<< Modification 3 of Embodiment 1 >>
Instead of the above fins (54, 59), it is possible to employ the fins shown in FIG. FIG. 12 is a diagram illustrating a part of a cross section of the heat exchanger (40) according to the third modification of the first embodiment.
 〈フィンの構成〉
 図12に示すように、フィン(236)は、金属板をプレス加工することによって形成された縦長の板状フィンである。フィン(236)には、フィン(236)の前縁(238)からフィン(236)の幅方向に延びる細長い切り欠き部(245)が、多数形成されている。フィン(236)では、多数の切り欠き部(245)が、フィン(236)の長手方向に一定の間隔で形成されている。切り欠き部(245)の風下寄りの部分は、管挿入部(246)を構成している。管挿入部(246)は、上下方向の幅が扁平管(53,58)の厚さと実質的に等しい。また、管挿入部(246)の長さ(奥行き)は、幅が広い方の扁平管(58)の幅と実質的に等しい。このように、管挿入部(246)の奥行きを、幅が広い方の扁平管(58)の幅に合わせることで、フィン(236)の種類を1種類にできる。すなわち、フィン(236)の製造に複数種類の金型を用意する必要がなく、製造コストの低減を期待できる。それぞれの扁平管(53,58)は、フィン(236)の管挿入部(246)に挿入され、管挿入部(246)の周縁部とロウ付けによって接合される。本実施形態では、扁平管(53,58)の幅方向の端を、切り欠き部(245)の入り口側の端で揃えてある。管挿入部(246)の長さを、扁平管(58)の幅(W2)に合わせてあるので、扁平管(53)が挿入された管挿入部(246)では、管挿入部(246)の奥側に隙ができることになる。
<Fin configuration>
As shown in FIG. 12, the fin (236) is a vertically long plate-like fin formed by pressing a metal plate. The fin (236) is formed with a number of elongated notches (245) extending in the width direction of the fin (236) from the front edge (238) of the fin (236). In the fin (236), a large number of notches (245) are formed at regular intervals in the longitudinal direction of the fin (236). The portion closer to the lee of the notch (245) constitutes the tube insertion portion (246). The tube insertion portion (246) has a vertical width substantially equal to the thickness of the flat tube (53, 58). Further, the length (depth) of the tube insertion portion (246) is substantially equal to the width of the flat tube (58) having the wider width. Thus, the type of the fin (236) can be made one by matching the depth of the tube insertion portion (246) with the width of the flat tube (58) having the wider width. That is, it is not necessary to prepare a plurality of types of molds for manufacturing the fin (236), and a reduction in manufacturing cost can be expected. Each flat tube (53, 58) is inserted into the tube insertion portion (246) of the fin (236) and joined to the peripheral portion of the tube insertion portion (246) by brazing. In the present embodiment, the ends in the width direction of the flat tubes (53, 58) are aligned with the ends on the entrance side of the notches (245). Since the length of the tube insertion portion (246) is adjusted to the width (W2) of the flat tube (58), the tube insertion portion (246) is inserted into the tube insertion portion (246) into which the flat tube (53) is inserted. There will be a gap in the back of the.
 フィン(236)と扁平管(53,58)のロウ付けは、例えば次のように行う。まず、フィン(236)の切り欠き部(245)側(図12の左側)を上にし、扁平管(53,58)の幅方向の端を切り欠き部(245)の入り口側、より具体的には管挿入部(246)の入り口側の端(図12では左端)に揃えてセットする。ロウ材は、図12に示した位置(A)に線状のものを置く。なお、図12では、設置位置(A)は、代表で1つの扁平管(53)についてのみ示してあるが、他の扁平管(53,58)も同様である。伝熱管(53)を管挿入部(246)の最も奥に付き当てるようにすると、ロウ付けの際に、ロウ材を管挿入部(246)内に落とし込むことになり、セットが難しい。しかしながら、本実施形態では、前記のように、扁平管(53,58)の幅方向の端が切り欠き部(245)の入り口側の端で揃っているので、容易にロウ材をセットできるのである。 The brazing of the fin (236) and the flat tube (53, 58) is performed as follows, for example. First, the notch (245) side (left side in FIG. 12) of the fin (236) is faced up, and the end of the flat tube (53,58) in the width direction is more specifically the entrance side of the notch (245). Are set to be aligned with the inlet end (left end in FIG. 12) of the tube insertion portion (246). As the brazing material, a linear material is placed at the position (A) shown in FIG. In FIG. 12, the installation position (A) is representatively shown only for one flat tube (53), but the same applies to the other flat tubes (53, 58). When the heat transfer tube (53) is applied to the innermost part of the tube insertion portion (246), the brazing material is dropped into the tube insertion portion (246) during brazing, and it is difficult to set. However, in the present embodiment, as described above, the end in the width direction of the flat tube (53, 58) is aligned with the end on the entrance side of the notch (245), so the brazing material can be easily set. is there.
 その後、例えば熱交換器(40)を加熱炉(図示は省略)に入れて、ロウ材を溶かす。これにより、ロウ材が扁平管(53,58)に沿って流れ、フィン(236)と扁平管(53,58)とが接合される。 Then, for example, the heat exchanger (40) is placed in a heating furnace (not shown) to melt the brazing material. Thereby, the brazing material flows along the flat tube (53, 58), and the fin (236) and the flat tube (53, 58) are joined.
 フィン(236)では、隣り合う切り欠き部(245)の間の部分が伝熱部(237)を構成し、管挿入部(246)の風下側の部分が風下側板部(247)を構成している。つまり、フィン(236)には、扁平管(53,58)を挟んで上下に隣り合う複数の伝熱部(237)と、各伝熱部(237)の風下側の端部に連続する一つの風下側板部(247)とが設けられている。この熱交換器(40)では、フィン(236)の伝熱部(237)が上下に並んだ扁平管(53,58)の間に配置され、風下側板部(247)が扁平管(53,58)よりも風下側へ突出している。 In the fin (236), the part between the adjacent notches (245) constitutes the heat transfer part (237), and the leeward part of the pipe insertion part (246) constitutes the leeward side plate part (247). ing. That is, the fin (236) is connected to a plurality of heat transfer portions (237) that are vertically adjacent to each other with the flat tube (53, 58) interposed therebetween, and one end that is continuous to the leeward end of each heat transfer portion (237). Two leeward side plate portions (247) are provided. In this heat exchanger (40), the heat transfer parts (237) of the fins (236) are arranged between the flat tubes (53, 58) lined up and down, and the leeward plate (247) is connected to the flat tubes (53, 58). It protrudes leeward from 58).
 図13は、変形例3の熱交換器(40)のフィン(236)の要部を示す図であって、(A)はフィン(236)の正面図であり、(B)は(A)のG-G断面を示す断面図である。図13に示すように、フィン(236)の伝熱部(237)及び風下側板部(247)には、複数のルーバー(250,260)が形成されている。各ルーバー(250,260)は、伝熱部(237)及び風下側板部(247)を切り起こすことによって形成されている。 FIG. 13: is a figure which shows the principal part of the fin (236) of the heat exchanger (40) of the modification 3, Comprising: (A) is a front view of a fin (236), (B) is (A). It is sectional drawing which shows the GG cross section. As shown in FIG. 13, a plurality of louvers (250, 260) are formed on the heat transfer section (237) and the leeward side plate section (247) of the fin (236). Each louver (250, 260) is formed by cutting up the heat transfer section (237) and the leeward side plate section (247).
 《実施形態1の変形例4》
 図14(A)は、変形例4の熱交換器(40)の一部分の断面図であり、図14(B)は、図14(A)のX-X断面を示すフィン(236)の断面図である。この例では、変形例3で説明した板状フィンに、ルーバー(250,260)の代わりに、ワッフル部(251,252,253)を形成してある。これらのワッフル部(251,252,253)は、変形例2で説明したものと同様の構成をしている。
<< Modification 4 of Embodiment 1 >>
FIG. 14A is a cross-sectional view of a part of the heat exchanger (40) of Modification 4, and FIG. 14 (B) is a cross-section of the fin (236) showing the XX cross-section of FIG. 14 (A). FIG. In this example, waffle portions (251, 252 and 253) are formed on the plate-like fins described in the third modification instead of the louvers (250 and 260). These waffle portions (251, 252, 253) have the same configuration as that described in the second modification.
 《発明の実施形態2》
 発明の実施形態2の室外熱交換器を説明する。図15は、実施形態2の室外熱交換器(40)の概略構成を示す正面図である。また、図16は、実施形態2の室外熱交換器(40)の正面を示す一部断面図である。
<< Embodiment 2 of the Invention >>
The outdoor heat exchanger of Embodiment 2 of invention is demonstrated. FIG. 15 is a front view illustrating a schematic configuration of the outdoor heat exchanger (40) of the second embodiment. FIG. 16 is a partial cross-sectional view showing the front of the outdoor heat exchanger (40) of the second embodiment.
 図15に示すように、室外熱交換器(40)は、三つの熱交換部(350a~350c)に区分されている。具体的に、室外熱交換器(40)には、下から上に向かって順に、第1熱交換部(350a)と、第2熱交換部(350b)と、第3熱交換部(350c)とが形成されている。 As shown in FIG. 15, the outdoor heat exchanger (40) is divided into three heat exchange sections (350a to 350c). Specifically, the outdoor heat exchanger (40) includes a first heat exchange part (350a), a second heat exchange part (350b), and a third heat exchange part (350c) in order from bottom to top. And are formed.
 図16に示すように、第1ヘッダ集合管(360)と第2ヘッダ集合管(370)のそれぞれには、その内部空間を仕切板(339)で仕切ることによって、三つの連通空間(361a~361c,371a~371c)が形成される。 As shown in FIG. 16, each of the first header collecting pipe (360) and the second header collecting pipe (370) is divided into three communication spaces (361a to 361a) by partitioning the internal space with a partition plate (339). 361c, 371a-371c) are formed.
 第1ヘッダ集合管(360)の各連通空間(361a~361c)は、更に仕切板(339)によって上下に仕切られている。第1ヘッダ集合管(360)の各連通空間(361a~361c)では、下側の空間が第1部分空間である下側部分空間(362a~362c)となり、上側の空間が第2部分空間である上側部分空間(363a~363c)となっている。 The communication spaces (361a to 361c) of the first header collecting pipe (360) are further partitioned vertically by a partition plate (339). In each communication space (361a to 361c) of the first header collecting pipe (360), the lower space is the lower partial space (362a to 362c) which is the first partial space, and the upper space is the second partial space. A certain upper partial space (363a to 363c) is formed.
 室外熱交換器(40)の各熱交換部(350a~350c)は、主熱交換領域(351a~351c)(主熱交換部)と補助熱交換領域(352a~352c)(補助熱交換部)に区分されている。各熱交換部(350a~350c)では、対応する第1ヘッダ集合管(360)の上側部分空間(363a~363c)に連通する十一本の扁平管(53)が主熱交換部(351a~351c)を構成し、対応する第1ヘッダ集合管(360)の下側部分空間(362a~362c)に連通する三本の扁平管(58)が補助熱交換部(352a~352c)を構成している。 Each heat exchange section (350a to 350c) of the outdoor heat exchanger (40) has a main heat exchange area (351a to 351c) (main heat exchange section) and an auxiliary heat exchange area (352a to 352c) (auxiliary heat exchange section). It is divided into. In each heat exchange section (350a to 350c), eleven flat tubes (53) communicating with the upper partial spaces (363a to 363c) of the corresponding first header collecting pipe (360) are the main heat exchange sections (351a to 350c). 351c), and the three flat tubes (58) communicating with the lower partial spaces (362a to 362c) of the corresponding first header collecting pipe (360) constitute the auxiliary heat exchange section (352a to 352c). ing.
 本実施形態においても、実施形態1と同様に、それぞれの補助熱交換部(352a~352c)に設けられた扁平管(58)の幅は、主熱交換部(351a~351c)に設けられた扁平管(53)の幅よりも大きく、補助熱交換部(352a~352c)に設けられた1つの扁平管(58)あたりの流路数は、主熱交換部(351a~351c)に設けられた1つの扁平管(53)あたりの流路数よりも多い。また、この例では、フィンとしてフィン(235)(コルゲートフィン)を採用している。勿論、実施形態1のフィン(54,59)や、他の変形例で説明したフィン(236)の採用も可能である。 Also in this embodiment, as in the first embodiment, the width of the flat tube (58) provided in each auxiliary heat exchange section (352a to 352c) is provided in the main heat exchange section (351a to 351c). The number of channels per flat tube (58) provided in the auxiliary heat exchange section (352a to 352c) is larger than the width of the flat pipe (53), and is provided in the main heat exchange section (351a to 351c). More than the number of channels per flat tube (53). In this example, fins (235) (corrugated fins) are employed as the fins. Of course, it is possible to employ the fins (54, 59) of the first embodiment and the fins (236) described in other modifications.
 図15に示すように、室外熱交換器(40)には、液側接続部材(380)とガス側ヘッダ(385)とが設けられている。液側接続部材(380)及びガス側ヘッダ(385)は、第1ヘッダ集合管(360)に取り付けられている。 As shown in FIG. 15, the outdoor heat exchanger (40) is provided with a liquid side connecting member (380) and a gas side header (385). The liquid side connection member (380) and the gas side header (385) are attached to the first header collecting pipe (360).
 液側接続部材(380)は、一つの分流器(381)と、三本の細径管(382a~382c)とを備えている。分流器(381)の下端部には、室外熱交換器(40)と膨張弁(33)を繋ぐ配管が接続されている。分流器(381)の上端部には、各細径管(382a~382c)の一端が接続されている。分流器(381)の内部では、その下端部に接続された配管と、各細径管(382a~382c)とが連通している。各細径管(382a~382c)の他端は、第1ヘッダ集合管(360)に接続され、対応する下側部分空間(362a~362c)に連通している。 The liquid side connection member (380) includes one shunt (381) and three small diameter tubes (382a to 382c). A pipe connecting the outdoor heat exchanger (40) and the expansion valve (33) is connected to the lower end of the flow divider (381). One end of each small diameter tube (382a to 382c) is connected to the upper end of the flow divider (381). Inside the flow divider (381), the pipe connected to the lower end portion thereof communicates with the small diameter pipes (382a to 382c). The other end of each small diameter pipe (382a to 382c) is connected to the first header collecting pipe (360) and communicates with the corresponding lower partial space (362a to 362c).
 ガス側ヘッダ(385)は、一つの本体管部(386)と、三つの接続管部(387a~387c)とを備えている。本体管部(386)は、その上端部が逆U字状に曲がった比較的大径の管状に形成されている。本体管部(386)の上側の端部には、室外熱交換器(40)と四方切換弁(34)の第3のポートを繋ぐ配管が接続されている。本体管部(386)の下側の端部は、閉塞されている。接続管部(387a~387c)は、本体管部(386)の直線状の部分から側方に突出している。 The gas side header (385) includes one main body pipe part (386) and three connection pipe parts (387a to 387c). The main body pipe portion (386) is formed in a relatively large-diameter tubular shape whose upper end portion is bent in an inverted U shape. A pipe connecting the outdoor heat exchanger (40) and the third port of the four-way switching valve (34) is connected to the upper end of the main body pipe (386). The lower end of the main body pipe part (386) is closed. The connecting pipe portions (387a to 387c) protrude laterally from the linear portion of the main body pipe portion (386).
 上記の構成により、本実施形態の室外熱交換器(40)では、冷房運転中には、図15に示した矢印の方向に冷媒が流れる。また、暖房運転中は、図15に示した矢印とは逆方向に冷媒が流れる。 With the above configuration, in the outdoor heat exchanger (40) of the present embodiment, the refrigerant flows in the direction of the arrow shown in FIG. 15 during the cooling operation. Further, during the heating operation, the refrigerant flows in the direction opposite to the arrow shown in FIG.
 《発明の実施形態3》
 発明の実施形態3の室外熱交換器を説明する。図17は、実施形態3の室外熱交換器(40)の概略構成を示す正面図である。また、図18は、実施形態3の室外熱交換器(40)の正面を示す一部断面図である。
<< Embodiment 3 of the Invention >>
The outdoor heat exchanger of Embodiment 3 of invention is demonstrated. FIG. 17 is a front view illustrating a schematic configuration of the outdoor heat exchanger (40) of the third embodiment. FIG. 18 is a partial cross-sectional view showing the front of the outdoor heat exchanger (40) of the third embodiment.
 図17および図18に示すように、室外熱交換器(40)は、一つの第1ヘッダ集合管(460)と、一つの第2ヘッダ集合管(470)と、多数の扁平管(53,58)と、多数のフィン(235)とを備えている。 As shown in FIGS. 17 and 18, the outdoor heat exchanger (40) includes one first header collecting pipe (460), one second header collecting pipe (470), and a number of flat tubes (53, 53). 58) and a number of fins (235).
 図17に示すように、室外熱交換器(40)の扁平管(53,58)は、上下に二つの熱交換領域(451,452)に区分されている。つまり、室外熱交換器(40)は、上側熱交換領域(451)と下側熱交換領域(452)が形成されている。そして、各熱交換領域(451,452)は、上下に三つずつの熱交換部(451a~451c,452a~452c)に区分されている。具体的に、上側熱交換領域(451)には、下から上に向かって順に、第1主熱交換部(451a)と、第2主熱交換部(451b)と、第3主熱交換部(451c)とが形成されている。下側熱交換領域(452)には、下から上に向かって順に、第1補助熱交換部(452a)と、第2補助熱交換部(452b)と、第3補助熱交換部(452c)とが形成されている。このように、本実施形態の室外熱交換器(40)では、上側熱交換領域(451)および下側熱交換領域(452)において互いに複数且つ同数の熱交換部(451a~451c,452a~452c)に区分されている。図18に示すように、各主熱交換部(451a~451c)は十一本の扁平管(53)を有しており、各補助熱交換部(452a~452c)は三本の扁平管(58)を有している。なお、各熱交換領域(451,452)に形成される熱交換部(451a~451c,452a~452c)の数は、二つであってもよいし、四つ以上であってもよい。 As shown in FIG. 17, the flat tubes (53, 58) of the outdoor heat exchanger (40) are divided into two heat exchange regions (451, 452) in the vertical direction. That is, the outdoor heat exchanger (40) has an upper heat exchange region (451) and a lower heat exchange region (452). Each heat exchanging region (451, 452) is divided into three upper and lower heat exchanging portions (451a to 451c, 452a to 452c). Specifically, in the upper heat exchange region (451), the first main heat exchange part (451a), the second main heat exchange part (451b), and the third main heat exchange part in order from bottom to top. (451c) is formed. In the lower heat exchange region (452), the first auxiliary heat exchange unit (452a), the second auxiliary heat exchange unit (452b), and the third auxiliary heat exchange unit (452c) are arranged in order from bottom to top. And are formed. As described above, in the outdoor heat exchanger (40) of the present embodiment, a plurality of and the same number of heat exchange units (451a to 451c, 452a to 452c) in the upper heat exchange region (451) and the lower heat exchange region (452). ). As shown in FIG. 18, each main heat exchange section (451a to 451c) has eleven flat tubes (53), and each auxiliary heat exchange section (452a to 452c) has three flat tubes ( 58). The number of heat exchanging portions (451a to 451c, 452a to 452c) formed in each heat exchanging region (451, 452) may be two, or four or more.
 本実施形態においても、実施形態1と同様に、それぞれの補助熱交換部(452a~452c)に設けられた扁平管(58)の幅は、主熱交換部(451a~451c)に設けられた扁平管(53)の幅よりも大きく、補助熱交換部(452a~452c)に設けられた1つの扁平管(58)あたりの流路数は、主熱交換部(451a~451c)に設けられた1つの扁平管(53)あたりの流路数よりも多い。 Also in this embodiment, as in the first embodiment, the width of the flat tube (58) provided in each auxiliary heat exchange section (452a to 452c) is provided in the main heat exchange section (451a to 451c). The number of channels per flat tube (58) that is larger than the width of the flat tube (53) and is provided in the auxiliary heat exchanger (452a to 452c) is provided in the main heat exchanger (451a to 451c). More than the number of channels per flat tube (53).
 第1ヘッダ集合管(460)および第2ヘッダ集合管(470)の内部空間は、複数の仕切板(439)によって上下に仕切られている。 The internal space of the first header collecting pipe (460) and the second header collecting pipe (470) is partitioned vertically by a plurality of partition plates (439).
 具体的に、第1ヘッダ集合管(460)の内部空間は、上側熱交換領域(451)に対応した上側空間(461)と、下側熱交換領域(452)に対応した下側空間(462)とに仕切られている。上側空間(461)は、全ての主熱交換部(451a~451c)に共通に対応した単一の空間である。つまり、上側空間(461)は、全ての主熱交換部(451a~451c)の扁平管(53)と連通している。下側空間(462)は、更に仕切板(439)によって、各補助熱交換部(452a~452c)に対応した該補助熱交換部(452a~452c)と同数(三つ)の連通空間(462a~462c)に上下に仕切られている。つまり、下側空間(462)では、第1補助熱交換部(452a)の扁平管(58)と連通する第1連通空間(462a)と、第2補助熱交換部(452b)の扁平管(58)と連通する第2連通空間(462b)と、第3補助熱交換部(452c)の扁平管(58)と連通する第3連通空間(462c)とが形成されている。 Specifically, the internal space of the first header collecting pipe (460) includes an upper space (461) corresponding to the upper heat exchange region (451) and a lower space (462) corresponding to the lower heat exchange region (452). ). The upper space (461) is a single space corresponding to all the main heat exchange units (451a to 451c) in common. That is, the upper space (461) communicates with the flat tubes (53) of all the main heat exchange sections (451a to 451c). The lower space (462) is further divided by a partition plate (439) into the same number (three) of communication spaces (462a) as the auxiliary heat exchange portions (452a to 452c) corresponding to the auxiliary heat exchange portions (452a to 452c). To 462c). That is, in the lower space (462), the first communication space (462a) communicating with the flat tube (58) of the first auxiliary heat exchange section (452a), and the flat tube of the second auxiliary heat exchange section (452b) ( 58) and a second communication space (462b) communicating with the flat tube (58) of the third auxiliary heat exchange section (452c) are formed.
 第2ヘッダ集合管(470)の内部空間は、上下に五つの連通空間(471a~471e)に仕切られている。具体的に、第2ヘッダ集合管(470)の内部空間は、上側熱交換領域(451)において最下に位置する第1主熱交換部(451a)と下側熱交換領域(452)において最上に位置する第3補助熱交換部(452c)を除く各主熱交換部(451b,451c)および各補助熱交換部(452a,452b)に対応した四つの連通空間(471a,471b,471d,471e)と、第1主熱交換部(451a)および第3補助熱交換部(452c)に共通に対応した単一の連通空間(471c)とに仕切られている。つまり、第2ヘッダ集合管(470)の内部空間では、第1補助熱交換部(452a)の扁平管(58)と連通する第1連通空間(471a)と、第2補助熱交換部(452b)の扁平管(58)と連通する第2連通空間(471b)と、第3補助熱交換部(452c)および第1主熱交換部(451a)の双方の扁平管(53,58)と連通する第3連通空間(471c)と、第2主熱交換部(451b)の扁平管(53)と連通する第4連通空間(471d)と、第3主熱交換部(451c)の扁平管(53)と連通する第5連通空間(471e)とが形成されている。 The internal space of the second header collecting pipe (470) is divided into five communication spaces (471a to 471e) in the vertical direction. Specifically, the inner space of the second header collecting pipe (470) is the uppermost in the first main heat exchanging portion (451a) and the lower heat exchanging region (452) located at the lowermost position in the upper heat exchanging region (451). The four auxiliary spaces (471a, 471b, 471d, 471e) corresponding to the main heat exchangers (451b, 451c) and the auxiliary heat exchangers (452a, 452b) excluding the third auxiliary heat exchanger (452c) ) And a single communication space (471c) corresponding to the first main heat exchange part (451a) and the third auxiliary heat exchange part (452c) in common. That is, in the internal space of the second header collecting pipe (470), the first communication space (471a) communicating with the flat pipe (58) of the first auxiliary heat exchange section (452a) and the second auxiliary heat exchange section (452b). ) Communicated with the second communication space (471b) communicating with the flat tube (58) and the flat tubes (53,58) of both the third auxiliary heat exchange section (452c) and the first main heat exchange section (451a). The third communication space (471c), the fourth communication space (471d) communicating with the flat tube (53) of the second main heat exchanging portion (451b), and the flat tube of the third main heat exchanging portion (451c) ( 53) and a fifth communication space (471e) that communicates with each other.
 第2ヘッダ集合管(470)では、第4連通空間(471d)および第5連通空間(471e)と、第1連通空間(471a)および第2連通空間(471b)とが、各一で対となっている。具体的に、第1連通空間(471a)と第4連通空間(471d)が対となり、第2連通空間(471b)と第5連通空間(471e)が対となっている。そして、第2ヘッダ集合管(470)には、第1連通空間(471a)と第4連通空間(471d)とを接続する第1連通管(472)と、第2連通空間(471b)と第5連通空間(471e)とを接続する第2連通管(473)とが設けられている。つまり、本実施形態の室外熱交換器(40)では、第1主熱交換部(451a)と第3補助熱交換部(452c)が対となり、第2主熱交換部(451b)と第1補助熱交換部(452a)が対となり、第3主熱交換部(451c)と第2補助熱交換部(452b)が対となっている。なお、室外熱交換器(40)に形成される熱交換部(451a~451c,452a~452c)の対の数は、それぞれ対となる主熱交換部(451a~451c)と補助熱交換部(452a~452c)の合計高さが概ね350mm以下(望ましくは、300~350mm程度)となるように、室外熱交換器(40)の高さに応じて適当に設定される。 In the second header collecting pipe (470), the fourth communication space (471d) and the fifth communication space (471e), and the first communication space (471a) and the second communication space (471b) are in pairs. It has become. Specifically, the first communication space (471a) and the fourth communication space (471d) are paired, and the second communication space (471b) and the fifth communication space (471e) are paired. The second header collecting pipe (470) includes a first communication pipe (472) connecting the first communication space (471a) and the fourth communication space (471d), a second communication space (471b), and a second communication space. A second communication pipe (473) that connects the five communication spaces (471e) is provided. That is, in the outdoor heat exchanger (40) of the present embodiment, the first main heat exchange part (451a) and the third auxiliary heat exchange part (452c) are paired, and the second main heat exchange part (451b) and the first The auxiliary heat exchange part (452a) is paired, and the third main heat exchange part (451c) and the second auxiliary heat exchange part (452b) are paired. The number of heat exchange units (451a to 451c, 452a to 452c) formed in the outdoor heat exchanger (40) is the number of pairs of main heat exchange units (451a to 451c) and auxiliary heat exchange units ( The total height of 452a to 452c) is appropriately set according to the height of the outdoor heat exchanger (40) so as to be approximately 350 mm or less (preferably about 300 to 350 mm).
 このように、第2ヘッダ集合管(470)の内部空間では、上側熱交換領域(451)の各主熱交換部(451a~451c)に対応した該主熱交換部(451a~451c)と同数(三つ)の連通空間(471c,471d,471e)が形成され、且つ、下側熱交換領域(452)の各補助熱交換部(452a~452c)に対応した該補助熱交換部(452a~452c)と同数(三つ)の連通空間(471a,471b,471c)が形成されている。そして、上側熱交換領域(451)に対応した連通空間(471c,471d,471e)と下側熱交換領域(452)に対応した連通空間(471a,471b,471c)とが連通している。 Thus, in the internal space of the second header collecting pipe (470), the same number as the main heat exchanging portions (451a to 451c) corresponding to the main heat exchanging portions (451a to 451c) of the upper heat exchanging region (451). (Three) communication spaces (471c, 471d, 471e) are formed, and the auxiliary heat exchange portions (452a to 452c) corresponding to the auxiliary heat exchange portions (452a to 452c) of the lower heat exchange region (452) are formed. 452c) and the same number (three) of communication spaces (471a, 471b, 471c) are formed. The communication space (471c, 471d, 471e) corresponding to the upper heat exchange region (451) and the communication space (471a, 471b, 471c) corresponding to the lower heat exchange region (452) communicate with each other.
 図17に示すように、室外熱交換器(40)には、液側接続部材(480)とガス側接続部材(485)とが設けられている。液側接続部材(480)およびガス側接続部材(485)は、第1ヘッダ集合管(460)に取り付けられている。 As shown in FIG. 17, the outdoor heat exchanger (40) is provided with a liquid side connection member (480) and a gas side connection member (485). The liquid side connection member (480) and the gas side connection member (485) are attached to the first header collecting pipe (460).
 液側接続部材(480)は、一つの分流器(481)と、三本の細径管(482a~482c)とを備えている。分流器(481)の下端部には、室外熱交換器(40)と膨張弁(33)を繋ぐ配管が接続されている。分流器(481)の上端部には、各細径管(482a~482c)の一端が接続されている。分流器(481)の内部では、その下端部に接続された配管と、各細径管(482a~482c)とが連通している。各細径管(482a~482c)の他端は、第1ヘッダ集合管(460)の下側空間(462)に接続され、対応する連通空間(462a~462c)に連通している。 The liquid side connection member (480) includes one shunt (481) and three small diameter tubes (482a to 482c). A pipe connecting the outdoor heat exchanger (40) and the expansion valve (33) is connected to the lower end of the flow divider (481). One end of each small diameter pipe (482a to 482c) is connected to the upper end of the flow divider (481). Inside the shunt (481), the pipe connected to the lower end thereof communicates with the small diameter pipes (482a to 482c). The other end of each small diameter pipe (482a to 482c) is connected to the lower space (462) of the first header collecting pipe (460) and communicates with the corresponding communication space (462a to 462c).
 図18にも示すように、各細径管(482a~482c)は、対応する連通空間(462a~462c)の下端寄りの部分に開口している。つまり、第1細径管(482a)は第1連通空間(462a)の下端寄りの部分に開口し、第2細径管(482b)は第2連通空間(462b)の下端寄りの部分に開口し、第3細径管(482c)は第3連通空間(462c)の下端寄りの部分に開口している。なお、各細径管(482a~482c)の長さは、各補助熱交換部(452a~452c)へ流入する冷媒の流量の差がなるべく小さくなるように、個別に設定されている。 As shown also in FIG. 18, each small-diameter pipe (482a to 482c) opens in a portion near the lower end of the corresponding communication space (462a to 462c). That is, the first small diameter pipe (482a) opens in a portion near the lower end of the first communication space (462a), and the second small diameter pipe (482b) opens in a portion near the lower end of the second communication space (462b). The third small-diameter pipe (482c) opens at a portion near the lower end of the third communication space (462c). The lengths of the small diameter tubes (482a to 482c) are individually set so that the difference in the flow rate of the refrigerant flowing into the auxiliary heat exchange units (452a to 452c) is as small as possible.
 ガス側接続部材(485)は、比較的大径の一つの配管で構成されている。ガス側接続部材(485)の一端は、室外熱交換器(40)と四方切換弁(34)の第3のポートを繋ぐ配管と接続されている。ガス側接続部材(485)の他端は、第1ヘッダ集合管(460)における上側空間(461)の上端寄りの部分に開口している。 The gas side connecting member (485) is composed of a single pipe having a relatively large diameter. One end of the gas side connection member (485) is connected to a pipe connecting the outdoor heat exchanger (40) and the third port of the four-way switching valve (34). The other end of the gas side connection member (485) opens in a portion near the upper end of the upper space (461) in the first header collecting pipe (460).
 上記の構成により、本実施形態の室外熱交換器(40)では、冷房運転中には、図17に示した矢印の方向に冷媒が流れる。また、暖房運転中は、図17に示した矢印とは逆方向に冷媒が流れる。 With the above configuration, in the outdoor heat exchanger (40) of the present embodiment, the refrigerant flows in the direction of the arrow shown in FIG. 17 during the cooling operation. Further, during the heating operation, the refrigerant flows in the direction opposite to the arrow shown in FIG.
 《発明の実施形態4》
 発明の実施形態4の室外熱交換器を説明する。図19は、実施形態4の室外熱交換器(40)の概略構成を示す正面図である。また、図20は、実施形態4の室外熱交換器(40)の正面を示す一部断面図である。
<< Embodiment 4 of the Invention >>
The outdoor heat exchanger of Embodiment 4 of invention is demonstrated. FIG. 19 is a front view illustrating a schematic configuration of the outdoor heat exchanger (40) of the fourth embodiment. FIG. 20 is a partial cross-sectional view showing the front of the outdoor heat exchanger (40) of the fourth embodiment.
 図19に示すように、室外熱交換器(40)の扁平管(53,58)は、上記実施形態3と同様、上下に上側熱交換領域(451)と下側熱交換領域(452)とに区分されている。そして、上側熱交換領域(451)は上下に並ぶ三つの主熱交換部(451a~451c)に区分され、下側熱交換領域(452)は一つの補助熱交換部(452a)で構成されている。つまり、上側熱交換領域(451)には、下から上に向かって順に、第1主熱交換部(451a)と、第2主熱交換部(451b)と、第3主熱交換部(451c)とが形成されている。図20に示すように、各主熱交換部(451a~451c)は十一本の扁平管(53)を有しており、補助熱交換部(452a)は九本の扁平管(58)を有している。なお、上側熱交換領域(451)に形成される主熱交換部(451a~451c)の数は、二つであってもよいし、四つ以上であってもよい。 As shown in FIG. 19, the flat tubes (53, 58) of the outdoor heat exchanger (40) have an upper heat exchanging region (451) and a lower heat exchanging region (452) vertically as in the third embodiment. It is divided into. The upper heat exchange area (451) is divided into three main heat exchange sections (451a to 451c) arranged vertically, and the lower heat exchange area (452) is composed of one auxiliary heat exchange section (452a). Yes. That is, in the upper heat exchange region (451), the first main heat exchange unit (451a), the second main heat exchange unit (451b), and the third main heat exchange unit (451c) are sequentially arranged from bottom to top. ) And are formed. As shown in FIG. 20, each main heat exchange section (451a to 451c) has eleven flat tubes (53), and the auxiliary heat exchange section (452a) has nine flat tubes (58). Have. Note that the number of main heat exchange portions (451a to 451c) formed in the upper heat exchange region (451) may be two, or may be four or more.
 第1ヘッダ集合管(460)および第2ヘッダ集合管(470)の内部空間は、仕切板(439)によって上下に仕切られている。 The internal space of the first header collecting pipe (460) and the second header collecting pipe (470) is divided up and down by a partition plate (439).
 本実施形態においても、実施形態1と同様に、それぞれの補助熱交換部(452a)に設けられた扁平管(58)の幅は、主熱交換部(451a~451c)に設けられた扁平管(53)の幅よりも大きく、補助熱交換部(452a)に設けられた1つの扁平管(58)あたりの流路数は、主熱交換部(451a~451c)に設けられた1つの扁平管(53)あたりの流路数よりも多い。 Also in the present embodiment, as in the first embodiment, the flat tubes (58) provided in the respective auxiliary heat exchange sections (452a) have the same width as the flat tubes provided in the main heat exchange sections (451a to 451c). The number of flow paths per flat tube (58) provided in the auxiliary heat exchange section (452a) is larger than the width of (53), and the number of flow paths per flat pipe provided in the main heat exchange sections (451a to 451c) More than the number of channels per tube (53).
 具体的に、第1ヘッダ集合管(460)の内部空間は、上側熱交換領域(451)に対応した上側空間(461)と、下側熱交換領域(452)に対応した下側空間(462)(連通空間(462a))とに仕切られている。上側空間(461)は、全ての主熱交換部(451a~451c)に共通に対応した単一の空間である。つまり、上側空間(461)は、全ての主熱交換部(451a~451c)の扁平管(53)と連通している。下側空間(462)(連通空間(462a))は、一つの補助熱交換部(452a)に対応した単一の空間であり、補助熱交換部(452a)の扁平管(58)と連通している。 Specifically, the internal space of the first header collecting pipe (460) includes an upper space (461) corresponding to the upper heat exchange region (451) and a lower space (462) corresponding to the lower heat exchange region (452). ) (Communication space (462a)). The upper space (461) is a single space corresponding to all the main heat exchange units (451a to 451c) in common. That is, the upper space (461) communicates with the flat tubes (53) of all the main heat exchange sections (451a to 451c). The lower space (462) (communication space (462a)) is a single space corresponding to one auxiliary heat exchange part (452a) and communicates with the flat tube (58) of the auxiliary heat exchange part (452a). ing.
 第2ヘッダ集合管(470)の内部空間は、上下に四つの連通空間(471a~471d)に仕切られている。具体的に、第2ヘッダ集合管(470)の内部空間は、上側熱交換領域(451)の各主熱交換部(451a~451c)に対応した三つの連通空間(471b,471c,471d)と、下側熱交換領域(452)の補助熱交換部(452a)に対応した一つの連通空間(471a)とに仕切られている。つまり、第2ヘッダ集合管(470)の内部空間では、補助熱交換部(452a)の扁平管(58)と連通する第1連通空間(471a)と、第1主熱交換部(451a)の扁平管(53)と連通する第2連通空間(471b)と、第2主熱交換部(451b)の扁平管(53)と連通する第3連通空間(471c)と、第3主熱交換部(451c)の扁平管(53)と連通する第4連通空間(471d)とが形成されている。 The internal space of the second header collecting pipe (470) is divided into four communication spaces (471a to 471d) in the vertical direction. Specifically, the internal space of the second header collecting pipe (470) includes three communication spaces (471b, 471c, 471d) corresponding to the main heat exchange portions (451a to 451c) of the upper heat exchange region (451). And a single communication space (471a) corresponding to the auxiliary heat exchange section (452a) of the lower heat exchange region (452). That is, in the internal space of the second header collecting pipe (470), the first communication space (471a) communicating with the flat pipe (58) of the auxiliary heat exchange section (452a) and the first main heat exchange section (451a). A second communication space (471b) communicating with the flat tube (53), a third communication space (471c) communicating with the flat tube (53) of the second main heat exchange section (451b), and a third main heat exchange section A fourth communication space (471d) communicating with the flat tube (53) of (451c) is formed.
 第2ヘッダ集合管(470)には、連通部材(475)が設けられている。連通部材(475)は、一つの分流器(476)と、一本の主管(477)と、三本の細径管(478a~478c)とを備えている。主管(477)の一端は分流器(476)の下端部に接続され、他端は第2ヘッダ集合管(470)の第1連通空間(471a)に接続されている。分流器(476)の上端部には、各細径管(478a~478c)の一端が接続されている。分流器(481)の内部では、主管(477)と各細径管(478a~478c)とが連通している。各細径管(478a~478c)の他端は、第2ヘッダ集合管(470)の対応する第2~第4連通空間(471b~471d)に連通している。 The second header collecting pipe (470) is provided with a communication member (475). The communication member (475) includes one shunt (476), one main pipe (477), and three small diameter pipes (478a to 478c). One end of the main pipe (477) is connected to the lower end of the flow divider (476), and the other end is connected to the first communication space (471a) of the second header collecting pipe (470). One end of each small diameter pipe (478a to 478c) is connected to the upper end of the flow divider (476). Inside the shunt (481), the main pipe (477) and the small diameter pipes (478a to 478c) communicate with each other. The other ends of the small diameter tubes (478a to 478c) communicate with the corresponding second to fourth communication spaces (471b to 471d) of the second header collecting tube (470).
 図20にも示すように、各細径管(478a~478c)は、対応する第2~第4連通空間(471b~471d)の下端寄りの部分に開口している。つまり、第1細径管(478a)は第2連通空間(471b)の下端寄りの部分に開口し、第2細径管(478b)は第3連通空間(471c)の下端寄りの部分に開口し、第3細径管(478c)は第4連通空間(471d)の下端寄りの部分に開口している。なお、各細径管(478a~478c)の長さは、各主熱交換部(451a~451c)へ流入する冷媒の流量の差がなるべく小さくなるように、個別に設定されている。このように、第2ヘッダ集合管(470)の連通部材(475)は、第1連通空間(471a)から、各主熱交換部(451a~451c)に対応した第2~第4連通空間(471b~471d)へ分岐して接続されるものである。つまり、第2ヘッダ集合管(470)では、下側熱交換領域(452)に対応した連通空間(471a)と上側熱交換領域(451)に対応した各連通空間(471b,471c,471d)とが連通している。 As shown in FIG. 20, each small-diameter pipe (478a to 478c) is opened in a portion near the lower end of the corresponding second to fourth communication space (471b to 471d). That is, the first small diameter pipe (478a) opens at a portion near the lower end of the second communication space (471b), and the second small diameter pipe (478b) opens at a portion near the lower end of the third communication space (471c). The third small-diameter pipe (478c) opens at a portion near the lower end of the fourth communication space (471d). The lengths of the small diameter tubes (478a to 478c) are individually set so that the difference in the flow rate of the refrigerant flowing into the main heat exchange sections (451a to 451c) becomes as small as possible. As described above, the communication member (475) of the second header collecting pipe (470) extends from the first communication space (471a) to the second to fourth communication spaces (451a to 451c) corresponding to the main heat exchange units (451a to 451c). 471b to 471d). That is, in the second header collecting pipe (470), the communication space (471a) corresponding to the lower heat exchange region (452) and the communication spaces (471b, 471c, 471d) corresponding to the upper heat exchange region (451) Are communicating.
 図19に示すように、室外熱交換器(40)には、液側接続部材(486)とガス側接続部材(485)とが設けられている。液側接続部材(486)およびガス側接続部材(485)は、第1ヘッダ集合管(460)に取り付けられている。液側接続部材(486)は、比較的大径の一つの配管で構成されている。液側接続部材(486)の一端は、室外熱交換器(40)と膨張弁(33)を繋ぐ配管が接続されている。液側接続部材(486)の他端は、第1ヘッダ集合管(460)における下側空間(462)(連通空間(462a))の下端寄りの部分に開口している。ガス側接続部材(485)は、比較的大径の一つの配管で構成されている。ガス側接続部材(485)の一端は、室外熱交換器(40)と四方切換弁(34)の第3のポートを繋ぐ配管と接続されている。ガス側接続部材(485)の他端は、第1ヘッダ集合管(460)における上側空間(461)の上端寄りの部分に開口している。 As shown in FIG. 19, the outdoor heat exchanger (40) is provided with a liquid side connecting member (486) and a gas side connecting member (485). The liquid side connection member (486) and the gas side connection member (485) are attached to the first header collecting pipe (460). The liquid side connection member (486) is composed of a single pipe having a relatively large diameter. One end of the liquid side connection member (486) is connected to a pipe connecting the outdoor heat exchanger (40) and the expansion valve (33). The other end of the liquid side connection member (486) is opened in a portion near the lower end of the lower space (462) (communication space (462a)) in the first header collecting pipe (460). The gas side connection member (485) is comprised by one piping with a comparatively large diameter. One end of the gas side connection member (485) is connected to a pipe connecting the outdoor heat exchanger (40) and the third port of the four-way switching valve (34). The other end of the gas side connection member (485) opens in a portion near the upper end of the upper space (461) in the first header collecting pipe (460).
 上記の構成により、本実施形態の室外熱交換器(40)では、冷房運転中には、図19に示した矢印の方向に冷媒が流れる。また、暖房運転中は、図19に示した矢印とは逆方向に冷媒が流れる。 With the above configuration, in the outdoor heat exchanger (40) of the present embodiment, the refrigerant flows in the direction of the arrow shown in FIG. 19 during the cooling operation. Further, during the heating operation, the refrigerant flows in the direction opposite to the arrow shown in FIG.
 《発明の実施形態5》
 本発明の実施形態5について説明する。本実施形態は、上記実施形態3の室外熱交換器(40)における第2ヘッダ集合管(470)の構成を変更したものであり、それ以外の構成は実施形態3と同様である。本実施形態では、図21および図22を適宜参照しながら、室外熱交換器(40)の第2ヘッダ集合管(470)の構成についてのみ説明する。
<< Embodiment 5 of the Invention >>
Embodiment 5 of the present invention will be described. The present embodiment is obtained by changing the configuration of the second header collecting pipe (470) in the outdoor heat exchanger (40) of the third embodiment, and the other configurations are the same as those of the third embodiment. In the present embodiment, only the configuration of the second header collecting pipe (470) of the outdoor heat exchanger (40) will be described with reference to FIGS. 21 and 22 as appropriate.
 図21は、実施形態5の室外熱交換器(40)の概略構成を示す正面図である。また、図22は、実施形態5の室外熱交換器(40)の正面を示す一部断面図である。図22に示すように、室外熱交換器(40)の第2ヘッダ集合管(470)の内部空間は、二つの仕切板(439)によって左右に三つの連通空間(471a~471c)に仕切られている。具体的に、第2ヘッダ集合管(470)の内部空間では、図22において右側から順に、第1連通空間(471a)、第2連通空間(471b)および第3連通空間(471c)が形成されている。第1連通空間(471a)は、第3主熱交換部(451c)の扁平管(53)と第1補助熱交換部(452a)の扁平管(58)の端部に連通している。第2連通空間(471b)は、第2主熱交換部(451b)の扁平管(53)と第2補助熱交換部(452b)の扁平管(58)の端部に連通している。第3連通空間(471c)は、第1主熱交換部(451a)の扁平管(53)と第3補助熱交換部(452c)の扁平管(58)の端部に連通している。室外熱交換器(40)では、第3主熱交換部(451c)と第1補助熱交換部(452a)が対となり、第2主熱交換部(451b)と第2補助熱交換部(452b)が対となり、第1主熱交換部(451a)と第3補助熱交換部(452c)が対となる。 FIG. 21 is a front view showing a schematic configuration of the outdoor heat exchanger (40) of the fifth embodiment. FIG. 22 is a partial cross-sectional view showing the front of the outdoor heat exchanger (40) of the fifth embodiment. As shown in FIG. 22, the internal space of the second header collecting pipe (470) of the outdoor heat exchanger (40) is divided into three communication spaces (471a to 471c) on the left and right by two partition plates (439). ing. Specifically, in the inner space of the second header collecting pipe (470), a first communication space (471a), a second communication space (471b), and a third communication space (471c) are formed in order from the right side in FIG. ing. The first communication space (471a) communicates with the flat tube (53) of the third main heat exchange unit (451c) and the end of the flat tube (58) of the first auxiliary heat exchange unit (452a). The second communication space (471b) communicates with the flat tube (53) of the second main heat exchange unit (451b) and the end of the flat tube (58) of the second auxiliary heat exchange unit (452b). The third communication space (471c) communicates with the flat tube (53) of the first main heat exchange unit (451a) and the end of the flat tube (58) of the third auxiliary heat exchange unit (452c). In the outdoor heat exchanger (40), the third main heat exchange part (451c) and the first auxiliary heat exchange part (452a) are paired, and the second main heat exchange part (451b) and the second auxiliary heat exchange part (452b) ) As a pair, and the first main heat exchange part (451a) and the third auxiliary heat exchange part (452c) form a pair.
 つまり、本実施形態の室外熱交換器(40)における第2ヘッダ集合管(470)には、上側熱交換領域(451)における各主熱交換部(451a~451c)と下側熱交換領域(452)における各補助熱交換部(452a~452c)とが各一で対となり、該対となる二つの熱交換部(451a~451c,452a~452c)に共通に対応した単一の連通空間(471a~471c)が上記対の数と同数(三つ)形成されている。このように、第2ヘッダ集合管(470)では、対となる各主熱交換部(451a~451c)および各補助熱交換部(452a)の扁平管(53,58)同士が第2ヘッダ集合管(470)の内部空間内で直接連通している。 That is, the second header collecting pipe (470) in the outdoor heat exchanger (40) of the present embodiment includes the main heat exchange units (451a to 451c) in the upper heat exchange region (451) and the lower heat exchange region ( 452), each auxiliary heat exchanging part (452a to 452c) is paired with each other, and a single communication space (45a to 451c, 452a to 452c) corresponding to the two common heat exchanging parts (451a to 451c) 471a to 471c) are formed in the same number (three) as the number of pairs. In this way, in the second header collecting pipe (470), the flat pipes (53,58) of the main heat exchange sections (451a to 451c) and the auxiliary heat exchange sections (452a) that form a pair are the second header set. It communicates directly in the internal space of the tube (470).
 本実施形態においても、実施形態1と同様に、それぞれの補助熱交換部(452a~452c)に設けられた扁平管(58)の幅は、主熱交換部(451a~451c)に設けられた扁平管(53)の幅よりも大きく、補助熱交換部(452a~452c)に設けられた1つの扁平管(58)あたりの流路数は、主熱交換部(451a~451c)に設けられた1つの扁平管(53)あたりの流路数よりも多い。 Also in this embodiment, as in the first embodiment, the width of the flat tube (58) provided in each auxiliary heat exchange section (452a to 452c) is provided in the main heat exchange section (451a to 451c). The number of channels per flat tube (58) that is larger than the width of the flat tube (53) and is provided in the auxiliary heat exchanger (452a to 452c) is provided in the main heat exchanger (451a to 451c). More than the number of channels per flat tube (53).
 上記の構成により、本実施形態の室外熱交換器(40)では、冷房運転中には、図21に示した矢印の方向に冷媒が流れる。また、暖房運転中は、図21に示した矢印とは逆方向に冷媒が流れる。 With the above configuration, in the outdoor heat exchanger (40) of the present embodiment, the refrigerant flows in the direction of the arrow shown in FIG. 21 during the cooling operation. Further, during the heating operation, the refrigerant flows in the direction opposite to the arrow shown in FIG.
 《発明の実施形態6》
 本発明の実施形態6について説明する。本実施形態は、上記実施形態3の室外熱交換器(40)の構成を変更したものである。ここでは、本実施形態の室外熱交換器(40)について、図23および図24を適宜参照しながら、上記実施形態3と異なる点を説明する。
Embodiment 6 of the Invention
Embodiment 6 of the present invention will be described. In the present embodiment, the configuration of the outdoor heat exchanger (40) of the third embodiment is changed. Here, about the outdoor heat exchanger (40) of this embodiment, a different point from the said Embodiment 3 is demonstrated, referring FIG.23 and FIG.24 suitably.
 本実施形態の第2ヘッダ集合管(470)の内部空間は、上記実施形態3と同様、上下に五つの連通空間(471a~471e)に仕切られている。そして、本実施形態の第2ヘッダ集合管(470)では、第1連通空間(471a)と第5連通空間(471e)が対となり、第2連通空間(471b)と第4連通空間(471d)が対となっている。そして、第2ヘッダ集合管(470)には、第2連通空間(471b)と第4連通空間(471d)とを接続する第1連通管(472)と、第1連通空間(471a)と第5連通空間(471e)とを接続する第2連通管(473)とが設けられている。つまり、本実施形態の室外熱交換器(40)では、第1主熱交換部(451a)と第3補助熱交換部(452c)が対となり、第2主熱交換部(451b)と第2補助熱交換部(452b)が対となり、第3主熱交換部(451c)と第1補助熱交換部(452a)が対となっている。 The internal space of the second header collecting pipe (470) of the present embodiment is partitioned into five communication spaces (471a to 471e) in the vertical direction as in the third embodiment. In the second header collecting pipe (470) of the present embodiment, the first communication space (471a) and the fifth communication space (471e) are paired, and the second communication space (471b) and the fourth communication space (471d). Are paired. The second header collecting pipe (470) includes a first communication pipe (472) connecting the second communication space (471b) and the fourth communication space (471d), a first communication space (471a), and a second communication space. A second communication pipe (473) that connects the five communication spaces (471e) is provided. That is, in the outdoor heat exchanger (40) of the present embodiment, the first main heat exchange part (451a) and the third auxiliary heat exchange part (452c) are paired, and the second main heat exchange part (451b) and the second The auxiliary heat exchange part (452b) is a pair, and the third main heat exchange part (451c) and the first auxiliary heat exchange part (452a) are a pair.
 また、本実施形態の室外熱交換器(40)では、第1ヘッダ集合管(460)におけるガス側接続部材(485)の接続位置が変更されている。具体的に、ガス側接続部材(485)は、第1ヘッダ集合管(460)における上側空間(461)の中央部分(上下方向における中央)に開口している。さらに、図24に示すように、本実施形態の室外熱交換器(40)では、第1ヘッダ集合管(460)の内径B1が第2ヘッダ集合管(470)の内径B2よりも大きい。このような構成にすることで、ガス側接続部材(485)から第1ヘッダ集合管(460)の上側空間(461)に流入したガス冷媒を三つの主熱交換部(451a~451c)へ均等に分流させることができる。 Further, in the outdoor heat exchanger (40) of the present embodiment, the connection position of the gas side connection member (485) in the first header collecting pipe (460) is changed. Specifically, the gas side connection member (485) opens in a central portion (center in the vertical direction) of the upper space (461) in the first header collecting pipe (460). Furthermore, as shown in FIG. 24, in the outdoor heat exchanger (40) of the present embodiment, the inner diameter B1 of the first header collecting pipe (460) is larger than the inner diameter B2 of the second header collecting pipe (470). With this configuration, the gas refrigerant flowing from the gas side connection member (485) into the upper space (461) of the first header collecting pipe (460) is evenly distributed to the three main heat exchange parts (451a to 451c). Can be shunted.
 なお、本実施形態の室外熱交換器(40)では、二つのヘッダ集合管(460,470)の内径を互いに同じにしてもよいし、ガス側接続部材(485)を第1ヘッダ集合管(460)における上側空間(461)の上端寄りの部分に開口させるようにしてもよい。 In the outdoor heat exchanger (40) of the present embodiment, the inner diameters of the two header collecting pipes (460, 470) may be the same, and the gas side connection member (485) is used as the first header collecting pipe (460). You may make it open in the part near the upper end of upper side space (461).
 《発明の実施形態7》
 図25は、実施形態7の室外熱交換器(40)の断面の一部を示す図である。本実施形態では、主熱交換部(50)の扁平管(53)の幅と、補助熱交換部(55)の扁平管(58)の幅を同じにしてある。また、従前の実施形態と同様に、補助熱交換部(55)の扁平管(58)の本数は、主熱交換部(50)の扁平管(53)の本数よりも少ない。そして、補助熱交換部(55)に設けられた1つの扁平管(58)あたりの冷媒流路(49)の総断面積は、主熱交換部(50)に設けられた1つの扁平管(53)あたりの冷媒流路(49)の総断面積よりも大きい。本実施形態では、図25では表されていないが、主熱交換部(50)の扁平管(53)には、前述のベア管(内面平滑管、図7(B)を参照)を採用し、それぞれの冷媒流路(49)は円形の断面を有している。一方、補助熱交換部(55)の扁平管(58)は、それぞれの冷媒流路(49)に複数の溝が形成されている(図7(A)を参照)。この構成においても、補助熱交換部(55)における冷媒の流速を遅くすることが可能になる。したがって、本実施形態でも、補助熱交換部(55)における圧力損失を低減することが可能になる。
<< Embodiment 7 of the Invention >>
FIG. 25 is a diagram illustrating a part of a cross section of the outdoor heat exchanger (40) of the seventh embodiment. In the present embodiment, the width of the flat tube (53) of the main heat exchange part (50) and the width of the flat tube (58) of the auxiliary heat exchange part (55) are the same. As in the previous embodiment, the number of flat tubes (58) in the auxiliary heat exchange section (55) is smaller than the number of flat tubes (53) in the main heat exchange section (50). And the total cross-sectional area of the refrigerant | coolant flow path (49) per one flat tube (58) provided in the auxiliary heat exchange part (55) is one flat tube ( It is larger than the total cross-sectional area of the refrigerant flow path (49) per 53). In this embodiment, although not shown in FIG. 25, the aforementioned bare pipe (inner surface smooth pipe, see FIG. 7B) is adopted for the flat pipe (53) of the main heat exchange section (50). Each refrigerant channel (49) has a circular cross section. On the other hand, the flat tube (58) of the auxiliary heat exchange section (55) has a plurality of grooves formed in the respective refrigerant flow paths (49) (see FIG. 7A). Even in this configuration, it is possible to reduce the flow rate of the refrigerant in the auxiliary heat exchange section (55). Therefore, also in this embodiment, it becomes possible to reduce the pressure loss in the auxiliary heat exchange section (55).
 《発明の実施形態8》
 実施形態8の室外熱交換器(40)でも、主熱交換部(50)の扁平管(53)の幅と、補助熱交換部(55)の扁平管(58)の幅を同じにしてある。また、補助熱交換部(55)の扁平管(58)の本数は、主熱交換部(50)の扁平管(53)の本数よりも少ない。
<< Embodiment 8 of the Invention >>
Also in the outdoor heat exchanger (40) of Embodiment 8, the width of the flat tube (53) of the main heat exchange part (50) and the width of the flat tube (58) of the auxiliary heat exchange part (55) are the same. . Further, the number of flat tubes (58) in the auxiliary heat exchange section (55) is smaller than the number of flat tubes (53) in the main heat exchange section (50).
 そして、補助熱交換部(55)に設けられた1つの扁平管(58)あたりの冷媒流路(49)の総断面積は、主熱交換部(50)に設けられた1つの扁平管(53)あたりの冷媒流路(49)の総断面積よりも大きい。詳しくは、主熱交換部(50)の扁平管(53)における冷媒流路(49)の数を、補助熱交換部(55)の扁平管(58)における冷媒流路(49)の数よりも少なくしてある。この構成においても、補助熱交換部(55)における冷媒の流速を遅くすることが可能になる。したがって、本実施形態でも、補助熱交換部(55)における圧力損失を低減することが可能になる。なお、主熱交換部(50)及び補助熱交換部(55)における各伝熱管(53,58)の冷媒流路(49)は、溝を設けてもよいし、設けなくてもよい(図7(A)、(B)を参照)。 And the total cross-sectional area of the refrigerant | coolant flow path (49) per one flat tube (58) provided in the auxiliary heat exchange part (55) is one flat tube ( It is larger than the total cross-sectional area of the refrigerant channel (49) per 53). Specifically, the number of refrigerant flow paths (49) in the flat tube (53) of the main heat exchange section (50) is determined from the number of refrigerant flow paths (49) in the flat pipe (58) of the auxiliary heat exchange section (55). Less. Even in this configuration, it is possible to reduce the flow rate of the refrigerant in the auxiliary heat exchange section (55). Therefore, also in this embodiment, it becomes possible to reduce the pressure loss in the auxiliary heat exchange section (55). In addition, the refrigerant | coolant flow path (49) of each heat exchanger tube (53,58) in a main heat exchange part (50) and an auxiliary heat exchange part (55) may be provided with a groove | channel (FIG. 7 (A) and (B)).
 なお、実施形態2~8の各室外熱交換器(40)でも、実施形態1やその変形例で説明したフィン(54,59,235,236)など、種々のフィンの採用が可能である。 In addition, in each outdoor heat exchanger (40) of Embodiments 2 to 8, various fins such as the fins (54, 59, 235, 236) described in Embodiment 1 and its modifications can be adopted.
 本発明は、扁平管とフィンとを備え、扁平管内を流れる流体を空気と熱交換させる熱交換器及び空気調和機として有用である。 The present invention includes a flat tube and fins, and is useful as a heat exchanger and an air conditioner for exchanging heat between fluid flowing in the flat tube and air.
 10    空気調和機
 40    室外熱交換器(熱交換器)
 49    冷媒流路(流路)
 50    主熱交換部
 51,56 第1ヘッダ集合管
 52,57 第2ヘッダ集合管
 53    扁平管
 54,59 フィン
 55    補助熱交換部
 58    扁平管
10 Air conditioner 40 Outdoor heat exchanger (heat exchanger)
49 Refrigerant flow path (flow path)
50 Main heat exchanger 51, 56 First header collecting pipe 52, 57 Second header collecting pipe 53 Flat pipe 54, 59 Fin 55 Auxiliary heat exchanging section 58 Flat pipe

Claims (6)

  1.  側面が対向するように上下に配列され、内部に複数の流体の流路(49)が形成される複数の扁平管(53,58)と、隣り合う前記扁平管(53,58)の間を空気が流れる複数の通風路に区画する複数のフィン(54,59)とを備えた熱交換器であって、
     第1ヘッダ集合管(51,56)と、
     第2ヘッダ集合管(52,57)とを備え、
     それぞれの前記扁平管(53,58)は、一端が前記第1ヘッダ集合管(51,56)に接続されて他端が前記第2ヘッダ集合管(52,57)に接続され、
     複数の扁平管(53,58)のうちの一部の扁平管(53)は、主熱交換部(50)を構成し、残りの扁平管(58)が補助熱交換部(55)を構成し、
     前記補助熱交換部(55)を構成する扁平管(58)の本数は、前記主熱交換部(50)を構成する扁平管(53)の本数よりも少なく、
     前記補助熱交換部(55)における1つの扁平管(58)あたりの流路(49)の総断面積は、前記主熱交換部(50)における1つの扁平管(53)あたりの流路(49)の総断面積よりも大きく、
     該熱交換器が凝縮器となる場合には、前記主熱交換部(50)で冷媒が凝縮し、前記補助熱交換部(55)で冷媒が過冷却されることを特徴とする熱交換器。
    Between a plurality of flat tubes (53,58) in which a plurality of fluid flow paths (49) are formed inside, and the adjacent flat tubes (53,58) arranged side by side so as to face each other A heat exchanger comprising a plurality of fins (54, 59) partitioned into a plurality of ventilation paths through which air flows,
    A first header collecting pipe (51, 56);
    A second header collecting pipe (52, 57),
    Each of the flat tubes (53, 58) has one end connected to the first header collecting pipe (51, 56) and the other end connected to the second header collecting pipe (52, 57).
    Some flat tubes (53) of the plurality of flat tubes (53,58) constitute the main heat exchange part (50), and the remaining flat tubes (58) constitute the auxiliary heat exchange part (55). And
    The number of flat tubes (58) constituting the auxiliary heat exchange section (55) is less than the number of flat tubes (53) constituting the main heat exchange section (50),
    The total cross-sectional area of the flow path (49) per flat pipe (58) in the auxiliary heat exchange section (55) is the flow path per flat pipe (53) in the main heat exchange section (50) ( 49) greater than the total cross-sectional area of
    When the heat exchanger is a condenser, the refrigerant is condensed in the main heat exchange section (50), and the refrigerant is supercooled in the auxiliary heat exchange section (55). .
  2.  請求項1の熱交換器において、
     前記補助熱交換部(55)の扁平管(58)の幅(W2)は、前記主熱交換部(50)の扁平管(53)の幅(W1)よりも大きく、
     前記補助熱交換部(55)の1つの扁平管(58)あたりの流路数は、前記主熱交換部(50)の1つの扁平管(53)あたりの流路数よりも多いことを特徴とする熱交換器。
    The heat exchanger of claim 1,
    The width (W2) of the flat tube (58) of the auxiliary heat exchanger (55) is larger than the width (W1) of the flat tube (53) of the main heat exchanger (50),
    The number of flow paths per flat tube (58) of the auxiliary heat exchange section (55) is larger than the number of flow paths per flat pipe (53) of the main heat exchange section (50). Heat exchanger.
  3.  請求項1又は請求項2の熱交換器において、
     前記主熱交換部(50)の扁平管(53)の流路(49)には複数の溝が形成され、
     前記補助熱交換部(55)の扁平管(58)は、ベア管であることを特徴とする熱交換器。
    The heat exchanger according to claim 1 or 2,
    A plurality of grooves are formed in the flow path (49) of the flat tube (53) of the main heat exchange part (50),
    The flat tube (58) of the auxiliary heat exchanging section (55) is a bare tube.
  4.  請求項1から3の何れか一つの熱交換器において、
     前記フィン(236)は、前記扁平管(53,58)を差し込むための切り欠き部(245)が複数設けられた板状に形成され、前記扁平管(53,58)の伸長方向に互いに所定の間隔をおいて配置され、前記切り欠き部(245)の周縁で前記扁平管(53,58)を挟んでおり、
     前記フィン(236)では、上下に隣り合う切り欠き部(245)の間の部分が伝熱部(237)を構成していることを特徴とする熱交換器。
    The heat exchanger according to any one of claims 1 to 3,
    The fins (236) are formed in a plate shape provided with a plurality of notches (245) for inserting the flat tubes (53, 58), and are predetermined to each other in the extending direction of the flat tubes (53, 58). The flat tube (53,58) is sandwiched at the periphery of the notch (245),
    In the fin (236), the heat exchanger (237) is characterized in that the portion between the upper and lower cutouts (245) constitutes a heat transfer section (237).
  5.  請求項4の熱交換器において、
     前記扁平管(53,58)の幅方向の端は、前記切り欠き部(245)の入り口側の端で揃えられていることを特徴とする熱交換器。
    The heat exchanger according to claim 4,
    An end of the flat tube (53, 58) in the width direction is aligned with an end of the notch (245) on the entrance side.
  6.  請求項1から5の何れか一つに記載の熱交換器(40)が設けられた冷媒回路(20)を備え、
     上記冷媒回路(20)において冷媒を循環させて冷凍サイクルを行うことを特徴とする空気調和機。
    A refrigerant circuit (20) provided with the heat exchanger (40) according to any one of claims 1 to 5,
    An air conditioner that performs a refrigeration cycle by circulating refrigerant in the refrigerant circuit (20).
PCT/JP2012/000367 2011-01-21 2012-01-23 Heat exchanger and air conditioner WO2012098912A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/980,600 US20130292098A1 (en) 2011-01-21 2012-01-23 Heat exchanger and air conditioner
EP12736601.1A EP2667134A4 (en) 2011-01-21 2012-01-23 Heat exchanger and air conditioner
KR1020137021966A KR101451057B1 (en) 2011-01-21 2012-01-23 Heat exchanger and air conditioner
JP2012553645A JP5617935B2 (en) 2011-01-21 2012-01-23 Heat exchanger and air conditioner
CN2012800052132A CN103339457A (en) 2011-01-21 2012-01-23 Heat exchanger and air conditioner
AU2012208118A AU2012208118A1 (en) 2011-01-21 2012-01-23 Heat exchanger and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-011334 2011-01-21
JP2011011334 2011-01-21

Publications (1)

Publication Number Publication Date
WO2012098912A1 true WO2012098912A1 (en) 2012-07-26

Family

ID=46515545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000367 WO2012098912A1 (en) 2011-01-21 2012-01-23 Heat exchanger and air conditioner

Country Status (7)

Country Link
US (1) US20130292098A1 (en)
EP (1) EP2667134A4 (en)
JP (1) JP5617935B2 (en)
KR (1) KR101451057B1 (en)
CN (1) CN103339457A (en)
AU (1) AU2012208118A1 (en)
WO (1) WO2012098912A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014037898A (en) * 2012-08-10 2014-02-27 Daikin Ind Ltd Heat exchanger
JP2015055415A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger
JP2015055406A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger
WO2015041216A1 (en) * 2013-09-20 2015-03-26 三菱電機株式会社 Heat exchanger, air conditioner using said heat exchanger, and manufacturing method of said heat exchanger
EP2860483A4 (en) * 2012-04-27 2016-04-06 Daikin Ind Ltd Heat exchanger
WO2018154972A1 (en) * 2017-02-22 2018-08-30 ダイキン工業株式会社 Heat exchanging unit
WO2021255790A1 (en) * 2020-06-15 2021-12-23 三菱電機株式会社 Refrigeration cycle device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013401471B2 (en) * 2013-09-30 2017-09-21 Arcelik Anonim Sirketi Forced convection heat exchanger for a refrigeration appliance
CN103983126B (en) * 2014-05-28 2016-08-24 丹佛斯微通道换热器(嘉兴)有限公司 Heat exchanger
AU2014408468B2 (en) * 2014-10-07 2018-08-30 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
US10082344B2 (en) * 2015-03-02 2018-09-25 Mitsubishi Electric Coporation Fin-and-tube heat exchanger and refrigeration cycle apparatus including the same
JP6520353B2 (en) * 2015-04-27 2019-05-29 ダイキン工業株式会社 Heat exchanger and air conditioner
US20170108288A1 (en) * 2015-10-14 2017-04-20 Mark Miles Induced convection heat exchanger
CN106705270B (en) * 2015-11-12 2020-07-17 浙江盾安人工环境股份有限公司 Heat exchanger
US10578377B2 (en) * 2016-03-31 2020-03-03 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
US11262142B2 (en) * 2016-04-26 2022-03-01 Northrop Grumman Systems Corporation Heat exchangers, weld configurations for heat exchangers and related systems and methods
CN106766388A (en) * 2016-12-22 2017-05-31 刘勇 Suitable for the outdoor heat exchanger and Cascade type heat pump system of extremely cold area
US11333401B2 (en) 2017-07-04 2022-05-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6631608B2 (en) * 2017-09-25 2020-01-15 ダイキン工業株式会社 Air conditioner
CN109945726B (en) * 2017-12-20 2021-12-07 浙江盾安机械有限公司 Inserted sheet fin and heat exchanger
JP6985603B2 (en) * 2018-01-31 2021-12-22 ダイキン工業株式会社 Refrigerator with heat exchanger or heat exchanger
JP2019190727A (en) * 2018-04-25 2019-10-31 パナソニックIpマネジメント株式会社 Heat exchanger
FR3082295B1 (en) * 2018-06-11 2020-07-03 Valeo Systemes Thermiques MOTOR VEHICLE HEAT EXCHANGER
CN111322795A (en) 2018-12-14 2020-06-23 丹佛斯有限公司 Heat exchanger and air conditioning system
KR20200078936A (en) * 2018-12-24 2020-07-02 삼성전자주식회사 Heat exchanger
CN113720174A (en) * 2019-05-05 2021-11-30 浙江三花智能控制股份有限公司 Micro-channel heat exchanger
FR3106000B1 (en) * 2020-01-03 2022-01-14 Valeo Systemes Thermiques Tube heat exchanger with spacers
CN214676255U (en) * 2020-08-26 2021-11-09 广东美的暖通设备有限公司 Air conditioner and electric control box
CN116324325A (en) * 2020-09-24 2023-06-23 江森自控泰科知识产权控股有限责任合伙公司 Microchannel heat exchanger
US11774178B2 (en) * 2020-12-29 2023-10-03 Goodman Global Group, Inc. Heat exchanger for a heating, ventilation, and air-conditioning system
WO2024039669A1 (en) * 2022-08-19 2024-02-22 Canazon John X-ray tube with corrugated wall

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914698A (en) 1995-06-23 1997-01-17 Sharp Corp Outdoor machine of air conditioner
JP2000234883A (en) * 1999-02-17 2000-08-29 Showa Alum Corp Heat exchanger
JP2001235255A (en) * 2000-02-22 2001-08-31 Showa Denko Kk Condenser
JP2005106329A (en) * 2003-09-29 2005-04-21 Sanden Corp Subcool type condenser
JP2008064447A (en) 2006-08-11 2008-03-21 Daikin Ind Ltd Refrigeration device
JP2008267730A (en) * 2007-04-23 2008-11-06 Denso Corp Double row heat exchanger
JP2010002138A (en) * 2008-06-20 2010-01-07 Daikin Ind Ltd Heat exchanger
JP2010025447A (en) 2008-07-18 2010-02-04 Denso Corp Heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3064055B2 (en) * 1991-08-29 2000-07-12 昭和アルミニウム株式会社 Heat exchanger manufacturing method
US7337832B2 (en) * 2003-04-30 2008-03-04 Valeo, Inc. Heat exchanger
GB0326443D0 (en) * 2003-11-13 2003-12-17 Calsonic Kansei Uk Ltd Condenser
WO2008064238A1 (en) * 2006-11-22 2008-05-29 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar multichannel tubes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914698A (en) 1995-06-23 1997-01-17 Sharp Corp Outdoor machine of air conditioner
JP2000234883A (en) * 1999-02-17 2000-08-29 Showa Alum Corp Heat exchanger
JP2001235255A (en) * 2000-02-22 2001-08-31 Showa Denko Kk Condenser
JP2005106329A (en) * 2003-09-29 2005-04-21 Sanden Corp Subcool type condenser
JP2008064447A (en) 2006-08-11 2008-03-21 Daikin Ind Ltd Refrigeration device
JP2008267730A (en) * 2007-04-23 2008-11-06 Denso Corp Double row heat exchanger
JP2010002138A (en) * 2008-06-20 2010-01-07 Daikin Ind Ltd Heat exchanger
JP2010025447A (en) 2008-07-18 2010-02-04 Denso Corp Heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2667134A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10345047B2 (en) 2012-04-27 2019-07-09 Daikin Industries, Ltd. Heat exchanger configured to accelerate discharge of liquid refrigerant from lowest heat exchange section
US10520256B2 (en) 2012-04-27 2019-12-31 Daikin Industries, Ltd. Heat exchanger configured to accelerate discharge of liquid refrigerant from lowest heat exchange section
EP2860483A4 (en) * 2012-04-27 2016-04-06 Daikin Ind Ltd Heat exchanger
EP3147622A1 (en) * 2012-04-27 2017-03-29 Daikin Industries, Limited Heat exchanger
EP3147623A1 (en) * 2012-04-27 2017-03-29 Daikin Industries, Limited Heat exchanger
US9845994B2 (en) 2012-04-27 2017-12-19 Daikin Industries, Ltd. Heat exchanger configured to accelerate discharge of liquid refrigerant from lowest heat exchange section
JP2014037898A (en) * 2012-08-10 2014-02-27 Daikin Ind Ltd Heat exchanger
JP2015055415A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger
JP2015055406A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger
WO2015041216A1 (en) * 2013-09-20 2015-03-26 三菱電機株式会社 Heat exchanger, air conditioner using said heat exchanger, and manufacturing method of said heat exchanger
US10215503B2 (en) 2013-09-20 2019-02-26 Mistubishi Electric Corporation Heat exchanger, air-conditioning apparatus using the same and method of manufacturing the same
WO2015040746A1 (en) * 2013-09-20 2015-03-26 三菱電機株式会社 Heat exchanger, air conditioner device using said heat exchanger, and method for producing said heat exchanger
WO2018154972A1 (en) * 2017-02-22 2018-08-30 ダイキン工業株式会社 Heat exchanging unit
WO2021255790A1 (en) * 2020-06-15 2021-12-23 三菱電機株式会社 Refrigeration cycle device
JP7341340B2 (en) 2020-06-15 2023-09-08 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
US20130292098A1 (en) 2013-11-07
JP5617935B2 (en) 2014-11-05
KR20130129265A (en) 2013-11-27
AU2012208118A1 (en) 2013-08-15
EP2667134A1 (en) 2013-11-27
KR101451057B1 (en) 2014-10-15
EP2667134A4 (en) 2014-07-09
CN103339457A (en) 2013-10-02
JPWO2012098912A1 (en) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5617935B2 (en) Heat exchanger and air conditioner
US9651317B2 (en) Heat exchanger and air conditioner
WO2016174830A1 (en) Heat exchanger and air conditioner
WO2013161802A1 (en) Heat exchanger and air conditioner
WO2012098920A1 (en) Heat exchanger and air conditioner
JP2012163328A5 (en)
JP5716499B2 (en) Heat exchanger and air conditioner
US10378833B2 (en) Stacking-type header, heat exchanger, and air-conditioning apparatus
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
US10041710B2 (en) Heat exchanger and air conditioner
WO2017183180A1 (en) Heat exchanger
WO2016174802A1 (en) Heat exchanger and air conditioner
WO2014155560A1 (en) Heat exchanger and refrigeration cycle air conditioner using same
WO2016121124A1 (en) Heat exchanger and refrigeration cycle device
JP5591285B2 (en) Heat exchanger and air conditioner
JP5569409B2 (en) Heat exchanger and air conditioner
JP5664272B2 (en) Heat exchanger and air conditioner
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
WO2012098913A1 (en) Heat exchanger and air conditioner
JP5815128B2 (en) Heat exchanger and air conditioner
JP6881550B2 (en) Heat exchanger
JP6537615B2 (en) Heat exchanger and method of manufacturing heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736601

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553645

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980600

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012736601

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012208118

Country of ref document: AU

Date of ref document: 20120123

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137021966

Country of ref document: KR

Kind code of ref document: A