JP2019190727A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2019190727A
JP2019190727A JP2018083667A JP2018083667A JP2019190727A JP 2019190727 A JP2019190727 A JP 2019190727A JP 2018083667 A JP2018083667 A JP 2018083667A JP 2018083667 A JP2018083667 A JP 2018083667A JP 2019190727 A JP2019190727 A JP 2019190727A
Authority
JP
Japan
Prior art keywords
fin
heat exchanger
flat tube
flat
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018083667A
Other languages
Japanese (ja)
Inventor
立慈 川端
Tatsuji Kawabata
立慈 川端
長谷川 寛
Hiroshi Hasegawa
寛 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018083667A priority Critical patent/JP2019190727A/en
Priority to EP19169686.3A priority patent/EP3561430B1/en
Priority to CN201910317247.9A priority patent/CN110398163B/en
Publication of JP2019190727A publication Critical patent/JP2019190727A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Abstract

To solve such the problem that a condition, such as a cold district or severe winter season, where frosting is likely to occur obstructs suppression of frosting and generates air occlusion, increases draft resistance, reduces an air volume passing through a heat exchanger and results in deterioration in heat exchange performance.SOLUTION: A plate-like fin 11 including a flat part 14, a tube insertion cutout part 16 and a collar part 17 is provided with a forward edge cutout part 18 from at least part of a side face upstream of an air flow of a flat tube 12 that is inserted into the tube insertion cutout part 16, to the flat part 14.SELECTED DRAWING: Figure 2

Description

本発明は、複数の板状のフィンと、複数の冷媒流路をもつ複数の扁平管と、で構成され、複数のフィンの間を流れる空気と、複数の扁平管の冷媒流路の中を流れる冷媒とで熱交換を行う熱交換器に関するものである。   The present invention is composed of a plurality of plate-like fins and a plurality of flat tubes having a plurality of refrigerant channels, and the air flowing between the plurality of fins and the refrigerant channels of the plurality of flat tubes The present invention relates to a heat exchanger that performs heat exchange with a flowing refrigerant.

従来から、板状のフィンと、フィンの空気流れ下流側に互いに平行に設けられた管挿入切欠部に、複数の冷媒流路を備え、直角に挿入された複数の扁平管と、で構成された熱交換器が知られている。   Conventionally, it is composed of a plate-shaped fin and a plurality of flat tubes provided at right angles with a plurality of refrigerant flow paths provided in a pipe insertion notch provided in parallel to each other on the air flow downstream side of the fin. Heat exchangers are known.

この種の熱交換器において、フィン上に平坦部を設けた熱交換器が開示されている(例えば、特許文献1参照)。   In this type of heat exchanger, a heat exchanger in which flat portions are provided on fins is disclosed (for example, see Patent Document 1).

図17は、特許文献1に記載された従来の熱交換器のx−y平面のフィン平面図であり、x方向は空気流れ方向、y方向は扁平管配列方向である。   FIG. 17 is a fin plan view of the xy plane of the conventional heat exchanger described in Patent Document 1, where the x direction is the air flow direction and the y direction is the flat tube arrangement direction.

図17に示すように、熱交換器1は、板状のフィン2と、フィン2の空気流れ下流側(+x方向)に互いに平行に設けられた管挿入切欠部3に、複数の冷媒流路4を備え、直角に挿入された複数の扁平管5と、で構成され、フィン2の管挿入切欠部3の空気流れ上流側(−x方向)に平坦部6を設けている。   As shown in FIG. 17, the heat exchanger 1 includes a plurality of refrigerant flow paths in the plate-like fins 2 and the tube insertion notches 3 provided in parallel to each other on the air flow downstream side (+ x direction) of the fins 2. 4 and a plurality of flat tubes 5 inserted at right angles, and a flat portion 6 is provided on the air flow upstream side (−x direction) of the tube insertion notch 3 of the fin 2.

これにより、扁平管5からフィン2の前縁部まで距離が長くなるため、着霜が生じる環境下で使用する場合に、扁平管5の冷媒流路4を流れる冷媒から、空気中の湿度量が多く、着霜が生じやすいフィン2の空気流れ上流側(−x方向)への熱伝達が鈍くなり、着霜による空気閉塞を抑制することができる。   As a result, the distance from the flat tube 5 to the front edge portion of the fin 2 becomes long. Therefore, when used in an environment where frost formation occurs, the amount of humidity in the air from the refrigerant flowing through the refrigerant flow path 4 of the flat tube 5 Therefore, heat transfer to the air flow upstream side (−x direction) of the fin 2 where frost formation is likely to occur becomes dull, and air blockage due to frost formation can be suppressed.

特開2012−233680号公報JP 2012-233680 A

しかしながら従来の構成では、寒冷地や厳冬期などのより着霜が発生しやすい条件においては、着霜を十分に抑制するには未だ不十分であり、空気閉塞が発生、通風抵抗が増大し、熱交換器を通過する空気量が低下するため、熱交換性能が低下するという課題を有していた。   However, in the conventional configuration, in conditions where frost formation is more likely to occur such as in cold districts and severe winter seasons, it is still insufficient to sufficiently suppress frost formation, air blockage occurs, ventilation resistance increases, Since the amount of air passing through the heat exchanger is reduced, there is a problem that the heat exchange performance is reduced.

本発明は、前記従来の課題を解決するもので、扁平管を用いた熱交換器において、空気流れ上流側におけるフィン効率を低下させ、フィンの空気流れ上流側の着霜を抑制しつつ、扁平管の空気流れ上流側における伝熱を促進させることで、熱交換性能を向上できる熱交換器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and in a heat exchanger using a flat tube, the fin efficiency on the upstream side of the air flow is reduced, and frost formation on the upstream side of the air flow of the fin is suppressed, while the flatness is reduced. It aims at providing the heat exchanger which can improve heat exchange performance by promoting the heat transfer in the air flow upstream of a pipe.

前記従来の課題を解決するために、本発明の熱交換器は、所定の間隔で並べられた複数の板状のフィンと、複数の冷媒流路を備えた複数の扁平管と、で構成された熱交換器において、フィンは、平坦部と、空気流れの下流側に扁平管を挿入するための互いに平行に形成された管挿入切欠部と、扁平管と接触するためのカラー部と、で構成され、管挿入切欠
部に挿入された扁平管の空気流れ上流側側面の少なくとも一部から、平坦部に、前縁切欠部を設けたものである。
In order to solve the above-described conventional problems, the heat exchanger of the present invention includes a plurality of plate-like fins arranged at a predetermined interval and a plurality of flat tubes provided with a plurality of refrigerant channels. In the heat exchanger, the fin includes a flat part, pipe insertion notches formed in parallel to each other for inserting the flat pipe downstream of the air flow, and a collar part for contacting the flat pipe. A front edge notch portion is provided in the flat portion from at least a part of the air flow upstream side surface of the flat tube that is configured and inserted in the tube insertion notch portion.

これにより、扁平管の空気流れ上流側側面の少なくとも一部がフィンと接触しなくなり、扁平管の空気流れ上流側側面とフィンとの間に空気が介在することで、扁平管の空気流れ上流側側面からフィンの前縁部への熱伝達が鈍くなる。   Thereby, at least a part of the air flow upstream side surface of the flat tube is not in contact with the fin, and air is interposed between the air flow upstream side surface of the flat tube and the fin, so that the air flow upstream side of the flat tube Heat transfer from the side surface to the front edge of the fin becomes dull.

本発明の熱交換器は、寒冷地や厳冬期などのより着霜が発生しやすい条件においても、空気中の湿度量が多い空気流れ上流側におけるフィンでの着霜の発生を抑制できるため、通風抵抗の増大による熱交換器を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   The heat exchanger of the present invention can suppress the occurrence of frost formation on the fins on the upstream side of the air flow with a large amount of humidity in the air, even in conditions where frost formation is more likely to occur in cold regions and severe winter seasons. A decrease in the amount of air passing through the heat exchanger due to an increase in ventilation resistance is suppressed, and heat exchange performance can be improved.

本発明の実施の形態1の熱交換器の斜視図The perspective view of the heat exchanger of Embodiment 1 of this invention 本発明の実施の形態1の熱交換器のx−y平面のフィン平面図Fin plane view of the xy plane of the heat exchanger of Embodiment 1 of the present invention 本発明の実施の形態1の熱交換器をx方向から見たz−y平面のフィン側面 図The fin side surface of the yz plane which looked at the heat exchanger of Embodiment 1 of this invention from the x direction 熱交換器を適用した室外機の内部構造を示す平面図Top view showing the internal structure of an outdoor unit to which a heat exchanger is applied 熱交換器を適用した室外機の内部構造を示す正面図Front view showing the internal structure of an outdoor unit to which a heat exchanger is applied 本発明の実施の形態2における熱交換器のx−y平面のフィン平面図Fin plane view of xy plane of heat exchanger in Embodiment 2 of the present invention 本発明の実施の形態2における熱交換器のx−y平面のフィン拡大図The fin enlarged view of the xy plane of the heat exchanger in Embodiment 2 of this invention 本発明の実施の形態2の変形例1における熱交換器のx−y平面のフィン平面図Fin plane view of the xy plane of the heat exchanger in the first modification of the second embodiment of the present invention 本発明の実施の形態2の変形例2における熱交換器のx−y平面のフィン平面図Fin plane view of the xy plane of the heat exchanger in Modification 2 of Embodiment 2 of the present invention 本発明の実施の形態2の変形例3における熱交換器のx−y平面のフィン 平面図Fin of xy plane of heat exchanger in modification 3 of embodiment 2 of the present invention 本発明の実施の形態2の変形例4における熱交換器のx−y平面のフィン 平面図Fin of xy plane of heat exchanger in modification 4 of embodiment 2 of the present invention 本発明の実施の形態2の変形例5における熱交換器のx−y平面のフィン 平面図Fin of xy plane of heat exchanger in modification 5 of embodiment 2 of the present invention 本発明の実施の形態2の変形例6における熱交換器のx−y平面のフィン 平面図Fin of xy plane of heat exchanger in modification 6 of embodiment 2 of the present invention 本発明の実施の形態3における熱交換器のx−y平面のフィン平面図Fin plane view of xy plane of heat exchanger in Embodiment 3 of the present invention 本発明の実施の形態3の変形例1における熱交換器のx−y平面のフィン 平面図Fin of xy plane of heat exchanger in modification 1 of embodiment 3 of the present invention 本発明の実施の形態3の変形例2における熱交換器のx−y平面のフィン 平面図Fin of xy plane of heat exchanger in modification 2 of embodiment 3 of the present invention 従来の熱交換器のx−y平面のフィン平面図Fin plane view of xy plane of conventional heat exchanger

第1の発明は、所定の間隔で並べられた複数の板状のフィンと、複数の冷媒流路を備えた複数の扁平管と、で構成された熱交換器において、フィンは、平坦部と、空気流れの下流側に扁平管を挿入するための互いに平行に形成された管挿入切欠部と、扁平管と接触するためのカラー部と、で構成され、管挿入切欠部に挿入された扁平管の空気流れ上流側側面の少なくとも一部から、平坦部に、前縁切欠部を設ける。   A first invention is a heat exchanger including a plurality of plate-like fins arranged at predetermined intervals and a plurality of flat tubes provided with a plurality of refrigerant flow paths. A flat tube inserted into the tube insertion notch, comprising a tube insertion notch formed in parallel to each other for inserting the flat tube downstream of the air flow, and a collar for contacting the flat tube. A leading edge notch is provided in the flat portion from at least a part of the air flow upstream side surface of the pipe.

これにより、扁平管の空気流れ上流側側面の少なくとも一部がフィンと接触しなくなり、扁平管の空気流れ上流側側面とフィンとの間に空気が介在することで、扁平管の空気流
れ上流側側面からフィンの前縁部への熱伝達が鈍くなる。
Thereby, at least a part of the air flow upstream side surface of the flat tube is not in contact with the fin, and air is interposed between the air flow upstream side surface of the flat tube and the fin, so that the air flow upstream side of the flat tube Heat transfer from the side surface to the front edge of the fin becomes dull.

従って、寒冷地や厳冬期などのより着霜が発生しやすい条件においても、空気中の湿度量が多い空気流れ上流側のフィンでの着霜の発生を抑制できるため、通風抵抗の増大による熱交換器を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   Therefore, even in conditions where frost formation is more likely to occur, such as in cold regions and severe winters, it is possible to suppress the formation of frost on the fins on the upstream side of the air flow with a high amount of humidity in the air. A decrease in the amount of air passing through the exchanger is suppressed, and heat exchange performance can be improved.

また、フィンのカラー部の少なくとも一部が切断され、扁平管の空気流れ上流側側面に直接空気が接触するため、扁平管の空気流れ上流側での伝熱を促進でき、熱交換器性能をさらに向上することができる。   Also, since at least a part of the collar part of the fin is cut and the air is in direct contact with the air flow upstream side surface of the flat tube, heat transfer on the air flow upstream side of the flat tube can be promoted, and the heat exchanger performance is improved. This can be further improved.

第2の発明は、前縁切欠部の扁平管側開口幅をh、扁平管の高さをHとした場合、h<Hとなる前縁切欠部を設ける。   According to the second aspect of the present invention, when the flat tube side opening width of the leading edge notch is h and the height of the flat tube is H, the leading edge notch is provided such that h <H.

これにより、前縁切欠部の扁平管側開口部よりも、扁平管の高さが大きくなり、扁平管を挿入する際、扁平管が前縁切欠部の扁平管側開口部で接触し、固定される。   As a result, the height of the flat tube is larger than the flat tube side opening of the leading edge notch, and when the flat tube is inserted, the flat tube contacts and is fixed at the flat tube side opening of the leading edge notch. Is done.

従って、複数の扁平管を所定量挿入することができるため、低外気暖房運転時において、扁平管の挿入量のばらつきにより、フィンの前縁部で局所的に温度が低下し着霜が発生することを抑制でき、通風抵抗の増大による熱交換器を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   Therefore, since a predetermined amount of a plurality of flat tubes can be inserted, during low-air heating operation, due to variations in the amount of flat tubes inserted, the temperature locally decreases at the front edge portion of the fin and frost formation occurs. This can be suppressed, and a decrease in the amount of air passing through the heat exchanger due to an increase in ventilation resistance is suppressed, and heat exchange performance can be improved.

第3の発明は、前縁切欠部に、重力方向成分を含んだ排水切欠部を設ける。
これにより、扁平管の空気流れ上流側で発生し、前縁切欠部に流れ込んだ凝縮水が、排水切欠部を伝い、重力方向下側へと流れ成長し、水分量が増加し、結露水にかかる重力が大きくなることで速やかに流れ落ちる。
3rd invention provides the drainage notch part containing the gravity direction component in the front edge notch part.
As a result, the condensed water that is generated upstream of the air flow of the flat tube and flows into the leading edge notch flows along the drain notch, grows downward in the direction of gravity, increases the amount of moisture, and forms condensed water. As the gravity increases, it flows down quickly.

従って、凝縮水の発生量が多くなる高負荷運転時においても、結露水の残留を抑制することができ、通風抵抗の増大による熱交換器を通過する空気量の低下を防止でき、熱交換性能を向上することができる。   Therefore, even during high-load operation where the amount of condensed water generated is large, it is possible to suppress the remaining dew condensation water, to prevent a decrease in the amount of air passing through the heat exchanger due to an increase in ventilation resistance, and heat exchange performance Can be improved.

また、低外気温暖房運転時において、凝縮水が凍結することなく速やかに流れ落ちるため、熱交換器が凍結し暖房運転が停止することを防止でき、暖房能力を向上することができる。   Moreover, since the condensed water flows down quickly without freezing during the low outside air temperature heating operation, it is possible to prevent the heat exchanger from freezing and stop the heating operation, thereby improving the heating capacity.

また、排水切欠部によりフィンが切断され、扁平管の空気流れ上流側側面からフィンの前縁部への熱伝達が鈍くなるため、さらに着霜が発生しやすい条件においても、空気中の湿度量が多い空気流れ上流側におけるフィンでの着霜の発生を抑制でき、通風抵抗の増大による熱交換器を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   In addition, since the fins are cut by the drainage notches, heat transfer from the airflow upstream side surface of the flat tube to the front edge of the fins becomes dull, so even in conditions where frost formation is likely to occur, the amount of humidity in the air Therefore, the occurrence of frost formation on the fins on the upstream side of the air flow can be suppressed, the decrease in the amount of air passing through the heat exchanger due to the increase in ventilation resistance is suppressed, and the heat exchange performance can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1の熱交換器の斜視図であり、x方向は空気流れ方向、y方向は扁平管配列方向、z方向はフィン配列方向である。
(Embodiment 1)
FIG. 1 is a perspective view of a heat exchanger according to Embodiment 1 of the present invention, where the x direction is the air flow direction, the y direction is the flat tube arrangement direction, and the z direction is the fin arrangement direction.

図1において、熱交換器10は、所定の間隔で並べられた複数の板状のフィン11と、複数のフィン11に直角に挿入され、互いに平行に並べられた、複数の扁平管12と、で構成されており、複数のフィン11の間を流れる空気と、複数の扁平管12に形成された
、複数の冷媒流路13の中を流れる冷媒と、で熱交換を行う。
In FIG. 1, the heat exchanger 10 includes a plurality of plate-like fins 11 arranged at a predetermined interval, and a plurality of flat tubes 12 inserted at right angles to the plurality of fins 11 and arranged parallel to each other. The heat exchange is performed between the air flowing between the plurality of fins 11 and the refrigerant flowing in the plurality of refrigerant channels 13 formed in the plurality of flat tubes 12.

なお、冷媒としては、例えば、R410A、R32およびR32を含む混合冷媒などが用いられる。   In addition, as a refrigerant | coolant, the mixed refrigerant | coolant containing R410A, R32, and R32 etc. are used, for example.

図2は、本発明の実施の形態1の熱交換器のx−y平面のフィン平面図、図3は、本発明の実施の形態1の熱交換器をx方向から見たz−y平面のフィン側面図であり、図2のA−A断面図である。   2 is a fin plan view of the xy plane of the heat exchanger according to the first embodiment of the present invention, and FIG. 3 is a zy plane when the heat exchanger of the first embodiment of the present invention is viewed from the x direction. It is a fin side view of this, and is AA sectional drawing of FIG.

フィン11は、平坦部14と、伝熱促進部15と、空気流れ下流側(+x方向)に扁平管12を挿入するための互いに平行に形成された管挿入切欠部16と、扁平管12と接触するためのカラー部17と、管挿入切欠部16に挿入された扁平管12の空気流れ上流側(−x方向)の側面の少なくとも一部から、平坦部14に向かって設けられた前縁切欠部18と、で形成されている。   The fin 11 includes a flat portion 14, a heat transfer promoting portion 15, a tube insertion notch portion 16 formed in parallel to each other for inserting the flat tube 12 on the downstream side (+ x direction), and the flat tube 12. The front edge provided toward the flat portion 14 from at least a part of the side surface of the collar portion 17 for contact and the air flow upstream side (−x direction) of the flat tube 12 inserted into the tube insertion notch portion 16. And a notch 18.

伝熱促進部15は、フィン11の平坦部14から、空気流れの通路側(+z方向)に向かって立ち上げ、山型に形成されており、隣り合う複数の扁平管12の間、かつ、扁平管12の前縁部と扁平管12の後縁部との間、に設けられている。   The heat transfer promoting part 15 rises from the flat part 14 of the fin 11 toward the air flow path side (+ z direction), is formed in a mountain shape, and between the adjacent flat tubes 12, and It is provided between the front edge of the flat tube 12 and the rear edge of the flat tube 12.

管挿入切欠部16の開口部は、扁平管12を挿入し易いように、扁平管12の高さ(y方向長さ)よりも大きくしている。   The opening of the tube insertion notch 16 is larger than the height (y-direction length) of the flat tube 12 so that the flat tube 12 can be easily inserted.

カラー部17は、フィン11の平坦部14から、空気流れの通路側(+z方向)に向かって略直角に立ち上げ、隣り合うフィン11の表面に接触させ、隣り合うフィン11の間隔を保持している。また、扁平管12とは、ろう付けにより接合している。   The collar portion 17 rises from the flat portion 14 of the fin 11 at a substantially right angle toward the air flow path side (+ z direction), is brought into contact with the surface of the adjacent fin 11, and maintains the interval between the adjacent fins 11. ing. The flat tube 12 is joined by brazing.

なお、カラー部17が隣り合うフィン11の表面に接触せず、タブ(図示せず)などのカラー部17と異なる切り起こしを接触させることで、隣り合うフィン11の間隔を保持してもよい。   In addition, the space | interval of the adjacent fin 11 may be hold | maintained by making the collar part 17 not contacting the surface of the adjacent fin 11 but making a different raising part, such as a tab (not shown), in the collar part 17 contact. .

次に、空気の流れについて説明する。熱交換器10に流入した空気の一部はフィン11の前縁部と衝突し、一部はフィン11に衝突することなく、隣り合う複数のフィン11の間を通過する。   Next, the air flow will be described. A part of the air flowing into the heat exchanger 10 collides with the front edge portion of the fin 11, and a part passes between the adjacent fins 11 without colliding with the fin 11.

フィン11の前縁部では、空気が衝突し、境界層が薄くなるため、熱伝達率が高くなる。フィン11の前縁部に衝突した空気は、隣り合う複数のフィン11の間を通過していく。   At the front edge portion of the fin 11, air collides and the boundary layer becomes thin, so that the heat transfer coefficient is increased. The air that has collided with the front edge of the fin 11 passes between the adjacent fins 11.

隣り合う複数のフィン11の間に流入した空気の一部は扁平管12に衝突するように流れ、一部は扁平管12に衝突することなく、隣り合う複数の扁平管12の間を通過する。   A part of the air flowing between the adjacent fins 11 flows so as to collide with the flat tube 12, and a part passes between the adjacent flat tubes 12 without colliding with the flat tube 12. .

扁平管12に向かって流れた空気は、前縁切欠部18によりカラー部17が切断されているため、カラー部17に接触することなく、扁平管12の空気流れ上流側(−x方向)側面に直接接触する。   The air flowing toward the flat tube 12 has the collar portion 17 cut by the leading edge notch portion 18, so that the air flow upstream side (−x direction) side surface of the flat tube 12 without contacting the collar portion 17. Contact directly.

扁平管12の空気流れ上流側(−x方向)側面に接触した空気は、扁平管12の空気流れ上流側(−x方向)の冷媒流路13を流れる冷媒と熱交換を行った後、隣り合う複数の扁平管12の間を通過していく。   The air in contact with the air flow upstream side (−x direction) side surface of the flat tube 12 exchanges heat with the refrigerant flowing through the refrigerant flow path 13 on the air flow upstream side (−x direction) of the flat tube 12, and then adjoins the air. It passes between a plurality of matching flat tubes 12.

隣り合う複数の扁平管12の間を通過していく空気は、フィン11に設けられた伝熱促
進部15と衝突し、フィン11との熱伝達が促進される。
The air passing between the plurality of adjacent flat tubes 12 collides with the heat transfer promoting portion 15 provided in the fin 11, and heat transfer with the fin 11 is promoted.

次に、本実施形態の利用について、本実施形態の熱交換器10を空気調和装置の室外機20に利用した場合を例に説明する。   Next, the use of the present embodiment will be described by taking as an example the case where the heat exchanger 10 of the present embodiment is used for the outdoor unit 20 of the air conditioner.

図4は、本実施形態の熱交換器10を適用した室外機20の内部構造を示すz−x平面図であり、図5は、本実施形態の熱交換器10を適用した室外機20の内部構造を示すz−y正面図である。   4 is a zx plan view showing the internal structure of the outdoor unit 20 to which the heat exchanger 10 of the present embodiment is applied, and FIG. 5 is a plan view of the outdoor unit 20 to which the heat exchanger 10 of the present embodiment is applied. It is yz front view which shows an internal structure.

図4、図5に示すように、室外機20は、圧縮機21と、切替弁22と、室外膨張弁23と、送風機24と、熱交換器10を備えている。室外機20と室内機(図示せず)は、液管25と、ガス管26とで接続している。   As shown in FIGS. 4 and 5, the outdoor unit 20 includes a compressor 21, a switching valve 22, an outdoor expansion valve 23, a blower 24, and the heat exchanger 10. The outdoor unit 20 and the indoor unit (not shown) are connected by a liquid pipe 25 and a gas pipe 26.

熱交換器10は、複数の扁平管12が、ヘッダーパイプ27a、27bの軸方向(y方向)に沿って、互いが平行になるように、それぞれ水平方向(z方向、x方向)に配置されており、扁平管12内の冷媒流路13は、ヘッダーパイプ27a、27bの内部に連通されている。   In the heat exchanger 10, a plurality of flat tubes 12 are arranged in the horizontal direction (z direction, x direction) so that they are parallel to each other along the axial direction (y direction) of the header pipes 27a, 27b. The refrigerant flow path 13 in the flat tube 12 communicates with the header pipes 27a and 27b.

ヘッダーパイプ27aは、冷媒配管28aを介して切替弁22と、冷媒配管28bを介して室外膨張弁23と接続している。また、ヘッダーパイプ27aの内部には仕切板29が設けられ、ヘッダーパイプ27aの軸方向上側(+y方向)と軸方向下側(−y方向)とで冷媒流路が分かれている。   The header pipe 27a is connected to the switching valve 22 via the refrigerant pipe 28a and to the outdoor expansion valve 23 via the refrigerant pipe 28b. In addition, a partition plate 29 is provided inside the header pipe 27a, and the refrigerant flow path is divided on the upper side (+ y direction) and the lower side (−y direction) of the header pipe 27a.

まず、冷房運転を行う場合は、熱交換器10は凝縮器として機能する。室外機20の圧縮機21から送られるガス冷媒は、切替弁22を介して、冷媒配管28aから、ヘッダーパイプ27aの中に流入される。このガス冷媒は、ヘッダーパイプ27aの内部を通り、ヘッダーパイプ27aの軸方向上側(+y方向)に接続している複数の扁平管12の冷媒流路13に流入され、水平方向(+z方向、+x方向)に流れ、ヘッダーパイプ27bに流出する。   First, when performing a cooling operation, the heat exchanger 10 functions as a condenser. The gas refrigerant sent from the compressor 21 of the outdoor unit 20 flows into the header pipe 27a from the refrigerant pipe 28a via the switching valve 22. This gas refrigerant passes through the header pipe 27a and flows into the refrigerant flow paths 13 of the plurality of flat tubes 12 connected to the upper side (+ y direction) of the header pipe 27a in the horizontal direction (+ z direction, + x Direction) and flow out to the header pipe 27b.

ヘッダーパイプ27bに流出した冷媒は、ヘッダーパイプ27bの軸方向下側(−y方向)に接続している複数の扁平管12の冷媒流路13に流入され、水平方向(−x方向、−z方向)に流れる。冷媒は、扁平管12において、送風機24により送られた空気と熱交換をすることで放熱して凝縮する。   The refrigerant that has flowed out of the header pipe 27b flows into the refrigerant flow paths 13 of the plurality of flat tubes 12 that are connected to the lower side in the axial direction (−y direction) of the header pipe 27b, and in the horizontal direction (−x direction, −z). Direction). In the flat tube 12, the refrigerant dissipates heat and condenses by exchanging heat with the air sent by the blower 24.

凝縮した冷媒は、ヘッダーパイプ27aに流入し、冷媒配管28bから室外膨張弁23、液管25を通り、室内機に流出される。   The condensed refrigerant flows into the header pipe 27a, and flows out from the refrigerant pipe 28b through the outdoor expansion valve 23 and the liquid pipe 25 to the indoor unit.

室内機に流れた凝縮した冷媒は、室内熱交換器(図示せず)で空気と熱交換をすることで吸熱し蒸発する。蒸発した冷媒は、ガス管26を通り、切替弁22を介して、圧縮機21に循環する。   The condensed refrigerant that has flowed into the indoor unit absorbs heat and evaporates by exchanging heat with air in an indoor heat exchanger (not shown). The evaporated refrigerant passes through the gas pipe 26 and circulates to the compressor 21 via the switching valve 22.

暖房運転を行う場合は、熱交換器10は蒸発器として機能する。室外機20の圧縮機21から送られるガス冷媒は、切替弁22を介して、ガス管26を通り、室内機に流出される。   When performing the heating operation, the heat exchanger 10 functions as an evaporator. The gas refrigerant sent from the compressor 21 of the outdoor unit 20 passes through the gas valve 26 via the switching valve 22 and flows out to the indoor unit.

室内機に流れたガス冷媒は、室内機に設けられた室内熱交換器で空気と熱交換をすることで放熱し凝縮する。凝縮した冷媒は、液管25、室外膨張弁23を通り、気液二相冷媒となり、冷媒配管28bから、ヘッダーパイプ27aに流入される。   The gas refrigerant that has flowed into the indoor unit radiates heat and condenses by exchanging heat with air in an indoor heat exchanger provided in the indoor unit. The condensed refrigerant passes through the liquid pipe 25 and the outdoor expansion valve 23, becomes a gas-liquid two-phase refrigerant, and flows into the header pipe 27a from the refrigerant pipe 28b.

気液二相冷媒は、ヘッダーパイプ27aから、ヘッダーパイプ27aの軸方向下側(−y方向)に接続している複数の扁平管12の冷媒流路13に流入され、水平方向(+z方向、+x方向)に流れ、ヘッダーパイプ27bに流出する。   The gas-liquid two-phase refrigerant flows from the header pipe 27a into the refrigerant flow paths 13 of the plurality of flat tubes 12 connected to the lower side in the axial direction (−y direction) of the header pipe 27a, and is horizontally (+ z direction, + Direction) and flows out to the header pipe 27b.

ヘッダーパイプ27bに流出した冷媒は、ヘッダーパイプ27bの軸方向上側(+y方向)に接続している複数の扁平管12の冷媒流路13に流入され、水平方向(−x方向、−z方向)に流れる。冷媒は、扁平管12において、送風機24により送られた空気と熱交換をすることで吸熱して蒸発する。   The refrigerant that has flowed out of the header pipe 27b flows into the refrigerant flow paths 13 of the plurality of flat tubes 12 connected to the upper side in the axial direction (+ y direction) of the header pipe 27b, and is horizontal (-x direction, -z direction). Flowing into. The refrigerant absorbs heat and evaporates in the flat tube 12 by exchanging heat with the air sent by the blower 24.

蒸発した冷媒は、ヘッダーパイプ27aに流入し、内部を通り、冷媒配管28aから切替弁22を介して、圧縮機21に循環する。   The evaporated refrigerant flows into the header pipe 27a, passes through the inside, and circulates from the refrigerant pipe 28a to the compressor 21 via the switching valve 22.

蒸発器として機能する場合、扁平管12の冷媒流路13を低温の冷媒が流れ、空気と熱交換が行われることになり、フィン11や扁平管12の表面に空気中の水分が付着し凝縮水が発生する。特に、寒冷地や厳冬期などのより低外気条件においては、凝縮した水分が霜として付着する。   When functioning as an evaporator, a low-temperature refrigerant flows through the refrigerant flow path 13 of the flat tube 12 to exchange heat with air, and moisture in the air adheres to the surfaces of the fins 11 and the flat tube 12 and condenses. Water is generated. In particular, condensed water adheres as frost in colder areas and in colder winter conditions such as lower outdoor air conditions.

以上のように構成された熱交換器について、扁平管12の空気流れ上流側(−x方向)側面の少なくとも一部がフィン11と接触しなくなり、扁平管12の空気流れ上流側(−x方向)側面とフィン11との間に空気が介在することで、扁平管12の空気流れ上流側(−x方向)側面からフィン11の前縁部への熱伝達が鈍くなる。   About the heat exchanger comprised as mentioned above, at least one part of the air flow upstream (-x direction) side surface of the flat tube 12 stops contacting the fin 11, and the air flow upstream (-x direction) of the flat tube 12 ) When air is interposed between the side surface and the fin 11, heat transfer from the side of the air flow upstream (−x direction) of the flat tube 12 to the front edge of the fin 11 becomes dull.

従って、寒冷地や厳冬期などのより着霜が発生しやすい条件においても、空気中の湿度量が多い空気流れ上流側(−x方向)のフィン11での着霜の発生を抑制できるため、通風抵抗の増大による熱交換器10を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   Therefore, since it is possible to suppress the occurrence of frost on the fin 11 on the upstream side (−x direction) of the air flow with a large amount of humidity in the air even in conditions where frost formation is more likely to occur, such as in cold regions and severe winter seasons, A decrease in the amount of air passing through the heat exchanger 10 due to an increase in ventilation resistance is suppressed, and heat exchange performance can be improved.

また、フィン11のカラー部17の少なくとも一部が切断され、扁平管12の空気流れ上流側(−x方向)側面に直接空気が接触するため、扁平管12の空気流れ上流側(−x方向)での伝熱を促進でき、熱交換器性能をさらに向上できる。   In addition, since at least a part of the collar portion 17 of the fin 11 is cut and the air is in direct contact with the air flow upstream side (−x direction) side surface of the flat tube 12, the air flow upstream side (−x direction) of the flat tube 12. ) Can be promoted and the heat exchanger performance can be further improved.

(実施の形態2)
図6は、本発明の実施の形態2における熱交換器のx−y平面のフィン平面図、図7は、本発明の実施の形態2における熱交換器のx−y平面のフィン拡大図であり、図6の拡大図Bである。
(Embodiment 2)
6 is a fin plan view of the xy plane of the heat exchanger according to Embodiment 2 of the present invention, and FIG. 7 is an enlarged fin view of the xy plane of the heat exchanger according to Embodiment 2 of the present invention. FIG. 7 is an enlarged view B of FIG.

図6、図7に示すように、前縁切欠部18は、前縁切欠部18の扁平管12側の開口幅をh、扁平管12のy方向高さをHとした場合、h<Hとしたものである。
これにより、前縁切欠部18の扁平管12側の開口部よりも、扁平管12のy方向高さが大きくなり、扁平管12を挿入する際、扁平管12が前縁切欠部18の扁平管12側の開口部で接触し、固定されることになる。
As shown in FIGS. 6 and 7, when the opening width of the leading edge notch 18 on the flat tube 12 side is h and the height of the flat tube 12 in the y direction is H, h <H It is what.
Thereby, the height in the y direction of the flat tube 12 becomes larger than the opening of the front edge notch 18 on the flat tube 12 side, and when the flat tube 12 is inserted, the flat tube 12 becomes flat of the front edge notch 18. It will contact and be fixed at the opening on the tube 12 side.

従って、各扁平管12を所定量挿入することができるため、低外気暖房運転時において、扁平管12の挿入量のばらつきにより、フィン11の前縁部で局所的に温度が低下し着霜が発生することを抑制でき、通風抵抗の増大による熱交換器10を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   Accordingly, since each flat tube 12 can be inserted by a predetermined amount, during the low outside air heating operation, due to variations in the insertion amount of the flat tube 12, the temperature locally decreases at the front edge portion of the fin 11 and frost formation occurs. Generation | occurrence | production can be suppressed, the fall of the air quantity which passes the heat exchanger 10 by the increase in ventilation resistance is suppressed, and heat exchange performance can be improved.

また、hは、少なくとも0.1mm以上とするのが好ましい。これにより、フィン11と扁平管12をろう付け接合する際に、前縁切欠部18に毛細管現象でろう材が流れ込み、前縁切欠部18がろう材で埋まることを抑制できる。   Further, h is preferably at least 0.1 mm. Thereby, when brazing and joining the fin 11 and the flat tube 12, it can suppress that a brazing material flows into the front edge notch part 18 by a capillary phenomenon, and the front edge notch part 18 is filled with a brazing material.

さらには、hは、より大きいほうが好ましい。これにより、扁平管12の空気流れ上流側(−x方向)のフィン11のカラー部17が大きく切断され、扁平管12の空気流れ上流側(−x方向)に直接接触する面積が増加するため、扁平管12の空気流れ上流側(−x方向)での伝熱を促進しつつ、扁平管12の空気流れ上流側(−x方向)側面からフィン11の前縁部への熱伝達がより鈍くなり、空気中の湿度量が多い空気流れ上流側(−x方向)のフィン11での、着霜の発生をさらに抑制でき、通風抵抗の増大による熱交換器10を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   Furthermore, h is preferably larger. As a result, the collar portion 17 of the fin 11 on the air flow upstream side (−x direction) of the flat tube 12 is largely cut, and the area in direct contact with the air flow upstream side (−x direction) of the flat tube 12 increases. Further, heat transfer from the air flow upstream side (−x direction) side surface of the flat tube 12 to the front edge portion of the fin 11 is promoted while promoting heat transfer on the air flow upstream side (−x direction) of the flat tube 12. Decrease in the amount of air passing through the heat exchanger 10 due to an increase in ventilation resistance, which can further suppress the occurrence of frost formation on the fin 11 on the upstream side (−x direction) of the air flow that becomes dull and has a high humidity amount in the air. Is suppressed, and the heat exchange performance can be improved.

また、扁平管12のy方向高さの中央部を通り、空気流れ方向(x方向)と平行な中心面aと、フィン11の前縁部と、が交わる位置を点C、扁平管12の前縁部を点D、前縁切欠部18の空気流れ最上流側(−x方向)を点E、とした場合、点Eを、点Cと点Dの中間位置よりも、空気流れ下流側(+x方向)の位置に設けるのが好ましい。   Further, the position where the center plane a passing through the central portion of the height of the flat tube 12 in the y direction and parallel to the air flow direction (x direction) intersects with the front edge portion of the fin 11 is a point C. Assuming that the leading edge is point D and the leading edge notch 18 is the most upstream air flow direction (−x direction) is point E, point E is downstream of the air flow from the intermediate position between point C and point D. It is preferable to provide at the position (+ x direction).

これにより、フィン11の前縁部から前縁切欠部18までの距離を確保できるため、扁平管12をフィン11に挿入する際に、フィン11の強度を確保でき、フィン11の破れや折れを防止することができる。   Thereby, since the distance from the front edge part of the fin 11 to the front edge notch part 18 can be ensured, when inserting the flat tube 12 in the fin 11, the intensity | strength of the fin 11 can be ensured, and the fin 11 is torn or broken. Can be prevented.

また、点Eから点Dまでの距離は、少なくとも0.1mm以上とすることが好ましい。これにより、フィン11と扁平管12をろう付け接合する際に、前縁切欠部18に毛細管現象でろう材が流れ込み、前縁切欠部18がろう材で埋まることを抑制できる。   The distance from the point E to the point D is preferably at least 0.1 mm. Thereby, when brazing and joining the fin 11 and the flat tube 12, it can suppress that a brazing material flows into the front edge notch part 18 by a capillary phenomenon, and the front edge notch part 18 is filled with a brazing material.

また、図8は本発明の実施の形態2の変形例1における熱交換器のx−y平面のフィン平面図、図9は本発明の実施の形態2の変形例2における熱交換器のx−y平面のフィン平面図、図10は本発明の実施の形態2の変形例3における熱交換器のx−y平面のフィン平面図、図11は本発明の実施の形態2の変形例4における熱交換器のx−y平面のフィン平面図、図12は本発明の実施の形態2の変形例5における熱交換器のx−y平面のフィン平面図、図13は本発明の実施の形態2の変形例6における熱交換器のx−y平面のフィン平面図である。   8 is a fin plan view of the xy plane of the heat exchanger according to the first modification of the second embodiment of the present invention, and FIG. 9 is an x of the heat exchanger according to the second modification of the second embodiment of the present invention. FIG. 10 is a fin plan view of the xy plane of the heat exchanger in the third modification of the second embodiment of the present invention, and FIG. 11 is a fourth modification of the second embodiment of the present invention. FIG. 12 is a fin plan view of an xy plane of a heat exchanger in a fifth modification of the second embodiment of the present invention, and FIG. 13 is an embodiment of the present invention. It is a fin top view of the xy plane of the heat exchanger in the modification 6 of the form 2.

前縁切欠部18は、図8に示すように、扁平管12のy方向高さの中央部を通り、空気流れ方向(x方向)と平行な中心面aを基準に、管配列方向(y方向)にずらした位置に設けても同様の効果を得られることは言うまでもない。   As shown in FIG. 8, the leading edge notch 18 passes through the central portion of the flat tube 12 in the height in the y direction, and is based on the center plane a parallel to the air flow direction (x direction). It goes without saying that the same effect can be obtained even if the position is shifted in the direction).

また、前縁切欠部18は、図9、図10に示すように、三角形や矩形であってもよい。これにより、前縁切欠部18の切断面積が大きくなり、扁平管12の空気流れ上流側(−x方向)側面とフィン11との間に介在する空気量が増加し、扁平管12の空気流れ上流側(−x方向)側面からフィン11の前縁部への熱伝達がさらに鈍くなるため、空気中の湿度量が多い空気流れ上流側(−x方向)のフィン11での、着霜の発生をさらに抑制でき、通風抵抗の増大による熱交換器10を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   Further, the front edge notch 18 may be a triangle or a rectangle as shown in FIGS. Thereby, the cutting area of the leading edge notch 18 is increased, the amount of air interposed between the air flow upstream side (−x direction) side surface of the flat tube 12 and the fin 11 is increased, and the air flow of the flat tube 12 is increased. Since heat transfer from the upstream side (−x direction) side surface to the front edge of the fin 11 is further blunted, frost formation at the fin 11 on the upstream side (−x direction) of the air flow with a large amount of humidity in the air Generation | occurrence | production can further be suppressed, the fall of the air quantity which passes the heat exchanger 10 by increase in ventilation resistance is suppressed, and heat exchange performance can be improved.

また、前縁切欠部18は、図11、図12に示すように、空気流れ方向(+x方向)に対して、重力方向(−y方向)に傾斜していてもよい。   Moreover, as shown in FIG. 11, FIG. 12, the front edge notch part 18 may incline in the gravity direction (-y direction) with respect to the air flow direction (+ x direction).

これにより、前縁切欠部18に流れ込んだ凝縮水が重力方向(−y方向)に流れるため、前縁切欠部18から速やかに排水され、結露水の残留を抑制することができ、通風抵抗の増大による熱交換器10を通過する空気量の低下を防止でき、熱交換性能を向上することができる。   Thereby, since the condensed water that has flowed into the leading edge notch 18 flows in the direction of gravity (−y direction), it can be quickly drained from the leading edge notch 18, and the residual dew condensation can be suppressed. A decrease in the amount of air passing through the heat exchanger 10 due to the increase can be prevented, and the heat exchange performance can be improved.

また、前縁切欠部18は、図13に示すように、1つの扁平管12に対して複数個設けてもよい。   Also, a plurality of front edge notches 18 may be provided for one flat tube 12, as shown in FIG.

これにより、フィン11の切断箇所が増加し、フィン11の前縁部への熱伝達が鈍くなるため、空気中の湿度量が多い空気流れ上流側(−x方向)のフィン11での、着霜の発生をさらに抑制でき、通風抵抗の増大による熱交換器10を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   As a result, the number of cut portions of the fin 11 increases, and heat transfer to the front edge of the fin 11 becomes dull. Therefore, the arrival at the fin 11 on the upstream side (−x direction) of the air flow having a large amount of humidity in the air. Generation | occurrence | production of frost can further be suppressed, the fall of the air quantity which passes the heat exchanger 10 by increase in ventilation resistance is suppressed, and heat exchange performance can be improved.

(実施の形態3)
図14は、本発明の実施の形態3における熱交換器のx−y平面のフィン平面図である。
(Embodiment 3)
FIG. 14 is a fin plan view of the xy plane of the heat exchanger according to Embodiment 3 of the present invention.

図14に示すように、前縁切欠部18には、重力方向(−y方向)成分を含んだ排水切欠部19を設ける。   As shown in FIG. 14, the front edge notch 18 is provided with a drainage notch 19 including a gravity direction (−y direction) component.

これにより、扁平管12の空気流れ上流側(−x方向)で発生し、前縁切欠部18に流れ込んだ凝縮水が、排水切欠部19を伝い、重力方向(−y方向)へと流れ成長し、水分量が増加し、結露水にかかる重力が大きくなることで速やかに流れ落ちることになる。   Thereby, the condensed water generated on the upstream side of the air flow (−x direction) of the flat tube 12 and flowing into the leading edge notch 18 flows through the drain notch 19 and flows in the gravity direction (−y direction). However, the amount of water increases and the gravity applied to the condensed water increases, so that the water quickly flows down.

従って、凝縮水の発生量が多くなる高負荷運転時においても、結露水の残留を抑制することができ、通風抵抗の増大による熱交換器10を通過する空気量の低下を防止でき、熱交換性能を向上することができる。   Therefore, even during high-load operation where the amount of condensed water generated is large, it is possible to suppress the remaining of dew condensation water, to prevent a reduction in the amount of air passing through the heat exchanger 10 due to an increase in ventilation resistance, and heat exchange The performance can be improved.

また、低外気温暖房運転時において、凝縮水が凍結することなく速やかに流れ落ちるため、熱交換器10が凍結し暖房運転が停止することを防止でき、暖房能力を向上することができる。   Further, since the condensed water flows down quickly without freezing during the low outside air temperature heating operation, it is possible to prevent the heat exchanger 10 from freezing and stop the heating operation, thereby improving the heating capacity.

また、排水切欠部19により、扁平管12の空気流れ上流側(−x方向)側面からフィン11の前縁部への熱伝達が鈍くなるため、さらに着霜が発生しやすい条件においても、空気中の湿度量が多い空気流れ上流側(−x方向)のフィン11での、着霜の発生を抑制でき、通風抵抗の増大による熱交換器10を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   Further, the drainage notch 19 makes the heat transfer from the air flow upstream side (−x direction) side surface of the flat tube 12 to the front edge portion of the fin 11 dull, so that even under conditions where frost formation is more likely to occur, air The generation of frost on the fin 11 on the upstream side (−x direction) of the air flow with a large amount of humidity can be suppressed, and the decrease in the amount of air passing through the heat exchanger 10 due to the increase in the ventilation resistance is suppressed. Exchange performance can be improved.

また、排水切欠部19の開口幅wは、少なくとも0.1mm以上とするのが好ましい。これにより、フィン11と扁平管12をろう付け接合する際に、排水切欠部19に毛細管現象でろう材が流れ込み、前縁切欠部19がろう材で埋まることを抑制できる。   The opening width w of the drainage notch 19 is preferably at least 0.1 mm. Thereby, when brazing and joining the fin 11 and the flat tube 12, it can suppress that a brazing material flows into the drainage notch part 19 by a capillary phenomenon, and the front edge notch part 19 is filled with a brazing material.

また、隣り合う扁平管12の中央部を通り、空気流れ方向(x方向)と平行な中心面bと、フィン11の前縁部と、が交わる位置を点F、中心面aと、点Fと点Dとを繋いだ線と、がなす角度をθ、排水切欠部19の重力方向(−y方向)の最下点を点G、中心面aと、中心面aから点Gまでを最短距離で繋いだ線と、が交わる位置を点H、とした場合に、GH≧tanθ×DHとするのが好ましい。   Further, a position where the center plane b passing through the center portion of the adjacent flat tubes 12 and parallel to the air flow direction (x direction) intersects with the front edge portion of the fin 11 is a point F, a center plane a, and a point F The angle formed by the line connecting point D and point D is θ, the lowest point in the gravity direction (−y direction) of the drainage notch 19 is point G, the center plane a, and the center plane a to point G is the shortest When the position where the line connected by the distance intersects is a point H, it is preferable that GH ≧ tan θ × DH.

これにより、フィン11の前縁部において、扁平管12の前縁部(点D)から、扁平管12からの最短距離(点C)までの間と、扁平管12の前縁部(点D)から、扁平管12からの最遠距離(点F)までの間と、でフィン11が切断される箇所が発生するため、扁平管12からフィン11の前縁部までの熱伝達が鈍くなり、空気中の湿度量が多い空気流れ上流側(−x方向)のフィン11の前縁部の全体で、着霜の発生をさらに抑制でき、通風抵抗の増大による熱交換器10を通過する空気量の低下が抑制され、熱交換性能を向上することができる。   Thereby, in the front edge part of the fin 11, between the front edge part (point D) of the flat tube 12 and the shortest distance (point C) from the flat tube 12, and the front edge part (point D) of the flat tube 12 ) To the farthest distance (point F) from the flat tube 12, a portion where the fin 11 is cut occurs, and heat transfer from the flat tube 12 to the front edge of the fin 11 becomes dull. The entire front edge of the fin 11 on the upstream side (−x direction) of the air flow having a large amount of humidity in the air can further suppress the formation of frost, and the air passing through the heat exchanger 10 due to an increase in ventilation resistance A decrease in the amount is suppressed, and the heat exchange performance can be improved.

また、図15は本発明の実施の形態3の変形例1における熱交換器のx−y平面のフィン平面図である。   FIG. 15 is a fin plan view of the xy plane of the heat exchanger in the first modification of the third embodiment of the present invention.

図15に示すように、排水切欠部19を、重力方向(−y方向)のみに向かって延びるように形成する。   As shown in FIG. 15, the drainage notch 19 is formed so as to extend only in the direction of gravity (−y direction).

これにより、扁平管12の空気流れ上流側(−x方向)で発生し、前縁切欠部18に流れ込んだ凝縮水が、排水切欠部19を伝い、よりスムーズに重力方向(−y方向)へと流れ成長し、水分量が増加し、結露水にかかる重力が大きくなることで速やかに流れ落ちることになる。   As a result, the condensed water generated on the upstream side of the air flow (−x direction) of the flat tube 12 and flowing into the leading edge notch portion 18 travels through the drainage notch portion 19 and more smoothly in the direction of gravity (−y direction). It grows and grows, the amount of water increases, and the gravity on the condensed water increases, so that it flows down quickly.

従って、凝縮水の発生量がさらに多くなる最大負荷運転時においても、結露水の残留を抑制することができ、通風抵抗の増大による熱交換器10を通過する空気量の低下を防止でき、熱交換性能を向上することができる。   Therefore, even at the time of maximum load operation where the amount of condensed water generated is further increased, residual dew condensation water can be suppressed, and a decrease in the amount of air passing through the heat exchanger 10 due to an increase in ventilation resistance can be prevented. Exchange performance can be improved.

また、フィン11の前縁部から排水切欠部19までの距離を確保できるため、扁平管12をフィン11に挿入する際に、フィン11の強度を確保でき、フィン11の破れや折れを抑制することができる。   Moreover, since the distance from the front edge part of the fin 11 to the drainage notch part 19 can be ensured, when inserting the flat tube 12 in the fin 11, the intensity | strength of the fin 11 can be ensured and the tear and breakage of the fin 11 are suppressed. be able to.

また、図16は本発明の実施の形態3の変形例2における熱交換器のx−y平面のフィン平面図である。   FIG. 16 is a fin plan view of the xy plane of the heat exchanger in the second modification of the third embodiment of the present invention.

図16に示すように、排水切欠部19を、前縁切欠部18の空気流れ上流側(−x方向)ではなく、扁平管12の空気流れ上流側(−x方向)に形成してもよい。
これにより、フィン11の前縁部から排水切欠部19までの距離をさらに確保できるため、扁平管12をフィン11に挿入する際に、さらにフィン11の強度を確保でき、フィン11の破れや折れを防止することができる。
As shown in FIG. 16, the drainage notch 19 may be formed not on the air flow upstream side (−x direction) of the leading edge notch 18 but on the air flow upstream side (−x direction) of the flat tube 12. .
Thereby, since the distance from the front edge part of the fin 11 to the drainage notch part 19 can be further secured, when the flat tube 12 is inserted into the fin 11, the strength of the fin 11 can be further secured, and the fin 11 is broken or broken. Can be prevented.

また、前縁切欠部18の重力方向(−y方向)下端に排水切欠部19が形成されるため、前縁切欠部18の凝縮水が保水される箇所が低減し、より速やかに凝縮水を排水でき、通風抵抗の増大による熱交換器10を通過する空気量の低下を防止でき、熱交換性能を向上することができる。   Further, since the drainage notch 19 is formed at the lower end in the gravity direction (−y direction) of the leading edge notch 18, the number of places where the condensed water in the leading edge notch 18 is retained is reduced, and the condensed water is more quickly supplied. It is possible to drain water, prevent a decrease in the amount of air passing through the heat exchanger 10 due to an increase in ventilation resistance, and improve heat exchange performance.

本発明は、扁平管を用いた熱交換器において、空気流れ上流側におけるフィン効率を低下させ、フィンの空気流れ上流側の着霜を抑制しつつ、扁平管の空気流れ上流側における伝熱を促進させることで、熱交換性能を向上できる熱交換器であり、冷凍機、空気調和装置、給湯空調複合装置などの用途に適用できる。   In the heat exchanger using a flat tube, the present invention reduces the fin efficiency on the upstream side of the air flow and suppresses frost formation on the upstream side of the air flow of the fin, while suppressing heat transfer on the upstream side of the air flow of the flat tube. It is a heat exchanger that can improve heat exchange performance by promoting it, and can be applied to uses such as a refrigerator, an air conditioner, and a hot water supply / air-conditioning combined device.

1 熱交換器
2 フィン
3 管挿入切欠部
4 冷媒流路
5 扁平管
6 平坦部
10 熱交換器
11 フィン
12 扁平管
13 冷媒流路
14 平坦部
15 伝熱促進部
16 管挿入切欠部
17 カラー部
18 前縁切欠部
19 排水切欠部
20 室外機
21 圧縮機
22 切替弁
23 室外膨張弁
24 送風機
25 液管
26 ガス管
27a、27b ヘッダーパイプ
28a、28b 冷媒配管
29 仕切板
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Fin 3 Tube insertion notch part 4 Refrigerant flow path 5 Flat tube 6 Flat part 10 Heat exchanger 11 Fin 12 Flat tube 13 Refrigerant flow path 14 Flat part 15 Heat transfer promotion part 16 Pipe insertion notch part 17 Color part 18 Front edge notch 19 Drain notch 20 Outdoor unit 21 Compressor 22 Switching valve 23 Outdoor expansion valve 24 Blower 25 Liquid pipe 26 Gas pipe 27a, 27b Header pipe 28a, 28b Refrigerant piping 29 Partition plate

Claims (3)

所定の間隔で並べられた複数の板状のフィンと、複数の冷媒流路を備えた複数の扁平管と、で構成された熱交換器において、前記フィンは、平坦部と、空気流れの下流側に前記扁平管を挿入するための互いに平行に形成された管挿入切欠部と、前記扁平管と接触するためのカラー部と、で構成され、前記管挿入切欠部に挿入された前記扁平管の空気流れ上流側側面の少なくとも一部から、前記平坦部に、前縁切欠部を設けることを特徴とする熱交換器。   In the heat exchanger configured with a plurality of plate-like fins arranged at a predetermined interval and a plurality of flat tubes provided with a plurality of refrigerant flow paths, the fin includes a flat portion and a downstream of the air flow The flat tube inserted into the tube insertion notch, comprising a tube insertion notch formed in parallel to each other for inserting the flat tube on the side, and a collar portion for contacting the flat tube A front edge notch is provided in the flat part from at least a part of the air flow upstream side of the heat exchanger. 前記前縁切欠部の前記扁平管側開口幅をh、前記扁平管の高さをHとした場合、h<Hとすることを特徴とする請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, wherein h <H, where h is a flat tube side opening width of the leading edge notch and H is a height of the flat tube. 前記前縁切欠部には、重力方向成分を含んだ排水切欠部を設けることを特徴とする請求項2に記載の熱交換器。

The heat exchanger according to claim 2, wherein a drainage cutout portion including a gravity direction component is provided in the front edge cutout portion.

JP2018083667A 2018-04-25 2018-04-25 Heat exchanger Pending JP2019190727A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018083667A JP2019190727A (en) 2018-04-25 2018-04-25 Heat exchanger
EP19169686.3A EP3561430B1 (en) 2018-04-25 2019-04-16 Heat exchanger
CN201910317247.9A CN110398163B (en) 2018-04-25 2019-04-19 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018083667A JP2019190727A (en) 2018-04-25 2018-04-25 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2019190727A true JP2019190727A (en) 2019-10-31

Family

ID=66217853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018083667A Pending JP2019190727A (en) 2018-04-25 2018-04-25 Heat exchanger

Country Status (3)

Country Link
EP (1) EP3561430B1 (en)
JP (1) JP2019190727A (en)
CN (1) CN110398163B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222507B1 (en) * 2019-11-14 2021-03-04 엘지전자 주식회사 Heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022148602A (en) * 2021-03-24 2022-10-06 東芝キヤリア株式会社 Heat exchanger
CN116399154B (en) * 2023-06-02 2023-09-29 广东美的暖通设备有限公司 Fin, heat exchange assembly, micro-channel heat exchanger and heating ventilation equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09324995A (en) * 1996-06-05 1997-12-16 Toshiba Corp Heat exchanger
JP2004353954A (en) * 2003-05-29 2004-12-16 Denso Corp Heat exchanger
JP4503682B1 (en) * 2009-04-22 2010-07-14 シャープ株式会社 Heat exchanger and air conditioner equipped with the same
JP5617935B2 (en) * 2011-01-21 2014-11-05 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2012154498A (en) * 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger, and air conditioner
JP5523495B2 (en) 2011-04-22 2014-06-18 三菱電機株式会社 Finned tube heat exchanger and refrigeration cycle apparatus
US10082344B2 (en) * 2015-03-02 2018-09-25 Mitsubishi Electric Coporation Fin-and-tube heat exchanger and refrigeration cycle apparatus including the same
WO2016194043A1 (en) * 2015-05-29 2016-12-08 三菱電機株式会社 Heat exchanger
JP6233540B2 (en) * 2016-04-20 2017-11-22 ダイキン工業株式会社 Heat exchanger and air conditioner
US11313630B2 (en) * 2016-07-01 2022-04-26 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus having heat exchanger
CN107940818A (en) * 2017-09-30 2018-04-20 博格思众(常州)热交换器有限公司 A kind of manufacture method of fin, condenser and fin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102222507B1 (en) * 2019-11-14 2021-03-04 엘지전자 주식회사 Heat exchanger

Also Published As

Publication number Publication date
CN110398163B (en) 2022-12-06
CN110398163A (en) 2019-11-01
EP3561430A3 (en) 2019-11-06
EP3561430B1 (en) 2022-10-19
EP3561430A2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
EP3279598B1 (en) Heat exchanger and air conditioner
US9459053B2 (en) Heat exchanger and air-conditioning apparatus
US10627175B2 (en) Heat exchanger and refrigeration cycle apparatus
US10082344B2 (en) Fin-and-tube heat exchanger and refrigeration cycle apparatus including the same
JP2019190727A (en) Heat exchanger
JP2019015410A (en) Heat exchanger
JP2013245884A (en) Fin tube heat exchanger
JPWO2014155560A1 (en) Heat exchanger and refrigeration cycle air conditioner using the same
JP2019011923A (en) Heat exchanger
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
WO2018207321A1 (en) Heat exchanger and refrigeration cycle device
US20230168040A1 (en) Heat exchanger, outdoor unit including heat exchanger, and air-conditioning apparatus including outdoor unit
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP2014115005A (en) Air conditioner
JP6318371B2 (en) Outdoor unit and refrigeration cycle apparatus using the same
JP2015031490A (en) Heat exchanger and air conditioner
JP2021191996A (en) Heat transfer pipe and heat exchanger
JP6932262B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle equipment
JP7004814B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
WO2020121615A1 (en) Indoor unit and air conditioner
JP7313529B1 (en) Heat exchanger and air conditioner provided with the same
JP7150157B2 (en) Heat exchanger and refrigeration cycle equipment
JP2012154495A (en) Heat exchanger, and air conditioner
CN112771342B (en) Heat exchanger and refrigeration cycle device
WO2020012548A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190123