WO2016121124A1 - Heat exchanger and refrigeration cycle device - Google Patents

Heat exchanger and refrigeration cycle device Download PDF

Info

Publication number
WO2016121124A1
WO2016121124A1 PCT/JP2015/052771 JP2015052771W WO2016121124A1 WO 2016121124 A1 WO2016121124 A1 WO 2016121124A1 JP 2015052771 W JP2015052771 W JP 2015052771W WO 2016121124 A1 WO2016121124 A1 WO 2016121124A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
heat exchange
exchange unit
refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2015/052771
Other languages
French (fr)
Japanese (ja)
Inventor
伊東 大輔
英明 前山
石橋 晃
真哉 東井上
裕樹 宇賀神
繁佳 松井
中村 伸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016571653A priority Critical patent/JP6198976B2/en
Priority to PCT/JP2015/052771 priority patent/WO2016121124A1/en
Publication of WO2016121124A1 publication Critical patent/WO2016121124A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a heat exchanger having a flat tube in which a flow path for flowing a refrigerant is formed, and a refrigeration cycle apparatus.
  • a heat exchanger provided with a heat exchange panel having a pair of header collecting pipes and a plurality of flat tubes connecting the pair of header collecting pipes is known.
  • heat is exchanged between the refrigerant and air by flowing the refrigerant through the flow path in each flat tube while allowing air to pass through the heat exchange panel.
  • a technique for promoting the discharge of the liquid refrigerant accumulated in the lower part of the heat exchange panel has been proposed. (For example, refer to Patent Document 1).
  • the present invention has been made to solve the above-described problems, and is capable of improving the heat exchange performance and reducing the manufacturing cost, and the refrigeration cycle apparatus.
  • the purpose is to obtain.
  • the heat exchanger includes a first heat exchange unit and a second heat exchange unit through which the airflow after passing through the first heat exchange unit passes.
  • the first heat exchange unit has a hollow first header. And a hollow second header and a first flat tube connecting the first and second headers, and the second heat exchange unit includes a hollow third header, a hollow fourth header, and a third And a second flat tube connecting between the fourth headers, and a flow path through which the coolant flows is formed inside the first and second flat tubes, and the first header and the third header are connected to the connection pipe.
  • the second header and the fourth header are independent from each other, and the gas side refrigerant port is provided only in the first header.
  • the airflow after passing through the first heat exchange unit passes through the second heat exchange unit, and the first header of the first heat exchange unit Since only the gas side refrigerant port is provided, the supply amount of the refrigerant to the flat tube can be increased in the first heat exchange unit on the windward side than the second heat exchange unit on the leeward side. Thereby, the heat exchange performance of the heat exchanger can be improved. Further, even if the number of heat exchange units is increased, the number of gas side refrigerant ports does not increase, and an increase in the number of refrigerant tubes connected to the heat exchanger can be suppressed, which reduces the manufacturing cost of the heat exchanger. Reduction can be achieved.
  • FIG. 1 It is a typical block diagram which shows the air conditioner by Embodiment 1 of this invention. It is a perspective view which shows the outdoor heat exchanger of FIG. It is a perspective view which shows the outdoor heat exchanger by Embodiment 2 of this invention. It is a principal part side view which shows the other example of the outdoor heat exchanger by Embodiment 2 of this invention. It is a principal part perspective view which shows the outdoor heat exchanger by Embodiment 3 of this invention. It is an expansion perspective view which shows the connecting pipe of FIG. It is a principal part side view which shows the other example of the outdoor heat exchanger by Embodiment 3 of this invention.
  • FIG. 1 is a schematic configuration diagram showing an air conditioner according to Embodiment 1 of the present invention.
  • the air conditioner 1 includes a compressor 2, an outdoor heat exchanger 3, an expansion valve 4, an indoor heat exchanger 5, and a four-way valve 6.
  • the compressor 2, the outdoor heat exchanger 3, the expansion valve 4 and the four-way valve 6 are provided in the outdoor unit, and the indoor heat exchanger 5 is provided in the indoor unit.
  • the compressor 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5 and the four-way valve 6 are connected to each other via a refrigerant pipe, thereby constituting a refrigerant circuit capable of circulating the refrigerant.
  • a refrigeration cycle is performed in which the refrigerant circulates through the compressor 2, the outdoor heat exchanger 3, the expansion valve 4, and the indoor heat exchanger 5 while phase-changing.
  • the outdoor unit is provided with an outdoor fan 7 that forcibly passes outdoor air through the outdoor heat exchanger 3.
  • the outdoor heat exchanger 3 performs heat exchange between the outdoor airflow generated by the operation of the outdoor fan 7 and the refrigerant.
  • the indoor unit is provided with an indoor fan 8 that forcibly passes room air through the indoor heat exchanger 5.
  • the indoor heat exchanger 5 performs heat exchange between the airflow of indoor air generated by the operation of the indoor fan 8 and the refrigerant.
  • the operation of the air conditioner 1 can be switched between a cooling operation for cooling indoor air, a heating operation for heating indoor air, and a defrosting operation for melting frost attached to the outdoor heat exchanger 3.
  • the four-way valve 6 is an electromagnetic valve that switches the refrigerant flow path according to switching between the cooling operation, the heating operation, and the defrosting operation of the air conditioner 1.
  • the four-way valve 6 guides the refrigerant from the compressor 2 to the outdoor heat exchanger 3 and the refrigerant from the indoor heat exchanger 5 to the compressor 2 during the cooling operation and the defrosting operation.
  • the refrigerant from 2 is led to the indoor heat exchanger 5 and the refrigerant from the outdoor heat exchanger 3 is led to the compressor 2.
  • the direction of the refrigerant flow during the cooling operation and the defrosting operation is indicated by a dashed arrow
  • the direction of the refrigerant flow during the heating operation is indicated by a solid arrow.
  • the refrigerant compressed by the compressor 2 is sent to the outdoor heat exchanger 3.
  • heat exchange is performed between the airflow of the outdoor air generated by the operation of the outdoor fan 7 and the refrigerant.
  • releases heat to outdoor air and is condensed.
  • the refrigerant is sent to the expansion valve 4, decompressed by the expansion valve 4, and then sent to the indoor heat exchanger 5.
  • heat exchanger 5 heat exchange is performed between the airflow of indoor air generated by the operation of the indoor fan 8 and the refrigerant.
  • a refrigerant takes in heat from indoor air and evaporates.
  • the refrigerant returns from the indoor heat exchanger 5 to the compressor 2. Therefore, during the cooling operation of the air conditioner 1, the outdoor heat exchanger 3 functions as a condenser, and the indoor heat exchanger 5 functions as an evaporator.
  • the refrigerant compressed by the compressor 2 is sent to the indoor heat exchanger 5.
  • heat exchange is performed between the airflow of indoor air generated by the operation of the indoor fan 8 and the refrigerant.
  • releases heat to indoor air and is condensed.
  • the refrigerant is sent to the expansion valve 4, decompressed by the expansion valve 4, and then sent to the outdoor heat exchanger 3.
  • heat exchange is performed between the airflow of the outdoor air generated by the operation of the outdoor fan 7 and the refrigerant.
  • a refrigerant takes in heat from outdoor air and evaporates.
  • the refrigerant returns from the outdoor heat exchanger 3 to the compressor 2. Therefore, during the heating operation of the air conditioner 1, the outdoor heat exchanger 3 functions as an evaporator, and the indoor heat exchanger 5 functions as a condenser.
  • the defrosting operation of the air conditioner 1 the operations of the outdoor fan 7 and the indoor fan 8 are stopped. Further, during the defrosting operation, the four-way valve 6 is switched to the same state as during the cooling operation.
  • the compressor 2 is driven during the defrosting operation, the refrigerant flows in the same flow as during the cooling operation. That is, during the defrosting operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is supplied to the outdoor heat exchanger 3. In the outdoor heat exchanger 3, the gas refrigerant releases heat to the frost attached to the outdoor heat exchanger 3. Thereby, the frost adhering to the outdoor heat exchanger 3 is heated and melted by the gas refrigerant from the compressor 2. Thereafter, the refrigerant is sent in the order of the expansion valve 4 and the indoor heat exchanger 5 from the outdoor heat exchanger 3 and returns to the compressor 2 as in the cooling operation.
  • the outdoor heat exchanger 3 includes a gas side refrigerant pipe 9 that guides the refrigerant between the compressor 2 and the outdoor heat exchanger 3 via the four-way valve 6, and the expansion valve 4 and the outdoor heat exchanger 3.
  • a liquid side refrigerant pipe 10 that guides the refrigerant is connected.
  • FIG. 2 is a perspective view showing the outdoor heat exchanger 3 of FIG.
  • the outdoor heat exchanger 3 includes a first heat exchange unit 11 and a second heat exchange unit 12 which are a plurality of (two in this example) heat exchange units.
  • the first heat exchange unit 11 and the second heat exchange unit 12 are sequentially arranged in the direction A of the airflow generated by the operation of the outdoor fan 7. That is, the first heat exchange unit 11 and the second heat exchange unit 12 are adjacent to each other in the airflow direction A.
  • the outdoor heat exchanger 3 when the outdoor fan 7 operates, the air flow of the outdoor air sequentially passes through the first heat exchange unit 11 and the second heat exchange unit 12. That is, in the outdoor heat exchanger 3, the airflow that has passed through the first heat exchange unit 11 passes through the second heat exchange unit 12.
  • the first heat exchange unit 11 includes a first main heat exchange unit 15 and a first sub heat exchange unit 16. Further, the second heat exchange unit 12 includes a second main heat exchange unit 17 and a second sub heat exchange unit 18.
  • the first main heat exchange unit 15 includes a first header 151, a second header 152, and a first main heat exchange unit main body 153 disposed between the first header 151 and the second header 152. ing.
  • the first main heat exchange unit main body 153 includes a first flat tube 154 that is a plurality of heat transfer tubes connecting the first header 151 and the second header 152, and a plurality of plate-like members provided on the plurality of first flat tubes 154.
  • the first heat transfer fins 155 are provided.
  • the length direction of the first flat tube 154 is orthogonal to the direction in which the first heat exchange unit 11 and the second heat exchange unit 12 are arranged, that is, the airflow direction A. Further, the first flat tubes 154 are arranged in parallel to each other. Further, each first flat tube 154 has a direction orthogonal to both the direction in which the first heat exchange unit 11 and the second heat exchange unit 12 are arranged and the length direction of the first flat tube 154 (that is, the top and bottom in FIG. 2). In a row at a distance from each other.
  • each first flat tube 154 when cut along a plane orthogonal to the length direction of the first flat tube 154 has a long axis and a short axis, and the dimension in the long axis direction is the short axis direction.
  • the flat shape is larger than the dimensions.
  • Each first flat tube 154 is arranged such that the minor axis direction of the first flat tube 154 is aligned with the direction in which the first flat tubes 154 are arranged (that is, the vertical direction in FIG. 2).
  • the plurality of first heat transfer fins 155 are arranged at regular intervals in the length direction of the first flat tube 154. In addition, each first heat transfer fin 155 is arranged orthogonal to the length direction of the first flat tube 154. Each first heat transfer fin 155 is formed with a plurality of insertion grooves into which the first flat tubes 154 are inserted. Each first heat transfer fin 155 is fixed to each first flat tube 154 by, for example, brazing or the like with the first flat tube 154 inserted in the insertion groove.
  • Each of the first header 151 and the second header 152 is a hollow cylinder whose both ends are closed and the inside communicates with each first flat tube 154.
  • each of the first header 151 and the second header 152 is a cylindrical tube along the direction in which the plurality of first flat tubes 154 are arranged (that is, the vertical direction in FIG. 2).
  • the second main heat exchange unit 17 includes a third header 171, a fourth header 172, and a second main heat exchange unit main body 173 disposed between the third header 171 and the fourth header 172. ing.
  • the second main heat exchange unit main body 173 includes a plurality of plate-like plates provided on a second flat tube 174 that is a plurality of heat transfer tubes connecting the third header 171 and the fourth header 172, and a plurality of second flat tubes 174.
  • the second heat transfer fins 175 are provided.
  • the length direction of the second flat tube 174 is orthogonal to the direction in which the first heat exchange unit 11 and the second heat exchange unit 12 are arranged, that is, the airflow direction A.
  • the second flat tubes 174 are arranged in parallel to each other. Further, each of the second flat tubes 174 has a direction orthogonal to both the direction in which the first heat exchange units 11 and the second heat exchange units 12 are arranged and the length direction of the second flat tubes 174 (that is, the top and bottom in FIG. 2). In a row at a distance from each other.
  • each second flat tube 174 when cut along a plane orthogonal to the length direction of the second flat tube 174 has a major axis and a minor axis and the dimension in the major axis direction is the minor axis direction.
  • the flat shape is larger than the dimensions.
  • Each of the second flat tubes 174 is arranged such that the minor axis direction of the second flat tubes 174 coincides with the direction in which the second flat tubes 174 are arranged (that is, the vertical direction in FIG. 2).
  • the plurality of second heat transfer fins 175 are arranged at regular intervals in the length direction of the second flat tube 174. Further, each second heat transfer fin 175 is disposed orthogonal to the length direction of the second flat tube 174. Each second heat transfer fin 175 is formed with a plurality of insertion grooves into which the respective second flat tubes 174 are inserted. Each second heat transfer fin 175 is fixed to each second flat tube 174 by, for example, brazing or the like with the second flat tube 174 inserted in the insertion groove.
  • Each of the third header 171 and the fourth header 172 is a hollow cylinder whose both ends are closed and the inside communicates with each second flat tube 174.
  • each of the third header 171 and the fourth header 172 is a cylindrical tube along the direction in which the plurality of second flat tubes 174 are arranged (that is, the vertical direction in FIG. 2).
  • the first sub heat exchange unit 16 includes a fifth header 161, a sixth header 162, and a first sub heat exchange unit main body 163 disposed between the fifth header 161 and the sixth header 162. ing.
  • the first sub heat exchange unit main body 163 includes a plurality of third flat tubes 164 that are a plurality of heat transfer tubes connecting the fifth header 161 and the sixth header 162, and a plurality of plates provided on the plurality of third flat tubes 164. And a third heat transfer fin 165 having a shape.
  • the third flat tube 164 is disposed in parallel with the first flat tube 154 of the first main heat exchange unit main body 153.
  • each third flat tube 164 is arranged in a row following each first flat tube 154 in the same direction as the direction in which the first flat tubes 154 of the first main heat exchange section main body 153 are arranged (that is, the vertical direction in FIG. 2).
  • the outer shape of the cross section of each third flat tube 164 when it is cut along a plane orthogonal to the length direction of the third flat tube 164 has a major axis and a minor axis and the dimension in the major axis direction is a dimension in the minor axis direction. It has a larger flat shape.
  • Each third flat tube 164 is arranged such that the minor axis direction of the third flat tube 164 is aligned with the direction in which the third flat tubes 164 are arranged.
  • the cross-sectional outer shape and the cross-sectional size of each third flat tube 164 of the first sub heat exchange unit main body 163 are the same as the cross-sectional outer shape of each first flat tube 154 of the first main heat exchange unit main body 153 and It is the same size as the cross section.
  • Each third heat transfer fin 165 is formed with a plurality of insertion grooves into which the respective third flat tubes 164 are inserted.
  • Each third heat transfer fin 165 is fixed to each third flat tube 164 by, for example, brazing or the like with the third flat tube 164 inserted into the insertion groove.
  • the portion through which each first flat tube 154 is passed is the first main heat exchange unit main body.
  • the remaining portions through which the respective third flat tubes 164 are passed are the third heat transfer fins 165 of the first auxiliary heat exchange unit main body 163.
  • Each of the fifth header 161 and the sixth header 162 is a hollow cylinder whose both ends are closed and the inside communicates with each third flat tube 164.
  • each of the fifth header 161 and the sixth header 162 is a cylindrical tube along the direction in which the plurality of third flat tubes 164 are arranged.
  • the second sub heat exchange unit 18 includes a seventh header 181, an eighth header 182, and a second sub heat exchange unit main body 183 disposed between the seventh header 181 and the eighth header 182. ing.
  • the second auxiliary heat exchange unit main body 183 includes a fourth flat tube 184 that is a plurality of heat transfer tubes connecting the seventh header 181 and the eighth header 182, and a plurality of plates provided on the plurality of fourth flat tubes 184. And a fourth heat transfer fin 185 having a shape.
  • the fourth flat tube 164 is arranged in parallel with the third flat tube 174 of the second main heat exchange unit main body 173.
  • each fourth flat tube 184 is arranged in a row following each third flat tube 174 in the same direction as the direction in which the third flat tubes 174 of the second main heat exchange unit main body 173 are arranged (that is, the vertical direction in FIG. 2).
  • the outer shape of the cross section of each fourth flat tube 184 when cut along a plane orthogonal to the length direction of the fourth flat tube 184 has a major axis and a minor axis, and the dimension in the major axis direction is a dimension in the minor axis direction. It has a larger flat shape.
  • Each fourth flat tube 184 is arranged such that the minor axis direction of the fourth flat tube 184 is aligned with the direction in which the fourth flat tubes 184 are arranged.
  • the cross-sectional outer shape and the cross-sectional size of each fourth flat tube 184 of the second sub heat exchange unit main body 183 are the same as the cross-sectional outer shape of each second flat tube 174 of the second main heat exchange unit main body 173 and It is the same size as the cross section.
  • Each of the fourth heat transfer fins 185 is formed with a plurality of insertion grooves into which the fourth flat tubes 184 are inserted.
  • Each fourth heat transfer fin 185 is fixed to each fourth flat tube 184 by, for example, brazing or the like with the fourth flat tube 184 inserted in the insertion groove.
  • the portion through which each second flat tube 174 is passed is the second main heat exchange unit main body.
  • the remaining portions through which the fourth flat tubes 184 are passed are used as the fourth heat transfer fins 185 of the second auxiliary heat exchange unit main body 183.
  • Each of the seventh header 181 and the eighth header 182 is a hollow tube whose both ends are closed and the inside communicates with each of the fourth flat tubes 184.
  • each of the seventh header 181 and the eighth header 182 is a cylindrical tube along the direction in which the plurality of fourth flat tubes 184 are arranged.
  • each of the first header 151, the second header 152, the third header 171, the fourth header 172, the fifth header 161, the sixth header 162, the seventh header 181 and the eighth header 182 has a circular cross section.
  • the inner diameters of all are the same. That is, in this example, the cross-sectional areas of the first header 151, the second header 152, the third header 171, the fourth header 172, the fifth header 161, the sixth header 162, the seventh header 181, and the eighth header 182. are all the same in a plane perpendicular to the length direction of the header.
  • the first header 151 and the fifth header 161 are arranged independently of each other, and the third header 171 and the seventh header 181 are also arranged independently of each other. Thereby, the refrigerant does not move directly between the first header 151 and the fifth header 161 and between the third header 171 and the seventh header 181.
  • the first header 151, the fifth header 161, the third header 171 and the seventh header 181 are separate components.
  • the first header 151 and the third header 171 and the fifth header 161 and the seventh header 181 are also independent from each other so that the refrigerant cannot move directly.
  • the first header 151 and the third header 171 communicate with each other via the connection pipe 21. Thereby, in the outdoor heat exchanger 3, the refrigerant can move through the connection pipe 21 between the first header 151 and the third header 171.
  • the U-tube that connects the ends of the first header 151 and the third header 171 is the connection tube 21.
  • the connecting pipe 21, the first header 151, and the third header 171 are formed by bending a single pipe.
  • the cross-sectional area of the 1st and 3rd header 151,171 when it cut disconnects in the plane orthogonal to the length direction of the 1st and 3rd header 151,171, and the length direction of the connecting pipe 21
  • the cross-sectional area of the connecting pipe 21 when cut along a plane orthogonal to the same is the same.
  • the second header 152 and the sixth header 162 are communicated with each other, and the fourth header 172 and the eighth header 182 are also communicated with each other.
  • the second header 152 and the sixth header 162 form a single hollow tube, and the portion of the single hollow tube to which each first flat tube 154 is connected is the second header.
  • the remaining portion to which the third flat tubes 164 are connected is a sixth header 162.
  • the fourth header 172 and the eighth header 182 form a single hollow tube, and the portion where the second flat tubes 174 are connected to the fourth header 172 in the single hollow tube.
  • the remaining portion to which each fourth flat tube 184 is connected is an eighth header 182.
  • the second header 152 and the fourth header 172 are independent from each other so that the refrigerant cannot move directly
  • the sixth header 162 and the eighth header 182 are independent from each other so that the refrigerant cannot move directly. Yes.
  • a plurality of flow paths through which the refrigerant flows are along the length direction of the first to fourth flat tubes 154, 164, 174, 184. Is formed.
  • a plurality of flow paths are arranged in the major axis direction of the first to fourth flat tubes 154,164,174,184.
  • the number of flow paths formed in a common flat tube is the same for each of the first to fourth flat tubes 154, 164, 174, and 184, and the cross-sectional area of each flow path is also the first to the second.
  • the four flat tubes 154, 164, 174, 184 are all the same.
  • the length dimensions of the fifth header 161 and the sixth header 162 are shorter than the length dimensions of the first header 151 and the second header 152, respectively.
  • the lengths of the third header 171 and the fourth header 172 are shorter than the lengths of the seventh header 171 and the eighth header 182, respectively.
  • the number of the 3rd flat tubes 164 of the 1st sub heat exchange part main part 163 is fewer than the number of the 1st flat pipes 154 of the 1st main heat exchange part main part 153. .
  • the number of the fourth flat tubes 184 of the second sub heat exchange unit main body 183 is smaller than the number of the second flat tubes 174 of the second main heat exchange unit main body 173.
  • the volume of the 1st and 2nd sub heat exchange parts 16 and 18 is smaller than the volume of the 1st and 2nd main heat exchange parts 15 and 17. It has become.
  • the first heat exchange unit 11 of the first heat exchange unit 11 that is the most upwind heat exchange unit is used. Only one header 151 is provided with a gas side refrigerant port 22 through which a refrigerant passes.
  • the gas side refrigerant port 22 communicates directly with the first header 151 of the first heat exchange unit 11.
  • a gas side refrigerant pipe 9 is connected to the gas side refrigerant port 22.
  • the fifth header 161 of the first heat exchange unit 11 and the seventh header 181 of the second heat exchange unit 12 are provided with a liquid side refrigerant port 23 through which the refrigerant passes. That is, in the outdoor heat exchanger 3, the liquid side refrigerant ports 23 are individually provided in the first heat exchange unit 11 and the second heat exchange unit 12. Further, in the first heat exchange unit 11, the liquid side refrigerant port 23 communicates with the second header 152 via the first auxiliary heat exchange unit 16, and in the second heat exchange unit 12, the liquid side refrigerant port 23 is connected to the second header 152. It communicates with the inside of the eighth header 182 through the auxiliary heat exchange unit 18.
  • the liquid side refrigerant port 23 is located in the second header 152 without passing through the first header 151 and each first flat tube 154 while avoiding the first header 151 and each first flat tube 154.
  • the liquid side refrigerant port 23 is located in the fourth header 172 without passing through the third header 171 and each second flat tube 174 while avoiding the third header 171 and each second flat tube 174.
  • Communicating with A branch refrigerant pipe 10 a branched from the liquid side refrigerant pipe 10 is connected to each liquid side refrigerant port 23.
  • coolant from each of the 1st heat exchange unit 11 and the 2nd heat exchange unit 12 flows into the liquid side refrigerant pipe 10
  • coolant from the liquid side refrigerant pipe 10 is 1st heat exchange unit 11 and 2nd.
  • the refrigerant passes through each liquid side refrigerant port 23 for each of the first heat exchange unit 11 and the second heat exchange unit 12. Therefore, the supply amount of the refrigerant to the flow paths of the flat tubes 154 and 164 is the first heat exchange unit (of the first heat exchange unit 11 and the second heat exchange unit 12) provided with the gas side refrigerant port 22 ( That is, it becomes the largest in the most upwind heat exchange unit) 11.
  • the material which comprises the outdoor heat exchanger 3 is aluminum or aluminum alloy
  • the material which comprises each of the gas side refrigerant pipe 9, the liquid side refrigerant pipe 10, and the branch refrigerant pipe 10a is copper or It is a copper alloy.
  • the gas side refrigerant pipe 9 is connected to the gas side refrigerant port 22 of the outdoor heat exchanger 3 by torch brazing, and the branch refrigerant pipe 10a is connected to each liquid side refrigerant port 23. Connecting.
  • the outdoor heat exchanger 3 functions as a condenser.
  • the gas refrigerant from the gas-side refrigerant pipe 9 is shared by the first header 151 of the first heat exchange unit 11 that is the most upwind heat exchange unit. It flows into the outdoor heat exchanger 3 only through the gas side refrigerant port 22.
  • the refrigerant flowing into the outdoor heat exchanger 3 is distributed from the first header 151 to the third header 171 of the second heat exchange unit 12 on the lee through the connection pipe 21.
  • the amount of refrigerant supplied to the first heat exchange unit 11 and the second heat exchange unit 12 is greater than that of the second heat exchange unit 12. Is also increased by the first heat exchange unit 11.
  • the refrigerant flows from the first header 151 through the flow path of each first flat tube 154 to the second header 152, and in the second heat exchange unit 12, the refrigerant flows from the third header 171 to each of the first headers 154. 2 flows through the flow path of the flat tube 174 and is sent to the fourth header 172.
  • the liquid refrigerant that has reached the fifth and seventh headers 161 and 181 flows out from each of the first heat exchange unit 11 and the second heat exchange unit 12 to each branch refrigerant pipe 10a through each liquid side refrigerant port 23, The liquid side refrigerant pipe 10 joins.
  • the refrigerant flow during the defrosting operation in the outdoor heat exchanger 3 is the same as during the cooling operation. Accordingly, during the defrosting operation, the high-temperature gas refrigerant flows from the gas-side refrigerant pipe 9 through the common gas-side refrigerant port 22 into the outdoor heat exchanger 3, and the first header 151 and the first header of the first heat exchange unit 11. The refrigerant is distributed to the third header 171 of the two heat exchange unit 12. At this time, similarly to the cooling operation, the amount of refrigerant supplied to the first heat exchange unit 11 and the second heat exchange unit 12 is larger in the first heat exchange unit 11 than in the second heat exchange unit 12. Become.
  • the refrigerant distributed to the third header 151 flows through the flow path of the first flat tube 154, the flow path of the second header 152, the sixth header 162, and the third flat tube 164. It flows in order and reaches the fifth header 161.
  • the refrigerant distributed to the third header 171 flows in the order of the flow path of the second flat tube 174, the flow path of the fourth header 172, the eighth header 182, and the fourth flat tube 184. The flow reaches the seventh header 181. At this time, frost attached to the first heat exchange unit 11 and the second heat exchange unit 12 is melted by the heat of the refrigerant.
  • the refrigerant that has reached the fifth header 161 and the seventh header 181 flows out from each of the first heat exchange unit 11 and the second heat exchange unit 12 to each branch refrigerant pipe 10a through each liquid side refrigerant port 23. Then, the liquid side refrigerant pipe 10 joins.
  • the outdoor heat exchanger 3 functions as an evaporator.
  • the gas-liquid two-phase refrigerant from the liquid side refrigerant pipe 10 passes through each branch refrigerant pipe 10a and the fifth header 161 and the second heat of the first heat exchange unit 11. This is distributed to the seventh header 181 of the exchange unit 12.
  • the refrigerant flows from the fifth header 161 through the flow path of each third flat tube 164 to the sixth header 162, and in the second heat exchange unit 12, the refrigerant passes through the seventh header. From 181, it flows through the flow path of each fourth flat tube 184 and is sent to the eighth header 182.
  • the refrigerant that has reached the sixth and eighth headers 162 and 182 is sent to the second and fourth headers 152 and 172, and the first and second flat tubes 154 from the second and fourth headers 152 and 172. , 174 and sent to the first and third headers 151, 171.
  • heat exchange is performed between the refrigerant and outdoor air, and the refrigerant enters a gas state.
  • the refrigerant of the second heat exchange unit 12 on the leeward side passes through the connection pipe 21 and is the first heat exchange unit that is the most upstream heat exchange unit. It merges with the first header 151 of the unit 11.
  • the refrigerant flows out from the first header 151 of the first heat exchange unit 11 to the gas side refrigerant pipe 9 through the common gas side refrigerant port 22.
  • the first heat exchange unit 11 and the second heat instead of the counterflow that flows through the other flat tubes 154, 164, 174, and 184 of the exchange unit 12, it flows separately through the flat tubes 154, 164, 174, and 184 of the first heat exchange unit 11 and the second heat exchange unit 12.
  • the refrigerant flows in a direct flow that flows out from the outdoor heat exchanger 3 as it is.
  • the gas side refrigerant port 22 is provided only in the first header 151 of the first heat exchange unit 11 which is the most upwind heat exchange unit. Therefore, the amount of refrigerant flowing through the flow paths in the first to fourth flat tubes 154, 164, 174, 184 is larger in the first heat exchange unit 11 than in the second heat exchange unit 12 in the lee.
  • the heat load of the airflow is greater than that of the second heat exchange unit 12 leeward. It becomes large in the upper first heat exchange unit 11.
  • the supply amount of the refrigerant to the first heat exchange unit 11 and the second heat exchange unit 12 becomes an amount according to the heat load in the first heat exchange unit 11 and the second heat exchange unit 12, and the outdoor heat exchange.
  • the vessel 3 functions as either an evaporator or a condenser, the difference in the state (specific enthalpy) of the refrigerant flowing out from the first heat exchange unit 11 and the second heat exchange unit 12 becomes small.
  • the first heat exchange unit 11 that is the most upwind heat exchange unit has refrigerant and air more than the second heat exchange unit 12 leeward.
  • the temperature difference is large, and the speed of the airflow is also large. Therefore, the amount of frost formation during the heating operation in the first heat exchange unit 11 and the second heat exchange unit 12 is larger in the first heat exchange unit 11 than in the second heat exchange unit 12.
  • the supply amount of the high-temperature gas refrigerant to the first heat exchange unit 11 that is the most upwind heat exchange unit during the defrosting operation is increased, and the first heat having the largest amount of frost formation during the heating operation.
  • the replacement unit 11 causes the frost to melt quickly.
  • each of the first to fourth flat tubes 154, 154 is provided.
  • the amount of refrigerant supplied to 164, 174, 184 can be increased by the first heat exchange unit 11 than by the second heat exchange unit 12. That is, the amount of refrigerant supplied to the first and third flat tubes 154 and 164 can be made larger than the amount of refrigerant supplied to the second and fourth flat tubes 174 and 184.
  • the amount of the high-temperature gas refrigerant supplied to the first heat exchange unit 11 is made larger than that of the second heat exchange unit 12, so that the frost in the first heat exchange unit 11 having the largest amount of frost formation. Can be melted quickly.
  • the distance from the gas side refrigerant port 22 to each first flat tube 154 is shortened, so that the heat loss of the refrigerant by the first header 151 during the defrosting operation can be reduced. it can. Thereby, the frost adhering to the outdoor heat exchanger 3 can be efficiently melted, and the defrosting time of the outdoor heat exchanger 3 can be shortened.
  • the location where the gas side refrigerant port 22 is provided is only the first header 151 of the first heat exchange unit 11, the number of the gas side refrigerant ports 22 increases even if the number of heat exchange units is increased. Without increasing the number of refrigerant tubes connected to the outdoor heat exchanger 3. Thereby, the manufacturing time of the outdoor heat exchanger 3 can be shortened and the number of workers can be reduced, and the manufacturing cost of the outdoor heat exchanger 3 can be reduced.
  • FIG. FIG. 3 is a perspective view showing an outdoor heat exchanger 3 according to Embodiment 2 of the present invention.
  • the first header 151 of the first heat exchange unit 11 and the third header 171 of the second heat exchange unit 12 are communicated with each other via a straight connection pipe 21.
  • the connecting pipe 21 is disposed horizontally with the side surfaces of the upper ends of the first header 151 and the third header 171 connected to each other.
  • the cross-sectional area of the connection pipe 21 when cut along a plane orthogonal to the length direction of the connection pipe 21 is the first when cut along the plane orthogonal to the length direction of the first and third headers 151 and 171.
  • the sectional area of the third headers 151 and 171 is smaller.
  • Other configurations are the same as those in the first embodiment.
  • the cross-sectional area of the connection pipe 21 is smaller than the cross-sectional areas of the first and third headers 151, 171, so that the amount of refrigerant passing through the connection pipe 21 is limited.
  • the amount of refrigerant flowing through the first and third flat tubes 154 and 164 of the first heat exchange unit 11 can be determined from the amount of refrigerant flowing through the second and fourth flat tubes 174 and 184 of the second heat exchange unit 12. Can be increased more reliably. Thereby, the improvement of the heat exchange efficiency of the outdoor heat exchanger 3 and shortening of a defrost time can be achieved more reliably.
  • the connecting tube 21 is a straight tube, but the connecting tube 21 may be bent to form a U-shaped tube.
  • the connection pipe 21, the first header 151, and the third header 171 are formed by bending a single cylindrical pipe as in the first embodiment, the cylindrical pipe can be bent only to the minimum bending diameter of the buckling limit of the cylindrical pipe. And the distance between the 1st heat exchange unit 11 and the 2nd heat exchange unit 12 will become large.
  • the connecting pipe 21 by bending the connecting pipe 21 by making the cross-sectional area of the connecting pipe 21 smaller than the first and third headers 151 and 171, the bending diameter when the connecting pipe 21 is bent can be reduced. The distance between the heat exchange unit 11 and the second heat exchange unit 12 can be reduced.
  • the number of heat exchange units of the outdoor heat exchanger 3 is two, ie, the first heat exchange unit 11 and the second heat exchange unit 12, but as shown in FIG.
  • the number of may be three.
  • the number of heat exchange units may be four or more.
  • the connecting pipe 21 is connected between the first and third headers 151 and 171 of each heat exchange unit, and the first and third headers 151 and 171 of adjacent heat exchange units are connected to each other. 21 to communicate with each other.
  • the cross-sectional area of each connecting pipe 21 is made smaller than the cross-sectional areas of the first and third headers 151 and 171.
  • FIG. FIG. 5 is a main part perspective view showing an outdoor heat exchanger 3 according to Embodiment 3 of the present invention.
  • the first header 151 of the first heat exchange unit 11 and the third header 171 of the second heat exchange unit 12 are communicated with each other via a linear connecting pipe 21 that is disposed horizontally.
  • the upper ends of the first and third headers 151 and 171 are connected to the connection pipe 21 from below.
  • the cross-sectional area of the connection pipe 21 when cut along a plane perpendicular to the length direction of the connection pipe 21 is the first and the first when cut along the plane perpendicular to the length direction of the first and third headers 151, 171. This is the same as the cross-sectional area of the three headers 151 and 171.
  • the connecting pipe 21, the first and third headers 151 and 171 are manufactured as parts different from each other and then combined by brazing. That is, the header coupling body in which the connecting pipe 21 and the first and third headers 151 and 171 are integrated is configured by combining the connecting pipe 21 and the first and third headers 151 and 171 as different parts. Yes.
  • FIG. 6 is an enlarged perspective view showing the connecting pipe 21 of FIG.
  • the connecting pipe 21 itself is also configured by combining a plurality of different parts by, for example, brazing. For example, two parts obtained by dividing the connection tube 21 by the dividing surface 41 along the length direction of the connection tube 21 are combined, or the connection tube 21 is divided by the dividing surface 42 orthogonal to the length direction of the connection tube 21 2.
  • the connecting pipe 21 is configured by combining two parts.
  • a throttle part 31 that restricts the amount of refrigerant passing through the connecting pipe 21 is provided.
  • a circular plate-like member provided with a through hole 32 is used as the throttle portion 31.
  • the cross-sectional area of the through hole 32 is smaller than the cross-sectional area of the connection pipe 21.
  • the header coupling body in which the connecting pipe 21 and the first and third headers 151 and 171 are integrated is configured by combining a plurality of different parts, each component of the header coupling body is individually manufactured. And the manufacture of the header assembly can be facilitated.
  • the connecting pipe 21 and the first and third headers 151 and 171 are a plurality of different parts, the connecting pipe 21 may be shorter than the bending diameter when a single cylindrical pipe is bent. it can. Thereby, shortening of the distance between the 1st and 3rd header 151,171 compared with the case where the connection pipe 21, and the 1st and 3rd header 151,171 are formed by bending a single cylindrical tube. Can do.
  • the throttle part 31 can be installed in the connecting pipe 21, and the work of attaching the throttle part 31 in the connecting pipe 21 is facilitated. You can also Thereby, the manufacturing cost of the outdoor heat exchanger 3 can be further reduced.
  • connection pipe 21 is configured by combining a plurality of parts, the work of installing the throttle part 31 in the connection pipe 21 is further facilitated by combining the parts of the connection pipe 21 together with the throttle part 31. be able to. Thereby, the operation
  • the cross-sectional area of the connecting pipe 21 is the same as the cross-sectional areas of the first and third headers 151 and 171, but the cross-sectional area of the connecting pipe 21 is the same as that of the first and third headers 151 and 171.
  • the cross sectional area of the connecting pipe 21 may be larger than those of the first and third headers 151 and 171. Even in this case, the amount of the refrigerant passing through the connecting pipe 21 can be limited by the throttle portion 31.
  • the plate-like member provided with the through hole 32 is used as the throttle 31.
  • the present invention is not limited to this.
  • an expansion valve or a valve may be provided in the connecting pipe 21 as a throttle. .
  • the number of heat exchange units of the outdoor heat exchanger 3 is two, that is, the first heat exchange unit 11 and the second heat exchange unit 12, but as shown in FIG. May be three, or the number of heat exchange units may be four or more.
  • the first and third headers 151 and 171 of each heat exchange unit are connected to the common connection pipe 21, and the first and third headers 151 and 171 are connected to each other via the connection pipe 21.
  • the most upwind heat exchange unit is the first heat exchange unit
  • the second upwind heat exchange unit is the second heat exchange unit.
  • the throttle part 31 may be provided only in a position between the most upwind heat exchange unit and the second upwind heat exchange unit in the connection pipe 21, or the connection pipe 21. You may provide the throttle part 31 in each position between each heat exchange unit.
  • the cross-sectional area of the 1st header 151 of the 1st heat exchanger unit 11 of the windward and the cross-sectional area of the 3rd header 171 of the 2nd heat exchanger unit 12 of the leeward are all the same.
  • the cross-sectional area of the third header 171 on the leeward side may be smaller than the cross-sectional area of the first header 151 on the leeward side. That is, the volume of the third header 171 may be smaller than the volume of the first header 151. In this way, the pressure loss in the third header 171 of the second heat exchange unit 12 leeward can be made larger than the pressure loss in the first header 151 of the first heat exchange unit 11 leeward.
  • the supply amount of the refrigerant to the first and third flat tubes 154 and 164 of the first heat exchange unit 11 on the windward side is changed to the second and fourth flat tubes 174 and 184 of the second heat exchange unit 12 on the leeward side. It can be made larger than the supply amount of the refrigerant. Moreover, the heat capacity of the 3rd header 171 can be made smaller than the heat capacity of the 1st header 151, and the heat radiation loss in the 1st header 151 of the 2nd heat exchange unit 12 of a leeward can be made small. Thereby, the improvement of the heat exchange efficiency of the outdoor heat exchanger 3 and shortening of a defrost time can be aimed at.
  • the header coupling body in which the connecting pipe 21, the first header 151, and the third header 171 are integrated is configured by combining a plurality of components. Also good.
  • the header linked body may be configured by combining the parts.
  • the throttle part 31 of the third embodiment may be installed in the connecting pipe 21 of the first and second embodiments.
  • the amount of the refrigerant flowing through the first and third flat tubes 154 and 164 of the first heat exchange unit 11 on the windward side is set to the first and third flat tubes 174 of the second heat exchange unit 12 on the leeward side.
  • 184 can be more reliably increased than the amount of the refrigerant flowing through.
  • the connecting pipe 21 may be configured by combining a plurality of different parts.
  • connection pipe 21 is connected between the upper ends of the first and third headers 151 and 171, but the connection pipe 21 is connected between the lower ends of the first and third headers 151 and 171. May be connected, or the connecting pipe 21 may be connected between intermediate portions of the first and third headers 151 and 171.
  • the 1st heat exchange unit 11 has the 1st main heat exchange part 15 and the 1st sub heat exchange part 16, and the 2nd heat exchange unit 12 is the 2nd main heat exchange part 17.
  • the liquid-side refrigerant port 23 is provided in the second header 152 of the first heat exchange unit 11 and the fourth header 172 of the second heat exchange unit 12.
  • the liquid side refrigerant port 23 is connected to the first and third headers 151, 171 and the first and second flat tubes 154, 174. It communicates directly with the second and fourth headers 152 and 172 without intervention.
  • the first and fifth headers 151 and 161 are arranged as different parts, and the third and seventh headers 171 and 181 are arranged as different parts.
  • One of the two space portions formed by partitioning the inside of the tube with a partition plate is a first header and the other is a fifth header, and one of the two space portions formed by partitioning a single cylindrical tube with a partition plate is a third header.
  • the other may be the seventh header.
  • a part of a single cylindrical tube is a second header 152 and the remaining part is a sixth header 162.
  • the second header 152 and the sixth header 162 are connected to each other.
  • the second header 152 and the sixth header 162 may be separated from each other and communicated with each other via a communication pipe.
  • the fourth header 172 and the eighth header 182 may be separately disposed as different parts, and the fourth header 172 and the eighth header 182 may be communicated with each other via a communication pipe.
  • the 1st main heat exchange part main body 153 and the 1st sub heat exchange part main body 163 are connected, the 1st main heat exchange part main body 153 and the 1st sub heat exchange part main body 163 are connected. And may be arranged apart from each other.
  • the second main heat exchange unit main body 173 and the second sub heat exchange unit main body 173 may be separated and arranged apart from each other.
  • the present invention is not limited to this, and the first header 151, the second header 152, the third header 171, the fourth header 172, the fifth header 161, the sixth header 162, and the seventh header are not limited to this.
  • the cross-sectional shapes of the 181 and the eighth header 182 may be, for example, rectangular.
  • coolant ports 22 provided only in the 1st header 151 of the 1st heat exchange unit 11 most windward is made into one, 1st heat exchange
  • the number of the gas side refrigerant ports 22 provided only in the first header 151 of the unit 11 may be plural.
  • the present invention is applied to the outdoor heat exchanger 3, but the present invention may be applied to the indoor heat exchanger 5.
  • this invention is applied to the outdoor heat exchanger 3 contained in the air conditioner 1 as a refrigerating cycle apparatus, it is not limited to this, For example, as a refrigerating cycle apparatus You may apply this invention to the heat exchanger contained in a refrigerator, a freezer, a water heater, etc.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. Furthermore, the present invention can also be implemented by combining the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

This heat exchanger has a first heat exchanging unit, and a second heat exchanging unit which an air current passes through after passing through the first heat exchanging unit. The first heat exchanging unit has a hollow first header, a hollow second header, and a first flat tube connecting between the first and second headers. The second heat exchanging unit has a hollow third header, a hollow fourth header, and a second flat tube connecting between the third and fourth headers. Flow channels for flowing a cooling medium are formed inside of the first and second flat tubes, respectively. The first header and the third header are in communication with each other via a connecting tube. The second header and the fourth header are independent from each other. In the heat exchanger, a gas-side cooling medium port is provided only in the first header.

Description

熱交換器、及び冷凍サイクル装置Heat exchanger and refrigeration cycle apparatus
 この発明は、冷媒を流す流路が内部に形成されている扁平管を有する熱交換器、及び冷凍サイクル装置に関するものである。 The present invention relates to a heat exchanger having a flat tube in which a flow path for flowing a refrigerant is formed, and a refrigeration cycle apparatus.
 従来、一対のヘッダ集合管と、一対のヘッダ集合管同士を接続する複数の扁平管とを有する熱交換パネルを備えた熱交換器が知られている。従来の熱交換器では、熱交換パネルに空気を通過させながら各扁平管内の流路に冷媒を流すことにより、冷媒と空気との間で熱交換を行う。また、従来の熱交換器では、扁平管に生じた霜を融かす除霜運転の時間を短縮するために、熱交換パネルの下部に溜まった液冷媒の排出を促進する技術が提案されている(例えば、特許文献1参照)。 Conventionally, a heat exchanger provided with a heat exchange panel having a pair of header collecting pipes and a plurality of flat tubes connecting the pair of header collecting pipes is known. In the conventional heat exchanger, heat is exchanged between the refrigerant and air by flowing the refrigerant through the flow path in each flat tube while allowing air to pass through the heat exchange panel. Moreover, in the conventional heat exchanger, in order to shorten the time of the defrosting operation which melts the frost generated in the flat tube, a technique for promoting the discharge of the liquid refrigerant accumulated in the lower part of the heat exchange panel has been proposed. (For example, refer to Patent Document 1).
国際公開第2013/161331号International Publication No. 2013/161331
 熱交換器の熱交換性能の向上を図るためには、空気の流れの方向へ2枚以上の熱交換パネルを並べることが考えられる。しかし、特許文献1に示されている従来の熱交換器では、2枚以上の熱交換パネルを並べると、風上の熱交換パネルの熱負荷が風下の熱交換パネルの熱負荷よりも大きくなるので、風下の熱交換パネルでの熱交換量が風上の熱交換パネルでの熱交換量よりも少なくなってしまう。各熱交換パネルに流れる冷媒の量は同じであることから、各熱交換パネルでの熱交換効率にアンバランスが生じてしまい、熱交換器全体での熱交換性能の向上を図ることができない。 In order to improve the heat exchange performance of the heat exchanger, it is conceivable to arrange two or more heat exchange panels in the direction of air flow. However, in the conventional heat exchanger shown in Patent Document 1, when two or more heat exchange panels are arranged, the heat load of the windward heat exchange panel is larger than the heat load of the leeward heat exchange panel. Therefore, the heat exchange amount in the leeward heat exchange panel is smaller than the heat exchange amount in the leeward heat exchange panel. Since the amount of refrigerant flowing through each heat exchange panel is the same, an unbalance occurs in the heat exchange efficiency in each heat exchange panel, and the heat exchange performance of the entire heat exchanger cannot be improved.
 また、特許文献1に示されている従来の熱交換器では、熱交換パネルの数の増加分だけ、ヘッダ集合管に接続する冷媒管の数も増加してしまい、熱交換器の生産効率が低下してしまうとともに製造コストが増加してしまう。 Moreover, in the conventional heat exchanger shown in Patent Document 1, the number of refrigerant pipes connected to the header collecting pipe is increased by the increase in the number of heat exchange panels, and the production efficiency of the heat exchanger is increased. The manufacturing cost increases as well as decreasing.
 この発明は、上記のような課題を解決するためになされたものであり、熱交換性能の向上を図ることができるとともに、製造コストの低減化を図ることができる熱交換器、及び冷凍サイクル装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and is capable of improving the heat exchange performance and reducing the manufacturing cost, and the refrigeration cycle apparatus. The purpose is to obtain.
 この発明による熱交換器は、第1熱交換ユニットと、第1熱交換ユニットを通過した後の気流が通過する第2熱交換ユニットとを備え、第1熱交換ユニットは、中空の第1ヘッダと、中空の第2ヘッダと、第1及び第2ヘッダ間を繋ぐ第1扁平管とを有し、第2熱交換ユニットは、中空の第3ヘッダと、中空の第4ヘッダと、第3及び第4ヘッダ間を繋ぐ第2扁平管とを有し、第1及び第2扁平管の内部には、冷媒を流す流路が形成され、第1ヘッダと第3ヘッダとは、接続管を介して互いに連通され、第2ヘッダと第4ヘッダとは、互いに独立しており、第1ヘッダにのみ、ガス側冷媒口が設けられている。 The heat exchanger according to the present invention includes a first heat exchange unit and a second heat exchange unit through which the airflow after passing through the first heat exchange unit passes. The first heat exchange unit has a hollow first header. And a hollow second header and a first flat tube connecting the first and second headers, and the second heat exchange unit includes a hollow third header, a hollow fourth header, and a third And a second flat tube connecting between the fourth headers, and a flow path through which the coolant flows is formed inside the first and second flat tubes, and the first header and the third header are connected to the connection pipe. The second header and the fourth header are independent from each other, and the gas side refrigerant port is provided only in the first header.
 この発明による熱交換器、及び冷凍サイクル装置によれば、第1熱交換ユニットを通過した後の気流が第2熱交換ユニットを通過するようになっており、第1熱交換ユニットの第1ヘッダにのみ、ガス側冷媒口が設けられているので、扁平管への冷媒の供給量を、風下の第2熱交換ユニットよりも風上の第1熱交換ユニットで多くすることができる。これにより、熱交換器の熱交換性能の向上を図ることができる。また、熱交換ユニットの数を増やしても、ガス側冷媒口の数が増えることがなく、熱交換器に接続する冷媒管の数の増加を抑制することができ、熱交換器の製造コストの低減化を図ることができる。 According to the heat exchanger and the refrigeration cycle apparatus according to the present invention, the airflow after passing through the first heat exchange unit passes through the second heat exchange unit, and the first header of the first heat exchange unit Since only the gas side refrigerant port is provided, the supply amount of the refrigerant to the flat tube can be increased in the first heat exchange unit on the windward side than the second heat exchange unit on the leeward side. Thereby, the heat exchange performance of the heat exchanger can be improved. Further, even if the number of heat exchange units is increased, the number of gas side refrigerant ports does not increase, and an increase in the number of refrigerant tubes connected to the heat exchanger can be suppressed, which reduces the manufacturing cost of the heat exchanger. Reduction can be achieved.
この発明の実施の形態1による空気調和機を示す模式的な構成図である。It is a typical block diagram which shows the air conditioner by Embodiment 1 of this invention. 図1の室外熱交換器を示す斜視図である。It is a perspective view which shows the outdoor heat exchanger of FIG. この発明の実施の形態2による室外熱交換器を示す斜視図である。It is a perspective view which shows the outdoor heat exchanger by Embodiment 2 of this invention. この発明の実施の形態2による室外熱交換器の他の例を示す要部側面図である。It is a principal part side view which shows the other example of the outdoor heat exchanger by Embodiment 2 of this invention. この発明の実施の形態3による室外熱交換器を示す要部斜視図である。It is a principal part perspective view which shows the outdoor heat exchanger by Embodiment 3 of this invention. 図5の接続管を示す拡大斜視図である。It is an expansion perspective view which shows the connecting pipe of FIG. この発明の実施の形態3による室外熱交換器の他の例を示す要部側面図である。It is a principal part side view which shows the other example of the outdoor heat exchanger by Embodiment 3 of this invention.
 以下、この発明の好適な実施の形態について図面を参照して説明する。
 実施の形態1.
 本実施の形態では、冷凍サイクル装置の具体例として空気調和機について説明する。図1は、この発明の実施の形態1による空気調和機を示す模式的な構成図である。空気調和機1は、圧縮機2、室外熱交換器3、膨張弁4、室内熱交換器5及び四方弁6を有している。この例では、圧縮機2、室外熱交換器3、膨張弁4及び四方弁6が室外機に設けられ、室内熱交換器5が室内機に設けられている。
Preferred embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
In the present embodiment, an air conditioner will be described as a specific example of the refrigeration cycle apparatus. FIG. 1 is a schematic configuration diagram showing an air conditioner according to Embodiment 1 of the present invention. The air conditioner 1 includes a compressor 2, an outdoor heat exchanger 3, an expansion valve 4, an indoor heat exchanger 5, and a four-way valve 6. In this example, the compressor 2, the outdoor heat exchanger 3, the expansion valve 4 and the four-way valve 6 are provided in the outdoor unit, and the indoor heat exchanger 5 is provided in the indoor unit.
 圧縮機2、室外熱交換器3、膨張弁4、室内熱交換器5及び四方弁6は、冷媒管を介して互いに接続されることにより、冷媒が循環可能な冷媒回路を構成している。空気調和機1では、圧縮機2が駆動することにより、圧縮機2、室外熱交換器3、膨張弁4及び室内熱交換器5を冷媒が相変化しながら循環する冷凍サイクルが行われる。 The compressor 2, the outdoor heat exchanger 3, the expansion valve 4, the indoor heat exchanger 5 and the four-way valve 6 are connected to each other via a refrigerant pipe, thereby constituting a refrigerant circuit capable of circulating the refrigerant. In the air conditioner 1, when the compressor 2 is driven, a refrigeration cycle is performed in which the refrigerant circulates through the compressor 2, the outdoor heat exchanger 3, the expansion valve 4, and the indoor heat exchanger 5 while phase-changing.
 室外機には、室外熱交換器3に室外の空気を強制的に通過させる室外ファン7が設けられている。室外熱交換器3は、室外ファン7の動作によって生じた室外の空気の気流と冷媒との間で熱交換を行う。室内機には、室内熱交換器5に室内の空気を強制的に通過させる室内ファン8が設けられている。室内熱交換器5は、室内ファン8の動作によって生じた室内の空気の気流と冷媒との間で熱交換を行う。 The outdoor unit is provided with an outdoor fan 7 that forcibly passes outdoor air through the outdoor heat exchanger 3. The outdoor heat exchanger 3 performs heat exchange between the outdoor airflow generated by the operation of the outdoor fan 7 and the refrigerant. The indoor unit is provided with an indoor fan 8 that forcibly passes room air through the indoor heat exchanger 5. The indoor heat exchanger 5 performs heat exchange between the airflow of indoor air generated by the operation of the indoor fan 8 and the refrigerant.
 空気調和機1の運転は、室内の空気を冷やす冷房運転と、室内の空気を暖める暖房運転と、室外熱交換器3に付着した霜を融かす除霜運転との間で切り替え可能になっている。四方弁6は、空気調和機1の冷房運転、暖房運転及び除霜運転の切り替えに応じて冷媒流路を切り替える電磁弁である。四方弁6は、冷房運転時及び除霜運転時に、圧縮機2からの冷媒を室外熱交換器3へ導くとともに室内熱交換器5からの冷媒を圧縮機2へ導き、暖房運転時に、圧縮機2からの冷媒を室内熱交換器5へ導くとともに室外熱交換器3からの冷媒を圧縮機2へ導く。図1では、冷房運転時及び除霜運転時の冷媒の流れの方向を破線の矢印で示し、暖房運転時の冷媒の流れの方向を実線の矢印で示している。 The operation of the air conditioner 1 can be switched between a cooling operation for cooling indoor air, a heating operation for heating indoor air, and a defrosting operation for melting frost attached to the outdoor heat exchanger 3. Yes. The four-way valve 6 is an electromagnetic valve that switches the refrigerant flow path according to switching between the cooling operation, the heating operation, and the defrosting operation of the air conditioner 1. The four-way valve 6 guides the refrigerant from the compressor 2 to the outdoor heat exchanger 3 and the refrigerant from the indoor heat exchanger 5 to the compressor 2 during the cooling operation and the defrosting operation. The refrigerant from 2 is led to the indoor heat exchanger 5 and the refrigerant from the outdoor heat exchanger 3 is led to the compressor 2. In FIG. 1, the direction of the refrigerant flow during the cooling operation and the defrosting operation is indicated by a dashed arrow, and the direction of the refrigerant flow during the heating operation is indicated by a solid arrow.
 空気調和機1の冷房運転時には、圧縮機2で圧縮された冷媒が、室外熱交換器3へ送られる。室外熱交換器3では、室外ファン7の動作によって生じた室外の空気の気流と冷媒との間で熱交換が行われる。これにより、室外熱交換器3では、冷媒が室外の空気へ熱を放出して凝縮される。この後、冷媒は、膨張弁4へ送られ、膨張弁4で減圧された後、室内熱交換器5へ送られる。室内熱交換器5では、室内ファン8の動作によって生じた室内の空気の気流と冷媒との間で熱交換が行われる。これにより、室内熱交換器5では、冷媒が室内の空気から熱を取り込んで蒸発する。この後、冷媒は、室内熱交換器5から圧縮機2へ戻る。従って、空気調和機1の冷房運転時には、室外熱交換器3が凝縮器として機能し、室内熱交換器5が蒸発器として機能する。 During the cooling operation of the air conditioner 1, the refrigerant compressed by the compressor 2 is sent to the outdoor heat exchanger 3. In the outdoor heat exchanger 3, heat exchange is performed between the airflow of the outdoor air generated by the operation of the outdoor fan 7 and the refrigerant. Thereby, in the outdoor heat exchanger 3, a refrigerant | coolant discharge | releases heat to outdoor air and is condensed. Thereafter, the refrigerant is sent to the expansion valve 4, decompressed by the expansion valve 4, and then sent to the indoor heat exchanger 5. In the indoor heat exchanger 5, heat exchange is performed between the airflow of indoor air generated by the operation of the indoor fan 8 and the refrigerant. Thereby, in the indoor heat exchanger 5, a refrigerant takes in heat from indoor air and evaporates. Thereafter, the refrigerant returns from the indoor heat exchanger 5 to the compressor 2. Therefore, during the cooling operation of the air conditioner 1, the outdoor heat exchanger 3 functions as a condenser, and the indoor heat exchanger 5 functions as an evaporator.
 空気調和機1の暖房運転時には、圧縮機2で圧縮された冷媒が、室内熱交換器5へ送られる。室内熱交換器5では、室内ファン8の動作によって生じた室内の空気の気流と冷媒との間で熱交換が行われる。これにより、室内熱交換器5では、冷媒が室内の空気へ熱を放出して凝縮される。この後、冷媒は、膨張弁4へ送られ、膨張弁4で減圧された後、室外熱交換器3へ送られる。室外熱交換器3では、室外ファン7の動作によって生じた室外の空気の気流と冷媒との間で熱交換が行われる。これにより、室外熱交換器3では、冷媒が室外の空気から熱を取り込んで蒸発する。この後、冷媒は、室外熱交換器3から圧縮機2へ戻る。従って、空気調和機1の暖房運転時には、室外熱交換器3が蒸発器として機能し、室内熱交換器5が凝縮器として機能する。 During the heating operation of the air conditioner 1, the refrigerant compressed by the compressor 2 is sent to the indoor heat exchanger 5. In the indoor heat exchanger 5, heat exchange is performed between the airflow of indoor air generated by the operation of the indoor fan 8 and the refrigerant. Thereby, in the indoor heat exchanger 5, a refrigerant | coolant discharge | releases heat to indoor air and is condensed. Thereafter, the refrigerant is sent to the expansion valve 4, decompressed by the expansion valve 4, and then sent to the outdoor heat exchanger 3. In the outdoor heat exchanger 3, heat exchange is performed between the airflow of the outdoor air generated by the operation of the outdoor fan 7 and the refrigerant. Thereby, in the outdoor heat exchanger 3, a refrigerant takes in heat from outdoor air and evaporates. Thereafter, the refrigerant returns from the outdoor heat exchanger 3 to the compressor 2. Therefore, during the heating operation of the air conditioner 1, the outdoor heat exchanger 3 functions as an evaporator, and the indoor heat exchanger 5 functions as a condenser.
 暖房運転時には、室外の空気に含まれる水分が霜となって室外熱交換器3に付着することがある。室外熱交換器3に霜が付着すると、室外の空気と冷媒との間の熱交換が霜によって阻害され、空気調和機1の暖房効率が低下する。従って、空気調和機1では、室外熱交換器3に一定以上の霜が付着すると、暖房運転が一旦停止されて、室外熱交換器3に付着した霜を融かす除霜運転が行われる。 During heating operation, moisture contained in outdoor air may become frost and adhere to the outdoor heat exchanger 3. When frost adheres to the outdoor heat exchanger 3, heat exchange between the outdoor air and the refrigerant is inhibited by the frost, and the heating efficiency of the air conditioner 1 is reduced. Therefore, in the air conditioner 1, when a certain amount or more of frost adheres to the outdoor heat exchanger 3, the heating operation is temporarily stopped, and a defrosting operation for melting the frost adhering to the outdoor heat exchanger 3 is performed.
 空気調和機1の除霜運転時には、室外ファン7及び室内ファン8のそれぞれの動作が停止される。また、除霜運転時には、四方弁6が冷房運転時と同じ状態に切り替わる。これにより、除霜運転時に圧縮機2が駆動されると、冷媒の流れが冷房運転時と同じ流れになる。即ち、除霜運転時には、圧縮機2から吐出した高温高圧のガス冷媒が室外熱交換器3へ供給される。室外熱交換器3では、室外熱交換器3に付着した霜へガス冷媒が熱を放出する。これにより、室外熱交換器3に付着した霜は、圧縮機2からのガス冷媒で暖められて融ける。この後、冷媒は、冷房運転時と同様に、室外熱交換器3から膨張弁4及び室内熱交換器5の順に送られ、圧縮機2へ戻る。 During the defrosting operation of the air conditioner 1, the operations of the outdoor fan 7 and the indoor fan 8 are stopped. Further, during the defrosting operation, the four-way valve 6 is switched to the same state as during the cooling operation. Thus, when the compressor 2 is driven during the defrosting operation, the refrigerant flows in the same flow as during the cooling operation. That is, during the defrosting operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 is supplied to the outdoor heat exchanger 3. In the outdoor heat exchanger 3, the gas refrigerant releases heat to the frost attached to the outdoor heat exchanger 3. Thereby, the frost adhering to the outdoor heat exchanger 3 is heated and melted by the gas refrigerant from the compressor 2. Thereafter, the refrigerant is sent in the order of the expansion valve 4 and the indoor heat exchanger 5 from the outdoor heat exchanger 3 and returns to the compressor 2 as in the cooling operation.
 室外熱交換器3には、圧縮機2と室外熱交換器3との間で四方弁6を介して冷媒を導くガス側冷媒管9と、膨張弁4と室外熱交換器3との間で冷媒を導く液側冷媒管10とが接続されている。 The outdoor heat exchanger 3 includes a gas side refrigerant pipe 9 that guides the refrigerant between the compressor 2 and the outdoor heat exchanger 3 via the four-way valve 6, and the expansion valve 4 and the outdoor heat exchanger 3. A liquid side refrigerant pipe 10 that guides the refrigerant is connected.
 図2は、図1の室外熱交換器3を示す斜視図である。室外熱交換器3は、複数(この例では、2つ)の熱交換ユニットである第1熱交換ユニット11及び第2熱交換ユニット12を有している。第1熱交換ユニット11及び第2熱交換ユニット12は、室外ファン7の動作によって生じる気流の方向Aへ順次並べられている。即ち、第1熱交換ユニット11及び第2熱交換ユニット12は、気流の方向Aについて互いに隣り合っている。これにより、室外熱交換器3では、室外ファン7が動作すると、室外の空気の気流が第1熱交換ユニット11及び第2熱交換ユニット12を順次通過する。即ち、室外熱交換器3では、第1熱交換ユニット11を通過した気流が第2熱交換ユニット12を通過する。 FIG. 2 is a perspective view showing the outdoor heat exchanger 3 of FIG. The outdoor heat exchanger 3 includes a first heat exchange unit 11 and a second heat exchange unit 12 which are a plurality of (two in this example) heat exchange units. The first heat exchange unit 11 and the second heat exchange unit 12 are sequentially arranged in the direction A of the airflow generated by the operation of the outdoor fan 7. That is, the first heat exchange unit 11 and the second heat exchange unit 12 are adjacent to each other in the airflow direction A. Thereby, in the outdoor heat exchanger 3, when the outdoor fan 7 operates, the air flow of the outdoor air sequentially passes through the first heat exchange unit 11 and the second heat exchange unit 12. That is, in the outdoor heat exchanger 3, the airflow that has passed through the first heat exchange unit 11 passes through the second heat exchange unit 12.
 第1熱交換ユニット11は、第1主熱交換部15と、第1副熱交換部16とを有している。また、第2熱交換ユニット12は、第2主熱交換部17と、第2副熱交換部18とを有している。 The first heat exchange unit 11 includes a first main heat exchange unit 15 and a first sub heat exchange unit 16. Further, the second heat exchange unit 12 includes a second main heat exchange unit 17 and a second sub heat exchange unit 18.
 第1主熱交換部15は、第1ヘッダ151と、第2ヘッダ152と、第1ヘッダ151と第2ヘッダ152との間に配置されている第1主熱交換部本体153とを有している。 The first main heat exchange unit 15 includes a first header 151, a second header 152, and a first main heat exchange unit main body 153 disposed between the first header 151 and the second header 152. ing.
 第1主熱交換部本体153は、第1ヘッダ151及び第2ヘッダ152間を繋ぐ複数の伝熱管である第1扁平管154と、複数の第1扁平管154に設けられた複数の板状の第1伝熱フィン155とを有している。 The first main heat exchange unit main body 153 includes a first flat tube 154 that is a plurality of heat transfer tubes connecting the first header 151 and the second header 152, and a plurality of plate-like members provided on the plurality of first flat tubes 154. The first heat transfer fins 155 are provided.
 第1扁平管154の長さ方向は、第1熱交換ユニット11及び第2熱交換ユニット12が並ぶ方向、即ち気流の方向Aと直交している。また、各第1扁平管154は、互いに平行に配置されている。さらに、各第1扁平管154は、第1熱交換ユニット11及び第2熱交換ユニット12が並ぶ方向及び第1扁平管154の長さ方向のいずれにも直交する方向(即ち、図2の上下方向)へ互いに間隔を置いて一列に並べられている。さらにまた、第1扁平管154の長さ方向に直交する平面で切断したときの各第1扁平管154の断面の外形は、長軸及び短軸を持ち長軸方向の寸法が短軸方向の寸法よりも大きい扁平状になっている。各第1扁平管154は、第1扁平管154が並ぶ方向(即ち、図2の上下方向)に第1扁平管154の短軸方向を一致させて配置されている。 The length direction of the first flat tube 154 is orthogonal to the direction in which the first heat exchange unit 11 and the second heat exchange unit 12 are arranged, that is, the airflow direction A. Further, the first flat tubes 154 are arranged in parallel to each other. Further, each first flat tube 154 has a direction orthogonal to both the direction in which the first heat exchange unit 11 and the second heat exchange unit 12 are arranged and the length direction of the first flat tube 154 (that is, the top and bottom in FIG. 2). In a row at a distance from each other. Furthermore, the outer shape of the cross section of each first flat tube 154 when cut along a plane orthogonal to the length direction of the first flat tube 154 has a long axis and a short axis, and the dimension in the long axis direction is the short axis direction. The flat shape is larger than the dimensions. Each first flat tube 154 is arranged such that the minor axis direction of the first flat tube 154 is aligned with the direction in which the first flat tubes 154 are arranged (that is, the vertical direction in FIG. 2).
 複数の第1伝熱フィン155は、第1扁平管154の長さ方向へ一定の間隔で配列されている。また、各第1伝熱フィン155は、第1扁平管154の長さ方向に直交して配置されている。各第1伝熱フィン155には、各第1扁平管154が挿入された複数の挿入溝が形成されている。各第1伝熱フィン155は、挿入溝に第1扁平管154を挿入した状態で例えばろう付け等により各第1扁平管154に固定されている。 The plurality of first heat transfer fins 155 are arranged at regular intervals in the length direction of the first flat tube 154. In addition, each first heat transfer fin 155 is arranged orthogonal to the length direction of the first flat tube 154. Each first heat transfer fin 155 is formed with a plurality of insertion grooves into which the first flat tubes 154 are inserted. Each first heat transfer fin 155 is fixed to each first flat tube 154 by, for example, brazing or the like with the first flat tube 154 inserted in the insertion groove.
 第1ヘッダ151には第1主熱交換部本体153のすべての第1扁平管154の一端部が接続され、第2ヘッダ152には第1主熱交換部本体153のすべての第1扁平管154の他端部が接続されている。第1ヘッダ151及び第2ヘッダ152のそれぞれは、両端部が閉塞され各第1扁平管154内に内部が連通する中空の筒である。この例では、第1ヘッダ151及び第2ヘッダ152のそれぞれが、複数の第1扁平管154が並ぶ方向(即ち、図2の上下方向)に沿った円筒管になっている。 One end of all the first flat tubes 154 of the first main heat exchange unit main body 153 is connected to the first header 151, and all the first flat tubes of the first main heat exchange unit main body 153 are connected to the second header 152. The other end of 154 is connected. Each of the first header 151 and the second header 152 is a hollow cylinder whose both ends are closed and the inside communicates with each first flat tube 154. In this example, each of the first header 151 and the second header 152 is a cylindrical tube along the direction in which the plurality of first flat tubes 154 are arranged (that is, the vertical direction in FIG. 2).
 第2主熱交換部17は、第3ヘッダ171と、第4ヘッダ172と、第3ヘッダ171と第4ヘッダ172との間に配置されている第2主熱交換部本体173とを有している。 The second main heat exchange unit 17 includes a third header 171, a fourth header 172, and a second main heat exchange unit main body 173 disposed between the third header 171 and the fourth header 172. ing.
 第2主熱交換部本体173は、第3ヘッダ171及び第4ヘッダ172間を繋ぐ複数の伝熱管である第2扁平管174と、複数の第2扁平管174に設けられた複数の板状の第2伝熱フィン175とを有している。 The second main heat exchange unit main body 173 includes a plurality of plate-like plates provided on a second flat tube 174 that is a plurality of heat transfer tubes connecting the third header 171 and the fourth header 172, and a plurality of second flat tubes 174. The second heat transfer fins 175 are provided.
 第2扁平管174の長さ方向は、第1熱交換ユニット11及び第2熱交換ユニット12が並ぶ方向、即ち気流の方向Aと直交している。また、各第2扁平管174は、互いに平行に配置されている。さらに、各第2扁平管174は、第1熱交換ユニット11及び第2熱交換ユニット12が並ぶ方向及び第2扁平管174の長さ方向のいずれにも直交する方向(即ち、図2の上下方向)へ互いに間隔を置いて一列に並べられている。さらにまた、第2扁平管174の長さ方向に直交する平面で切断したときの各第2扁平管174の断面の外形は、長軸及び短軸を持ち長軸方向の寸法が短軸方向の寸法よりも大きい扁平状になっている。各第2扁平管174は、第2扁平管174が並ぶ方向(即ち、図2の上下方向)に第2扁平管174の短軸方向を一致させて配置されている。 The length direction of the second flat tube 174 is orthogonal to the direction in which the first heat exchange unit 11 and the second heat exchange unit 12 are arranged, that is, the airflow direction A. The second flat tubes 174 are arranged in parallel to each other. Further, each of the second flat tubes 174 has a direction orthogonal to both the direction in which the first heat exchange units 11 and the second heat exchange units 12 are arranged and the length direction of the second flat tubes 174 (that is, the top and bottom in FIG. 2). In a row at a distance from each other. Furthermore, the outer shape of the cross section of each second flat tube 174 when cut along a plane orthogonal to the length direction of the second flat tube 174 has a major axis and a minor axis and the dimension in the major axis direction is the minor axis direction. The flat shape is larger than the dimensions. Each of the second flat tubes 174 is arranged such that the minor axis direction of the second flat tubes 174 coincides with the direction in which the second flat tubes 174 are arranged (that is, the vertical direction in FIG. 2).
 複数の第2伝熱フィン175は、第2扁平管174の長さ方向へ一定の間隔で配列されている。また、各第2伝熱フィン175は、第2扁平管174の長さ方向に直交して配置されている。各第2伝熱フィン175には、各第2扁平管174が挿入された複数の挿入溝が形成されている。各第2伝熱フィン175は、挿入溝に第2扁平管174を挿入した状態で例えばろう付け等により各第2扁平管174に固定されている。 The plurality of second heat transfer fins 175 are arranged at regular intervals in the length direction of the second flat tube 174. Further, each second heat transfer fin 175 is disposed orthogonal to the length direction of the second flat tube 174. Each second heat transfer fin 175 is formed with a plurality of insertion grooves into which the respective second flat tubes 174 are inserted. Each second heat transfer fin 175 is fixed to each second flat tube 174 by, for example, brazing or the like with the second flat tube 174 inserted in the insertion groove.
 第3ヘッダ171には第2主熱交換部本体173のすべての第2扁平管174の一端部が接続され、第4ヘッダ172には第2主熱交換部本体173のすべての第2扁平管174の他端部が接続されている。第3ヘッダ171及び第4ヘッダ172のそれぞれは、両端部が閉塞され各第2扁平管174内に内部が連通する中空の筒である。この例では、第3ヘッダ171及び第4ヘッダ172のそれぞれが、複数の第2扁平管174が並ぶ方向(即ち、図2の上下方向)に沿った円筒管になっている。 One end of all the second flat tubes 174 of the second main heat exchange unit main body 173 is connected to the third header 171, and all the second flat tubes of the second main heat exchange unit main body 173 are connected to the fourth header 172. The other end of 174 is connected. Each of the third header 171 and the fourth header 172 is a hollow cylinder whose both ends are closed and the inside communicates with each second flat tube 174. In this example, each of the third header 171 and the fourth header 172 is a cylindrical tube along the direction in which the plurality of second flat tubes 174 are arranged (that is, the vertical direction in FIG. 2).
 第1副熱交換部16は、第5ヘッダ161と、第6ヘッダ162と、第5ヘッダ161と第6ヘッダ162との間に配置されている第1副熱交換部本体163とを有している。 The first sub heat exchange unit 16 includes a fifth header 161, a sixth header 162, and a first sub heat exchange unit main body 163 disposed between the fifth header 161 and the sixth header 162. ing.
 第1副熱交換部本体163は、第5ヘッダ161及び第6ヘッダ162間を繋ぐ複数の伝熱管である第3扁平管164と、複数の第3扁平管164に設けられている複数の板状の第3伝熱フィン165とを有している。 The first sub heat exchange unit main body 163 includes a plurality of third flat tubes 164 that are a plurality of heat transfer tubes connecting the fifth header 161 and the sixth header 162, and a plurality of plates provided on the plurality of third flat tubes 164. And a third heat transfer fin 165 having a shape.
 第3扁平管164は、第1主熱交換部本体153の第1扁平管154と平行に配置されている。また、各第3扁平管164は、第1主熱交換部本体153の第1扁平管154が並ぶ方向と同じ方向(即ち、図2の上下方向)へ各第1扁平管154に続いて一列に並べられている。さらに、第3扁平管164の長さ方向に直交する平面で切断したときの各第3扁平管164の断面の外形は、長軸及び短軸を持ち長軸方向の寸法が短軸方向の寸法よりも大きい扁平状になっている。各第3扁平管164は、第3扁平管164が並ぶ方向に第3扁平管164の短軸方向を一致させて配置されている。この例では、第1副熱交換部本体163の各第3扁平管164の断面の外形及び断面の大きさが、第1主熱交換部本体153の各第1扁平管154の断面の外形及び断面の大きさと同じになっている。 The third flat tube 164 is disposed in parallel with the first flat tube 154 of the first main heat exchange unit main body 153. In addition, each third flat tube 164 is arranged in a row following each first flat tube 154 in the same direction as the direction in which the first flat tubes 154 of the first main heat exchange section main body 153 are arranged (that is, the vertical direction in FIG. 2). Are listed. Further, the outer shape of the cross section of each third flat tube 164 when it is cut along a plane orthogonal to the length direction of the third flat tube 164 has a major axis and a minor axis and the dimension in the major axis direction is a dimension in the minor axis direction. It has a larger flat shape. Each third flat tube 164 is arranged such that the minor axis direction of the third flat tube 164 is aligned with the direction in which the third flat tubes 164 are arranged. In this example, the cross-sectional outer shape and the cross-sectional size of each third flat tube 164 of the first sub heat exchange unit main body 163 are the same as the cross-sectional outer shape of each first flat tube 154 of the first main heat exchange unit main body 153 and It is the same size as the cross section.
 各第3伝熱フィン165には、各第3扁平管164が挿入された複数の挿入溝が形成されている。各第3伝熱フィン165は、挿入溝に第3扁平管164を挿入した状態で例えばろう付け等により各第3扁平管164に固定されている。この例では、第1及び第3扁平管154,164の長さ方向と直交する単一の板状のフィンのうち、各第1扁平管154が通された部分が第1主熱交換部本体153の第3伝熱フィン155とされ、各第3扁平管164が通された残りの部分が第1副熱交換部本体163の第3伝熱フィン165とされている。 Each third heat transfer fin 165 is formed with a plurality of insertion grooves into which the respective third flat tubes 164 are inserted. Each third heat transfer fin 165 is fixed to each third flat tube 164 by, for example, brazing or the like with the third flat tube 164 inserted into the insertion groove. In this example, among the single plate-like fins orthogonal to the length direction of the first and third flat tubes 154, 164, the portion through which each first flat tube 154 is passed is the first main heat exchange unit main body. 153 are the third heat transfer fins 155, and the remaining portions through which the respective third flat tubes 164 are passed are the third heat transfer fins 165 of the first auxiliary heat exchange unit main body 163.
 第5ヘッダ161には第1副熱交換部本体163のすべての第3扁平管164の一端部が接続され、第6ヘッダ162には第1副熱交換部本体163のすべての第3扁平管164の他端部が接続されている。第5ヘッダ161及び第6ヘッダ162のそれぞれは、両端部が閉塞され各第3扁平管164内に内部が連通する中空の筒である。この例では、第5ヘッダ161及び第6ヘッダ162のそれぞれが、複数の第3扁平管164が並ぶ方向に沿った円筒管になっている。 One end of all the third flat tubes 164 of the first sub heat exchange unit main body 163 is connected to the fifth header 161, and all the third flat tubes of the first sub heat exchange unit main body 163 are connected to the sixth header 162. The other end of 164 is connected. Each of the fifth header 161 and the sixth header 162 is a hollow cylinder whose both ends are closed and the inside communicates with each third flat tube 164. In this example, each of the fifth header 161 and the sixth header 162 is a cylindrical tube along the direction in which the plurality of third flat tubes 164 are arranged.
 第2副熱交換部18は、第7ヘッダ181と、第8ヘッダ182と、第7ヘッダ181と第8ヘッダ182との間に配置されている第2副熱交換部本体183とを有している。 The second sub heat exchange unit 18 includes a seventh header 181, an eighth header 182, and a second sub heat exchange unit main body 183 disposed between the seventh header 181 and the eighth header 182. ing.
 第2副熱交換部本体183は、第7ヘッダ181及び第8ヘッダ182間を繋ぐ複数の伝熱管である第4扁平管184と、複数の第4扁平管184に設けられている複数の板状の第4伝熱フィン185とを有している。 The second auxiliary heat exchange unit main body 183 includes a fourth flat tube 184 that is a plurality of heat transfer tubes connecting the seventh header 181 and the eighth header 182, and a plurality of plates provided on the plurality of fourth flat tubes 184. And a fourth heat transfer fin 185 having a shape.
 第4扁平管164は、第2主熱交換部本体173の第3扁平管174と平行に配置されている。また、各第4扁平管184は、第2主熱交換部本体173の第3扁平管174が並ぶ方向と同じ方向(即ち、図2の上下方向)へ各第3扁平管174に続いて一列に並べられている。さらに、第4扁平管184の長さ方向に直交する平面で切断したときの各第4扁平管184の断面の外形は、長軸及び短軸を持ち長軸方向の寸法が短軸方向の寸法よりも大きい扁平状になっている。各第4扁平管184は、第4扁平管184が並ぶ方向に第4扁平管184の短軸方向を一致させて配置されている。この例では、第2副熱交換部本体183の各第4扁平管184の断面の外形及び断面の大きさが、第2主熱交換部本体173の各第2扁平管174の断面の外形及び断面の大きさと同じになっている。 The fourth flat tube 164 is arranged in parallel with the third flat tube 174 of the second main heat exchange unit main body 173. In addition, each fourth flat tube 184 is arranged in a row following each third flat tube 174 in the same direction as the direction in which the third flat tubes 174 of the second main heat exchange unit main body 173 are arranged (that is, the vertical direction in FIG. 2). Are listed. Further, the outer shape of the cross section of each fourth flat tube 184 when cut along a plane orthogonal to the length direction of the fourth flat tube 184 has a major axis and a minor axis, and the dimension in the major axis direction is a dimension in the minor axis direction. It has a larger flat shape. Each fourth flat tube 184 is arranged such that the minor axis direction of the fourth flat tube 184 is aligned with the direction in which the fourth flat tubes 184 are arranged. In this example, the cross-sectional outer shape and the cross-sectional size of each fourth flat tube 184 of the second sub heat exchange unit main body 183 are the same as the cross-sectional outer shape of each second flat tube 174 of the second main heat exchange unit main body 173 and It is the same size as the cross section.
 各第4伝熱フィン185には、各第4扁平管184が挿入された複数の挿入溝が形成されている。各第4伝熱フィン185は、挿入溝に第4扁平管184を挿入した状態で例えばろう付け等により各第4扁平管184に固定されている。この例では、第2及び第4扁平管174,184の長さ方向と直交する単一の板状のフィンのうち、各第2扁平管174が通された部分が第2主熱交換部本体173の第4伝熱フィン175とされ、各第4扁平管184が通された残りの部分が第2副熱交換部本体183の第4伝熱フィン185とされている。 Each of the fourth heat transfer fins 185 is formed with a plurality of insertion grooves into which the fourth flat tubes 184 are inserted. Each fourth heat transfer fin 185 is fixed to each fourth flat tube 184 by, for example, brazing or the like with the fourth flat tube 184 inserted in the insertion groove. In this example, among the single plate-like fins orthogonal to the length direction of the second and fourth flat tubes 174, 184, the portion through which each second flat tube 174 is passed is the second main heat exchange unit main body. The remaining portions through which the fourth flat tubes 184 are passed are used as the fourth heat transfer fins 185 of the second auxiliary heat exchange unit main body 183.
 第7ヘッダ181には第2副熱交換部本体183のすべての第4扁平管184の一端部が接続され、第8ヘッダ182には第2副熱交換部本体183のすべての第4扁平管184の他端部が接続されている。第7ヘッダ181及び第8ヘッダ182のそれぞれは、両端部が閉塞され各第4扁平管184内に内部が連通する中空の筒である。この例では、第7ヘッダ181及び第8ヘッダ182のそれぞれが、複数の第4扁平管184が並ぶ方向に沿った円筒管になっている。また、この例では、第1ヘッダ151、第2ヘッダ152、第3ヘッダ171、第4ヘッダ172、第5ヘッダ161、第6ヘッダ162、第7ヘッダ181及び第8ヘッダ182のそれぞれの円形断面の内径がすべて同じになっている。即ち、この例では、第1ヘッダ151、第2ヘッダ152、第3ヘッダ171、第4ヘッダ172、第5ヘッダ161、第6ヘッダ162、第7ヘッダ181及び第8ヘッダ182のそれぞれの断面積が、ヘッダの長さ方向に直交する平面においてすべて同じになっている。 One end portion of all the fourth flat tubes 184 of the second sub heat exchange portion main body 183 is connected to the seventh header 181, and all the fourth flat tubes of the second sub heat exchange portion main body 183 are connected to the eighth header 182. The other end of 184 is connected. Each of the seventh header 181 and the eighth header 182 is a hollow tube whose both ends are closed and the inside communicates with each of the fourth flat tubes 184. In this example, each of the seventh header 181 and the eighth header 182 is a cylindrical tube along the direction in which the plurality of fourth flat tubes 184 are arranged. In this example, each of the first header 151, the second header 152, the third header 171, the fourth header 172, the fifth header 161, the sixth header 162, the seventh header 181 and the eighth header 182 has a circular cross section. The inner diameters of all are the same. That is, in this example, the cross-sectional areas of the first header 151, the second header 152, the third header 171, the fourth header 172, the fifth header 161, the sixth header 162, the seventh header 181, and the eighth header 182. Are all the same in a plane perpendicular to the length direction of the header.
 第1ヘッダ151及び第5ヘッダ161は互いに独立して配置され、第3ヘッダ171及び第7ヘッダ181も互いに独立して配置されている。これにより、第1ヘッダ151及び第5ヘッダ161間、及び第3ヘッダ171及び第7ヘッダ181間で、冷媒が直接移動することはない。この例では、第1ヘッダ151、第5ヘッダ161、第3ヘッダ171及び第7ヘッダ181が別個の部品になっている。また、第1ヘッダ151及び第3ヘッダ171間、及び第5ヘッダ161及び第7ヘッダ181間も、冷媒の直接の移動ができないように互いに独立している。 The first header 151 and the fifth header 161 are arranged independently of each other, and the third header 171 and the seventh header 181 are also arranged independently of each other. Thereby, the refrigerant does not move directly between the first header 151 and the fifth header 161 and between the third header 171 and the seventh header 181. In this example, the first header 151, the fifth header 161, the third header 171 and the seventh header 181 are separate components. The first header 151 and the third header 171 and the fifth header 161 and the seventh header 181 are also independent from each other so that the refrigerant cannot move directly.
 室外熱交換器3では、第1ヘッダ151と第3ヘッダ171とが、接続管21を介して互いに連通されている。これにより、室外熱交換器3では、第1ヘッダ151と第3ヘッダ171との間で、冷媒が接続管21を通って移動可能になっている。この例では、第1のヘッダ151及び第3ヘッダ171の端部同士を繋ぐU字管が接続管21とされている。また、この例では、単一の管を曲げることにより接続管21、第1ヘッダ151及び第3ヘッダ171が形成されている。これにより、この例では、第1及び第3ヘッダ151,171の長さ方向に直交する平面で切断したときの第1及び第3ヘッダ151,171の断面積と、接続管21の長さ方向に直交する平面で切断したときの接続管21の断面積とが同じになっている。 In the outdoor heat exchanger 3, the first header 151 and the third header 171 communicate with each other via the connection pipe 21. Thereby, in the outdoor heat exchanger 3, the refrigerant can move through the connection pipe 21 between the first header 151 and the third header 171. In this example, the U-tube that connects the ends of the first header 151 and the third header 171 is the connection tube 21. In this example, the connecting pipe 21, the first header 151, and the third header 171 are formed by bending a single pipe. Thereby, in this example, the cross-sectional area of the 1st and 3rd header 151,171 when it cut | disconnects in the plane orthogonal to the length direction of the 1st and 3rd header 151,171, and the length direction of the connecting pipe 21 The cross-sectional area of the connecting pipe 21 when cut along a plane orthogonal to the same is the same.
 第2ヘッダ152及び第6ヘッダ162は互いに連通され、第4ヘッダ172及び第8ヘッダ182も互いに連通されている。この例では、第2ヘッダ152及び第6ヘッダ162が単一の中空管を形成しており、単一の中空管のうち、各第1扁平管154が接続された部分が第2ヘッダ152とされ、各第3扁平管164が接続された残りの部分が第6ヘッダ162とされている。また、第4ヘッダ172及び第8ヘッダ182が単一の中空管を形成しており、単一の中空管のうち、各第2扁平管174が接続された部分が第4ヘッダ172とされ、各第4扁平管184が接続された残りの部分が第8ヘッダ182とされている。一方、第2ヘッダ152と第4ヘッダ172とは冷媒の直接の移動ができないように互いに独立し、第6ヘッダ162と第8ヘッダ182とは冷媒の直接の移動ができないように互いに独立している。 The second header 152 and the sixth header 162 are communicated with each other, and the fourth header 172 and the eighth header 182 are also communicated with each other. In this example, the second header 152 and the sixth header 162 form a single hollow tube, and the portion of the single hollow tube to which each first flat tube 154 is connected is the second header. The remaining portion to which the third flat tubes 164 are connected is a sixth header 162. Further, the fourth header 172 and the eighth header 182 form a single hollow tube, and the portion where the second flat tubes 174 are connected to the fourth header 172 in the single hollow tube. The remaining portion to which each fourth flat tube 184 is connected is an eighth header 182. On the other hand, the second header 152 and the fourth header 172 are independent from each other so that the refrigerant cannot move directly, and the sixth header 162 and the eighth header 182 are independent from each other so that the refrigerant cannot move directly. Yes.
 各第1~第4扁平管154,164,174,184のそれぞれの内部には、冷媒を流す複数の流路が第1~第4扁平管154,164,174,184の長さ方向に沿って形成されている。第1~第4扁平管154,164,174,184の長さ方向に直交する平面で切断したときの各第1~第4扁平管154,164,174,184の断面では、複数の流路が第1~第4扁平管154,164,174,184の長軸方向へ並んでいる。この例では、共通の扁平管内に形成されている流路の数が各第1~第4扁平管154,164,174,184ですべて同じで、各流路の断面積も各第1~第4扁平管154,164,174,184ですべて同じになっている。 Inside each of the first to fourth flat tubes 154, 164, 174, 184, a plurality of flow paths through which the refrigerant flows are along the length direction of the first to fourth flat tubes 154, 164, 174, 184. Is formed. In the cross section of each of the first to fourth flat tubes 154, 164, 174, 184 when cut along a plane orthogonal to the length direction of the first to fourth flat tubes 154, 164, 174, 184, a plurality of flow paths Are arranged in the major axis direction of the first to fourth flat tubes 154,164,174,184. In this example, the number of flow paths formed in a common flat tube is the same for each of the first to fourth flat tubes 154, 164, 174, and 184, and the cross-sectional area of each flow path is also the first to the second. The four flat tubes 154, 164, 174, 184 are all the same.
 第1熱交換ユニット11では、第5ヘッダ161及び第6ヘッダ162のそれぞれの長さ寸法が第1ヘッダ151及び第2ヘッダ152のそれぞれの長さ寸法よりも短くなっている。また、第2熱交換ユニット12では、第3ヘッダ171及び第4ヘッダ172のそれぞれの長さ寸法が第7ヘッダ171及び第8ヘッダ182のそれぞれの長さ寸法よりも短くなっている。このため、第1熱交換ユニット11では、第1副熱交換部本体163の第3扁平管164の数が第1主熱交換部本体153の第1扁平管154の数よりも少なくなっている。また、第2熱交換ユニット12では、第2副熱交換部本体183の第4扁平管184の数が第2主熱交換部本体173の第2扁平管174の数よりも少なくなっている。これにより、第1熱交換ユニット11及び第2熱交換ユニット12では、第1及び第2副熱交換部16,18の容積が第1及び第2主熱交換部15,17の容積よりも小さくなっている。 In the first heat exchange unit 11, the length dimensions of the fifth header 161 and the sixth header 162 are shorter than the length dimensions of the first header 151 and the second header 152, respectively. In the second heat exchange unit 12, the lengths of the third header 171 and the fourth header 172 are shorter than the lengths of the seventh header 171 and the eighth header 182, respectively. For this reason, in the 1st heat exchange unit 11, the number of the 3rd flat tubes 164 of the 1st sub heat exchange part main part 163 is fewer than the number of the 1st flat pipes 154 of the 1st main heat exchange part main part 153. . Further, in the second heat exchange unit 12, the number of the fourth flat tubes 184 of the second sub heat exchange unit main body 183 is smaller than the number of the second flat tubes 174 of the second main heat exchange unit main body 173. Thereby, in the 1st heat exchange unit 11 and the 2nd heat exchange unit 12, the volume of the 1st and 2nd sub heat exchange parts 16 and 18 is smaller than the volume of the 1st and 2nd main heat exchange parts 15 and 17. It has become.
 室外熱交換器3では、第1熱交換ユニット11の第1ヘッダ151及び第2熱交換ユニット12の第3ヘッダ171のうち、最も風上の熱交換ユニットである第1熱交換ユニット11の第1ヘッダ151にのみ、冷媒を通すガス側冷媒口22が設けられている。ガス側冷媒口22は、第1熱交換ユニット11の第1ヘッダ151内に直接連通している。ガス側冷媒口22には、ガス側冷媒管9が接続されている。これにより、第1熱交換ユニット11及び第2熱交換ユニット12のそれぞれからの冷媒がガス側冷媒管9へ流れる場合も、ガス側冷媒管9からの冷媒が第1熱交換ユニット11及び第2熱交換ユニット12のそれぞれへ流れる場合も、共通のガス側冷媒口22を冷媒が通る。 In the outdoor heat exchanger 3, among the first header 151 of the first heat exchange unit 11 and the third header 171 of the second heat exchange unit 12, the first heat exchange unit 11 of the first heat exchange unit 11 that is the most upwind heat exchange unit is used. Only one header 151 is provided with a gas side refrigerant port 22 through which a refrigerant passes. The gas side refrigerant port 22 communicates directly with the first header 151 of the first heat exchange unit 11. A gas side refrigerant pipe 9 is connected to the gas side refrigerant port 22. Thereby, also when the refrigerant | coolant from each of the 1st heat exchange unit 11 and the 2nd heat exchange unit 12 flows into the gas side refrigerant pipe 9, the refrigerant | coolant from the gas side refrigerant pipe 9 becomes 1st heat exchange unit 11 and 2nd. Even when flowing to each of the heat exchange units 12, the refrigerant passes through the common gas side refrigerant port 22.
 また、第1熱交換ユニット11の第5ヘッダ161及び第2熱交換ユニット12の第7ヘッダ181には、冷媒を通す液側冷媒口23が設けられている。即ち、室外熱交換器3では、液側冷媒口23が第1熱交換ユニット11及び第2熱交換ユニット12に個別に設けられている。また、第1熱交換ユニット11では液側冷媒口23が第1副熱交換部16を介して第2ヘッダ152内に連通し、第2熱交換ユニット12では液側冷媒口23が、第2副熱交換部18を介して第8ヘッダ182内に連通している。即ち、第1熱交換ユニット11では、第1ヘッダ151及び各第1扁平管154を避けながら第1ヘッダ151及び各第1扁平管154を介さずに液側冷媒口23が第2ヘッダ152内に連通している。また、第2熱交換ユニット12では、第3ヘッダ171及び各第2扁平管174を避けながら第3ヘッダ171及び各第2扁平管174を介さずに液側冷媒口23が第4ヘッダ172内に連通している。各液側冷媒口23には、液側冷媒管10から分岐された分岐冷媒管10aがそれぞれ接続されている。これにより、第1熱交換ユニット11及び第2熱交換ユニット12のそれぞれからの冷媒が液側冷媒管10へ流れる場合も、液側冷媒管10からの冷媒が第1熱交換ユニット11及び第2熱交換ユニット12のそれぞれへ流れる場合も、第1熱交換ユニット11及び第2熱交換ユニット12ごとに各液側冷媒口23を冷媒が通る。従って、扁平管154,164の流路への冷媒の供給量は、第1熱交換ユニット11及び第2熱交換ユニット12のうち、ガス側冷媒口22が設けられている第1熱交換ユニット(即ち、最も風上の熱交換ユニット)11で最も多くなる。 Also, the fifth header 161 of the first heat exchange unit 11 and the seventh header 181 of the second heat exchange unit 12 are provided with a liquid side refrigerant port 23 through which the refrigerant passes. That is, in the outdoor heat exchanger 3, the liquid side refrigerant ports 23 are individually provided in the first heat exchange unit 11 and the second heat exchange unit 12. Further, in the first heat exchange unit 11, the liquid side refrigerant port 23 communicates with the second header 152 via the first auxiliary heat exchange unit 16, and in the second heat exchange unit 12, the liquid side refrigerant port 23 is connected to the second header 152. It communicates with the inside of the eighth header 182 through the auxiliary heat exchange unit 18. That is, in the first heat exchange unit 11, the liquid side refrigerant port 23 is located in the second header 152 without passing through the first header 151 and each first flat tube 154 while avoiding the first header 151 and each first flat tube 154. Communicating with Further, in the second heat exchange unit 12, the liquid side refrigerant port 23 is located in the fourth header 172 without passing through the third header 171 and each second flat tube 174 while avoiding the third header 171 and each second flat tube 174. Communicating with A branch refrigerant pipe 10 a branched from the liquid side refrigerant pipe 10 is connected to each liquid side refrigerant port 23. Thereby, also when the refrigerant | coolant from each of the 1st heat exchange unit 11 and the 2nd heat exchange unit 12 flows into the liquid side refrigerant pipe 10, the refrigerant | coolant from the liquid side refrigerant pipe 10 is 1st heat exchange unit 11 and 2nd. Even when flowing to each of the heat exchange units 12, the refrigerant passes through each liquid side refrigerant port 23 for each of the first heat exchange unit 11 and the second heat exchange unit 12. Therefore, the supply amount of the refrigerant to the flow paths of the flat tubes 154 and 164 is the first heat exchange unit (of the first heat exchange unit 11 and the second heat exchange unit 12) provided with the gas side refrigerant port 22 ( That is, it becomes the largest in the most upwind heat exchange unit) 11.
 また、この例では、室外熱交換器3を構成する材料がアルミニウム又はアルミニウム合金になっており、ガス側冷媒管9、液側冷媒管10及び分岐冷媒管10aのそれぞれを構成する材料が銅又は銅合金になっている。室外熱交換器3を製造するときには、第1ヘッダ151、第3ヘッダ171及び接続管21を一体にした部品と、第2ヘッダ152及び第6ヘッダ162を一体にした部品と、第4ヘッダ172及び第8ヘッダ182を一体にした部品と、各第1~第4扁平管154,164,174,184と、各第1~第4伝熱フィン155,165,175,185とを予め作製しておき、各部品を組み合わせて炉中で一体にろう付けする。また、空気調和機1を製造するときには、トーチろう付けにより、室外熱交換器3のガス側冷媒口22にガス側冷媒管9を接続するとともに、各液側冷媒口23に分岐冷媒管10aを接続する。 Moreover, in this example, the material which comprises the outdoor heat exchanger 3 is aluminum or aluminum alloy, and the material which comprises each of the gas side refrigerant pipe 9, the liquid side refrigerant pipe 10, and the branch refrigerant pipe 10a is copper or It is a copper alloy. When manufacturing the outdoor heat exchanger 3, a part in which the first header 151, the third header 171 and the connection pipe 21 are integrated, a part in which the second header 152 and the sixth header 162 are integrated, and a fourth header 172. The first and fourth flat tubes 154, 164, 174, 184 and the first to fourth heat transfer fins 155, 165, 175, 185 are prepared in advance. The parts are combined and brazed together in a furnace. When the air conditioner 1 is manufactured, the gas side refrigerant pipe 9 is connected to the gas side refrigerant port 22 of the outdoor heat exchanger 3 by torch brazing, and the branch refrigerant pipe 10a is connected to each liquid side refrigerant port 23. Connecting.
 次に、室外熱交換器3での冷媒の流れについて説明する。冷房運転時には、室外熱交換器3が凝縮器として機能する。室外熱交換器3が凝縮器として機能する場合、ガス側冷媒管9からのガス冷媒は、最も風上の熱交換ユニットである第1熱交換ユニット11の第1ヘッダ151に設けられた共通のガス側冷媒口22のみを通って室外熱交換器3に流入する。室外熱交換器3に流入した冷媒は、第1ヘッダ151から、接続管21を通って風下の第2熱交換ユニット12の第3ヘッダ171へ分配される。このとき、ガス側冷媒口22から離れるほど冷媒の圧力損失が大きくなることから、第1熱交換ユニット11及び第2熱交換ユニット12に供給される冷媒の量は、第2熱交換ユニット12よりも第1熱交換ユニット11で多くなる。第1熱交換ユニット11では冷媒が第1ヘッダ151から各第1扁平管154の流路を流れて第2ヘッダ152へ送られ、第2熱交換ユニット12では冷媒が第3ヘッダ171から各第2扁平管174の流路を流れて第4ヘッダ172へ送られる。このとき、冷媒と室外の空気との間で熱交換が行われ、冷媒が気液二相状態となる。この後、第1熱交換ユニット11及び第2熱交換ユニット12において第2及び第4ヘッダ152,172に達した冷媒は、単一の円筒管内で第6及び第8ヘッダ162,182へ送られ、第6及び第8ヘッダ162,182から各第3及び第4扁平管164,184の流路を流れて第5及び第7ヘッダ161,181へ送られる。このとき、冷媒と室外の空気との間で熱交換が行われ、冷媒が液化及び過冷却される。第5及び第7ヘッダ161,181に達した液冷媒は、第1熱交換ユニット11及び第2熱交換ユニット12のそれぞれから各液側冷媒口23を通って各分岐冷媒管10aへ流出し、液側冷媒管10で合流する。 Next, the flow of the refrigerant in the outdoor heat exchanger 3 will be described. During the cooling operation, the outdoor heat exchanger 3 functions as a condenser. When the outdoor heat exchanger 3 functions as a condenser, the gas refrigerant from the gas-side refrigerant pipe 9 is shared by the first header 151 of the first heat exchange unit 11 that is the most upwind heat exchange unit. It flows into the outdoor heat exchanger 3 only through the gas side refrigerant port 22. The refrigerant flowing into the outdoor heat exchanger 3 is distributed from the first header 151 to the third header 171 of the second heat exchange unit 12 on the lee through the connection pipe 21. At this time, since the pressure loss of the refrigerant increases as the distance from the gas-side refrigerant port 22 increases, the amount of refrigerant supplied to the first heat exchange unit 11 and the second heat exchange unit 12 is greater than that of the second heat exchange unit 12. Is also increased by the first heat exchange unit 11. In the first heat exchange unit 11, the refrigerant flows from the first header 151 through the flow path of each first flat tube 154 to the second header 152, and in the second heat exchange unit 12, the refrigerant flows from the third header 171 to each of the first headers 154. 2 flows through the flow path of the flat tube 174 and is sent to the fourth header 172. At this time, heat exchange is performed between the refrigerant and the outdoor air, and the refrigerant enters a gas-liquid two-phase state. Thereafter, the refrigerant that has reached the second and fourth headers 152 and 172 in the first heat exchange unit 11 and the second heat exchange unit 12 is sent to the sixth and eighth headers 162 and 182 in a single cylindrical tube. The sixth and eighth headers 162 and 182 flow through the flow paths of the third and fourth flat tubes 164 and 184 and are sent to the fifth and seventh headers 161 and 181. At this time, heat exchange is performed between the refrigerant and outdoor air, and the refrigerant is liquefied and supercooled. The liquid refrigerant that has reached the fifth and seventh headers 161 and 181 flows out from each of the first heat exchange unit 11 and the second heat exchange unit 12 to each branch refrigerant pipe 10a through each liquid side refrigerant port 23, The liquid side refrigerant pipe 10 joins.
 室外熱交換器3における除霜運転時の冷媒の流れは、冷房運転時と同じである。従って、除霜運転時には、高温のガス冷媒がガス側冷媒管9から共通のガス側冷媒口22を通って室外熱交換器3に流入し、第1熱交換ユニット11の第1ヘッダ151及び第2熱交換ユニット12の第3ヘッダ171に冷媒が分配される。このときにも、冷房運転時と同様に、第1熱交換ユニット11及び第2熱交換ユニット12に供給される冷媒の量は、第2熱交換ユニット12よりも第1熱交換ユニット11で多くなる。この後、第1熱交換ユニット11では、第3ヘッダ151に分配された冷媒が、第1扁平管154の流路、第2ヘッダ152、第6ヘッダ162及び第3扁平管164の流路の順に流れ、第5ヘッダ161に達する。また、第2熱交換ユニット12では、第3ヘッダ171に分配された冷媒が、第2扁平管174の流路、第4ヘッダ172、第8ヘッダ182及び第4扁平管184の流路の順に流れ、第7ヘッダ181に達する。このとき、第1熱交換ユニット11及び第2熱交換ユニット12に付着した霜が冷媒の熱で融かされる。この後、第5ヘッダ161及び第7ヘッダ181に達した冷媒は、第1熱交換ユニット11及び第2熱交換ユニット12のそれぞれから各液側冷媒口23を通って各分岐冷媒管10aへ流出し、液側冷媒管10で合流する。 The refrigerant flow during the defrosting operation in the outdoor heat exchanger 3 is the same as during the cooling operation. Accordingly, during the defrosting operation, the high-temperature gas refrigerant flows from the gas-side refrigerant pipe 9 through the common gas-side refrigerant port 22 into the outdoor heat exchanger 3, and the first header 151 and the first header of the first heat exchange unit 11. The refrigerant is distributed to the third header 171 of the two heat exchange unit 12. At this time, similarly to the cooling operation, the amount of refrigerant supplied to the first heat exchange unit 11 and the second heat exchange unit 12 is larger in the first heat exchange unit 11 than in the second heat exchange unit 12. Become. Thereafter, in the first heat exchange unit 11, the refrigerant distributed to the third header 151 flows through the flow path of the first flat tube 154, the flow path of the second header 152, the sixth header 162, and the third flat tube 164. It flows in order and reaches the fifth header 161. In the second heat exchange unit 12, the refrigerant distributed to the third header 171 flows in the order of the flow path of the second flat tube 174, the flow path of the fourth header 172, the eighth header 182, and the fourth flat tube 184. The flow reaches the seventh header 181. At this time, frost attached to the first heat exchange unit 11 and the second heat exchange unit 12 is melted by the heat of the refrigerant. Thereafter, the refrigerant that has reached the fifth header 161 and the seventh header 181 flows out from each of the first heat exchange unit 11 and the second heat exchange unit 12 to each branch refrigerant pipe 10a through each liquid side refrigerant port 23. Then, the liquid side refrigerant pipe 10 joins.
 一方、暖房運転時には、室外熱交換器3が蒸発器として機能する。室外熱交換器3が蒸発器として機能する場合、液側冷媒管10からの気液二相冷媒は、各分岐冷媒管10aを通って第1熱交換ユニット11の第5ヘッダ161及び第2熱交換ユニット12の第7ヘッダ181に分配される。この後、第1熱交換ユニット11では冷媒が第5ヘッダ161から各第3扁平管164の流路を流れて第6ヘッダ162へ送られ、第2熱交換ユニット12では、冷媒が第7ヘッダ181から各第4扁平管184の流路を流れて第8ヘッダ182へ送られる。このとき、冷媒と室外の空気との間で熱交換が行われる。この後、第6及び第8ヘッダ162,182に達した冷媒は、第2及び第4ヘッダ152,172へ送られ、第2及び第4ヘッダ152,172から各第1及び第2扁平管154,174の流路を流れて第1及び第3ヘッダ151,171へ送られる。このとき、冷媒と室外の空気との間で熱交換が行われ、冷媒がガス状態となる。この後、第1及び第3ヘッダ151,171に達した冷媒のうち、風下の第2熱交換ユニット12の冷媒が、接続管21を通って最も風上の熱交換ユニットである第1熱交換ユニット11の第1ヘッダ151に合流する。この後、冷媒は、第1熱交換ユニット11の第1ヘッダ151から共通のガス側冷媒口22を通ってガス側冷媒管9へ流出する。 On the other hand, during the heating operation, the outdoor heat exchanger 3 functions as an evaporator. When the outdoor heat exchanger 3 functions as an evaporator, the gas-liquid two-phase refrigerant from the liquid side refrigerant pipe 10 passes through each branch refrigerant pipe 10a and the fifth header 161 and the second heat of the first heat exchange unit 11. This is distributed to the seventh header 181 of the exchange unit 12. Thereafter, in the first heat exchange unit 11, the refrigerant flows from the fifth header 161 through the flow path of each third flat tube 164 to the sixth header 162, and in the second heat exchange unit 12, the refrigerant passes through the seventh header. From 181, it flows through the flow path of each fourth flat tube 184 and is sent to the eighth header 182. At this time, heat exchange is performed between the refrigerant and the outdoor air. Thereafter, the refrigerant that has reached the sixth and eighth headers 162 and 182 is sent to the second and fourth headers 152 and 172, and the first and second flat tubes 154 from the second and fourth headers 152 and 172. , 174 and sent to the first and third headers 151, 171. At this time, heat exchange is performed between the refrigerant and outdoor air, and the refrigerant enters a gas state. Thereafter, among the refrigerants reaching the first and third headers 151, 171, the refrigerant of the second heat exchange unit 12 on the leeward side passes through the connection pipe 21 and is the first heat exchange unit that is the most upstream heat exchange unit. It merges with the first header 151 of the unit 11. Thereafter, the refrigerant flows out from the first header 151 of the first heat exchange unit 11 to the gas side refrigerant pipe 9 through the common gas side refrigerant port 22.
 このように、室外熱交換器3では、第1熱交換ユニット11及び第2熱交換ユニット12の一方の扁平管154,164,174,184を流れた後に第1熱交換ユニット11及び第2熱交換ユニット12の他方の扁平管154,164,174,184を流れる対向流ではなく、第1熱交換ユニット11及び第2熱交換ユニット12の扁平管154,164,174,184を個別に流れて室外熱交換器3からそのまま流出する直行流で冷媒が流れる。 Thus, in the outdoor heat exchanger 3, after flowing through one of the flat tubes 154, 164, 174, 184 of the first heat exchange unit 11 and the second heat exchange unit 12, the first heat exchange unit 11 and the second heat Instead of the counterflow that flows through the other flat tubes 154, 164, 174, and 184 of the exchange unit 12, it flows separately through the flat tubes 154, 164, 174, and 184 of the first heat exchange unit 11 and the second heat exchange unit 12. The refrigerant flows in a direct flow that flows out from the outdoor heat exchanger 3 as it is.
 ここで、第1熱交換ユニット11及び第2熱交換ユニット12のうち、最も風上の熱交換ユニットである第1熱交換ユニット11の第1ヘッダ151にのみガス側冷媒口22が設けられていることから、各第1~第4扁平管154,164,174,184内の流路を流れる冷媒量は、風下の第2熱交換ユニット12よりも第1熱交換ユニット11で多くなる。一方、気流が冷媒との間で熱交換を行いながら第1熱交換ユニット11及び第2熱交換ユニット12を順次通過することから、気流の熱負荷は風下の第2熱交換ユニット12よりも風上の第1熱交換ユニット11で大きくなる。これにより、第1熱交換ユニット11及び第2熱交換ユニット12への冷媒の供給量が第1熱交換ユニット11及び第2熱交換ユニット12での熱負荷に応じた量になり、室外熱交換器3が蒸発器及び凝縮器のいずれとして機能する場合でも、第1熱交換ユニット11及び第2熱交換ユニット12から流出する冷媒の状態(比エンタルピ)の差が小さくなる。 Here, of the first heat exchange unit 11 and the second heat exchange unit 12, the gas side refrigerant port 22 is provided only in the first header 151 of the first heat exchange unit 11 which is the most upwind heat exchange unit. Therefore, the amount of refrigerant flowing through the flow paths in the first to fourth flat tubes 154, 164, 174, 184 is larger in the first heat exchange unit 11 than in the second heat exchange unit 12 in the lee. On the other hand, since the airflow sequentially passes through the first heat exchange unit 11 and the second heat exchange unit 12 while exchanging heat with the refrigerant, the heat load of the airflow is greater than that of the second heat exchange unit 12 leeward. It becomes large in the upper first heat exchange unit 11. Thereby, the supply amount of the refrigerant to the first heat exchange unit 11 and the second heat exchange unit 12 becomes an amount according to the heat load in the first heat exchange unit 11 and the second heat exchange unit 12, and the outdoor heat exchange. Even when the vessel 3 functions as either an evaporator or a condenser, the difference in the state (specific enthalpy) of the refrigerant flowing out from the first heat exchange unit 11 and the second heat exchange unit 12 becomes small.
 また、第1熱交換ユニット11及び第2熱交換ユニット12のうち、最も風上の熱交換ユニットである第1熱交換ユニット11では、風下の第2熱交換ユニット12よりも、冷媒と空気との温度差が大きくかつ気流の速度も大きい。従って、第1熱交換ユニット11及び第2熱交換ユニット12における暖房運転時の着霜量は、第2熱交換ユニット12よりも第1熱交換ユニット11で多くなる。本実施の形態では、除霜運転時に最も風上の熱交換ユニットである第1熱交換ユニット11への高温ガス冷媒の供給量が多くなり、暖房運転時の着霜量が最も多い第1熱交換ユニット11で霜が早く融けるようになる。 Of the first heat exchange unit 11 and the second heat exchange unit 12, the first heat exchange unit 11 that is the most upwind heat exchange unit has refrigerant and air more than the second heat exchange unit 12 leeward. The temperature difference is large, and the speed of the airflow is also large. Therefore, the amount of frost formation during the heating operation in the first heat exchange unit 11 and the second heat exchange unit 12 is larger in the first heat exchange unit 11 than in the second heat exchange unit 12. In the present embodiment, the supply amount of the high-temperature gas refrigerant to the first heat exchange unit 11 that is the most upwind heat exchange unit during the defrosting operation is increased, and the first heat having the largest amount of frost formation during the heating operation. The replacement unit 11 causes the frost to melt quickly.
 このような室外熱交換器3及び空気調和機1では、第1熱交換ユニット11の第1ヘッダにのみ、ガス側冷媒口22が設けられているので、各第1~第4扁平管154,164,174,184への冷媒の供給量を、第2熱交換ユニット12よりも第1熱交換ユニット11で多くすることができる。即ち、第1及び第3扁平管154,164への冷媒の供給量を、第2及び第4扁平管174,184への冷媒の供給量よりも多くすることができる。従って、第1熱交換ユニット11及び第2熱交換ユニット12の順に気流を通過させることにより、第1熱交換ユニット11及び第2熱交換ユニット12のそれぞれの熱負荷に合わせた量の冷媒を第1熱交換ユニット11及び第2熱交換ユニット12に供給することができる。従って、第1熱交換ユニット11及び第2熱交換ユニット12のそれぞれから流出した冷媒の比エンタルピの差を小さくすることができ、室外熱交換器3の熱交換効率の向上を図ることができる。また、除霜運転時には、第1熱交換ユニット11への高温ガス冷媒の供給量を第2熱交換ユニット12よりも多くすることにより、着霜量の最も多い第1熱交換ユニット11での霜の融解を早めることができる。しかも、第1熱交換ユニット11において、ガス側冷媒口22から各第1扁平管154への距離が短くなるので、除霜運転時での第1ヘッダ151による冷媒の熱損失を小さくすることができる。これにより、室外熱交換器3に付着した霜を効率良く融かすことができ、室外熱交換器3の除霜時間の短縮化を図ることができる。さらに、ガス側冷媒口22が設けられている箇所が、第1熱交換ユニット11の第1ヘッダ151のみであるので、熱交換ユニットの数を増やしても、ガス側冷媒口22の数が増えることがなく、室外熱交換器3に接続する冷媒管の数の増加を抑制することができる。これにより、室外熱交換器3の製造時間の短縮化及び作業者数の少数化を図ることができ、室外熱交換器3の製造コストの低減化を図ることができる。 In such an outdoor heat exchanger 3 and the air conditioner 1, since the gas side refrigerant port 22 is provided only in the first header of the first heat exchange unit 11, each of the first to fourth flat tubes 154, 154 is provided. The amount of refrigerant supplied to 164, 174, 184 can be increased by the first heat exchange unit 11 than by the second heat exchange unit 12. That is, the amount of refrigerant supplied to the first and third flat tubes 154 and 164 can be made larger than the amount of refrigerant supplied to the second and fourth flat tubes 174 and 184. Therefore, by passing the airflow in the order of the first heat exchange unit 11 and the second heat exchange unit 12, an amount of refrigerant corresponding to the heat load of each of the first heat exchange unit 11 and the second heat exchange unit 12 is supplied. The heat can be supplied to the first heat exchange unit 11 and the second heat exchange unit 12. Therefore, the difference in specific enthalpy of the refrigerant flowing out from each of the first heat exchange unit 11 and the second heat exchange unit 12 can be reduced, and the heat exchange efficiency of the outdoor heat exchanger 3 can be improved. Further, during the defrosting operation, the amount of the high-temperature gas refrigerant supplied to the first heat exchange unit 11 is made larger than that of the second heat exchange unit 12, so that the frost in the first heat exchange unit 11 having the largest amount of frost formation. Can be melted quickly. Moreover, in the first heat exchange unit 11, the distance from the gas side refrigerant port 22 to each first flat tube 154 is shortened, so that the heat loss of the refrigerant by the first header 151 during the defrosting operation can be reduced. it can. Thereby, the frost adhering to the outdoor heat exchanger 3 can be efficiently melted, and the defrosting time of the outdoor heat exchanger 3 can be shortened. Furthermore, since the location where the gas side refrigerant port 22 is provided is only the first header 151 of the first heat exchange unit 11, the number of the gas side refrigerant ports 22 increases even if the number of heat exchange units is increased. Without increasing the number of refrigerant tubes connected to the outdoor heat exchanger 3. Thereby, the manufacturing time of the outdoor heat exchanger 3 can be shortened and the number of workers can be reduced, and the manufacturing cost of the outdoor heat exchanger 3 can be reduced.
 実施の形態2.
 図3は、この発明の実施の形態2による室外熱交換器3を示す斜視図である。第1熱交換ユニット11の第1ヘッダ151と第2熱交換ユニット12の第3ヘッダ171とは、直線状の接続管21を介して連通されている。接続管21は、第1ヘッダ151及び第3ヘッダ171の上端部の側面同士を繋げた状態で水平に配置されている。また、接続管21の長さ方向に直交する平面で切断したときの接続管21の断面積は、第1及び第3ヘッダ151,171の長さ方向に直交する平面で切断したときの第1及び第3ヘッダ151,171の断面積よりも小さくなっている。他の構成は実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 3 is a perspective view showing an outdoor heat exchanger 3 according to Embodiment 2 of the present invention. The first header 151 of the first heat exchange unit 11 and the third header 171 of the second heat exchange unit 12 are communicated with each other via a straight connection pipe 21. The connecting pipe 21 is disposed horizontally with the side surfaces of the upper ends of the first header 151 and the third header 171 connected to each other. The cross-sectional area of the connection pipe 21 when cut along a plane orthogonal to the length direction of the connection pipe 21 is the first when cut along the plane orthogonal to the length direction of the first and third headers 151 and 171. And the sectional area of the third headers 151 and 171 is smaller. Other configurations are the same as those in the first embodiment.
 このような室外熱交換器3では、接続管21の断面積が第1及び第3ヘッダ151,171の断面積よりも小さくなっているので、接続管21を通過する冷媒の量を制限することができ、第1熱交換ユニット11の第1及び第3扁平管154,164を流れる冷媒の量を、第2熱交換ユニット12の第2及び第4扁平管174,184を流れる冷媒の量よりもさらに確実に多くすることができる。これにより、室外熱交換器3の熱交換効率の向上及び除霜時間の短縮化をさらに確実に図ることができる。 In such an outdoor heat exchanger 3, the cross-sectional area of the connection pipe 21 is smaller than the cross-sectional areas of the first and third headers 151, 171, so that the amount of refrigerant passing through the connection pipe 21 is limited. The amount of refrigerant flowing through the first and third flat tubes 154 and 164 of the first heat exchange unit 11 can be determined from the amount of refrigerant flowing through the second and fourth flat tubes 174 and 184 of the second heat exchange unit 12. Can be increased more reliably. Thereby, the improvement of the heat exchange efficiency of the outdoor heat exchanger 3 and shortening of a defrost time can be achieved more reliably.
 なお、上記の例では、接続管21が直線状の管になっているが、接続管21を曲げてU字状の管としてもよい。実施の形態1のように単一の円筒管を曲げて接続管21、第1ヘッダ151及び第3ヘッダ171を形成すると、円筒管の座屈限界の最小曲げ径までしか円筒管を曲げられず、第1熱交換ユニット11及び第2熱交換ユニット12間の距離が大きくなってしてしまう。しかし、第1及び第3ヘッダ151,171よりも接続管21の断面積を小さくして接続管21を曲げることにより、接続管21を曲げたときの曲げ径を小さくすることができ、第1熱交換ユニット11及び第2熱交換ユニット12間の距離の縮小化を図ることができる。 In the above example, the connecting tube 21 is a straight tube, but the connecting tube 21 may be bent to form a U-shaped tube. When the connection pipe 21, the first header 151, and the third header 171 are formed by bending a single cylindrical pipe as in the first embodiment, the cylindrical pipe can be bent only to the minimum bending diameter of the buckling limit of the cylindrical pipe. And the distance between the 1st heat exchange unit 11 and the 2nd heat exchange unit 12 will become large. However, by bending the connecting pipe 21 by making the cross-sectional area of the connecting pipe 21 smaller than the first and third headers 151 and 171, the bending diameter when the connecting pipe 21 is bent can be reduced. The distance between the heat exchange unit 11 and the second heat exchange unit 12 can be reduced.
 なお、上記の例では、室外熱交換器3の熱交換ユニットの数が第1熱交換ユニット11及び第2熱交換ユニット12の2つになっているが、図4に示すように熱交換ユニットの数を3つにしてもよい。また、熱交換ユニットの数を4つ以上にしてもよい。熱交換ユニットの数を3つ以上にした場合、最も風上の熱交換ユニットが第1熱交換ユニットとされ、2番目に風上の熱交換ユニットが第2熱交換ユニットとされる。また、この場合、各熱交換ユニットの第1及び第3ヘッダ151,171間ごとに接続管21がそれぞれ接続され、互いに隣り合う熱交換ユニットの第1及び第3ヘッダ151,171同士が接続管21を介して互いに連通される。また、各接続管21の断面積が第1及び第3ヘッダ151,171の断面積よりも小さくされる。 In the above example, the number of heat exchange units of the outdoor heat exchanger 3 is two, ie, the first heat exchange unit 11 and the second heat exchange unit 12, but as shown in FIG. The number of may be three. Further, the number of heat exchange units may be four or more. When the number of heat exchange units is three or more, the most upwind heat exchange unit is the first heat exchange unit, and the second upwind heat exchange unit is the second heat exchange unit. In this case, the connecting pipe 21 is connected between the first and third headers 151 and 171 of each heat exchange unit, and the first and third headers 151 and 171 of adjacent heat exchange units are connected to each other. 21 to communicate with each other. Further, the cross-sectional area of each connecting pipe 21 is made smaller than the cross-sectional areas of the first and third headers 151 and 171.
 実施の形態3.
 図5は、この発明の実施の形態3による室外熱交換器3を示す要部斜視図である。第1熱交換ユニット11の第1ヘッダ151と第2熱交換ユニット12の第3ヘッダ171とは、水平に配置された直線状の接続管21を介して連通されている。接続管21には、第1及び第3ヘッダ151,171の上端部が下方から接続されている。接続管21の長さ方向に直交する平面で切断したときの接続管21の断面積は、第1及び第3ヘッダ151,171の長さ方向に直交する平面で切断したときの第1及び第3ヘッダ151,171の断面積と同じになっている。
Embodiment 3 FIG.
FIG. 5 is a main part perspective view showing an outdoor heat exchanger 3 according to Embodiment 3 of the present invention. The first header 151 of the first heat exchange unit 11 and the third header 171 of the second heat exchange unit 12 are communicated with each other via a linear connecting pipe 21 that is disposed horizontally. The upper ends of the first and third headers 151 and 171 are connected to the connection pipe 21 from below. The cross-sectional area of the connection pipe 21 when cut along a plane perpendicular to the length direction of the connection pipe 21 is the first and the first when cut along the plane perpendicular to the length direction of the first and third headers 151, 171. This is the same as the cross-sectional area of the three headers 151 and 171.
 接続管21、第1及び第3ヘッダ151,171は、互いに異なる部品として作製された後、ろう付けにより組み合わされている。即ち、接続管21、第1及び第3ヘッダ151,171が一体になったヘッダ連結体は、接続管21、第1及び第3ヘッダ151,171を互いに異なる複数の部品として組み合わせて構成されている。 The connecting pipe 21, the first and third headers 151 and 171 are manufactured as parts different from each other and then combined by brazing. That is, the header coupling body in which the connecting pipe 21 and the first and third headers 151 and 171 are integrated is configured by combining the connecting pipe 21 and the first and third headers 151 and 171 as different parts. Yes.
 図6は、図5の接続管21を示す拡大斜視図である。接続管21自体も、互いに異なる複数の部品を例えばろう付け等により組み合わせて構成されている。例えば、接続管21の長さ方向に沿った分割面41で接続管21を分割した2つの部品を組み合わせたり、接続管21の長さ方向に直交する分割面42で接続管21を分割した2つの部品を組み合わせたりして、接続管21が構成されている。 FIG. 6 is an enlarged perspective view showing the connecting pipe 21 of FIG. The connecting pipe 21 itself is also configured by combining a plurality of different parts by, for example, brazing. For example, two parts obtained by dividing the connection tube 21 by the dividing surface 41 along the length direction of the connection tube 21 are combined, or the connection tube 21 is divided by the dividing surface 42 orthogonal to the length direction of the connection tube 21 2. The connecting pipe 21 is configured by combining two parts.
 接続管21内には、接続管21を通過する冷媒の量を制限する絞り部31が設けられている。この例では、貫通孔32が設けられた円形の板状部材が絞り部31とされている。貫通孔32の断面積は、接続管21の断面積よりも小さくなっている。冷媒は、互いに隣り合う第1及び第3ヘッダ151,171の一方から他方へ接続管21を通って流れるときに、接続管21内で貫通孔32を通る。これにより、接続管21を通過する冷媒の量が制限される。他の構成は実施の形態2と同様である。 In the connecting pipe 21, a throttle part 31 that restricts the amount of refrigerant passing through the connecting pipe 21 is provided. In this example, a circular plate-like member provided with a through hole 32 is used as the throttle portion 31. The cross-sectional area of the through hole 32 is smaller than the cross-sectional area of the connection pipe 21. When the refrigerant flows from one of the first and third headers 151 and 171 adjacent to each other through the connection pipe 21, the refrigerant passes through the through hole 32 in the connection pipe 21. Thereby, the quantity of the refrigerant | coolant which passes the connecting pipe 21 is restrict | limited. Other configurations are the same as those of the second embodiment.
 このような室外熱交換器3では、冷媒の通過量を制限する絞り部31が接続管21内に設けられているので、最も風上の第1熱交換ユニット11の第1及び第3扁平管154,164を流れる冷媒の量を、風下の第2熱交換ユニット12の第2及び第4扁平管174,184を流れる冷媒の量よりもさらに確実に多くすることができる。これにより、室外熱交換器3の熱交換効率の向上及び除霜時間の短縮化をさらに確実に図ることができる。 In such an outdoor heat exchanger 3, since the throttle part 31 which restrict | limits the passage amount of a refrigerant | coolant is provided in the connection pipe 21, the 1st and 3rd flat tube of the 1st heat exchanger unit 11 which is most windward The amount of refrigerant flowing through 154 and 164 can be more reliably increased than the amount of refrigerant flowing through the second and fourth flat tubes 174 and 184 of the second heat exchange unit 12 in the leeward direction. Thereby, the improvement of the heat exchange efficiency of the outdoor heat exchanger 3 and shortening of a defrost time can be achieved more reliably.
 また、接続管21、第1及び第3ヘッダ151,171が一体となったヘッダ連結体が、互いに異なる複数の部品を組み合わせて構成されているので、ヘッダ連結体の各部品を個別に作製することができ、ヘッダ連結体の製造を容易にすることができる。また、例えば接続管21、第1及び第3ヘッダ151,171を互いに異なる複数の部品とした場合には、単一の円筒管を曲げたときの曲げ径よりも接続管21を短くすることができる。これにより、単一の円筒管を曲げて接続管21、第1及び第3ヘッダ151,171を形成した場合に比べて、第1及び第3ヘッダ151,171間の距離の短縮化を図ることができる。さらに、第1及び第3ヘッダ151,171に接続管21を接続する前に接続管21内に絞り部31を設置することもでき、接続管21内に絞り部31を取り付ける作業を容易にすることもできる。これにより、室外熱交換器3の製造コストの低減化をさらに図ることができる。 Moreover, since the header coupling body in which the connecting pipe 21 and the first and third headers 151 and 171 are integrated is configured by combining a plurality of different parts, each component of the header coupling body is individually manufactured. And the manufacture of the header assembly can be facilitated. For example, when the connecting pipe 21 and the first and third headers 151 and 171 are a plurality of different parts, the connecting pipe 21 may be shorter than the bending diameter when a single cylindrical pipe is bent. it can. Thereby, shortening of the distance between the 1st and 3rd header 151,171 compared with the case where the connection pipe 21, and the 1st and 3rd header 151,171 are formed by bending a single cylindrical tube. Can do. Furthermore, before connecting the connecting pipe 21 to the first and third headers 151, 171, the throttle part 31 can be installed in the connecting pipe 21, and the work of attaching the throttle part 31 in the connecting pipe 21 is facilitated. You can also Thereby, the manufacturing cost of the outdoor heat exchanger 3 can be further reduced.
 さらに、接続管21が複数の部品を組み合わせて構成されているので、接続管21の各部品を絞り部31とともに組み合わせることにより、接続管21内に絞り部31を設置する作業をさらに容易にすることができる。これにより、各扁平管154,164と、各伝熱フィン155,165と、ヘッダ連結体とを炉中で一体にろう付けする作業を容易にすることができる。 Furthermore, since the connection pipe 21 is configured by combining a plurality of parts, the work of installing the throttle part 31 in the connection pipe 21 is further facilitated by combining the parts of the connection pipe 21 together with the throttle part 31. be able to. Thereby, the operation | work which braces each flat tube 154,164, each heat-transfer fin 155,165, and a header coupling body integrally in a furnace can be made easy.
 なお、上記の例では、接続管21の断面積が第1及び第3ヘッダ151,171の断面積と同じになっているが、接続管21の断面積を第1及び第3ヘッダ151,171の断面積よりも小さくしてもよいし、接続管21の断面積を第1及び第3ヘッダ151,171よりも大きくしてもよい。このようにしても、接続管21を通過する冷媒の量を絞り部31によって制限することができる。 In the above example, the cross-sectional area of the connecting pipe 21 is the same as the cross-sectional areas of the first and third headers 151 and 171, but the cross-sectional area of the connecting pipe 21 is the same as that of the first and third headers 151 and 171. The cross sectional area of the connecting pipe 21 may be larger than those of the first and third headers 151 and 171. Even in this case, the amount of the refrigerant passing through the connecting pipe 21 can be limited by the throttle portion 31.
 また、上記の例では、貫通孔32が設けられた板状部材を絞り部31としているが、これに限定されず、例えば膨張弁又はバルブ等を絞り部として接続管21内に設けてもよい。 In the above example, the plate-like member provided with the through hole 32 is used as the throttle 31. However, the present invention is not limited to this. For example, an expansion valve or a valve may be provided in the connecting pipe 21 as a throttle. .
 また、上記の例では、室外熱交換器3の熱交換ユニットの数が第1熱交換ユニット11及び第2熱交換ユニット12の2つになっているが、図7に示すように熱交換ユニットの数を3つにしてもよいし、熱交換ユニットの数を4つ以上にしてもよい。この場合、各熱交換ユニットの第1及び第3ヘッダ151,171が共通の接続管21にそれぞれ接続され、第1及び第3ヘッダ151,171間が接続管21を介して互いに連通される。また、この場合、最も風上の熱交換ユニットが第1熱交換ユニットとされ、2番目に風上の熱交換ユニットが第2熱交換ユニットとされる。さらに、この場合、接続管21内のうち、最も風上の熱交換ユニットと、2番目に風上の熱交換ユニットとの間の位置にのみ絞り部31を設けてもよいし、接続管21内の各熱交換ユニット間のそれぞれの位置に絞り部31を設けてもよい。 In the above example, the number of heat exchange units of the outdoor heat exchanger 3 is two, that is, the first heat exchange unit 11 and the second heat exchange unit 12, but as shown in FIG. May be three, or the number of heat exchange units may be four or more. In this case, the first and third headers 151 and 171 of each heat exchange unit are connected to the common connection pipe 21, and the first and third headers 151 and 171 are connected to each other via the connection pipe 21. In this case, the most upwind heat exchange unit is the first heat exchange unit, and the second upwind heat exchange unit is the second heat exchange unit. Furthermore, in this case, the throttle part 31 may be provided only in a position between the most upwind heat exchange unit and the second upwind heat exchange unit in the connection pipe 21, or the connection pipe 21. You may provide the throttle part 31 in each position between each heat exchange unit.
 また、各上記実施の形態では、風上の第1熱交換ユニット11の第1ヘッダ151の断面積及び風下の第2熱交換ユニット12の第3ヘッダ171の断面積がすべて同じになっているが、風下の第3ヘッダ171の断面積を風上の第1ヘッダ151の断面積よりも小さくしてもよい。即ち、第3ヘッダ171の容積を第1ヘッダ151の容積よりも小さくしてもよい。このようにすれば、風下の第2熱交換ユニット12の第3ヘッダ171内の圧力損失を、風上の第1熱交換ユニット11の第1ヘッダ151内の圧力損失よりも大きくすることができ、風上の第1熱交換ユニット11の第1及び第3扁平管154,164への冷媒の供給量を、風下の第2熱交換ユニット12の第2及び第4扁平管174,184への冷媒の供給量よりも多くすることができる。また、第3ヘッダ171の熱容量を第1のヘッダ151の熱容量よりも小さくすることができ、風下の第2熱交換ユニット12の第1のヘッダ151における放熱ロスを小さくすることができる。これにより、室外熱交換器3の熱交換効率の向上及び除霜時間の短縮化を図ることができる。 Moreover, in each said embodiment, the cross-sectional area of the 1st header 151 of the 1st heat exchanger unit 11 of the windward and the cross-sectional area of the 3rd header 171 of the 2nd heat exchanger unit 12 of the leeward are all the same. However, the cross-sectional area of the third header 171 on the leeward side may be smaller than the cross-sectional area of the first header 151 on the leeward side. That is, the volume of the third header 171 may be smaller than the volume of the first header 151. In this way, the pressure loss in the third header 171 of the second heat exchange unit 12 leeward can be made larger than the pressure loss in the first header 151 of the first heat exchange unit 11 leeward. The supply amount of the refrigerant to the first and third flat tubes 154 and 164 of the first heat exchange unit 11 on the windward side is changed to the second and fourth flat tubes 174 and 184 of the second heat exchange unit 12 on the leeward side. It can be made larger than the supply amount of the refrigerant. Moreover, the heat capacity of the 3rd header 171 can be made smaller than the heat capacity of the 1st header 151, and the heat radiation loss in the 1st header 151 of the 2nd heat exchange unit 12 of a leeward can be made small. Thereby, the improvement of the heat exchange efficiency of the outdoor heat exchanger 3 and shortening of a defrost time can be aimed at.
 また、実施の形態1及び2でも、実施の形態3と同様に、接続管21、第1ヘッダ151及び第3ヘッダ171が一体となったヘッダ連結体を、複数の部品を組み合わせて構成してもよい。例えば、接続管21、第1ヘッダ151及び第3ヘッダ171を互いに異なる複数の部品として作製した後、各部品を組み合わせてヘッダ連結体を構成してもよい。 Also in the first and second embodiments, as in the third embodiment, the header coupling body in which the connecting pipe 21, the first header 151, and the third header 171 are integrated is configured by combining a plurality of components. Also good. For example, after the connecting pipe 21, the first header 151, and the third header 171 are manufactured as a plurality of different parts, the header linked body may be configured by combining the parts.
 また、実施の形態1及び2の接続管21内に実施の形態3の絞り部31を設置してもよい。このようにすれば、風上の第1熱交換ユニット11の第1及び第3扁平管154,164を流れる冷媒の量を、風下の第2熱交換ユニット12の第1及び第3扁平管174,184を流れる冷媒の量よりもさらに確実に多くすることができる。この場合、実施の形態3と同様に、互いに異なる複数の部品を組み合わせて接続管21を構成してもよい。 Further, the throttle part 31 of the third embodiment may be installed in the connecting pipe 21 of the first and second embodiments. In this way, the amount of the refrigerant flowing through the first and third flat tubes 154 and 164 of the first heat exchange unit 11 on the windward side is set to the first and third flat tubes 174 of the second heat exchange unit 12 on the leeward side. , 184 can be more reliably increased than the amount of the refrigerant flowing through. In this case, similarly to the third embodiment, the connecting pipe 21 may be configured by combining a plurality of different parts.
 また、各上記実施の形態では、接続管21が第1及び第3ヘッダ151,171の上端部間に接続されているが、第1及び第3ヘッダ151,171の下端部間に接続管21を接続してもよいし、第1及び第3ヘッダ151,171の中間部間に接続管21を接続してもよい。 In each of the above embodiments, the connection pipe 21 is connected between the upper ends of the first and third headers 151 and 171, but the connection pipe 21 is connected between the lower ends of the first and third headers 151 and 171. May be connected, or the connecting pipe 21 may be connected between intermediate portions of the first and third headers 151 and 171.
 また、各上記実施の形態では、第1熱交換ユニット11が第1主熱交換部15と第1副熱交換部16とを有し、第2熱交換ユニット12が第2主熱交換部17と第2副熱交換部18とを有しているが、第1副熱交換部16及び第2副熱交換部18が第1熱交換ユニット11及び第2熱交換ユニット12に含まれていなくてもよい。この場合、第1熱交換ユニット11の第2ヘッダ152及び第2熱交換ユニット12の第4ヘッダ172に液側冷媒口23が設けられる。これにより、この場合、第1熱交換ユニット11及び第2熱交換ユニット12では、液側冷媒口23が、第1及び第3ヘッダ151,171及び各第1及び第2扁平管154,174を介さずに第2及び第4ヘッダ152,172に直接連通される。 Moreover, in each said embodiment, the 1st heat exchange unit 11 has the 1st main heat exchange part 15 and the 1st sub heat exchange part 16, and the 2nd heat exchange unit 12 is the 2nd main heat exchange part 17. And the second sub heat exchange unit 18, but the first sub heat exchange unit 16 and the second sub heat exchange unit 18 are not included in the first heat exchange unit 11 and the second heat exchange unit 12. May be. In this case, the liquid-side refrigerant port 23 is provided in the second header 152 of the first heat exchange unit 11 and the fourth header 172 of the second heat exchange unit 12. Thereby, in this case, in the first heat exchange unit 11 and the second heat exchange unit 12, the liquid side refrigerant port 23 is connected to the first and third headers 151, 171 and the first and second flat tubes 154, 174. It communicates directly with the second and fourth headers 152 and 172 without intervention.
 また、各上記実施の形態では、第1及び第5ヘッダ151,161が互いに異なる部品として配置され、第3及び第7ヘッダ171,181が互いに異なる部品として配置されているが、単一の円筒管内を仕切り板で仕切ってできた2つの空間部分の一方を第1ヘッダとし他方を第5ヘッダとし、単一の円筒管内を仕切り板で仕切ってできた2つの空間部分の一方を第3ヘッダとし他方を第7ヘッダとしてもよい。 In each of the above embodiments, the first and fifth headers 151 and 161 are arranged as different parts, and the third and seventh headers 171 and 181 are arranged as different parts. One of the two space portions formed by partitioning the inside of the tube with a partition plate is a first header and the other is a fifth header, and one of the two space portions formed by partitioning a single cylindrical tube with a partition plate is a third header. The other may be the seventh header.
 また、各上記実施の形態では、単一の円筒管の一部が第2ヘッダ152とされ残りの部分が第6ヘッダ162とされているが、第2ヘッダ152と第6ヘッダ162とを互いに異なる部品として分離して配置し、第2ヘッダ152と第6ヘッダ162とを連通管を介して互いに連通させてもよい。同様に、第4ヘッダ172と第8ヘッダ182とを互いに異なる部品として分離して配置し、第4ヘッダ172と第8ヘッダ182とを連通管を介して互いに連通させてもよい。 In each of the above embodiments, a part of a single cylindrical tube is a second header 152 and the remaining part is a sixth header 162. However, the second header 152 and the sixth header 162 are connected to each other. The second header 152 and the sixth header 162 may be separated from each other and communicated with each other via a communication pipe. Similarly, the fourth header 172 and the eighth header 182 may be separately disposed as different parts, and the fourth header 172 and the eighth header 182 may be communicated with each other via a communication pipe.
 また、各上記実施の形態では、第1主熱交換部本体153と第1副熱交換部本体163とが繋がっているが、第1主熱交換部本体153と第1副熱交換部本体163とを分離して互いに離して配置してもよい。また、第2主熱交換部本体173と第2副熱交換部本体173とを分離して互いに離して配置してもよい。 Moreover, in each said embodiment, although the 1st main heat exchange part main body 153 and the 1st sub heat exchange part main body 163 are connected, the 1st main heat exchange part main body 153 and the 1st sub heat exchange part main body 163 are connected. And may be arranged apart from each other. In addition, the second main heat exchange unit main body 173 and the second sub heat exchange unit main body 173 may be separated and arranged apart from each other.
 また、各上記実施の形態では、第1ヘッダ151、第2ヘッダ152、第3ヘッダ171、第4ヘッダ172、第5ヘッダ161、第6ヘッダ162、第7ヘッダ181及び第8ヘッダ182のそれぞれの断面形状が円形になっているが、これに限定されず、第1ヘッダ151、第2ヘッダ152、第3ヘッダ171、第4ヘッダ172、第5ヘッダ161、第6ヘッダ162、第7ヘッダ181及び第8ヘッダ182のそれぞれの断面形状を例えば矩形状等としてもよい。 In each of the above embodiments, each of the first header 151, the second header 152, the third header 171, the fourth header 172, the fifth header 161, the sixth header 162, the seventh header 181 and the eighth header 182. However, the present invention is not limited to this, and the first header 151, the second header 152, the third header 171, the fourth header 172, the fifth header 161, the sixth header 162, and the seventh header are not limited to this. The cross-sectional shapes of the 181 and the eighth header 182 may be, for example, rectangular.
 また、各上記実施の形態では、最も風上の第1熱交換ユニット11の第1ヘッダ151にのみ設けられたガス側冷媒口22の数が1つのみとされているが、第1熱交換ユニット11の第1ヘッダ151にのみ設けられたガス側冷媒口22の数を複数にしてもよい。 Moreover, in each said embodiment, although the number of the gas side refrigerant | coolant ports 22 provided only in the 1st header 151 of the 1st heat exchange unit 11 most windward is made into one, 1st heat exchange The number of the gas side refrigerant ports 22 provided only in the first header 151 of the unit 11 may be plural.
 また、各上記実施の形態では、室外熱交換器3にこの発明が適用されているが、室内熱交換器5にこの発明を適用してもよい。さらに、各上記実施の形態では、冷凍サイクル装置としての空気調和機1に含まれている室外熱交換器3にこの発明が適用されているが、これに限定されず、冷凍サイクル装置としての例えば冷蔵庫、冷凍庫、給湯器等に含まれている熱交換器にこの発明を適用してもよい。 In each of the above embodiments, the present invention is applied to the outdoor heat exchanger 3, but the present invention may be applied to the indoor heat exchanger 5. Furthermore, in each said embodiment, although this invention is applied to the outdoor heat exchanger 3 contained in the air conditioner 1 as a refrigerating cycle apparatus, it is not limited to this, For example, as a refrigerating cycle apparatus You may apply this invention to the heat exchanger contained in a refrigerator, a freezer, a water heater, etc.
 また、この発明は各上記実施の形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。さらに、各上記実施の形態を組み合わせてこの発明を実施することもできる。 Further, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention. Furthermore, the present invention can also be implemented by combining the above embodiments.
 1 空気調和機(冷凍サイクル装置)、3 室外熱交換器(熱交換器)、11 第1熱交換ユニット、12 第2熱交換ユニット、21 接続管、22 ガス側冷媒口、23 液側冷媒口、151 第1ヘッダ、152 第2ヘッダ、154 第1扁平管、171 第3ヘッダ、172 第4ヘッダ、174 第2扁平管、31 絞り部。 DESCRIPTION OF SYMBOLS 1 Air conditioner (refrigeration cycle apparatus) 3, Outdoor heat exchanger (heat exchanger), 11 1st heat exchange unit, 12 2nd heat exchange unit, 21 Connection pipe, 22 Gas side refrigerant port, 23 Liquid side refrigerant port , 151 1st header, 152 2nd header, 154 1st flat tube, 171 3rd header, 172 4th header, 174 2nd flat tube, 31 throttle part.

Claims (6)

  1.  第1熱交換ユニットと、
     前記第1熱交換ユニットを通過した後の気流が通過する第2熱交換ユニットと
     を備え、
     前記第1熱交換ユニットは、中空の第1ヘッダと、中空の第2ヘッダと、前記第1及び第2ヘッダ間を繋ぐ第1扁平管とを有し、
     前記第2熱交換ユニットは、中空の第3ヘッダと、中空の第4ヘッダと、前記第3及び第4ヘッダ間を繋ぐ第2扁平管とを有し、
     前記第1及び第2扁平管の内部には、冷媒を流す流路が形成され、
     前記第1ヘッダと前記第3ヘッダとは、接続管を介して互いに連通され、
     前記第2ヘッダと前記第4ヘッダとは、互いに独立しており、
     前記第1ヘッダにのみ、ガス側冷媒口が設けられている熱交換器。
    A first heat exchange unit;
    A second heat exchange unit through which the airflow after passing through the first heat exchange unit passes,
    The first heat exchange unit has a hollow first header, a hollow second header, and a first flat tube connecting the first and second headers,
    The second heat exchange unit has a hollow third header, a hollow fourth header, and a second flat tube connecting the third and fourth headers,
    Inside the first and second flat tubes, a flow path for flowing a refrigerant is formed,
    The first header and the third header are communicated with each other via a connecting pipe,
    The second header and the fourth header are independent of each other,
    A heat exchanger in which a gas-side refrigerant port is provided only in the first header.
  2.  前記接続管内には、前記接続管を通過する冷媒の量を制限する絞り部が設けられている請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein a throttle part for limiting an amount of refrigerant passing through the connection pipe is provided in the connection pipe.
  3.  前記接続管の断面積は、前記第1ヘッダ及び前記第3ヘッダのいずれの断面積よりも小さくなっている請求項1又は請求項2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein a cross-sectional area of the connection pipe is smaller than a cross-sectional area of either the first header or the third header.
  4.  前記第1ヘッダ及び前記第3ヘッダと前記接続管とが一体となったヘッダ連結体は、互いに異なる複数の部品を組み合わせて構成されている請求項1~請求項3のいずれか一項に記載の熱交換器。 The header coupling body in which the first header, the third header, and the connection pipe are integrated is configured by combining a plurality of different parts. Heat exchanger.
  5.  前記第3ヘッダの断面積は、前記第1ヘッダの断面積よりも小さくなっている請求項1~請求項4のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 4, wherein a cross-sectional area of the third header is smaller than a cross-sectional area of the first header.
  6.  請求項1~請求項5のいずれか一項に記載の熱交換器を備えている冷凍サイクル装置。 A refrigeration cycle apparatus comprising the heat exchanger according to any one of claims 1 to 5.
PCT/JP2015/052771 2015-01-30 2015-01-30 Heat exchanger and refrigeration cycle device WO2016121124A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016571653A JP6198976B2 (en) 2015-01-30 2015-01-30 Heat exchanger and refrigeration cycle apparatus
PCT/JP2015/052771 WO2016121124A1 (en) 2015-01-30 2015-01-30 Heat exchanger and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052771 WO2016121124A1 (en) 2015-01-30 2015-01-30 Heat exchanger and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2016121124A1 true WO2016121124A1 (en) 2016-08-04

Family

ID=56542771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052771 WO2016121124A1 (en) 2015-01-30 2015-01-30 Heat exchanger and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6198976B2 (en)
WO (1) WO2016121124A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215161A (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Outdoor machine of air conditioner, and air conditioner
CN110832260A (en) * 2017-06-30 2020-02-21 三菱电机株式会社 Heat exchanger and refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520355A (en) * 2018-12-21 2019-03-26 广东美的白色家电技术创新中心有限公司 Heat-exchanger rig and refrigeration equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189066U (en) * 1983-06-01 1984-12-14 株式会社富士通ゼネラル air conditioner
JPH0384395A (en) * 1989-08-23 1991-04-09 Showa Alum Corp Duplex heat exchanger
JP2005090805A (en) * 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59189066U (en) * 1983-06-01 1984-12-14 株式会社富士通ゼネラル air conditioner
JPH0384395A (en) * 1989-08-23 1991-04-09 Showa Alum Corp Duplex heat exchanger
JP2005090805A (en) * 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110832260A (en) * 2017-06-30 2020-02-21 三菱电机株式会社 Heat exchanger and refrigeration cycle device
CN110832260B (en) * 2017-06-30 2021-10-19 三菱电机株式会社 Heat exchanger and refrigeration cycle device
US11326815B2 (en) 2017-06-30 2022-05-10 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
JP2019215161A (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Outdoor machine of air conditioner, and air conditioner

Also Published As

Publication number Publication date
JPWO2016121124A1 (en) 2017-04-27
JP6198976B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
CN112204312B (en) Outdoor unit of air conditioner and air conditioner
US9651317B2 (en) Heat exchanger and air conditioner
JP6768073B2 (en) Air conditioner
JP6790077B2 (en) Heat exchanger
EP3156752B1 (en) Heat exchanger
JP6253814B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6590948B2 (en) Heat exchanger and refrigeration cycle equipment
WO2016013100A1 (en) Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger
WO2015045105A1 (en) Heat exchanger and air conditioner using same
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6980117B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP5962033B2 (en) Heat exchanger and air conditioner equipped with the same
KR100539570B1 (en) multi airconditioner
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
US20200200477A1 (en) Heat exchanger and heat exchange unit including the same
JP5627635B2 (en) Air conditioner
JP2018138826A (en) Air conditioner
WO2012098913A1 (en) Heat exchanger and air conditioner
US20220099344A1 (en) Gas header, heat exchanger, and refrigeration cycle apparatus
JP7118279B2 (en) HEAT EXCHANGER, MANUFACTURING METHOD THEREOF, AND AIR CONDITIONER
JP7106814B2 (en) Heat exchanger
JP2016148483A (en) Freezer unit
WO2016098204A1 (en) Heat exchanger and refrigeration cycle device provided with heat exchanger
WO2017037772A1 (en) Heat exchanger and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016571653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880020

Country of ref document: EP

Kind code of ref document: A1