WO2012098692A1 - 標的遺伝子の発現を抑制する組成物 - Google Patents

標的遺伝子の発現を抑制する組成物 Download PDF

Info

Publication number
WO2012098692A1
WO2012098692A1 PCT/JP2011/052092 JP2011052092W WO2012098692A1 WO 2012098692 A1 WO2012098692 A1 WO 2012098692A1 JP 2011052092 W JP2011052092 W JP 2011052092W WO 2012098692 A1 WO2012098692 A1 WO 2012098692A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
bases
ribose
lipid
substituted
Prior art date
Application number
PCT/JP2011/052092
Other languages
English (en)
French (fr)
Inventor
史一 篠原
哲郎 吉田
寛子 杉下
智幸 直井
俊彦 石井
淳一 榎園
Original Assignee
協和発酵キリン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 協和発酵キリン株式会社 filed Critical 協和発酵キリン株式会社
Priority to US13/980,139 priority Critical patent/US20140039034A1/en
Priority to EP11856020.0A priority patent/EP2666856A4/en
Priority to JP2012553542A priority patent/JP5952197B2/ja
Priority to US13/348,959 priority patent/US20120207818A1/en
Priority to US13/437,428 priority patent/US20120244210A1/en
Publication of WO2012098692A1 publication Critical patent/WO2012098692A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1272Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers with substantial amounts of non-phosphatidyl, i.e. non-acylglycerophosphate, surfactants as bilayer-forming substances, e.g. cationic lipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific

Definitions

  • the present invention relates to a composition for suppressing the expression of a target gene.
  • RNAi RNA interference
  • RNAi has been extensively verified in in vivo tests, and reports on fetal animal effects using siRNAs of 50 base pairs or less (see Patent Document 1) and adult mice (see Patent Document 2) are reported. Has been. Further, when siRNA is intravenously administered to mouse fetuses, the effect of suppressing the expression of specific genes has been confirmed in each organ of kidney, spleen, lung, pancreas and liver (see Non-Patent Document 1). Furthermore, it has been reported that expression of a specific gene is also suppressed in brain cells by directly administering siRNA (see Non-Patent Document 2).
  • a method using cationic lipid particles or cationic polymers is known as a means for delivering nucleic acid into cells.
  • the nucleic acid is quickly removed from the blood, and the target tissue is other than the liver or lung, for example, a tumor site In such a case, the nucleic acid cannot be delivered to the target tissue, and sufficient expression of the action has not been made possible. Therefore, nucleic acid-encapsulated lipid particles (lipid particles encapsulating nucleic acids) that have solved the problem of rapid removal of nucleic acids in blood have been reported (see Patent Documents 3 to 6 and Non-patent Document 3).
  • Patent Document 3 as a method for producing lipid particles encapsulating nucleic acid or the like, for example, cationic lipid is previously dissolved in chloroform, and then an oligodeoxynucleotide (ODN) aqueous solution and methanol are added and mixed, followed by centrifugation. Transfer the cationic lipid / ODN complex to the chloroform layer, take out the chloroform layer, add polyethylene glycolated phospholipid, neutral lipid and water to this to form a water-in-oil (W / O) emulsion.
  • ODN oligodeoxynucleotide
  • Patent Document 4 A method for producing ODN-encapsulated lipid particles by forming and treating by reverse phase evaporation is reported.
  • ODN is dissolved in an aqueous citric acid solution at pH 3.8, and lipid (ethanol Medium), and reduce the ethanol concentration to 20 v / v% to prepare ODN-encapsulated lipid particles.
  • lipid ethanol Medium
  • the method of producing ODN-encapsulated lipid particles by removing the ODN adhering to the surface of the lipid particles by dialysis of the sample at pH 7.5 was reported. It is manufactured.
  • Patent Documents 5 and 6 report that lipid particles in which an active ingredient such as a nucleic acid is encapsulated are produced by a method of coating fine particles with a lipid bilayer in a liquid.
  • this method by reducing the concentration of the polar organic solvent in the aqueous solution containing the polar organic solvent in which the fine particles are dispersed and the lipid is dissolved, the fine particles are coated with the lipid bilayer membrane in the liquid.
  • fine particles (coated fine particles) coated with a lipid bilayer having a size suitable for fine particles for intravenous injection, for example, are produced with excellent efficiency.
  • Patent Documents 5 and 6 exemplify, for example, a complex formed by electrostatic interaction comprising ODN or siRNA and a cationic lipid as an example of fine particles to be coated.
  • the coated microparticles coated with the microparticles have a small particle size and can be used as an injection, and the coated microparticles exhibit high blood retention when administered intravenously and accumulate in tumor tissues. It has been reported.
  • the surface of lipid particles is generally modified with a water-soluble polymer such as polyethylene glycol (PEG), and the lipid particles modified with the surface are less likely to interact with serum proteins such as opsonin, Furthermore, since recognition by macrophages can be avoided, it is known that it is a lipid particle having a long residence time in blood. It has been reported that nucleic acid-encapsulated lipid particles also show higher retention in blood and more accumulated in tumor tissue by using PEG-modified lipid particles. However, it is known that when PEG-modified lipid particles are administered twice at an administration interval of 3-7 days, the blood retention of the second-administered PEG-modified lipid particles is significantly reduced.
  • PEG polyethylene glycol
  • the induced anti-PEG-IgM antibody binds to PEG of the second dose lipid particle, and then activates the complement system to enhance uptake by hepatic macrophages, and the retention of the second dose of PEG-modified lipid particles in the blood is increased. It is thought that it is significantly reduced (see Non-Patent Document 4).
  • An object of the present invention is to provide a composition for suppressing the expression of a target gene.
  • a composition containing lipid particles whose surface is modified with a water-soluble polymer such as polyethylene glycol (PEG) it is possible to suppress a significant decrease in blood retention during the second administration, and to have higher blood retention.
  • An object of the present invention is to provide a composition or the like for suppressing the expression of a target gene.
  • the present invention relates to the following (1) to (56).
  • a composition comprising lipid particles encapsulating a double-stranded nucleic acid molecule composed of a sense strand and an antisense strand,
  • the antisense strand has a base sequence complementary to the 17-base sequence of the target gene mRNA in which the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end (sequence a)
  • a polynucleotide having a length of 17 to 30 bases, wherein the sugar in the antisense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • (iii) 30-100% of the sugars bound to the bases at the 17th to 3 'end from the 5' end to the 3 'end of the antisense strand are deoxyribose or the hydroxyl group
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • the lipid particle is a lipid particle having a size that can be administered intravenously, and the lipid particle has a lipid bilayer membrane comprising a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a water-soluble substance as a constituent component.
  • a composition (2) (v) 50% to 70% of the sugar that binds to a base other than the sequence b of the sense strand is deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group, Composition. (3) The composition according to (1) or (2) above, wherein the double-stranded nucleic acid molecule is a double-stranded nucleic acid molecule having an action of suppressing the expression of the target gene using RNA interference (RNAi). (4) The composition according to any one of (1) to (3), wherein the target gene is a gene associated with tumor or inflammation. (5) The composition according to any one of (1) to (4), wherein the target gene is a gene associated with angiogenesis.
  • RNAi RNA interference
  • the target gene is vascular endothelial growth factor, vascular endothelial growth factor receptor, fibroblast growth factor, fibroblast growth factor receptor, platelet-derived growth factor, platelet-derived growth factor receptor, hepatocyte growth factor,
  • a lipid particle encapsulating a double-stranded nucleic acid molecule is a lipid particle comprising a lead particle, a composite particle comprising the double-stranded nucleic acid molecule as a constituent component, and a lipid bilayer covering the composite particle,
  • the components of the lipid bilayer membrane are soluble in a specific polar organic solvent, and the components of the lipid bilayer membrane and the composite particles can be dispersed in a liquid containing the polar organic solvent at a specific concentration.
  • the composition according to any one of (1) to (7).
  • the composition according to (8), wherein the polar organic solvent is an alcohol.
  • the composition according to (8) above, wherein the polar organic solvent is ethanol.
  • the lead particle is a lead particle containing a cationic substance
  • the lipid bilayer coating the composite particle is a constituent component of a lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative of a neutral lipid and a water-soluble substance.
  • the composition according to any one of (8) to (10), wherein the composition is a lipid bilayer.
  • a lipid particle in which a double-stranded nucleic acid molecule is encapsulated comprises a lead particle containing a cationic substance, a composite particle comprising the double-stranded nucleic acid molecule as a constituent component, and a lipid bilayer coating the composite particle Particles,
  • the lipid bilayer coating the composite particles is a lipid bilayer comprising a neutral lipid and a lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative of a water-soluble substance as a constituent component (1) to (7 ).
  • a cancer comprising a composite particle comprising a lead particle and a double-stranded nucleic acid molecule composed of a sense strand and an antisense strand as constituents, and a lipid particle comprising a lipid bilayer coating the composite particle or A therapeutic agent for inflammatory diseases,
  • the antisense strand has a sequence of bases 1 to 17 (sequence a) from the 5 ′ end to the 3 ′ end, and a sequence of 17 bases of mRNA of a target gene related to tumor or inflammation.
  • a complementary base sequence a polynucleotide having a length of 17 to 30 bases, wherein the sugar in the antisense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group.
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • (iii) 30-100% of the sugars bound to the bases at the 17th to 3 'end from the 5' end to the 3 'end of the antisense strand are deoxyribose or the hydroxyl group
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group,
  • the lipid particle is a lipid particle of a size that can be administered intravenously,
  • the components of the lipid bilayer membrane are soluble in a specific polar organic solvent, and the components of the lipid bilayer membrane and the composite particles are dispersible in a liquid containing the polar organic solvent at a specific concentration.
  • a therapeutic agent for cancer or inflammatory disease wherein the lipid bilayer membrane is a lipid bilayer membrane comprising a water-soluble substance lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative as a constituent component.
  • the polar organic solvent is alcohol.
  • the polar organic solvent is ethanol.
  • the lead particle is a lead particle containing a cationic substance
  • the lipid bilayer membrane is a lipid double substance comprising a neutral lipid and a lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative of a water-soluble substance as a constituent component.
  • the therapeutic agent for cancer or inflammatory disease according to any one of (14) to (16), which is a membrane.
  • a composite particle comprising a lead particle containing a cationic substance and a double-stranded nucleic acid molecule composed of a sense strand and an antisense strand, and a lipid particle comprising a lipid bilayer covering the composite particle
  • a therapeutic agent for cancer or inflammatory disease containing The antisense strand has a sequence of bases 1 to 17 (sequence a) from the 5 ′ end to the 3 ′ end, and a sequence of 17 bases of mRNA of a target gene related to tumor or inflammation.
  • a complementary base sequence a polynucleotide having a length of 17 to 30 bases, wherein the sugar in the antisense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group.
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • (iii) 30-100% of the sugars bound to the bases at the 17th to 3 'end from the 5' end to the 3 'end of the antisense strand are deoxyribose or the hydroxyl group
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group,
  • the lipid particle is a lipid particle of a size that can be administered intravenously,
  • the lipid bilayer membrane is a lipid bilayer membrane comprising a neutral lipid and a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a water-soluble substance.
  • Tumor or inflammation-related target genes are vascular endothelial growth factor, vascular endothelial growth factor receptor, fibroblast growth factor, fibroblast growth factor receptor, platelet-derived growth factor, platelet-derived growth factor receptor
  • a therapeutic agent for cancer or inflammatory diseases is human or mouse mRNA.
  • a composition comprising a lead particle, a composite particle comprising a double-stranded nucleic acid molecule composed of a sense strand and an antisense strand as a constituent component, and a lipid particle comprising a lipid bilayer coating the composite particle.
  • the antisense strand has a sequence of bases 1 to 17 (sequence a) from the 5 ′ end to the 3 ′ end, and a sequence of 17 bases of mRNA of a target gene related to tumor or inflammation.
  • a complementary base sequence a polynucleotide having a length of 17 to 30 bases, wherein the sugar in the antisense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group.
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • (iii) 30-100% of the sugars bound to the bases at the 17th to 3 'end from the 5' end to the 3 'end of the antisense strand are deoxyribose or the hydroxyl group
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group,
  • the lipid particle is a lipid particle of a size that can be administered intravenously,
  • the components of the lipid bilayer membrane are soluble in a specific polar organic solvent, and the components of the lipid bilayer membrane and the composite particles are dispersible in a liquid containing the polar organic solvent at a specific concentration.
  • a method for treating cancer or inflammatory disease wherein the composition is administered to a mammal, wherein the lipid bilayer membrane is a lipid bilayer membrane comprising a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative as a water-soluble substance. .
  • the polar organic solvent is alcohol.
  • the polar organic solvent is ethanol.
  • the lead particle is a lead particle containing a cationic substance
  • the lipid bilayer membrane is a lipid double substance comprising a neutral lipid and a lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative of a water-soluble substance as a constituent component.
  • a method of treating cancer or inflammatory disease comprising administering a composition containing it to a mammal, comprising:
  • the antisense strand has a sequence of bases 1 to 17 (sequence a) from the 5 ′ end to the 3 ′ end, and a sequence of 17 bases of mRNA of a target gene related to tumor or inflammation.
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group, (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose, (ii) 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ri
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • the lipid particle is a lipid particle of a size that can be administered intravenously, Cancer or inflammation in which the composition is administered to a mammal, wherein the lipid bilayer is a lipid bilayer comprising a neutral lipid and a lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative of a water-soluble substance as a constituent component How to treat the disease.
  • Target genes related to tumor or inflammation are vascular endothelial growth factor, vascular endothelial growth factor receptor, fibroblast growth factor, fibroblast growth factor receptor, platelet-derived growth factor, platelet-derived growth factor receptor , Any of the genes for hepatocyte growth factor, hepatocyte growth factor receptor, Kruppel-like factor, Ets transcription factor, nuclear factor and hypoxia-inducing factor according to any one of (24) to (30) above Methods for treating cancer or inflammatory diseases. (33) The method for treating cancer or inflammatory disease according to any one of (24) to (32), wherein the mRNA is human or mouse mRNA.
  • a composition comprising a lead particle, a composite particle comprising a double-stranded nucleic acid molecule composed of a sense strand and an antisense strand as constituent components, and a lipid particle comprising a lipid bilayer coating the composite particle
  • the antisense strand has a sequence of bases 1 to 17 (sequence a) from the 5 ′ end to the 3 ′ end, and a sequence of 17 bases of mRNA of a target gene related to tumor or inflammation.
  • a complementary base sequence a polynucleotide having a length of 17 to 30 bases, wherein the sugar in the antisense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group.
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • (iii) 30-100% of the sugars bound to the bases at the 17th to 3 'end from the 5' end to the 3 'end of the antisense strand are deoxyribose or the hydroxyl group
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group,
  • the lipid particle is a lipid particle of a size that can be administered intravenously,
  • the components of the lipid bilayer membrane are soluble in a specific polar organic solvent, and the components of the lipid bilayer membrane and the composite particles are dispersible in a liquid containing the polar organic solvent at a specific concentration.
  • the lipid bilayer membrane is a lipid bilayer membrane comprising a water-soluble substance lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative as a constituent, for producing a therapeutic agent for cancer or inflammatory disease of the composition use.
  • the polar organic solvent is an alcohol.
  • the polar organic solvent is ethanol.
  • the lead particle is a lead particle containing a cationic substance
  • the lipid bilayer membrane is a lipid double substance comprising a neutral lipid and a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a water-soluble substance.
  • the antisense strand has a sequence of bases 1 to 17 (sequence a) from the 5 ′ end to the 3 ′ end, and a sequence of 17 bases of mRNA of a target gene related to tumor or inflammation.
  • a complementary base sequence a polynucleotide having a length of 17 to 30 bases, wherein the sugar in the antisense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group.
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • (iii) 30-100% of the sugars bound to the bases at the 17th to 3 'end from the 5' end to the 3 'end of the antisense strand are deoxyribose or the hydroxyl group
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • the lipid particle is a lipid particle of a size that can be administered intravenously
  • the lipid bilayer is a lipid bilayer comprising a neutral lipid and a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a water-soluble substance as a constituent of the therapeutic agent for cancer or inflammatory diseases of the composition Use for manufacturing.
  • Target genes related to tumor or inflammation are vascular endothelial growth factor, vascular endothelial growth factor receptor, fibroblast growth factor, fibroblast growth factor receptor, platelet-derived growth factor, platelet-derived growth factor receptor , Any of the genes for hepatocyte growth factor, hepatocyte growth factor receptor, Kruppel-like factor, Ets transcription factor, nuclear factor and hypoxia-inducing factor according to any one of (34) to (40) above use. (43) The use according to any one of (34) to (42), wherein the mRNA is human or mouse mRNA.
  • a method for suppressing the expression of a target gene comprising a lipid particle encapsulating a double-stranded nucleic acid molecule composed of a sense strand and an antisense strand, wherein the composition is administered to a mammal
  • the antisense strand has a base sequence complementary to the 17-base sequence of the target gene mRNA in which the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end (sequence a)
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • (iii) 30-100% of the sugars bound to the bases at the 17th to 3 'end from the 5' end to the 3 'end of the antisense strand are deoxyribose or the hydroxyl group
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • the lipid particle is a lipid particle having a size that can be administered intravenously, and the lipid particle has a lipid bilayer membrane comprising a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a water-soluble substance as a constituent component.
  • a method for suppressing expression of the target gene wherein the composition is administered to a mammal.
  • (45) (v) 50.-70% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group.
  • the method for suppressing the expression of the target gene (46)
  • the expression of the target gene according to (44) or (45), wherein the double-stranded nucleic acid molecule is a double-stranded nucleic acid molecule having an action of suppressing expression of the target gene using RNA interference (RNAi). Suppression method.
  • RNAi RNA interference
  • the target gene is vascular endothelial growth factor, vascular endothelial growth factor receptor, fibroblast growth factor, fibroblast growth factor receptor, platelet-derived growth factor, platelet-derived growth factor receptor, hepatocyte growth factor, Inhibition of expression of the target gene according to any of (44) to (47) above, which is a gene of any one of a hepatocyte growth factor receptor, a Kruppel-like factor, an Ets transcription factor, a nuclear factor and a hypoxia-inducing factor Method.
  • a lipid particle encapsulating a double-stranded nucleic acid molecule is a lipid particle comprising a lead particle, a composite particle comprising the double-stranded nucleic acid molecule as a constituent component, and a lipid bilayer covering the composite particle,
  • the components of the lipid bilayer coating the composite particles are soluble in a specific polar organic solvent, and the components of the lipid bilayer coating the composite particles and the composite particles are polar at a specific concentration
  • the method for suppressing the expression of the target gene according to any one of (44) to (50), which is dispersible in a liquid containing an organic solvent.
  • the lead particle is a lead particle containing a cationic substance, and the lipid bilayer coating the composite particle is composed of a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a neutral lipid and a water-soluble substance.
  • a lipid particle in which a double-stranded nucleic acid molecule is encapsulated comprises a lead particle containing a cationic substance, a composite particle comprising the double-stranded nucleic acid molecule as a constituent component, and a lipid bilayer coating the composite particle Particles,
  • the lipid bilayer membrane covering the composite particles is a lipid bilayer membrane comprising a neutral lipid and a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a water-soluble substance as a constituent component (44) to (50 )
  • the expression of the target gene can be suppressed by administering the composition of the present invention to mammals or the like.
  • FIG. 2 shows the siRNA activity of the double-stranded nucleic acid molecules used in Examples 1 to 4 and Comparative Examples 1 to 9.
  • the vertical axis represents the BCL-2 mRNA expression inhibition rate (ratio).
  • the preparations obtained in Examples 1 and 2 and Comparative Examples 1 to 9 were administered to mice, and then the preparation obtained in Comparative Example 1 was administered as PEG-modified lipid particles for the second administration at intervals of 7 days.
  • 3 shows the concentration of double-stranded nucleic acid molecules in blood 3 hours after administration.
  • the vertical axis represents the concentration ( ⁇ mol / L) of double-stranded nucleic acid molecules in blood. This shows the siRNA activity of the double-stranded nucleic acid molecules used in Example 5 and Comparative Examples 10-13.
  • the vertical axis represents the BCL2 mRNA expression level ratio (ratio).
  • the preparations obtained in Example 5 and Comparative Examples 10 to 13 were administered to mice, and then the same as Example 5 and Comparative Examples 10 to 13 as second-administered PEG-modified lipid particles with a 7-day interval, respectively. It shows the concentration of double-stranded nucleic acid molecules in blood 3 hours after administration of the obtained preparation.
  • the vertical axis represents the concentration ( ⁇ mol / L) of double-stranded nucleic acid molecules in blood.
  • the target gene used in the present invention is not particularly limited as long as it is a gene that produces and expresses mRNA in mammals.
  • a gene related to tumor or inflammation is preferable, and a gene involved in angiogenesis is more preferable.
  • vascular endothelial growth factor hereinafter abbreviated as VEGF
  • VEGFR vascular endothelial growth factor receptor
  • fibroblast growth factor fibroblast growth factor receptor
  • Platelet-derived growth factor platelet-derived growth factor receptor
  • hepatocyte growth factor hepatocyte growth factor receptor
  • Kruppel-like factor KLF
  • Ets transcription factor nuclear factor
  • hypoxia induction examples include genes encoding proteins such as factors, specifically VEGF gene, VEGFR gene, fibroblast growth factor gene, fibroblast growth factor reception Body gene, platelet-derived growth factor gene, platelet-derived growth factor receptor gene, hepatocyte growth factor gene, hepatocyte growth factor receptor gene, KLF gene, Ets transcription factor
  • VEGF gene, VEGFR gene, KLF gene, etc. are mentioned, More preferably, KLF gene is mentioned, More preferably, KLF5 gene is mentioned.
  • the KLF family is a family of transcription factors characterized by a zinc finger motif on the C-terminal side. KLF12, KLF13, KLF14, KLF15, KLF16, etc. are known.
  • the KLF family is important for the differentiation of various tissues and cells such as erythrocytes, vascular endothelial cells, smooth muscle, skin, lymphocytes, etc., and cancer, cardiovascular disease, cirrhosis, kidney disease, immune disease It has been reported to play an important role in the pathogenesis of various diseases such as [The Journal of Biological Chemistry, 2001, 276, 37, p. 34355-34358, Genome Biology, 2003, Vol. 4, No. 2, p. 206].
  • KLF5 in the KLF family is also called BTEB2 (basic transcriptional element binding protein 2) or IKLF (intestinal-enriched Kruppel-like factor). Expression of KLF5 in vascular smooth muscle is controlled at the developmental stage, and high expression is observed in fetal vascular smooth muscle, whereas expression is not observed in normal adult vascular smooth muscle. In addition, KLF5 is highly expressed in intimal smooth muscle that has been born after exfoliation with a balloon catheter, and KLF5 is also expressed in smooth muscle in lesions of arteriosclerosis and restenosis [Circulation, 2000, Vol. 102, No. 20, p.2528-2534].
  • VEGF is a growth factor specific for vascular endothelial cells discovered by Ferrara et al. In 1983. In the same year, a factor with vascular permeability was discovered by Senger, Dvorak et al. And named VPF (vascular permeability factor). Analysis of the amino acid sequence of the protein revealed that the two were identical. VEGF binds to endothelial cell receptors inside blood vessels to promote proliferation. VEGF not only creates blood vessels during fetal life, but also acts when creating pathological blood vessels. For example, if the cancer grows to some extent and becomes deficient in oxygen, VEGF and its receptors increase and angiogenesis occurs. It is also thought to cause cancerous ascites due to the vascular permeability enhancing action.
  • VPF vascular permeability factor
  • VEGF As diabetes progresses, new blood vessels form in the retina, and VEGF also works there. In other words, it is a protein that creates new blood vessels. It can be said that it plays an important role in angiogenesis by its expression being induced by hypoxia. Moreover, the involvement of this factor is strongly suggested in explaining not only angiogenesis but also the mechanism of edema observed in tumors or inflammatory lesions.
  • VEGFR is possessed by vascular endothelial cells and cancer cells themselves, and when VEGF binds to VEGFR, the receptor itself is phosphorylated (activated), and as a result, various commands such as proliferation and migration are transmitted to the cells. Is done. It is known that by inhibiting phosphorylation of this receptor, intracellular transmission is inhibited and angiogenesis is inhibited.
  • BCL2 is a mitochondrial inner membrane protein that shows cell death inhibition by apoptosis in several cell types. Inhibition of apoptosis due to the large expression of bcl2 gene is thought to cause cancer and hematological malignancies. Indeed, BCL2 is produced in large quantities in various solid cancers such as lymphosarcoma, prostate cancer, breast cancer, lung cancer, colon cancer and rectal cancer (TJMcDonnell et al., “Cancer Research”, December 15, 1992, 52 Vol.24, p.6940-6944).
  • a gene expressed in the liver, lung, kidney or spleen is preferable.
  • the above-mentioned gene related to tumor or inflammation hepatitis B virus genome, hepatitis C virus genome , Apolipoprotein (APO), hydroxymethylglutaryl (HMG) CoA reductase, kexin 9 type serine protease (PCSK9), factor 12, glucagon receptor, glucocorticoid receptor, leukotriene, thromboxane A2 receptor, histamine H1
  • APO hydroxymethylglutaryl
  • PCSK9 hydroxymethylglutaryl
  • factor 12 glucagon receptor
  • glucocorticoid receptor glucocorticoid receptor
  • leukotriene thromboxane A2 receptor
  • histamine H1 examples thereof include genes encoding proteins such as receptors, carbonic anhydrase, angiotensin converting enzyme, renin, p53, tyrosine
  • the double-stranded nucleic acid molecule used in the present invention is a double-stranded nucleic acid molecule composed of a sense strand and an antisense strand
  • the antisense strand has a base sequence complementary to the 17-base sequence of the target gene mRNA in which the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end (sequence a)
  • a ribose having a length of 17 to 30 bases, preferably 19 to 25 bases, wherein the sugar in the antisense strand is ribose, deoxyribose or the hydroxyl group at the 2 ′ position is substituted with a modifying group, respectively.
  • the sense strand includes 17 to 30 bases, preferably including a base sequence (sequence b) complementary to the 1st to 17th base sequence from the 5 ′ end to the 3 ′ end of the antisense strand.
  • a base sequence sequence b
  • the sense strand includes 17 to 30 bases, preferably including a base sequence (sequence b) complementary to the 1st to 17th base sequence from the 5 ′ end to the 3 ′ end of the antisense strand.
  • a polynucleotide having a length of 19 to 25 bases wherein the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group, (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2
  • 0% of the sugars bonded to the 9th to 11th bases are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group, (iii) 30 to 100%, preferably 40% or more, of deoxyribose or 2 ′ of the sugar that binds to the 17th to 3 ′ terminal bases from the 5 ′ end to the 3 ′ end of the antisense strand Ribose in which the hydroxyl group at the position is substituted with a modifying group, (iv) 10 to 70%, preferably 30 to 60% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the sequence b are deoxyribose or 2 ′ position, respectively.
  • Ribose in which the hydroxyl group is substituted with a modifying group provided that 0% of the sugar bonded to the 9th to 11th bases is deoxyribose or ribose in which the 2′-position hydroxyl group is substituted with a modifying group, (v) 30 to 100%, preferably 40% or more of the sugars that bind to the base other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group A strand nucleic acid molecule.
  • 0% of the sugar bonded to the m to n-th base is deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group is:
  • the sugar that binds to the m to n-th base does not include deoxyribose and ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group, that is, all sugars that bind to the m to n-th base are ribose.
  • the double-stranded nucleic acid molecule used in the present invention is preferably a double-stranded nucleic acid molecule having an action of suppressing the expression of the target gene using RNA interference (RNAi).
  • RNAi RNA interference
  • the nucleotide sequence of the nucleotide added adjacent to the 3 ′ end of the antisense strand sequence a is used as a complementary nucleotide sequence to the nucleotide sequence adjacent to sequence a in the target gene mRNA. This structure is more preferable from the viewpoint of the suppressive action of target gene expression using RNA interference (RNAi).
  • the antisense strand is a sequence of bases in which at least the 1st to 17th base sequences from the 5 ′ end to the 3 ′ end are complementary to the 17 consecutive base sequences of the target gene mRNA.
  • the antisense strand has a base sequence in which the sequence of the 1st to 19th bases from the 5 ′ end to the 3 ′ end is complementary to the sequence of 19 consecutive bases of the mRNA of the target gene
  • the sequence of the 1st to 21st bases is a base sequence complementary to the sequence of 21 consecutive bases of the target gene mRNA, or the sequence of the 1st to 25th bases is the target gene mRNA. This is a base sequence complementary to the continuous 25 base sequence.
  • the base other than the sequence b of the sense strand and the base of the antisense strand are complementary to each other. More preferably, it is a base pair.
  • the double-stranded nucleic acid molecule used in the present invention is modified at the 2 ′ position by 10 to 70%, preferably 15 to 60%, more preferably 20 to 50% of the sugar in the double-stranded nucleic acid molecule. Ribose substituted with a group.
  • the substitution at the 2′-position of ribose means that the hydroxyl group at the 2′-position is substituted with the modifying group, and the configuration is the same as the hydroxyl group at the 2′-position of ribose.
  • the configuration is preferably the same as that of the hydroxyl group at the 2 ′ position of ribose.
  • the double-stranded nucleic acid molecule used in the present invention includes a derivative in which an oxygen atom or the like contained in a phosphoric acid part, an ester part or the like in a nucleic acid structure is substituted with another atom such as a sulfur atom.
  • Examples of the modifying group in the present invention include 2′-cyano, 2′-alkyl, 2′-substituted alkyl, 2′-alkenyl, 2′-substituted alkenyl, 2′-halogen, 2′-O-cyano, 2 '-O-alkyl, 2'-O-substituted alkyl, 2'-O-alkenyl, 2'-O-substituted alkenyl, 2'-S-alkyl, 2'-S-substituted alkyl, 2'-S-alkenyl 2'-S-substituted alkenyl, 2'-amino, 2'-NH-alkyl, 2'-NH-substituted alkyl, 2'-NH-alkenyl, 2'-NH-substituted alkenyl, 2'-SO-alkyl 2'-SO-substituted alkyl, 2'-carboxy, 2'-
  • Oxypeptide nucleic acid [J. Am. Chem. Soc., 123, 4653 (2001)]
  • peptide ribonucleic acid PRNA
  • a crosslinked structure-type artificial nucleic acid having a structure in which the modifying group at the 2 ′ position is crosslinked to the carbon atom at the 4 ′ position, more specifically, the oxygen atom at the 2 ′ position and the 4 ′ position Locked Nucleic Acid (LNA) in which the carbon atom at the position is cross-linked through methylene, and Ethylene bridged nucleic acid (ENA) [Nucleic Acid Research, 32, e175 (2004) And the like are also included in the ribose substituted with a modifying group at the 2 ′ position in the present invention.
  • BNA crosslinked structure-type artificial nucleic acid
  • 2′-cyano, 2′-halogen, 2′-O-cyano, 2′-alkyl, 2′-substituted alkyl, 2′-O-alkyl, 2′-O-substituted alkyl, 2'-O-alkenyl, 2'-O-substituted alkenyl, 2'-Se-alkyl, 2'-Se-substituted alkyl are preferred, 2'-cyano, 2'-fluoro, 2'-chloro, 2'- Bromo, 2'-trifluoromethyl, 2'-O-methyl, 2'-O-ethyl, 2'-O-isopropyl, 2'-O-trifluoromethyl, 2'-O- [2- (methoxy) Ethyl], 2'-O- (3-aminopropyl), 2'-O- (2- [N, N-dimethyl] aminooxy) ethyl,
  • the modifying group in the present invention can also define a preferable range from its size, and from the size of fluoro, the one corresponding to the size of -O-butyl is preferable, and from the size of -O-methyl A size corresponding to the size of -O-ethyl is more preferable.
  • alkyl in the modifying group examples include linear or branched carbon atoms having 1 to 6 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert- Pentyl, hexyl and the like can be mentioned, and methyl, ethyl, propyl, isopropyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, tert-pentyl and the like are preferable.
  • alkenyl in the modifying group examples include linear or branched carbon atoms having 1 to 6 carbon atoms such as vinyl, allyl, isopropenyl and the like.
  • halogen examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • amino acids include aliphatic amino acids (specifically, glycine, alanine, valine, leucine, isoleucine, etc.), hydroxy amino acids (specifically, serine, threonine, etc.), acidic amino acids (specifically, aspartic acid).
  • acidic amino acid amide specifically, asparagine, glutamine, etc.
  • basic amino acid specifically, lysine, hydroxylysine, arginine, ornithine, etc.
  • sulfur-containing amino acid specifically, cysteine , Cystine, methionine, etc.
  • imino acid specifically, proline, 4-hydroxyproline, etc.
  • substituent of substituted alkyl and substituted alkenyl examples include halogen (as defined above for halogen), hydroxy, sulfanyl, amino, oxo, -O-alkyl (wherein the alkyl portion of -O-alkyl is as defined above for alkyl),- S-alkyl (the alkyl part of the -S-alkyl has the same meaning as the alkyl), -NH-alkyl (the alkyl part of the -NH-alkyl has the same meaning as the alkyl), dialkylaminooxy (the dialkylaminooxy Alkyl is the same or different and is synonymous with the alkyl), dialkylamino (two alkyls of the dialkylamino are the same or different and synonymous with the alkyl), dialkylaminoalkyleneoxy (the two alkyls of the dialkylaminoalkyleneoxy are the same or Differently, it is synonymous with said alkyl, and said alkylene is
  • the ribose substituted with the modifying group at the 2′-position of the sugar in the double-stranded nucleic acid molecule has the same structure as the final one, as long as the structure is the same. Even if the raw material or intermediate is DNA or deoxyribose, it is included in the double-stranded nucleic acid molecule used in the present invention as long as the structure is finally the same. That is, ribose substituted with a modifying group at the 2 ′ position of ribose in the present invention includes deoxyribose in which hydrogen is substituted with a modifying group at the 2 ′ position.
  • ribose substituted with a modifying group at the 2 ′ position is distributed so as to minimize adjacentity.
  • the sugar that binds to the 3 ′ end of the antisense strand, the 5 ′ end of the sense strand and the 2-7 bases of the 3 ′ end is adjacent to deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group. It is preferable. It is more preferable that ribose is substituted with a modifying group on only one of the opposing complementary base pairs.
  • either the antisense strand or the 5′-end or 3′-end of the sense strand is either deoxyribose or a ribose in which the hydroxyl group at the 2′-position is substituted with a modifying group.
  • the double-stranded nucleic acid molecule used in the present invention comprises (A) the 5 ′ end of the antisense strand and the 3 ′ end of the sense strand, and the 3 ′ end of the antisense strand and the 5 ′ end of the sense strand facing each other and complementary. (B) 1 to 6, preferably 2 to 4 nucleotides on the 3 ′ end side of the antisense strand and the sense strand are the same or different and face each other. It may be an overhang that is added, or (C) a blunt end and an overhang may be combined.
  • the base of the added nucleotide may be one or more of guanine, adenine, cytosine, thymine and uracil, and the sugar bonded to each base is ribose, deoxyribose or a hydroxyl group at the 2 ′ position. May be any of ribose substituted with a modifying group, but as the added nucleotide, one or two of uridylic acid (U) and deoxythymidylic acid (dT) are more preferable. Further, the nucleotide base sequence added adjacent to the 3 ′ end side of the sense strand may be the same base sequence as the base sequence adjacent to sequence a in mRNA, and this structure is more preferred.
  • the nucleotide sequence of the nucleotide added adjacent to the 3 ′ end of the antisense strand may be a base sequence complementary to the corresponding base sequence in the mRNA of the target gene. More preferred.
  • the base sequence of the antisense strand is most preferably a base sequence that is completely complementary to the base sequence corresponding to the mRNA of the target gene.
  • the sugar that binds to the 5 'terminal base of the antisense strand and the sense strand has a phosphate group or the above-mentioned modifying group, or a nucleolytic enzyme in vivo, etc. Or you may modify by the group used as the said modification group.
  • the sugar that binds to the 3 ′ terminal base of the antisense strand and the sense strand is such that the hydroxyl group at the 3 ′ position is a phosphate group or the above-mentioned modifying group, or an in vivo nucleolytic enzyme, etc. Or you may modify by the group used as the said modification group.
  • the double-stranded nucleic acid molecule of the present invention may be produced after being degraded by a nucleolytic enzyme or the like in a living body, and the double-stranded nucleic acid molecule before being degraded is a double-stranded nucleic acid molecule of the present invention.
  • a prodrug of a strand nucleic acid molecule As a prodrug of a double-stranded nucleic acid molecule, for example, 4 to 8, preferably 5 to 6 nucleotides, which are the same or different, are added to the 5 ′ end side of the sequence a of the antisense strand.
  • the same number of base sequences complementary to the base sequence of the antisense strand is added to the 3 ′ end side of the sequence b of the sequence b, and two target genes are added to the 3 ′ end side of the sequence a of the antisense strand.
  • the same sequence as the base sequence corresponding to the mRNA is added, and two base sequences complementary to the base sequence of the antisense strand are added to the 5 ′ end side of the sense strand sequence b.
  • the sugars that bind to the 'terminal base are two that have a 5' hydroxyl group phosphorylated
  • This prodrug is added by Dicer to all nucleotides added to the 5 ′ end of the antisense strand sequence a and the first and second nucleotides added to the 3 ′ end of the sense strand sequence b. Nucleotides other than are removed to form the double-stranded nucleic acid molecule of the present invention.
  • the spacer oligonucleotide is preferably a 6- to 12-base single-stranded nucleic acid molecule, and the sequence at the 5 'end is preferably 2 Us.
  • An example of a spacer oligonucleotide is a single-stranded nucleic acid molecule consisting of the UUCAAGAGA sequence. Either of the two single-stranded nucleic acid molecules connected by the spacer oligonucleotide may be on the 5 'side.
  • the double-stranded nucleic acid molecule used in the present invention may be produced using a known RNA or DNA synthesis method and RNA or DNA modification method. For example, it can be obtained by requesting chemical synthesis from Hokkaido System Science Co., Ltd.
  • the lipid particle in the composition of the present invention (hereinafter referred to as “Lipid Particle A”) encloses a double-stranded nucleic acid molecule comprising a sequence of 17 to 30 bases of mRNA of the target gene and a base sequence complementary to the sequence. Lipid particles are preferred.
  • the lipid particle A is not particularly limited as long as it is a lipid particle that reaches the tissue or organ containing the target gene expression site.
  • the lipid particle A is composed of a lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative of a water-soluble substance.
  • a lipid particle having a lipid bilayer membrane specifically, a lipid particle whose surface is modified with a water-soluble polymer such as polyethylene glycol (PEG).
  • lipid particles in the composition of the present invention include liposomes and lipid micelles.
  • Lipid micelles include lipid spheres or emulsion particles, and the interface with the outer aqueous phase is preferably a lipid monolayer or a lipid bilayer.
  • lipid particle A for example, a cationic lipid is previously dissolved in chloroform, and then the aqueous solution of the double-stranded nucleic acid molecule and methanol are added and mixed to form a complex of the cationic lipid / double-stranded nucleic acid molecule.
  • Prepare lipid particles containing nucleic acid molecules perform sizing filtration, remove excess ethanol by dialysis, and then dialyze the sample by raising the pH further to the surface of the lipid particles.
  • Lipid particles produced by removing the attached double-stranded nucleic acid molecules Japanese Patent Publication No. 2002-501511 and Biochimica et Biophysica Acta, 2001, Vol. 1510, p. 152-166
  • a composite particle comprising a lead particle and the double-stranded nucleic acid molecule, and a lipid particle composed of a lipid bilayer membrane encapsulating the composite particle
  • WO 02/28367 and WO 2006 Refer to pamphlet No. / 080118
  • lipid particles composed of a composite particle containing a lead particle and the double-stranded nucleic acid molecule and a lipid bilayer membrane encapsulating the composite particle are preferable.
  • the components are soluble in a specific polar organic solvent, and the components of the lipid bilayer membrane and the composite particles are dispersible in a liquid containing the polar organic solvent at a specific concentration.
  • the lipid particle A is preferably composed of a lead particle containing a cationic substance, a composite particle comprising the double-stranded nucleic acid molecule as a constituent component, and a lipid bilayer covering the composite particle.
  • the components of the lipid bilayer membrane and the composite particles are dispersible in a liquid containing the polar organic solvent at a specific concentration.
  • the term “dispersed” means to be dispersed without dissolving.
  • exemplified lipid particles have been reported to be delivered to tumors or inflamed tissues or organs, specifically solid tumors and solid cancers, blood vessels or inflamed sites near blood vessels, etc. Examples of lipid particles that can be more preferably used when a related gene is used as a target gene. In addition, these exemplified lipid particles have been reported as lipid particles with increased retention in blood, and the possibility of being delivered to any tissue or organ via systemic circulation has increased. The genes that can be targeted are not limited.
  • Examples of the lead particles in the present invention include fine particles such as lipid aggregates, liposomes (hereinafter referred to as “liposome B”), polymer micelles, and the like, preferably fine particles that are liposome B.
  • the lead particle in the present invention is a complex obtained by combining two or more lipid aggregates, liposome B, polymer micelles, and the like, for example, polymer micelles as a complex including lipid aggregates and lipids that are constituents of liposome B, It may be a lipid aggregate or a liposome B as a complex containing a polymer that is a constituent component of the polymer micelle.
  • the lipid aggregates or liposomes B as lead particles are preferably composed of polar lipids or the like that have amphiphilic properties that have both hydrophilic and hydrophobic properties and have a lipid bilayer structure in water.
  • the lipid may be any of simple lipids, complex lipids or derived lipids, and examples include, but are not limited to, phospholipids, glyceroglycolipids, glycosphingolipids, sphingoids, sterols or cationic lipids. Not. Preferable examples include phospholipids and cationic lipids.
  • Examples of the phospholipid in the lipid constituting the lead particles include phosphatidylcholine (specifically soybean phosphatidylcholine, egg yolk phosphatidylcholine (EPC), distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, palmitoyloleoylphosphatidylcholine (POPC), dimyristoylphosphatidylcholine, Oleoylphosphatidylcholine), phosphatidylethanolamine (specifically distearoylphosphatidylethanolamine (DSPE), dipalmitoylphosphatidylethanolamine (DPPE), dioleoylphosphatidylethanolamine (DORE), dimyristoylphosphoethanolamine (DMPE)) 16-0-monomethyl PE, 16-0-dimethyl PE, 18-1-trans PE, palmitoyl oleoyl-phosphatidyl ethanol (POPE), 1-stearoyl-2-oleo
  • Examples of the glyceroglycolipid in the lipid constituting the lead particles include sulfoxyribosyl glyceride, diglycosyl diglyceride, digalactosyl diglyceride, galactosyl diglyceride, glycosyl diglyceride and the like.
  • glycosphingolipid in the lipid constituting the lead particle examples include galactosyl cerebroside, lactosyl cerebroside, ganglioside and the like.
  • Examples of the sphingoid in the lipid constituting the lead particle include sphingan, icosasphingan, sphingosine, and derivatives thereof.
  • Derivatives include, for example, —NH 2 such as sphingan, icosasphingan or sphingosine —NHCO (CH 2 ) xCH 3 (wherein x represents an integer of 0 to 18, among which 6, 12 or 18 is preferred) And the like converted to.
  • Examples of the sterol in the lipid constituting the lead particles include cholesterol, dihydrocholesterol, lanosterol, ⁇ -sitosterol, campesterol, stigmasterol, brassicasterol, ergocasterol, fucosterol, or 3 ⁇ - [N- (N ′, N'-dimethylaminoethyl) carbamoyl] cholesterol (DC-Chol) and the like.
  • the cationic lipid in the lipid constituting the lead particle among the polar lipids having amphipathic properties that have both hydrophilic and hydrophobic properties and having a lipid bilayer structure in water, It has a structure having a primary amine, secondary amine, tertiary amine, quaternary ammonium, a heterocyclic ring containing a nitrogen atom, etc., for example, N- [1- (2,3-dioleoyl Propyl)]-N, N, N-trimethylammonium chloride (DOTAP), N- [1- (2,3-dioleoylpropyl)]-N, N-dimethylamine (DODAP), N- [1- ( 2,3-dioleyloxypropyl)]-N, N, N-trimethylammonium chloride (DOTMA), 2,3-dioleyloxy-N- [2- (sperminecarboxamido) ethyl] -N, N-di
  • Liposomes B may also contain a membrane stabilizer such as sterol such as cholesterol, for example, an antioxidant such as tocopherol, if necessary. These stabilizers may be used alone or in combination of two or more.
  • lipid aggregates include spherical micelles, spherical reverse micelles, sausage-like micelles, sausage-like reverse micelles, plate-like micelles, plate-like reverse micelles, hexagonal I, hexagonal II, and aggregates composed of two or more lipid molecules. .
  • polymer micelle examples include protein, albumin, dextran, polyfect, chitosan, dextran sulfate, such as poly-L-lysine, polyethyleneimine, polyaspartic acid, styrene maleic acid copolymer, isopropylacrylamide-acrylpyrrolidone
  • micelles composed of one or more polymers such as polymers, polyethylene glycol-modified dendrimers, polylactic acid, polylactic acid polyglycolic acid or polyethylene glycolated polylactic acid, or salts thereof.
  • the salts in the polymer include, for example, metal salts, ammonium salts, acid addition salts, organic amine addition salts, amino acid addition salts and the like.
  • the metal salt include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, aluminum salt and zinc salt.
  • the ammonium salt include salts such as ammonium and tetramethylammonium.
  • the acid addition salt include inorganic acid salts such as hydrochloride, sulfate, nitrate or phosphate, and organic acid salts such as acetate, maleate, fumarate or citrate.
  • organic amine addition salts include addition salts such as morpholine and piperidine.
  • amino acid addition salts include addition salts such as glycine, phenylalanine, aspartic acid, glutamic acid or lysine.
  • the lead particles in the present invention can contain, for example, a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers, or a surfactant.
  • a lipid derivative or fatty acid derivative of one or more substances selected from sugars, peptides, nucleic acids, and water-soluble polymers or a surfactant.
  • One or more lipid derivatives or fatty acid derivatives or surfactants selected from sugars, peptides, nucleic acids and water-soluble polymers may be contained as lead particles, or may be used in addition to lead particles.
  • the lipid derivative or fatty acid derivative or surfactant of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers is preferably a glycolipid or a lipid derivative or fatty acid derivative of a water-soluble polymer. More preferred are water-soluble polymer lipid derivatives or fatty acid derivatives.
  • Lipid derivatives or fatty acid derivatives or surfactants of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers are those in which part of the molecule and other components of the lead particle, such as hydrophobic affinity, electrostatic It is a substance with a two-sided property that has the property of binding due to mechanical interaction, etc., and the other part has the property of binding to the solvent at the time of lead particle production, for example, hydrophilic affinity, electrostatic interaction, etc. Is preferred.
  • lipid derivatives or fatty acid derivatives selected from sugars, peptides and nucleic acids include sugars such as sucrose, sorbitol, and lactose, such as casein-derived peptides, egg white-derived peptides, soybean-derived peptides, peptides such as glutathione, or
  • nucleic acids such as DNA, RNA, plasmid, siRNA, ODN, etc. and lipids mentioned in the definition of the lead particles or fatty acids such as stearic acid, palmitic acid, myristic acid, lauric acid, etc. Is given.
  • sugar lipid derivative or fatty acid derivative examples include glyceroglycolipid and glycosphingolipid mentioned in the definition of the lead particles.
  • water-soluble polymer lipid derivative or fatty acid derivative examples include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, polyglycerin, Water-soluble polymers such as chitosan, polyvinylpyrrolidone, polyaspartic acid amide, poly-L-lysine, mannan, pullulan, oligoglycerol, etc.
  • lipid derivative or fatty acid derivatives such as polyglycerol derivative can be mentioned, more preferably, a lipid derivative or a fatty acid derivative of a polyethylene glycol derivative.
  • Examples of lipid derivatives or fatty acid derivatives of polyethylene glycol derivatives include polyethylene glycolated lipids (specifically, polyethylene glycol-phosphatidylethanolamine (more specifically, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine). -N- [methoxy (polyethylene glycol) -2000] (PEG-DSPE), etc.), polyoxyethylene hydrogenated castor oil 60, Cremophor EL, etc.), polyethylene glycol sorbitan fatty acid esters (specifically mono Oleic acid polyoxyethylene sorbitan, etc.) or polyethylene glycol fatty acid esters, and the like, more preferably polyethylene glycolated lipids.
  • polyethylene glycolated lipids specifically, polyethylene glycol-phosphatidylethanolamine (more specifically, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine).
  • lipid derivatives or fatty acid derivatives of polyglycerin derivatives include polyglycerinized lipids (specifically polyglycerin-phosphatidylethanolamine) and polyglycerin fatty acid esters, and more preferably polyglycerinized lipids. can give.
  • surfactant examples include polyoxyethylene sorbitan monooleate (specifically, polysorbate 80), polyoxyethylene polyoxypropylene glycol (specifically, Pluronic F68), sorbitan fatty acid ester (specifically, sorbitan) Monolaurate, sorbitan monooleate, etc.), polyoxyethylene derivatives (specifically polyoxyethylene hydrogenated castor oil 60, polyoxyethylene lauryl alcohol, etc.), glycerin fatty acid ester or polyethylene glycol alkyl ether, etc. are preferred, Examples thereof include polyoxyethylene polyoxypropylene glycol, glycerin fatty acid ester or polyethylene glycol alkyl ether.
  • the above-described lead particles preferably have a positive charge.
  • the positive charge described here includes charges in the double-stranded nucleic acid molecule, charges that generate an electrostatic attraction with respect to intramolecular polarization, surface polarization, and the like.
  • the lead particles preferably contain a cationic substance.
  • the cationic substance contained in the lead particles is a substance exhibiting a cationic property, but even if it is an amphoteric substance having both a cationic group and an anionic group, it binds to pH and other substances. Since the relative negative degree changes by etc., what can be classified into a cationic substance according to the time is also included.
  • These cationic substances may be contained as lead particles, or may be used in addition to the lead particles.
  • a cationic substance for example, a cationic substance (specifically, a cationic substance in a lipid, a cationic polymer, etc.) among those exemplified in the definition of the lead particle, at a pH of a value below the isoelectric point.
  • examples thereof include proteins or peptides exhibiting cationic properties, preferably cationic substances in lipids, and more preferably N- [1- (2,3-dioleoylpropyl)]-N, N, N-trimethyl.
  • Ammonium chloride N- [1- (2,3-dioleoylpropyl)]-N, N-dimethylamine, N- [1- (2,3-dioleoyloxypropyl)]-N, N, N- Trimethylammonium chloride, N- [1- (2,3-ditetradecyloxypropyl)]-N, N-dimethyl-N-hydroxyethylammonium bromide and 3 ⁇ - [N- (N ', N'dimethylaminoethyl) ) Carbamoyl] one or more selected from cholesterol.
  • Examples of the cationic substance in the lipid include cationic lipids (DOTAP, DODAP, DOTMA, DOSPA, DMRIE, DORIE, etc.) or DC-Chol.
  • Examples of the cationic polymer include poly-L-lysine, polyethyleneimine, polyfect, and chitosan.
  • the protein or peptide exhibiting a cationic property at a pH below the isoelectric point is not particularly limited as long as it is a protein or a peptide exhibiting a cationic property at a pH below the isoelectric point of the substance.
  • Examples of the protein or peptide include albumin, orosomucoid, globulin, fibrinogen, pepsin, and ribonuclease T1.
  • the lead particles in the present invention can be produced according to a known production method or similar methods, and may be produced by any production method.
  • a known liposome preparation method can be applied to the production of liposome B, which is one of the lead particles.
  • Known liposome preparation methods include, for example, Bangham et al.'S liposome preparation method [“J. Mol. Biol.”, 1965, Vol. 13, p.238- 252], ethanol injection method ["Journal of Cell Biology", 1975, Vol. 66, pp. 621-634], French press method ["FBS. Letters (FEBS Lett.), 1979, Vol. 99, p.210-214], freeze-thaw method [“Arch. Biochem.
  • liposome B for example, an antioxidant such as citric acid, ascorbic acid, cysteine or ethylenediaminetetraacetic acid (EDTA), for example, an isotonic agent such as glycerin, glucose or sodium chloride can be added. It is.
  • liposomes B can also be produced by dissolving lipids or the like in an organic solvent such as ethanol and distilling off the solvent, and then adding physiological saline or the like and stirring to form liposomes.
  • surface modification of the lead particles such as liposome B with a cationic substance, polymer, polyoxyethylene derivative, etc. can be arbitrarily performed [Radics, edited by F. Martin, “Stealth” • Liposomes "(USA), CRC Press Inc., 1995, p. 93-102].
  • the polymer that can be used for the surface modification include dextran, pullulan, mannan, amylopectin, and hydroxyethyl starch.
  • the polyoxyethylene derivative include polysorbate 80, Pluronic F68, polyoxyethylene hydrogenated castor oil 60, polyoxyethylene lauryl alcohol, and PEG-DSPE.
  • Lead particles such as liposome B are one of the methods in which lead particles contain lipid derivatives or fatty acid derivatives or surfactants of one or more substances selected from sugars, peptides, nucleic acids and water-soluble polymers. It is.
  • the average particle size of liposome B can be freely selected as desired, but the following particle size is preferred.
  • Examples of the method for adjusting the average particle size of liposome B include an extrusion method and a method of mechanically crushing large multilamellar liposomes (MLV) (specifically, using a manton gourin, a microfluidizer, etc.) [Muller (RHMuller), S. Benita, B. Bohm, “Emulsion and Nanosuspensions” for Emulsionsusand Nanosuspensions for the "Formulation" of "Poorly” Soluble “Drugs)", Germany, Scientific Publishers Stuttgart, 1998, p.267-294].
  • MMV multilamellar liposomes
  • a method for producing a complex that combines two or more selected from, for example, lipid aggregates, liposome B, polymer micelles, and the like, which are lead particles may be, for example, simply mixing lipids, polymers, etc. in water, If desired, a sizing step, a sterilization step, and the like can be added.
  • the complex can be produced in various solvents such as acetone or ether.
  • the lead particles preferably have an average particle diameter of several nm to several tens of ⁇ m, more preferably about 10 nm to 1000 nm, and further preferably about 50 nm to 300 nm.
  • the components other than the lipid derivatives, fatty acid derivatives or aliphatic hydrocarbon derivatives of water-soluble substances include, for example, Examples thereof include the lipids mentioned in the definition of the lead particles, preferably neutral lipids among the lipids.
  • the neutral lipid refers to a cationic substance in the lipid mentioned in the cationic substance in the case where the lead particle has a positive charge, and an anion mentioned in the adhesion competitor described below.
  • the neutral lipid is more preferably phospholipid, glyceroglycolipid, or sphingoglycolipid. More preferred are phospholipids, and more preferred is EPC. These lipids can be used alone or in combination of two or more.
  • the constituent component of the lipid bilayer membrane covering the composite particles is preferably soluble in a polar organic solvent, and preferably dispersible in a liquid containing the polar organic solvent at a specific concentration.
  • the concentration of the polar solvent in the liquid containing the polar solvent at a specific concentration is preferably a concentration at which the constituent components of the lipid bilayer membrane can be dispersed and the composite particles can be dispersed.
  • the polar organic solvent include alcohols such as methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol and tert-butanol, glycols such as glycerin, ethylene glycol and propylene glycol, and polyethylene glycol.
  • Examples thereof include polyalkylene glycols, among which alcohol is preferable and ethanol is more preferable.
  • Examples of the solvent other than the polar organic solvent in the liquid containing the polar organic solvent in the present invention include water, liquid carbon dioxide, liquid hydrocarbon, halogenated carbon or halogenated hydrocarbon, and preferably water. Can be mentioned. Moreover, an ion or a buffer component etc. may be included. One or two or more solvents can be used. When two or more solvents are used, a compatible combination is preferable.
  • the lipid bilayer membrane of lipid particles in the composition of the present invention and the lipid bilayer membrane covering the composite particles are composed of a water-soluble substance lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative or the above surfactant. It is preferable to contain a lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative of a water-soluble substance as a constituent component.
  • the lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative of the water-soluble substance include one or more lipid derivatives or fatty acid derivatives, or sugars, peptides selected from the aforementioned sugars, peptides, nucleic acids and water-soluble polymers.
  • aliphatic hydrocarbon derivatives of one or more substances selected from nucleic acids and water-soluble polymers are more preferably the lipid derivative or fatty acid derivative of the water-soluble polymer, more preferably the polyethylene glycolated phospholipid, and polyethylene glycol-phosphatidylethanolamine. Most preferred.
  • the aliphatic hydrocarbon derivative of the water-soluble substance in the present invention a substance obtained by binding a water-soluble substance and, for example, an alcoholic residue of a long-chain aliphatic alcohol, polyoxypropylene alkyl or glycerin fatty acid ester, etc. Is given.
  • aliphatic hydrocarbon derivatives of sugars, peptides or nucleic acids include sugars such as sucrose, sorbitol or lactose, such as casein-derived peptides, egg white-derived peptides, soybean-derived peptides or peptides such as glutathione, or DNA, RNA, plasmids, etc. , Aliphatic hydrocarbon derivatives of nucleic acids such as siRNA or ODN.
  • Examples of the aliphatic hydrocarbon derivative of the water-soluble polymer include polyethylene glycol, polyglycerin, polyethyleneimine, polyvinyl alcohol, polyacrylic acid, polyacrylamide, oligosaccharide, dextrin, water-soluble cellulose, dextran, chondroitin sulfate, polyglycerin, Examples thereof include aliphatic hydrocarbon derivatives of chitosan, polyvinylpyrrolidone, polyaspartic acid amide, poly-L-lysine, mannan, pullulan, oligoglycerol, etc. or their derivatives, more preferably polyethylene glycol derivatives or polyglycerin derivatives, etc.
  • An aliphatic hydrocarbon derivative is mentioned, More preferably, the aliphatic hydrocarbon derivative of a polyethylene glycol derivative is mentioned.
  • the lead particle is a fine particle that is liposome B
  • the composite particle containing liposome B and the double-stranded nucleic acid molecule and the lipid bilayer covering the composite particle are lipid particles A, and the structure Therefore, even when the lead particles are other than the fine particles of liposome B, they are classified as liposomes in a broad sense because they are covered with a lipid bilayer membrane. In the present invention, it is more preferable that the lead particles are liposome B.
  • the composite particle comprising the lead particle and the double-stranded nucleic acid molecule as a constituent component in the present invention attaches or encloses the double-stranded nucleic acid molecule to the lead particle after the lead particle is produced or simultaneously with the production of the lead particle.
  • the composite particles can be produced, and the lipid particles A can be produced by coating the composite particles with a lipid bilayer after the production of the composite particles or simultaneously with the production of the composite particles.
  • Lipid particle A is, for example, Japanese Patent Publication No. 2002-508765, Japanese Patent Publication No. 2002-501511, “Biochimica et Biophysica Acta”, 2001, Vol. 1510, p.152.
  • -166 a known manufacturing method such as WO 02/28367 pamphlet or the like, or after producing a composite particle by attaching or enclosing the double-stranded nucleic acid molecule to a lead particle, for example, the composite particle And a step of dispersing the coating layer component in a liquid containing a polar organic solvent in which the coating layer component is soluble, in such a concentration that the composite particles cannot be dissolved and the coating layer component can exist in a dispersed state. And it can manufacture with the manufacturing method including the process of coat
  • the lead particle is produced in water, and the double-stranded nucleic acid molecule is produced after the lead particle is produced or simultaneously with the production of the lead particle.
  • a composite particle is produced by dispersing or dissolving in water and mixing and adhering or encapsulating the double-stranded nucleic acid molecule to the lead particle, or after producing the lead particle in an arbitrary solvent, It is preferably dispersed by dispersing in water, mixing or dissolving the double-stranded nucleic acid molecule in water, and attaching the double-stranded nucleic acid molecule to the lead particle, and producing the lead particle in water, More preferably, after producing the lead particles, the double-stranded nucleic acid molecules are dispersed or dissolved in water and mixed, and the double-stranded nucleic acid molecules are attached to the lead particles.
  • the following steps of producing composite particles comprising the following lead particles and the double-stranded nucleic acid molecule (step 1) and the composite particles as lipid double Examples thereof include a production method including a step of covering with a film (step 2 or step 3).
  • Step 1) Step of producing composite particles comprising lead particles and the double-stranded nucleic acid molecules as constituents
  • Lead particles are dispersed in a solvent such as water, and the double-stranded particles are dispersed in a liquid in which the lead particles are dispersed. It is preferable that the nucleic acid molecules are dispersed or dissolved and mixed to be mixed, and the double-stranded nucleic acid molecules are attached to the lead particles.
  • the lead particles are preferably lead particles containing an aggregation inhibitor.
  • the aggregation inhibitor include lipid derivatives or fatty acid derivatives or surfactants of one or more substances selected from the sugars, peptides, nucleic acids, and water-soluble polymers.
  • the lead particle has a positive charge
  • the double-stranded nucleic acid molecule and the adhesion competitor are allowed to coexist in the liquid in which the lead particle is dispersed, and the adhesion competitor is read together with the double-stranded nucleic acid molecule.
  • the adhesion competing agent may be used in order to further suppress the aggregation of the lead particles when the lead particles are the lead particles containing the aggregation inhibitor.
  • the composite particle can be dispersed in a liquid containing a polar organic solvent
  • the solubility of the composite particle in the polar organic solvent is More preferably lower than that of the components of the lipid bilayer membrane used in step 2 or 3, and the components of the lipid bilayer membrane can be dispersed in the liquid containing the polar organic solvent. It is more preferable to select a combination in which a liquid containing the polar organic solvent is present at such a concentration that particles can be dispersed.
  • adhesion competitors include anionic substances.
  • the anionic substance includes a substance that adheres electrostatically to the lead particles due to electrostatic attraction due to intramolecular charge, intramolecular polarization, and the like.
  • Anionic substances as adhesion competitors are substances that exhibit anionic properties, but even if they are amphoteric substances that have both an anionic group and a cationic group, pH, binding to other substances, etc. Since the relative negative degree changes depending on the situation, it can be classified as an anionic substance depending on the occasion.
  • anionic substance examples include anionic lipids, anionic surfactants, anionic polymers, and the like, and proteins, peptides, or nucleic acids that exhibit anionic properties at a pH higher than the isoelectric point, preferably dextran sulfate, dextran.
  • examples thereof include sodium sulfate, chondroitin sulfate, sodium chondroitin sulfate, hyaluronic acid, chondroitin, dermatan sulfate, heparan sulfate, heparin, keratan sulfate, and dextran fluorescein anionic. These anionic substances can be used alone or in combination of two or more.
  • anionic lipid examples include phosphatidylserine, phosphatidylglycerol, phosphatidylinositol, and phosphatidic acid.
  • anionic surfactant examples include acyl sarcosine, sodium alkyl sulfate, alkyl benzene sulfonate, and fatty acid sodium having 7 to 22 carbon atoms. Specific examples include sodium dodecyl sulfate, sodium lauryl sulfate, sodium cholate, sodium deoxycholate, or sodium taurodeoxycholate.
  • anionic polymer examples include polyaspartic acid, styrene maleic acid copolymer, isopropylacrylamide-acrylpyrrolidone copolymer, polyethylene glycol modified dendrimer, polylactic acid, polylactic acid polyglycolic acid, polyethylene glycolated polylactic acid, dextran sulfate. Dextran sodium sulfate, chondroitin sulfate, chondroitin sulfate sodium, hyaluronic acid, chondroitin, dermatan sulfate, heparan sulfate, heparin, keratan sulfate or dextran fluorescein anionic.
  • the protein or peptide exhibiting anionic property at a pH value equal to or higher than the isoelectric point is not particularly limited as long as it is a protein or peptide exhibiting anionic property at a pH value equal to or higher than the isoelectric point of the substance.
  • examples include albumin, orosomucoid, globulin, fibrinogen, histone, protamine, ribonuclease or lysozyme.
  • nucleic acid as the anionic substance examples include DNA, RNA, plasmid, siRNA, and ODN, and any nucleic acid having any length and sequence may be used as long as it does not exhibit physiological activity.
  • the adhesion competing agent is preferably electrostatically attached to the lead particles, and is a substance that does not form a cross-link that agglomerates the lead particles even if it adheres to the lead particles, or a part that adheres in the molecule. And a substance having a portion that repels adhesion and suppresses aggregation of lead particles.
  • step 1 includes, for example, an operation for producing a liquid in which lead particles containing an aggregation inhibitor are dispersed, and the double-stranded nucleic acid molecule is dispersed or dissolved in the liquid in which the lead particles are dispersed.
  • the operation of containing for example, the operation of adding and dispersing or dissolving the double-stranded nucleic acid molecule in the liquid in which the lead particles are dispersed; the double-stranded nucleic acid molecule being dispersed or dissolved in the liquid in which the lead particles are dispersed; For example, an operation of adding the prepared liquid).
  • the composite particle obtained by the step of dispersing or dissolving the double-stranded nucleic acid molecule in the liquid in which the lead particles are dispersed is specifically a liposome B containing a cationic substance.
  • Composite particles formed by attaching the double-stranded nucleic acid molecules to fine particles composite particles formed by attaching the double-stranded nucleic acid molecules to fine particles which are lipid aggregates containing a cationic substance, poly-L -Composite particles formed by adhering the double-stranded nucleic acid molecule to fine particles that are a polymer containing a cationic polymer such as lysine.
  • the operation of dispersing or dissolving the double-stranded nucleic acid molecule in the liquid in which the lead particles are dispersed includes adding an adhesion competitor to the liquid in which the double-stranded nucleic acid molecule is dispersed or dissolved. In this case, it is preferable to add this to the liquid in which the lead particles are dispersed. In this case, the double-stranded nucleic acid molecule and the adhesion competitor are attached to the lead particles to produce composite particles. Aggregation of the lead particles during the production of the composite particles and the aggregation of the composite particles after the production can be further suppressed.
  • the ratio of the lead particles to the liquid in which the lead particles are dispersed is not particularly limited as long as the double-stranded nucleic acid molecule can be attached to the lead particles, but is preferably about 1 ⁇ g / mL to 1 g / mL, about 0.1 ⁇ g / mL. More preferably, it is ⁇ 500 mg / mL.
  • Step 2) Step of coating composite particles with lipid bilayer (Part 1) Operation for preparing a liquid (liquid A) containing a polar organic solvent in which the composite particles obtained in step 1 are dispersed and the components of the lipid bilayer membrane are dissolved, and then the concentration of the polar organic solvent in liquid A By reducing the amount, the lipid particle A can be produced by a production method including an operation of coating the composite particles with a lipid bilayer membrane.
  • the lipid particle A is obtained in the form of a dispersion liquid (liquid B).
  • the solvent in the liquid A is a solvent containing the polar organic solvent at a concentration of the polar organic solvent in which the components of the lipid bilayer membrane are soluble and the composite particles can be dispersed.
  • the constituent components of the lipid bilayer membrane can be dispersed and the composite particles can also be dispersed.
  • the solvent in the liquid A is a mixed liquid of a polar organic solvent and a solvent other than the polar organic solvent, for example, a solvent (liquid C) containing a solvent other than the polar organic solvent that can be mixed with the polar organic solvent is added.
  • the concentration of the polar organic solvent can be reduced by selectively removing the polar organic solvent by evaporative distillation, semipermeable membrane separation, fractional distillation, or the like.
  • the liquid C is preferably a liquid containing a solvent other than the polar organic solvent, but the polar organic solvent may be included as long as it is lower than the concentration of the polar organic solvent in the liquid A.
  • Examples of the solvent other than the polar organic solvent in Step 2 include water, liquid carbon dioxide, liquid hydrocarbon, halogenated carbon, halogenated hydrocarbon, and the like, and preferably water.
  • the liquid A and the liquid C may contain an ion or a buffer component. These solvents can be used alone or in combination of two or more.
  • the combination of the polar organic solvent and the solvent other than the polar organic solvent is preferably a combination that can be mixed with each other, and the components of the composite particles and the lipid bilayer membrane with respect to the solvent in liquid A and liquid B and liquid C
  • the solubility can be selected in consideration of the solubility.
  • the solubility in any of the solvent in liquid A and liquid B and liquid C is low, and the solubility in any solvent other than polar organic solvent and polar organic solvent is also low.
  • the components of the lipid bilayer membrane are preferably low in solubility in the solvent in liquid B and in liquid C, preferably high in solubility in the solvent in liquid A, and polar organic
  • the solubility in a solvent is preferably high, and the solubility in a solvent other than the polar organic solvent is preferably low.
  • “the solubility of the composite particles is low” means that the components such as lead particles, double-stranded nucleic acid molecules and adhesion competitors contained in the composite particles have low elution properties in the solvent. Even if the solubility of each component is high, it is only necessary that the elution of each component is reduced due to the bond between the components.
  • the lead particle has a positive charge, the charge in the double-stranded nucleic acid molecule, the intramolecular polarization, etc.
  • the solubility of the composite particles in the solvent in the liquid A can be lowered. That is, the fact that the lead particles have a positive charge also has the effect of suppressing the elution of the components of the composite particles in the production of the lipid particles A and improving the manufacturability and yield.
  • the concentration of the polar organic solvent in the liquid A is not particularly limited as long as the components of the lipid bilayer membrane are soluble and the composite particles can be dispersed.
  • the solvent, the composite particles, and the configuration of the lipid bilayer membrane to be used Although it varies depending on the type of component, etc., it is preferably about 30 v / v% or more, more preferably about 60 to 90 v / v%.
  • the concentration of the polar organic solvent in the liquid B is particularly limited as long as it contains the polar organic solvent at a lower concentration than the liquid A, the constituent components of the lipid bilayer membrane can be dispersed, and the composite particles can also be dispersed. Although it is not a thing, Preferably it is about 50 v / v% or less.
  • the step of preparing the liquid A includes a step of preparing the liquid A by mixing polar organic solvents, composite particles and components of the lipid bilayer membrane, and if necessary, a solvent other than the polar organic solvent.
  • the components of the polar organic solvent, the composite particle and the lipid bilayer membrane, and optionally the solvent other than the polar organic solvent are not particularly limited in the order of adding them unless the composite particles are dissolved.
  • a liquid (liquid D) containing a polar organic solvent in which particles are dispersed is prepared, and the components of the lipid bilayer membrane are dissolved in a solvent containing a polar organic solvent that is the same as or different from the polar organic solvent in liquid D (Liquid E) is prepared, and liquid D and liquid E are mixed and prepared.
  • liquid D and liquid E it is preferable to mix gradually.
  • Step 3) Step of coating composite particles with lipid bilayer (Part 2)
  • the component of the composite particle and lipid bilayer membrane obtained in step 1 contains a polar organic solvent in which the component of the lipid bilayer membrane is soluble, and the component of the lipid bilayer membrane exists in a dispersed state
  • the lipid particle A can be produced by a production method including an operation of dispersing in a liquid (liquid F) containing the polar organic solvent at a concentration capable of being obtained. In this case, the lipid particle A is obtained in the state of a dispersion.
  • Liquid F contains a polar organic solvent in which the constituent components of the lipid bilayer membrane are soluble, but the polar organic solvent at a specific concentration at which both the constituent components of the lipid bilayer membrane and the composite particles can be dispersed. It is a liquid containing.
  • liquid F can take any form.
  • liquid F may be prepared by mixing both solutions.
  • Liquid F may be prepared by preparing a dispersion of either one of the components, and adding and dispersing one of the remaining components of the composite particles in the solid state or the lipid bilayer membrane to the dispersion.
  • the composite particle dispersion medium may contain a polar organic solvent in advance.
  • the component solvent or dispersion medium may be a liquid containing a polar organic solvent or a liquid composed only of a polar organic solvent.
  • the dispersion is preferably a liquid containing a polar organic solvent.
  • the polar organic particles are not dissolved and the components of the lipid bilayer are dispersed.
  • a polar organic solvent may be added within the solvent concentration range, the polar organic solvent may be removed, or the concentration may be decreased.
  • the composite particles are not dissolved after preparing the liquid F.
  • the composite particles are not dissolved and the components of the lipid bilayer membrane are dispersed.
  • the polar organic solvent may be removed or the concentration reduced within the range of the polar organic solvent concentration.
  • the components of the composite particles and lipid bilayer membrane are mixed in advance in a solvent other than the polar organic solvent, and the range of polar organic solvent concentration in which the composite particles do not dissolve and the components of the lipid bilayer membrane are dispersed
  • a polar organic solvent may be added.
  • each of the components of the composite particle and the lipid bilayer membrane may be dispersed in a solvent other than the polar organic solvent, and after mixing both dispersions, the polar organic solvent may be added.
  • Either one of the components of the lipid bilayer membrane was dispersed in a solvent other than the polar organic solvent, and the remaining one of the solid-state composite particles or the components of the lipid bilayer membrane was added to the dispersion and dispersed. Later, a polar organic solvent may be added.
  • the component of the composite particles and the lipid bilayer membrane is dispersed, and a liquid containing a polar organic solvent is allowed to stand or mix for a time sufficient for the composite particles to be coated with the lipid bilayer membrane. Is preferred.
  • the time for standing or mixing the components of the composite particles and the lipid bilayer membrane with the polar organic solvent There is no limit unless it is instantaneously terminated after being dispersed in the liquid containing, but can be arbitrarily set according to the components of the lipid bilayer membrane and the type of liquid containing the polar organic solvent, It is preferable to set a time during which the yield of the obtained lipid particle A is a steady amount, for example, about 3 seconds to 30 minutes.
  • the coating of the lipid bilayer on the composite particle is started, and the lipid bilayer on the composite particle is quickly
  • the coating of the membrane may be completed. For example, after preparing a solution of lipid bilayer components, mix the composite particle dispersion and the solution of lipid bilayer components.
  • preparing F if the solubility of the components of lipid bilayer membrane in liquid F is low, the components of lipid bilayer membrane are dispersed almost simultaneously with the liquid containing a specific polar organic solvent. In some cases, the coating of the lipid bilayer on the composite particles may be completed.
  • Examples of the solvent other than the polar organic solvent in the liquid F include those exemplified for the solvent other than the polar organic solvent in Step 2, and preferably water.
  • the concentration of the polar organic solvent in the liquid F is not particularly limited as long as the composite particles and the components of the lipid bilayer membrane are both dispersed.
  • the solvent, the composite particles, and the lipid bilayer to be used are not limited. Although it varies depending on the type of membrane constituents, etc., it is preferably about 1-80 v / v%, more preferably about 10-60 v / v%, more preferably about 20-50 v / v%, most preferably about 30-40 v. / v%.
  • the component of the lipid bilayer membrane is soluble in a specific polar organic solvent means that the component of the lipid bilayer membrane is soluble in a specific polar organic solvent
  • the components of the lipid bilayer membrane form aggregates or micelles in the specific polar organic solvent.
  • the components of the lipid bilayer membrane are dispersed means that all of the components of the lipid bilayer membrane are aggregated or micelles and are emulsified or emulsified.
  • part of the constituents forms aggregates or micelles to become an emulsion or emulsion, and the remaining part is dissolved, part of the constituents of the lipid bilayer membrane forms aggregates or micelles, etc. It includes a state in which it is emulsified or emulsified and the remaining part is precipitated. Note that “the constituents of the lipid bilayer membrane dissolve” does not include a state in which all of the constituent components of the lipid bilayer membrane form an aggregate or micelle to be emulsified or emulsified.
  • composite particles are dispersed means a state in which the composite particles are suspended, emulsified or emulsified, and a part of the composite particles are suspended, emulsified or emulsified, and the remaining part. And a state where a part of the composite particle is emulsified or emulsified and a remaining part is precipitated. “Composite particles do not dissolve” has the same meaning as “composite particles are dispersed”.
  • the concentration of the composite particles in the polar organic solvent-containing aqueous solution used in the method for producing lipid particle A in the present invention is not particularly limited as long as the composite particles can be covered with a lipid bilayer membrane, but is about 1 ⁇ g / mL to It is preferably 1 g / mL, more preferably about 0.1 to 500 mg / mL.
  • the concentration of the constituent components of the lipid bilayer membrane used is not particularly limited as long as the composite particles can be coated, but is preferably about 1 ⁇ g / mL to 1 g / mL, preferably about 0.1 to 400 mg / mL. More preferably.
  • the size of the lipid particle A in the present invention is more preferably an average particle size of about 30 nm to 300 nm, more preferably about 50 nm to 200 nm, and specifically, for example, an injectable size. It is preferable.
  • the lipid particles A obtained above can be modified with substances such as proteins such as antibodies, saccharides, glycolipids, amino acids, nucleic acids, various low molecular compounds or high molecular compounds, and the resulting coated composite
  • the particles are also included in the lipid particle A.
  • the lipid particle A obtained above may be further subjected to surface modification of the lipid bilayer with proteins such as antibodies, peptides or fatty acids [Radik (D. D. Lasic, edited by F. Martin, “Stealth Liposomes” (USA), CRC Press Inc, 1995, p. 93-102].
  • the surface modification of lipid particle A with, for example, a lipid derivative, fatty acid derivative or aliphatic hydrocarbon derivative of a water-soluble substance can be optionally performed, and the lipid derivative or fatty acid derivative of a water-soluble substance used for the surface modification.
  • an aliphatic hydrocarbon derivative is synonymous with the lipid derivative, fatty acid derivative, or aliphatic hydrocarbon derivative of a water-soluble substance as a component of the lipid bilayer membrane.
  • the lipid bilayer membrane of the lipid particle can contain a water-soluble substance as a constituent component.
  • the composition of the present invention By administering the composition of the present invention to mammals including humans and delivering the double-stranded nucleic acid molecule to the target gene expression site, the gene expression is suppressed in mammalian cells in vivo. RNA and the like can be introduced, and the expression of genes and the like can be suppressed.
  • the nucleic acid in the composition of the present invention is delivered into cells of the delivered organ or site, for example, by being delivered to an organ or site in which cancer or inflammation has occurred. Can be introduced.
  • the organ or site where cancer or inflammation has occurred is not particularly limited, and examples thereof include stomach, large intestine, liver, lung, spleen, pancreas, kidney, bladder, skin, blood vessel, and eyeball.
  • the composition of the present invention is intravenously administered to mammals including humans, so that it is delivered to, for example, blood vessels, liver, lungs, spleen and / or kidney, and the composition of the present invention is contained in cells of a delivery organ or site.
  • the nucleic acid in can be introduced.
  • Liver, lung, spleen and / or kidney cells may be normal cells, cells associated with cancer or inflammation or cells associated with other diseases. That is, the present invention also provides a method for suppressing the expression of a target gene, wherein the composition of the present invention described above is administered to a mammal.
  • the administration subject is preferably a human.
  • the composition of the present invention is treated with a therapeutic or preventive agent for cancer or inflammatory disease, preferably a solid cancer or blood vessel or blood vessel. It can be used as a therapeutic or prophylactic agent for nearby inflammation.
  • a therapeutic or preventive agent for cancer or inflammatory disease preferably a solid cancer or blood vessel or blood vessel. It can be used as a therapeutic or prophylactic agent for nearby inflammation.
  • the target gene in the composition of the present invention is a gene related to angiogenesis
  • the proliferation of vascular smooth muscle, angiogenesis, etc. can be suppressed.
  • It can be used as a therapeutic or prophylactic agent for cancer or inflammatory diseases accompanied by muscle growth and angiogenesis. That is, the present invention also provides a method for treating cancer or inflammatory disease, wherein the composition of the present invention described above is administered to a mammal.
  • the administration subject is preferably a person, more preferably a person suffering from cancer or an inflammatory disease.
  • the composition of the present invention can also be used as a tool for obtaining POC (Proof of concept) in an in vivo screening system for a therapeutic or prophylactic agent for cancer or inflammatory diseases.
  • composition of the present invention can be used to stabilize a double-stranded nucleic acid molecule in a biological component such as a blood component (for example, blood, digestive tract, etc.), reduce side effects, or to a tissue or organ containing a target gene expression site. It can also be used as a preparation for the purpose of increasing drug accumulation.
  • a biological component such as a blood component (for example, blood, digestive tract, etc.), reduce side effects, or to a tissue or organ containing a target gene expression site. It can also be used as a preparation for the purpose of increasing drug accumulation.
  • composition of the present invention When the composition of the present invention is used as a therapeutic agent or prophylactic agent for pharmaceutical cancer or inflammatory disease, it is desirable to use the most effective administration route for treatment.
  • Oral administration such as rectal, subcutaneous, intramuscular or intravenous, and oral administration can be mentioned, preferably intravenous administration or intramuscular administration can be mentioned, and intravenous administration is more preferred.
  • the dose varies depending on the disease state, age, route of administration, etc. of the administration subject, but for example, it may be administered so that the daily dose converted to RNA is about 0.1 ⁇ g to 1000 mg.
  • Examples of the preparation suitable for intravenous administration or intramuscular administration include injections, and the dispersion of lipid particle A prepared by the above-mentioned method can be used as it is, for example, in the form of injections.
  • the dispersion can be used after removing the solvent, for example, by filtration, centrifugation, etc., or the dispersion can be used after lyophilization, or an excipient such as mannitol, lactose, trehalose, maltose or glycine is added.
  • the obtained dispersion can be freeze-dried.
  • injections for example, water, acid, alkali, various buffer solutions, physiological saline or amino acid infusion, etc.
  • an injection can be prepared by adding an antioxidant such as citric acid, ascorbic acid, cysteine or EDTA or an isotonic agent such as glycerin, glucose or sodium chloride.
  • an antioxidant such as citric acid, ascorbic acid, cysteine or EDTA or an isotonic agent such as glycerin, glucose or sodium chloride.
  • it can also be cryopreserved by adding a cryopreservation agent such as glycerin.
  • the double-stranded nucleic acid molecule is a double-stranded nucleic acid molecule composed of a sense strand and an antisense strand
  • the antisense strand has a sequence of bases 1 to 17 (sequence a) from the 5 ′ end to the 3 ′ end, and a sequence of 17 bases of mRNA of a target gene related to tumor or inflammation.
  • a complementary base sequence a polynucleotide having a length of 17 to 30 bases, wherein the sugar in the antisense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group.
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • (iii) 30-100% of the sugars bound to the bases at the 17th to 3 'end from the 5' end to the 3 'end of the antisense strand are deoxyribose or the hydroxyl group
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) The double-stranded nucleic acid molecule, wherein 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group.
  • the lipid particle A is a lipid particle comprising (1) a composite particle comprising a lead particle and the double-stranded nucleic acid molecule as constituents, and a lipid bilayer covering the composite particle.
  • the component is soluble in a specific polar organic solvent, the component of the lipid bilayer membrane and the composite particle can be dispersed in a liquid containing the polar organic solvent at a specific concentration, and the lipid bilayer membrane A lipid particle that is a lipid bilayer membrane comprising a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a water-soluble substance, or (2) a lead particle containing a cationic substance and the double-stranded nucleic acid molecule Composite particles as constituents And lipid particles including a lipid bilayer coating the composite particle, the lipid bilayer comprising a lipid, a fatty acid derivative or an aliphatic hydrocarbon derivative of a neutral lipid and a water-soluble substance as a constituent component
  • the present invention is a double-stranded nucleic acid molecule in which the double-stranded nucleic acid molecule is composed of a sense strand and an antisense strand in the composition of the present invention
  • the antisense strand has a sequence of bases 1 to 17 (sequence a) from the 5 ′ end to the 3 ′ end, and a sequence of 17 bases of mRNA of a target gene related to tumor or inflammation.
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group, (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose, (ii) 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ri
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) The double-stranded nucleic acid molecule, wherein 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group.
  • the lipid particle A is a lipid particle comprising (1) a composite particle comprising a lead particle and the double-stranded nucleic acid molecule as constituents, and a lipid bilayer covering the composite particle.
  • the component is soluble in a specific polar organic solvent
  • the component of the lipid bilayer membrane and the composite particle can be dispersed in a liquid containing the polar organic solvent at a specific concentration
  • the lipid bilayer membrane A lipid particle that is a lipid bilayer membrane comprising a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a water-soluble substance, or (2) a lead particle containing a cationic substance and the double-stranded nucleic acid molecule
  • Composite particles as constituents
  • lipid particles including a lipid bilayer coating the composite particle, the lipid bilayer comprising a lipid, a fatty acid derivative or an aliphatic hydrocarbon derivative of a neutral lipid and a water-soluble substance as a constituent component
  • the present invention will be specifically described with reference to examples and test examples.
  • the present invention is not limited to these examples and test examples. It consists of the sense (sense) chain and the antisense (antsense) chain shown in Table 1 (the sugar that binds to the base marked with d in the table is deoxyribose, and the sugar that binds to the base marked with m Is a ribose substituted with 2'-O-methyl), and a double-stranded nucleic acid molecule comprising the 19-base sequence 5'-GUG AAG UCA ACA UGC CUG C-3 'of the BCL2 gene mRNA. These were used in Examples 1 to 4 and Comparative Examples 1 to 9. Those double-stranded nucleic acid molecules were prepared by obtaining the respective sense strand and antisense strand from Hokkaido System Science Co., Ltd. and annealing them.
  • DOTAP (manufactured by Avanti Polar Lipids) / PEG-DSPE (manufactured by NOF Corporation) / distilled water (manufactured by Otsuka Pharmaceutical Co., Ltd.) is mixed to 40 mg / 16 mg / 1 mL and shaken with a vortex mixer. Stir. This suspension was applied to a 0.4 ⁇ m polycarbonate membrane filter (manufactured by Coster) at 70 ° C 10 times, to a 0.2 ⁇ m polycarbonate membrane filter (manufactured by Whatman) three times, and to a 0.1 ⁇ m polycarbonate membrane filter (manufactured by Corning).
  • the sample was passed 10 times and further 20 times through a 0.05 ⁇ m polycarbonate membrane filter (Whatman).
  • the average particle diameter of the lead particles obtained by dynamic light scattering (DLS) was measured and found to be 70.71 nm.
  • EPC manufactured by NOF Corporation
  • PEG-DSPE manufactured by NOF Corporation
  • ethanol manufactured by Wako Pure Chemical Industries, Ltd.
  • Water is mixed to 15 mg / 3.125 mg / 0.625 mL / 0.375 mL, and lipid A solution of the components of the bilayer membrane was prepared.
  • the resulting dispersion of lead particles (0.0125 mL) was mixed with 0.00417 mL of an aqueous solution obtained by mixing BCL2siRNA-Exp.1 / water as shown in Table 1 to a concentration of 24 mg / 1 mL to obtain composite particles.
  • the resulting composite particle dispersion was added to 0.06667 mL of the lipid bilayer component solution, followed by 0.02083 mL of distilled water.
  • lipid particles were prepared.
  • the obtained lipid particle suspension was made isotonic with saline.
  • the final solution volume was adjusted to 1 mL with physiological saline (manufactured by Otsuka Pharmaceutical Co., Ltd.) to adjust the BCL2 siRNA-Exp.1 concentration to 0.1 mg / mL, thereby obtaining a preparation. It was 82.59 nm when the average particle diameter of the lipid particle in a formulation was measured by DLS.
  • a preparation was obtained in the same manner as in Example 1 except that BCL2siRNA-Exp.1 was changed to BCL2siRNA-Exp.2. It was 83.94 nm when the average particle diameter of the lipid particle in a formulation was measured by DLS.
  • Comparative Examples 1-9 A preparation was obtained in the same manner as in Example 1 except that BCL2siRNA-Exp.1 was changed to BCL2siRNA-Com.1-9, respectively.
  • the average particle diameter of lipid particles in each preparation was measured by DLS.
  • Table 1 shows the average particle size of lipid particles in each preparation.
  • a preparation was obtained in the same manner as in Example 1 except that BCL2siRNA-Exp.1 was changed to BCL2siRNA-Exp.3. It was 82.42 nm when the average particle diameter of the lipid particle in a formulation was measured by DLS.
  • a preparation was obtained in the same manner as in Example 1 except that BCL2siRNA-Exp.1 was changed to BCL2siRNA-Exp.4. It was 83.47 nm when the average particle diameter of the lipid particle in a formulation was measured by DLS.
  • Test example 1 The RNAi activity of BCL2siRNA-Exp.1-4 and BCL2siRNA-Com.1-9 was evaluated by measuring the Bcl2 mRNA expression inhibitory effect as shown below.
  • Human prostate cancer cell PC-3 was seeded at 2 ⁇ 10 5 cells / dish in a 6 cm diameter culture dish, in F-12 Kaighn's medium (GIBCO, 21127) containing 10% fetal calf serum, 37 ° C., 5% Cultivated overnight under CO 2 conditions. On the next day, the medium was aspirated from the culture dish and replaced with 0.8 mL of low serum basic medium OPTI-MEM (GIBCO, 31985).
  • siRNA was introduced into PC-3 by adding 0.2 mL of siRNA-oligofectamine complex solution mixed in OPTI-MEM. The final concentration of siRNA was 3 nM and 30 nM.
  • Human prostate cancer cells PC-3 introduced with siRNA were cultured in a 5% CO 2 incubator at 37 ° C. for 48 hours, washed twice with PBS, and transferred to a 1.5 mL tube using a cell scraper. After centrifugation at 1000 xg for 2 minutes and removing the supernatant, the cells are lysed and collected in RLT buffer (attached to Qiagen RNA Recovery Kit ⁇ RNeasy ''), and all cells are collected according to the instructions attached to the kit. RNA was recovered.
  • a reverse transcription reaction was performed using 1 ⁇ g of total RNA as a template and Superscript VILO (Invitrogen) to prepare cDNA.
  • cDNA as a template for PCR reaction, specific to bcl-2 gene and GADPH (D-glyceraldehyde-3-phosphate dehydrogenase) gene which is a constitutive expression gene by Taqman probe method using ABI7900HT Fast (ABI) PCR amplification was performed, and the amount of mRNA was quantified.
  • 250 ng of total RNA-derived cDNA was used as a template.
  • the amount of mRNA in the specimen was expressed as a relative ratio when the amount of bcl-2 mRNA or GADPH mRNA was 1 in the siRNA non-introduced group (untreated).
  • the expression level ratio of each specimen subtracted from 1 is expressed as the expression suppression rate and is shown in FIG.
  • Test example 2 As shown below, the preparations obtained in Examples 1-2 and Comparative Examples 1-9 as PEG-modified lipid particles for the first administration were administered to the mice, and then the second administration was performed at intervals of 7 days. By administering the preparation obtained in Comparative Example 1 as a PEG-modified lipid particle for administration and measuring the concentration of BCL2siRNA-Com.1 in blood 3 hours after administration, Examples 1-2 and Comparative Examples 1-9 The effect of the preparation obtained in 1) on the blood retention of PEG-modified lipid particles administered for the second time was evaluated.
  • the preparations obtained in Examples 1 and 2 and Comparative Examples 1 to 9 were administered to male Balb / c mice (6 weeks old, Claire, Japan) with 100 ⁇ L of drug solution (siRNA concentration 50 ⁇ g / mL) from the tail vein ( The dose is 5 ⁇ g / mouse). At intervals of 7 days, 100 ⁇ L of the drug solution of the preparation obtained in Comparative Example 1 (siRNA concentration 50 ⁇ g / mL) was administered from the tail vein (dose was 5 ⁇ g / mouse).
  • diethylpyrocarbonate aqueous solution diethylpyrocarbonate was added to ultrapure water in a volume of 0.1 v / v% and mixed
  • IS solution as IS
  • GenTLE precipitation carrier (Takara Bio) 15-fold diluted with the above-mentioned diethyl pyrocarbonate aqueous solution) to 65 ⁇ L of the supernatant and mixing, add ethanol and mix and centrifuge Discard the supernatant, add 75 v / v% ethanol to the precipitate, centrifuge, discard the supernatant, air dry the precipitate, and re-dissolve the solution (diethylpyrocarbonate / triethylamine / hexafluoroisopropanol / water 0.1 / It was dissolved in 50 ⁇ L (mixed at a volume ratio of 0.4 / 30/1000) and quantified by HPLC.
  • the double-stranded nucleic acid molecules (Exp.1 to Exp.4) used in Examples 1 to 4 showed siRNA activity comparable to the double-stranded nucleic acid molecules used in Comparative Example 1, The siRNA activity is higher than the double-stranded nucleic acid molecules used in Comparative Examples 2 to 9.
  • FIG. 1 the double-stranded nucleic acid molecules (Exp.1 to Exp.4) used in Examples 1 to 4 showed siRNA activity comparable to the double-stranded nucleic acid molecules used in Comparative Example 1, The siRNA activity is higher than the double-stranded nucleic acid molecules used in Comparative Examples 2 to 9.
  • a composition containing lipid particles encapsulating a double-stranded nucleic acid molecule composed of a sense strand and an antisense strand The antisense strand has a base sequence complementary to the 17-base sequence of the target gene mRNA in which the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end (sequence a)
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • (iii) 30-100% of the sugars bound to the bases at the 17th to 3 'end from the 5' end to the 3 'end of the antisense strand are deoxyribose or the hydroxyl group
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • the lipid particle is a lipid particle having a size that can be administered intravenously, and the lipid particle has a lipid bilayer membrane comprising a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a water-soluble substance as a constituent component.
  • composition of the present invention in addition to the high activity of siRNA, suppresses the decrease in blood retention in the second administration of PEG-modified lipid particles, thereby reducing side effects and expressing the target gene. It was revealed that drug accumulation in tissues or organs including the site can be increased.
  • DOTAP (manufactured by Avanti Polar Lipids) / PEG-DSPE (manufactured by NOF Corporation) / distilled water (manufactured by Otsuka Pharmaceutical Co., Ltd.) is mixed to 40 mg / 16 mg / 1 mL and shaken with a vortex mixer. Stir. This suspension was applied to a 0.4 ⁇ m polycarbonate membrane filter (manufactured by Coster) at 70 ° C 10 times, to a 0.2 ⁇ m polycarbonate membrane filter (manufactured by Whatman) three times, and to a 0.1 ⁇ m polycarbonate membrane filter (manufactured by Corning).
  • the sample was passed 10 times and further 20 times through a 0.05 ⁇ m polycarbonate membrane filter (Whatman).
  • the average particle diameter of the lead particles obtained by dynamic light scattering (DLS) was measured and found to be 71.44 nm.
  • EPC manufactured by NOF Corporation
  • PEG-DSPE manufactured by NOF Corporation
  • ethanol manufactured by Wako Pure Chemical Industries, Ltd.
  • Water is mixed to 15 mg / 3.125 mg / 0.625 mL / 0.375 mL, and lipid A solution of the components of the bilayer membrane was prepared.
  • Composite particles were prepared by mixing 0.0833 mL of the resulting lead particle dispersion with 0.00833 mL of a 24 mg / mL aqueous solution of BCL2siRNA-Exp.5. The obtained dispersion of composite particles was added to 0.13334 mL of the lipid bilayer component solution, followed by 0.04166 mL of distilled water. Add 0.01334 mL of a solution of EPC / PEG-DSPE dissolved in 40 vol% ethanol to 62.5 mg / 62.5 mg / mL, then gradually add 1.5517 mL of distilled water to bring the ethanol concentration to 5% or less. Thus, lipid particles were prepared. The obtained lipid particle suspension was made isotonic with saline.
  • the final solution volume was adjusted to 2 mL with physiological saline (manufactured by Otsuka Pharmaceutical Co., Ltd.) to adjust the BCL2 siRNA-Exp.5 concentration to 0.1 mg / mL, thereby obtaining a preparation. It was 77.26 nm when the average particle diameter of the lipid particle in a formulation was measured by DLS.
  • Comparative Examples 10-13 A preparation was obtained in the same manner as in Example 5 except that BCL2siRNA-Exp.5 was changed to BCL2siRNA-Com.10 to 13 respectively.
  • the average particle diameter of lipid particles in each preparation was measured by DLS.
  • Table 2 shows the average particle diameter of lipid particles of each preparation.
  • Test example 3 The RNAi activities of BCL2siRNA-Exp.5 and BCL2siRNA-Com.10-13 were evaluated by measuring the Bcl2 mRNA expression inhibitory effect as shown below.
  • PC-3 is seeded at a density of 2 ⁇ 10 5 cells / dish in a 6 cm diameter culture dish, in F-12 Kaighn's medium (GIBCO, 21127) containing 10% fetal calf serum, at 37 ° C. and 5% CO 2 Incubated overnight. On the next day, the medium was aspirated from the culture dish and replaced with 0.8 mL of low serum basic medium OPTI-MEM (GIBCO, 31985).
  • siRNA was introduced into PC-3 by adding 0.2 mL of siRNA-oligofectamine complex solution mixed in OPTI-MEM. The final siRNA concentration was 10 nM.
  • the cells into which the siRNA had been introduced were cultured in a 5% CO 2 incubator at 37 ° C. for 48 hours, washed twice with PBS, and transferred to a 1.5 mL tube using a cell scraper. After centrifugation at 1000 xg for 2 minutes and removing the supernatant, the cells are lysed and collected in RLT buffer (attached to Qiagen RNA Recovery Kit ⁇ RNeasy ''), and all cells are collected according to the instructions attached to the kit. RNA was recovered.
  • a reverse transcription reaction was performed using 1 ⁇ g of total RNA as a template and Superscript VILO (Invitrogen) to prepare cDNA.
  • cDNA as a template for PCR reaction, specific to bcl-2 gene and GADPH (D-glyceraldehyde-3-phosphate dehydrogenase) gene which is a constitutive expression gene by Taqman probe method using ABI7900HT Fast (ABI) PCR amplification was performed, and the amount of mRNA was quantified.
  • 250 ng of total RNA-derived cDNA was used as a template.
  • the amount of mRNA in the sample was expressed as a relative ratio when the amount of bcl-2 mRNA or the amount of GADPH mRNA in the siRNA non-introduced group (untreated) was 1, and is shown in FIG.
  • Test example 4 The preparations obtained in Example 5 and Comparative Examples 10 to 13 were used as the first administration PEG-modified lipid particles, while the same Example 5 and Comparative Examples 10 to 13 were used as the second administration PEG-modified lipid particles.
  • Example 5 and Comparative Examples 10 to 13 were used as the second administration PEG-modified lipid particles.
  • Example 5 and Comparative Examples 10 to 13 were used as the second administration PEG-modified lipid particles.
  • the effects of the preparations obtained in Example 5 and Comparative Examples 10 to 13 on the blood retention of the second-dose PEG-modified lipid particles were evaluated.
  • the internal standard is 5'-GmUG mAAmG UmCA mACmA UmGC mCUmG CdT-3 '(2, 4, 6, 8, 10, 12, 14, 16, 18th m from the 5'-side)
  • the sugar that binds to the attached base is ribose substituted with 2'-O-methyl, and the sugar that binds to the base attached with d is deoxyribose) (SEQ ID NO: 39) and 5 ' -GCA GGC AUG UUG ACU UCA CdT-3 '(the sugar linked to the base to which d is attached is deoxyribose) (SEQ ID NO: 40).
  • the double-stranded nucleic acid molecule used in Example 5 shows siRNA activity equivalent to that of the double-stranded nucleic acid molecule used in Comparative Examples 10-13.
  • FIG. 4 shows that in the mice administered with the preparations obtained in Comparative Examples 10 to 13 twice at an interval of 7 days, double-stranded nucleic acid molecules were not found in the blood, and the second time of PEG-modified lipid particles. In the administration, the blood retention was remarkably reduced, while the preparation obtained in Example 5 was separated by 7 days, and in the mice administered twice, the blood concentration of the double-stranded nucleic acid molecule was high, This shows that the decrease in blood retention in the second administration of PEG-modified lipid particles is suppressed.
  • a composition containing lipid particles encapsulating a double-stranded nucleic acid molecule composed of a sense strand and an antisense strand The antisense strand has a base sequence complementary to the 17-base sequence of the target gene mRNA in which the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end (sequence a)
  • the sense strand has a length of 17 to 30 bases including a base sequence (sequence b) complementary to the sequence of the 1st to 17th bases from the 5 ′ end to the 3 ′ end of the antisense strand.
  • the sugar in the sense strand is ribose, deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • (i) 0-30% of the sugars that bind to the 1st to 8th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • 0-20% of the sugars that bind to the 9th to 16th bases from the 5 ′ end to the 3 ′ end of sequence a are each substituted with deoxyribose or the hydroxyl group at the 2 ′ position with a modifying group Ribose
  • (iii) 30-100% of the sugars bound to the bases at the 17th to 3 'end from the 5' end to the 3 'end of the antisense strand are deoxyribose or the hydroxyl group
  • Ribose substituted with (iv) 10-70% of the sugars that bind to the 1st to 17th bases from the 5 ′ end to the 3 ′ end of sequence b are each substituted with deoxyribose or the 2 ′ hydroxyl group with a modifying group Ribose, (v) 30-100% of the sugars that bind to bases other than sequence b of the sense strand are deoxyribose or ribose in which the hydroxyl group at the 2 ′ position is substituted with a modifying group
  • the lipid particle is a lipid particle having a size that can be administered intravenously, and the lipid particle has a lipid bilayer membrane comprising a lipid derivative, a fatty acid derivative or an aliphatic hydrocarbon derivative of a water-soluble substance as a constituent component.
  • composition of the present invention in addition to the high activity of siRNA, suppresses the decrease in blood retention in the second administration of PEG-modified lipid particles, thereby reducing side effects and expressing the target gene. It was revealed that drug accumulation in tissues or organs including the site can be increased.
  • the expression of the target gene can be suppressed by administering the composition of the present invention to mammals or the like.
  • Example 14-siRNA antisense strand of Example 2 SEQ ID NO: 15-siRNA of comparative example 6 sense strand SEQ ID NO: 16-siRNA of comparative example 6 antisense strand SEQ ID NO: 17-siRNA of comparative example 7 sense strand SEQ ID NO: 18-comparison SiRNA antisense strand of Example 7 SEQ ID NO: 19-siRNA of Comparative Example 8 sense strand SEQ ID NO: 20- siRNA antisense of Comparative Example 8 SEQ ID NO: 21-siRNA sense strand of Comparative Example 9 SEQ ID NO: 22-siRNA antisense strand SEQ ID NO: 23 of Comparative Example 9-siRNA sense strand SEQ ID NO: 24 of Example 3-siRNA antisense strand SEQ ID NO: 25-of Example 3

Abstract

アンチセンス鎖が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列を含む、17~30塩基の長さのポリヌクレオチドであり、センス鎖が、該アンチセンス鎖の5'末端側から3'末端側に向って1~17番目の塩基の配列と相補的な塩基の配列を含む、17~30塩基の長さのポリヌクレオチドであって、該アンチセンス鎖および該センス鎖の特定の位置の塩基に結合する糖が、特定の割合でそれぞれデオキシリボースまたは2'位の水酸基が修飾基で置換されたリボースである、二本鎖核酸分子を封入したリピッドパーティクルを含有する組成物であって、該リピッドパーティクルが、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜を有するリピッドパーティクルである、組成物等を提供する。

Description

標的遺伝子の発現を抑制する組成物
 本発明は、標的遺伝子の発現を抑制するための組成物等に関する。
 標的遺伝子の発現を抑制する方法として、例えばRNA干渉(RNA interference、以下、RNAiとよぶ)を利用した方法等が知られており、具体的には、線虫において標的とする遺伝子と同一の配列を有する二本鎖RNAを導入することにより、該標的遺伝子の発現が特異的に抑制される現象が報告されている[“ネイチャー(Nature)”,1998年,第391巻,第6669号,p.806-811参照]。また、ショウジョウバエにおいて長い二本鎖RNAの代わりに、21~23塩基の長さの二本鎖RNAを導入することによっても、標的遺伝子の発現が抑制されることが見出され、これはshort interfering RNA(siRNA)と名づけられている(国際公開第01/75164号パンフレット参照)。
 哺乳類細胞では、長い二本鎖RNAを導入した場合、ウイルス防御機構によりアポトーシスが起こり、特定の遺伝子の発現を抑制することができなかったが、20~29塩基のsiRNAであれば、このような反応が起こらず、特定の遺伝子の発現を抑制できることが見出された。中でも21~25塩基のものの発現抑制効果が高い[“ネイチャー(Nature)”,2001年,第411巻,第6836号,p.494-498、“ネイチャー・レビューズ・ジェネティクス(Nature Reviews Genetics)”,2002年,第3巻,第10号,p.737-747、“モレキュラー・セル(Molecular Cell)”,(米国),2002年,第10巻,第3号,p.549-561、“ネイチャー・バイオテクノロジー(Nature Biotechnology)”,(米国),2002年,第20巻,第5号,p.497-500]。
 RNAiについては、in vivo試験においても多く検証されており、50塩基対以下のsiRNAを用いた胎児の動物での効果(特許文献1参照)および成体マウスでの効果(特許文献2参照)が報告されている。また、siRNAをマウス胎児に静脈内投与した場合に、腎臓、脾臓、肺、膵臓および肝臓の各臓器で特定の遺伝子の発現抑制効果が確認されている(非特許文献1参照)。さらに、脳細胞においてもsiRNAを直接投与することで特定の遺伝子が発現抑制されることが報告されている(非特許文献2参照)。
 一方、核酸の細胞内への送達手段として、カチオニックリピッドパーティクルやカチオニックポリマーを用いる方法が知られている。しかし、該方法では、核酸を含有するカチオニックリピッドパーティクルやカチオニックポリマーを静脈内に投与後、血液中から速やかに核酸が除去されてしまい、標的組織が肝臓や肺以外の場合、例えば腫瘍部位等の場合には核酸を標的組織に送達することができず、十分な作用の発現を可能とするに至っていない。そこで、核酸が血液中で速やかに除去されるという問題点を解決した核酸封入リピッドパーティクル(核酸を封入したリピッドパーティクル)が報告されている(特許文献3~6および非特許文献3参照)。特許文献3では、核酸等を封入したリピッドパーティクルの製造方法として、例えば、カチオン性脂質をクロロホルムに予め溶解し、次いでオリゴデオキシヌクレオチド(ODN)の水溶液とメタノールを加えて混合後、遠心分離することでクロロホルム層にカチオン性脂質/ODNの複合体を移行させ、さらにクロロホルム層を取り出し、これにポリエチレングリコール化リン脂質と中性の脂質と水を加えて油中水型(W/O)エマルジョンを形成し、逆相蒸発法で処理してODN内包リピッドパーティクルを製造する方法が報告され、特許文献4および非特許文献3では、ODNを、pH3.8のクエン酸水溶液に溶解し、脂質(エタノール中)を加え、エタノール濃度を20v/v%まで下げてODN内包リピッドパーティクルを調製し、サイジングろ過し、透析によって、過剰のエタノールを除去した後、試料をさらにpH7.5にて透析してリピッドパーティクル表面に付着したODNを除去してODN内包リピッドパーティクルを製造する方法が報告され、それぞれ核酸等の有効成分を封入したリピッドパーティクルが製造されている。
 これらに対して特許文献5および6では、液体中で微粒子を脂質二重膜で被覆する方法で核酸等の有効成分を封入したリピッドパーティクルを製造することが報告されている。該方法においては、微粒子が分散し、かつ脂質が溶解した極性有機溶媒含有水溶液中の極性有機溶媒の濃度を減少させることによって、液体中において、微粒子が脂質二重膜で被覆される。この方法では、例えば静脈注射用微粒子等に好適な大きさの脂質二重膜で被覆された微粒子(被覆微粒子)が、すぐれた効率で製造されている。また、特許文献5および6では被覆される微粒子の例として例えばODNまたはsiRNAとカチオン性脂質からなる静電的相互作用により形成される複合体が例示されている。該微粒子を被覆した被覆微粒子の粒子径は小さく、注射剤として使用可能であること、該被覆微粒子は、静脈内に投与した場合、高い血液中滞留性を示し、腫瘍組織に多く集積したことが報告されている。
 また、ポリエチレングリコール(PEG)等の水溶性高分子で、リピッドパーティクルの表面を修飾することが、一般に行われ、該表面を修飾されたリピッドパーティクルは、オプソニンなどの血清タンパクと相互作用しにくく、さらにマクロファージによる認識を回避できることから、血中滞留時間が長いリピッドパーティクルであることが知られている。核酸封入リピッドパーティクルにおいても、PEG修飾リピッドパーティクルとすることで、より高い血液中滞留性を示し、腫瘍組織に多く集積したことが報告されている。しかしながら、PEG修飾リピッドパーティクルを3-7日の投与間隔で二回繰り返し投与すると、二回目投与PEG修飾リピッドパーティクルの血中滞留性が著しく低下することが知られており、初回投与PEGリピッドパーティクルによって誘導された抗PEG-IgM 抗体が2回目投与リピッドパーティクルのPEG に結合し、次いで補体系を活性化することで肝マクロファージによる取り込みが亢進され、二回目投与PEG修飾リピッドパーティクルの血中滞留性が著しく低下すると考えられている(非特許文献4参照)。
米国公開第2002-132788号 国際公開第03/10180号パンフレット 特表2002-508765号公報 特表2002-501511号公報 国際公開第02/28367号パンフレット 国際公開第2006/080118号パンフレット
ネイチャー・ジェネティクス(Nature Genetics),2002年,第32巻,第1号,p.107-108 ネイチャー・バイオテクノロジー(Nature Biotechnology),2002年,第20巻,第10号,p.1006-1010 バイオキミカ・エト・バイオフィジカ・アクタ(Biochimica et Biophysica Acta),2001年,第1510巻,p.152-166 ジャーナル・オブ・コントロールド・リリース(Journal of Controlled Release),2009年,第137巻,p.234-240
 本発明の目的は、標的遺伝子の発現を抑制するための組成物等を提供することにある。また、ポリエチレングリコール(PEG)等の水溶性高分子で表面を修飾したリピッドパーティクルを含有する組成物において、二回目投与時に血中滞留性が著しく低下することを抑制し、より高い血液中滞留性を示すことが可能な、標的遺伝子の発現を抑制するための組成物等を提供することにある。
 本発明は以下の(1)~(56)に関する。
(1) センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を封入したリピッドパーティクルを含有する、組成物であって、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、該リピッドパーティクルが、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜を有するリピッドパーティクルである、組成物。
(2) (v)該センス鎖の配列b以外の塩基に結合する糖の50~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースである、前記(1)記載の組成物。
(3) 二本鎖核酸分子が、RNA干渉(RNAi)を利用した該標的遺伝子の発現抑制作用を有する二本鎖核酸分子である、前記(1)または(2)記載の組成物。
(4) 標的遺伝子が、腫瘍または炎症に関連する遺伝子である、前記(1)~(3)のいずれかに記載の組成物。
(5) 標的遺伝子が、血管新生に関連する遺伝子である、前記(1)~(4)のいずれかに記載の組成物。
(6) 標的遺伝子が、血管内皮増殖因子、血管内皮増殖因子受容体、線維芽細胞増殖因子、線維芽細胞増殖因子受容体、血小板由来増殖因子、血小板由来増殖因子受容体、肝細胞増殖因子、肝細胞増殖因子受容体、クルッペル様因子、Ets転写因子、核因子および低酸素誘導因子のいずれかの遺伝子である、前記(1)~(4)のいずれかに記載の組成物。
(7) mRNAがヒトまたはマウスのmRNAである、前記(1)~(6)のいずれかに記載の組成物。
(8) 二本鎖核酸分子を封入したリピッドパーティクルが、リード粒子と該二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルであり、
該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能である、前記(1)~(7)のいずれかに記載の組成物。
(9) 極性有機溶媒がアルコールである、前記(8)記載の組成物。
(10) 極性有機溶媒がエタノールである、前記(8)記載の組成物。
(11) リード粒子が、カチオン性物質を含むリード粒子であり、複合粒子を被覆する脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、前記(8)~(10)のいずれかに記載の組成物。
(12) 二本鎖核酸分子を封入したリピッドパーティクルが、カチオン性物質を含むリード粒子と該二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルであり、
該複合粒子を被覆する脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、前記(1)~(7)のいずれかに記載の組成物。
(13) 水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体が、ポリエチレングリコール-ホスファチジルエタノールアミンである、前記(1)~(12)のいずれかに記載の組成物。
(14) リード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子とを構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する癌または炎症疾患の治療剤であって、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能であり、
該脂質二重膜が、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、癌または炎症疾患の治療剤。
(15) 極性有機溶媒がアルコールである、前記(14)記載の癌または炎症疾患の治療剤。
(16) 極性有機溶媒がエタノールである、前記(14)記載の癌または炎症疾患の治療剤。
(17) リード粒子が、カチオン性物質を含むリード粒子であり、脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、前記(14)~(16)のいずれかに記載の癌または炎症疾患の治療剤。
(18) カチオン性物質を含むリード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子とを構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する癌または炎症疾患の治療剤であって、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
該脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、癌または炎症疾患の治療剤。
(19) 水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体が、ポリエチレングリコール-ホスファチジルエタノールアミンである、前記(14)~(18)のいずれかに記載の癌または炎症疾患の治療剤。
(20) (v)該センス鎖の配列b以外の塩基に結合する糖の50~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースである、前記(14)~(19)のいずれかに記載の癌または炎症疾患の治療剤。
(21) 腫瘍または炎症に関連する標的遺伝子が、血管新生に関与する遺伝子である、前記(14)~(20)のいずれかに記載の癌または炎症疾患の治療剤。
(22) 腫瘍または炎症に関連する標的遺伝子が、血管内皮増殖因子、血管内皮増殖因子受容体、線維芽細胞増殖因子、線維芽細胞増殖因子受容体、血小板由来増殖因子、血小板由来増殖因子受容体、肝細胞増殖因子、肝細胞増殖因子受容体、クルッペル様因子、Ets転写因子、核因子および低酸素誘導因子のいずれかの遺伝子である、前記(14)~(20)のいずれかに記載の癌または炎症疾患の治療剤。
(23) mRNAがヒトまたはマウスのmRNAである、前記(14)~(22)のいずれかに記載の癌または炎症疾患の治療剤。
(24) リード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する組成物を哺乳動物に投与する癌または炎症疾患の治療方法であって、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能であり、
該脂質二重膜が、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、該組成物を哺乳動物に投与する癌または炎症疾患の治療方法。
(25) 極性有機溶媒がアルコールである、前記(24)記載の癌または炎症疾患の治療方法。
(26) 極性有機溶媒がエタノールである、前記(24)記載の癌または炎症疾患の治療方法。
(27) リード粒子が、カチオン性物質を含むリード粒子であり、脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、前記(24)~(26)のいずれかに記載の癌または炎症疾患の治療方法。
(28) カチオン性物質を含むリード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する組成物を哺乳動物に投与する癌または炎症疾患の治療方法であって、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
該脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、該組成物を哺乳動物に投与する癌または炎症疾患の治療方法。
(29) 水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体が、ポリエチレングリコール-ホスファチジルエタノールアミンである、前記(24)~(28)のいずれかに記載の癌または炎症疾患の治療方法。
(30) (v)該センス鎖の配列b以外の塩基に結合する糖の50~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースである、前記(24)~(29)のいずれかに記載の癌または炎症疾患の治療方法。
(31) 腫瘍または炎症に関連する標的遺伝子が、血管新生に関与する遺伝子である、前記(24)~(30)のいずれかに記載の癌または炎症疾患の治療方法。
(32) 腫瘍または炎症に関連する標的遺伝子が、血管内皮増殖因子、血管内皮増殖因子受容体、線維芽細胞増殖因子、線維芽細胞増殖因子受容体、血小板由来増殖因子、血小板由来増殖因子受容体、肝細胞増殖因子、肝細胞増殖因子受容体、クルッペル様因子、Ets転写因子、核因子および低酸素誘導因子のいずれかの遺伝子である、前記(24)~(30)のいずれかに記載の癌または炎症疾患の治療方法。
(33) mRNAがヒトまたはマウスのmRNAである、前記(24)~(32)のいずれかに記載の癌または炎症疾患の治療方法。
(34) リード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する組成物の癌または炎症疾患の治療剤の製造のための使用であって、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能であり、
該脂質二重膜が、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、該組成物の癌または炎症疾患の治療剤の製造のための使用。
(35) 極性有機溶媒がアルコールである、前記(34)記載の使用。
(36) 極性有機溶媒がエタノールである、前記(34)記載の使用。
(37) リード粒子が、カチオン性物質を含むリード粒子であり、脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、前記(34)~(36)のいずれかに記載の使用。
(38) カチオン性物質を含むリード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する組成物の癌または炎症疾患の治療剤の製造のための使用であって、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
該脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、該組成物の癌または炎症疾患の治療剤の製造のための使用。
(39) 水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体が、ポリエチレングリコール-ホスファチジルエタノールアミンである、前記(34)~(38)のいずれかに記載の使用。
(40) (v)該センス鎖の配列b以外の塩基に結合する糖の50~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースである、前記(34)~(39)のいずれかに記載の使用。
(41) 腫瘍または炎症に関連する標的遺伝子が、血管新生に関与する遺伝子である、前記(34)~(40)のいずれかに記載の使用。
(42) 腫瘍または炎症に関連する標的遺伝子が、血管内皮増殖因子、血管内皮増殖因子受容体、線維芽細胞増殖因子、線維芽細胞増殖因子受容体、血小板由来増殖因子、血小板由来増殖因子受容体、肝細胞増殖因子、肝細胞増殖因子受容体、クルッペル様因子、Ets転写因子、核因子および低酸素誘導因子のいずれかの遺伝子である、前記(34)~(40)のいずれかに記載の使用。
(43) mRNAがヒトまたはマウスのmRNAである、前記(34)~(42)のいずれかに記載の使用。
(44) センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を封入したリピッドパーティクルを含有する、組成物を哺乳動物に投与する標的遺伝子の発現抑制方法であって、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、該リピッドパーティクルが、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜を有するリピッドパーティクルである、該組成物を哺乳動物に投与する該標的遺伝子の発現抑制方法。
(45) (v)該センス鎖の配列b以外の塩基に結合する糖の50~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースである、前記(44)記載の該標的遺伝子の発現抑制方法。
(46) 二本鎖核酸分子が、RNA干渉(RNAi)を利用した該標的遺伝子の発現抑制作用を有する二本鎖核酸分子である、前記(44)または(45)記載の該標的遺伝子の発現抑制方法。
(47) 標的遺伝子が、腫瘍または炎症に関連する遺伝子である、前記(44)~(46)のいずれかに記載の該標的遺伝子の発現抑制方法。
(48) 標的遺伝子が、血管新生に関連する遺伝子である、前記(44)~(47)のいずれかに記載の該標的遺伝子の発現抑制方法。
(49) 標的遺伝子が、血管内皮増殖因子、血管内皮増殖因子受容体、線維芽細胞増殖因子、線維芽細胞増殖因子受容体、血小板由来増殖因子、血小板由来増殖因子受容体、肝細胞増殖因子、肝細胞増殖因子受容体、クルッペル様因子、Ets転写因子、核因子および低酸素誘導因子のいずれかの遺伝子である、前記(44)~(47)のいずれかに記載の該標的遺伝子の発現抑制方法。
(50) mRNAがヒトまたはマウスのmRNAである、前記(44)~(49)のいずれかに記載の該標的遺伝子の発現抑制方法。
(51) 二本鎖核酸分子を封入したリピッドパーティクルが、リード粒子と該二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルであり、
該複合粒子を被覆する脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該複合粒子を被覆する脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能である、前記(44)~(50)のいずれかに記載の該標的遺伝子の発現抑制方法。
(52) 極性有機溶媒がアルコールである、前記(51)記載の該標的遺伝子の発現抑制方法。
(53) 極性有機溶媒がエタノールである、前記(51)記載の該標的遺伝子の発現抑制方法。
(54) リード粒子が、カチオン性物質を含むリード粒子であり、複合粒子を被覆する脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、前記(51)~(53)のいずれかに記載の該標的遺伝子の発現抑制方法。
(55) 二本鎖核酸分子を封入したリピッドパーティクルが、カチオン性物質を含むリード粒子と該二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルであり、
該複合粒子を被覆する脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、前記(44)~(50)のいずれかに記載の該標的遺伝子の発現抑制方法。
(56) 水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体が、ポリエチレングリコール-ホスファチジルエタノールアミンである、前記(44)~(55)のいずれかに記載の該標的遺伝子の発現抑制方法。
 本発明の組成物を、ほ乳類等に投与することにより、標的遺伝子の発現を抑制することができる。
実施例1~4および比較例1~9で用いた二本鎖核酸分子のsiRNA活性を示すものである。縦軸はBCL-2mRNA発現抑制率(比率)を表す。 実施例1~2および比較例1~9で得られた製剤をマウスに投与し、次に、7日間の間隔をあけ、二回目投与PEG修飾リピッドパーティクルとして比較例1で得られた製剤を投与した時の投与3時間後の血液中の二本鎖核酸分子の濃度を示すものである。縦軸は血液中の二本鎖核酸分子の濃度(μmol/L)を表す。 実施例5および比較例10~13で用いた二本鎖核酸分子のsiRNA活性を示すものである。縦軸はBCL2mRNA発現量比(比率)を表す。 実施例5および比較例10~13で得られた製剤をマウスに投与し、次に、7日間の間隔をあけ、二回目投与PEG修飾リピッドパーティクルとしてそれぞれ同じ実施例5および比較例10~13で得られた製剤を投与した時の投与3時間後の血液中の二本鎖核酸分子の濃度を示すものである。縦軸は血液中の二本鎖核酸分子の濃度(μmol/L)を表す。
 本発明で用いられる標的遺伝子としては、ほ乳類においてmRNAを産生して発現する遺伝子であれば特に限定されないが、例えば、腫瘍または炎症に関連する遺伝子が好ましく、血管新生に関与する遺伝子等がより好ましく、例えば血管内皮増殖因子(vascular endothelial growth factor、以下VEGFと略す)、血管内皮増殖因子受容体(vascular endothelial growth factor receptor、以下VEGFRと略す)、線維芽細胞増殖因子、線維芽細胞増殖因子受容体、血小板由来増殖因子、血小板由来増殖因子受容体、肝細胞増殖因子、肝細胞増殖因子受容体、クルッペル様因子(Kruppel-like factor、以下KLFと略す)、Ets転写因子、核因子、低酸素誘導因子等のタンパク質をコードする遺伝子等があげられ、具体的にはVEGF遺伝子、VEGFR遺伝子、線維芽細胞増殖因子遺伝子、線維芽細胞増殖因子受容体遺伝子、血小板由来増殖因子遺伝子、血小板由来増殖因子受容体遺伝子、肝細胞増殖因子遺伝子、肝細胞増殖因子受容体遺伝子、KLF遺伝子、Ets転写因子遺伝子、核因子遺伝子、低酸素誘導因子遺伝子等が挙げられ、好ましくはVEGF遺伝子、VEGFR遺伝子、KLF遺伝子等が挙げられ、より好ましくはKLF遺伝子が挙げられ、さらにより好ましくはKLF5遺伝子が挙げられる。
 KLFファミリーは、C末端側のジンク・フィンガー(zinc finger)モチーフを特徴とする、転写因子のファミリーであり、KLF1、KLF2、KLF3、KLF4、KLF5、KLF6、KLF7、KLF8、KLF9、KLF10、KLF11、KLF12、KLF13、KLF14、KLF15、KLF16等が知られている。哺乳類において、KLFファミリーは、様々な組織や細胞、例えば赤血球、血管内皮細胞、平滑筋、皮膚、リンパ球等の分化に重要であること、また癌、心血管疾患、肝硬変、腎疾患、免疫疾患等の各種疾患の病態形成に重要な役割を果たしていることが報告されている[ザ・ジャーナル・オブ・バイオロジカル・ケミストリー(The Journal of Biological Chemistry),2001年,第276巻,第37号,p.34355-34358、ジェノム・バイオロジー(Genome Biology),2003年,第4巻,第2号,p.206]。
 KLFファミリーのうちのKLF5は、BTEB2(basic transcriptional element binding protein 2)あるいはIKLF(intestinal-enriched Kruppel-like factor)ともよばれる。血管平滑筋におけるKLF5の発現は、発生段階で制御を受けており、胎児の血管平滑筋では、高い発現を示すのに対し、正常な成人の血管平滑筋では発現が見られなくなる。また、バルーンカテーテルによる削剥後に新生した血管内膜の平滑筋では、KLF5の高い発現がみられ、動脈硬化や再狭窄の病変部の平滑筋でもKLF5の発現がみられる[サーキュレーション(Circulation),2000年,第102巻,第20号,p.2528-2534]。
 VEGFは、1983年に、Ferraraらにより発見された血管内皮細胞に特異的な増殖因子である。同年に、Senger、Dvorakらにより血管透過性作用を有する因子が発見されVPF(vascular permeability factor)と名付けられた。タンパク質のアミノ酸配列解析の結果、2つは同一のものであることがわかった。VEGFは血管の内側にある内皮細胞の受容体に結合して増殖を促す。VEGFは胎児期に血管をつくるだけではなく、病的な血管をつくるときにも作用している。例えば癌がある程度大きくなって酸素不足になると、VEGFとその受容体が増加して血管新生が起こる。また血管透過性亢進作用により癌性腹水の原因になるとも考えられている。糖尿病が進行すると網膜に新生血管ができるが、これにもVEGFが働いている。つまり、新しい血管をつくるタンパクである。低酸素状態によりその発現が誘導されることにより血管新生への重要な役割を担っているといえる。また血管新生のみならず、腫瘍または炎症性病変等にみられる浮腫のメカニズムを説明するうえで本因子の関与が強く示唆されている。
 一方、VEGFRは血管内皮細胞や癌細胞自身が持っており、VEGFがVEGFRと結合することにより受容体自身がリン酸化(活性化)され、その結果細胞内に増殖や遊走等様々な命令が伝達される。この受容体のリン酸化を阻害することで細胞内の伝達を阻害し、血管新生を阻害することが知られている。
 また、標的遺伝子として、例えば、B-CELL CLL/LYMPHOMA(以下bclと略す)遺伝子があげられ、好ましくはbcl2遺伝子があげられる。
 BCL2は、いくつかの細胞種でアポトーシスによる細胞死の阻害を示す、ミトコンドリア内膜蛋白質である。bcl2遺伝子の大量発現によるアポトーシスの抑制は、癌や、血液学的悪性疾患などの原因となると考えられている。実際に、BCL2はリンパ肉腫、前立腺癌、乳癌、肺癌、結腸癌および直腸癌などの様々な固形癌に大量に産生されている(T.J.McDonnellら、“Cancer Research”、1992年12月15日、52巻、24号、p.6940-6944)。また、胸腺のアポトーシスにはbcl2遺伝子の発現が関係していることが示されている(Kanavaros et al., Histol. Histopathol. 16(4):1005-12 (Oct. 2001))。
 BCL2が大量に産生される細胞においては、そのアポトーシス抑制作用から細胞死が誘導されないため、様々な抗癌剤に対する薬物耐性が引き起こされる。一方前立腺癌細胞においてBCL2産生を抑制すると、細胞増殖の抑制が見られ、アポトーシスを誘導しやすくなることが知られている(Shi et al., Cancer Biother. Radiopharm., 16(5):421-9 (Oct. 2001))。したがって、固形癌および血液学的悪性疾患など、その治癒においてアポトーシスの促進が必要な疾患においては、bcl2遺伝子の発現を抑制する方法は効果的な治療法または予防法となり得る。
 また、本発明で用いられる標的遺伝子としては、例えば、肝臓、肺、腎臓または脾臓において発現する遺伝子が好ましく、例えば前記の腫瘍または炎症に関連する遺伝子、B型肝炎ウイルスゲノム、C型肝炎ウイルスゲノム、アポリポタンパク質(APO)、ヒドロキシメチルグルタリル(HMG)CoA還元酵素、ケキシン 9 型セリンプロテアーゼ(PCSK9)、第12因子、グルカゴン受容体、グルココルチコイド受容体、ロイコトリエン、トロンボキサンA2受容体、ヒスタミンH1受容体、炭酸脱水酵素、アンギオテンシン変換酵素、レニン、p53、チロシンホスファターゼ(PTP)、ナトリウム依存性グルコース輸送担体、腫瘍壊死因子、インターロイキン等のタンパク質をコードする遺伝子等があげられる。
 本発明で用いられる二本鎖核酸分子としては、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子であり、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基、好ましくは19~25塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基、好ましくは19~25塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、好ましくは、配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、かつ9~11番目の塩基に結合する糖の0%がデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%、好ましくは40%以上がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%、好ましくは、30~60%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、ただし9~11番目の塩基に結合する糖の0%がデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースが好ましく、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%、好ましくは40%以上がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースである、二本鎖核酸分子があげられる。
 なお、本発明において、m~n番目(mおよびnは任意の数字を示す)の塩基に結合する糖の0%がデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースとは、m~n番目の塩基に結合する糖には、デオキシリボースおよび2’位の水酸基が修飾基で置換されたリボースを含まない、すなわちm~n番目の塩基に結合する糖がすべてリボースであることを意味する。
 また、本発明で用いられる二本鎖核酸分子としては、好ましくはRNA干渉(RNAi)を利用した該標的遺伝子の発現抑制作用を有する二本鎖核酸分子があげられる。
 また、アンチセンス鎖の配列aの3’末端側に隣接して付加しているヌクレオチドの塩基の配列を、標的遺伝子のmRNA内で配列aと隣接する塩基の配列と相補的な塩基の配列としてもよく、RNA干渉(RNAi)を利用した標的遺伝子の発現抑制作用の面から、この構造がより好ましい。すなわち、アンチセンス鎖は、5’末端側から3’末端側に向って少なくとも1~17番目の塩基の配列が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列であり、好ましくは、該アンチセンス鎖は、5’末端側から3’末端側に向って1~19番目の塩基の配列が、標的遺伝子のmRNAの連続する19塩基の配列と相補的な塩基の配列であるか、1~21番目の塩基の配列が、標的遺伝子のmRNAの連続する21塩基の配列と相補的な塩基の配列であるか、1~25番目の塩基の配列が、標的遺伝子のmRNAの連続する25塩基の配列と相補的な塩基の配列である。
 また、センス鎖の配列b以外の塩基が、アンチセンス鎖の塩基と向かい合って存在する場合には、該センス鎖の配列b以外の塩基と、該アンチセンス鎖の塩基とが、向かい合った相補的塩基対となっていることがより好ましい。
 さらに、本発明で用いられる二本鎖核酸分子は、該二本鎖核酸分子中の糖の10~70%、好ましくは15~60%、より好ましくは20~50%が、2’位において修飾基で置換されたリボースである。本発明におけるリボースの2’位において修飾基で置換されたとは、2’位の水酸基が修飾基に置換されているものを意味し、リボースの2’位の水酸基と立体配置が同じであっても異なっていてもよいが、好ましくはリボースの2’位の水酸基と立体配置が同じである。
 本発明で用いられる二本鎖核酸分子は、核酸の構造中のリン酸部、エステル部等に含まれる酸素原子等が、例えば硫黄原子等の他の原子に置換された誘導体を包含する。
 本発明における修飾基としては、例えば、2’-シアノ、2’-アルキル、2’-置換アルキル、2’-アルケニル、2’-置換アルケニル、2’-ハロゲン、2’-O-シアノ、2’-O-アルキル、2’-O-置換アルキル、2’-O-アルケニル、2’-O-置換アルケニル、2’-S-アルキル、2’-S-置換アルキル、2’-S-アルケニル、2’-S-置換アルケニル、2’-アミノ、2’-NH-アルキル、2’-NH-置換アルキル、2’-NH-アルケニル、2’-NH-置換アルケニル、2’-SO-アルキル、2’-SO-置換アルキル、2’-カルボキシ、2’-CO-アルキル、2’-CO-置換アルキル、2’-Se-アルキル、2’-Se-置換アルキル、2’-SiH2-アルキル、-2’SiH2-置換アルキル、2’-ONO2、2’-NO2、2’-N3、2’-アミノ酸残基(アミノ酸のカルボン酸から水酸基が除去されたもの)、2’-O-アミノ酸残基(前記アミノ酸残基と同義)があげられ、さらにペプチド核酸(PNA)[Acc. Chem. Res., 32, 624 (1999)]、オキシペプチド核酸(OPNA)[J. Am. Chem. Soc., 123, 4653 (2001)]、ペプチドリボ核酸(PRNA)[J. Am. Chem. Soc., 122, 6900 (2000)]等もあげられる。また、2’位の修飾基が4’位の炭素原子に架橋した構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA)、より具体的には、2’位の酸素原子と4’位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid)(LNA)、およびエチレン架橋構造型人工核酸(Ethylene bridged nucleic acid)(ENA)[Nucleic Acid Research, 32, e175(2004)]等も本発明における2’位において修飾基で置換されたリボースに含まれる。
 本発明における修飾基として、2’-シアノ、2’-ハロゲン、2’-O-シアノ、2’-アルキル、2’-置換アルキル、2’-O-アルキル、2’-O-置換アルキル、2’-O-アルケニル、2’-O-置換アルケニル、2’-Se-アルキル、2’-Se-置換アルキルが好ましく、2’-シアノ、2’-フルオロ、2’-クロロ、2’-ブロモ、2’-トリフルオロメチル、2’-O-メチル、2’-O-エチル、2’-O-イソプロピル、2’-O-トリフルオロメチル、2'-O-[2-(メトキシ)エチル]、2'-O-(3-アミノプロピル)、2'-O-(2-[N,N-ジメチル]アミノオキシ)エチル、2'-O-[3-(N,N-ジメチルアミノ)プロピル]、2'-O-[2-[2-(N,N-ジメチルアミノ)エトキシ]エチル]、2'-O-[2-(メチルアミノ)-2-オキソエチル]、2’-Se-メチル等がより好ましく、2’-O-メチル、2’-O-エチル、2’-フルオロ等がさらに好ましく、2’-O-メチル、2’-O-エチルがもっとも好ましい。
 また、本発明における修飾基は、その大きさから好ましい範囲を定義することもでき、フルオロの大きさから、-O-ブチルの大きさに相当するものが好ましく、-O-メチルの大きさから-O-エチルの大きさに相当する大きさのものがより好ましい。
 修飾基におけるアルキルとしては、例えば直鎖または分岐状の炭素数1~6の、例えばメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、イソペンチル、ネオペンチル、tert-ペンチル、ヘキシル等があげられ、好ましくは、メチル、エチル、プロピル、イソプロピル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ネオペンチル、tert-ペンチル等があげられる。修飾基におけるアルケニルとしては、例えば直鎖または分岐状の炭素数1~6の、例えばビニル、アリル、イソプロペニル等があげられる。
 ハロゲンとしては、フッ素原子、塩素原子、臭素原子、ヨウ素原子があげられる。
 アミノ酸としては、例えば脂肪族アミノ酸(具体的には、グリシン、アラニン、バリン、ロイシン、イソロイシン等)、ヒドロキシアミノ酸(具体的には、セリン、トレオニン等)、酸性アミノ酸(具体的には、アスパラギン酸、グルタミン酸等)、酸性アミノ酸アミド(具体的には、アスパラギン、グルタミン等)、塩基性アミノ酸(具体的には、リジン、ヒドロキシリジン、アルギニン、オルニチン等)、含硫アミノ酸(具体的には、システイン、シスチン、メチオニン等)、イミノ酸(具体的には、プロリン、4-ヒドロキシプロリン等)等があげられる。
 置換アルキルおよび置換アルケニルの置換基としては、例えば、ハロゲン(前記ハロゲンと同義)、ヒドロキシ、スルファニル、アミノ、オキソ、-O-アルキル(該-O-アルキルのアルキル部分は前記アルキルと同義)、-S-アルキル(該-S-アルキルのアルキル部分は前記アルキルと同義)、-NH-アルキル(該-NH-アルキルのアルキル部分は前記アルキルと同義)、ジアルキルアミノオキシ(該ジアルキルアミノオキシの2つのアルキルは同一または異なって前記アルキルと同義)、ジアルキルアミノ(該ジアルキルアミノの2つのアルキルは同一または異なって前記アルキルと同義)、ジアルキルアミノアルキレンオキシ(該ジアルキルアミノアルキレンオキシの2つのアルキルは同一または異なって前記アルキルと同義であり、該アルキレンは前記アルキルから水素原子が除かれたものを意味する)等があげられ、置換数は好ましくは1~3である。
 なお、本発明において、二本鎖核酸分子中の糖の2’位において修飾基で置換されたリボースは、最終的に構造が同じであれば、製造方法や原料や中間体にかかわらず本発明で用いられる二本鎖核酸分子に包含され、原料や中間体がDNAまたはデオキシリボースであっても、最終的に構造が同じであれば本発明で用いられる二本鎖核酸分子に包含される。すなわち、本発明におけるリボースの2’位において修飾基で置換されたリボースは、2’位において水素が修飾基に置換されたデオキシリボースを包含する。
 本発明で用いられる二本鎖核酸分子において、2’位において修飾基で置換されたリボースは、隣接するのが最小限になるように分布することがより好ましい。ただし、アンチセンス鎖の3’末端、センス鎖の5’末端および3’末端の2~7塩基に結合する糖が、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースで隣接することは好ましい。
 また、向かい合った相補的塩基対の片方だけが修飾基で置換されたリボースであることがより好ましい。ただし、アンチセンス鎖またはセンス鎖の5’末端または3’末端で、向かい合った相補的塩基対の両方がデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであることは好ましい。
 本発明で用いられる二本鎖核酸分子は、(A)アンチセンス鎖の5’末端とセンス鎖の3’末端およびアンチセンス鎖の3’末端とセンス鎖の5’末端とも、向かい合って相補的塩基対を形成した、ブラントエンドになっていても、(b)アンチセンス鎖およびセンス鎖の3’末端側に1~6個、好ましくは2~4個のヌクレオチドが同一または異なって、向かい合う塩基対なく付加しているオーバーハングになっていてもよく、(C)ブラントエンドとオーバーハングが組み合わせていてもよい。付加しているヌクレオチドの塩基は、グアニン、アデニン、シトシン、チミンおよびウラシルのいずれか1種または複数種でもよく、また、それぞれの塩基に結合する糖が、リボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースのいずれでもよいが、付加しているヌクレオチドとしては、ウリジル酸(U)およびデオキシチミジル酸(dT)のいずれか1種または2種がより好ましい。また、センス鎖の3’末端側に隣接して付加しているヌクレオチドの塩基の配列を、mRNA内で配列aと隣接する塩基の配列と同じ塩基の配列としてもよく、この構造がより好ましい。
 また、アンチセンス鎖の3’末端側に隣接して付加しているヌクレオチドの塩基の配列を、標的遺伝子のmRNA内に相当する塩基の配列と相補的な塩基の配列としてもよく、この構造がより好ましい。なお、本発明において、アンチセンス鎖の塩基の配列が、標的遺伝子のmRNA内に相当する塩基の配列とすべて相補的な塩基の配列であることが最も好ましい。
 また、アンチセンス鎖およびセンス鎖の5’末端の塩基に結合する糖は、それぞれ5’位の水酸基が、リン酸基もしくは前記の修飾基、または生体内の核酸分解酵素等で、リン酸基もしくは前記の修飾基になる基によって修飾されていてもよい。
 また、アンチセンス鎖およびセンス鎖の3’末端の塩基に結合する糖は、それぞれ3’位の水酸基が、リン酸基もしくは前記の修飾基、または生体内の核酸分解酵素等で、リン酸基もしくは前記の修飾基になる基によって修飾されていてもよい。
 また、本発明の二本鎖核酸分子は、生体内の核酸分解酵素等で分解された後に生成するものであってもよく、分解される前の二本鎖核酸分子は、本発明の二本鎖核酸分子のプロドラッグである。
 二本鎖核酸分子のプロドラッグとしては、例えば、アンチセンス鎖の配列aの5’末端側に4~8個、好ましくは5~6個のヌクレオチドが同一または異なって付加しており、センス鎖の配列bの3’末端側には、アンチセンス鎖の塩基の配列と相補的な塩基の配列が同数付加しており、アンチセンス鎖の配列aの3’末端側に2個の標的遺伝子のmRNA内に相当する塩基の配列と同じ配列が付加しており、センス鎖の配列bの5’末端側には、アンチセンス鎖の塩基の配列と相補的な塩基の配列が2個付加し、さらにアンチセンス鎖の3’末端側に1~6個、好ましくは2~4個のヌクレオチドが同一または異なって、向かい合う塩基対なく付加しているオーバーハングになっていて、好ましくはセンス鎖の5’末端の塩基に結合する糖は、5’位の水酸基がリン酸化されている二本鎖核酸分子があげられ、このプロドラッグは、ダイサーによって、アンチセンス鎖の配列aの5’末端側に付加したヌクレオチドのすべてと、センス鎖の配列bの3’末端側に付加した1および2番目以外のヌクレオチドが取り去られて、本発明の二本鎖核酸分子となる。
 プロドラッグとして、アンチセンス鎖とセンス鎖が、スペーサーオリゴヌクレオチドでつながれ、3’末端側に1~6個、好ましくは2~4個のヌクレオチドが付加している、ヘアピン構造を有する一本鎖核酸分子もあげられる。スペーサーオリゴヌクレオチドとしては6~12塩基の一本鎖核酸分子が好ましく、その5’末端側の配列は2個のUであるのが好ましい。スペーサーオリゴヌクレオチドの例として、UUCAAGAGAの配列からなる一本鎖核酸分子があげられる。スペーサーオリゴヌクレオチドによってつながれる2つの一本鎖核酸分子の順番はどちらが5’側になってもよい。
 なお、本発明で用いられる二本鎖核酸分子は、既知のRNAまたはDNA合成法およびRNAまたはDNA修飾法を用いて製造すればよい。例えば北海道システムサイエンス株式会社等に化学合成を依頼して得ることができる。
 本発明の組成物におけるリピッドパーティクル(以下リピッドパーティクルA)としては、標的遺伝子のmRNAの連続する17~30塩基の配列および該配列と相補的な塩基の配列を含む二本鎖核酸分子を封入したリピッドパーティクルが好ましい。該リピッドパーティクルAは標的遺伝子の発現部位を含む組織または臓器に到達するリピッドパーティクルであれば特に限定されないが、例えば、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜を有するリピッドパーティクル、具体的には、ポリエチレングリコール(PEG)等の水溶性高分子で表面を修飾したリピッドパーティクルがあげられる。
 また、本発明の組成物におけるリピッドパーティクルとしては、例えばリポソーム、脂質ミセル等があげられる。脂質ミセルとしては、リピッドスフィアーまたはエマルジョン粒子を包含し、外水相との界面が脂質一重膜または脂質二重膜であることが好ましい。
 該リピッドパーティクルAとして、例えば、カチオン性脂質をクロロホルムに予め溶解し、次いで前記二本鎖核酸分子の水溶液とメタノールを加えて混合してカチオン性脂質/二本鎖核酸分子の複合体を形成させ、さらにクロロホルム層を取り出し、これにポリエチレングリコール化リン脂質と中性の脂質と水を加えて油中水型(W/O)エマルジョンを形成し、逆相蒸発法で処理して製造されたリピッドパーティクル(特表2002-508765号公報参照)、前記二本鎖核酸分子を、酸性の電解質水溶液に溶解し、脂質(エタノール中)を加え、エタノール濃度を20v/v%まで下げて前記二本鎖核酸分子内包リピッドパーティクルを調製し、サイジングろ過し、透析によって、過剰のエタノールを除去した後、試料をさらにpHを上げて透析してリピッドパーティクル表面に付着した前記二本鎖核酸分子を除去して製造されたリピッドパーティクル(特表2002-501511号公報およびバイオキミカ・エト・バイオフィジカ・アクタ(Biochimica et Biophysica Acta),2001年,第1510巻,p.152-166参照)、リード粒子と前記二本鎖核酸分子を含む複合粒子および該複合粒子を封入した脂質二重膜から構成されたリピッドパーティクル(国際公開第02/28367号パンフレットおよび国際公開第2006/080118号パンフレット参照)等があげられ、リード粒子と前記二本鎖核酸分子を含む複合粒子および該複合粒子を封入した脂質二重膜から構成されたリピッドパーティクルが好ましく、該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定濃度で該極性有機溶媒を含む液に分散可能であることがより好ましい。また、リピッドパーティクルAとしては、好ましくはカチオン性物質を含むリード粒子と前記二本鎖核酸分子を構成成分とする複合粒子、および該複合粒子を被覆する脂質二重膜から構成され、該脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とするリピッドパーティクルもあげられ、該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定濃度で該極性有機溶媒を含む液に分散可能であることがより好ましい。
 なお、本発明において、分散とは、溶解せずに分散することを意味する。
これら例示したリピッドパーティクルは、腫瘍または炎症の生じた組織もしくは臓器、具体的には固形腫瘍および固形癌、血管または血管近傍の炎症部位等に送達されることが報告されており、腫瘍または炎症に関連する遺伝子を標的遺伝子とした場合に、より好ましく用いることができるリピッドパーティクルとしてあげられる。
 また、これら例示したリピッドパーティクルは、血液中での滞留性が高められたリピッドパーティクルとしても報告されており、いずれの組織や臓器にも体循環を介して送達される可能性が高まっているので、標的にできる遺伝子は制限されない。
 本発明におけるリード粒子としては、例えば、脂質集合体、リポソーム(以下リポソームB)、高分子ミセル等である微粒子があげられ、好ましくはリポソームBである微粒子があげられる。本発明におけるリード粒子は、脂質集合体、リポソームB、高分子ミセル等を2つ以上組み合わせた複合体、例えば脂質集合体およびリポソームBの構成成分である脂質を含む複合体としての高分子ミセル、高分子ミセルの構成成分である高分子を含む複合体としての脂質集合体またはリポソームB等であってもよい。
 リード粒子としての脂質集合体またはリポソームBは、親水性と疎水性の両方の性質を兼ね備えた両親媒性を持つ、水中において脂質二重層構造をとる極性脂質等によって構成されるものが好ましい。該脂質としては、単純脂質、複合脂質または誘導脂質のいかなるものであってもよく、例えばリン脂質、グリセロ糖脂質、スフィンゴ糖脂質、スフィンゴイド、ステロールまたはカチオン性脂質等があげられるがこれらに限定されない。好ましくはリン脂質またはカチオン性脂質があげられる。
 上記リード粒子を構成する脂質におけるリン脂質としては、例えばホスファチジルコリン(具体的には大豆ホスファチジルコリン、卵黄ホスファチジルコリン(EPC)、ジステアロイルホスファチジルコリン、ジパルミトイルホスファチジルコリン、パルミトイルオレオイルホスファチジルコリン(POPC)、ジミリストイルホスファチジルコリン、ジオレオイルホスファチジルコリン等)、ホスファチジルエタノールアミン(具体的にはジステアロイルホスファチジルエタノールアミン(DSPE)、ジパルミトイルホスファチジルエタノールアミン(DPPE)、ジオレオイルホスファチジルエタノールアミン(DORE)、ジミリストイルホスホエタノールアミン(DMPE)、16-0-モノメチルPE、16-0-ジメチルPE、18-1-トランスPE、パルミトイルオレオイル-ホスファチジルエタノールアミン(POPE)、1-ステアロイル-2-オレオイル-ホスファチジルエタノールアミン(SOPE)等)、グリセロリン脂質(具体的にはホスファチジルセリン、ホスファチジン酸、ホスファチジルグリセロール、ホスファチジルイノシトール、パルミトイルオレオイルホスファチジルグリセロール(POPG)、リゾホスファチジルコリン等)、スフィンゴリン脂質(具体的にはスフィンゴミエリン、セラミドホスホエタノールアミン、セラミドホスホグリセロール、セラミドホスホグリセロリン酸等)、グリセロホスホノ脂質、スフィンゴホスホノ脂質、天然レシチン(具体的には卵黄レシチン、大豆レシチン等)または水素添加リン脂質(具体的には水素添加大豆ホスファチジルコリン等)等の天然または合成のリン脂質があげられる。
 上記リード粒子を構成する脂質におけるグリセロ糖脂質としては、例えばスルホキシリボシルグリセリド、ジグリコシルジグリセリド、ジガラクトシルジグリセリド、ガラクトシルジグリセリドまたはグリコシルジグリセリド等があげられる。
 上記リード粒子を構成する脂質におけるスフィンゴ糖脂質としては、例えばガラクトシルセレブロシド、ラクトシルセレブロシドまたはガングリオシド等があげられる。
 上記リード粒子を構成する脂質におけるスフィンゴイドとしては、例えばスフィンガン、イコサスフィンガン、スフィンゴシンまたはそれらの誘導体等があげられる。誘導体としては、例えばスフィンガン、イコサスフィンガンまたはスフィンゴシン等の-NH2を-NHCO(CH2)xCH3(式中、xは0~18の整数を表し、中でも6、12または18が好ましい)に変換したもの等があげられる。
 上記リード粒子を構成する脂質におけるステロールとしては、例えばコレステロール、ジヒドロコレステロール、ラノステロール、β-シトステロール、カンペステロール、スチグマステロール、ブラシカステロール、エルゴカステロール、フコステロールまたは3β-[N-(N',N'-ジメチルアミノエチル)カルバモイル]コレステロール(DC-Chol)等があげられる。
 上記リード粒子を構成する脂質におけるカチオン性脂質としては、親水性と疎水性の両方の性質を兼ね備えた両親媒性を持つ、水中において脂質二重層構造をとる極性脂質のうち、親水性部に第一級アミン、第二級アミン、第三級アミン、第四級アンモニウム、窒素原子を含む複素環等を有する構造を持つものであり、例えば、N-[1-(2,3-ジオレオイルプロピル)]-N,N,N-トリメチル塩化アンモニウム(DOTAP)、N-[1-(2,3-ジオレオイルプロピル)]-N,N-ジメチルアミン(DODAP)、N-[1-(2,3-ジオレイルオキシプロピル)]-N,N,N-トリメチル塩化アンモニウム(DOTMA)、2,3-ジオレイルオキシ-N-[2-(スペルミンカルボキシアミド)エチル]-N,N-ジメチル-1-プロパナミニウムトリフルオロ酢酸(DOSPA)、N-[1-(2,3-ジテトラデシルオキシプロピル)]-N,N-ジメチル-N-ヒドロキシエチル臭化アンモニウム(DMRIE)、N-[1-(2,3-ジオレイルオキシプロピル)]-N,N-ジメチル-N-ヒドロキシエチル臭化アンモニウム(DORIE)、1,2-ジリノレイルオキシ-N,N-ジメチルアミノプロパン(DLinDMA)、1,2-ジリノレニルオキシ-N,N-ジメチルアミノプロパン(DLenDMA)、塩化ジデシルジメチルアンモニウム、塩化ジステアリルジメチルアンモニウムまたはDC-Chol等があげられ、好ましくはN-[1-(2,3-ジオレオイルプロピル)]-N,N,N-トリメチル塩化アンモニウム、N-[1-(2,3-ジオレオイルプロピル)]-N,N-ジメチルアミン、N-[1-(2,3-ジオレイルオキシプロピル)]-N,N,N-トリメチル塩化アンモニウム、N-[1-(2,3-ジテトラデシルオキシプロピル)]-N,N-ジメチル-N-ヒドロキシエチル臭化アンモニウムおよびDC-Cholから選ばれる一つ以上があげられる。
 また、リポソームBは、必要に応じて、例えばコレステロール等のステロール等の膜安定化剤、例えばトコフェロール等の抗酸化剤等を含有していてもよい。これら安定化剤は単独でまたは2種以上組み合わせて使用し得る。
 脂質集合体としては、例えば球状ミセル、球状逆ミセル、ソーセージ状ミセル、ソーセージ状逆ミセル、板状ミセル、板状逆ミセル、ヘキサゴナルI、ヘキサゴナルIIおよび脂質2分子以上からなる会合体等があげられる。
 高分子ミセルとしては、例えばタンパク質、アルブミン、デキストラン、ポリフェクト(polyfect)、キトサン、デキストラン硫酸、例えばポリ-L-リジン、ポリエチレンイミン、ポリアスパラギン酸、スチレンマレイン酸共重合体、イソプロピルアクリルアミド-アクリルピロリドン共重合体、ポリエチレングリコール修飾デンドリマー、ポリ乳酸、ポリ乳酸ポリグリコール酸またはポリエチレングリコール化ポリ乳酸等の高分子またはそれらの塩の1以上からなるミセルがあげられる。
 ここで、高分子における塩は、例えば金属塩、アンモニウム塩、酸付加塩、有機アミン付加塩、アミノ酸付加塩等を包含する。金属塩としては、例えばリチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩、カルシウム塩等のアルカリ土類金属塩、アルミニウム塩または亜鉛塩等があげられる。アンモニウム塩としては、例えばアンモニウムまたはテトラメチルアンモニウム等の塩があげられる。酸付加塩としては、例えば塩酸塩、硫酸塩、硝酸塩またはリン酸塩等の無機酸塩、および酢酸塩、マレイン酸塩、フマル酸塩またはクエン酸塩等の有機酸塩があげられる。有機アミン付加塩としては、例えばモルホリンまたはピペリジン等の付加塩があげられる。アミノ酸付加塩としては、例えばグリシン、フェニルアラニン、アスパラギン酸、グルタミン酸またはリジン等の付加塩があげられる。
 また、本発明におけるリード粒子は、例えば糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体または界面活性剤等を含有することができる。糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体または界面活性剤は、リード粒子として含有されてもよく、リード粒子に加えて用いてもよい。
 糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体または界面活性剤としては、好ましくは、糖脂質、または水溶性高分子の脂質誘導体もしくは脂肪酸誘導体があげられ、より好ましくは、水溶性高分子の脂質誘導体または脂肪酸誘導体があげられる。糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体または界面活性剤は、分子の一部がリード粒子の他の構成成分と例えば疎水性親和力、静電的相互作用等で結合する性質をもち、他の部分がリード粒子の製造時の溶媒と例えば親水性親和力、静電的相互作用等で結合する性質をもつ、2面性をもつ物質であるのが好ましい。
 糖、ペプチドおよび核酸から選ばれる1つ以上の脂質誘導体または脂肪酸誘導体としては、例えばショ糖、ソルビトール、乳糖等の糖、例えばカゼイン由来ペプチド、卵白由来ペプチド、大豆由来ペプチド、グルタチオン等のペプチド、または例えばDNA、RNA、プラスミド、siRNA、ODN等の核酸と、前記リード粒子の定義の中であげた脂質または例えばステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸等の脂肪酸とが結合してなるもの等があげられる。
 また、糖の脂質誘導体または脂肪酸誘導体としては、例えば前記リード粒子の定義の中であげたグリセロ糖脂質またはスフィンゴ糖脂質等も含まれる。
 水溶性高分子の脂質誘導体または脂肪酸誘導体としては、例えばポリエチレングリコール、ポリグリセリン、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、オリゴ糖、デキストリン、水溶性セルロース、デキストラン、コンドロイチン硫酸、ポリグリセリン、キトサン、ポリビニルピロリドン、ポリアスパラギン酸アミド、ポリ-L-リジン、マンナン、プルラン、オリゴグリセロール等またはそれらの誘導体等の水溶性高分子(いずれの水溶性高分子も、直鎖状の水溶性高分子であることが好ましい)と、前記リード粒子の定義の中であげた脂質、または例えばステアリン酸、パルミチン酸、ミリスチン酸またはラウリン酸等の脂肪酸とが結合してなるもの等があげられ、より好ましくは、ポリエチレングリコール誘導体、ポリグリセリン誘導体等の脂質誘導体または脂肪酸誘導体があげられ、さらに好ましくは、ポリエチレングリコール誘導体の脂質誘導体または脂肪酸誘導体があげられる。
 ポリエチレングリコール誘導体の脂質誘導体または脂肪酸誘導体としては、例えばポリエチレングリコール化脂質(具体的にはポリエチレングリコール-ホスファチジルエタノールアミン(より具体的には1,2-ジステアロイル-sn-グリセロ-3-ホスホエタノールアミン-N-[メトキシ(ポリエチレングリコール)-2000](PEG-DSPE)等)、ポリオキシエチレン硬化ヒマシ油60、クレモフォアイーエル(CREMOPHOR EL)等)、ポリエチレングリコールソルビタン脂肪酸エステル類(具体的にはモノオレイン酸ポリオキシエチレンソルビタン等)またはポリエチレングリコール脂肪酸エステル類等があげられ、より好ましくは、ポリエチレングリコール化脂質があげられる。
 ポリグリセリン誘導体の脂質誘導体または脂肪酸誘導体としては、例えばポリグリセリン化脂質(具体的にはポリグリセリン-ホスファチジルエタノールアミン等)またはポリグリセリン脂肪酸エステル類等があげられ、より好ましくは、ポリグリセリン化脂質があげられる。
 界面活性剤としては、例えばモノオレイン酸ポリオキシエチレンソルビタン(具体的にはポリソルベート80等)、ポリオキシエチレンポリオキシプロピレングリコール(具体的にはプルロニックF68等)、ソルビタン脂肪酸エステル(具体的にはソルビタンモノラウレート、ソルビタンモノオレエート等)、ポリオキシエチレン誘導体(具体的にはポリオキシエチレン硬化ヒマシ油60、ポリオキシエチレンラウリルアルコール等)、グリセリン脂肪酸エステルまたはポリエチレングリコールアルキルエーテル等があげられ、好ましくは、ポリオキシエチレンポリオキシプロピレングリコール、グリセリン脂肪酸エステルまたはポリエチレングリコールアルキルエーテル等があげられる。
 上記したリード粒子は、正電荷をもつものが好ましい。ここで述べる、正電荷とは、前記二本鎖核酸分子内の電荷、分子内分極等に対して静電的引力を生じる電荷、表面分極等を包含する。リード粒子が正電荷をもつには、リード粒子は、カチオン性物質を含有するのが好ましい。
 リード粒子に含有されるカチオン性物質は、カチオン性を呈する物質であるが、カチオン性の基とアニオン性の基の両方をもつ両性の物質であっても、pHや、他の物質との結合等により相対的な陰性度が変化するので、その時々に応じてカチオン性物質に分類され得るものも含まれる。これらカチオン性物質は、リード粒子として含有されてもよく、リード粒子に加えて用いてもよい。
 カチオン性物質としては、例えば前記のリード粒子の定義で例示したもののうちのカチオン性物質[具体的には、脂質におけるカチオン性物質、カチオン性高分子等]、等電点以下の値のpHでカチオン性を呈する蛋白質またはペプチド等があげられ、好ましくは脂質におけるカチオン性物質があげられ、より好ましくはN-[1-(2,3-ジオレオイルプロピル)]-N,N,N-トリメチル塩化アンモニウム、N-[1-(2,3-ジオレオイルプロピル)]-N,N-ジメチルアミン、N-[1-(2,3-ジオレイルオキシプロピル)]-N,N,N-トリメチル塩化アンモニウム、N-[1-(2,3-ジテトラデシルオキシプロピル)]-N,N-ジメチル-N-ヒドロキシエチル臭化アンモニウムおよび3β-[N-(N',N'ジメチルアミノエチル)カルバモイル]コレステロールから選ばれる一つ以上があげられる。
 脂質におけるカチオン性物質としては、例えばカチオン脂質(DOTAP、DODAP、DOTMA、DOSPA、DMRIE、DORIE等)またはDC-Chol等があげられる。
 カチオン性高分子としては、例えばポリ-L-リジン、ポリエチレンイミン、ポリフェクト(polyfect)またはキトサン等があげられる。
 等電点以下の値のpHでカチオン性を呈する蛋白質またはペプチドとしては、その物質の等電点以下の値のpHでカチオン性を呈する蛋白質またはペプチドであれば、特に限定されない。該蛋白質またはペプチドとしては、例えば、アルブミン、オロソムコイド、グロブリン、フィブリノーゲン、ペプシンまたはリボヌクレアーゼT1等があげられる。
 本発明におけるリード粒子は、公知の製造方法またはそれに準じて製造することができ、いかなる製造方法で製造されたものであってよい。例えば、リード粒子の1つであるリポソームBの製造には、公知のリポソームの調製方法が適用できる。公知のリポソームの調製方法としては、例えばバンガム(Bangham)らのリポソーム調製法[“ジャーナル・オブ・モレキュラー・バイオロジー(J.Mol.Biol.)”,1965年,第13巻,p.238-252参照]、エタノール注入法[“ジャーナル・オブ・セル・バイオロジー(J.Cell Biol.)”,1975年,第66巻,p.621-634参照]、フレンチプレス法[“エフイービーエス・レターズ(FEBS Lett.)”,1979年,第99巻,p.210-214参照]、凍結融解法[“アーカイブス・オブ・バイオケミストリー・アンド・バイオフィジックス(Arch.Biochem.Biophys.)”,1981年,第212巻,p.186-194参照]、逆相蒸発法[“プロシーディングズ・オブ・ザ・ナショナル・アカデミー・オブ・サイエンス・ユナイテッド・ステイツ・オブ・アメリカ(Proc.Natl.Acad.Sci.USA)”,1978年,第75巻, p.4194-4198参照]またはpH勾配法(例えば特許第2572554号公報、特許第2659136号公報等参照)等があげられる。リポソームBの製造の際にリポソームBを分散させる溶液としては、例えば水、酸、アルカリ、種々の緩衝液、生理的食塩液またはアミノ酸輸液等を用いることができる。また、リポソームBの製造の際には、例えばクエン酸、アスコルビン酸、システインまたはエチレンジアミン四酢酸(EDTA)等の抗酸化剤、例えばグリセリン、ブドウ糖または塩化ナトリウム等の等張化剤等の添加も可能である。また、脂質等を例えばエタノール等の有機溶媒に溶解し、溶媒を留去した後、生理食塩水等を添加、振とう撹拌し、リポソームを形成させることによってもリポソームBを製造することができる。
 また、例えばカチオン性物質、高分子、ポリオキシエチレン誘導体等によるリポソームB等のリード粒子の表面改質も任意に行うことができる[ラジック(D.D.Lasic)、マーティン(F.Martin)編,“ステルス・リポソームズ(Stealth Liposomes)”(米国),シーアールシー・プレス・インク(CRC Press Inc),1995年,p.93-102参照]。表面改質に使用し得る高分子としては、例えばデキストラン、プルラン、マンナン、アミロペクチンまたはヒドロキシエチルデンプン等があげられる。ポリオキシエチレン誘導体としては、例えばポリソルベート80、プルロニックF68、ポリオキシエチレン硬化ヒマシ油60、ポリオキシエチレンラウリルアルコールまたはPEG-DSPE等があげられる。リポソームB等のリード粒子の表面改質は、リード粒子に糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体または界面活性剤を含有させる方法の1つである。
 リポソームBの平均粒子径は、所望により自由に選択できるが、下記の粒子径とするのが好ましい。リポソームBの平均粒子径を調節する方法としては、例えばエクストルージョン法、大きな多重膜リポソーム(MLV)を機械的に粉砕(具体的にはマントンゴウリン、マイクロフルイダイザー等を使用)する方法[ミュラー(R.H.Muller)、ベニタ(S.Benita)、ボーム(B.Bohm)編著,“エマルジョン・アンド・ナノサスペンジョンズ・フォー・ザ・フォーミュレーション・オブ・ポアリー・ソラブル・ドラッグズ(Emulsion and Nanosuspensions for the Formulation of Poorly Soluble Drugs)”,ドイツ,サイエンティフィック・パブリッシャーズ・スチュットガルト(Scientific Publishers Stuttgart),1998年,p.267-294参照]等があげられる。
 また、リード粒子である、例えば脂質集合体、リポソームB、高分子ミセル等から選ばれる2つ以上を組み合わせた複合体の製造方法は、例えば水中で脂質、高分子等を混合するだけでもよく、所望によりさらに整粒工程や無菌化工程等を加えることもできる。また、前記複合体の製造は例えばアセトンまたはエーテル等種々の溶媒中で行うことも可能である。
 本発明におけるリード粒子の大きさは、平均粒子径が数nm~数十μmであるのが好ましく、約10nm~1000nmであるのがより好ましく、約50nm~300nmであるのがさらに好ましい。
 本発明におけるリード粒子と二本鎖核酸分子を含む複合粒子を被覆する脂質二重膜の構成成分において、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体以外の構成成分としては、例えば前記リード粒子の定義の中であげた脂質等があげられ、好ましくは、脂質のうちの中性脂質があげられる。ここで、前記中性脂質とは、脂質のうちの、前記リード粒子が正電荷をもつ場合におけるカチオン性物質の中であげた脂質におけるカチオン性物質および後記の付着競合剤の中であげたアニオン性脂質を除いたもののことであり、中性脂質としてより好ましくは、リン脂質、グリセロ糖脂質またはスフィンゴ糖脂質等があげられる。より好ましくはリン脂質があげられ、さらに好ましくはEPCがあげられる。これら脂質は単独でまたは2種以上を組み合わせて用いることができる。
 また、複合粒子を被覆する脂質二重膜の構成成分は、極性有機溶媒に可溶であることが好ましく、特定の濃度で該極性有機溶媒を含む液中には、分散可能であることが好ましい。特定の濃度で該極性溶媒を含む液中の該極性溶媒の濃度は、該脂質二重膜の構成成分が分散可能で、該複合粒子も分散可能な濃度が好ましい。該極性有機溶媒としては、例えばメタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、tert-ブタノール等のアルコール、グリセリン、エチレングリコール、プロピレングリコール等のグリコールまたはポリエチレングリコール等のポリアルキレングリコール等があげられ、中でも、アルコールが好ましく、エタノールがより好ましい。
 本発明における極性有機溶媒を含む液中の、極性有機溶媒以外の溶媒としては、例えば、水、液体二酸化炭素、液体炭化水素、ハロゲン化炭素またはハロゲン化炭化水素等が挙げられ、好ましくは水が挙げられる。また、イオンまたは緩衝成分等を含んでいてもよい。溶媒は1種または2種以上を用いることができるが、2種以上用いる場合は、相溶する組み合わせが好ましい。
 本発明の組成物におけるリピッドパーティクルの脂質二重膜、および、複合粒子を被覆する脂質二重膜は、水溶性物質の脂質誘導体、脂肪酸誘導体もしくは脂肪族炭化水素誘導体または前記界面活性剤を構成成分として含有し、好ましくは水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分として含有することが好ましい。水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体としては、例えば前記の糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体、または糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂肪族炭化水素誘導体があげられる。水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体としては、前記水溶性高分子の脂質誘導体または脂肪酸誘導体がより好ましく、前記ポリエチレングリコール化リン脂質がさらに好ましく、ポリエチレングリコール-ホスファチジルエタノールアミンが最も好ましい。なお、本発明における水溶性物質の脂肪族炭化水素誘導体としては、水溶性物質と、例えば長鎖脂肪族アルコール、ポリオキシプロピレンアルキルまたはグリセリン脂肪酸エステルのアルコール性残基等とが結合してなるものがあげられる。
 糖、ペプチドまたは核酸の脂肪族炭化水素誘導体としては、例えばショ糖、ソルビトールまたは乳糖等の糖、例えばカゼイン由来ペプチド、卵白由来ペプチド、大豆由来ペプチドまたはグルタチオン等のペプチド、あるいは例えばDNA、RNA、プラスミド、siRNAまたはODN等の核酸の脂肪族炭化水素誘導体があげられる。
 水溶性高分子の脂肪族炭化水素誘導体としては、例えばポリエチレングリコール、ポリグリセリン、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド、オリゴ糖、デキストリン、水溶性セルロース、デキストラン、コンドロイチン硫酸、ポリグリセリン、キトサン、ポリビニルピロリドン、ポリアスパラギン酸アミド、ポリ-L-リジン、マンナン、プルラン、オリゴグリセロール等またはそれらの誘導体の脂肪族炭化水素誘導体があげられ、より好ましくは、ポリエチレングリコール誘導体またはポリグリセリン誘導体等の脂肪族炭化水素誘導体があげられ、さらに好ましくは、ポリエチレングリコール誘導体の脂肪族炭化水素誘導体があげられる。
 リード粒子がリポソームBである微粒子である場合、リポソームBと前記二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むものがリピッドパーティクルAとなり、その構成から狭義のリポソームと分類され、リード粒子がリポソームBである微粒子以外である場合でも、脂質二重膜で被覆されているので、広義のリポソームと分類される。本発明において、リード粒子がリポソームBである微粒子であることがより好ましい。
 本発明におけるリード粒子と前記二本鎖核酸分子を構成成分とする複合粒子は、該リード粒子を製造後または該リード粒子の製造と同時に、該二本鎖核酸分子をリード粒子に付着または封入して複合粒子を製造でき、さらに該複合粒子の製造後または複合粒子の製造と同時に、脂質二重膜で該複合粒子を被覆することにより、リピッドパーティクルAを製造することができる。リピッドパーティクルAは、例えば、特表2002-508765号公報、特表2002-501511号公報、“バイオキミカ・エト・バイオフィジカ・アクタ(Biochimica et Biophysica Acta)”,2001年,第1510巻,p.152-166、国際公開第02/28367号パンフレット等の公知の製造方法またはそれに準じて製造するか、例えばリード粒子に前記二本鎖核酸分子を付着または封入して複合粒子を製造後、該複合粒子および被覆層成分を、該被覆層成分が可溶な極性有機溶媒を含む、該複合粒子が溶解せず、該被覆層成分が分散状態で存在することが可能な濃度の液中に分散させる工程および該複合粒子を該被覆層成分で被覆する工程を含む製造方法で製造することができる。本発明におけるリード粒子と前記二本鎖核酸分子を構成成分とする複合粒子は、リード粒子を水中で製造し、該リード粒子を製造後または該リード粒子の製造と同時に前記二本鎖核酸分子を水に分散または溶解して混合し、該二本鎖核酸分子をリード粒子に付着または封入させることで複合粒子を製造するか、またはリード粒子を任意な溶媒中で製造した後、該リード粒子を水中に分散させ、前記二本鎖核酸分子を水中に分散または溶解して混合し、リード粒子に該二本鎖核酸分子を付着させることで製造することが好ましく、リード粒子を水中で製造し、該リード粒子を製造後、前記二本鎖核酸分子を水に分散または溶解して混合し、リード粒子に該二本鎖核酸分子を付着させることで製造することがより好ましい。
 本発明の組成物におけるリピッドパーティクルAの好ましい製造方法としては、以下のリード粒子と前記二本鎖核酸分子を構成成分とする複合粒子を製造する工程(工程1)および該複合粒子を脂質二重膜で被覆する工程(工程2または工程3)を含む製造方法があげられる。
 工程1) リード粒子と前記二本鎖核酸分子を構成成分とする複合粒子を製造する工程
 リード粒子を、例えば水等の溶媒中に分散させ、リード粒子が分散した液中に、前記二本鎖核酸分子を分散または溶解して含有させて混合し、リード粒子に該二本鎖核酸分子を付着させることが好ましい。工程1において、リード粒子の凝集を抑制するために、リード粒子は凝集抑制物質を含有するリード粒子であることが好ましい。凝集抑制物質としては、前記糖、ペプチド、核酸および水溶性高分子から選ばれる1つ以上の物質の脂質誘導体もしくは脂肪酸誘導体または界面活性剤が好ましくあげられる。また、リード粒子が、正電荷をもつものである場合、リード粒子が分散した液中で、該二本鎖核酸分子と付着競合剤を共存させ、付着競合剤を該二本鎖核酸分子とともにリード粒子に付着させてもよく、さらにリード粒子が凝集抑制物質を含有するリード粒子である場合にも、リード粒子の凝集をより抑制させるために付着競合剤を用いてもよい。リード粒子と前記二本鎖核酸分子の組み合わせとしては、複合粒子が極性有機溶媒を含有する液に分散可能となる組み合わせを選択することが好ましく、極性有機溶媒に対しての複合粒子の溶解度が、工程2または3で用いる脂質二重膜の構成成分のそれよりも低いことがより好ましく、また、該極性有機溶媒を含む液中に、該脂質二重膜の構成成分が分散可能で、該複合粒子も分散可能な濃度で該極性有機溶媒を含む液が存在する組み合わせを選択することがより好ましい。
 付着競合剤としては、例えばアニオン性物質等があげられる。該アニオン性物質は、分子内の電荷、分子内分極等による静電的引力により、リード粒子に静電的に付着する物質を包含する。付着競合剤としてのアニオン性物質は、アニオン性を呈する物質であるが、アニオン性の基とカチオン性の基の両方をもつ両性の物質であっても、pHや、他の物質との結合等により相対的な陰性度が変化するので、その時々に応じてアニオン性物質に分類され得る。
 アニオン性物質としてはアニオン性脂質、アニオン性界面活性剤、アニオン性高分子等または等電点以上の値のpHでアニオン性を呈する蛋白質、ペプチドもしくは核酸等があげられ、好ましくはデキストラン硫酸、デキストラン硫酸ナトリウム、コンドロイチン硫酸、コンドロイチン硫酸ナトリウム、ヒアルロン酸、コンドロイチン、デルマタン硫酸、ヘパラン硫酸、ヘパリン、ケラタン硫酸またはデキストランフルオレセインアニオニック等があげられる。これらアニオン性物質は単独でまたは2種以上を組み合わせて用いることができる。
 アニオン性脂質としては、例えばホスファチジルセリン、ホスファチジルグリセロール、ホスファチジルイノシトールまたはホスファチジン酸等があげられる。
 アニオン性界面活性剤としては、例えばアシルサルコシン、アルキル硫酸ナトリウム、アルキルベンゼンスルホン酸塩、炭素数7~22の脂肪酸ナトリウム等があげられる。具体的にはドデシル硫酸ナトリウム、ラウリル硫酸ナトリウム、コール酸ナトリウム、デオキシコール酸ナトリウムまたはタウロデオキシコール酸ナトリウム等があげられる。
 アニオン性高分子としては、例えばポリアスパラギン酸、スチレンマレイン酸共重合体、イソプロピルアクリルアミド-アクリルピロリドン共重合体、ポリエチレングリコール修飾デンドリマー、ポリ乳酸、ポリ乳酸ポリグリコール酸、ポリエチレングリコール化ポリ乳酸、デキストラン硫酸、デキストラン硫酸ナトリウム、コンドロイチン硫酸、コンドロイチン硫酸ナトリウム、ヒアルロン酸、コンドロイチン、デルマタン硫酸、ヘパラン硫酸、ヘパリン、ケラタン硫酸またはデキストランフルオレセインアニオニック等があげられる。
 等電点以上の値のpHでアニオン性を呈する蛋白質またはペプチドとしては、その物質の等電点以上の値のpHでアニオン性を呈する蛋白質またはペプチドであれば、特に限定されない。例えば、アルブミン、オロソムコイド、グロブリン、フィブリノーゲン、ヒストン、プロタミン、リボヌクレアーゼまたはリゾチーム等があげられる。
 アニオン性物質としての核酸としては、例えばDNA、RNA、プラスミド、siRNAまたはODN等があげられ、生理活性を示さないものであれば、どのような長さ、配列のものであってもよい。
 付着競合剤は、リード粒子に静電的に付着することが好ましく、リード粒子に付着してもリード粒子を凝集させるような架橋を形成しない大きさの物質であるか、分子内に付着する部分と、付着に反発してリード粒子の凝集を抑制する部分をもつ物質であることが好ましい。
 工程1は、より具体的には、例えば凝集抑制物質を含有するリード粒子が分散した液を製造する操作および該リード粒子が分散した液中に、前記二本鎖核酸分子を分散または溶解して含有させる操作(例えば該リード粒子が分散した液中に、該二本鎖核酸分子を加えて分散または溶解させる操作、該リード粒子が分散した液中に、該二本鎖核酸分子が分散または溶解した液を加える操作等)を含む製造方法において実施することができる。ここで、リード粒子が分散した液中に、前記二本鎖核酸分子を分散または溶解して含有させる工程により得られる複合粒子としては、具体的には、カチオン性物質を含有するリポソームBである微粒子に該二本鎖核酸分子が付着して形成される複合粒子、カチオン性物質を含有する脂質集合体である微粒子に前記二本鎖核酸分子が付着して形成される複合粒子、ポリ-L-リジン等のカチオン性高分子を含有する高分子である微粒子に前記二本鎖核酸分子が付着して形成される複合粒子があげられる。また、リード粒子が分散した液中に、前記二本鎖核酸分子を分散または溶解して含有させる操作が、該二本鎖核酸分子が分散または溶解した液に、さらに付着競合剤を含有させて、これを該リード粒子が分散した液中に加える操作であることが好ましく、この場合、該リード粒子に、該二本鎖核酸分子と該付着競合剤が共に付着して複合粒子が製造され、該複合粒子の製造中におけるリード粒子の凝集も、製造後における複合粒子の凝集もより抑制されて製造できる。
 リード粒子のリード粒子が分散する液に対する割合は、リード粒子に前記二本鎖核酸分子が付着できれば特に限定されるものではないが、約1μg/mL~1g/mLであるのが好ましく、約0.1~500mg/mLであるのがより好ましい。
 工程2) 複合粒子を脂質二重膜で被覆する工程(その1)
 工程1で得られた複合粒子が分散し、かつ脂質二重膜の構成成分が溶解した極性有機溶媒を含む液(液A)を調製する操作、次いで、液A中の極性有機溶媒の濃度を減少させることによって、複合粒子を脂質二重膜で被覆する操作を含む製造方法によってリピッドパーティクルAが製造できる。この場合、リピッドパーティクルAは分散液(液B)の形態で得られる。液Aにおける溶媒は、該脂質二重膜の構成成分が可溶で、該複合粒子が分散可能な極性有機溶媒の濃度の該極性有機溶媒を含む溶媒であり、液A中の極性有機溶媒の濃度を減少させた液Bでは、該脂質二重膜の構成成分が分散可能で、該複合粒子も分散可能であることが好ましい。液A中の溶媒が、極性有機溶媒と極性有機溶媒以外の溶媒との混合液である場合、例えば該極性有機溶媒と混合可能な極性有機溶媒以外の溶媒を含む溶媒(液C)を加えること、および/または、蒸発留去、半透膜分離、分留等によって、選択的に極性有機溶媒を取り除くことで、極性有機溶媒の濃度を減少させることができる。ここで、液Cは、極性有機溶媒以外の溶媒を含む液が好ましいが、極性有機溶媒も液Aにおける極性有機溶媒の濃度より低ければ含んでいてよい。
 工程2における極性有機溶媒以外の溶媒としては、例えば、水、液体二酸化炭素、液体炭化水素、ハロゲン化炭素またはハロゲン化炭化水素等があげられ、好ましくは水があげられる。また、液Aおよび液Cは、イオンまたは緩衝成分等を含んでいてもよい。これら溶媒は単独でまたは2種以上を組み合わせて用いることができる。
 極性有機溶媒と極性有機溶媒以外の溶媒の組み合わせは、相互に混合可能である組み合わせであるのが好ましく、液Aおよび液B中の溶媒ならびに液Cに対する、複合粒子および脂質二重膜の構成成分の溶解度等を考慮して選択できる。複合粒子については、液Aおよび液B中の溶媒ならびに液Cのいずれに対しての溶解度も低いことが好ましく、また極性有機溶媒および極性有機溶媒以外の溶媒のいずれに対しての溶解度も低いことが好ましく、脂質二重膜の構成成分は、液B中の溶媒および液Cに対しての溶解度が低いことが好ましく、液A中の溶媒に対しての溶解度が高いことが好ましく、また極性有機溶媒に対しての溶解度が高いことが好ましく、極性有機溶媒以外の溶媒に対する溶解度が低いことが好ましい。ここで、「複合粒子の溶解度が低い」とは、複合粒子に含有されるリード粒子、二本鎖核酸分子および付着競合剤等の各成分の、溶媒中における溶出性が小さいことであり、各成分の個々の溶解度が高くても各成分間の結合等によって各成分の溶出性が小さくなっていればよい。例えば、リード粒子に含まれる成分のいずれかの液A中の溶媒に対する溶解度が高い場合でも、リード粒子が正電荷をもつ場合、二本鎖核酸分子内の電荷、分子内分極等と静電的に結合することで複合粒子中の成分の溶出が抑制され、複合粒子の液A中の溶媒に対する溶解度を低くすることが可能である。すなわち、リード粒子が正電荷をもつことは、リピッドパーティクルAの製造において、複合粒子の成分の溶出を抑制し、製造性と歩留まりを向上させる効果も備えている。
 液Aにおける極性有機溶媒の濃度は、脂質二重膜の構成成分が可溶で、複合粒子が分散可能であれば特に限定されるものではなく、用いる溶媒や複合粒子、脂質二重膜の構成成分の種類等により異なるが、好ましくは約30v/v%以上、より好ましくは約60~90v/v%である。また、液Bにおける極性有機溶媒の濃度は、液Aよりも低い濃度で該極性有機溶媒を含み、脂質二重膜の構成成分が分散可能で、複合粒子も分散可能であれば特に限定されるものではないが、好ましくは約50v/v%以下である。
 液Aを調製する工程としては、極性有機溶媒、複合粒子および脂質二重膜の構成成分、必要により極性有機溶媒以外の溶媒を混合して液Aを調製する工程があげられる。極性有機溶媒、複合粒子および脂質二重膜の構成成分、必要により極性有機溶媒以外の溶媒は、複合粒子が溶解しなければ、それらを加える順序に特に制限はないが、好ましくは、例えば該複合粒子が分散した極性有機溶媒を含む液(液D)を調製し、液D中の極性有機溶媒と同一または異なった極性有機溶媒を含む溶媒に該脂質二重膜の構成成分を溶解させた液(液E)を調製し、液Dと液Eを混合して調製する工程があげられる。液Dと液Eを混合して液Aを調製する際には、徐々に混合することが好ましい。
 工程3) 複合粒子を脂質二重膜で被覆する工程(その2)
 工程1で得られた複合粒子および脂質二重膜の構成成分を、該脂質二重膜の構成成分が可溶な極性有機溶媒を含み、該脂質二重膜の構成成分が分散状態で存在することが可能な濃度で該極性有機溶媒を含む液(液F)中に分散させる操作を含む製造方法でリピッドパーティクルAが製造でき、この場合、リピッドパーティクルAは分散液の状態で得られる。なお、液Fは、該脂質二重膜の構成成分が可溶な極性有機溶媒を含むが、該脂質二重膜の構成成分および該複合粒子がともに分散可能な特定の濃度で該極性有機溶媒を含む液である。
 液Fの調製方法はいかなる形態をも取ることができる。例えば複合粒子の分散液と、脂質二重膜の構成成分の溶解液または分散液を調製した後、両液を混合して液Fを調製してもよく、複合粒子または脂質二重膜の構成成分のどちらか一方の分散液を調製し、その分散液に、固体状態の複合粒子または脂質二重膜の構成成分の残る一方を加えて分散させて液Fを調製してもよい。複合粒子の分散液と、脂質二重膜の構成成分の溶解液または分散液を混合する場合には、複合粒子の分散媒は、あらかじめ極性有機溶媒を含んでいてもよく、脂質二重膜の構成成分の溶媒または分散媒は極性有機溶媒を含む液または極性有機溶媒のみで構成される液であってもよい。一方、複合粒子または脂質二重膜の構成成分のどちらか一方の分散液を調製し、該分散液に、固体状態の複合粒子または脂質二重膜の構成成分の残る一方を加える場合には、該分散液は、極性有機溶媒を含む液であることが好ましい。なお、液Fを調製した後に複合粒子が溶解せず、脂質二重膜の構成成分が分散している場合には、複合粒子が溶解せず、脂質二重膜の構成成分が分散する極性有機溶媒濃度の範囲であれば極性有機溶媒を加えてもよく、極性有機溶媒を除去してもよく、または濃度を減少させてもよい。一方、液Fを調製した後に複合粒子は溶解していないが、脂質二重膜の構成成分が溶解している場合には、複合粒子が溶解せず、脂質二重膜の構成成分が分散する極性有機溶媒濃度の範囲で極性有機溶媒を除去するかまたは濃度を減少させればよい。また、複合粒子と脂質二重膜の構成成分をあらかじめ極性有機溶媒以外の溶媒中で混合し、そこに複合粒子が溶解せず、脂質二重膜の構成成分が分散する極性有機溶媒濃度の範囲で極性有機溶媒を加えてもよい。その場合には、複合粒子および脂質二重膜の構成成分のそれぞれを極性有機溶媒以外の溶媒中に分散させ、両分散液を混合した後で、極性有機溶媒を加えてもよく、複合粒子または脂質二重膜の構成成分のどちらか一方を極性有機溶媒以外の溶媒中に分散させ、その分散液に、固体状態の複合粒子または脂質二重膜の構成成分の残る一方を加えて分散させた後で、極性有機溶媒を加えてもよい。
 また、複合粒子および脂質二重膜の構成成分が分散し、極性有機溶媒を含有する液を、複合粒子が脂質二重膜で被覆されるに充分な時間、静置または混合する操作を含むことが好ましい。複合粒子と脂質二重膜の構成成分を、極性有機溶媒を含有する液中に分散させた後、静置または混合する時間は、複合粒子および脂質二重膜の構成成分を、極性有機溶媒を含有する液中に分散させた後に瞬時に終了させるのでなければ制限はないが、脂質二重膜の構成成分や、極性有機溶媒を含有する液の種類に応じて任意に設定することができ、得られたリピッドパーティクルAの収率が定常量となる時間を設定することが好ましく、例えば約3秒~30分である。なお、複合粒子および脂質二重膜の構成成分を、極性有機溶媒を含有する液中に分散させると、複合粒子への脂質二重膜の被覆が開始され、速やかに複合粒子への脂質二重膜の被覆が完了することもあり、例えば、脂質二重膜の構成成分の溶解液を調製した後、複合粒子の分散液と、脂質二重膜の構成成分の溶解液とを混合して液Fを調製する場合において、脂質二重膜の構成成分の液Fへの溶解性が低いと、脂質二重膜の構成成分が特定の極性有機溶媒を含有する液中に分散するのとほぼ同時に、複合粒子への脂質二重膜の被覆が完了することもある。
 液Fにおける極性有機溶媒以外の溶媒としては、例えば工程2における極性有機溶媒以外の溶媒で例示した物があげられ、好ましくは水があげられる。
 液Fにおける極性有機溶媒の濃度は、複合粒子と、脂質二重膜の構成成分がともに分散されている条件さえ満たしていれば特に限定されるものではなく、用いる溶媒や複合粒子、脂質二重膜の構成成分の種類等により異なるが、好ましくは約1~80v/v%、より好ましくは約10~60v/v%、さらに好ましくは約20~50v/v%、最も好ましくは約30~40v/v%である。
 本発明において、「脂質二重膜の構成成分が特定の極性有機溶媒に対して可溶」とは、脂質二重膜の構成成分が特定の極性有機溶媒に溶解する性質をもつ場合、可溶化剤等を用いることにより脂質二重膜の構成成分が特定の極性有機溶媒に溶解する性質をもつ場合、脂質二重膜の構成成分が特定の極性有機溶媒中で凝集体またはミセル等を形成して乳濁もしくはエマルジョン化し得る性質をもつ場合等を包含する。また、「脂質二重膜の構成成分が分散する」とは、脂質二重膜の構成成分の全部が凝集体またはミセル等を形成して乳濁もしくはエマルジョン化している状態、脂質二重膜の構成成分の一部が凝集体またはミセル等を形成して乳濁もしくはエマルジョン化し、残る部分が溶解している状態、脂質二重膜の構成成分の一部が凝集体またはミセル等を形成して乳濁もしくはエマルジョン化し、残る部分が沈殿している状態等を包含する。なお、「脂質二重膜の構成成分が溶解する」とは、脂質二重膜の構成成分の全部が凝集体またはミセル等を形成して乳濁もしくはエマルジョン化している状態を包含しない。
 本発明において、「複合粒子が分散する」とは、複合粒子が懸濁または乳濁もしくはエマルジョン化している状態のことであり、複合粒子の一部が懸濁または乳濁もしくはエマルジョン化し、残る部分が溶解している状態、複合粒子の一部が乳濁もしくはエマルジョン化し、残る部分が沈殿している状態等を包含する。「複合粒子が溶解しない」とは、前記の「複合粒子が分散する」と同義である。
 本発明におけるリピッドパーティクルAの製造方法において用いられる、極性有機溶媒含有水溶液中の複合粒子の濃度は、複合粒子を脂質二重膜で被覆できれば特に限定されるものではないが、約1μg/mL~1g/mLであるのが好ましく、約0.1~500mg/mLであるのがより好ましい。また、用いられる脂質二重膜の構成成分の濃度は、複合粒子を被覆できれば特に限定されるものではないが、約1μg/mL~1g/mLであるのが好ましく、約0.1~400mg/mLであるのがより好ましい。
 また、本発明におけるリピッドパーティクルAの大きさは、平均粒子径が約30nm~300nmであるのがよりに好ましく、約50nm~200nmであるのがより好ましく、具体的には、例えば注射可能な大きさであるのが好ましい。
 さらに、上記で得られるリピッドパーティクルAに抗体等の蛋白質、糖類、糖脂質、アミノ酸、核酸、種々の低分子化合物または高分子化合物等の物質による修飾を行うこともでき、これらで得られる被覆複合粒子もリピッドパーティクルAに包含される。例えば、ターゲッティングに応用するため、上記で得られるリピッドパーティクルAに対して、さらに抗体等の蛋白質、ペプチドまたは脂肪酸類等による脂質二重膜の表面修飾を行うこともできる[ラジック(D. D. Lasic)、マーティン(F. Martin)編,“ステルス・リポソームズ(Stealth Liposomes)”(米国),シーアールシー・プレス・インク(CRC Press Inc),1995年,p.93-102参照]。また、リピッドパーティクルAに例えば水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体による表面改質も任意に行うことができ、これら表面改質に用いられる水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体は、前記脂質二重膜の構成成分としての水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体と同義である。リピッドパーティクルの表面改質によって、該リピッドパーティクルの脂質二重膜に、水溶性物質を構成成分として含有させることができる。
 本発明の組成物を、人を含む哺乳動物に投与することで、前記二本鎖核酸分子を標的遺伝子の発現部位へ送達させれば、in vivoでほ乳類の細胞に、遺伝子の発現を抑制するRNA等を導入することができ、遺伝子等の発現の抑制ができる。本発明の組成物を、人を含む哺乳動物に静脈投与することで、例えば癌または炎症の生じた臓器または部位へ送達され、送達臓器または部位の細胞内に本発明の組成物中の核酸を導入することができる。癌または炎症の生じた臓器または部位としては、特に限定されないが、例えば胃、大腸、肝臓、肺、脾臓、膵臓、腎臓、膀胱、皮膚、血管、眼球等があげられる。また、本発明の組成物を、人を含む哺乳動物に静脈投与することで、例えば血管、肝臓、肺、脾臓および/または腎臓へ送達され、送達臓器または部位の細胞内に本発明の組成物中の核酸を導入することができる。肝臓、肺、脾臓および/または腎臓の細胞は、正常細胞、癌もしくは炎症に関連した細胞またはその他の疾患に関連した細胞のいずれでもよい。
 即ち、本発明は、上記説明した本発明の組成物を哺乳動物に投与する標的遺伝子の発現抑制方法も提供する。投与対象は、人であることが好ましい。
 また、本発明の組成物における標的遺伝子が、例えば腫瘍または炎症に関連する遺伝子であれば、本発明の組成物を、癌または炎症疾患の治療剤または予防剤、好ましくは固形癌または血管もしくは血管近傍の炎症の治療剤または予防剤として使用することができる。具体的には、本発明の組成物における標的遺伝子が、血管新生に関連する遺伝子等であれば、血管平滑筋の増殖や血管新生等を抑制できるので、本発明の組成物を、例えば血管平滑筋の増殖や血管新生を伴う癌または炎症疾患の治療剤または予防剤として使用することができる。
 即ち、本発明は、上記説明した本発明の組成物を哺乳動物に投与する癌または炎症疾患の治療方法も提供する。投与対象は、人であることが好ましく、癌または炎症疾患に罹患している人がより好ましい。
 また、本発明の組成物は、癌または炎症疾患の治療剤または予防剤に関するin vivoのスクリーニング系においてピーオーシー[POC(Proof of concept)]取得のツールとして使用することもできる。
 本発明の組成物は、例えば血液成分等の生体成分(例えば血液、消化管等)中での前記二本鎖核酸分子の安定化、副作用の低減または標的遺伝子の発現部位を含む組織または臓器への薬剤集積性の増大等を目的とする製剤としても使用できる。
 本発明の組成物を、医薬品の癌または炎症疾患等の治療剤または予防剤として使用する場合、投与経路としては、治療に際し最も効果的な投与経路を使用するのが望ましく、口腔内、気道内、直腸内、皮下、筋肉内または静脈内等の非経口投与または経口投与をあげることができ、好ましくは静脈内投与または筋肉内投与をあげることができ、より好ましくは静脈内投与があげられる。
 投与量は、投与対象の病状や年齢、投与経路などによって異なるが、例えばRNAに換算した1日投与量が約0.1μg~1000mgとなるように投与すればよい。
 静脈内投与または筋肉内投与に適当な製剤としては、例えば注射剤があげられ、上述の方法により調製したリピッドパーティクルAの分散液をそのまま例えば注射剤等の形態として用いることも可能であるが、該分散液から例えば濾過、遠心分離等によって溶媒を除去して使用することも、該分散液を凍結乾燥して使用する、または例えばマンニトール、ラクトース、トレハロース、マルトースまたはグリシン等の賦形剤を加えた分散液を凍結乾燥して使用することもできる。
 注射剤の場合、前記のリピッドパーティクルAの分散液または前記の溶媒を除去または凍結乾燥したリピッドパーティクルAに、例えば水、酸、アルカリ、種々の緩衝液、生理的食塩液またはアミノ酸輸液等を混合して注射剤を調製することが好ましい。また、例えばクエン酸、アスコルビン酸、システインもしくはEDTA等の抗酸化剤またはグリセリン、ブドウ糖もしくは塩化ナトリウム等の等張化剤等を添加して注射剤を調製することも可能である。また、例えばグリセリン等の凍結保存剤を加えて凍結保存することもできる。
 本発明の癌または炎症疾患の治療剤としては、本発明の組成物のうち、二本鎖核酸分子が、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子であり、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースである、該二本鎖核酸分子であって、リピッドパーティクルAが、(1)リード粒子と該二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルであり、該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能であり、該脂質二重膜が、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜であるリピッドパーティクル、または(2)カチオン性物質を含むリード粒子と該二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルであり、該脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜であるリピッドパーティクルである場合の、該リピッドパーティクルを含有する組成物があげられる。本発明の癌または炎症疾患の治療剤において、癌としては、好ましくは固形癌があげられ、炎症疾患としては、好ましくは血管もしくは血管近傍の炎症があげられる。
 また、本発明は、本発明の組成物のうち、二本鎖核酸分子が、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子であり、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースである、該二本鎖核酸分子であって、リピッドパーティクルAが、(1)リード粒子と該二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルであり、該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能であり、該脂質二重膜が、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜であるリピッドパーティクル、または(2)カチオン性物質を含むリード粒子と該二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルであり、該脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜であるリピッドパーティクルである場合の、該リピッドパーティクルを含有する組成物の、癌または炎症疾患の治療剤、好ましくは固形癌または血管もしくは血管近傍の炎症の治療剤の製造のための使用も提供する。
 次に、実施例および試験例により、本発明を具体的に説明する。ただし、本発明はこれら実施例および試験例に限定されるものではない。
 表1に示したセンス(sense)鎖およびアンチセンス(antsense)鎖からなる(表中のdが付された塩基に結合する糖は、デオキシリボースであり、mが付された塩基に結合する糖は、2’-O-メチルで置換されているリボースである)、BCL2遺伝子のmRNAの連続する19塩基の配列5’-GUG AAG UCA ACA UGC CUG C-3’を含む二本鎖核酸分子を、実施例1~4および比較例1~9において用いた。それらの二本鎖核酸分子は、それぞれのセンス鎖およびアンチセンス鎖を北海道システム・サイエンス社から入手し、アニーリングさせることにより調製した。
 DOTAP(アバンチポーラルリピッズ社製)/PEG-DSPE(日本油脂社製)/蒸留水(大塚製薬社製)を40 mg/16 mg/1mLとなるように混合し、ボルテックスミキサーで振とう撹拌した。この懸濁液を70℃で0.4 μmのポリカーボネートメンブランフィルター(コスター社製)に10回、0.2 μmのポリカーボネートメンブランフィルター(ワットマン社製)に3回、0.1 μmのポリカーボネートメンブランフィルター(コーニング社製)に10回、さらに0.05 μmのポリカーボネートメンブランフィルター(ワットマン社製)に20回通した。Dynamic light scattering (DLS)で得られたリード粒子の平均粒子径を測定したところ、70.71 nmであった。
 一方、EPC(日本油脂社製)/PEG-DSPE(日本油脂社製)/エタノール(和光純薬社製)/水を15 mg/3.125 mg/0.625mL/0.375mLとなるように混合し、脂質二重膜の構成成分の溶液を調製した。
 得られたリード粒子の分散液0.0125 mLに、表1に記載されたBCL2siRNA-Exp.1/水を24 mg/1mLとなるように混合して得られた水溶液0.00417 mLを混合して複合粒子を調製した。得られた複合粒子の分散液を、脂質二重膜の構成成分の溶液0.06667 mLに添加し、続いて0.02083 mLの蒸留水を添加した。さらにEPC/PEG-DSPEを62.5mg/62.5mg/mLになるように40vol%エタノールに溶解した溶液を0.00667 mL添加後、蒸留水を0.7758 mLを徐々に加えて、エタノールの濃度が5%以下になるように調整し、リピッドパーティクルを調製した。得られたリピッドパーティクル懸濁液を食塩水で等張化した。さらに生理食塩水(大塚製薬社製)で最終液量を1 mLとすることで、BCL2siRNA-Exp.1濃度を0.1 mg/mLに調整し、製剤を得た。
 DLSで製剤中のリピッドパーティクルの平均粒子径を測定したところ、82.59 nmであった。
 BCL2siRNA-Exp.1をBCL2siRNA-Exp.2にした以外、実施例1と同様にして製剤を得た。
 DLSで製剤中のリピッドパーティクルの平均粒子径を測定したところ、83.94 nmであった。
比較例1~9
 BCL2siRNA-Exp.1をそれぞれBCL2siRNA-Com.1~9にした以外、実施例1と同様にして製剤を得た。
 DLSで各製剤中のリピッドパーティクルの平均粒子径を測定した。表1に各製剤中のリピッドパーティクルの平均粒子径を示した。
 BCL2siRNA-Exp.1をBCL2siRNA-Exp.3にした以外、実施例1と同様にして製剤を得た。
 DLSで製剤中のリピッドパーティクルの平均粒子径を測定したところ、82.42 nmであった。
 BCL2siRNA-Exp.1をBCL2siRNA-Exp.4にした以外、実施例1と同様にして製剤を得た。
 DLSで製剤中のリピッドパーティクルの平均粒子径を測定したところ、83.47 nmであった。
Figure JPOXMLDOC01-appb-T000001
試験例1
 BCL2siRNA-Exp.1~4およびBCL2siRNA-Com.1~9のRNAi活性を、以下に示したようにBcl2mRNAの発現抑制効果を測定して評価した。
 6cm径の培養ディッシュにヒト前立腺癌細胞PC-3を2×105細胞数/ディッシュで播種し、10%ウシ胎仔血清を含むF-12 Kaighn’s培地(GIBCO、21127)中、37℃、5%CO2条件下で一晩培養した。翌日、培養ディッシュから培地を吸引し、0.8mLの低血清基本培地であるOPTI-MEM(GIBCO、31985)に交換した。そこに、OPTI-MEM中で混合したsiRNA-オリゴフェクトアミン複合体溶液を0.2mL添加することにより、siRNAをPC-3に導入した。siRNAの最終濃度は3nM、30nMの2点とした。
 siRNAを導入したヒト前立腺癌細胞PC-3を37℃の5%CO2インキュベーター内で48時間培養し、PBSで2回洗浄し、セルスクレーパーを用いて1.5mLチューブに移した。1000×gで2分間遠心分離し、上清を取り除いた後、細胞をRLT buffer (キアゲン社製 RNA回収キット「RNeasy」に添付)に溶解して回収し、キットに添付された説明書に従って全RNAを回収した。
 全RNA1μgを鋳型として、Superscript VILO(インビトロジェン社)を用いて逆転写反応を行い、cDNAを作成した。このcDNAをPCR反応の鋳型に用い、ABI7900HT Fast(ABI社)を用いたTaqman probe法によりbcl-2遺伝子および構成的発現遺伝子であるGADPH(D-glyceraldehyde-3-phosphate dehydrogenase)遺伝子に特異的なPCR増幅をそれぞれ行い、mRNA量の定量を行った。それぞれの遺伝子のPCR増幅には250ngの全RNA由来cDNAを鋳型に用いた。検体のmRNA量は、siRNA未導入群(未処理)における、bcl-2のmRNA量またはGADPHのmRNA量を1としたときの相対的な割合として表した。各検体の発現量比を1から差し引いたものを発現抑制率と表現し、図1に示した。
試験例2
 以下に示したように、一回目投与PEG修飾リピッドパーティクルとして実施例1~2および比較例1~9で得られた製剤を、マウスに投与し、次に、7日間の間隔をあけ、二回目投与PEG修飾リピッドパーティクルとして比較例1で得られた製剤を投与し、投与3時間後の血液中のBCL2siRNA-Com.1の濃度を測定することにより、実施例1~2および比較例1~9で得られた製剤の、二回目投与PEG修飾リピッドパーティクルの血中滞留性に対する影響を評価した。
 実施例1~2および比較例1~9で得られた製剤を、雄性Balb/cマウス(6週齢、日本クレア)に、薬液(siRNA濃度 50μg/mL) 100 μLを尾静脈より投与した(投与量は5 μg/mouse)。7日間の間隔をあけ、比較例1で得られた製剤の薬液(siRNA濃度 50μg/mL) 100 μLを尾静脈より投与した(投与量は5 μg/mouse)。2回目の投与の後、投与3時間後に、尾動脈より10 μLの血液を採取し、denaturing solution (4 mol/L グアニジンチオシアネート、25 mmol/L クエン酸ナトリウム、0.1 v/v% 2-メルカプトエタノール、0.5 w/v% sodium N-lauroyl sarcosine;以下、D溶液という) 90 μLを添加して混合し、10 v/v% 血液とした。
  得られた10 v/v% 血液 50 μLに、ジエチルピロカルボナート水溶液(ジエチルピロカルボナートを超純水に対し0.1 v/v%の容量で添加し混合した)5 μL、I.S.溶液(I.S.として濃度が0.3 μmol/Lの前記ジエチルピロカルボナート水溶液)10 μL、D溶液 50 μL、2 mmol/L 酢酸ナトリウム(pH 4.0) 10 μLおよび飽和フェノール水溶液/クロロホルム溶液150 μLを添加して混合し遠心分離した。上清 65 μLにGenTLE溶液(GenTLE precipitation carrier (タカラバイオ)を前記ジエチルピロカルボナート水溶液で15倍希釈した)15 μLを添加して混合した後、エタノールを添加して混合し、遠心分離した後、上清を捨て、さらに沈殿に75 v/v% エタノールを添加し遠心分離し、上清を捨て、沈殿を風乾した後、再溶解液(ジエチルピロカルボナート/triethylamine/hexafluoroisopropanol/waterを0.1/0.4/30/1000の容量比で混合した)50 μLに溶解し、HPLC法にて定量した。結果を第2図に示す。
<装置> 
HPLC装置;ACQUITY UPLC system (Waters)
質量分析装置;API4000 Q TRAP (Applied Biosystems/MDS Sciex)
<HPLC条件>
内標準物質(I.S.)
  5'-GUG AAG UCA ACA UGC CUG dTdT-3'(dが付された塩基に結合する糖は、デオキシリボースである)(配列番号27)
  5'-CAG GCA UGU UGA CUU CAC dTdT-3'(dが付された塩基に結合する糖は、デオキシリボースである)(配列番号28)
カラム;Xbridge C18 (3.5 μm、2.1 mm I.D. x 50 mm、Waters)
移動層;triethylamine/hexafluoroisopropanol/water (0.4/30/1000):メタノール = 93:7 ~75:25   
 第1図より、実施例1~4で用いた二本鎖核酸分子(Exp.1からExp.4)は、比較例1で用いた二本鎖核酸分子と同程度のsiRNAの活性を示し、比較例2~9で用いた二本鎖核酸分子に比べて、siRNAの活性が高いことを示している。第2図より、比較例1で得られた製剤を投与し、次に、7日間の間隔をあけ、二回目投与PEG修飾リピッドパーティクルとして比較例1で得られた製剤を投与したマウスでは、二本鎖核酸分子が血液中に見られず、PEG修飾リピッドパーティクルの二回目投与において血中滞留性が著しく低下したのに対して、実施例1~2で得られた製剤を投与し、次に、7日間の間隔をあけ、二回目投与PEG修飾リピッドパーティクルとして比較例1で得られた製剤を投与したマウスでは、二本鎖核酸分子の血液中濃度が高く、PEG修飾リピッドパーティクルの二回目投与における血中滞留性の低下を抑制していることを示している。
 すなわち、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を封入したリピッドパーティクルを含有する、組成物であって、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、該リピッドパーティクルが、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜を有するリピッドパーティクルである本発明の組成物は、siRNAの活性が高いことに加え、PEG修飾リピッドパーティクルの二回目投与における血中滞留性の低下が抑制されたことより、副作用を低減できること、また標的遺伝子の発現部位を含む組織または臓器への薬剤集積性を増大できることが明らかとなった。
 表2に示したセンス(sense)鎖およびアンチセンス(antsense)鎖からなる(表中のmが付された塩基に結合する糖は、2’-O-メチルで置換されているリボースである)、BCL2遺伝子のmRNAの連続する25塩基の配列5’-CCA CAA GUG AAG UCA ACA UGC CUG C-3’を含む二本鎖核酸分子を、実施例5および比較例10~13において用いた。それらの二本鎖核酸分子は、それぞれのセンス鎖およびアンチセンス鎖を北海道システム・サイエンス社から入手し、アニーリングさせることにより調製した。
 DOTAP(アバンチポーラルリピッズ社製)/PEG-DSPE(日本油脂社製)/蒸留水(大塚製薬社製)を40 mg/16 mg/1mLとなるように混合し、ボルテックスミキサーで振とう撹拌した。この懸濁液を70℃で0.4 μmのポリカーボネートメンブランフィルター(コスター社製)に10回、0.2 μmのポリカーボネートメンブランフィルター(ワットマン社製)に3回、0.1 μmのポリカーボネートメンブランフィルター(コーニング社製)に10回、さらに0.05 μmのポリカーボネートメンブランフィルター(ワットマン社製)に20回通した。Dynamic light scattering (DLS)で得られたリード粒子の平均粒子径を測定したところ、71.44 nmであった。
 一方、EPC(日本油脂社製)/PEG-DSPE(日本油脂社製)/エタノール(和光純薬社製)/水を15 mg/3.125 mg/0.625mL/0.375mLとなるように混合し、脂質二重膜の構成成分の溶液を調製した。
 得られたリード粒子の分散液0.025mLに、BCL2siRNA-Exp.5の24 mg/mL水溶液0.00833 mLを混合して複合粒子を調製した。得られた複合粒子の分散液を、脂質二重膜の構成成分の溶液0.13334 mLに添加し、続いて0.04166 mLの蒸留水を添加した。さらにEPC/PEG-DSPEを62.5mg/62.5mg/mLになるように40vol%エタノールに溶解した溶液を0.01334 mL添加後、蒸留水を1.5517 mLを徐々に加え、エタノールの濃度が5%以下になるように調整し、リピッドパーティクルを調製した。得られたリピッドパーティクル懸濁液を食塩水で等張化した。さらに生理食塩水(大塚製薬社製)で最終液量を2 mLとすることで、BCL2siRNA-Exp.5濃度を0.1 mg/mLに調整し、製剤を得た。
 DLSで製剤中のリピッドパーティクルの平均粒子径を測定したところ、77.26 nmであった。
比較例10~13
 BCL2siRNA-Exp.5をそれぞれBCL2siRNA-Com.10~13にした以外、実施例5と同様にして製剤を得た。
 DLSで各製剤中のリピッドパーティクルの平均粒子径を測定した。表2に各製剤のリピッドパーティクルの平均粒子径を示した。
Figure JPOXMLDOC01-appb-T000002
試験例3
 BCL2siRNA-Exp.5およびBCL2siRNA-Com.10~13のRNAi活性を、以下に示したようにBcl2mRNAの発現抑制効果を測定して評価した。
 6cm径の培養ディッシュにPC-3を2×105細胞数/ディッシュで播種し、10%ウシ胎仔血清を含むF-12 Kaighn’s培地(GIBCO、21127)中、37℃、5%CO2条件下で一晩培養した。翌日、培養ディッシュから培地を吸引し、0.8mLの低血清基本培地であるOPTI-MEM(GIBCO、31985)に交換した。そこに、OPTI-MEM中で混合したsiRNA-オリゴフェクトアミン複合体溶液を0.2mL添加することにより、siRNAをPC-3に導入した。siRNAの最終濃度は10nMとした。
 siRNAを導入した細胞を37℃の5%CO2インキュベーター内で48時間培養し、PBSで2回洗浄し、セルスクレーパーを用いて1.5mLチューブに移した。1000×gで2分間遠心分離し、上清を取り除いた後、細胞をRLT buffer (キアゲン社製 RNA回収キット「RNeasy」に添付)に溶解して回収し、キットに添付された説明書に従って全RNAを回収した。
 全RNA1μgを鋳型として、Superscript VILO(インビトロジェン社)を用いて逆転写反応を行い、cDNAを作成した。このcDNAをPCR反応の鋳型に用い、ABI7900HT Fast(ABI社)を用いたTaqman probe法によりbcl-2遺伝子および構成的発現遺伝子であるGADPH(D-glyceraldehyde-3-phosphate dehydrogenase)遺伝子に特異的なPCR増幅をそれぞれ行い、mRNA量の定量を行った。それぞれの遺伝子のPCR増幅には250ngの全RNA由来cDNAを鋳型に用いた。検体のmRNA量は、siRNA未導入群(未処理)における、bcl-2のmRNA量またはGADPHのmRNA量を1としたときの相対的な割合として表し、図3に示した。
試験例4
 一回目投与PEG修飾リピッドパーティクルとして実施例5および比較例10~13で得られた製剤を用い、一方、二回目投与PEG修飾リピッドパーティクルとしてもそれぞれ同じ実施例5および比較例10~13とし、試験例2と同様にして、実施例5および比較例10~13で得られた製剤の、二回目投与PEG修飾リピッドパーティクルの血中滞留性に対する影響を評価した。
 2回目の投与の後、投与3時間後の血液中のBCL2siRNA-Exp.5(実施例5)およびBCL2siRNA-Com.10~13(比較例10~13)のそれぞれの濃度を測定した結果を第4図に示す。
 ただし、内標準物質(I.S.)は、5'-GmUG mAAmG UmCA mACmA UmGC mCUmG CdT-3'(5’-側から2、4、6、8、10、12、14、16、18番目のmが付された塩基に結合する糖は、2’-O-メチルで置換されているリボースであり、dが付された塩基に結合する糖は、デオキシリボースである)(配列番号39)および5'-GCA GGC AUG UUG ACU UCA CdT-3'(dが付された塩基に結合する糖は、デオキシリボースである)(配列番号40)を用いた。
 第3図より、実施例5で用いた二本鎖核酸分子は、比較例10~13で用いた二本鎖核酸分子と同等のsiRNAの活性を示している。第4図より、比較例10~13で得られた製剤を7日間の間隔をあけ、二回投与したマウスでは、二本鎖核酸分子が血液中に見られず、PEG修飾リピッドパーティクルの二回目投与において血中滞留性が著しく低下したのに対して、実施例5で得られた製剤を7日間の間隔をあけ、二回投与したマウスでは、二本鎖核酸分子の血液中濃度が高く、PEG修飾リピッドパーティクルの二回目投与における血中滞留性の低下を抑制していることを示している。
 すなわち、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を封入したリピッドパーティクルを含有する、組成物であって、
該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
(v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、該リピッドパーティクルが、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜を有するリピッドパーティクルである本発明の組成物は、siRNAの活性が高いことに加え、PEG修飾リピッドパーティクルの二回目投与における血中滞留性の低下が抑制されたことより、副作用を低減できること、また標的遺伝子の発現部位を含む組織または臓器への薬剤集積性を増大できることが明らかとなった。
 本発明の組成物を、ほ乳類等に投与することにより、標的遺伝子の発現を抑制することができる。
配列番号1-比較例1のsiRNA センス鎖
配列番号2-比較例1のsiRNA アンチセンス鎖
配列番号3-実施例1のsiRNA センス鎖
配列番号4-実施例1のsiRNA アンチセンス鎖
配列番号5-比較例2のsiRNA センス鎖
配列番号6-比較例2のsiRNA アンチセンス鎖
配列番号7-比較例3のsiRNA センス鎖
配列番号8-比較例3のsiRNA アンチセンス鎖
配列番号9-比較例4のsiRNA センス鎖
配列番号10-比較例4のsiRNA アンチセンス鎖
配列番号11-比較例5のsiRNA センス鎖
配列番号12-比較例5のsiRNA アンチセンス鎖
配列番号13-実施例2のsiRNA センス鎖
配列番号14-実施例2のsiRNA アンチセンス鎖
配列番号15-比較例6のsiRNA センス鎖
配列番号16-比較例6のsiRNA アンチセンス鎖
配列番号17-比較例7のsiRNA センス鎖
配列番号18-比較例7のsiRNA アンチセンス鎖
配列番号19-比較例8のsiRNA センス鎖
配列番号20-比較例8のsiRNA アンチセンス鎖
配列番号21-比較例9のsiRNA センス鎖
配列番号22-比較例9のsiRNA アンチセンス鎖
配列番号23-実施例3のsiRNA センス鎖
配列番号24-実施例3のsiRNA アンチセンス鎖
配列番号25-実施例4のsiRNA センス鎖
配列番号26-実施例4のsiRNA アンチセンス鎖
配列番号27-実施例1~4および比較例1~9のsiRNA センス鎖のIS
配列番号28-実施例1~4および比較例1~9のsiRNA アンチセンス鎖のIS
配列番号29-実施例5のsiRNA センス鎖
配列番号30-実施例5のsiRNA アンチセンス鎖
配列番号31-比較例10のsiRNA センス鎖
配列番号32-比較例10のsiRNA アンチセンス鎖
配列番号33-比較例11のsiRNA センス鎖
配列番号34-比較例11のsiRNA アンチセンス鎖
配列番号35-比較例12のsiRNA センス鎖
配列番号36-比較例12のsiRNA アンチセンス鎖
配列番号37-比較例13のsiRNA センス鎖
配列番号38-比較例13のsiRNA アンチセンス鎖
配列番号39-実施例5および比較例10~13のsiRNA センス鎖のIS
配列番号40-実施例5および比較例10~13のsiRNA アンチセンス鎖のIS
配列番号41-bcl2 mRNA

Claims (28)

  1. センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を封入したリピッドパーティクルを含有する、組成物であって、
    該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、該リピッドパーティクルが、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜を有するリピッドパーティクルである、組成物。
  2. (v)該センス鎖の配列b以外の塩基に結合する糖の50~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースである、請求項1記載の組成物。
  3. 二本鎖核酸分子が、RNA干渉(RNAi)を利用した該標的遺伝子の発現抑制作用を有する二本鎖核酸分子である、請求項1または2記載の組成物。
  4. 標的遺伝子が、腫瘍または炎症に関連する遺伝子である、請求項1~3のいずれかに記載の組成物。
  5. 標的遺伝子が、血管新生に関連する遺伝子である、請求項1~4のいずれかに記載の組成物。
  6. 標的遺伝子が、血管内皮増殖因子、血管内皮増殖因子受容体、線維芽細胞増殖因子、線維芽細胞増殖因子受容体、血小板由来増殖因子、血小板由来増殖因子受容体、肝細胞増殖因子、肝細胞増殖因子受容体、クルッペル様因子、Ets転写因子、核因子および低酸素誘導因子のいずれかの遺伝子である、請求項1~4のいずれかに記載の組成物。
  7. mRNAがヒトまたはマウスのmRNAである、請求項1~6のいずれかに記載の組成物。
  8. 二本鎖核酸分子を封入したリピッドパーティクルが、リード粒子と該二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルであり、
    該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能である、請求項1~7のいずれかに記載の組成物。
  9. 極性有機溶媒がアルコールである、請求項8記載の組成物。
  10. 極性有機溶媒がエタノールである、請求項8記載の組成物。
  11. リード粒子が、カチオン性物質を含むリード粒子であり、複合粒子を被覆する脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、請求項8~10のいずれかに記載の組成物。
  12. 二本鎖核酸分子を封入したリピッドパーティクルが、カチオン性物質を含むリード粒子と該二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルであり、
    該複合粒子を被覆する脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、請求項1~7のいずれかに記載の組成物。
  13. 水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体が、ポリエチレングリコール-ホスファチジルエタノールアミンである、請求項1~12のいずれかに記載の組成物。
  14. リード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子とを構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する癌または炎症疾患の治療剤であって、
    該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
    該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能であり、
    該脂質二重膜が、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、癌または炎症疾患の治療剤。
  15. 極性有機溶媒がアルコールである、請求項14記載の癌または炎症疾患の治療剤。
  16. 極性有機溶媒がエタノールである、請求項14記載の癌または炎症疾患の治療剤。
  17. リード粒子が、カチオン性物質を含むリード粒子であり、脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、請求項14~16のいずれかに記載の癌または炎症疾患の治療剤。
  18. カチオン性物質を含むリード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子とを構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する癌または炎症疾患の治療剤であって、
    該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
    該脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、癌または炎症疾患の治療剤。
  19. 水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体が、ポリエチレングリコール-ホスファチジルエタノールアミンである、請求項14~18のいずれかに記載の癌または炎症疾患の治療剤。
  20. (v)該センス鎖の配列b以外の塩基に結合する糖の50~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースである、請求項14~19のいずれかに記載の癌または炎症疾患の治療剤。
  21. 腫瘍または炎症に関連する標的遺伝子が、血管新生に関与する遺伝子である、請求項14~20のいずれかに記載の癌または炎症疾患の治療剤。
  22. 腫瘍または炎症に関連する標的遺伝子が、血管内皮増殖因子、血管内皮増殖因子受容体、線維芽細胞増殖因子、線維芽細胞増殖因子受容体、血小板由来増殖因子、血小板由来増殖因子受容体、肝細胞増殖因子、肝細胞増殖因子受容体、クルッペル様因子、Ets転写因子、核因子および低酸素誘導因子のいずれかの遺伝子である、請求項14~20のいずれかに記載の癌または炎症疾患の治療剤。
  23. mRNAがヒトまたはマウスのmRNAである、請求項14~22のいずれかに記載の癌または炎症疾患の治療剤。
  24. リード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する組成物を哺乳動物に投与する癌または炎症疾患の治療方法であって、
    該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
    該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能であり、
    該脂質二重膜が、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、該組成物を哺乳動物に投与する癌または炎症疾患の治療方法。
  25. カチオン性物質を含むリード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する組成物を哺乳動物に投与する癌または炎症疾患の治療方法であって、
    該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
    該脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、該組成物を哺乳動物に投与する癌または炎症疾患の治療方法。
  26. リード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する組成物の癌または炎症疾患の治療剤の製造のための使用であって、
    該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
    該脂質二重膜の構成成分が特定の極性有機溶媒に可溶であり、該脂質二重膜の構成成分および該複合粒子が、特定の濃度で該極性有機溶媒を含む液に分散可能であり、
    該脂質二重膜が、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、該組成物の癌または炎症疾患の治療剤の製造のための使用。
  27. カチオン性物質を含むリード粒子と、センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を構成成分とする複合粒子および該複合粒子を被覆する脂質二重膜を含むリピッドパーティクルを含有する組成物の癌または炎症疾患の治療剤の製造のための使用であって、
    該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、腫瘍または炎症に関連する標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、
    該脂質二重膜が、中性脂質および水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜である、該組成物の癌または炎症疾患の治療剤の製造のための使用。
  28. センス鎖およびアンチセンス鎖から構成される二本鎖核酸分子を封入したリピッドパーティクルを含有する、組成物を含有する組成物を哺乳動物に投与する標的遺伝子の発現抑制方法であって、
    該アンチセンス鎖は、5’末端側から3’末端側に向って1~17番目の塩基の配列(配列a)が、標的遺伝子のmRNAの連続する17塩基の配列と相補的な塩基の配列である、17~30塩基の長さのポリヌクレオチドであり、該アンチセンス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該センス鎖は、該アンチセンス鎖の5’末端側から3’末端側に向って1~17番目の塩基の配列と相補的な塩基の配列(配列b)を含む、17~30塩基の長さのポリヌクレオチドであって、該センス鎖中の糖がそれぞれリボース、デオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (i)配列aの5’末端側から3’末端側に向って1~8番目の塩基に結合する糖の0~30%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (ii)配列aの5’末端側から3’末端側に向って9~16番目の塩基に結合する糖の0~20%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iii)該アンチセンス鎖の5’末端側から3’末端側に向って17番目~3’末端の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (iv)配列bの5’末端側から3’末端側に向って1~17番目の塩基に結合する糖の10~70%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    (v)該センス鎖の配列b以外の塩基に結合する糖の30~100%がそれぞれデオキシリボースまたは2’位の水酸基が修飾基で置換されたリボースであり、
    該リピッドパーティクルが静脈内投与可能な大きさのリピッドパーティクルであり、該リピッドパーティクルが、水溶性物質の脂質誘導体、脂肪酸誘導体または脂肪族炭化水素誘導体を構成成分とする脂質二重膜を有するリピッドパーティクルである、該組成物を哺乳動物に投与する該標的遺伝子の発現抑制方法。
PCT/JP2011/052092 2009-07-14 2011-02-02 標的遺伝子の発現を抑制する組成物 WO2012098692A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/980,139 US20140039034A1 (en) 2011-01-19 2011-02-02 Composition for suppressing expression of target gene
EP11856020.0A EP2666856A4 (en) 2011-01-19 2011-02-02 COMPOSITION TO INHIBIT TARGET EXPRESSION
JP2012553542A JP5952197B2 (ja) 2011-01-19 2011-02-02 標的遺伝子の発現を抑制する組成物
US13/348,959 US20120207818A1 (en) 2009-07-14 2012-01-12 Composition for suppressing expression of target gene
US13/437,428 US20120244210A1 (en) 2009-07-14 2012-04-02 Composition for suppressing expression of target gene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009032 2011-01-19
JP2011009032 2011-01-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061884 Continuation-In-Part WO2011007795A1 (ja) 2009-07-14 2010-07-14 標的遺伝子の発現を抑制する組成物

Publications (1)

Publication Number Publication Date
WO2012098692A1 true WO2012098692A1 (ja) 2012-07-26

Family

ID=46515341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052092 WO2012098692A1 (ja) 2009-07-14 2011-02-02 標的遺伝子の発現を抑制する組成物

Country Status (4)

Country Link
US (1) US20140039034A1 (ja)
EP (1) EP2666856A4 (ja)
JP (1) JP5952197B2 (ja)
WO (1) WO2012098692A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107899015A (zh) * 2017-11-14 2018-04-13 李俐 药物组合物在调节成纤维细胞生长中的用途

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572554B2 (ja) 1984-08-08 1997-01-16 ザ リポソーム カンパニー、インコーポレーテッド リポソームからの薬剤の放出速度低減方法
JP2659136B2 (ja) 1988-09-28 1997-09-30 イッサム リサーチ デベロップメント カンパニー オブ ザ ヒーブルー ユニバーシティー オブ エルサレム 両親媒性分子を有効に充填かつ制御放出するリポソーム
WO2001075164A2 (en) 2000-03-30 2001-10-11 Whitehead Institute For Biomedical Research Rna sequence-specific mediators of rna interference
JP2002501511A (ja) 1997-05-14 2002-01-15 イネックス ファーマスーティカルズ コーポレイション 脂質小胞への荷電した治療剤の高率封入
JP2002508765A (ja) 1997-06-23 2002-03-19 アルザ コーポレイション リポソーム被包ポリヌクレオチド組成物および方法
WO2002028367A1 (fr) 2000-10-04 2002-04-11 Kyowa Hakko Kogyo Co., Ltd. Procede de revetement de particules fines avec un film de lipides
US20020132788A1 (en) 2000-11-06 2002-09-19 David Lewis Inhibition of gene expression by delivery of small interfering RNA to post-embryonic animal cells in vivo
WO2003010180A1 (en) 2001-07-23 2003-02-06 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for rnai mediated inhibition of gene expression in mammals
WO2006080118A1 (ja) 2005-01-28 2006-08-03 Kyowa Hakko Kogyo Co., Ltd. 標的遺伝子の発現を抑制する組成物
JP2009513151A (ja) * 2005-11-02 2009-04-02 プロチバ バイオセラピューティクス インコーポレイティッド 修飾siRNA分子およびその使用法
WO2010013815A1 (ja) * 2008-08-01 2010-02-04 協和発酵キリン株式会社 標的遺伝子の発現を抑制する組成物
WO2010021389A1 (ja) * 2008-08-21 2010-02-25 協和発酵キリン株式会社 Bcl-2蛋白質の発現を抑制する核酸
WO2011007795A1 (ja) * 2009-07-14 2011-01-20 協和発酵キリン株式会社 標的遺伝子の発現を抑制する組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1765416A4 (en) * 2004-06-03 2010-03-24 Isis Pharmaceuticals Inc DOUBLE-STRANDED COMPOSITIONS COMPRISING DIFFERENTIALLY MODIFIED STRANDS FOR USE IN GENETIC MODULATION
JP5221126B2 (ja) * 2005-01-28 2013-06-26 協和発酵キリン株式会社 水溶性物質で表面修飾された微粒子の製造方法
WO2007002718A2 (en) * 2005-06-27 2007-01-04 Alnylam Pharmaceuticals, Inc. Rnai modulation of hif-1 and theraputic uses thereof
JP5723154B2 (ja) * 2007-09-19 2015-05-27 アプライド バイオシステムズ リミテッド ライアビリティー カンパニー RNAiにおけるオフターゲット表現型の影響を減少させるためのSiRNA配列非依存性修飾フォーマットおよびその安定化型

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2572554B2 (ja) 1984-08-08 1997-01-16 ザ リポソーム カンパニー、インコーポレーテッド リポソームからの薬剤の放出速度低減方法
JP2659136B2 (ja) 1988-09-28 1997-09-30 イッサム リサーチ デベロップメント カンパニー オブ ザ ヒーブルー ユニバーシティー オブ エルサレム 両親媒性分子を有効に充填かつ制御放出するリポソーム
JP2002501511A (ja) 1997-05-14 2002-01-15 イネックス ファーマスーティカルズ コーポレイション 脂質小胞への荷電した治療剤の高率封入
JP2002508765A (ja) 1997-06-23 2002-03-19 アルザ コーポレイション リポソーム被包ポリヌクレオチド組成物および方法
WO2001075164A2 (en) 2000-03-30 2001-10-11 Whitehead Institute For Biomedical Research Rna sequence-specific mediators of rna interference
WO2002028367A1 (fr) 2000-10-04 2002-04-11 Kyowa Hakko Kogyo Co., Ltd. Procede de revetement de particules fines avec un film de lipides
US20020132788A1 (en) 2000-11-06 2002-09-19 David Lewis Inhibition of gene expression by delivery of small interfering RNA to post-embryonic animal cells in vivo
WO2003010180A1 (en) 2001-07-23 2003-02-06 The Board Of Trustees Of The Leland Stanford Junior University Methods and compositions for rnai mediated inhibition of gene expression in mammals
WO2006080118A1 (ja) 2005-01-28 2006-08-03 Kyowa Hakko Kogyo Co., Ltd. 標的遺伝子の発現を抑制する組成物
JP2009513151A (ja) * 2005-11-02 2009-04-02 プロチバ バイオセラピューティクス インコーポレイティッド 修飾siRNA分子およびその使用法
WO2010013815A1 (ja) * 2008-08-01 2010-02-04 協和発酵キリン株式会社 標的遺伝子の発現を抑制する組成物
WO2010021389A1 (ja) * 2008-08-21 2010-02-25 協和発酵キリン株式会社 Bcl-2蛋白質の発現を抑制する核酸
WO2011007795A1 (ja) * 2009-07-14 2011-01-20 協和発酵キリン株式会社 標的遺伝子の発現を抑制する組成物

Non-Patent Citations (30)

* Cited by examiner, † Cited by third party
Title
ACC. CHEM. RES., vol. 32, 1999, pages 624
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 212, 1981, pages 186 - 194
BANGHAM ET AL., JOURNAL OF MOLECULAR BIOLOGY, vol. 13, 1965, pages 238 - 252
BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1510, 2001, pages 152 - 166
CIRCULATION, vol. 102, no. 20, 2000, pages 2528 - 2534
D. D. LASIC AND F. MARTIN: "Stealth Lipidparticles", 1995, CRC PRESS INC., pages: 93 - 102
D.D. LASIC, F. MARTIN,: "Stealth Liposomes", 1995, CRC PRESS INC., pages: 93 - 102
FEBS LETTERS, vol. 99, 1979, pages 210 - 214
GENOME BIOLOGY, vol. 4, no. 2, 2003, pages 206
J. AM. CHEM. SOC., vol. 122, 2000, pages 6900
J. AM. CHEM. SOC., vol. 123, 2001, pages 4653
JOURNAL OF CELL BIOLOGY, vol. 66, 1975, pages 621 - 634
JOURNAL OF CONTROLLED RELEASE, vol. 137, 2009, pages 234 - 240
JUDGE, A. D. ET AL.: "Confirming the RNAi- mediated mechanism of action of siRNA-based cancer therapeutics in mice", THE JOURNAL OF CLINICAL INVESTIGATION, vol. 119, no. 3, March 2009 (2009-03-01), pages 661 - 673, XP002618489 *
KANAVAROS, HISTOL. HISTOPATHOL., vol. 16, no. 4, October 2001 (2001-10-01), pages 1005 - 12
MOLECULAR CELL, vol. 10, no. 3, 2002, pages 549 - 561
NATURE BIOTECHNOLOGY, vol. 20, no. 10, 2002, pages 1006 - 1010
NATURE BIOTECHNOLOGY, vol. 20, no. 5, 2002, pages 497 - 500
NATURE GENETICS, vol. 32, no. 1, 2002, pages 107 - 108
NATURE REVIEWS GENETICS, vol. 3, no. 10, 2002, pages 737 - 747
NATURE, vol. 391, no. 6669, 1998, pages 806 - 811
NATURE, vol. 411, no. 6836, 2001, pages 494 - 498
NUCLEIC ACID RESEARCH, vol. 32, 2004, pages E175
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCE UNITED STATES OF AMERICA, vol. 75, 1978, pages 4194 - 4198
R. H. MULLER, S. BENITA AND B. BOHM: "Emulsion and Nanosuspensions for the Formulation of Poorly Soluble Drugs", 1998, SCIENTIFIC PUBLISHERS, pages: 267 - 294
See also references of EP2666856A4
SHI, CANCER BIOTHER. RADIOPHARM., vol. 16, no. 5, October 2001 (2001-10-01), pages 421 - 9
SHINOHARA, F. ET AL.: "RNAi-based therapeutics: current status", SEITAI NO KAGAKU, vol. 61, no. 4, 2010, pages 343 - 348, XP008170182 *
T. J. MCDONNELL, CANCER RESEARCH, vol. 52, no. 24, 15 December 1992 (1992-12-15), pages 6940 - 6944
THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 276, no. 37, 2001, pages 34355 - 34358

Also Published As

Publication number Publication date
EP2666856A4 (en) 2015-01-14
US20140039034A1 (en) 2014-02-06
EP2666856A1 (en) 2013-11-27
JP5952197B2 (ja) 2016-07-13
JPWO2012098692A1 (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
JP5977394B2 (ja) 脂質に封入された干渉rna
JP6023126B2 (ja) 標的遺伝子の発現を抑制する組成物
JP5801055B2 (ja) 標的遺伝子の発現を抑制する組成物
EP2281041B1 (en) Silencing of csn5 gene expression using interfering rna
JP2011516586A (ja) 核酸送達用の脂質製剤
JP5952197B2 (ja) 標的遺伝子の発現を抑制する組成物
JP5872898B2 (ja) 標的遺伝子の発現を抑制する組成物
US20120207818A1 (en) Composition for suppressing expression of target gene
US20120244210A1 (en) Composition for suppressing expression of target gene
US20150247148A1 (en) Composition for suppressing expression of target gene
WO2010110318A1 (ja) 核酸を含有する動脈硬化性疾患治療剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553542

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011856020

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13980139

Country of ref document: US