WO2012095890A1 - 加入者側装置 - Google Patents

加入者側装置 Download PDF

Info

Publication number
WO2012095890A1
WO2012095890A1 PCT/JP2011/000101 JP2011000101W WO2012095890A1 WO 2012095890 A1 WO2012095890 A1 WO 2012095890A1 JP 2011000101 W JP2011000101 W JP 2011000101W WO 2012095890 A1 WO2012095890 A1 WO 2012095890A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
enable signal
signal
unit
transmission unit
Prior art date
Application number
PCT/JP2011/000101
Other languages
English (en)
French (fr)
Inventor
須田 洋
貞雄 清原
徹哉 横本
Original Assignee
富士通テレコムネットワークス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通テレコムネットワークス株式会社 filed Critical 富士通テレコムネットワークス株式会社
Priority to PCT/JP2011/000101 priority Critical patent/WO2012095890A1/ja
Priority to JP2012552528A priority patent/JPWO2012095890A1/ja
Publication of WO2012095890A1 publication Critical patent/WO2012095890A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control

Definitions

  • the present invention relates to a subscriber side device used in a PON (Passive Optical Network) system.
  • PON Passive Optical Network
  • a PON system is known as a subscriber-type optical fiber network system for subscriber homes such as ordinary homes (see, for example, Patent Document 1).
  • This PON system is provided between a station side device (hereinafter also referred to as OLT (Optical Line Terminal)), a plurality of subscriber side devices (hereinafter referred to as ONU (hereinafter also referred to as Optical Network Unit)), and OLT and ONU.
  • OLT Optical Line Terminal
  • ONU subscriber side devices
  • ONU hereinafter also referred to as Optical Network Unit
  • ONU Optical Network Unit
  • a low-cost optical communication network can be constructed by sharing a single optical fiber connected to the OLT with a plurality of ONUs.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a technique capable of avoiding a situation in which an optical signal is constantly transmitted from an ONU in a PON system.
  • a subscriber apparatus includes an optical transmitter that transmits an optical signal, a controller that outputs an enable signal for controlling the optical transmitter, an enable signal And a stop unit that stops transmission of the optical signal from the optical transmission unit when an abnormality is detected.
  • the stop unit may determine that the enable signal is abnormal when the enable signal is in a valid state for a predetermined time or more.
  • the stop unit may transition the enable signal to an invalid state when detecting an abnormality of the enable signal.
  • the stop unit may cut off the power supply to the optical transmission unit when detecting an abnormality of the enable signal.
  • the optical transmission unit is configured to transmit the optical output power information to the control unit, and the control unit may cut off the power supply to the optical transmission unit when detecting an abnormality in the optical output power .
  • the control unit may determine that the optical output power is abnormal when the optical output power is greater than or equal to a predetermined value despite the invalid state of the enable signal.
  • FIG. 1 is a diagram for explaining a general configuration of a PON system.
  • one backbone optical fiber 16 connected to the OLT 12 is branched into a plurality of branched optical fibers 18-1 to 18-n by an optical splitter 14, and each branched optical fiber 18
  • the ONUs 10-1 to 10-n are connected to the ends of -1 to 18-n.
  • ONUs 10-1 to 10-n are collectively referred to as “ONU10” as appropriate.
  • the branched optical fibers 18-1 to 18-n are collectively referred to as “branched optical fiber 18” as appropriate.
  • the downstream optical signal from the OLT 12 to each ONU 10 is a continuous optical signal multiplexed by time division multiplexing (TDM).
  • TDM time division multiplexing
  • the upstream optical signal from each ONU 10 to the OLT 12 is multiplexed by a TDMA (Time Division Multiple Access) system.
  • TDMA Time Division Multiple Access
  • a guard time is inserted between the optical signals. Therefore, unlike the downstream optical signal from the OLT 12 to each ONU 10 is a continuous optical signal, the upstream optical signal from the ONU 10 to the OLT 12 is a burst-like optical signal in which signal transmission is intermittently performed.
  • FIG. 1 shows a state in which optical signals # 1 to #n transmitted from the ONUs 10-1 to 10-n are multiplexed by the optical splitter 14 and input to the OLT 12 as a burst signal sequence.
  • the transmission order of optical signals of each ONU and the signal band allocated to each ONU are controlled by the dynamic bandwidth allocation function (DBA) of the OLT.
  • DBA dynamic bandwidth allocation function
  • a burst signal string is formed by DBA in the order of optical signals # 4, # 2, #n, # 1, and # 3.
  • the optical signal of another ONU connected to the same backbone optical fiber 16 is transmitted. There is a possibility that all ONUs will be disconnected due to collision with the signal.
  • FIG. 2 is a diagram for explaining the overall configuration of the ONU 10.
  • the ONU 10 includes a WDM element 20, an optical receiver 22, an optical transmitter 24, a controller 26, and a user IF termination unit 28.
  • the downstream optical signal transmitted from the OLT via the branch optical fiber 18 is demultiplexed by the WDM element 20 and then received by the optical receiver 22.
  • the optical receiving unit 22 performs predetermined processing such as photoelectric conversion, amplification, clock extraction, and identification reproduction on the received optical signal, and then sends an electric main signal to the control unit 26.
  • the control unit 26 performs predetermined digital signal processing such as FEC decoding processing on the main signal from the optical reception unit 22, and then outputs it to the user IF termination unit 28.
  • the user IF termination unit 28 performs a predetermined termination process on the main signal and then outputs it to a user IF (Interface). Further, the control unit 26 outputs an Rx enable signal for controlling the optical receiving unit 22 to the optical receiving unit 22.
  • an electric main signal is also input to the user IF termination unit 28 from the user IF.
  • the user IF termination unit 28 inputs this main signal to the control unit 26.
  • the control unit 26 performs predetermined digital signal processing such as FEC code processing on the main signal received from the user IF termination unit 28, and then outputs the main signal to the optical transmission unit 24.
  • the optical transmitter 24 converts the received main signal into an optical signal.
  • the optical signal output from the optical transmitter 24 is output to the branch optical fiber 18 as an upstream optical signal via the WDM element 20.
  • the control unit 26 outputs a Tx enable signal for controlling the optical transmission unit 24 to the optical transmission unit 24. Further, the optical transmission unit 24 outputs the optical output power information output by itself to the control unit 26 as a Tx monitor signal.
  • FIG. 3 is a diagram for explaining the ONU 10 according to the first embodiment of the present invention.
  • functional blocks for optical transmission are mainly shown, and functional blocks for optical reception are not shown.
  • the ONU 10 includes an optical transmission unit 24, a control unit 26 for controlling the optical transmission unit 24, a mono-multi circuit 30, an AND circuit 32, and an optical transmission unit 24. And a power source 34 for supplying driving power to the power source.
  • the mono-multi circuit 30 and the AND circuit 32 function as a “stop unit” that stops transmission of the optical signal from the optical transmission unit 24 when an abnormality of the Tx enable signal is detected.
  • the stopping unit determines that the enable signal is abnormal when the Tx enable signal is in a valid state (voltage high) for a predetermined time (for example, 100 ms) or longer, and shifts the Tx enable signal to an invalid state (voltage low).
  • the output terminal of the Tx enable signal of the control unit 26 is connected to the first input terminal of the AND circuit 32. Further, the output terminal of the Tx enable signal of the control unit 26 is connected to the input terminal B of the mono-multi circuit 30. The output terminal Q of the mono-multi circuit 30 is connected to the second input terminal of the AND circuit 32. The output terminal of the AND circuit 32 is connected to the input terminal of the Tx enable signal of the optical transmitter 24.
  • the control unit 26 enables the enable signal (voltage high) when allowing the optical transmission unit 24 to transmit the optical signal.
  • the mono multi circuit 30 outputs a voltage high from the output terminal Q when detecting a rising edge at which the enable signal changes from low to high, and outputs a voltage low when a predetermined time elapses. Accordingly, when the Tx enable signal is constantly at a voltage high due to a failure of the control unit 26, the output terminal Q of the mono-multi circuit 30 always outputs a voltage low.
  • the output from the mono-multi circuit 30 (voltage low) and the Tx enable signal (voltage high) from the control unit 26 are input to the AND circuit 32, the voltage low from the AND circuit 32 is input to the Tx enable signal of the optical transmission unit 24. Input to the terminal. As a result, the optical signal transmission of the optical transmitter 24 is stopped.
  • the optical transmission unit may continuously emit the optical signal. There is sex. Therefore, as in the present embodiment, when the Tx enable signal is in a valid state (voltage high) for a predetermined time or more using the mono-multi circuit 30 and the AND circuit 32, the Tx enable signal is invalidated (voltage low). ), It is possible to avoid a situation in which an optical signal is always output even when the control unit 26 fails. In the PON system, since there is a limit on the time during which the ONU 10 can transmit an optical signal, there is no problem even if the Tx enable signal is changed from valid to invalid after a predetermined time has elapsed as in this embodiment.
  • FIG. 4 is a diagram for explaining the ONU 10 according to the second embodiment of the present invention. Also in FIG. 4, functional blocks for optical transmission are mainly illustrated, and functional blocks for optical reception are not illustrated.
  • the ONU 10 includes an optical transmission unit 24, a control unit 26 for controlling the optical transmission unit 24, a mono-multi circuit 30, a NAND circuit 36, and an optical transmission unit 24.
  • a power supply 34 for supplying driving power to the power supply 34 and a P-channel FET 38 provided between the power supply 34 and the optical transmission unit 24 are provided.
  • the mono-multi circuit 30, the NAND circuit 36, and the FET 38 function as a “stop unit” that stops the transmission of the optical signal from the optical transmission unit 24 when an abnormality of the Tx enable signal is detected.
  • the stop unit determines that the enable signal is abnormal when the Tx enable signal is in a valid state (voltage high) for a predetermined time (for example, 100 ms) or more, and supplies power from the power supply 34 to the optical transmission unit 24. Shut off.
  • the output terminal of the Tx enable signal of the control unit 26 is connected to the input terminal of the Tx enable signal of the optical transmission unit 24.
  • the output terminal of the Tx enable signal of the control unit 26 is connected to the input terminal B of the mono-multi circuit 30 and the first input terminal of the NAND circuit 36.
  • the inverting output terminal Q * of the mono-multi circuit 30 is connected to the second input terminal of the NAND circuit 36.
  • the output terminal of the NAND circuit 36 is connected to the gate of the FET 38.
  • the source of the FET 38 is connected to the power supply 34, and the drain of the FET 38 is connected to the power input terminal of the optical transmission unit 24.
  • the control unit 26 enables the enable signal (voltage high) when allowing the optical transmission unit 24 to transmit the optical signal.
  • the mono multi circuit 30 outputs a voltage high from the output terminal Q when detecting a rising edge at which the enable signal changes from low to high, and outputs a voltage low when a predetermined time elapses. Therefore, when the Tx enable signal is always high due to a failure of the control unit 26, the inverted output terminal Q * of the mono-multi circuit 30 always outputs high voltage.
  • the output (voltage high) from the inverting output terminal Q * of the mono-multi circuit 30 and the Tx enable signal (voltage high) from the control unit 26 are input to the NAND circuit 36, the voltage low is applied from the NAND circuit 36 to the gate of the FET 38. Is input. As a result, the FET 38 is turned off and the power supply from the power supply 34 to the optical transmission unit 24 is cut off, so that the optical signal transmission of the optical transmission unit 24 is stopped.
  • the FET 38 provided between the power supply 34 and the optical transmission unit 24 is turned off when the Tx enable signal is in a valid state (voltage high) for a predetermined time or more. By doing so, it is possible to avoid a situation in which an optical signal is always output even if the control unit 26 fails.
  • FIG. 5 is a diagram for explaining the ONU 10 according to the third embodiment of the present invention. Also in FIG. 5, functional blocks for optical transmission are mainly shown, and functional blocks for optical reception are not shown.
  • the ONU 10 according to the present embodiment is provided with an FET 38 between the power supply 34 and the optical transmitter 24, and the ON / OFF of the FET 38 is controlled by the controller 26 as shown in FIG. 3. This is different from the ONU according to the first embodiment.
  • the control unit 26 of the present embodiment includes a monitoring unit 40 for monitoring the Tx monitor signal from the optical transmission unit 24.
  • the configuration in which the optical signal output is stopped when the control unit 26 breaks down has been described.
  • the optical transmission unit 24 breaks down and the light emitting state is always in a light emitting state.
  • the optical output of the optical transmitter 24 can be stopped.
  • the Tx monitor signal from the optical transmission unit 24 is input to the monitoring unit 40 of the control unit 26.
  • the monitoring unit 40 periodically monitors the optical output power of the optical transmission unit 24.
  • the monitoring unit 40 determines that the optical output power is abnormal when the optical output power of the optical transmission unit 24 is equal to or greater than a predetermined value even though the Tx enable signal is in an invalid state (voltage low).
  • the monitoring unit 40 detects an abnormality in the optical output power, it outputs a voltage low to the gate of the FET 38 via a GPIO (General / Purpose / Input / Output) terminal, etc., and cuts off the power supply to the optical transmission unit 24. To do. As a result, the optical output transmission of the optical transmitter 24 is stopped.
  • GPIO General / Purpose / Input / Output
  • the ONU 10 According to the ONU 10 according to the present embodiment, it is possible to avoid a situation in which an optical signal is always output not only when the control unit 26 fails but also when the optical transmission unit 24 fails.
  • ONU 10 ONU, 12 OLT, 14 optical splitter, 16 trunk optical fiber, 18 branch optical fiber, 20 WDM element, 22 optical receiver, 24 optical transmitter, 26 control unit, 28 user IF termination unit, 30 mono-multi circuit, 32 AND circuit, 34 power supply, 36 NAND circuit, 38 FET, 40 monitoring unit, 100 PON system.
  • the present invention can be used for an ONU used in a PON system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

 ONU10は、光信号を送信する光送信部24と、光送信部24を制御するためのイネーブル信号を出力する制御部26と、イネーブル信号の異常を検出した場合に、光送信部24からの光信号の送信を停止させるモノマルチ回路30およびAND回路32とを備える。モノマルチ回路30およびAND回路32は、イネーブル信号が所定時間以上有効状態となっている場合に、イネーブル信号が異常であると判定し、イネーブル信号を無効状態に遷移させる。

Description

加入者側装置
 本発明は、PON(Passive Optical Network)システムに用いられる加入者側装置に関する。
 従来より、一般家庭等の加入者宅を対象とした加入者系光ファイバネットワークシステムとして、PONシステムが知られている(例えば、特許文献1参照)。このPONシステムは、局側装置(以下、OLT(Optical Line Terminal)とも呼ぶ)と、複数の加入者側装置(以下、ONU(Optical Network Unitとも呼ぶ)と、OLTとONUの間に設けられた光ファイバと、光ファイバを分岐する光スプリッタとを備える。PONシステムでは、OLTに接続された1本の光ファイバを複数のONUで共用することにより、低コストな光通信ネットワークを構築できる。
特開2007-173908号公報
 ところで、PONシステムにおいては、例えばある1つのONUが故障して、光信号を常時送信するモードになると、該光信号が同じ光ファイバに接続された他のONUからの光信号と衝突し、全てのONUがリンク断となる可能性がある。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、PONシステムにおいて、ONUから光信号が常時送信される事態を回避できる技術を提供することにある。
 上記課題を解決するために、本発明のある態様の加入者側装置は、光信号を送信する光送信部と、光送信部を制御するためのイネーブル信号を出力する制御部と、イネーブル信号の異常を検出した場合に、光送信部からの光信号の送信を停止させる停止部とを備える。
 停止部は、イネーブル信号が所定時間以上有効状態となっている場合に、イネーブル信号が異常であると判定してもよい。
 停止部は、イネーブル信号の異常を検出した場合に、イネーブル信号を無効状態に遷移させてもよい。
 停止部は、イネーブル信号の異常を検出した場合に、光送信部への電力供給を遮断してもよい。
 光送信部は、光出力パワー情報を制御部に送信するよう構成されており、制御部は、該光出力パワーの異常を検出した場合に、光送信部への電力供給を遮断してもよい。
 制御部は、イネーブル信号を無効状態としているにも拘わらず、光出力パワーが所定値以上である場合、光出力パワーが異常であると判定してもよい。
 なお、以上の構成要素の任意の組合せ、本発明の表現を装置、方法、システム、プログラム、プログラムを格納した記録媒体などの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、PONシステムにおいて、ONUから光信号が常時送信される事態を回避できる。
PONシステムの一般的な構成を説明するための図である。 ONUの全体的な構成を説明するための図である。 本発明の第1実施形態に係るONUを説明するための図である。 本発明の第2実施形態に係るONUを説明するための図である。 本発明の第3実施形態に係るONUを説明するための図である。
 図1は、PONシステムの一般的な構成を説明するための図である。図1に示すように、PONシステム100は、OLT12に接続された1本の基幹光ファイバ16が光スプリッタ14により複数の分岐光ファイバ18-1~18-nに分岐され、各分岐光ファイバ18-1~18-nの端部にONU10-1~10-nが接続された構成となっている。なお、以下においては、ONU10-1~10-nを総称して適宜「ONU10」と呼ぶ。また、
分岐光ファイバ18-1~18-nを総称して適宜「分岐光ファイバ18」と呼ぶ。
 PONシステム100において、OLT12から各ONU10への下り光信号は、時分割多重(TDM:Time Division Multiplexing)により多重化された連続的な光信号である。一方、各ONU10からOLT12への上り光信号は、TDMA(Time Division Multiple Access)方式により多重化される。TDMAでは、各ONU10からの光信号が衝突するのを防ぐため、各光信号間にガードタイムと呼ばれる無信号区間が挿入される。そのため、OLT12から各ONU10への下り光信号が連続的な光信号となるのと異なり、ONU10からOLT12への上り光信号は、信号の送出が間欠的に行われるバースト状の光信号となる。
 図1には、各ONU10-1~10-nから送信された光信号♯1~♯nが光スプリッタ14により多重化され、バースト信号列としてOLT12に入力される様子が示されている。
 PONシステムにおいては、一般的に、OLTの動的帯域割当機能(DBA)により、各ONUの光信号の送信順序および各ONUに割り当てる信号帯域が制御される。図1では、DBAにより、光信号♯4、♯2、♯n、♯1、♯3の順でバースト信号列が構成されている。
 図1に示すようなPONシステム100においては、例えばある1つのONUが故障して、光信号を常時送信するモードになると、該光信号が同じ基幹光ファイバ16に接続された他のONUの光信号と衝突し、全てのONUがリンク断となる可能性がある。
 図2は、ONU10の全体的な構成を説明するための図である。図2に示すように、ONU10は、WDM素子20と、光受信部22と、光送信部24と、制御部26と、ユーザIF終端部28とを備える。
 OLTから分岐光ファイバ18を介して伝送された下り光信号は、WDM素子20により分波された後、光受信部22に受信される。光受信部22は、受信した光信号に対し、光電変換、増幅、クロック抽出、識別再生などの所定の処理を施した後、電気の主信号を制御部26に送る。制御部26は、光受信部22からの主信号に対し、FECデコード処理などの所定のデジタル信号処理を行った後、ユーザIF終端部28に出力する。ユーザIF終端部28は、主信号に所定の終端処理を施した後、ユーザIF(Interface)に出力する。また、制御部26は、光受信部22を制御するためのRxイネーブル信号を光受信部22に出力する。
 また、ユーザIF終端部28には、ユーザIFからも電気の主信号が入力される。ユーザIF終端部28は、この主信号を制御部26に入力する。制御部26は、ユーザIF終端部28から受信した主信号に対し、FECコード処理などの所定のデジタル信号処理を行った後、主信号を光送信部24に出力する。光送信部24は、受信した主信号を光信号に変換する。光送信部24から出力された光信号は、WDM素子20を介して上り光信号として分岐光ファイバ18に出力される。
 制御部26は、光送信部24を制御するためのTxイネーブル信号を光送信部24に出力する。また、光送信部24は、自身が出力した光出力パワー情報をTxモニタ信号として制御部26に出力する。
 図3は、本発明の第1実施形態に係るONU10を説明するための図である。図3では、主に光送信用の機能ブロックを図示しており、光受信用の機能ブロックは図示を省略している。
 図3に示すように、本実施形態に係るONU10は、光送信部24と、光送信部24を制御するための制御部26と、モノマルチ回路30と、AND回路32と、光送信部24に駆動電力を供給するための電源34とを備える。本実施形態において、モノマルチ回路30およびAND回路32は、Txイネーブル信号の異常を検出した場合に、光送信部24からの光信号の送信を停止させる「停止部」として機能する。この停止部は、Txイネーブル信号が所定時間(例えば100ms)以上有効状態(電圧ハイ)となっている場合に、イネーブル信号が異常であると判定し、Txイネーブル信号を無効状態(電圧ロー)移させる。
 図3に示すように、制御部26のTxイネーブル信号の出力端子は、AND回路32の第1入力端子に接続されている。また、制御部26のTxイネーブル信号の出力端子は、モノマルチ回路30の入力端子Bに接続されている。モノマルチ回路30の出力端子Qは、AND回路32の第2入力端子に接続されている。AND回路32の出力端子は、光送信部24のTxイネーブル信号の入力端子に接続されている。
 制御部26は、光送信部24に光信号送信を許可する場合、イネーブル信号を有効(電圧ハイ)にする。モノマルチ回路30は、イネーブル信号がローからハイになる立ち上がりエッジを検出すると、出力端子Qから電圧ハイを出力し、所定時間が経過すると電圧ローを出力する。従って、制御部26の故障により常時Txイネーブル信号が電圧ハイとなった場合、モノマルチ回路30の出力端子Qは常時電圧ローを出力する。モノマルチ回路30からの出力(電圧ロー)と制御部26からのTxイネーブル信号(電圧ハイ)がAND回路32に入力されると、AND回路32から電圧ローが光送信部24のTxイネーブル信号入力端子に入力される。その結果、光送信部24の光信号送信が停止される。
 制御部から光送信部に直接Txイネーブル信号を出力した場合、制御部の故障によりTxイネーブル信号が常時有効(電圧ハイ)となってしまうと、光送信部は光信号を常時発出し続けてる可能性がある。そこで、本実施形態のように、モノマルチ回路30とAND回路32を用いて、Txイネーブル信号が所定時間以上有効状態(電圧ハイ)となっている場合に、Txイネーブル信号を無効状態(電圧ロー)とすることにより、制御部26が故障した場合であっても、光信号が常時出力される事態を回避できる。なお、PONシステムにおいては、ONU10が光信号を送信できる時間に限度があるので、本実施形態のように所定時間経過後にTxイネーブル信号が有効から無効に遷移するよう構成しても問題ない。
 図4は、本発明の第2実施形態に係るONU10を説明するための図である。図4においても、主に光送信用の機能ブロックを図示しており、光受信用の機能ブロックは図示を省略している。
 図4に示すように、本実施形態に係るONU10は、光送信部24と、光送信部24を制御するための制御部26と、モノマルチ回路30と、NAND回路36と、光送信部24に駆動電力を供給するための電源34と、電源34と光送信部24の間に設けられたPチャネルFET38とを備える。本実施形態において、モノマルチ回路30、NAND回路36、およびFET38は、Txイネーブル信号の異常を検出した場合に、光送信部24からの光信号の送信を停止させる「停止部」として機能する。この停止部は、Txイネーブル信号が所定時間(例えば100ms)以上有効状態(電圧ハイ)となっている場合に、イネーブル信号が異常であると判定し、電源34から光送信部24への電力供給を遮断する。
 図4に示すように、制御部26のTxイネーブル信号の出力端子は、光送信部24のTxイネーブル信号の入力端子に接続されている。また、制御部26のTxイネーブル信号の出力端子は、モノマルチ回路30の入力端子Bと、NAND回路36の第1入力端子に接続されている。モノマルチ回路30の反転出力端子Q*は、NAND回路36の第2入力端子に接続されている。NAND回路36の出力端子は、FET38のゲートに接続されている。また、FET38のソースは電源34に接続されており、FET38のドレインは光送信部24の電力入力端子に接続されている。
 制御部26は、光送信部24に光信号送信を許可する場合、イネーブル信号を有効(電圧ハイ)にする。モノマルチ回路30は、イネーブル信号がローからハイになる立ち上がりエッジを検出すると、出力端子Qから電圧ハイを出力し、所定時間が経過すると電圧ローを出力する。従って、制御部26の故障により常時Txイネーブル信号が電圧ハイとなった場合、モノマルチ回路30の反転出力端子Q*は常時電圧ハイを出力する。モノマルチ回路30の反転出力端子Q*からの出力(電圧ハイ)と制御部26からのTxイネーブル信号(電圧ハイ)がNAND回路36に入力されると、NAND回路36から電圧ローがFET38のゲートに入力される。その結果、FET38がオフとなり、電源34から光送信部24への電力供給が遮断されるので、光送信部24の光信号送信が停止される。
 以上説明したように、本実施形態に係るONU10では、Txイネーブル信号が所定時間以上有効状態(電圧ハイ)となっている場合に、電源34と光送信部24の間に設けられたFET38をオフとすることにより、制御部26が故障した場合であっても光信号が常時出力される事態を回避できる。
 図5は、本発明の第3実施形態に係るONU10を説明するための図である。図5においても、主に光送信用の機能ブロックを図示しており、光受信用の機能ブロックは図示を省略している。
 図4に示すように、本実施形態に係るONU10は、電源34と光送信部24の間にFET38が設けられ、該FET38のオン/オフが制御部26により制御される点が図3に示す第1実施形態に係るONUと異なっている。また、本実施形態の制御部26は、光送信部24からのTxモニタ信号を監視するための監視部40を備える。
 上述の実施形態では、制御部26が故障した場合に光信号出力を停止する構成について説明したが、本実施形態ではこれに加えて、光送信部24が故障して常時発光状態となったときに、光送信部24の光出力を停止できる構成となっている。
 モノマルチ回路30およびAND回路32を用いたTxイネーブル信号異常時の光出力停止については、第1実施形態と同様なので、説明を省略する。
 図5に示すように、光送信部24からのTxモニタ信号は、制御部26の監視部40に入力される。監視部40は、光送信部24の光出力パワーを定期的にモニタしている。監視部40は、Txイネーブル信号を無効状態(電圧ロー)としているにも拘わらず、光送信部24の光出力パワーが所定値以上である場合、光出力パワーが異常であると判定する。そして、監視部40は、光出力パワーの異常を検出した場合、GPIO(General Purpose Input/Output)端子などを介してFET38のゲートに電圧ローを出力し、光送信部24への電力供給を遮断する。その結果、光送信部24の光出力送信が停止される。
 以上説明したように、本実施形態に係るONU10によれば、制御部26の故障時だけでなく、光送信部24の故障時においても、光信号が常時出力される事態を回避できる。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せによりいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 10 ONU、 12 OLT、 14 光スプリッタ、 16 基幹光ファイバ、 18 分岐光ファイバ、 20 WDM素子、 22 光受信部、 24 光送信部、 26 制御部、 28 ユーザIF終端部、 30 モノマルチ回路、 32 AND回路、 34 電源、 36 NAND回路、 38 FET、 40 監視部、 100 PONシステム。
 本発明は、PONシステムに用いられるONUに利用できる。

Claims (6)

  1.  PONシステムの加入者側装置であって、
     光信号を送信する光送信部と、
     前記光送信部を制御するためのイネーブル信号を出力する制御部と、
     イネーブル信号の異常を検出した場合に、前記光送信部からの光信号の送信を停止させる停止部と、
     を備えることを特徴とする加入者側装置。
  2.  前記停止部は、イネーブル信号が所定時間以上有効状態となっている場合に、イネーブル信号が異常であると判定することを特徴とする請求項1に記載の加入者側装置。
  3.  前記停止部は、イネーブル信号の異常を検出した場合に、イネーブル信号を無効状態に遷移させることを特徴とする請求項2に記載の加入者側装置。
  4.  前記停止部は、イネーブル信号の異常を検出した場合に、前記光送信部への電力供給を遮断することを特徴とする請求項2に記載の加入者側装置。
  5.  前記光送信部は、光出力パワー情報を前記制御部に送信するよう構成されており、
     前記制御部は、該光出力パワーの異常を検出した場合に、前記光送信部への電力供給を遮断することを特徴とする請求項1から4のいずれかに記載の加入者側装置。
  6.  前記制御部は、イネーブル信号を無効状態としているにも拘わらず、光出力パワーが所定値以上である場合、光出力パワーが異常であると判定することを特徴とする請求項5に記載の加入者側装置。
PCT/JP2011/000101 2011-01-12 2011-01-12 加入者側装置 WO2012095890A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/000101 WO2012095890A1 (ja) 2011-01-12 2011-01-12 加入者側装置
JP2012552528A JPWO2012095890A1 (ja) 2011-01-12 2011-01-12 加入者側装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/000101 WO2012095890A1 (ja) 2011-01-12 2011-01-12 加入者側装置

Publications (1)

Publication Number Publication Date
WO2012095890A1 true WO2012095890A1 (ja) 2012-07-19

Family

ID=46506825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000101 WO2012095890A1 (ja) 2011-01-12 2011-01-12 加入者側装置

Country Status (2)

Country Link
JP (1) JPWO2012095890A1 (ja)
WO (1) WO2012095890A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222554A (ja) * 2011-04-07 2012-11-12 Mitsubishi Electric Corp 通信システム、親局装置および子局装置の動作状態検出方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359423A (ja) * 2001-05-31 2002-12-13 Fujikura Ltd 光tdm/tdma伝送システムの子局装置
JP2007173908A (ja) * 2005-12-19 2007-07-05 Fujitsu Access Ltd バースト光信号受信装置及びその利得設定方法
JP2010004356A (ja) * 2008-06-20 2010-01-07 Sumitomo Electric Ind Ltd 光通信システムに設置される監視装置及び監視回路

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318296A (ja) * 1989-06-15 1991-01-25 Nec Corp パルスモーター駆動回路
JP2007194983A (ja) * 2006-01-20 2007-08-02 Oki Electric Ind Co Ltd パッシブ光ネットワーク

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359423A (ja) * 2001-05-31 2002-12-13 Fujikura Ltd 光tdm/tdma伝送システムの子局装置
JP2007173908A (ja) * 2005-12-19 2007-07-05 Fujitsu Access Ltd バースト光信号受信装置及びその利得設定方法
JP2010004356A (ja) * 2008-06-20 2010-01-07 Sumitomo Electric Ind Ltd 光通信システムに設置される監視装置及び監視回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222554A (ja) * 2011-04-07 2012-11-12 Mitsubishi Electric Corp 通信システム、親局装置および子局装置の動作状態検出方法

Also Published As

Publication number Publication date
JPWO2012095890A1 (ja) 2014-06-09

Similar Documents

Publication Publication Date Title
US10244295B2 (en) Passive optical network communications method, apparatus and system
CA2946535C (en) Apparatus and system for managing wavelengths in optical networks
EP2489201B1 (en) Optical network and method for processing data in an optical network
US9391734B2 (en) Network system
US8774623B2 (en) Passive optical network system and method for detecting fault in optical network terminal
EP2779498B1 (en) Control timing synchronization method, optical transmission system and apparatus
WO2009092356A3 (de) Verfahren zur protection eines passiven optischen übertragungsnetzes sowie passives optisches übertragungsnetz mit entsprechendem protection-mechanismus
JP5261164B2 (ja) 光伝送システム
JP4129028B2 (ja) 光伝送システム及び光中継装置
US9287981B2 (en) Station-side apparatus and PON system
KR100765471B1 (ko) 광망 종단 장치와 광 회선 단말장치 및 광망 종단장치의 광송신단 제어방법
JP4111163B2 (ja) 異常光検出遮断装置
JP2009260882A (ja) 復号化装置及び光通信システムの宅内装置
WO2012095890A1 (ja) 加入者側装置
KR101088630B1 (ko) 광 망 종단장치 및 광 망 종단장치가 광 송신 오류를 검출하는 방법
JP2012129942A (ja) 光通信システム
JP4129029B2 (ja) 光伝送システム及び光中継装置
JP2016143950A (ja) Ponシステム
JP5133277B2 (ja) 光加入者線終端装置および光加入者システム
KR100925678B1 (ko) 광 회선 단말 장치 및 광망 종단 장치
KR100952875B1 (ko) 광망 종단장치와 그 장치에서의 광 송신단 제어방법
EP2148454A1 (en) PON redundancy system
JP4768474B2 (ja) 冗長化端局装置
KR100934467B1 (ko) 분배망에서 발생하는 광선로 장애의 자기 복구가 가능한 광가입자망
KR100889912B1 (ko) 광 가입자 망 구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012552528

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855743

Country of ref document: EP

Kind code of ref document: A1