WO2012094907A1 - 信噪比反馈方法和装置 - Google Patents

信噪比反馈方法和装置 Download PDF

Info

Publication number
WO2012094907A1
WO2012094907A1 PCT/CN2011/080307 CN2011080307W WO2012094907A1 WO 2012094907 A1 WO2012094907 A1 WO 2012094907A1 CN 2011080307 W CN2011080307 W CN 2011080307W WO 2012094907 A1 WO2012094907 A1 WO 2012094907A1
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
signal
noise ratio
step size
space
Prior art date
Application number
PCT/CN2011/080307
Other languages
English (en)
French (fr)
Inventor
李云波
李斌
伍天宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012094907A1 publication Critical patent/WO2012094907A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter

Definitions

  • the present invention relates to the field of communications, and in particular, to a signal to noise ratio feedback method and apparatus. Background technique
  • the transmitting end uses a beamforming technique to precode data, and transmits the data to the receiving end through a plurality of space-time streams.
  • the receiving end needs to feed back the signal to noise ratio (SNR) of each space-time stream to the transmitting end, so that the transmitting end allocates different transmission powers for each space-time stream according to the SNR.
  • SNR signal to noise ratio
  • the SNR of a space-time stream may include an average signal-to-noise ratio (SNR-aver) of all space carriers in a space-time stream and a per-carrier signal-to-noise ratio (PT-S R ) of a space-time stream, etc. ⁇ Feedback the SNR of each space-time stream in equal bits and equal steps. For example: 8 Use 8 bits ( -10dB to 53.75dB) in 0.25dB steps to feed back the SNR of each space-time stream. 4 Use 4 bits (-8dB to 7dB) in steps of ldB. PT-SNR for each space-time stream.
  • SNR-aver average signal-to-noise ratio
  • PT-S R per-carrier signal-to-noise ratio
  • ⁇ feedback SNR with equal number of bits and equal steps may cause a problem of wasted feedback overhead.
  • PT-SNR is fed with 4 bits in steps of ldB, which can cover a dynamic range of 16 dB.
  • the SNR distribution of the first spatiotemporal stream is 4.48dB, much smaller than the dynamic range that the standard can feed back.
  • Embodiments of the present invention provide a signal to noise ratio feedback method and apparatus, which can reduce the feedback overhead of the signal to noise ratio and save communication resources occupied by the feedback signal to noise ratio.
  • a signal to noise ratio feedback method including: determining a signal to noise ratio distribution range of a space time stream; determining a feedback bit number or a feedback step size or a feedback bit number and a feedback step size according to the signal to noise ratio distribution range; Transmitting the signal to noise ratio of the space-time stream by using the feedback bit number, or transmitting the signal-to-noise ratio of the spatio-temporal stream by using the feedback step size, or using the feedback bit number and the feedback step The signal to noise ratio of the spatiotemporal stream is transmitted long.
  • a signal to noise ratio feedback device including:
  • a first determining module configured to determine a signal to noise ratio distribution range of the space-time stream
  • a second determining module configured to determine, according to the signal to noise ratio distribution range determined by the first determining module, a feedback bit number or a feedback step size or a feedback bit number and a feedback step size;
  • a sending module configured to send a signal to noise ratio of the space-time stream by using a feedback bit number determined by the second determining module, or send the space-time stream by using a feedback step determined by the second determining module
  • the signal to noise ratio, or the signal to noise ratio of the spatiotemporal stream is transmitted by using the feedback bit number determined by the second determining module and the feedback step size.
  • the signal-to-noise ratio feedback method and apparatus can determine the number of feedback bits and/or the feedback step size according to the signal-to-noise ratio distribution range of the space-time stream, and transmit the number of feedback bits and/or the feedback step size.
  • the signal-to-noise ratio of the space-time stream reduces the feedback overhead of the signal-to-noise ratio, saves the communication resources occupied by the feedback signal-to-noise ratio, and solves the prior art, using equal bit numbers and equal step feedback SNR. The problem of large feedback overhead.
  • FIG. 1 is a flowchart of a signal to noise ratio feedback method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram 1 of a signal to noise ratio feedback apparatus according to an embodiment of the present invention
  • FIG. 3 is a second determining module in the signal to noise ratio feedback device provided by the embodiment of the present invention shown in FIG. Schematic diagram of structure one;
  • FIG. 4 is a second schematic structural diagram of a second determining module in the signal to noise ratio feedback apparatus provided by the embodiment of the present invention shown in FIG. 2;
  • FIG. 5 is a schematic structural diagram 2 of a signal to noise ratio feedback apparatus according to an embodiment of the present invention. detailed description
  • the embodiment of the present invention provides a signal-to-noise ratio feedback method and apparatus.
  • a signal-to-noise ratio (SNR) method is used.
  • a beamformee (beamformee) performs SNR feedback on a beamformer. This process is described in the processing flow of the beam receiver.
  • the signal to noise ratio feedback method provided by the embodiment of the present invention includes:
  • Step 101 Determine a range of SNR distribution of the space-time stream.
  • the SNR of the space-time stream may include: an average signal-to-noise ratio (SNR-aver) of the space-time stream on all sub-carriers, or a per-carrier signal-to-noise ratio (PT-S R ) of the space-time stream, or both of the above
  • the PT-SNR is the difference between the actual SNR of each subcarrier and the SNR of the spacetime stream when the PT-SNR is empty.
  • the SNR of the space-time stream is PT-SNR as an example.
  • the dynamic range of the SNR of the space-time stream is related to the number of total space-time streams and the position of the space-time stream in the total space-time stream.
  • the number of antennas is at most 8, corresponding to The total number of space-time streams is 1-8.
  • Table 1 shows the range of SNR distribution range of each space-time stream when the total number of space-time streams is 1-8.
  • step 101 may determine the number of total space-time streams according to the feedback space-time stream number indication bit included in the signal-to-noise ratio feedback request frame sent by the communication peer, and determine the space time according to the antenna position of the space-time stream.
  • the position of the stream in the total space time stream, the range of the SNR distribution of the space time stream is determined according to the number of total space time streams and the position lookup table 1 of the space time stream in the total space time stream.
  • Step 102 Determine a feedback bit number or a feedback step size or a feedback bit number and a feedback step size according to the SNR distribution range.
  • the initial number of bits and the initial step size of the SNR for the feedback of the space-time stream may be set in advance.
  • the initial bit number is 4 and the initial step size is ldB as an example for actual use.
  • the initial number of bits and the initial step size can be set to other values according to communication requirements, and details are not described herein again.
  • the specific step of determining the number of feedback bits according to the SNR distribution range may include: first, obtaining an initial step size of the SNR for feeding back the space-time stream, and then determining the number of feedback bits according to the initial step size and the SNR distribution range.
  • the following method (1) can be used to determine the number of feedback bits:
  • the number of spatiotemporal flows is N, and N is an integer greater than or equal to 2 and less than or equal to 8
  • the number of feedback bits corresponding to the spatiotemporal stream, and all the bis are not all equal.
  • the step of determining, by the step 102, the feedback step size according to the SNR distribution range may include: first, obtaining an initial number of bits for feeding back the SNR of the space-time stream, and then determining according to the initial number of bits and the SNR distribution range.
  • the feedback step size specifically, the embodiment can determine the number of feedback bits by using the following formula (2):
  • X is the SNR distribution range
  • d is the feedback step size.
  • the SNR feedback step size of each space-time stream obtained by using the above formula (2) and the space-time stream SNR distribution range shown in Table 1 is shown in Table 3. It should be noted that the feedback step size shown in Table 3 is the result of quantizing the feedback step size obtained by the equation (2).
  • step 102 may modify the original bit number or the original step size only according to the SNR distribution range, or modify the original bit number and the original step size according to the SNR distribution range.
  • step 102 may further include the step of acquiring feedback mode control information.
  • the feedback mode control information is used to indicate a change rule of the number of feedback bits and the feedback step size.
  • the feedback mode control information may be pre-configured locally, or the feedback mode control information sent by the communication peer end may be received.
  • the feedback mode control information may be represented in any achievable form.
  • the feedback mode control information may be represented by 2 bits, where the first bit is used to indicate a change rule of the number of feedback bits, and when the bit is 1, it indicates that the feedback bit is determined according to the SNR distribution range, when the bit is 0, indicating that the feedback bit is the initial bit; the second ratio Specifically used to indicate the change rule of the feedback step size. When the bit is 1, it indicates that the feedback step size is determined according to the SNR distribution range. When the bit is 0, it indicates that the feedback step size is the initial step size. Each case is not described here.
  • step 102 can determine the number of feedback bits and / feedback step size according to the SNR distribution range and the feedback mode control information.
  • Step 103 Send the SNR of the space-time stream by using the feedback bit number, or send the SNR of the spatio-temporal stream by using the feedback step size, or send the SNR of the spatio-temporal stream by using the feedback bit number and the feedback step size.
  • step 103 uses the feedback bit number and the original step size to transmit the SNR of the space-time stream, or step 103 uses the original bit.
  • the number and feedback step size send the SNR of the space-time stream.
  • the signal-to-noise ratio feedback method provided by the embodiment of the present invention is capable of determining a feedback bit number and/or a feedback step size according to a signal to noise ratio distribution range of a space-time stream, and transmitting the number of the feedback bit number and/or the feedback step size.
  • the signal-to-noise ratio of the space-time stream reduces the feedback overhead of the signal-to-noise ratio, saves the communication resources occupied by the feedback signal-to-noise ratio, and solves the problem of using the equal number of bits and the equal step feedback SNR of the prior art, and the feedback overhead Bigger problem
  • the feedback of the average signal to noise ratio can also be processed according to the above method.
  • the beam receiver performs SNR feedback to the beamformer.
  • the beam receiver can be either an access point (AP) or a station, and the beamformer can be either an access point or a workstation.
  • SU-MIMO single-user multi-antenna system
  • the beam receiver is a workstation and the beamformer is an access point.
  • the signal to noise ratio feedback device of the embodiment of the present invention may be a beam receiver.
  • the embodiment of the present invention further provides a signal-to-noise ratio feedback device 20, including: a first determining module 201, configured to determine a signal to noise ratio distribution range of a space-time stream;
  • the SNR of the space-time stream may include: an average signal-to-noise ratio (SNR_average) of the space-time stream in all sub-carriers, and/or a space-time stream in a per-carrier signal-to-noise ratio (PT-S R ), etc.; further, The bit resource occupied by the transmission is saved.
  • the PT-SNR is empty, the difference between the actual SNR of each subcarrier and the SNR-average of the space-time stream.
  • the SNR of the space-time stream is mainly PT-SNR as an example.
  • the second determining module 202 is configured to determine, according to the signal to noise ratio distribution range determined by the first determining module 201, a feedback bit number or a feedback step size or a feedback bit number and a feedback step size;
  • the sending module 203 is configured to send the signal to noise ratio of the space-time stream by using the number of feedback bits determined by the second determining module 202, or send the signal to noise ratio of the spatiotemporal stream by using the feedback step determined by the second determining module 202. Or, the signal-to-noise ratio of the spatiotemporal stream is sent by using the feedback bit number determined by the second determining module 202 and the feedback step size.
  • the second determining module 202 may include:
  • the first obtaining submodule 2021 is configured to obtain an initial step for feeding back a signal to noise ratio of the space-time stream;
  • the first determining sub-module 2022 is configured to determine the number of feedback bits according to the initial step acquired by the first obtaining sub-module 2021 and the signal-to-noise ratio distribution range determined by the first determining module 201.
  • the second determining module 202 may include:
  • the second obtaining sub-module 2023 is configured to obtain an initial number of bits for feeding back a signal-to-noise ratio of the space-time stream.
  • the second determining sub-module 2024 is configured to determine, according to the initial number of bits acquired by the second acquiring sub-module 2023, and the first determining.
  • the signal to noise ratio distribution range determined by module 201 determines the feedback step size.
  • the SNR feedback device 50 of the embodiment of the present invention may further include: an obtaining module 204, configured to acquire feedback mode control information, where the feedback mode control information is used to indicate a feedback bit number and a feedback step size.
  • an obtaining module 204 configured to acquire feedback mode control information, where the feedback mode control information is used to indicate a feedback bit number and a feedback step size.
  • the second determining module 202 is further configured to determine the feedback bit number and/or the feedback step size according to the signal to noise ratio distribution range determined by the first determining module 201 and the feedback mode control information acquired by the obtaining module 204.
  • a plurality of modules divided by the signal-to-noise ratio feedback device provided by the embodiment may also be implemented by a module or a function module having similar functions to the plurality of modules, and details are not described herein.
  • the signal-to-noise ratio feedback apparatus is capable of determining a feedback bit number and/or a feedback step size according to a signal to noise ratio distribution range of a space-time stream, and transmitting the number of the feedback bit number and/or the feedback step size.
  • the signal-to-noise ratio of the space-time stream reduces the feedback overhead of the signal-to-noise ratio, saves the communication resources occupied by the feedback signal-to-noise ratio, and solves the problem of using the equal number of bits and the equal step feedback SNR of the prior art, and the feedback overhead Bigger problem
  • the signal to noise ratio feedback method and apparatus provided by the embodiments of the present invention can be applied to a multi-antenna system such as MIMO.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented directly in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Abstract

本发明公开一种信噪比反馈方法和装置,涉及通信领域。以解决信噪比的反馈误差较大的问题。确定空时流的信噪比分布范围;根据所述信噪比分布范围确定反馈比特数或反馈步长或反馈比特数及反馈步长;采用反馈比特数发送空时流的信噪比,或者,采用反馈步长发送时空流的信噪比,或者,采用反馈比特数和反馈步长发送时空流的信噪比。本发明实施例可以应用在如MIMO等多天线系统中。

Description

信噪比反馈方法和装置 本申请要求了 2011年 01月 11 日提交的, 申请号为 201110004983.2, 发 明名称为 "信噪比反馈方法和装置" 的中国申请的优先权, 其全部内容通 过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种信噪比反馈方法和装置。 背景技术
在多输入多输出 ( multiple input multiple output , MIMO )系统中, 发送端 釆用波束成形技术对数据进行预编码, 通过多个空时流将所述数据传输给接 收端。 接收端需要向发送端反馈每个空时流的信噪比 ( Signal to Noise Ratio, SNR ), 以使得发送端根据所述 SNR为每个空时流分配不同的传输功率。
在 MIMO系统中,空时流的 SNR可以包括空时流在所有子载波的平均信 噪比( SNR— average )和空时流的每载波信噪比( PT-S R )等, 现有技术釆用 相等比特数和相等步长的方式反馈每个空时流的 SNR。 例如: 釆用 8 比特 ( -10dB至 53.75dB ), 步长为 0.25dB的方式反馈每个空时流的 SNR— average; 釆用 4比特( -8dB至 7dB ), 步长为 ldB的方式反馈每个空时流的 PT-SNR。
然而, 由于 MIMO系统中每个空时流的 SNR动态范围差异较大, 釆 用相等比特数和相等步长的方式反馈 SNR, 可能会造成反馈开销浪费 的问题。 例如: 按照现有技术 PT - SNR以 4比特, 步长为 ldB进行反 馈, 可以覆盖 16dB的动态范围, 而当 MIMO釆用 8个时空流传输的时 候, 第一个时空流的 SNR分布范围为 4.48dB , 远小于标准可以反馈的 动态范围。
发明内容
本发明的实施例提供一种信噪比反馈方法和装置, 能够减小信噪比的反 馈开销, 节省反馈信噪比占用的通信资源。 一方面, 提供了一种信噪比反馈方法, 包括: 确定空时流的信噪比分布 范围; 根据所述信噪比分布范围确定反馈比特数或反馈步长或反馈比特数及 反馈步长; 釆用所述反馈比特数发送所述空时流的信噪比, 或者, 釆用所述 反馈步长发送所述时空流的信噪比, 或者, 釆用所述反馈比特数和反馈步长 发送所述时空流的信噪比。
另一方面, 提供了一种信噪比反馈装置, 包括:
第一确定模块, 用于确定空时流的信噪比分布范围;
第二确定模块, 用于根据所述第一确定模块确定的信噪比分布范围确定 反馈比特数或反馈步长或反馈比特数及反馈步长;
发送模块, 用于釆用所述第二确定模块确定的反馈比特数发送所述空时 流的信噪比, 或者, 釆用所述第二确定模块确定的反馈步长发送所述时空流 的信噪比, 或者, 釆用所述第二确定模块确定的反馈比特数和反馈步长发送 所述时空流的信噪比。
本发明实施例提供的信噪比反馈方法和装置, 能够根据空时流的信噪比 分布范围确定反馈比特数和 /或反馈步长, 并釆用该反馈比特数和 /或反馈步长 发送所述空时流的信噪比, 从而减小了信噪比的反馈开销, 节省反馈信噪比 占用的通信资源, 解决了现有技术釆用相等比特数和相等步长反馈信噪比, 反馈开销较大的问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的信噪比反馈方法流程图;
图 2为本发明实施例提供的信噪比反馈装置结构示意图一;
图 3为图 2所示的本发明实施例提供的信噪比反馈装置中第二确定模块 的结构示意图一;
图 4为图 2所示的本发明实施例提供的信噪比反馈装置中第二确定模块 的结构示意图二;
图 5为本发明实施例提供的信噪比反馈装置结构示意图二。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
为了解决信噪比的反馈误差较大的问题, 本发明实施例提供一种信噪比 反馈方法和装置。
本实施例发送信噪比( Signal-to-noise ratio, SNR )的方法, 在 WLAN系 统中是波束接收器(beamformee ) 向波束成型器 ( beamformer )进行 SNR反 馈。 此流程是以波束接收器的处理流程进行描述。 如图 1 所示, 本发明实施 例提供的信噪比反馈方法, 包括:
步骤 101 , 确定空时流的 SNR分布范围。
其中, 空时流的 SNR 可以包括: 空时流在所有子载波的平均信噪比 ( SNR— average ), 或空时流的每载波信噪比 ( PT-S R )或者上述两者都包括 等; 进一步地, 为了节省传输占用的比特资源, 在本实施例中, PT-SNR为空 时流在每个子载波的实际 SNR与该空时流的 SNR— average的差值。 在本实施 例中, 主要以空时流的 SNR是 PT-SNR为例进行说明。
空时流的 SNR动态范围与总空时流的个数和该空时流在总空时流中的位 置有关, 在多天线系统(如 MIMO系统) 中, 天线个数最多为 8, 对应的总 空时流个数为 1-8,表 1示出了总空时流个数为 1-8的情况下,各空时流的 SNR 分布范围大小。
表 1 : (单位: dB )
Figure imgf000005_0001
在本实施例中, 步骤 101 可以根据通信对端发送的信噪比反馈请求帧包 括的反馈空时流数目指示位确定总空时流的个数, 根据发送空时流的天线位 置确定空时流在总空时流中的位置, 根据总空时流的个数和空时流在总空时 流中的位置查找表 1确定该空时流的 SNR分布范围。
步骤 102, 根据 SNR分布范围确定反馈比特数或反馈步长或反馈比特数 及反馈步长。
在本实施例中, 可以预先设置用于反馈空时流的 SNR的初始比特数和初 始步长, 本实施例以初始比特数是 4 , 初始步长是 ldB为例进行说明, 在实 际的使用过程中还可以根据通信需求将初始比特数和初始步长设置为其他数 值, 此处不再赘述。
则进一步地, 步骤 102根据 SNR分布范围确定反馈比特数的具体步骤可 以包括: 首先, 获取用于反馈空时流的 SNR的初始步长, 然后, 根据初始步 长和 SNR分布范围确定反馈比特数,具体地,本实施例可以釆用如下公式( 1 ) 确定反馈比特数:
「log;/z ] ( 1 ) 其中, X为 SNR分布范围, z为初始步长(本实施例中 z=l ), b为反馈比 特数。
在本实施例中, 如果时空流的数目为 N, N为大于等于 2且小于等于 8 的整数, 则所有时空流的反馈比特数 B={ bi }i=N, 其中, bi为第 i个时空流 对应的反馈比特数, 且所有 bi不全相等。
釆用以上公式( 1 ) 以及表 1所示的空时流 SNR分布范围获取的各空时 流的 SNR反馈比特数如表 2所示。
表 2: (单位: 比特)
Figure imgf000006_0002
和 /或, 进一步地, 步骤 102根据 SNR分布范围确定反馈步长的具体步骤 可以包括: 首先, 获取用于反馈空时流的 SNR的初始比特数, 然后, 根据初 始比特数和 SNR分布范围确定反馈步长, 具体地, 本实施例可以釆用如下公 式(2 )确定反馈比特数:
Figure imgf000006_0001
其中, X为 SNR分布范围, a为初始比特数(本实施例中, a=4 ), d为反 馈步长。
在本实施例中, 如果时空流的数目为 N, N为大于等于 2且小于等于 8 的整数, 则所有时空流的反馈步长 D={ di }i=N, 其中, di为第 i个时空流对 应的反馈比特数, 且所有 di不全相等。
釆用以上公式(2 ) 以及表 1所示的空时流 SNR分布范围获取的各空时 流的 SNR反馈步长如表 3所示。 需要说明的是, 表 3所示的反馈步长为对公 式(2 )获取的反馈步长量化之后的结果。
Figure imgf000007_0001
需要说明的是, 在本实施例中, 步骤 102既可以只根据 SNR分布范围对 原始比特数或者原始步长进行修改, 也可以根据 SNR分布范围对原始比特数 和原始步长都进行修改。
为了使步骤 102能够准确地判断出原始比特数和 /或原始步长是否需要修 改, 可选地, 步骤 102之前还可以包括获取反馈方式控制信息的步骤。 其中, 反馈方式控制信息用于指示反馈比特数和反馈步长的变化规则。
本实施例可以在本地预先配置反馈方式控制信息, 也可以接收由通信对 端发送的反馈方式控制信息。 本实施例不对反馈方式控制信息的具体形式进 行限定, 在实际的使用过程中可以釆用任何可实现的形式表示该反馈方式控 制信息。 例如: 可以以 2比特表示反馈方式控制信息, 其中, 第 1 比特用于 表示反馈比特数的变化规则, 当该比特位为 1时, 表示根据 SNR分布范围确 定反馈比特位, 当该比特位为 0时, 表示反馈比特位为初始比特位; 第 2比 特用于表示反馈步长的变化规则, 当该比特位为 1时, 表示根据 SNR分布范 围确定反馈步长, 当该比特位为 0 时, 表示反馈步长为初始步长。 此处不对 每种情况进行一一赘述。
则此时, 步骤 102可以根据 SNR分布范围和反馈方式控制信息, 确定反 馈比特数和 /反馈步长。
步骤 103 , 釆用反馈比特数发送空时流的 SNR, 或者, 釆用反馈步长发 送时空流的 SNR, 或者, 釆用反馈比特数和反馈步长发送时空流的 SNR。
需要说明的是, 如果步骤 102只根据 SNR分布范围确定了反馈比特数或 者反馈步长, 则步骤 103釆用反馈比特数和原始步长发送空时流的 SNR, 或 者, 步骤 103釆用原始比特数和反馈步长发送空时流的 SNR。
本发明实施例提供的信噪比反馈方法, 能够根据空时流的信噪比分布范 围确定反馈比特数和 /或反馈步长, 并釆用该反馈比特数和 /或反馈步长发送所 述空时流的信噪比, 从而减小了信噪比的反馈开销, 节省反馈信噪比占用的 通信资源, 解决了现有技术釆用相等比特数和相等步长反馈信噪比, 反馈开 销较大的问题
进一步地, 如表 3所示, 当本发明实施例提供的技术方案根据 SNR分布 范围, 确定反馈步长, 并釆用该反馈步长反馈 SNR时, 提高了反馈 SNR的精 度, 使得系统反馈 SNR更准确, 进而提高了系统的反馈性能。
平均信噪比的反馈也可以根据上述的方法进行处理。
在 WLAN系统中是波束接收器向波束形成器进行 SNR反馈。 在单用户 多天线系统(SU-MIMO ) 中, 波束接收器既可以是接入点(AP )也可以是工 作站(station ), 波束形成器既可以是接入点也可以是工作站。 在 MU-MIMO 中, 波束接收器为工作站, 波束形成器为接入点。 本发明实施例的信噪比反 馈装置可以为波束接收器。
如图 2所示, 本发明实施例还提供一种信噪比反馈装置 20, 包括: 第一确定模块 201 , 用于确定空时流的信噪比分布范围; 其中, 空时流的 SNR 可以包括: 空时流在所有子载波的平均信噪比 ( SNR_average ), 和 /或空时流在每载波信噪比( PT-S R )等; 进一步地, 为 了节省传输占用的比特资源, 在本实施例中, PT-SNR为空时流在每个子载波 的实际 SNR与该空时流的 SNR— average的差值。 在本实施例中, 主要以空时 流的 SNR是 PT-SNR为例进行说明。
第二确定模块 202 ,用于根据第一确定模块 201确定的信噪比分布范围确 定反馈比特数或反馈步长或反馈比特数及反馈步长;
发送模块 203 ,用于釆用第二确定模块 202确定的反馈比特数发送空时流 的信噪比, 或者, 釆用第二确定模块 202确定的反馈步长发送所述时空流的 信噪比, 或者, 釆用第二确定模块 202确定的反馈比特数和反馈步长发送所 述时空流的信噪比。
进一步地, 如图 3所示, 第二确定模块 202可以包括:
第一获取子模块 2021 , 用于获取用于反馈所述空时流的信噪比的初始步 长;
第一确定子模块 2022 ,用于根据第一获取子模块 2021获取的初始步长和 第一确定模块 201确定的信噪比分布范围确定反馈比特数。
进一步地, 如图 4所示, 第二确定模块 202可以包括:
第二获取子模块 2023 ,用于获取用于反馈空时流的信噪比的初始比特数; 第二确定子模块 2024 ,用于根据第二获取子模块 2023获取的初始比特数 和第一确定模块 201确定的信噪比分布范围确定反馈步长。
如图 5所示, 本发明实施例提供的信噪比反馈装置 50还可以包括: 获取模块 204 , 用于获取反馈方式控制信息, 所述反馈方式控制信息用于 指示反馈比特数和反馈步长的变化规则;
第二确定模块 202 ,还用于根据第一确定模块 201确定的信噪比分布范围 和获取模块 204获取的反馈方式控制信息, 确定反馈比特数和 /反馈步长。
需要说明的是, 在实际的使用过程中, 以上如图 2至图 5所示的本发明 实施例提供的信噪比反馈装置划分的多个模块, 也可以通过一个与所述多个 模块具有类似功能的模块或者功能模块实现, 此处不作赘述。
本发明实施例提供的信噪比反馈装置的具体实现方法可以参见本发明实 施例提供的信噪比反馈方法所述, 此处不再赘述。
本发明实施例提供的信噪比反馈装置, 能够根据空时流的信噪比分布范 围确定反馈比特数和 /或反馈步长, 并釆用该反馈比特数和 /或反馈步长发送所 述空时流的信噪比, 从而减小了信噪比的反馈开销, 节省反馈信噪比占用的 通信资源, 解决了现有技术釆用相等比特数和相等步长反馈信噪比, 反馈开 销较大的问题
本发明实施例提供的信噪比反馈方法和装置可以应用在如 MIMO等多天 线系统中。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、 处理器执行的软件模块, 或者二者的结合来实施。 软件模块可以置于随机存 储器(RAM )、 内存、 只读存储器 (ROM )、 电可编程 ROM、 电可擦除可编 程 ROM、 寄存器、 硬盘、 可移动磁盘、 CD-ROM、 或技术领域内所公知的任 意其它形式的存储介质中。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权 利 要求 书
1、 一种信噪比反馈方法, 其特征在于, 包括:
确定空时流的信噪比动分布范围;
根据所述信噪比分布范围确定反馈比特数或反馈步长或反馈比特数及反馈 步长;
釆用所述反馈比特数发送所述空时流的信噪比, 或者, 釆用所述反馈步长 发送所述时空流的信噪比, 或者, 釆用所述反馈比特数和反馈步长发送所述时 空流的信噪比。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述信噪比分布范 围确定反馈比特数包括:
获取用于反馈所述空时流的信噪比的初始步长;
根据所述初始步长和所述信噪比分布范围确定反馈比特数。
3、 根据权利要求 2所述的方法, 其特征在于, 所述根据所述初始步长和所 述信噪比分布范围确定反馈比特数包括:
根据所述初始步长 z和所述信噪比分布范围 X , 根据公式
Figure imgf000011_0001
确定反馈比特数1)。
4、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述信噪比分布范 围确定反馈步长包括:
获取用于反馈所述空时流的信噪比的初始比特数;
根据所述初始比特数和所述信噪比分布范围确定反馈步长。
5、 根据权利要求 4所述的方法, 其特征在于, 所述根据所述初始比特数和 所述信噪比分布范围确定反馈步长包括:
根据所述初始比特数 a和所述信噪比分布范围 X, 根据公式 确定反馈步长 d。
6、 根据权利要求 1所述的方法, 其特征在于, 还包括:
获取反馈方式控制信息, 所述反馈方式控制信息用于指示反馈比特数和反 馈步长的变化规则;
则所述根据所述信噪比分布范围确定反馈比特数或反馈步长或反馈比特数 及反馈步长为:
根据所述信噪比分布范围和所述反馈方式控制信息, 确定反馈比特数或反 馈步长或反馈比特数及反馈步长。
7、 根据权利要求 1-6任意一项所述的方法, 其特征在于, 所述空时流的信 噪比包括: 所述空时流在所有子载波的平均信噪比 SNR— average, 和 /或所述空 时流的每载波信噪比 PT-SNR。
8、 根据权利要求 1-6任意一项所述的方法, 其特征在于,
如果包括 N个时空流, 则所述釆用所述反馈比特数发送所述空时流的信噪 比包括: 发送第 i个时空流的信噪比所釆用的反馈比特数为 bi, 且 bi-l bi, 所 有 bi不全相等, 其中, N为大于等于 2且小于等于 8的整数, i为大于等于 2且 小于等于 N的整数; 或,
如果包括 N个时空流, 则所述釆用所述反馈步长发送所述时空流的信噪比 包括: 发送第 i个时空流的信噪比所釆用的反馈步长为 di, JL di-K di, 所有 di 不全相等, 其中, N为大于等于 2且小于等于 8的整数, i为大于等于 2且小于 等于 N的整数。
9、 一种信噪比反馈装置, 其特征在于, 包括:
第一确定模块, 用于确定空时流的信噪比分布范围;
第二确定模块, 用于根据所述第一确定模块确定的信噪比分布范围确定反 馈比特数或反馈步长或反馈比特数及反馈步长; 发送模块, 用于釆用所述第二确定模块确定的反馈比特数发送所述空时流 的信噪比, 或者, 釆用所述第二确定模块确定的反馈步长发送所述时空流的信 噪比, 或者, 釆用所述第二确定模块确定的反馈比特数和反馈步长发送所述时 空流的信噪比。
10、 根据权利要求 9所述的装置, 其特征在于, 所述第二确定模块包括: 第一获取子模块, 用于获取用于反馈所述空时流的信噪比的初始步长; 第一确定子模块, 用于根据所述第一获取子模块获取的初始步长和所述第 一确定模块确定的信噪比分布范围确定反馈比特数。
11、 根据权利要求 9所述的装置, 其特征在于, 所述第二确定模块包括: 第二获取子模块, 用于获取用于反馈所述空时流的信噪比的初始比特数; 第二确定子模块, 用于根据所述第二获取子模块获取的初始比特数和所述 第一确定模块确定的信噪比分布范围确定反馈步长。
12、 根据权利要求 9所述的装置, 其特征在于, 还包括:
获取模块, 用于获取反馈方式控制信息, 所述反馈方式控制信息用于指示 反馈比特数和反馈步长的变化规则;
所述第二确定模块, 还用于根据所述第一确定模块确定的信噪比分布范围 和所述获取模块获取的反馈方式控制信息, 确定反馈比特数或反馈步长或反馈 比特数及反馈步长。
PCT/CN2011/080307 2011-01-11 2011-09-28 信噪比反馈方法和装置 WO2012094907A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110004983.2A CN102594428B (zh) 2011-01-11 2011-01-11 信噪比反馈方法和装置
CN201110004983.2 2011-01-11

Publications (1)

Publication Number Publication Date
WO2012094907A1 true WO2012094907A1 (zh) 2012-07-19

Family

ID=46482670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/080307 WO2012094907A1 (zh) 2011-01-11 2011-09-28 信噪比反馈方法和装置

Country Status (2)

Country Link
CN (1) CN102594428B (zh)
WO (1) WO2012094907A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832369A (zh) * 2005-03-12 2006-09-13 中兴通讯股份有限公司 用于多入多出通信系统的发射方法、装置和系统
CN101868018A (zh) * 2010-07-15 2010-10-20 华中科技大学 一种用于mimo的低比特反馈用户功率分配方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084702B (zh) * 2008-06-19 2014-08-27 马维尔国际贸易有限公司 使用可变反馈速率平衡链路方向之间的容量
CN101754343B (zh) * 2008-12-18 2012-08-08 华为技术有限公司 一种信道传输质量的反馈方法、系统和设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1832369A (zh) * 2005-03-12 2006-09-13 中兴通讯股份有限公司 用于多入多出通信系统的发射方法、装置和系统
CN101868018A (zh) * 2010-07-15 2010-10-20 华中科技大学 一种用于mimo的低比特反馈用户功率分配方法

Also Published As

Publication number Publication date
CN102594428A (zh) 2012-07-18
CN102594428B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
US8542589B2 (en) Method and apparatus for providing beamforming feedback in wireless communication systems
KR102066647B1 (ko) 롱-레인지 무선 랜(wlans) 내 단일 사용자 빔형성을 위한 데이터 유닛 포맷
KR101923200B1 (ko) 통신 네트워크에서 하향링크 다중 사용자 mimo 구성을 위한 대안적인 피드백 방법 및 시스템
US7542454B2 (en) MIMO channel feedback protocols
US8971264B2 (en) Communication method of terminals and access point for uplink MU-MIMO channel access
US7804800B2 (en) Efficient training schemes for MIMO based wireless networks
US9906281B2 (en) MU-MIMO transmission method in wireless LAN system
KR20220003071A (ko) 개선된 유형 ii csi 보고를 위한 csi 생략 규칙
EP4228166A1 (en) Method for wifi beamforming, feedback, and sounding (wibeam)
WO2018137486A1 (zh) 一种码本反馈方法和装置
TW201043073A (en) Integrated calibration protocol for wireless lans
US9059821B2 (en) Carrier grouping schemes for wireless local area networks
JP2008512951A (ja) Mimoシステムにおける閉ループフィードバック
RU2010151434A (ru) Схемы пространственного уменьшения помех для беспроводной связи
CN115836492A (zh) 辅助增强nr类型ii csi反馈的信令传输
TWI759920B (zh) 非正交多重接取系統中的功率分配方法及使用所述方法的基地台
CN107666339B (zh) 一种发送信道状态信息的方法和设备
WO2017121092A1 (zh) 一种信道估计方法及装置
WO2022242718A1 (zh) 延迟多普勒域信道信息反馈方法、装置及电子设备
WO2012094907A1 (zh) 信噪比反馈方法和装置
WO2018082209A1 (zh) 切换状态的方法、网络设备和终端设备
WO2018137208A1 (zh) 信道状态信息的传输方法、接入网设备和终端设备
CN110233650B (zh) 一种mimo-noma系统中功率调整方法及系统
WO2023011436A1 (zh) 通信处理方法和通信处理装置
WO2023236535A1 (zh) 信道状态参考信号的波束赋形方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855724

Country of ref document: EP

Kind code of ref document: A1