WO2022242718A1 - 延迟多普勒域信道信息反馈方法、装置及电子设备 - Google Patents

延迟多普勒域信道信息反馈方法、装置及电子设备 Download PDF

Info

Publication number
WO2022242718A1
WO2022242718A1 PCT/CN2022/093866 CN2022093866W WO2022242718A1 WO 2022242718 A1 WO2022242718 A1 WO 2022242718A1 CN 2022093866 W CN2022093866 W CN 2022093866W WO 2022242718 A1 WO2022242718 A1 WO 2022242718A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
target
doppler
channel information
information
Prior art date
Application number
PCT/CN2022/093866
Other languages
English (en)
French (fr)
Inventor
孙布勒
姜大洁
袁璞
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP22804038.2A priority Critical patent/EP4344141A1/en
Publication of WO2022242718A1 publication Critical patent/WO2022242718A1/zh
Priority to US18/513,976 priority patent/US20240088970A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0222Estimation of channel variability, e.g. coherence bandwidth, coherence time, fading frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/0663Feedback reduction using vector or matrix manipulations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods

Definitions

  • the present application belongs to the technical field of mobile communication, and in particular relates to a delayed Doppler domain channel information feedback method, device and electronic equipment.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • Channel estimation according to different modulation techniques can obtain different channel information, and the channel information can be channel information in the time-frequency domain based on Orthogonal frequency division multiplex (OFDM) modulation, or based on orthogonal frequency division multiplexing (OFDM) modulation.
  • OFDM Orthogonal frequency division multiplex
  • OFDM orthogonal frequency division multiplexing
  • the channel information in the delayed Doppler domain modulated by Orthogonal Time Frequency Space (OTFS) is used to represent the delay and Doppler characteristics of the channel.
  • the current transmission schemes are all oriented to OFDM-modulated time-frequency domain channels when performing channel information feedback.
  • the channel information in the delayed Doppler domain has its own unique characteristics. Also different from the time-frequency domain signal passing through the channel, the balance between feedback overhead and feedback accuracy cannot be achieved when feedbacking channel information in the delayed Doppler domain.
  • Embodiments of the present application provide a delay-Doppler domain channel information feedback method, device, and electronic equipment, which can solve the problem that the balance between feedback overhead and feedback accuracy cannot be achieved when feedbacking channel information in the delay-Doppler domain .
  • a delay-Doppler domain channel information feedback method which is applied to a first device, and the method includes:
  • the first device sends target feedback information to the second device
  • the target feedback information is associated with target channel information, and the target channel information is all or part of the channel information in the delayed Doppler domain obtained by the first device performing channel estimation on the target signal; the target signal is the A signal sent by the second device or the third device to the first device.
  • a device for delaying Doppler domain channel information feedback including:
  • the measurement module is used to perform channel estimation on the target signal to obtain target channel information in the delayed Doppler domain;
  • a feedback module configured to send target feedback information to the second device
  • the target feedback information is associated with the target channel information;
  • the target signal is a signal sent by the second device or the third device to the first device.
  • a terminal in a third aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor. When the program or instruction is executed by the processor The steps of the method described in the first aspect are realized.
  • a network-side device in a fourth aspect, includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction being executed by the When executed by the processor, the steps of the method described in the first aspect are realized.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a sixth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, the processor is used to run programs or instructions, and implement the method as described in the first aspect .
  • a computer program/program product is provided, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the program described in the first aspect The steps of the delay Doppler domain channel information feedback method.
  • target feedback information is sent to the second device, wherein the target feedback information is associated with the target channel information, and the target channel information is obtained by channel estimation of the target signal by the first device All or part of the channel information in the delayed Doppler domain; the target signal is a signal sent by the second device or the third device to the first device, so that the channel information in the delayed Doppler domain can be accurately transmitted, And according to the target channel information and the determination method of the target feedback information, the balance between the feedback overhead and the feedback accuracy is realized.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system to which an embodiment of the present application is applicable
  • FIG. 2 shows a schematic flowchart of a delayed Doppler domain channel information feedback method according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of channel information in a delayed Doppler domain according to an embodiment of the present application
  • FIG. 4 shows a schematic flowchart of another delayed Doppler domain channel information feedback method according to an embodiment of the present application
  • FIG. 5 shows a schematic flowchart of another delayed Doppler domain channel information feedback method according to an embodiment of the present application
  • FIG. 6 shows a schematic flow chart of another delayed Doppler domain channel information feedback method according to an embodiment of the present application
  • FIG. 7 shows a schematic flowchart of another delayed Doppler domain channel information feedback method according to an embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a delay-Doppler domain channel information feedback device according to an embodiment of the present application
  • FIG. 9 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a terminal implementing an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a network-side device implementing an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a schematic structural diagram of a wireless communication system to which this embodiment of the present application is applicable.
  • the wireless communication system includes a first device 11 and a second device 12, wherein the first device and the second device may be two terminals, or may be a terminal and a network side device.
  • the terminal can also be called terminal equipment or user equipment (User Equipment, UE), and the terminal can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant ( Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle equipment (VUE ), pedestrian terminals (PUE) and other terminal-side devices, and wearable devices include: smart watches, bracelets, earphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the terminal.
  • the network side device may be a base station or a core network, where a base station may be called a Node B, an evolved Node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, or a basic service set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), B Node, Evolved Node-B (Evolved Node-B, eNB), Home Node B, Home Evolved Node B, Wireless Local Area Network (WLAN) Area Networks, WLAN) access point, WiFi node, Transmission Reception Point (Transmission Reception Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms, and needs to be explained It is noted that in the embodiment of the present application, only the base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • BTS
  • Fig. 2 shows a schematic flowchart of a delayed Doppler domain channel information feedback method according to an embodiment of the present application.
  • the method is executed by a first device, and the first device may be a terminal or a network side equipment, in other words, the method can be executed by software or hardware installed in a terminal or network-side equipment.
  • the method may include the following steps.
  • Step S201 the first device sends target feedback information to the second device
  • the target feedback information is associated with target channel information, and the target channel information is all or part of the channel information in the delayed Doppler domain obtained by the first device performing channel estimation on the target signal; the target signal is the A signal sent by the second device or the third device to the first device.
  • the first device may obtain channel information in a delay Doppler domain between the first device and the second device by performing a preset channel estimation algorithm. Specifically, it can be obtained by performing delay Doppler analysis on the target signal sent by the second device or the third device.
  • the target signal may include a reference signal or a synchronization signal, and the reference signal may specifically include at least one of the following:
  • CRS Cell Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DMRS Demodulation Reference Signal
  • Positioning reference signal Positioning Reference Signal (Position Reference Signal, PRS);
  • Phase tracking reference signal Phase-tracking reference signal, PTRS
  • TRS Tracking Reference Signal
  • the channel information in the delay-Doppler domain obtained by the first device through channel estimation, as shown in FIG. 3 can be mapped onto a two-dimensional delay-Doppler plane.
  • the delay value and Doppler value can be determined , so that the boundary of the delay-Doppler domain can be determined according to the value range of the delay value and the Doppler value, and the delay-Doppler domain is expressed as a delay-Doppler two-dimensional grid, each grid The grid represents a delay-Doppler pair, and the complex gain on the grid represents the complex gain on the transmission path corresponding to the delay-Doppler pair.
  • the delay domain resolution on the delay Doppler domain is seconds, which is represented by each raster in the delay domain seconds, the Doppler domain resolution is ⁇ Hz, that is, each grid in the Doppler domain represents ⁇ Hz.
  • a L MaxDelay ⁇ (2K MaxDopp +1) dimensional grid can be used to represent the channel information in the above given scenario, where L MaxDelay represents the number of grids corresponding to the maximum delay value considered, and K MaxDopp represents the maximum Doppler value corresponding to The number of grids, where, because the Doppler value can be positive or negative, so the Doppler domain direction is divided into (2K MaxDopp +1) grids.
  • delay Doppler analysis and time-frequency domain analysis can be performed through the Inverse Sympletic Fast Fourier Transform (ISFFT) and Sympletic Fast Fourier Transform (SFFT) converted to each other.
  • ISFFT Inverse Sympletic Fast Fourier Transform
  • SFFT Sympletic Fast Fourier Transform
  • the first device extracts target channel information to be sent to the second device by analyzing the channel information in the delay-Doppler domain, and sends it to the second device in the form of target feedback information.
  • the second device parses out the target channel information by parsing the target feedback information.
  • the embodiment of the present application provides a delay-Doppler domain channel information feedback method, by sending target feedback information to the second device, wherein the target feedback information is associated with target channel information, and the target channel information is All or part of the channel information in the delayed Doppler domain obtained by the first device performing channel estimation on the target signal; the target signal is a signal sent by the second device or the third device to the first device, so that The channel information in the delayed Doppler domain can be accurately sent, and the balance between feedback overhead and feedback accuracy can be achieved according to the target channel information and the determination method of the target feedback information.
  • Fig. 4 shows a schematic flow chart of another delay-Doppler domain channel information feedback method according to an embodiment of the present application.
  • the execution body of the method is the first device, and the first device may be a terminal or The network-side device, in other words, the method can be executed by software or hardware installed in the terminal or the network-side device.
  • the method may include the following steps.
  • Step S401 the first device obtains target channel information, and the target channel information includes all delay-Doppler pairs in the delay-Doppler domain and the complex gains corresponding to each delay-Doppler pair; wherein, the The delay-Doppler pair is determined by a pair of delay value and Doppler value, and is used to indicate an area indicated by the pair of delay value and Doppler value in the delay-Doppler domain;
  • the first device obtains the channel information in the delay Doppler domain through channel estimation as the target channel information.
  • the first device uses the channel information corresponding to the grid of dimension L MaxDelay ⁇ (2K MaxDopp +1) as the target channel information, and the target channel information includes all The delay-Doppler pairs corresponding to the grid, and the complex gain corresponding to each delay-Doppler pair.
  • Step S402 target feedback information sent by the first device to the second device
  • the target feedback information is associated with target channel information, and the target channel information is all or part of the channel information in the delayed Doppler domain obtained by the first device performing channel estimation on the target signal; the target signal is the A signal sent by the second device or the third device to the first device.
  • step S402 there are many ways for the first device to determine the target feedback information to be sent to the second device according to the target channel information, including at least one of the following:
  • target feedback information is determined based on the target codebook selected in the codebook set.
  • the channel information corresponding to each delay Doppler in the target channel information is directly quantized as the target feedback information, that is, the position information of each delay-Doppler pair in the delay Doppler domain , and each delay-Doppler directly quantizes the corresponding complex gain as target feedback information, and sends the target feedback information to the second device.
  • the second device recovers the channel information in the delay-Doppler domain according to the received target feedback information obtained by direct quantization.
  • the direct quantization feedback method can provide the most comprehensive feedback of channel information, and can enable the second device to obtain high feedback accuracy when recovering channel information, but this feedback method requires high feedback overhead.
  • the floating-point accuracy of the complex gain corresponding to the delay-Doppler pair in the target feedback information is determined by a second parameter, and the second parameter is determined by at least one of the following methods:
  • the first signaling of the interaction between the first device and the second device is determined.
  • the target feedback information is determined based on the target codebook selected from the codebook set according to the channel information in the delay-Doppler domain.
  • a codebook set is preset, and the codebook set may include multiple codebooks.
  • the first device selects a target codebook from the codebook set according to the acquired target channel information in the Delayed Puller domain.
  • the first device may select a codebook most similar to the target channel information from a codebook set, and determine target feedback information according to the most similar codebook.
  • the target feedback information may be an identifier (index) of the most similar codebook, and the first device sends the index of the most similar codebook to the second device.
  • the second device finds the corresponding codebook from the codebook set according to the received index, and then restores the target channel information according to the found codebook, that is, the found codebook can be used as the target channel information, and then as the delay Channel information in the Doppler domain.
  • the target feedback information is determined according to the weighted sum of the multiple codebooks.
  • the first device selects multiple codebooks from the codebook set, and represents the target channel information as a weighted sum of the multiple codebooks.
  • the first device may use the identifiers of each codebook in the multiple codebooks and the corresponding weighted value as target feedback information according to the weighted sum of the multiple codebooks, and send the codebook to the second
  • the device sends identifiers of the multiple codebooks and weight values corresponding to each codebook.
  • the second device finds the corresponding multiple codebooks from the codebook set according to the received identifier, and then restores the target channel information according to the weighted value corresponding to each codebook, and then obtains the channel information in the delayed Doppler domain .
  • the floating-point precision of the weighted value is determined by a fourth parameter, and the fourth parameter is determined by at least one of the following methods:
  • the first signaling of the interaction between the first device and the second device is determined.
  • the first signaling interacted between the first device and the second device includes at least one of the following:
  • Physical downlink shared channel Physical downlink shared channel (Physical downlink shared channel, PDSCH) information
  • MAC CE Medium Access Control Element
  • SIB System Information Block
  • MSG1 information of the physical random access channel Physical Random Access Channel, PRACH
  • MSG A information of the physical random access channel
  • the first device may adaptively adjust the first parameter and/or the fourth parameter according to transmission environment conditions and transmission requirements, which may be specifically implemented by transmitting the first signaling.
  • the adaptive adjustment process is triggered by the first device or the second device.
  • FIG. 5 shows a schematic flowchart of another method for feeding back channel information in the delayed Doppler domain according to an embodiment of the present application. As shown in FIG. 5 , the method includes the following steps.
  • Step S501 the first device obtains channel information in the delay Doppler domain
  • Step S502 judging whether to directly quantize the channel information in the delayed Doppler domain, if yes, execute step S503, if not, execute step S505 based on the codebook set;
  • Step S503 directly quantizing all channel information in the delayed Doppler domain as target feedback information
  • Step S504 sending target feedback information to the second device
  • Step S505 judging whether to adopt the pure codebook mode; if yes, execute step S506; if not, execute step S508;
  • Step S506 selecting the codebook most similar to the target channel information from the codebook set
  • Step S507 according to the most similar codebook, feed back the identifier of the codebook to the second device;
  • Step S508 the weighted sum of multiple codebooks in the codebook set represents the target channel information
  • Step S509 feeding back the identifications of the multiple codebooks and corresponding weighting values to the second device.
  • the embodiment of the present application provides a delay-Doppler domain channel information feedback method.
  • the first device uses the estimated channel information in the delay-Doppler domain as the target channel information, and performs direct quantization, or Based on the codebook set, the target feedback information is obtained and sent to the second device, so that the channel information in the delay Doppler domain can be accurately transmitted, and according to the target channel information and the determination method of the target feedback information, the balance between feedback overhead and feedback accuracy is realized. balance.
  • Fig. 6 shows a schematic flowchart of another delayed Doppler domain channel information feedback method according to an embodiment of the present application.
  • the subject of execution of the method is the first device, and the first device may be a terminal or The network-side device, in other words, the method can be executed by software or hardware installed in the terminal or the network-side device.
  • the method may include the following steps.
  • Step S601 obtaining the norm of the complex gain corresponding to each delay-Doppler pair in the delay-Doppler domain, and determining the target channel information according to the delay-Doppler pair satisfying the first condition;
  • the delay-Doppler pair satisfying the first condition includes at least one of the following:
  • the norm is the modulus of the complex gain or the target power of the modulus of the complex gain.
  • the floating-point precision of the norm is determined by a third parameter, and the third parameter is determined by at least one of the following methods:
  • the first signaling of the interaction between the first device and the second device is determined.
  • the first device after obtaining channel information in the delay-Doppler domain through channel estimation, the first device selects part of the channel information for feedback.
  • the first device selects the delay-Doppler pair whose norm is greater than the threshold ⁇ according to the norm of the complex gain of each delay-Doppler pair, for example, the delay multiplier shown in FIG. Taking the Doppler domain as an example, the norms of the complex gains of each delay-Doppler pair can be obtained respectively.
  • the density of each grid point in Figure 3 can be used to indicate the size of the norm.
  • the feedback overhead and the feedback accuracy can be traded off by adjusting the threshold ⁇ .
  • the feedback overhead and the feedback precision can be traded off by adjusting the value of the first quantity F, and for the same transmission environment and feedback mechanism, the larger F is, the smaller the feedback overhead is, and the lower the feedback precision is.
  • the first device and the second device must perform information feedback and recovery based on the same threshold ⁇ or the first number F.
  • the threshold ⁇ and the first number F are determined in at least one of the following ways:
  • the first signaling of the interaction between the first device and the second device is determined.
  • the target channel information determined by the first device according to the selected delay-Doppler pair includes at least one of the following:
  • both the position information and the complex gain of the selected delay-Doppler pair may be used as target channel information.
  • only the position information of the selected delay-Doppler pair may be used as the target channel information.
  • Step S602 the first device sends target feedback information to the second device
  • the target feedback information is associated with target channel information, and the target channel information is all or part of the channel information in the delayed Doppler domain obtained by the first device performing channel estimation on the target signal; the target signal is the A signal sent by the second device or the third device to the first device.
  • step S602 there are many ways for the first device to determine the target feedback information to be sent to the second device according to the target channel information.
  • the first device directly quantizes the target channel information as target feedback.
  • the first device directly quantizes both the position information and the complex gain of the selected delay-Doppler pair, as target feedback.
  • the target channel information only includes position information of the selected delay-Doppler pair
  • the first device directly quantizes the position information of the selected delay-Doppler pair as target feedback information.
  • the floating-point accuracy of the complex gain corresponding to the delay-Doppler pair in the target feedback information is determined by a second parameter, and the second parameter is determined by at least one of the following methods:
  • the first signaling of the interaction between the first device and the second device is determined.
  • the first device determines target feedback information based on the target codebook selected in the codebook set according to the target channel information, specifically:
  • the first device may select a codebook most similar to the target channel information from a codebook set, and determine target feedback information according to the most similar codebook.
  • the target feedback information may be the index of the most similar codebook, and the first device sends the index of the most similar codebook to the second device.
  • the second device finds the corresponding codebook from the codebook set according to the received index, and then restores the target channel information according to the found codebook, that is, the found codebook can be directly used as the target channel information, and then restores the Channel information in the delayed Doppler domain.
  • the target feedback information is determined according to the weighted sum of the multiple codebooks.
  • the first device selects multiple codebooks from the codebook set, and represents the target channel information as a weighted sum of the multiple codebooks.
  • the first device may use the index and the corresponding weight value of each codebook in the multiple codebooks as target feedback information according to the weighted sum of the multiple codebooks, and send the information to the second
  • the device sends the indices of the multiple codebooks and the weight values corresponding to each codebook.
  • the second device finds the corresponding multiple codebooks from the codebook set according to the received index, and then recovers the target channel information according to the weighted values corresponding to each codebook, and then obtains the channel information in the delayed Doppler domain .
  • the floating-point precision of the weighted value is determined by a fourth parameter, and the fourth parameter is determined by at least one of the following methods:
  • the first signaling of the interaction between the first device and the second device is determined.
  • the target codebook may include at least one of the following:
  • the first codebook obtained according to the delay value and Doppler value corresponding to each delay-Doppler pair in the target channel information that is, each first codebook is used to indicate a set of delay-Doppler pairs combination of location information
  • a second codebook obtained according to the complex gains corresponding to each delay-Doppler pair in the target channel information that is, each second codebook is used to indicate a combination of complex gains of a group of delay-Doppler pairs;
  • the third codebook obtained according to the delay value and Doppler value corresponding to each delay-Doppler pair in the target channel information, and the complex gain corresponding to each delay-Doppler pair, that is, each third The codebook is used to indicate the combination of the position information and the corresponding complex gain of a set of delay-Doppler pairs.
  • the first codebook can be selected from the codebook set as the target codebook, and then based on the selected first codebook Identify target feedback. If it is determined that the target channel information includes the position information and complex gain of the delay-Doppler pair, then the first codebook and the second codebook can be selected from the two sets of codebooks as the target codebook, and then based on the selected first codebook
  • the target feedback information is determined by the second codebook and the second codebook, or the third codebook is selected from the codebook set as the target codebook, and the target feedback information is determined based on the selected third codebook.
  • the first signaling interacted between the first device and the second device includes at least one of the following:
  • MSG 1 information of the physical random access channel
  • MSG A information of the physical random access channel
  • the first device may adaptively adjust at least one of the following parameters according to transmission environment conditions and transmission requirements:
  • Threshold first quantity, first parameter, second parameter, third parameter, fourth parameter
  • the adaptive adjustment process is triggered by the first device or the second device.
  • the adaptive adjustment process is triggered by the first device or the second device.
  • FIG. 7 shows a schematic flowchart of another method for feeding back channel information in the delayed Doppler domain according to an embodiment of the present application. As shown in FIG. 7 , the method includes the following steps.
  • Step S701 the first device obtains channel information in the delay Doppler domain
  • Step S702 selecting a delay-Doppler pair whose norm is greater than the threshold ⁇ from each delay-Doppler pair in the delay-Doppler domain, or selecting the first F delay-Doppler pairs with the largest norm;
  • Step S703 judging whether the complex gain is fed back in the feedback information to the second device, if yes, execute step S704; if not, execute step S705;
  • Step S704 taking the position information and complex increment of the selected delay-Doppler pair as target channel information
  • Step S705 using the position information of the selected delay-Doppler pair as target channel information
  • Step S706 judging whether to directly quantize the channel information in the delayed Doppler domain, if yes, execute step S707, if not, execute step S709 based on the codebook set;
  • Step S707 directly quantizing the target channel information as target feedback information
  • Step S708 sending target feedback information to the second device
  • Step S709 judging whether to adopt the pure codebook method; if yes, execute step S710; if not, execute step S712;
  • Step S710 selecting the codebook most similar to the target channel information from the codebook set
  • Step S711 feed back the identifier of the codebook to the second device;
  • Step S712 the weighted sum of multiple codebooks in the codebook set represents the target channel information
  • Step S713. According to the most similar codebook, feed back the identifier of the codebook to the second device.
  • the embodiment of the present application provides a channel information feedback method in the delay-Doppler domain.
  • the first device obtains the norm of the complex gain of each delay-Doppler pair, and according to the delay-multiple
  • the Doppler pair or the first delay-Doppler pair with the largest norm obtains the target channel information, and then obtains the target feedback information through direct quantization or based on the codebook set and sends it to the second device, so that the delay can be accurately sent
  • the channel information in the Doppler domain, and according to the target channel information and the determination method of the target feedback information achieve a balance between feedback overhead and feedback accuracy.
  • the method further includes:
  • the first device obtains a first parameter based on a delay-Doppler domain channel estimation result or a delay-Doppler domain vectorized equivalent channel matrix estimation result, and feeds back to the second device;
  • the first parameter includes at least one of the following:
  • Channel quality indicator Channel quality indicator, CQI
  • Precoding matrix indicator (Precoding matrix indicator, PMI);
  • Rank indicator (Rank indicator, RI);
  • CSI-RS Resource Indicator CRI
  • Synchronization Signal and PBCH block Resource Indicator (SSBRI);
  • Layer Indicator (Layer Indicator, LI);
  • L1 Reference Signal Received Power L1 Reference Signal Received Power, L1-RSRP.
  • the embodiment of the present application provides a delay-Doppler domain channel information feedback method.
  • the first device obtains The first parameter is fed back to the second device, so that the channel information in the delay Doppler domain can be accurately sent, and the balance between feedback overhead and feedback accuracy can be achieved according to the target channel information and the method for determining the target feedback information.
  • the delay-Doppler domain channel information feedback method provided by the embodiment of the present application may be executed by a delay-Doppler domain channel information feedback device, or the user in the delay-Doppler domain channel information feedback device
  • the control module is used to implement the channel information feedback method in the delayed Doppler domain.
  • the device for channel information feedback in the delayed Doppler domain is used as an example to illustrate the device for feeding back channel information in the delayed Doppler domain provided in the embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a delay-Doppler domain channel information feedback device according to an embodiment of the present application. As shown in FIG. 8 , the device includes: a measurement module 801 and a feedback module 802 .
  • the measurement module 801 is used to perform channel estimation on the target signal to obtain target channel information in the delay Doppler domain; the feedback module 802 is used to send target feedback information to the second device;
  • the target feedback information is associated with the target channel information;
  • the target signal is a signal sent by the second device or the third device to the first device.
  • an embodiment of the present application provides an apparatus for feedbacking channel information in the delayed Doppler domain, by sending target feedback information to the second device, wherein the target feedback information is associated with target channel information, and the target channel information is All or part of the channel information in the delayed Doppler domain obtained by the first device performing channel estimation on the target signal; the target signal is a signal sent by the second device or the third device to the first device, so that The channel information in the delayed Doppler domain can be accurately sent, and the balance between feedback overhead and feedback accuracy can be achieved according to the target channel information and the determination method of the target feedback information.
  • the target channel information includes all delay-Doppler pairs in the delay-Doppler domain, and the complex gains corresponding to each delay-Doppler pair; wherein, the delay- A Doppler pair is determined by a pair of delay and Doppler values for indicating a region indicated by the pair of delay and Doppler values in the delay-Doppler domain.
  • the feedback module is also used to perform at least one of the following:
  • target feedback information is determined based on the target codebook selected in the codebook set.
  • the floating-point precision of the complex gain corresponding to the delay-Doppler pair in the target feedback information is determined by a second parameter, and the second parameter is determined by Determined by at least one of the following:
  • a first signaling determination of an interaction between the apparatus and a second device is a first signaling determination of an interaction between the apparatus and a second device.
  • the determining target feedback information based on the target codebook selected from the codebook set according to the target channel information includes at least one of the following:
  • the target feedback information is determined according to the weighted sum of the multiple codebooks.
  • the determining target feedback information according to the weighted sum of the multiple codebooks includes:
  • the identifier and the corresponding weight value of each codebook in the multiple codebooks are used as target feedback information.
  • the target codebook selected based on the codebook set includes at least one of the following:
  • a first codebook obtained according to a delay value and a Doppler value corresponding to each delay-Doppler pair in the target channel information
  • a third codebook obtained according to the delay value and Doppler value corresponding to each delay-Doppler pair in the target channel information, and the complex gain corresponding to each delay-Doppler pair.
  • the floating-point precision of the weighted value is determined by a fourth parameter, and the fourth parameter is determined by at least one of the following methods:
  • a first signaling determination of an interaction between the apparatus and a second device is a first signaling determination of an interaction between the apparatus and a second device.
  • the first signaling includes at least one of the following:
  • MSG 1 information of the physical random access channel
  • MSG A information of the physical random access channel
  • the embodiment of the present application provides a delay-Doppler domain channel information feedback device, by using the estimated channel information in the delay-Doppler domain as the target channel information, and performing direct quantization or codebook-based Gathering, the target feedback information is obtained and sent to the second device, so that the channel information in the delay Doppler domain can be accurately transmitted, and the balance between feedback overhead and feedback accuracy can be achieved according to the target channel information and the method for determining the target feedback information.
  • the measurement module is configured to obtain the norm of the complex gain corresponding to each delay-Doppler pair in the delay-Doppler domain, and according to the delay-Doppler that satisfies the first condition Le pair determines the target channel information;
  • the delay-Doppler pair satisfying the first condition includes at least one of the following:
  • the first number of delay-Doppler pairs with the largest norm is the largest norm.
  • the norm is a modulus value of the complex gain or a target power of the modulus value of the complex gain.
  • the floating-point precision of the norm is determined by a third parameter, and the third parameter is determined by at least one of the following methods:
  • a first signaling determination of an interaction between the apparatus and a second device is a first signaling determination of an interaction between the apparatus and a second device.
  • the threshold and the first quantity are determined by at least one of the following methods:
  • a first signaling determination of an interaction between the apparatus and a second device is a first signaling determination of an interaction between the apparatus and a second device.
  • the target channel information includes at least one of the following:
  • the measurement module is also used to adaptively adjust at least one of the following parameters according to the transmission environment conditions and transmission requirements:
  • Threshold first quantity, first parameter, second parameter, third parameter, fourth parameter
  • the adaptive adjustment process is triggered by the first device or the second device.
  • the embodiment of the present application provides a delay-Doppler domain channel information feedback device, by obtaining the norm of the complex gain of each delay-Doppler pair, and according to the delay-Doppler pair whose norm is greater than the threshold Or the first number of delay-Doppler pairs with the largest norm to obtain the target channel information, and then obtain the target feedback information through direct quantization or based on the codebook set and send it to the second device, so that the delay Doppler can be accurately sent Domain channel information, and according to the target channel information and the method of determining the target feedback information, the balance between feedback overhead and feedback accuracy is achieved.
  • the feedback module is configured to obtain the first parameter based on the channel estimation result in the delay-Doppler domain or the vectorized equivalent channel matrix estimation result in the delay-Doppler domain, and send it to the second device.
  • the first parameter includes at least one of the following:
  • the embodiment of the present application provides a delay-Doppler domain channel information feedback device, by obtaining the first parameter based on the delay-Doppler domain channel estimation result or delay-Doppler domain vectorization equivalent channel matrix estimation result And feed back to the second device, so that the channel information in the delay Doppler domain can be accurately sent, and the balance between feedback overhead and feedback accuracy can be achieved according to the target channel information and the method for determining the target feedback information.
  • the device for feedbacking channel information in the delayed Doppler domain in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the delay-Doppler domain channel information feedback device provided by the embodiment of the present application can realize each process realized by the method embodiments in FIG. 2 to FIG. 7 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application further provides a communication device 900, including a processor 901, a memory 902, and programs or instructions stored in the memory 902 and operable on the processor 901,
  • a communication device 900 including a processor 901, a memory 902, and programs or instructions stored in the memory 902 and operable on the processor 901
  • the communication device 900 is a terminal
  • the program or instruction is executed by the processor 901
  • each process of the above-mentioned embodiment of the delayed Doppler domain channel information feedback method can be implemented, and the same technical effect can be achieved.
  • the communication device 900 is a network-side device
  • the program or instruction is executed by the processor 901
  • the various processes of the above-mentioned embodiment of the delayed Doppler domain channel information feedback method can be achieved, and the same technical effect can be achieved. In order to avoid repetition, here No longer.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the processor is used to perform channel estimation on the target signal to obtain target channel information in the delay Doppler domain, and the communication interface is used to send target feedback information to the second device.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 10 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 1000 includes but not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, and a processor 1010, etc. at least some of the components.
  • the terminal 1000 can also include a power supply (such as a battery) for supplying power to various components, and the power supply can be logically connected to the processor 1010 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 10 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 1004 may include a graphics processor (Graphics Processing Unit, GPU) 10041 and a microphone 10042, and the graphics processor 10041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1006 may include a display panel 10061, and the display panel 10061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes a touch panel 10071 and other input devices 10072 .
  • the touch panel 10071 is also called a touch screen.
  • the touch panel 10071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 10072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1001 receives the downlink data from the network side device, and processes it to the processor 1010; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1009 can be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, at least one application program or instruction required by a function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1009 may include a high-speed random access memory, and may also include a non-transitory memory, wherein the non-transitory memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one disk storage device, flash memory device, or other non-transitory solid state storage device.
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1010 .
  • the radio frequency unit 1001 is configured to send target feedback information to the second device
  • the target feedback information is associated with the target channel information;
  • the target signal is a signal sent by the second device or the third device to the first device.
  • the processor 1010 is configured to perform channel estimation on the target signal to obtain target channel information in a delay-Doppler domain.
  • the embodiment of the present application can accurately transmit the channel information in the delay-Doppler domain, and achieve a balance between feedback overhead and feedback accuracy according to the target channel information and the method for determining the target feedback information.
  • the target channel information includes all delay-Doppler pairs in the delay-Doppler domain, and complex gains corresponding to each delay-Doppler pair; wherein, the delay-Doppler pair Determined by a pair of delay value and Doppler value, used to indicate the region indicated by the pair of delay value and Doppler value in the delay-Doppler domain.
  • radio frequency unit 1001 is also configured to perform at least one of the following:
  • target feedback information is determined based on the target codebook selected in the codebook set.
  • the floating-point precision of the complex gain corresponding to the delay-Doppler pair in the target feedback information is determined by a second parameter, and the second parameter is determined by Determined by at least one of the following:
  • a first signaling determination of an interaction between the apparatus and a second device is a first signaling determination of an interaction between the apparatus and a second device.
  • the determining target feedback information based on the target codebook selected from the codebook set according to the target channel information includes at least one of the following:
  • the target feedback information is determined according to the weighted sum of the multiple codebooks.
  • the determining target feedback information according to the weighted sum of the multiple codebooks includes:
  • the identifier and the corresponding weight value of each codebook in the multiple codebooks are used as target feedback information.
  • the target codebook selected based on the codebook set includes at least one of the following:
  • a first codebook obtained according to a delay value and a Doppler value corresponding to each delay-Doppler pair in the target channel information
  • a third codebook obtained according to the delay value and Doppler value corresponding to each delay-Doppler pair in the target channel information, and the complex gain corresponding to each delay-Doppler pair.
  • the floating-point precision of the weighted value is determined by a fourth parameter, and the fourth parameter is determined by at least one of the following methods:
  • a first signaling determination of an interaction between the apparatus and a second device is a first signaling determination of an interaction between the apparatus and a second device.
  • the first signaling includes at least one of the following:
  • MSG 1 information of the physical random access channel
  • MSG A information of the physical random access channel
  • the embodiment of the present application can accurately transmit the channel information in the delay-Doppler domain, and achieve a balance between feedback overhead and feedback accuracy according to the target channel information and the method for determining the target feedback information.
  • the processor 1010 is further configured to acquire the norm of the complex gain corresponding to each delay-Doppler pair in the delay-Doppler domain, and determine according to the delay-Doppler pair satisfying the first condition Target channel information;
  • the delay-Doppler pair satisfying the first condition includes at least one of the following:
  • the first number of delay-Doppler pairs with the largest norm is the largest norm.
  • the norm is a modulus value of the complex gain or a target power of the modulus value of the complex gain.
  • the floating-point precision of the norm is determined by a third parameter, and the third parameter is determined by at least one of the following methods:
  • a first signaling determination of an interaction between the apparatus and a second device is a first signaling determination of an interaction between the apparatus and a second device.
  • the threshold and the first quantity are determined by at least one of the following methods:
  • a first signaling determination of an interaction between the apparatus and a second device is a first signaling determination of an interaction between the apparatus and a second device.
  • the target channel information includes at least one of the following:
  • the measurement module is also used to adaptively adjust at least one of the following parameters according to the transmission environment conditions and transmission requirements:
  • Threshold first quantity, first parameter, second parameter, third parameter, fourth parameter
  • the adaptive adjustment process is triggered by the first device or the second device.
  • the embodiment of the present application can accurately transmit the channel information in the delay-Doppler domain, and achieve a balance between feedback overhead and feedback accuracy according to the target channel information and the method for determining the target feedback information.
  • the processor 1010 is further configured to obtain the first parameter based on the channel estimation result in the delay-Doppler domain or the vectorized equivalent channel matrix estimation result in the delay-Doppler domain, and feed back to the second device:
  • the first parameter includes at least one of the following:
  • the embodiment of the present application can accurately transmit the channel information in the delay-Doppler domain, and achieve a balance between feedback overhead and feedback accuracy according to the target channel information and the method for determining the target feedback information.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the processor is used to perform channel estimation on the target signal to obtain target channel information in the delay Doppler domain, and the communication interface is used to send target feedback to the second device information.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network device 1100 includes: an antenna 111 , a radio frequency device 112 , and a baseband device 113 .
  • the antenna 111 is connected to the radio frequency device 112 .
  • the radio frequency device 112 receives information through the antenna 111, and sends the received information to the baseband device 113 for processing.
  • the baseband device 113 processes the information to be sent and sends it to the radio frequency device 112
  • the radio frequency device 112 processes the received information and sends it out through the antenna 111 .
  • the foregoing frequency band processing device may be located in the baseband device 113 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 113 , and the baseband device 113 includes a processor 114 and a memory 115 .
  • the baseband device 113 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the baseband device 113 may also include a network interface 116 for exchanging information with the radio frequency device 112, such as a common public radio interface (CPRI for short).
  • a network interface 116 for exchanging information with the radio frequency device 112, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network side device in the embodiment of the present invention also includes: instructions or programs stored in the memory 115 and executable on the processor 114, and the processor 114 calls the instructions or programs in the memory 115 to execute the modules shown in FIG. 6 In order to avoid repetition, the implementation method and achieve the same technical effect will not be repeated here.
  • the embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored, and when the program or instruction is executed by a processor, each of the above embodiments of the delayed Doppler domain channel information feedback method is implemented. process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above-mentioned delayed Doppler domain channel
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above-mentioned delayed Doppler domain channel
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种延迟多普勒域信道信息反馈方法、装置及电子设备,属于移动通信领域,本申请实施例的延迟多普勒域信道信息反馈方法包括:第一设备向第二设备发送目标反馈信息,其中,所述目标反馈信息与目标信道信息关联,所述目标信道信息为所述第一设备对目标信号进行信道估计得到的延迟多普勒域的全部或部分信道信息;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号。

Description

延迟多普勒域信道信息反馈方法、装置及电子设备
交叉引用
本发明要求在2021年05月21日提交中国专利局、申请号为202110560591.8、发明名称为“延迟多普勒域信道信息反馈方法、装置及电子设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请属于移动通信技术领域,具体涉及一种延迟多普勒域信道信息反馈方法、装置及电子设备。
背景技术
通信系统中,想在发端对信道做针对性预处理,如预编码,链路自适应,调度等,需要获取发端(A端)到收端(B端)的信道估计。若信道具有互易性,例如时分复用(Time Division Duplex,TDD)信道可由B端发送参考信号,在A端估计出B端到A端的信道,并利用信道互易性获得A端到B端的信道估计。若信道不具有互易性,例如频分复用(Frequency Division Duplex,FDD)信道,则需由A端发送参考信号,B端估计出A端到B端的信道后再将其反馈给A端。后面这种基于反馈的方式同样适用于具有互易性的信道。根据不同的调制技术进行信道估计可以得到不同的信道信息,所述信道信息可以为基于正交频分复用(Orthogonal frequency division multiplex,OFDM)调制的时频域的信道信息,也可以基于正交时频空域(Orthogonal Time Frequency Space,OTFS)调制的延迟多普勒域的信道信息,用于表示信道的延迟和多普勒特性。
目前的传输方案,在进行信道信息反馈时均是面向OFDM调制的时频域 信道,延迟多普勒域的信道信息具有自己独特的特征,OTFS中的信号过信道方式或者收发端输入输出关系,也与时频域信号过信道方式不同,在对延迟多普勒域的信道信息进行反馈时无法实现反馈开销和反馈精度两者间的平衡。
发明内容
本申请实施例提供一种延迟多普勒域信道信息反馈方法、装置及电子设备,能够解决对延迟多普勒域的信道信息进行反馈时无法实现反馈开销和反馈精度两者间的平衡的问题。
第一方面,提供了一种延迟多普勒域信道信息反馈方法,应用于第一设备,该方法包括:
第一设备向第二设备发送目标反馈信息;
其中,所述目标反馈信息与目标信道信息关联,所述目标信道信息为所述第一设备对目标信号进行信道估计得到的延迟多普勒域的全部或部分信道信息;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号。
第二方面,提供了一种延迟多普勒域信道信息反馈的装置,包括:
测量模块,用于对目标信号进行信道估计得到延迟多普勒域的目标信道信息;
反馈模块,用于向第二设备发送目标反馈信息;
其中,所述目标反馈信息与所述目标信道信息关联;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号。
第三方面,提供了一种终端,该终端包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种网络侧设备,该网络侧设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的延迟多普勒域信道信息反馈方法的步骤。
在本申请实施例中,通过向第二设备发送目标反馈信息,其中,所述目标反馈信息与所述目标信道信息关联,所述目标信道信息为所述第一设备对目标信号进行信道估计得到的延迟多普勒域的全部或部分信道信息;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号,从而可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
附图说明
图1示出本申请实施例可应用的一种无线通信系统的结构示意图;
图2示出本申请实施例的一种延迟多普勒域信道信息反馈方法的流程示意图;
图3示出本申请实施例的一种延迟多普勒域的信道信息示意图;
图4示出本申请实施例的另一种延迟多普勒域信道信息反馈方法的流程示意图;
图5示出本申请实施例的另一种延迟多普勒域信道信息反馈方法的流程示意图;
图6示出本申请实施例的另一种延迟多普勒域信道信息反馈方法的流程示意图;
图7示出本申请实施例的另一种延迟多普勒域信道信息反馈方法的流程示意图;
图8示出本申请实施例的一种延迟多普勒域信道信息反馈装置的结构示意图;
图9示出本申请实施例提供的一种通信设备结构示意图;
图10为实现本申请实施例的一种终端的结构示意图;
图11为实现本申请实施例的一种网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier  Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构示意图。无线通信系统包括第一设备11和第二设备12,其中,第一设备和第二设备可以为两个终端,也可以为终端与网络侧设备。所述终端也可以称作终端设备或者用户终端(User Equipment,UE),终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:智能手表、手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端的具体类型。网络侧设备可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(Evolved Node-B,eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Networks,WLAN)接入点、WiFi节点、发送接收点(TransmissionReceptionPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的延 迟多普勒域信道信息反馈方法进行详细地说明。
图2示出本申请实施例的一种延迟多普勒域信道信息反馈方法的流程示意图,如图2所示,该方法的执行主体为第一设备,所述第一设备可以终端或网络侧设备,换言之,该方法可以由安装在终端或网络侧设备的软件或硬件来执行。该方法可以包括以下步骤。
步骤S201、第一设备向第二设备发送目标反馈信息;
其中,所述目标反馈信息与目标信道信息关联,所述目标信道信息为所述第一设备对目标信号进行信道估计得到的延迟多普勒域的全部或部分信道信息;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号。
第一设备通过预设的进行信道估计算法,可以得到第一设备与第二设备之间的延迟多普勒域的信道信息。具体可以通过对由第二设备或第三设备发送的目标信号进行延迟多普勒分析得到。所述目标信号可以包括参考信号或同步信号,所述参考信号具体可以包括以下至少一种:
小区参考信号(Cell Reference Signal,CRS);
信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS);
解调参考信号(Demodulation Reference Signal,DMRS);
定位参考信号(Position Reference Signal,PRS);
相位跟踪参考信号(Phase-tracking reference signal,PTRS);
跟踪参考信号(Tracking Reference Signal,TRS)。
对所述目标信号进行信道估计的方法有多种,可以为基于OTFS调制的信道估计。
第一设备通过信道估计得到的延迟多普勒域的信道信息,如图3所示,可以映射到一个二维的延迟多普勒平面上。根据第一设备与第二设备之间的传输频率,第一设备与第二设备之间相对速度的最大速度、第一设备与第二设备之间最大距离,可以确定延迟值和多普勒值的取值范围,从而可以根据 延迟值和多普勒值的取值范围确定延迟多普勒域的边界,并且将延迟多普勒域表示为延迟多普勒二维网格上,每个栅格表示一个延迟-多普勒对,该栅格上的复增益表示该延迟-多普勒对对应的传输径上的复增益。所述延迟多普勒域上延迟域分辨率为
Figure PCTCN2022093866-appb-000001
秒,即延迟域每个栅格表示
Figure PCTCN2022093866-appb-000002
秒,多普勒域分辨率为ω赫兹,即多普勒域每个栅格表示ω赫兹。可以用一个L MaxDelay×(2K MaxDopp+1)维度的栅格表示上述给定场景下的信道信息,其中L MaxDelay表示考虑的最大延迟值对应的栅格数,K MaxDopp表示最大多普勒值对应的栅格数,其中,由于多普勒值可正可负,所以多普勒域方向共划分(2K MaxDopp+1)个栅格。其背后的物理意义是,信号的延迟和多普勒效应,实际上是一种信号通过多径信道后的一系列具有不同时间和频率偏移的回波的线性叠加效应。从这个意义上说,延迟多普勒分析和时频域分析可以通过所述的逆辛傅里叶变换(Inverse Sympletic Fast Fourier Transform,ISFFT)和辛傅里叶变换(Sympletic Fast Fourier Transform,SFFT)相互转换得到。
第一设备通过对所述延迟多普勒域的信道信息的分析,提取出需要发送给第二设备的目标信道信息,并以目标反馈信息的形式发送给所述第二设备。第二设备通过对目标反馈信息的解析,解析出所述目标信道信息。
由此,本申请实施例提供了一种延迟多普勒域信道信息反馈方法,通过向第二设备发送目标反馈信息,其中,所述目标反馈信息与目标信道信息关联,所述目标信道信息为所述第一设备对目标信号进行信道估计得到的延迟多普勒域的全部或部分信道信息;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号,从而可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
图4示出本申请实施例的另一种延迟多普勒域信道信息反馈方法的流程示意图,如图4所示,该方法的执行主体为第一设备,所述第一设备可以为终端或网络侧设备,换言之,该方法可以由安装在终端或网络侧设备的软件 或硬件来执行。该方法可以包括以下步骤。
步骤S401、第一设备获取目标信道信息,所述目标信道信息包含所述延迟多普勒域中所有延迟-多普勒对,以及各延迟-多普勒对所对应的复增益;其中,所述延迟-多普勒对由一对延迟值和多普勒值确定,用于指示在所述延迟多普勒域中所述一对延迟值和多普勒值所指示的区域;
在本申请实施例中,第一设备通过信道估计得到延迟多普勒域的信道信息均作为目标信道信息。以如图3所示的延迟多普勒域信道信息为例,第一设备将L MaxDelay×(2K MaxDopp+1)维度的栅格对应信道信息均作为目标信道信息,所述目标信道信息包括所有栅格对应的延迟-多普勒对,以及各迟延多普勒对所对应的复增益。
步骤S402、第一设备向第二设备发送的目标反馈信息;
其中,所述目标反馈信息与目标信道信息关联,所述目标信道信息为所述第一设备对目标信号进行信道估计得到的延迟多普勒域的全部或部分信道信息;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号。
在步骤S402之前,所述第一设备根据目标信道信息确定发送给第二设备的目标反馈信息的反馈方式有很多,包括以下至少一项:
将所述目标信道信息进行直接量化作为目标反馈信息;
根据所述目标信道信息,基于码本集合中选择的目标码本确定目标反馈信息。
在一种实施方式中,将目标信道信息中与各延迟多普勒相对应的信道信息进行直接量化作为目标反馈信息,即将所述延迟多普勒域中各延迟-多普勒对的位置信息,以及各延迟-多普勒对所对应的复增益进行直接量化作为目标反馈信息,并将所述目标反馈信息发送给第二设备。所述第二设备根据接收到的直接量化得到的目标反馈信息恢复所述延迟多普勒域的信道信息。
可知,采用直接量化的反馈方式可以最全面反馈信道信息,可以使第二设备在恢复信道信息时取得很高的反馈精度,但此种反馈方式,需要较高的 反馈开销。
在一种实施方式中,所述目标反馈信息中延迟-多普勒对所对应的复增益的浮点数精度由第二参数确定,所述第二参数通过以下至少一种方式确定:
协议确定;
所述第一设备与第二设备之间交互的第一信令确定。
在另一种实施中,根据延迟多普勒域的信道信息,基于码本集合选择的目标码本确定目标反馈信息。预先设置码本集合,所述码本集合中可以包含多个码本。第一设备根据获取的延迟普勒域的目标信道信息,从码本集合中选择目标码本。
在一种实施方式中,第一设备可以从码本集合中选择与所述目标信道信息最相似的码本,并根据所述最相似的码本确定目标反馈信息。所述目标反馈信息可以是所述最相似的码本的标识(index),第一设备将该最相似的码本的index发送给第二设备。第二设备根据接收到的index从码本集合中查找到对应的码本,再根据查找到的码本恢复目标信道信息,即可以将查找到的码本作为目标信道信息,进而作为所述延迟多普勒域的信道信息。
在另一种实施方式中,在由所述码本集合中的多个码本的加权和表示所述目标信道信息的情况下,根据所述多个码本的加权和确定目标反馈信息。第一设备从码本集合中选择多个码本,并将目标信道信息表示为多个码本的加权和。在一种实施方式中,第一设备可根据所述多个码本的加权和,将所述多个码本中各码本的标识和对应的加权值作为目标反馈信息,向所述第二设备发送所述多个码本的标识和各码本对应的加权值。第二设备根据接收到的标识从码本集合中找到对应的多个码本,再根据各码本对应的加权值,恢复所述目标信道信息,进而得到所述延迟多普勒域的信道信息。
在一种实施方式中,所述加权值的浮点数精度由第四参数确定,所述第四参数通过以下至少一种方式确定:
协议确定;
所述第一设备与第二设备之间交互的第一信令确定。
在一种实施方式中,所述第一设备与第二设备之间交互的第一信令包括以下至少一项:
无线资源控制(Radio Resource Control,RRC)信令;
物理下行控制信道(Physical downlink control channel,PDCCH)的层1信令;
物理下行共享信道(Physical downlink shared channel,PDSCH)的信息;
媒体接入控制层控制单元(Medium Access Control Control Element,MAC CE)的信令;
系统信息块(System Information Block,SIB);
物理上行控制信道(Physical uplink control channel,PUCCH)的层1信令;
物理随机接入信道(Physical Random Access Channel,PRACH)的MSG1信息;
物理随机接入信道的MSG 3信息;
物理随机接入信道的MSG A信息;
物理上行共享信道的信息。
Xn接口信令;
PC5接口信令;
副链路(Sidelink)接口信令。
在一种实施方式中,第一设备可根据传输环境条件、传输需求,自适应得调整第一参数和/或第四参数,具体可以通过传输第一信令来实现。所述自适应调整的过程由所述第一设备或第二设备触发。
在一种实施方式中,图5示出本申请实施例的另一种延迟多普勒域信道信息反馈方法的流程示意图,如图5所示,所述方法包括以下步骤。
步骤S501、第一设备得到延迟多普勒域的信道信息;
步骤S502、判断对延迟多普勒域的信道信息是否进行直接量化,若是,则执行步骤S503,若否,则基于码本集合执行步骤S505;
步骤S503、将延迟多普勒域的信道信息全部进行直接量化,作为目标反馈信息;
步骤S504、向第二设备发送目标反馈信息;
步骤S505、判断是否采用纯码本方式;若是,则执行步骤S506;若否,则执行步骤S508;
步骤S506、从码本集合中选择与所述目标信道信息最相似的码本;
步骤S507、根据所述最相似的码本,向第二设备反馈该码本的标识;
步骤S508、所述码本集合中的多个码本的加权和表示所述目标信道信息;
步骤S509、向第二设备反馈所述多个码本的标识和对应的加权值。
由此,本申请实施例提供了一种延迟多普勒域信道信息反馈方法,第一设备通过将估计得到的延迟多普勒域的信道信息均作为目标信道信息,并分别通过直接量化,或基于码本集合,得到目标反馈信息发送给第二设备,从而可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
图6示出本申请实施例的另一种延迟多普勒域信道信息反馈方法的流程示意图,如图6所示,该方法的执行主体为第一设备,所述第一设备可以为终端或网络侧设备,换言之,该方法可以由安装在终端或网络侧设备的软件或硬件来执行。该方法可以包括以下步骤。
步骤S601、获取所述延迟多普勒域中各延迟-多普勒对所对应的复增益的范数,并根据满足第一条件的延迟-多普勒对确定目标信道信息;
其中,所述满足第一条件的延迟-多普勒对包括以下至少一项:
范数大于阈值α的延迟-多普勒对;
范数最大的第一数量F的延迟-多普勒对。
所述复增益的范数的计算方法可以有多种,在一种实施方式中,所述范 数为所述复增益的模值或者为所述复增益的模值的目标幂次方。
在一种实施方式中,所述范数的浮点数精度由第三参数确定,所述第三参数通过以下至少一种方式确定:
协议确定;
所述第一设备与第二设备之间交互的第一信令确定。
本申请实施例,第一设备在通过信道估计得到延迟多普勒域的信道信息后,从中选择部分信道信息进行反馈。
在一种实施方式中,第一设备根据各延迟-多普勒对的复增益的范数,选出范数大于阈值α的延迟-多普勒对,例如,以图3所示的延迟多普勒域为例,分别得到各延迟-多普勒对的复增益的范数,可通过图3中各栅格点的密度来指示范数的大小,密度越高范数越大,具体的,当α=0.7时选出的延迟-多普勒对的坐标为[-2,4],[0,7],[3,2],对应的复增益的范数分别为0.7262,0.9084,0.7838;α=0.4时选出延迟-多普勒对的坐标为[-2,4],[0,7],[3,2],[-1,3],[3,6],对应的复增益的范数分别为0.7262,0.9084,0.7838,0.4132,0.5209。
应理解的是,可通过调整阈值α来权衡反馈开销和反馈精度,对于同一传输环境和反馈机制,α越大,反馈开销越小,反馈精度越低。
在另一种实施方式中,第一设备根据各延迟-多普勒对的复增益的范数,选出范数最大的前F个的延迟-多普勒对。例如,以图3所示的延迟多普勒域为例,在F=4时选出的延迟-多普勒对的坐标为[0,7],[3,2],[-2,4],[3,6],对应的增益范数分别为0.9084,0.7838,0.7262,0.5209;在F=7时选出的延迟-多普勒对的坐标为[0,7],[3,2],[-2,4],[3,6],[-1,3],[-4,5][-3,7],对应的增益范数分别为0.9084,0.7838,0.7262,0.5209,0.4132,0.3333,0.2989。
应理解的是,可通过调整第一数量F值来权衡反馈开销和反馈精度,对于同一传输环境和反馈机制,F越大,反馈开销越小,反馈精度越低。
应理解的是,所述第一设备与第二设备必须基于相同的阈值α或第一数量F进行信息的反馈和恢复。在一种实施方式中,所述阈值α和第一数量F通过 以下至少一种方式确定:
协议确定;
所述第一设备与第二设备之间交互的第一信令确定。
第一设备根据选出的延迟-多普勒对确定的目标信道信息包括以下至少一项:
满足第一条件的延迟-多普勒对在所述延迟多普勒域中的位置信息;
满足第一条件的延迟-多普勒对所对应的复增益。
在一种实施方式中,可将选出的延迟-多普勒对的位置信息和复增益均作为目标信道信息。
在另一种实施方式中,可以仅将选出的延迟-多普勒对的位置信息作为目标信道信息。
步骤S602、第一设备向第二设备发送目标反馈信息;
其中,所述目标反馈信息与目标信道信息关联,所述目标信道信息为所述第一设备对目标信号进行信道估计得到的延迟多普勒域的全部或部分信道信息;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号。
在步骤S602之前,所述第一设备根据目标信道信息确定发送给第二设备的目标反馈信息的反馈方式有很多,在一种实施方式中,第一设备将所述目标信道信息进行直接量化作为目标反馈信息。
在所述目标信道信息包括选出的延迟-多普勒对的位置信息和复增益的情况下,第一设备将选出的延迟-多普勒对的位置信息和复增益均进行直接量化,作为目标反馈信息。在所述目标信道信息仅包括选出的延迟-多普勒对的位置信息的情况下,第一设备将选出的延迟-多普勒对的位置信息进行直接量化作为目标反馈信息。
在一种实施方式中,所述目标反馈信息中延迟-多普勒对所对应的复增益的浮点数精度由第二参数确定,所述第二参数通过以下至少一种方式确定:
协议确定;
所述第一设备与第二设备之间交互的第一信令确定。
在另一种实施方式中,第一设备根据所述目标信道信息,基于码本集合中选择的目标码本确定目标反馈信息,具体地:
在一种实施方式中,第一设备可以从码本集合中选择与所述目标信道信息最相似的码本,并根据所述最相似的码本确定目标反馈信息。所述目标反馈信息可以是所述最相似的码本的index,第一设备将该最相似的码本的index发送给第二设备。第二设备根据接收到的index从码本集合中查找到对应的码本,再根据查找到的码本恢复目标信道信息,即可以将查找到的码本直接作为目标信道信息,进而恢复所述延迟多普勒域的信道信息。
在另一种实施方式中,在由所述码本集合中的多个码本的加权和表示所述目标信道信息的情况下,根据所述多个码本的加权和确定目标反馈信息。第一设备从码本集合中选择多个码本,并将目标信道信息表示为多个码本的加权和。在一种实施方式中,第一设备可根据所述多个码本的加权和,将所述多个码本中各码本的index和对应的加权值作为目标反馈信息,向所述第二设备发送所述多个码本的index和各码本对应的加权值。第二设备根据接收到的index从码本集合中找到对应的多个码本,再根据各码本对应的加权值,恢复所述目标信道信息,进而得到所述延迟多普勒域的信道信息。
在一种实施方式中,所述加权值的浮点数精度由第四参数确定,所述第四参数通过以下至少一种方式确定:
协议确定;
所述第一设备与第二设备之间交互的第一信令确定。
进一步地,在根据所述目标信道信息,基于码本集合选择目标码本确定目标反馈信息进行反馈的情况下,所述目标码本可以包括以下至少一项:
根据所述目标信道信息中各延迟-多普勒对所对应的延迟值和多普勒值得到的第一码本,即每个第一码本用于指示一组延迟-多普勒对的位置信息组合;
根据所述目标信道信息中各延迟-多普勒对所对应的复增益得到的第二码本,即每个第二码本用于指示一组延迟-多普勒对的复增益的组合;
根据所述目标信道信息中各延迟-多普勒对所对应的延迟值和多普勒值,以及各延迟-多普勒对所对应的复增益得到的第三码本,即每个第三码本用于指示一组延迟-多普勒对的位置信息和对应的复增益的组合。
应理解的是,若在目标信道信息仅包括延迟-多普勒对的位置信息,则从可以从码本集合中选取第一码本作为目标码本,再基于所述选取的第一码本来确定目标反馈信息。若确定目标信道信息包括延迟-多普勒对的位置信息和复增益,则可以从两套码本集合分别选取第一码本和第二码本作为目标码本,再基于选取的第一码本和第二码本来确定目标反馈信息,或者从码本集合中选取第三码本作为目标码本,再基于选取的第三码本来确定目标反馈信息。
在一种实施方式中,所述第一设备与第二设备之间交互的第一信令包括以下至少一项:
无线资源控制信令;
物理下行控制信道的层1信令;
物理下行共享信道的信息;
媒体接入控制层控制单元的信令;
系统信息块;
物理上行控制信道的层1信令;
物理随机接入信道的MSG 1信息;
物理随机接入信道的MSG 3信息;
物理随机接入信道的MSG A信息;
物理上行共享信道的信息。
Xn接口信令;
PC5接口信令;
Sidelink接口信令。
在一种实施方式中,第一设备可根据传输环境条件、传输需求,自适应调整以下参数至少之一:
阈值、第一数量、第一参数、第二参数、第三参数、第四参数;
其中,所述自适应调整的过程由所述第一设备或第二设备触发。所述自适应调整的过程由所述第一设备或第二设备触发。
在一种实施方式中,图7示出本申请实施例的另一种延迟多普勒域信道信息反馈方法的流程示意图,如图7所示,所述方法包括以下步骤。
步骤S701、第一设备得到延迟多普勒域的信道信息;
步骤S702、从延迟多普勒域的各延迟-多普勒对中选择范数大于阈值α的延迟-多普勒对,或者,选择范数最大的前F个延迟-多普勒对;
步骤S703、判断是否在向第二设备的反馈信息中反馈复增益,若是,则执行步骤S704;若否,则执行步骤S705;
步骤S704、将选择的延迟-多普勒对的位置信息和复增量,作为目标信道信息;
步骤S705、将选择的延迟-多普勒对的位置信息,作为目标信道信息;
步骤S706、判断对延迟多普勒域的信道信息是否进行直接量化,若是,则执行步骤S707,若否,则基于码本集合执行步骤S709;
步骤S707、将目标信道信息进行直接量化,作为目标反馈信息;
步骤S708、向第二设备发送目标反馈信息;
步骤S709、判断是否采用纯码本方式;若是,则执行步骤S710;若否,则执行步骤S712;
步骤S710、从码本集合中选择与所述目标信道信息最相似的码本;
步骤S711、根据所述最相似的码本,向第二设备反馈该码本的标识;
步骤S712、所述码本集合中的多个码本的加权和表示所述目标信道信息;
步骤S713、根据所述最相似的码本,向第二设备反馈该码本的标识。
由此,本申请实施例提供了一种延迟多普勒域信道信息反馈方法,第一 设备通过获取各延迟-多普勒对的复增益的范数,并根据范数大于阈值的延迟-多普勒对或范数最大的第一数量的延迟-多普勒对得到目标信道信息,再分别通过直接量化,或基于码本集合,得到目标反馈信息发送给第二设备,从而可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
基于上述实施例,进一步地,在所述第一设备进行信道估计后,所述方法还包括:
所述第一设备基于延迟多普勒域信道估计结果或延迟多普勒域向量化等效信道矩阵估计结果,得到第一参数并向所述第二设备进行反馈;
所述第一参数包括以下至少一项:
信道质量指示(Channel quality indicator,CQI);
预编码矩阵指示(Precoding matrix indicator,PMI);
秩指示(Rank indicator,RI);
信道状态信息资源指示(CSI-RS Resource Indicator,CRI);
同步信号块资源指示(Synchronization Signal and PBCH block Resource Indicator,SSBRI);
层指示(Layer Indicator,LI);
L1参考信号接收功率(L1 Reference Signal Received Power,L1-RSRP)。
由此,本申请实施例提供了一种延迟多普勒域信道信息反馈方法,第一设备通过基于延迟多普勒域信道估计结果或延迟多普勒域向量化等效信道矩阵估计结果,得到第一参数并向所述第二设备进行反馈,从而可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
需要说明的是,本申请实施例提供的延迟多普勒域信道信息反馈方法,执行主体可以为延迟多普勒域信道信息反馈装置,或者,该延迟多普勒域信道信息反馈装置中的用于执行延迟多普勒域信道信息反馈方法的控制模块。 本申请实施例中以延迟多普勒域信道信息反馈装置执行延迟多普勒域信道信息反馈方法为例,说明本申请实施例提供的延迟多普勒域信道信息反馈装置。
图8示出本申请实施例的一种延迟多普勒域信道信息反馈装置的结构示意图,如图8所示,所述装置包括:测量模块801和反馈模块802。
所述测量模块801用于对目标信号进行信道估计得到延迟多普勒域的目标信道信息;所述反馈模块802用于向第二设备发送目标反馈信息;
其中,所述目标反馈信息与所述目标信道信息关联;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号。
由此,本申请实施例提供了一种延迟多普勒域信道信息反馈装置,通过向第二设备发送目标反馈信息,其中,所述目标反馈信息与目标信道信息关联,所述目标信道信息为所述第一设备对目标信号进行信道估计得到的延迟多普勒域的全部或部分信道信息;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号,从而可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
基于上述实施例,进一步地,所述目标信道信息包含所述延迟多普勒域中所有延迟-多普勒对,以及各延迟-多普勒对所对应的复增益;其中,所述延迟-多普勒对由一对延迟值和多普勒值确定,用于指示在所述延迟多普勒域中所述一对延迟值和多普勒值所指示的区域。
进一步地,所述反馈模块还用于执行以下至少一项:
将所述目标信道信息进行直接量化作为目标反馈信息;
根据所述目标信道信息,基于码本集合中选择的目标码本确定目标反馈信息。
进一步地,在对所述目标信道信息进行直接量化的情况下,所述目标反馈信息中延迟-多普勒对所对应的复增益的浮点数精度由第二参数确定,所述第二参数通过以下至少一种方式确定:
协议确定;
所述装置与第二设备之间交互的第一信令确定。
进一步地,所述根据所述目标信道信息,基于码本集合选择的目标码本确定目标反馈信息,包括以下至少一项:
从码本集合中选择与所述目标信道信息最相似的码本,并根据所述最相似的码本确定目标反馈信息;
在由所述码本集合中的多个码本的加权和表示所述目标信道信息的情况下,根据所述多个码本的加权和确定目标反馈信息。
进一步地,所述根据所述多个码本的加权和确定目标反馈信息,包括:
根据所述多个码本的加权和,将所述多个码本中各码本的标识和对应的加权值作为目标反馈信息。
所述根据所述目标信道信息,基于码本集合选择的目标码本包括以下至少一项:
根据所述目标信道信息中各延迟-多普勒对所对应的延迟值和多普勒值得到的第一码本;
根据所述目标信道信息中各延迟-多普勒对所对应的复增益得到的第二码本;
根据所述目标信道信息中各延迟-多普勒对所对应的延迟值和多普勒值,以及各延迟-多普勒对所对应的复增益得到的第三码本。
进一步地,所述加权值的浮点数精度由第四参数确定,所述第四参数通过以下至少一种方式确定:
协议确定;
所述装置与第二设备之间交互的第一信令确定。
进一步地,所述第一信令包括以下至少一项:
无线资源控制信令;
物理下行控制信道的层1信令;
物理下行共享信道的信息;
媒体接入控制层控制单元的信令;
系统信息块;
物理上行控制信道的层1信令;
物理随机接入信道的MSG 1信息;
物理随机接入信道的MSG 3信息;
物理随机接入信道的MSG A信息;
物理上行共享信道的信息。
Xn接口信令;
PC5接口信令;
Sidelink接口信令。
由此,本申请实施例提供了一种延迟多普勒域信道信息反馈装置,通过将估计得到的延迟多普勒域的信道信息均作为目标信道信息,并分别通过直接量化,或基于码本集合,得到目标反馈信息发送给第二设备,从而可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
基于上述实施例,进一步地,所述测量模块用于获取所述延迟多普勒域中各延迟-多普勒对所对应的复增益的范数,并根据满足第一条件的延迟-多普勒对确定目标信道信息;
其中,所述满足第一条件的延迟-多普勒对包括以下至少一项:
范数大于阈值的延迟-多普勒对;
范数最大的第一数量的延迟-多普勒对。
进一步地,所述范数为所述复增益的模值或者为所述复增益的模值的目标幂次方。
进一步地,所述范数的浮点数精度由第三参数确定,所述第三参数通过以下至少一种方式确定:
协议确定;
所述装置与第二设备之间交互的第一信令确定。
进一步地,所述阈值和第一数量通过以下至少一种方式确定:
协议确定;
所述装置与第二设备之间交互的第一信令确定。
进一步地,所述目标信道信息包括以下至少一项:
满足第一条件的延迟-多普勒对在所述延迟多普勒域中的位置信息;
满足第一条件的延迟-多普勒对所对应的复增益。
进一步地,所述测量模块还用于根据传输环境条件、传输需求,自适应调整以下参数至少之一:
阈值、第一数量、第一参数、第二参数、第三参数、第四参数;
其中,所述自适应调整的过程由所述第一设备或第二设备触发。
由此,本申请实施例提供了一种延迟多普勒域信道信息反馈装置,通过获取各延迟-多普勒对的复增益的范数,并根据范数大于阈值的延迟-多普勒对或范数最大的第一数量的延迟-多普勒对得到目标信道信息,再分别通过直接量化,或基于码本集合,得到目标反馈信息发送给第二设备,从而可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
基于上述实施例,进一步地,所述反馈模块用于基于延迟多普勒域信道估计结果或延迟多普勒域向量化等效信道矩阵估计结果,得到第一参数并向所述第二设备进行反馈:
所述第一参数包括以下至少一项:
信道质量指示;
预编码矩阵指示;
秩指示;
信道状态信息资源指示;
同步信号块资源指示;
层指示;
L1参考信号接收功率。
由此,本申请实施例提供了一种延迟多普勒域信道信息反馈装置,通过基于延迟多普勒域信道估计结果或延迟多普勒域向量化等效信道矩阵估计结果,得到第一参数并向所述第二设备进行反馈,从而可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
本申请实施例中的延迟多普勒域信道信息反馈装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的延迟多普勒域信道信息反馈装置能够实现图2至图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图9所示,本申请实施例还提供一种通信设备900,包括处理器901,存储器902,存储在存储器902上并可在所述处理器901上运行的程序或指令,例如,该通信设备900为终端时,该程序或指令被处理器901执行时实现上述延迟多普勒域信道信息反馈方法实施例的各个过程,且能达到相同的技术效果。该通信设备900为网络侧设备时,该程序或指令被处理器901执行时实现上述延迟多普勒域信道信息反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于对 目标信号进行信道估计得到延迟多普勒域的目标信道信息,通信接口用于向第二设备发送目标反馈信息。该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图10为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009、以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理器(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001将来自网络侧设备的下行数据接收后,给处理器1010处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1001包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括高速随机存取存储器,还可以包括非瞬态性存储器,其中,非瞬态性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非瞬态性固态存储器件。
处理器1010可包括一个或多个处理单元;可选的,处理器1010可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,射频单元1001,用于向第二设备发送目标反馈信息;
其中,所述目标反馈信息与所述目标信道信息关联;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号。
处理器1010,用于对目标信号进行信道估计得到延迟多普勒域的目标信道信息。
本申请实施例可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
可选的,所述目标信道信息包含所述延迟多普勒域中所有延迟-多普勒对,以及各延迟-多普勒对所对应的复增益;其中,所述延迟-多普勒对由一对延迟值和多普勒值确定,用于指示在所述延迟多普勒域中所述一对延迟值和多普勒值所指示的区域。
进一步地,所述射频单元1001还用于执行以下至少一项:
将所述目标信道信息进行直接量化作为目标反馈信息;
根据所述目标信道信息,基于码本集合中选择的目标码本确定目标反馈信息。
进一步地,在对所述目标信道信息进行直接量化的情况下,所述目标反馈信息中延迟-多普勒对所对应的复增益的浮点数精度由第二参数确定,所述第二参数通过以下至少一种方式确定:
协议确定;
所述装置与第二设备之间交互的第一信令确定。
进一步地,所述根据所述目标信道信息,基于码本集合选择的目标码本确定目标反馈信息,包括以下至少一项:
从码本集合中选择与所述目标信道信息最相似的码本,并根据所述最相似的码本确定目标反馈信息;
在由所述码本集合中的多个码本的加权和表示所述目标信道信息的情况下,根据所述多个码本的加权和确定目标反馈信息。
进一步地,所述根据所述多个码本的加权和确定目标反馈信息,包括:
根据所述多个码本的加权和,将所述多个码本中各码本的标识和对应的加权值作为目标反馈信息。
所述根据所述目标信道信息,基于码本集合选择的目标码本包括以下至少一项:
根据所述目标信道信息中各延迟-多普勒对所对应的延迟值和多普勒值得到的第一码本;
根据所述目标信道信息中各延迟-多普勒对所对应的复增益得到的第二码本;
根据所述目标信道信息中各延迟-多普勒对所对应的延迟值和多普勒值,以及各延迟-多普勒对所对应的复增益得到的第三码本。
进一步地,所述加权值的浮点数精度由第四参数确定,所述第四参数通过以下至少一种方式确定:
协议确定;
所述装置与第二设备之间交互的第一信令确定。
进一步地,所述第一信令包括以下至少一项:
无线资源控制信令;
物理下行控制信道的层1信令;
物理下行共享信道的信息;
媒体接入控制层控制单元的信令;
系统信息块;
物理上行控制信道的层1信令;
物理随机接入信道的MSG 1信息;
物理随机接入信道的MSG 3信息;
物理随机接入信道的MSG A信息;
物理上行共享信道的信息。
Xn接口信令;
PC5接口信令;
Sidelink接口信令。
本申请实施例可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
进一步地,所述处理器1010还用于获取所述延迟多普勒域中各延迟-多普勒对所对应的复增益的范数,并根据满足第一条件的延迟-多普勒对确定目标信道信息;
其中,所述满足第一条件的延迟-多普勒对包括以下至少一项:
范数大于阈值的延迟-多普勒对;
范数最大的第一数量的延迟-多普勒对。
进一步地,所述范数为所述复增益的模值或者为所述复增益的模值的目标幂次方。
进一步地,所述范数的浮点数精度由第三参数确定,所述第三参数通过以下至少一种方式确定:
协议确定;
所述装置与第二设备之间交互的第一信令确定。
进一步地,所述阈值和第一数量通过以下至少一种方式确定:
协议确定;
所述装置与第二设备之间交互的第一信令确定。
进一步地,所述目标信道信息包括以下至少一项:
满足第一条件的延迟-多普勒对在所述延迟多普勒域中的位置信息;
满足第一条件的延迟-多普勒对所对应的复增益。
进一步地,所述测量模块还用于根据传输环境条件、传输需求,自适应调整以下参数至少之一:
阈值、第一数量、第一参数、第二参数、第三参数、第四参数;
其中,所述自适应调整的过程由所述第一设备或第二设备触发。
本申请实施例可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
进一步地,所述处理器1010还用于基于延迟多普勒域信道估计结果或延迟多普勒域向量化等效信道矩阵估计结果,得到第一参数并向所述第二设备进行反馈:
所述第一参数包括以下至少一项:
信道质量指示;
预编码矩阵指示;
秩指示;
信道状态信息资源指示;
同步信号块资源指示;
层指示;
L1参考信号接收功率。
本申请实施例可以准确发送延迟多普勒域的信道信息,并根据目标信道信息以及目标反馈信息的确定方法,实现反馈开销和反馈精度之间的平衡。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于对目标信号进行信道估计得到延迟多普勒域的目标信道信息,通信接口用于向第二设备发送目标反馈信息。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图11所示,该网络设备1100包括:天线111、射频装置112、基带装置113。天线111与射频装置112连接。在上行方向上,射频装置112通过天线111接收信息,将接收的信息发送给基带装置113进行处理。在下行方向上,基带装置113对要发送的信息进行处理,并发送给射频装置112,射频装置112对收到的信息进行处理后经过天线111发送出去。
上述频带处理装置可以位于基带装置113中,以上实施例中网络侧设备执行的方法可以在基带装置113中实现,该基带装置113包括处理器114和存储器115。
基带装置113例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图11所示,其中一个芯片例如为处理器114,与存储器115连接,以调用存储器115中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置113还可以包括网络接口116,用于与射频装置112交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器115上并可在处理器114上运行的指令或程序,处理器114调用存储器115中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复, 故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述延迟多普勒域信道信息反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述延迟多普勒域信道信息反馈方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述 实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (38)

  1. 一种延迟多普勒域信道信息反馈方法,包括:
    第一设备向第二设备发送目标反馈信息;
    其中,所述目标反馈信息与目标信道信息关联,所述目标信道信息为所述第一设备对目标信号进行信道估计得到的延迟多普勒域的全部或部分信道信息;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号。
  2. 根据权利要求1所述的方法,其中,所述目标信道信息包含所述延迟多普勒域中所有延迟-多普勒对,以及各延迟-多普勒对所对应的复增益;其中,所述延迟-多普勒对由一对延迟值和多普勒值确定,用于指示在所述延迟多普勒域中所述一对延迟值和多普勒值所指示的区域。
  3. 根据权利要求1所述的方法,其中,所述方法还包括:
    获取所述延迟多普勒域中各延迟-多普勒对所对应的复增益的范数,并根据满足第一条件的延迟-多普勒对确定目标信道信息;
    其中,所述满足第一条件的延迟-多普勒对包括以下至少一项:
    范数大于阈值的延迟-多普勒对;
    范数最大的第一数量的延迟-多普勒对。
  4. 根据权利要求3所述的方法,其中,所述范数为所述复增益的模值或者为所述复增益的模值的目标幂次方。
  5. 根据权利要求3所述的方法,其中,所述目标信道信息包括以下至少一项:
    满足第一条件的延迟-多普勒对在所述延迟多普勒域中的位置信息;
    满足第一条件的延迟-多普勒对所对应的复增益。
  6. 根据权利要求1所述的方法,其中,在第一设备向第二设备发送目标反馈信息前,所述方法还包括以下至少一项:
    将所述目标信道信息进行直接量化作为目标反馈信息;
    根据所述目标信道信息,基于码本集合中选择的目标码本确定目标反馈信息。
  7. 根据权利要求6所述的方法,其中,所述根据所述目标信道信息,基于码本集合选择的目标码本确定目标反馈信息,包括以下至少一项:
    从码本集合中选择与所述目标信道信息最相似的码本,并根据所述最相似的码本确定目标反馈信息;
    在由所述码本集合中的多个码本的加权和表示所述目标信道信息的情况下,根据所述多个码本的加权和确定目标反馈信息。
  8. 根据权利要求7所述的方法,其中,所述根据所述多个码本的加权和确定目标反馈信息,包括:
    根据所述多个码本的加权和,将所述多个码本中各码本的标识和对应的加权值作为目标反馈信息。
  9. 根据权利要求6所述的方法,其中,所述根据所述目标信道信息,基于码本集合选择的目标码本包括以下至少一项:
    根据所述目标信道信息中各延迟-多普勒对所对应的延迟值和多普勒值得到的第一码本;
    根据所述目标信道信息中各延迟-多普勒对所对应的复增益得到的第二码本;
    根据所述目标信道信息中各延迟-多普勒对所对应的延迟值和多普勒值,以及各延迟-多普勒对所对应的复增益得到的第三码本。
  10. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述第一设备基于延迟多普勒域信道估计结果或延迟多普勒域向量化等效信道矩阵估计结果,得到第一参数并向所述第二设备进行反馈;
    所述第一参数包括以下至少一项:
    信道质量指示;
    预编码矩阵指示;
    秩指示;
    信道状态信息资源指示;
    同步信号块资源指示;
    层指示;
    L1参考信号接收功率。
  11. 根据权利要求6所述的方法,其中,在对所述目标信道信息进行直接量化的情况下,所述目标反馈信息中延迟-多普勒对所对应的复增益的浮点数精度由第二参数确定,所述第二参数通过以下至少一种方式确定:
    协议确定;
    所述第一设备与第二设备之间交互的第一信令确定。
  12. 根据权利要求3所述的方法,其中,所述范数的浮点数精度由第三参数确定,所述第三参数通过以下至少一种方式确定:
    协议确定;
    所述第一设备与第二设备之间交互的第一信令确定。
  13. 根据权利要求3所述的方法,其中,所述阈值和第一数量通过以下至少一种方式确定:
    协议确定;
    所述第一设备与第二设备之间交互的第一信令确定。
  14. 根据权利要求8所述的方法,其中,所述加权值的浮点数精度由第四参数确定,所述第四参数通过以下至少一种方式确定:
    协议确定;
    所述第一设备与第二设备之间交互的第一信令确定。
  15. 根据权利要求11-14任一所述的方法,其中,所述第一信令包括以下至少一项:
    无线资源控制信令;
    物理下行控制信道的层1信令;
    物理下行共享信道的信息;
    媒体接入控制层控制单元的信令;
    系统信息块;
    物理上行控制信道的层1信令;
    物理随机接入信道的MSG 1信息;
    物理随机接入信道的MSG 3信息;
    物理随机接入信道的MSG A信息;
    物理上行共享信道的信息;
    Xn接口信令;
    PC5接口信令;
    Sidelink接口信令。
  16. 根据权利要求11-14任一所述的方法,其中,所述方法还包括:
    根据传输环境条件、传输需求,自适应调整以下参数至少之一:
    阈值、第一数量、第一参数、第二参数、第三参数、第四参数;
    其中,所述自适应调整的过程由所述第一设备或第二设备触发。
  17. 一种延迟多普勒域信道信息反馈装置,包括:
    测量模块,用于对目标信号进行信道估计得到延迟多普勒域的目标信道信息;
    反馈模块,用于向第二设备发送目标反馈信息;
    其中,所述目标反馈信息与所述目标信道信息关联;所述目标信号是所述第二设备或第三设备向所述第一设备发送的信号。
  18. 根据权利要求17所述的装置,其中,所述目标信道信息包含所述延迟多普勒域中所有延迟-多普勒对,以及各延迟-多普勒对所对应的复增益;其中,所述延迟-多普勒对由一对延迟值和多普勒值确定,用于指示在所述延迟多普勒域中所述一对延迟值和多普勒值所指示的区域。
  19. 根据权利要求17所述的装置,其中,所述测量模块用于获取所述延迟多普勒域中各延迟-多普勒对所对应的复增益的范数,并根据满足第一条件的延迟-多普勒对确定目标信道信息;
    其中,所述满足第一条件的延迟-多普勒对包括以下至少一项:
    范数大于阈值的延迟-多普勒对;
    范数最大的第一数量的延迟-多普勒对。
  20. 根据权利要求19所述的装置,其中,所述范数为所述复增益的模值或者为所述复增益的模值的目标幂次方。
  21. 根据权利要求19所述的装置,其中,所述目标信道信息包括以下至少一项:
    满足第一条件的延迟-多普勒对在所述延迟多普勒域中的位置信息;
    满足第一条件的延迟-多普勒对所对应的复增益。
  22. 根据权利要求17所述的装置,其中,所述反馈模块还用于执行以下至少一项:
    将所述目标信道信息进行直接量化作为目标反馈信息;
    根据所述目标信道信息,基于码本集合中选择的目标码本确定目标反馈信息。
  23. 根据权利要求22所述的装置,其中,所述根据所述目标信道信息,基于码本集合选择的目标码本确定目标反馈信息,包括以下至少一项:
    从码本集合中选择与所述目标信道信息最相似的码本,并根据所述最相似的码本确定目标反馈信息;
    在由所述码本集合中的多个码本的加权和表示所述目标信道信息的情况下,根据所述多个码本的加权和确定目标反馈信息。
  24. 根据权利要求23所述的装置,其中,所述根据所述多个码本的加权和确定目标反馈信息,包括:
    根据所述多个码本的加权和,将所述多个码本中各码本的标识和对应的加权值作为目标反馈信息。
  25. 根据权利要求22所述的装置,其中,所述根据所述目标信道信息,基于码本集合选择的目标码本包括以下至少一项:
    根据所述目标信道信息中各延迟-多普勒对所对应的延迟值和多普勒值得到的第一码本;
    根据所述目标信道信息中各延迟-多普勒对所对应的复增益得到的第二码本;
    根据所述目标信道信息中各延迟-多普勒对所对应的延迟值和多普勒值,以及各延迟-多普勒对所对应的复增益得到的第三码本。
  26. 根据权利要求17所述的装置,其中,所述反馈模块用于基于延迟多普勒域信道估计结果或延迟多普勒域向量化等效信道矩阵估计结果,得到第一参数并向所述第二设备进行反馈;
    所述第一参数包括以下至少一项:
    信道质量指示;
    预编码矩阵指示;
    秩指示;
    信道状态信息资源指示;
    同步信号块资源指示;
    层指示;
    L1参考信号接收功率。
  27. 根据权利要求22所述的装置,其中,在对所述目标信道信息进行直接量化的情况下,所述目标反馈信息中延迟-多普勒对所对应的复增益的浮点数精度由第二参数确定,所述第二参数通过以下至少一种方式确定:
    协议确定;
    所述装置与第二设备之间交互的第一信令确定。
  28. 根据权利要求19所述的装置,其中,所述范数的浮点数精度由第三参数确定,所述第三参数通过以下至少一种方式确定:
    协议确定;
    所述装置与第二设备之间交互的第一信令确定。
  29. 根据权利要求19所述的装置,其中,所述阈值和第一数量通过以下至少一种方式确定:
    协议确定;
    所述装置与第二设备之间交互的第一信令确定。
  30. 根据权利要求24所述的装置,其中,所述加权值的浮点数精度由第 四参数确定,所述第四参数通过以下至少一种方式确定:
    协议确定;
    所述装置与第二设备之间交互的第一信令确定。
  31. 根据权利要求27-30任一所述的装置,其中,所述第一信令包括以下至少一项:
    无线资源控制信令;
    物理下行控制信道的层1信令;
    物理下行共享信道的信息;
    媒体接入控制层控制单元的信令;
    系统信息块;
    物理上行控制信道的层1信令;
    物理随机接入信道的MSG 1信息;
    物理随机接入信道的MSG 3信息;
    物理随机接入信道的MSG A信息;
    物理上行共享信道的信息;
    Xn接口信令;
    PC5接口信令;
    Sidelink接口信令。
  32. 根据权利要求27-30任一所述的装置,其中,所述测量模块还用于根据传输环境条件、传输需求,自适应调整以下参数至少之一:
    阈值、第一数量、第一参数、第二参数、第三参数、第四参数;
    其中,所述自适应调整的过程由所述第一设备或第二设备触发。
  33. 一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至16任一项所述的延迟多普勒域信道信息反馈方法的步骤。
  34. 一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实 现如权利要求1至16任一项所述的延迟多普勒域信道信息反馈方法的步骤。
  35. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-16任一项所述的延迟多普勒域信道信息反馈方法。
  36. 一种计算机程序产品,所述计算机程序被存储在存储介质中,所述计算机程序被至少一个处理器执行以实现如权利要求1-16中任一项所述的延迟多普勒域信道信息反馈方法的步骤。
  37. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令以实现如权利要求1-16中任一项所述的延迟多普勒域信道信息反馈方法的步骤。
  38. 一种通信设备,所述通信设备被配置为用于执行如权利要求1-16任一项所述的延迟多普勒域信道信息反馈方法。
PCT/CN2022/093866 2021-05-21 2022-05-19 延迟多普勒域信道信息反馈方法、装置及电子设备 WO2022242718A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22804038.2A EP4344141A1 (en) 2021-05-21 2022-05-19 Delayed doppler domain channel information feedback method and apparatus, and electronic device
US18/513,976 US20240088970A1 (en) 2021-05-21 2023-11-20 Method and apparatus for feeding back channel information of delay-doppler domain, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110560591.8A CN115378767B (zh) 2021-05-21 2021-05-21 延迟多普勒域信道信息反馈方法、装置及电子设备
CN202110560591.8 2021-05-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/513,976 Continuation US20240088970A1 (en) 2021-05-21 2023-11-20 Method and apparatus for feeding back channel information of delay-doppler domain, and electronic device

Publications (1)

Publication Number Publication Date
WO2022242718A1 true WO2022242718A1 (zh) 2022-11-24

Family

ID=84059155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093866 WO2022242718A1 (zh) 2021-05-21 2022-05-19 延迟多普勒域信道信息反馈方法、装置及电子设备

Country Status (4)

Country Link
US (1) US20240088970A1 (zh)
EP (1) EP4344141A1 (zh)
CN (1) CN115378767B (zh)
WO (1) WO2022242718A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116794690A (zh) * 2023-08-17 2023-09-22 中国科学院国家空间科学中心 一种ddm数据质量实时监测方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104255005A (zh) * 2012-02-17 2014-12-31 阿尔卡特朗讯 用于增强上行链路通用rake信道估计的方法和装置
WO2015148041A1 (en) * 2014-03-28 2015-10-01 Intel IP Corporation User equipment generation and signaling of feedback for supporting adaptive demodulation reference signal transmission
CN107819709A (zh) * 2017-10-26 2018-03-20 成都信息工程大学 一种移动目标检测的方法及装置
CN109845102A (zh) * 2016-03-31 2019-06-04 凝聚技术公司 使用正交时间频率空间调制的导频信号的信道获取
CN112514276A (zh) * 2018-05-30 2021-03-16 弗劳恩霍夫应用研究促进协会 用于无线通信系统的多普勒延迟基于码本的预编码和csi报告

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7894820B2 (en) * 2006-05-01 2011-02-22 Intel Corporation Channel feedback using channel state predictions based also on delays
CN101432996A (zh) * 2006-05-01 2009-05-13 英特尔公司 利用基于延迟的信道状态预测进行信道反馈
US20180054281A1 (en) * 2016-08-19 2018-02-22 Futurewei Technologies, Inc. Method to transmit channel state information reference signals in large mimo systems
KR102648514B1 (ko) * 2019-10-15 2024-03-18 삼성전자주식회사 무선 통신 시스템에서 채널을 추정하기 위한 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104255005A (zh) * 2012-02-17 2014-12-31 阿尔卡特朗讯 用于增强上行链路通用rake信道估计的方法和装置
WO2015148041A1 (en) * 2014-03-28 2015-10-01 Intel IP Corporation User equipment generation and signaling of feedback for supporting adaptive demodulation reference signal transmission
CN109845102A (zh) * 2016-03-31 2019-06-04 凝聚技术公司 使用正交时间频率空间调制的导频信号的信道获取
CN107819709A (zh) * 2017-10-26 2018-03-20 成都信息工程大学 一种移动目标检测的方法及装置
CN112514276A (zh) * 2018-05-30 2021-03-16 弗劳恩霍夫应用研究促进协会 用于无线通信系统的多普勒延迟基于码本的预编码和csi报告

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116794690A (zh) * 2023-08-17 2023-09-22 中国科学院国家空间科学中心 一种ddm数据质量实时监测方法及系统
CN116794690B (zh) * 2023-08-17 2023-11-17 中国科学院国家空间科学中心 一种ddm数据质量实时监测方法及系统

Also Published As

Publication number Publication date
CN115378767A (zh) 2022-11-22
US20240088970A1 (en) 2024-03-14
CN115378767B (zh) 2024-01-09
EP4344141A1 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US11689255B2 (en) Wireless communication system, and device and method in wireless communication system
US10826582B2 (en) Wireless communication device and wireless communication method
WO2019192385A1 (zh) 信道和信号的传输方法及通信设备
CN111278120A (zh) 上行信道的配置方法、传输方法、网络侧设备及终端
EP2837103B1 (en) Three-dimensional beamforming in a mobile communications network
WO2022078452A1 (zh) 参考信号的调整方法及装置、终端及网络侧设
US20240088970A1 (en) Method and apparatus for feeding back channel information of delay-doppler domain, and electronic device
WO2016183835A1 (zh) 传输信号的方法和设备
WO2022105913A1 (zh) 通信方法、装置及通信设备
WO2022073496A1 (zh) 神经网络信息传输方法、装置、通信设备和存储介质
WO2018228554A1 (zh) 用于测量信道状态的方法和装置
US20230299821A1 (en) Transmission method and apparatus, device, and readable storage medium
JP2024521744A (ja) 遅延ドップラードメインチャネル情報のフィードバック方法、装置及び電子機器
WO2023030438A1 (zh) 导频的发送、接收方法和设备
WO2024083195A1 (zh) 资源大小的确定方法、终端及网络侧设备
WO2023280212A1 (zh) 信道状态信息csi上报处理方法、接收方法及相关设备
WO2023213239A1 (zh) 参考信号的配置方法、状态信息的上报方法及相关设备
US20240089049A1 (en) Signal Transmission Method and Apparatus and Terminal
WO2022206997A1 (zh) 功率控制参数指示方法、终端及网络侧设备
CN116325614A (zh) 频域分量的指示
CN116032416A (zh) 信道状态信息上报方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023572211

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022804038

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022804038

Country of ref document: EP

Effective date: 20231221