WO2012094881A1 - 一种无线网络及无线通信中的编码协作方法 - Google Patents

一种无线网络及无线通信中的编码协作方法 Download PDF

Info

Publication number
WO2012094881A1
WO2012094881A1 PCT/CN2011/076726 CN2011076726W WO2012094881A1 WO 2012094881 A1 WO2012094881 A1 WO 2012094881A1 CN 2011076726 W CN2011076726 W CN 2011076726W WO 2012094881 A1 WO2012094881 A1 WO 2012094881A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
node
data
information
source node
Prior art date
Application number
PCT/CN2011/076726
Other languages
English (en)
French (fr)
Inventor
李睿
许进
徐俊
Original Assignee
刘建
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘建 filed Critical 刘建
Publication of WO2012094881A1 publication Critical patent/WO2012094881A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0076Distributed coding, e.g. network coding, involving channel coding
    • H04L1/0077Cooperative coding

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a coding cooperation method in a wireless network and wireless communication.
  • transmit diversity usually requires multiple antennas at the transmitting end.
  • many wireless devices especially wireless terminals
  • the early coding cooperation scheme only involved two users and one receiving base station.
  • the basic idea is that each of the two users tries to send the other party's incremental redundancy.
  • the receiving decoding is incorrect or the channel condition is poor, the user can choose not to participate in collaboration; the mechanism is automatically implemented through the design of the code, without the need to send feedback between users.
  • each user needs to send K-bit information to the base station, which includes a CRC (Cyclic Redundancy Check) bit.
  • CRC Cyclic Redundancy Check
  • Each user receives and decodes the codeword of the code rate of another user, and judges the correctness of the decoding according to the CRC check, as follows:
  • both users If neither user can successfully decode the other party's information, both users enter the non-cooperative state, and only the N 2 bit codeword is sent in the second time slot; If only one of the two users (eg, User 1) can decode correctly, then in the second time slot, both users send the codeword of User 2's bit.
  • the base station as the receiving end needs to know which user's information the codeword received in the second time slot is.
  • each user In coding cooperation, each user always sends a codeword with a total length of N. To avoid interference, the transmitted data is performed under the orthogonal channel; in addition, both users work in a half-duplex manner.
  • Figure 1 shows a basic block diagram of two users (User 1 and User 2) participating in the cooperation. In Figure 1, in the second time slot, User 1 transmits the codeword of User 2's bit, User 2 transmits User 1's bit. Codeword.
  • the traditional collaboration model involves only two users and does not extend to multiple user collaborations.
  • the conventional cooperation method wastes communication resources by transmitting a lot of repeated or unnecessary information due to the fixed length of the data frame.
  • the traditional collaboration model only applies limited transmission schemes, such as Amplify-and-Forward (AF), Decode-and-Forward (DF), and other transmission strategies, such as Coding and Cooperative Communication CC ( Coded Cooperation ), CoMP (Coordinated Multi-Point).
  • the technical problem to be solved by the present invention is a coding cooperation method in a wireless network and a wireless communication, which is used to implement multi-user coding cooperation, and solves the problem that the length of a fixed data frame existing in the existing cooperation mode is wasteful of communication resources and applicable transmission types. Fewer problems.
  • the present invention provides a method for coding cooperation, which is applied in a wireless network including M source nodes and a target node, and the method includes the following steps:
  • Step 1 Each source node sends data of the source node to the target node and other source nodes.
  • Step 3 If the source node that receives the information of the Q source nodes correctly decodes data of some or all of the source nodes of the Q source nodes, part of the Q source nodes that are to be solved Or all source node data is sent to the target node;
  • M and Q are positive integers, M > 2, Q M.
  • the step of the target node feeding back the information of the Q source nodes to all or part of the source nodes includes: the target node notifying the information of the Q source nodes A plurality of source nodes selected for the target node, or broadcast to all source nodes within the wireless network.
  • the information of the Q source nodes includes, but is not limited to, identifier ID information of the Q source nodes.
  • the source node data is the target node.
  • the required data sends its own source node data to the target node.
  • the source node that receives the information of the Q source nodes sends all the data of the source node that is correctly decoded to the target node.
  • the source node that receives the information of the Q source nodes also sends its own source node data to the target node.
  • the source node that receives the information of the Q source nodes sends the data of the Q source nodes to the target node.
  • step 3 in the above method, in the step 3,
  • the source node that receives the information of the Q source nodes sends the data of the source node to the target node
  • the data of the source node is directly sent to the target node; or, the data of the source node is re-encoded and the incremental redundancy is sent.
  • the remaining data is sent to the target node; or, the information of the same redundancy version RV or the information of the different redundancy version RV is sent to the target node.
  • the step 3 further includes: the source node that receives the information of the Q source nodes sends the indication information to the target node, where the indication information includes but is not limited to the source node The composition of the data sent.
  • the source node that receives the source node information does not correctly decode the data required by the target node, the method of transmitting the target node is required to obtain an amplification and forwarding manner. The data.
  • the step 3 further includes:
  • the source node that receives the information of the Q source nodes decides whether to participate in the collaboration according to its own situation
  • the method further includes: selecting to receive the source node information according to one or more of the following information Source node: The channel status of the source node, the distance between the source nodes, the battery level of the source node, and the idle/busy state of the source node.
  • Source node The channel status of the source node, the distance between the source nodes, the battery level of the source node, and the idle/busy state of the source node.
  • the transmission manner between the source node and the target node, or between the multiple source nodes includes an amplifying and forwarding AF, or a decoding forwarding DF, or a coding cooperative communication CC, or a multi-point cooperative CoMP.
  • an amplifying and forwarding AF or a decoding forwarding DF, or a coding cooperative communication CC, or a multi-point cooperative CoMP.
  • the source node and the target node are terminals, a base station, a relay station or a relay unit.
  • the source node and the target node are single-antenna or multi-antenna terminals, base stations, relay stations or relay units.
  • the present invention also provides an encoding cooperation system, including M source nodes and a target node: the source node is configured to: send data of the source node to the target node and other source nodes; the target node is set as: The received data of the M source nodes are decoded, and if the data of all the source nodes are decoded correctly, each source node is notified to send new data; if not all the data of the source node is decoded correctly, the decoding will not be performed. The information of the Q source nodes corresponding to the correct data is fed back to all or part of the source nodes;
  • the source node that receives the information of the Q source nodes is further configured to: if the data of some or all of the Q source nodes is correctly decoded, the solution will be solved. Sending data of some or all of the Q source nodes to the target node;
  • M and Q are positive integers, M > 2, Q M.
  • the target node is configured to: notify the selected source nodes of the information of the Q source nodes, or broadcast to all source nodes in the wireless network, where the Q source nodes
  • the information includes, but is not limited to, identification ID information of the Q source nodes.
  • the source node that receives the information of the Q source nodes is configured to: if the data required by the target node is not correctly decoded, and the source node data is data required by the target node, Source node data is sent to the target node.
  • the source node that receives the information of the Q source nodes is configured to: send all data of the source node that is correctly decoded to the target node.
  • the source node that receives the information of the Q source nodes is further configured to: send its own source node data to the target node.
  • the source node that receives the information of the Q source nodes is configured to: send data of the Q source nodes to the target node.
  • the source node that receives the information of the Q source nodes is configured to send data of the source node to the target node in the following manner:
  • the data of the source node is re-encoded to send incremental redundancy data to the target node; or, the information of the same redundancy version RV or the information of the different redundancy version RV is sent to the target node.
  • the source node that receives the information of the Q source nodes is further configured to: after receiving the information of the Q source nodes, send indication information to the target node, where the indication
  • the information includes, but is not limited to, the composition of the data that the source node is about to send.
  • the source node that receives the information of the Q source nodes is further configured to: after receiving the information of the Q source nodes, if the source node does not correctly decode the target node The data required is sent in the manner of amplification and forwarding to send the data required by the target node.
  • the transmission mode between the source node and the target node, or between the multiple source nodes includes an amplifying and forwarding AF, or a decoding and forwarding DF, or a coding cooperative communication CC, or a multi-point cooperative CoMP.
  • the source node and the target node are single antenna or multi-antenna terminals, base stations, relay stations or relay units.
  • the coding cooperation technical solution of the present invention can be applied to a transmission and cooperation strategy of amplifying and forwarding AF, or decoding and forwarding DF, or coding cooperative communication CC, or multi-point cooperative CoMP mode, and can simultaneously use one or more of the ones.
  • the present invention can also transmit all or part of the information on the transmitted content, and the redundancy version RV (Redundancy Version) of the information enables the receiving end to jointly decode to achieve optimal performance.
  • RV Redundancy Version
  • FIG. 1 is a schematic diagram of two users participating in coding cooperation in the prior art
  • FIG. 3 is a schematic diagram of an uplink communication model in which five users and one base station participate in cooperation according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a case where the correct information owned by the user itself is provided by the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a user participating in cooperation to send data to a base station according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a downlink communication system model in which three base stations and one user cooperate according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of three base stations providing different data to the same user according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a case where the base station has the correct information according to the embodiment of the present invention
  • FIG. 9 is a schematic diagram of the base station participating in the cooperation to send data to the user according to the embodiment of the present invention
  • [ ⁇ , ', , , , Figure 11 is the hair
  • Figure 12 is the hair
  • the present invention provides a method for coding cooperation.
  • the basic idea is to improve the effect of transmit diversity by cooperating with M source nodes and one target node.
  • Transcoding time slots can be reduced by coding cooperation, making full use of signal resources and gaining the gain of transmit diversity.
  • a method for coding cooperation in an embodiment of the present invention is applied to a wireless network including a plurality of (M) source nodes and a target node, the method comprising the following steps: Step 1, each source node to a target node and other The source node sends the data of the source node; where the data sent by each source node may include CRC check information, or may be verified by other methods;
  • the data signal sent by each source node may be encoded by a linear block code such as a convolutional code, a turbo code or an LDPC code;
  • Step 2 The target node decodes data of all the multiple source nodes received, and if data of all source nodes is successfully decoded, the target node notifies each source node to send new data; if part of it (for example, Q) The data decoding of the source node is incorrect, and the incorrectly decoded source node information is fed back to all or part of the source node;
  • the target node may notify the current multiple source nodes of the information of the incorrectly decoded source node, or may broadcast to all the source nodes in the network;
  • the information of the source node that is decoded incorrectly may include, but is not limited to, ID information of the source node.
  • Step 3 Receive a source node that decodes the incorrect source node information, and decode data of some or all of the source nodes that are decoded incorrectly. Transmitting data of the successfully decoded source node (for example, P nodes) to the target node; The source node that receives the incorrect source node information may directly send the data of the successfully decoded P nodes; or, the data of the successfully decoded P nodes may be re-encoded, and the incremental redundant data may be sent, or Send other forms of data; or, you can send the same redundancy version RV information, or you can send information of different redundancy versions RV;
  • the source node that receives the incorrect source node information may be any source node in the network, or may be a source node specified by the target node;
  • the source node that receives the incorrect source node information may send the indication information to the target node, where the indication information may include, but is not limited to, the data composition to be sent by the source node; preferably, the receiving and decoding are incorrect.
  • the data frame length of the source node of the source node information may be fixed or not fixed;
  • the method of amplifying and forwarding may be retrieved, and the information required by the target node may be sent;
  • a method of joint decoding may be employed
  • the source node that receives the decoded source node information may decide whether to participate in cooperation according to its own condition, or the base station may also select the source node, or the base station may selectively receive the information of the source node, by using the source node.
  • the channel condition, the distance between the source nodes, the battery level of the source node, and the idle/busy state of the source node are determined.
  • the wireless network of the embodiment of the present invention includes a plurality of source nodes and a target node, and in the wireless network:
  • Each of the plurality of source nodes is configured to send data of the source node to the target node and other source nodes;
  • the target node is configured to decode data of all the plurality of source nodes received, and if data of all source nodes is successfully decoded, the target node notifies each source node to send new data; if part of it (for example, Q) The data decoding of the source node is incorrect, and the incorrectly decoded source node information is fed back to all or part of the source node;
  • the source node of the plurality of source nodes that receives the decoded source node information is further configured to decode data of some or all of the source nodes that are decoded incorrectly, and the source section that successfully decodes Data of points (for example, P nodes) is sent to the target node.
  • the data sent by each source node may include CRC check information, or may be verified by other methods; the data signal sent by each source node may be encoded by a convolutional code, a turbo code, or an LDPC code. .
  • the target node may notify the current source node of the incorrect source node information, or may broadcast to all the source nodes in the network.
  • the information of the incorrect source node may include but is not limited to the source. Node ID information;
  • the source node and the target node may be any wireless network unit such as a terminal, a base station, or a relay, respectively.
  • the source node and the target node may be, but are not limited to, a communication protocol.
  • eNodeB Evovled Node Base station
  • BS Base Station
  • RS Relay Station
  • RN Relay Node
  • MS Mobile Station, Mobile Station
  • UE User Equipment, user equipment
  • the source node and the target node may be a single antenna, or a multi-antenna node device; preferably, the transmission scheme between the source node and the target node, or between the source nodes, or between the target nodes may be amplification One or more of forwarding AF, decoding forwarding DF, encoding cooperative communication CC, CoMP, and the like.
  • the connection manner between the source node and the target node, or between the source nodes, or the target node may be wired or wireless.
  • the source node is the user terminal and the target node is the base station as an example to illustrate the specific process of implementing coding cooperation.
  • the user terminal 1 as the source node transmits data to the base station and other user terminals; the base station decodes the data of all the source nodes received, and if all decoding is successful, the broadcast notification source node continues to transmit new data; if the decoding is unsuccessful, Then, the base station informs the source node of the information of the source node (ie, the user terminal) that is not successfully decoded by broadcasting or notification;
  • the other user terminals as other source nodes, also decode the data of the other source nodes that are received, and after learning the undecoded source node information fed back by the base station, compare the source node information that is not correctly decoded by the base station and decode itself.
  • the successful source node information if the source node data required by the base station is successfully decoded, sends the successfully decoded data to the base station, otherwise, it may choose not to participate in the cooperation.
  • the user terminal transmits data to the base station, thereby forming an uplink communication model.
  • Step 101 In the first time slot, each user terminal sends data to the base station and other four user terminals; thus, at each user terminal, the codewords sent by the other four user terminals can be received, and the base station Then, the codewords sent by the five user terminals can be received.
  • the transmitted data can be transmitted in an orthogonal channel, as shown in FIG.
  • the coded codeword has a length of N l and the punctured codeword has a length of P.
  • Step 102 After receiving the information of the five user terminals, the base station starts to attempt decoding, and the user terminal in the listening mode also attempts to decode the information of the other four user terminals that are received; the base station and the user terminal both pass the CRC added in the information bit. Check the bits to determine whether the decoding is correct.
  • the specific judgment method is 3 ⁇ 4:
  • the feedback information is sent in the form of broadcast or the like, indicating that the five user terminals can send new data
  • the base station may send the Q unsuccessfully decoded user information to all users in the form of a broadcast or to the designated user.
  • the designated user may perform selection and determination according to the principle of receiving SNR, channel condition, or relative position of the user terminal and the base station;
  • the base station may also list the Q unsuccessfully decoded user information into a table, broadcast the table to five user terminals (ie, all users), or notify some of the user terminals.
  • Step 103 The user receives and compares the user list, and can determine whether to participate in the collaboration.
  • the base station does not successfully decode the information of the second and fourth users; 3 and 4; User 2 successfully decodes users 3 and 5; User 3 successfully decodes users 1 and 5, User 4 successfully decodes users 1 and 5; User 5 successfully decodes users 1 , 2, 3 and 4.
  • each user can participate in the collaboration as shown in Figure 5, where: After the user 1 successfully decodes the user 2, 3 and 4, the user terminal of the user 1 receives the indication of the base station, and then re-encodes the information of the user 2 and the user 4 that is successfully decoded by the user to the base station (may also use The method of directly decoding the correct information by amplifying the forwarding, or sending the punctured part after re-encoding;
  • User 3 successfully decrypts users 1 and 5, because user 3 does not successfully decode the information of users 2 and 4, so he or she can choose not to participate in the cooperation, which is the Idle state; user 3 can also select the state of "participation in cooperation", but not send Message.
  • the users 4 successfully decoded by the user 4 are 1 and 5, and the user 4 has only the correct information of the user 4, and only the information of the user 4 can be transmitted.
  • the encoding and sending methods are the same as those of the user 1, and the system for transmitting data is provided.
  • the model is shown in Figure 5.
  • the information of the user 2 and the user 4 that successfully decoded themselves can be sent to the base station.
  • the base station receives the data successfully transmitted by the users in step 103 and the decoding succeeds, the user is notified that the new data can be sent; if the data is still not correctly decoded, the base station again notifies the user to process the data and then resend.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the user terminal is at the edge of the range covered by the three base stations, and the base station sends different data to the user terminal, and the user terminal needs The data of each base station is correctly received, thereby forming a downlink communication model.
  • Step 201 In the first time slot, each base station sends data to the user and other base stations. As shown in FIG. 7, each base station receives the codewords sent by the other two base stations, and the user receives three data. The coded codeword sent by the base station.
  • the information length of the base station is K, which includes a CRC check bit, and the data to be transmitted is encoded by the punctured LDPC code, and encoded.
  • the length of the following codeword is N l.
  • the length of the punctured codeword is P.
  • Step 202 After receiving the information of the three base stations, the user starts to try LDPC decoding, and the base station also attempts LDPC decoding on the received information of other base stations; the base station and the user both determine whether the decoding is performed by using the CRC check bits added in the information bits. Correct, where:
  • the feedback information is sent to each base station, indicating that the base station can send new data
  • the user may send the Q unsuccessfully decoded information to all base stations, or send the information to the designated base station, where the designated base station may according to the received SNR size, the channel.
  • the status, or the relative position of the user and the base station, is selected and determined;
  • Step 203 The base station receives and compares the failure list of the user, and can determine whether to participate in the collaboration by itself;
  • the base station 1 successfully decodes the base stations 2 and 3
  • the base station 2 does not successfully decode the information of other base stations
  • the base station 3 successfully decodes the base station to be 1.
  • the base station 1 after receiving the indication from the user, the base station 1 re-encodes the information of the base station 2 that has successfully decoded itself, and saves the resource and obtains the effect of increasing redundancy, and only transmits the punctured portion P; The punctured portion P is transmitted; since the base station 3 does not successfully decode the information of the base station 2, it is selected not to participate in the cooperation. If the decoding succeeds after receiving the data, the base station is notified that the new data can be transmitted; if the data is still not correctly decoded, the user notifies the base station to resend the data after processing.
  • Step 301 In the first time slot, each user terminal sends data to the base station and other four user terminals. As shown in FIG. 3, each user receives the codewords sent by the other four users, and the base station receives 5 data. The codeword sent by the user. In order to reduce interference, data can be transmitted in an orthogonal channel, and the length of the user information is
  • which includes a CRC check bit (other authentication methods may also be used)
  • the data to be transmitted is encoded by a punctured LDPC code, and the length of the coded codeword is N l and the length of the punctured codeword is ⁇ .
  • Step 302 After receiving the information of the five user terminals, the base station starts to try LDPC decoding, and the user in the listening mode also attempts LDPC decoding on the information of the other four user terminals that are received; the CRC added by the base station and the user through the information bits. The check bit determines whether the decoding is correct.
  • the specific judgment method is as follows:
  • the feedback information is sent in the form of broadcast or the like, indicating that the five user terminals can send new data
  • the base station may send the Q unsuccessfully decoded user information to all user terminals in the form of a broadcast, or send the information to the specified user terminal;
  • the designated user may perform selection and selection according to the principle of receiving SNR, channel condition, or relative position of the user and the base station;
  • the base station may also list the Q unsuccessfully decoded user information into a table, broadcast the table to five user terminals, or notify some of the user terminals.
  • Step 303 The user receives and compares the user list, and can determine whether to participate in the collaboration. As shown in FIG. 4, the base station does not successfully decode the information of the second and fourth users, and the user 1 successfully decrypts the user. 3 and 4, users 2 successfully decoded users 3 and 5, users 3 successfully decoded users 1 and 5, users 4 successfully decoded users 1 and 5, and user 5 successfully decoded users 1 , 2, 3 and 4.
  • the receiving base station can fix each user to send a uniform data length, for example, the length of five incremental redundancy ports, P1, ..., and ⁇ 5 represent the incremental redundancy of user 1 to user 5, respectively.
  • the incremental redundancy information ⁇ 2, ⁇ 3, and ⁇ 4 of users 2, 3, and 4 are placed in the respective users' positions, and their own redundant information is placed at other user positions.
  • a user indication ID may be placed in the data frame.
  • a frame structure model for each user to send data as shown in FIG. If the base station successfully receives the data and decodes successfully, the user is notified that the new data can be sent; if the data still fails to be decoded correctly, the user is notified to process the data and then sent again.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • Step 401 In the first time slot, each user sends data to the base station and the other four user terminals. As shown in FIG. 3, each user terminal receives the codewords sent by the other four user terminals, and the base station receives the data. The codeword sent by 5 user terminals.
  • data can be transmitted in an orthogonal channel; the length of the user's information is
  • K which includes a CRC check bit
  • the data to be transmitted is encoded by a punctured LDPC code
  • the coded codeword has a length of N l and the punctured codeword has a length of P.
  • Step 402 After receiving the information of the five users, the base station starts to try LDPC decoding, and the user in the listening mode also attempts LDPC decoding on the information of the other four users received; the base station and the user both pass the CRC check added in the information bits. The bit judges whether the decoding is correct. The specific judgment is as follows:
  • the feedback information is sent in the form of broadcast or the like, indicating that the five user terminals can send new data
  • the base station may send the Q unsuccessfully decoded user information to all users in the form of broadcast, or send the information to the designated user;
  • the designated user may perform selection and selection according to the principle of receiving SNR, channel condition, or relative position of the user and the base station;
  • the base station may also list the Q unsuccessfully decoded user information into a table, broadcast the table to five user terminals, or notify some of the user terminals.
  • Step 403 The user receives and compares the user list, and can determine whether to participate in the cooperation by itself; as shown in FIG. 4, the base station does not successfully decode the information of the second and fourth users; the user 1 successfully decrypted by the user 1 is 3 and 4; User 2 successfully decoded users 3 and 5; User 3 successfully decoded users 1 and 5, User 4 successfully decoded users 1 and 5, User 5 successfully decoded Households are 1, 2, 3 and 4.
  • the receiving base station can fix each user to send a uniform data length, such as the length of the re-encoded user information (or the length of the user incrementing the redundancy P). For example, if user 1 successfully decodes users 2, 3, and 4, then the information of users 2 and 4 is placed in the position of the corresponding user, and the new information of the transmitting user is placed in other user positions, such as positions 1, 3, and 5. . In order for the base station to obtain the composition status of the received information, a user indication ID may be placed in the data frame.
  • the frame structure model for each user to send data is shown in Figure 11.
  • the base station returns to step 401 to notify the user that new data can be sent; if the data is still not correctly decoded, the user is notified that the new data or the user data required by the base station is still transmitted according to the data placement rule.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the user terminal transmits data to the base station, thereby forming an uplink communication model.
  • Step 501 In the first time slot, each user sends data to the base station and the other four user terminals. As shown in FIG. 3, each user receives the codewords sent by the other four user terminals, and the base station receives 5 The codeword sent by the user terminal.
  • data may be transmitted in an orthogonal channel; the length of the information of the user is K, which includes a CRC check bit, and the data to be transmitted is encoded by a punctured LDPC code, and the length of the coded codeword is N l
  • the punctured codeword has a length of P.
  • Step 502 After receiving the information of the five user terminals, the base station starts to try LDPC decoding, and the user in the listening mode also attempts LDPC decoding on the information of the other four users received; the base station and the user terminal both pass the CRC added in the information bit. The check bit determines whether the decoding is correct.
  • the specific judgment process is as follows:
  • the feedback information is sent in the form of broadcast or the like, indicating that the five user terminals can send new data
  • the base station may send the Q unsuccessfully decoded user information to all users in the form of broadcast, or send the information to the designated user;
  • the designated user may perform selection and selection according to the principle of receiving SNR, channel condition, or relative position of the user and the base station;
  • the base station may also list the Q unsuccessfully decoded user information into a table, broadcast the table to five user terminals, or notify some of the user terminals.
  • Step 503 The user receives and compares the user list, and can determine, by himself, what kind of information is sent when participating in the collaboration;
  • the target node base station does not successfully decode the information of the second and fourth users
  • the users successfully decoded by user 1 are 2, 3, and 4
  • the users successfully decoded by user 2 are 3 and 5, and user 3
  • the users successfully decoded are 1 and 5, the users successfully decoded by User 4 are 1 and 5, and the users successfully decoded by User 5 are 1, 2, 3, and 4.
  • the user 1 can transmit the new redundancy version RV of the users 2 and 4 in a cooperative manner; the user 2 transmits its own new redundancy version, and simultaneously amplifies and forwards the received information of the user 4; the user 3 will receive The information of users 2 and 4 arrives at amplifying and forwarding; user 4 transmits its own new redundancy version and amplifies the information of forwarding user 2; user 5 transmits a new redundancy version RV of users 2 and 4.
  • the base station may use the jointly forwarded information and the cooperatively encoded information in a joint decoding manner; if the decoding is successful, return to step 501 to notify the user that the new data can be sent; if the data still fails to be correctly decoded, Notify the user that the new data or user data required by the base station is still sent according to the data placement rules.
  • the present invention provides a coding cooperation method applied in a wireless network to implement multi-user coding cooperation, and solves the problem that the length of a fixed data frame existing in the existing cooperation mode leads to wasted communication resources and less applicable transmission types.
  • the coding cooperation technical solution of the invention can be applied to amplify and forward AF, or decoding and forwarding DF, or encoding cooperative communication CC, or multi-point cooperative CoMP transmission and cooperation strategy, and one or more of the schemes can be used at the same time; Part of the information, the redundancy version of the information RV (Redundancy Version), etc., enables the receiver to jointly decode to achieve optimal performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种无线网络及无线通信中的编码协作方法
技术领域
本发明涉及无线通信技术领域, 尤其涉及一种无线网络及无线通信中的 编码协作方法。
背景技术
在无线通信技术领域中, 发射分集通常需要发射端具备多个天线, 然而 很多无线设备(尤其是无线终端) 由于尺寸或者硬件复杂度等限制, 只能配 备单天线。 若在多个用户的环境下, 用户终端之间可以共享天线并作编码协 作, 形成一个虚拟的多天线发射端, 那么就可以实现发射分集, 从而有效地 对抗信道衰落。
早期的编码协作方案仅涉及两个用户和一个接收基站, 其基本思想是两 个用户中的每个用户都尝试发送另一方的递增冗余, 当接收解码不正确或信 道状况差时, 用户可以选择不参与协作; 该机制是通过码的设计自动执行, 不需要用户之间发送反馈信息。
假设每个用户需要向基站发送 K比特的信息, 该信息包含 CRC (循环冗 余校验, Cyclic Redundancy Check ) 比特。 每组信息由速率为 R的误差纠正 码进行编码得到长度为 ^ = 的编码码字, 所述误差纠正码可以是卷积码、 Turbo码、 或 LDPC ( Low-density Parity Check, 低密度奇偶校验)码等。 在 第一个时隙, 每个用户发送各自的数据 = / , 其中码率 > ? , 该高码率 可以通过对原码字做删余得到。 每个用户接收并解码另一个用户的码率为 的码字, 根据 CRC校验判断解码的正确性, 具体如下:
如果两个用户都成功解码, 则在第二个时隙, 每一用户计算并传输额外 的 比特的码字 (N = N, + N2 ) , 其中 N2比特的码字可以是第一个时隙中被 删余掉的码字;
如果两个用户都不能成功解码对方的信息, 则两个用户都进入不合作状 态, 在第二个时隙仅将自己的 N2比特的码字发送; 如果两个用户中只有一个用户 (如: 用户 1 )可正确解码, 那么在第二 个时隙两个用户发送的都是用户 2的 比特的码字。
对于上述几种情况, 作为接收端的基站都需要知道第二个时隙接收到的 码字是哪个用户的信息。
在编码协作中, 每个用户总是发送总长度为 N的码字, 为了避免干扰, 发送数据都在正交信道下进行; 另外, 两个用户都是以半双工的方式工作。 图 1展示了两个用户 (用户 1和用户 2 )参与协作的基本框图, 图 1中, 在第 二个时隙中, 用户 1发送用户 2的 比特的码字, 用户 2发送用户 1的 比 特的码字。
传统的协作模型只涉及了两个用户, 没有扩展到多个用户协作的情况。 在基站要求重传、 部分解码不正确的情况下, 传统的协作方式由于固定了数 据帧的长度, 传输了很多重复或不必要的信息, 浪费了通信资源。 另外, 传 统的协作模型 只应用 有限的传输方案 , 比如放大转发 AF ( Amplify-and-Forward ) , 解码发送 DF ( Decode-and-Forward ) , 没有涉及 到其它的传输策略, 如编码协作通信 CC ( Coded Cooperation ) , 多点协作 CoMP ( Coordinated Multi-Point ) 。
发明内容
本发明所要解决的技术问题在于, 一种无线网络及无线通信中的编码协 作方法, 用于实现多用户编码协作, 解决现有协作方式存在的固定数据帧的 长度导致浪费通信资源以及适用传输类型较少的问题。
为了解决上述问题, 本发明提出了一种编码协作的方法, 应用在包括 M 个源节点及一个目标节点的无线网络中, 该方法包括如下步骤:
步骤 1 , 每一源节点向目标节点和其他源节点发送本源节点的数据; 步骤 2 , 所述目标节点对所接收到的所述 M个源节点的数据进行解码, 若所有源节点的数据都解码正确, 则所述目标节点通知各源节点发送新的数 据; 若不是所有源节点的数据都解码正确, 则将解码不正确的数据对应的 Q 个源节点的信息反馈给全部或部分源节点;
步骤 3 , 接收到所述 Q个源节点的信息的源节点若正确解码了所述 Q个 源节点中的部分或全部源节点的数据, 则将解出的所述 Q个源节点中的部分 或全部源节点的数据发送给所述目标节点;
其中, M、 Q都为正整数, M > 2, Q M。
优选地, 上述方法中, 在步骤 2中, 所述目标节点将所述 Q个源节点的 信息反馈给全部或部分源节点的步骤包括: 所述目标节点将所述 Q个源节点 的信息通知给所述目标节点选定的多个源节点, 或者广播给所述无线网络内 的所有源节点。
优选地, 上述方法中, 所述 Q个源节点的信息包括但不限于所述 Q个源 节点的标识 ID信息。
优选地, 上述方法中, 所述步骤 3中, 接收到所述 Q个源节点的信息的 源节点若没有正确解码所述目标节点所需要的数据, 而自身源节点数据是所 述目标节点所需要的数据, 则将自身源节点数据发送给所述目标节点。
优选地, 上述方法中, 所述步骤 3中, 接收到所述 Q个源节点的信息的 源节点将其正确解码的源节点的数据全部发送给所述目标节点。
优选地, 上述方法中, 所述步骤 3中, 接收到所述 Q个源节点的信息的 源节点还将自身的源节点数据发送给所述目标节点。
优选地, 上述方法中, 所述步骤 3中, 接收到所述 Q个源节点的信息的 源节点将所述 Q个源节点的数据发送给所述目标节点。
优选地, 上述方法中, 所述步骤 3中,
接收到所述 Q 个源节点的信息的源节点发送源节点的数据给目标节点 时, 是直接发送源节点的数据给所述目标节点; 或者, 是对源节点的数据重 新编码后发送递增冗余数据给目标节点; 或者, 是发送相同的冗余版本 RV 的信息或不同冗余版本 RV的信息给目标节点。
优选地, 上述方法中, 所述步骤 3还包括: 所述接收到所述 Q个源节点 的信息的源节点向所述目标节点发送指示信息, 所述指示信息包括但不限于 该源节点即将发送的数据组成情况。 优选地, 上述方法中, 所述步骤 3中, 如果所述接收所述源节点信息的 源节点没有正确解码所述目标节点所需要的数据, 则釆取放大转发的方式发 送所述目标节点需要的数据。
优选地, 上述方法中, 所述步骤 3中还包括:
所述接收到所述 Q个源节点的信息的源节点根据自身状况自行决定是否 参与协作;
在所述目标节点将所述 Q个源节点信息反馈给所述全部或部分源节点的 步骤之前, 所述方法还包括: 根据以下信息中的一种或多种来选择接收所述 源节点信息的源节点: 通过源节点间的信道状况、 源节点间的距离、 源节点 的电池电量, 源节点的空闲 /繁忙状态。
优选地, 上述方法中, 所述源节点和目标节点之间, 或者所述多个源节 点之间的传输方式包括放大转发 AF, 或解码转发 DF, 或编码协作通信 CC, 或多点协作 CoMP方式中的一种或它们的组合。
优选地, 上述方法中, 所述源节点和目标节点是终端、 基站、 中继站或 者中继单元。
优选地, 上述方法中, 所述源节点和目标节点是单天线或者多天线的终 端、 基站、 中继站或者中继单元。
本发明还提供一种编码协作系统, 包括 M个源节点及一个目标节点: 所述源节点设置为:向所述目标节点和其他源节点发送本源节点的数据; 所述目标节点设置为: 对所接收到的所述 M个源节点的数据进行解码, 若所有源节点的数据都解码正确, 则通知各源节点发送新的数据; 若不是所 有源节点的数据都解码正确, 则将解码不正确的数据对应的 Q个源节点的信 息反馈给全部或部分源节点;
所述 M个源节点中,所述接收到所述 Q个源节点的信息的源节点还设置 为: 若正确解码了所述 Q个源节点中的部分或全部源节点的数据, 则将解出 的所述 Q个源节点中的部分或全部源节点的数据发送给所述目标节点;
其中, M、 Q都为正整数, M > 2, Q M。
优选地, 上述系统中, 所述目标节点是设置为: 将所述 Q个源节点的信息通知给其选定的多个 源节点, 或者广播给所述无线网络内的所有源节点, 其中, 所述 Q个源节点 的信息包括但不限于所述 Q个源节点的标识 ID信息。
优选地, 上述系统中,
所述接收到所述 Q个源节点的信息的源节点是设置为: 若没有正确解码 所述目标节点所需要的数据, 而自身源节点数据是所述目标节点所需要的数 据, 则将自身源节点数据发送给所述目标节点。
优选地, 上述系统中, 所述接收到所述 Q个源节点的信息的源节点是设 置为: 将其正确解码的源节点的数据全部发送给所述目标节点。
优选地, 上述系统中, 所述接收到所述 Q个源节点的信息的源节点还设 置为: 将自身的源节点数据发送给所述目标节点。
优选地, 上述系统中, 所述接收到所述 Q个源节点的信息的源节点是设 置为: 将所述 Q个源节点的数据发送给所述目标节点。
优选地, 上述系统中, 所述接收到所述 Q个源节点的信息的源节点是设 置为以如下方式发送源节点的数据给所述目标节点:
直接发送所述源节点的数据给所述目标节点; 或者,
将源节点的数据重新编码后发送递增冗余数据给所述目标节点; 或者, 发送相同的冗余版本 RV的信息或不同冗余版本 RV的信息给所述目标 节点。
优选地, 上述系统中, 所述接收到所述 Q个源节点的信息的源节点还设 置为: 接收到所述 Q个源节点的信息后, 向所述目标节点发送指示信息, 所 述指示信息包括但不限于该源节点即将发送的数据组成情况。
优选地, 上述系统中, 所述接收到所述 Q个源节点的信息的源节点还设 置为: 接收到所述 Q个源节点的信息后如果所述源节点没有正确解码所述目 标节点所需要的数据,则釆取放大转发的方式发送所述目标节点需要的数据。
优选地, 上述系统中, 所述源节点和目标节点之间, 或者所述多个源节 点之间的传输方式包括放大转发 AF, 或解码转发 DF, 或编码协作通信 CC, 或多点协作 CoMP方式中的一种或它们的组合。 优选地, 上述系统中, 所述源节点和目标节点是单天线或者多天线的终 端、 基站、 中继站或者中继单元。
本发明的编码协作技术方案, 可适用于放大转发 AF, 或解码转发 DF, 或编码协作通信 CC,或多点协作 CoMP方式的传输和协作策略,并且可同时 釆用其中的一个的或者多个方案; 优选地, 本发明在发送的内容上也可以通 过选择发送全部或者部分信息, 信息的冗余版本 RV ( Redundancy Version ) 等使接收端联合解码达到最优性能。 附图概述
图 1是现有技术中两个用户参与编码协作的示意图;
图 2是本发明中具体实施方式所提供的编码协作的流程图;
图 3是本发明实施方式所提供的 5个用户和 1个基站参与协作的上行通 信模型的示意图;
图 4是本发明实施方式所提供的用户自身所拥有的正确信息的情况的示 意图;
图 5 是本发明实施方式所提供的用户参与协作向基站发送数据的示意 图;
图 6是本发明实施方式所提供的 3个基站和 1个用户协作的下行通信系 统模型的示意图;
图 7是本发明实施方式所提供的 3个基站向同一个用户发送不同的数据 的示意图;
图 8是本发明实施方式所提供的基站拥有的正确信息的情况的示意图; 图 9 是本发明实施方式所提供的基站参与协作向用户发送数据的示意 图; 图; ' ^ 、 ' 、 、 、 图 11是本发
图;
图 12是本发
图。
本发明的较佳实施方式
为使本发明的目的、 技术方案和优点更加清楚, 以下结合附图对本发明 作进一步地详细说明。
本发明提供的一种编码协作的方式, 基本思路是通过对 M个源节点和 1 个目标节点的协作, 提高发射分集的效果。 通过编码协作可以减少发送时隙, 充分利用信号资源并获得发射分集的增益。
本发明实施例的一种编码协作的方法, 应用在包括多个(M个) 源节点 及一个目标节点的无线网络中, 该方法包括如下步骤: 步骤 1 , 每一源节点向目标节点和其他源节点发送该源节点的数据; 其中, 各源节点发送的数据可以包含 CRC校验信息, 也可以釆用其它方 式校验;
其中,各源节点发送的数据信号可以釆用卷积码, Turbo码或 LDPC码等 线性分组码的编码方式;
步骤 2, 所述目标节点对所接收的全部所述多个源节点的数据解码, 若 所有源节点的数据都成功解码, 则目标节点通知各源节点发送新的数据; 若 其中部分(例如 Q个) 源节点的数据解码不正确, 则将解码不正确的源节点 信息反馈给全部或部分源节点;
其中, 目标节点可以将解码不正确的源节点的信息通知给当前的所述多 个源节点, 也可以广播给网络内的所有源节点;
其中, 解码不正确的源节点的信息可以包括但不限于源节点的 ID信息; 步骤 3 , 接收解码不正确的源节点信息的源节点, 对解码不正确的部分 或全部源节点的数据进行解码, 将解码成功的源节点 (例如 P个节点) 的数 据发送给目标节点; 其中, 该接收解码不正确的源节点信息的源节点, 可直接发送解码成功 的 P个节点的数据; 或者, 可以对解码成功的 P个节点的数据重新编码, 发 送递增冗余数据, 也可以发送其他形式的数据; 或者, 可以发送相同的冗余 版本 RV的信息, 也可以发送不同冗余版本 RV的信息;
其中, 该接收解码不正确的源节点信息的源节点, 可以是网络内的任意 源节点, 也可以是由目标节点指定的源节点;
其中, 该接收解码不正确的源节点信息的源节点, 可以向目标节点发送 指示信息,该指示信息可以包括但不限于该源节点即将发送的数据组成情况; 优选地, 该接收解码不正确的源节点信息的源节点的数据帧长度可以固 定或者不固定;
如果该接收解码不正确的源节点信息的源节点没有正确解码目标节点所 需要的信息, 可以釆取放大转发的方法, 发送目标节点需要的信息;
优选地, 如果目标节点接收到对于相同源节点的几种不同形式的信息, 可以釆用联合解码的方法;
优选地, 该接收解码不正确的源节点信息的源节点可以根据自身状况自 行决定是否参与协作, 或者基站也可以选择源节点, 或者基站可以选择性地 接收源节点的信息, 通过源节点间的信道状况、 源节点间的距离、 源节点的 电池电量, 源节点的空闲 /繁忙状态等因素确定。
本发明实施例的无线网络包括多个源节点及一个目标节点, 在该无线网 络中:
所述多个源节点中的每一源节点, 设置为向目标节点和其他源节点发送 该源节点的数据;
所述目标节点, 设置为对所接收的全部所述多个源节点的数据解码, 若 所有源节点的数据都成功解码, 则目标节点通知各源节点发送新的数据; 若 其中部分(例如 Q个) 源节点的数据解码不正确, 则将解码不正确的源节点 信息反馈给全部或部分源节点;
所述多个源节点中的接收解码不正确的源节点信息的源节点, 进一步设 置为对解码不正确的部分或全部源节点的数据进行解码, 将解码成功的源节 点 (例如 P个节点) 的数据发送给目标节点。
其中, 各源节点发送的数据可以包含 CRC校验信息, 也可以釆用其它方 式校验;各源节点发送的数据信号可以釆用卷积码, Turbo码或 LDPC码等线 性分组码的编码方式。
其中, 目标节点可以将解码不正确的源节点的信息通知给当前的所述多 个源节点, 也可以广播给网络内的所有源节点; 解码不正确的源节点的信息 可以包括但不限于源节点的 ID信息;
在上述编码协作方法及无线网络中, 所述源节点和目标节点可以分别是 终端、 基站或者中继等任意无线网络单元; 优选地, 所述的源节点和目标节 点可以但不限于是通信协议中的 eNodeB ( Evovled Node Base station, 演进基 站)/ BS ( Base Station, 基站), RS ( Relay Station, 中继站) /RN ( Relay Node 中继节点), MS ( Mobile Station, 移动台) /UE ( User Equipment, 用户设备) 等。 所述的源节点和目标节点可以是单天线, 或者多天线的节点设备; 优选 地, 所述源节点和目标节点之间, 或者源节点之间, 或者目标节点之间的传 输方案可以是放大转发 AF, 解码转发 DF, 编码协作通信 CC, CoMP等方式 中的一种或几种。 优选地, 所述源节点和目标节点, 或者源节点之间, 或者 目标节点之间的连接方式可以是有线或者无线。
如图 2所示, 以源节点为用户终端, 目标节点为基站为例, 说明实现编 码协作的具体流程。
首先, 作为源节点的用户终端 1向基站及其他用户终端发送数据; 基站对接收的所有源节点的数据进行解码, 若全部解码成功, 则广播通 知源节点继续发送新数据; 若解码不成功, 则基站以广播或通知的方式告知 源节点其未解码成功的源节点 (即用户终端) 的信息;
所述其他用户终端作为其它源节点, 也对所接收到的其它源节点的数据 进行解码, 在获知基站反馈的未解码成功的源节点信息后, 对照基站未正确 解码的源节点信息以及自身解码成功的源节点信息, 若成功解码了基站所需 的源节点数据, 则向基站发送该成功解码的数据, 否则, 可选择不参与协作。 实施例一:
在无线通信网络的一个区域内, 包括 1个基站和 5个用户终端, 由用户 终端向基站发送数据, 由此构成了一个上行通信模型。
步骤 101 : 在第一个时隙, 每个用户终端向基站和其它的 4个用户终端 发送数据; 这样, 在每个用户终端处, 可接收到其它 4个用户终端发送的码 字, 而基站则可接收到 5个用户终端发送的码字。
其中, 为了减少干扰, 所发送的数据可以在正交信道中传输, 如图 3所
编码后的码字长度为 Nl 被删余的码字长度为 P。
步骤 102: 基站接收到 5个用户终端的信息后开始尝试解码, 处于监听 模式的用户终端也对接收到的其他 4个用户终端的信息尝试解码; 基站和用 户终端都通过信息位中加入的 CRC校验比特来判断解码是否正确,具体判断 方式 ¾口下:
如果基站对每个用户终端发来的信息都解码成功, 则以广播等形式发送 反馈信息, 指示 5个用户终端可以发送新的数据;
如果基站对其中的 Q ( Q≥l )个用户解码不成功, 则基站可以将 Q个未 成功解码的用户信息以广播的形式发送给所有用户,或者发送给指定的用户。
其中, 所述指定的用户, 可以根据接收 SNR大小, 信道状况, 或者用户 终端与基站的相对位置等原则进行选择确定;
其中, 基站也可以将 Q个未成功解码的用户信息列成表格, 将该表格广 播给 5个用户终端 (即全部用户) , 或者通知其中的部分用户终端。
步骤 103: 用户接收并对照用户列表, 可以自行判断是否参与协作; 如图 4所示, 4艮设基站没有成功解码第 2个和第 4个用户的信息; 用户 1成功解码的用户为 2, 3和 4; 用户 2成功解码的用户为 3和 5; 用户 3成功解码的用户为 1和 5 , 用户 4成功解码的用户为 1和 5; 用户 5成 功解码的用户为 1 , 2, 3和 4。
相应的, 各个用户可釆取如图 5所示的方式, 参与协作, 其中: 用户 1成功解码的用户为 2, 3和 4, 则用户 1的用户终端接收到基站的 指示后, 将自身成功解码的用户 2和用户 4的信息, 再重新编码发送给基站 (也可以釆用将解码正确的信息直接放大转发的方法, 或者发送重新编码后 删余部分) ;
用户 2成功解码的用户为 3和 5 , 用户 2中仅有自身的正确信息, 则可 以只发送用户 2的信息;
用户 3成功解码的用户为 1和 5 ,则由于用户 3没有成功解码用户 2和 4 的信息, 因此可选择不参与协作, 为 Idle状态; 用户 3也可以选择 "参与协 作" 的状态, 但不发送信息。
用户 4成功解码的用户为 1和 5 , 用户 4中仅有自身的正确信息, 则可 以只发送用户 4的信息, 为保持系统的一致性, 编码和发送方式与用户 1相 同, 发送数据的系统模型如图 5所示。
用户 5成功解码的用户为 1 , 2, 3和 4, 则可将自身成功解码的用户 2 和用户 4的信息发送给基站。
优选地, 如果基站接收到步骤 103中各个用户协作发送的数据后解码成 功, 则通知用户可以发送新的数据; 如果仍有数据未能正确解码, 则基站再 次通知用户处理数据后再重新发送。
实施例二:
在无线通信网络的一个区域内有 1个用户终端和 3个基站,如图 6所示, 用户终端处于 3个基站所覆盖的范围的边缘, 由基站向用户终端发送不同的 数据, 用户终端需要正确接收各个基站的数据, 由此构成了一个下行通信模 型。
步骤 201 : 在第一个时隙, 每个基站向该用户和其它的基站发送数据, 如图 7所示, 则每个基站接收到其它 2个基站发送的码字, 用户将接收到 3 个基站发送的编码码字。
其中, 为了减少干扰, 数据可以在正交信道中传输。 基站的信息长度为 K, 其中包含 CRC校验比特, 将要发送的数据经过删余 LDPC码编码, 编码 后的码字长度为 Nl 被删余的码字长度为 P。
步骤 202: 用户接收到 3个基站的信息后, 开始尝试 LDPC解码, 同时 基站也对接收到的其它基站的信息尝试 LDPC解码; 基站和用户都通过信息 位中加入的 CRC校验比特判断解码是否正确, 其中:
如果用户对每个基站发来的信息都解码成功, 则向各个基站发送反馈信 息, 指示基站可以发送新的数据;
如果用户对 Q ( Q≥\ )个基站信息解码不成功, 则用户可以将该 Q个没 有成功解码的信息发送给所有基站, 或者发送给指定的基站, 其中指定基站 可以根据接收 SNR大小, 信道状况, 或者用户与基站的相对位置等原则进行 选择确定;
步骤 203 : 基站接收并对照用户解码失败列表, 可以自行判断是否参与 协作;
如图 8所示, 假设用户没有成功解码第 2个基站的信息, 基站 1成功解 码的基站为 2和 3 ,基站 2没有成功解码其它基站的信息,基站 3成功解码的 基站为 1。
如图 9所示, 基站 1接收到用户的指示后, 将自身成功解码的基站 2的 信息再重新编码, 为节约资源且获得递增冗余的效果, 只发送删余部分 P; 基站 2也仅发送删余部分 P; 由于基站 3没有成功解码基站 2的信息, 因此 选择不参与协作。 如果用户接收到数据后解码成功, 则通知基站可以发送新的数据; 如果 仍有数据未能正确解码, 则用户通知基站对数据处理后重发。
实施例三
在无线通信网络的一个区域内有 1个基站和 5个用户, 由用户向基站发 送数据, 由此构成了一个上行通信模型。
步骤 301 : 在第一个时隙, 每个用户终端向基站和其他 4个用户终端发 送数据, 如图 3所示, 则每个用户接收到其它 4个用户发送的码字, 基站接 收到 5个用户发送的码字。 其中, 为了减少干扰, 数据可以在正交信道中传输, 用户的信息长度为
Κ, 其中包含 CRC校验比特(也可以釆用其它的校验方式) , 将要发送的数 据经过删余 LDPC码编码,编码后的码字长度为 Nl 被删余的码字长度为 Ρ。
步骤 302: 基站接收到 5个用户终端的信息后开始尝试 LDPC解码, 处 于监听模式的用户也对接收到的其他 4个用户终端的信息尝试 LDPC解码; 基站和用户都通过信息位中加入的 CRC校验比特判断解码是否正确,具体判 断方式如下:
如果基站对每个用户发来的信息都解码成功, 则以广播等形式发送反馈 信息, 指示 5个用户终端可以发送新的数据;
如果基站对 Q ( ρ≥ι )个用户解码不成功, 则基站可以将 Q个不成功解 码的用户信息以广播的形式发送给所有用户终端, 或者发送给指定的用户终 端;
其中, 指定用户可以根据接收 SNR大小, 信道状况, 或者用户与基站的 相对位置等原则进行选择确定;
其中, 基站也可以将 Q个不成功解码的用户信息列成表格, 将该表格广 播给 5个用户终端, 或者通知其中的部分用户终端。
步骤 303: 用户接收并对照用户列表, 可以自行判断是否参与协作; 如图 4所示, 4艮设基站没有成功解码第 2个和第 4个用户的信息, 用户 1成功解码的用户为 2, 3和 4, 用户 2成功解码的用户为 3和 5 , 用户 3成功 解码的用户为 1和 5 , 用户 4成功解码的用户为 1和 5 , 用户 5成功解码的用 户为 1 , 2, 3和 4。
接收基站可以固定每个用户发送统一的数据长度, 比如均为 5个递增冗 余 Ρ的长度, P1 , ... , Ρ5分别代表用户 1到用户 5的递增冗余。
例如用户 1成功解码用户 2, 3和 4, 那么在相应用户的位置分别放入用 户 2 , 3和 4的递增冗余信息 Ρ2 , Ρ3和 Ρ4 , 在其他用户位置放入自己的冗余 信息。
为了使基站获得接收信息的组成状况, 可以在数据帧里面放入用户指示 ID。 每个用户发送数据的帧结构模型, 如图 10所示。 如果基站接收到数据后解码成功, 则通知用户可以发送新的数据; 如果 仍有数据未能正确解码, 则通知用户处理数据后再次发送。
实施例四:
在无线通信的一个区域内有 1个基站和 5个用户, 由用户向基站发送数 据, 由此构成了一个上行通信模型。
步骤 401 : 在第一个时隙, 每个用户向基站和其他 4个用户终端发送数 据, 如图 3所示, 则每个用户终端接收到其它 4个用户终端发送的码字, 基 站接收到 5个用户终端发送的码字。
其中, 为了减少干扰, 数据可以在正交信道中传输; 用户的信息长度为
K, 其中包含 CRC校验比特, 将要发送的数据经过删余 LDPC码编码, 编码 后的码字长度为 Nl 被删余的码字长度为 P。
步骤 402: 基站接收到 5个用户的信息后开始尝试 LDPC解码, 处于监 听模式的用户也对接收到的其他 4个用户的信息尝试 LDPC解码; 基站和用 户都通过信息位中加入的 CRC校验比特判断解码是否正确,具体判断处理如 下:
如果基站对每个用户终端发来的信息都解码成功, 则以广播等形式发送 反馈信息, 指示 5个用户终端可以发送新的数据;
如果基站对 Q ( Q≥\ )个用户解码不成功, 则基站可以将 Q个不成功解 码的用户信息以广播的形式发送给所有用户, 或者发送给指定的用户;
其中, 指定用户可以根据接收 SNR大小, 信道状况, 或者用户与基站的 相对位置等原则进行选择确定;
其中, 基站也可以将 Q个不成功解码的用户信息列成表格, 将该表格广 播给 5个用户终端, 或者通知其中的部分用户终端。
步骤 403: 用户接收并对照用户列表, 可以自行判断是否参与协作; 如图 4所示, 4艮设基站没有成功解码第 2个和第 4个用户的信息; 用户 1成功解码的用户为 2, 3和 4; 用户 2成功解码的用户为 3和 5; 用户 3成功 解码的用户为 1和 5 , 用户 4成功解码的用户为 1和 5 , 用户 5成功解码的用 户为 1 , 2, 3和 4。
接收基站可以固定每个用户发送统一的数据长度, 比如均为重新编码后 的用户信息的长度(或者用户递增冗余 P的长度) 。 例如用户 1成功解码用 户为 2, 3和 4, 那么在相应用户的位置分别放入用户 2和 4的信息, 在其他 用户位置放入该发射用户的新的信息, 如位置 1 , 3和 5。 为了使基站获得接 收信息的组成状况, 可以在数据帧里面放入用户指示 ID。 每个用户发送数据 的帧结构模型如图 11所示。
如果基站接收到数据后解码成功, 则返回步骤 401 , 通知用户可以发送 新的数据; 如果仍有数据未能正确解码, 通知用户, 仍然按照数据的放置规 则发送新数据或基站需要的用户数据。
实施例五:
在无线通信的一个区域内有 1个基站和 5个用户终端, 由用户终端向基 站发送数据, 由此构成了一个上行通信模型。
步骤 501 : 在第一个时隙, 每个用户向基站和其他 4个用户终端发送数 据, 如图 3所示, 则每个用户接收到其它 4个用户终端发送的码字, 基站接 收到 5个用户终端发送的码字。
其中, 为了减少干扰, 数据可以在正交信道中传输; 用户的信息长度为 K, 其中包含 CRC校验比特, 将要发送的数据经过删余 LDPC码编码, 编码 后的码字长度为 Nl 被删余的码字长度为 P。
步骤 502: 基站接收到 5个用户终端的信息后开始尝试 LDPC解码, 处 于监听模式的用户也对接收到的其他 4个用户的信息尝试 LDPC解码; 基站 和用户终端都通过信息位中加入的 CRC校验比特判断解码是否正确,具体判 断处理如下:
如果基站对每个用户终端发来的信息都解码成功, 则以广播等形式发送 反馈信息, 指示 5个用户终端可以发送新的数据;
如果基站对 Q ( Q≥\ )个用户解码不成功, 则基站可以将 Q个不成功解 码的用户信息以广播的形式发送给所有用户, 或者发送给指定的用户; 其中, 指定用户可以根据接收 SNR大小, 信道状况, 或者用户与基站的 相对位置等原则进行选择确定;
其中, 基站也可以将 Q个不成功解码的用户信息列成表格, 将该表格广 播给 5个用户终端, 或者通知其中的部分用户终端。
步骤 503 : 用户接收并对照用户列表, 可以自行判断参与协作时发送何 种信息;
如图 4所示, 假设目标节点基站没有成功解码第 2个和第 4个用户的信 息, 用户 1成功解码的用户为 2, 3和 4, 用户 2成功解码的用户为 3和 5 , 用户 3成功解码的用户为 1和 5 , 用户 4成功解码的用户为 1和 5 , 用户 5成 功解码的用户为 1 , 2, 3和 4。
如图 12所示, 用户 1可以釆用协作方式发送用户 2和 4的新冗余版本 RV; 用户 2发送自身新冗余版本, 同时将接收到的用户 4的信息放大转发; 用户 3将接收到的用户 2和 4的信息放大转发; 用户 4发送的是自身的新冗 余版本和放大转发用户 2的信息; 用户 5发送用户 2和 4的新冗余版本 RV。
基站接收到数据后, 可以将放大转发的信息和协作编码的信息釆用联合 解码的方式; 如果解码成功, 则返回步骤 501 , 通知用户可以发送新的数据; 如果仍有数据未能正确解码, 通知用户, 仍然按照数据的放置规则发送新数 据或基站需要的用户数据。
以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。
工业实用性
本发明提供了一种应用于无线网络中的编码协作方法, 以实现多用户编 码协作, 解决现有协作方式存在的固定数据帧的长度导致浪费通信资源以及 适用传输类型较少的问题。 本发明的编码协作技术方案, 可适用于放大转发 AF, 或解码转发 DF, 或编码协作通信 CC, 或多点协作 CoMP方式的传输和 协作策略, 并且可同时釆用其中的一个的或者多个方案; 在发送的内容上可 以通过选择发送全部或者部分信息, 信息的冗余版本 RV ( Redundancy Version )等使接收端联合解码达到最优性能。

Claims

权 利 要 求 书
1、 一种编码协作的方法, 应用在包括 M个源节点及一个目标节点的无 线网络中, 该方法包括如下步骤:
步骤 1 , 每一源节点向目标节点和其他源节点发送本源节点的数据; 步骤 2, 所述目标节点对所接收到的所述 M个源节点的数据进行解码, 若所有源节点的数据都解码正确, 则所述目标节点通知各源节点发送新的数 据; 若不是所有源节点的数据都解码正确, 则将解码不正确的数据对应的 Q 个源节点的信息反馈给全部或部分源节点;
步骤 3 , 接收到所述 Q个源节点的信息的源节点若正确解码了所述 Q个 源节点中的部分或全部源节点的数据, 则将解出的所述 Q个源节点中的部分 或全部源节点的数据发送给所述目标节点;
其中, M、 Q都为正整数, M > 2, Q M。
2、 如权利要求 1所述的方法, 其中, 在步骤 2中, 所述目标节点将所述 Q个源节点的信息反馈给全部或部分源节点的步骤包括: 所述目标节点将所 述 Q个源节点的信息通知给所述目标节点选定的多个源节点, 或者广播给所 述无线网络内的所有源节点。
3、 如权利要求 1所述的方法, 其中, 所述 Q个源节点的信息包括但不 限于所述 Q个源节点的标识 ID信息。
4、 如权利要求 1所述的方法, 其中, 所述步骤 3中, 接收到所述 Q个源 节点的信息的源节点若没有正确解码所述目标节点所需要的数据, 而自身源 节点数据是所述目标节点所需要的数据, 则将自身源节点数据发送给所述目 标节点。
5、 如权利要求 1所述的方法, 其中, 所述步骤 3中, 接收到所述 Q个源 节点的信息的源节点将其正确解码的源节点的数据全部发送给所述目标节 点。
6、 如权利要求 5所述的方法, 其中, 所述步骤 3中, 接收到所述 Q个源 节点的信息的源节点还将自身的源节点数据发送给所述目标节点。
7、 如权利要求 1所述的方法, 其中, 所述步骤 3中, 接收到所述 Q个源 节点的信息的源节点将所述 Q个源节点的数据发送给所述目标节点。
8、 如权利要求 1-7所述的方法, 其中, 所述步骤 3中,
接收到所述 Q 个源节点的信息的源节点发送源节点的数据给目标节点 时, 是直接发送源节点的数据给所述目标节点; 或者, 是对源节点的数据重 新编码后发送递增冗余数据给目标节点; 或者, 是发送相同的冗余版本 RV 的信息或不同冗余版本 RV的信息给目标节点。
9、 如权利要求 1所述的方法, 其中, 所述步骤 3还包括: 所述接收到所 述 Q个源节点的信息的源节点向所述目标节点发送指示信息, 所述指示信息 包括但不限于该源节点即将发送的数据组成情况。
10、 如权利要求 1所述的方法, 其中, 所述步骤 3中, 如果所述接收所 述源节点信息的源节点没有正确解码所述目标节点所需要的数据, 则釆取放 大转发的方式发送所述目标节点需要的数据。
11、 如权利要求 1所述的方法, 其中, 所述步骤 3中还包括:
所述接收到所述 Q个源节点的信息的源节点根据自身状况自行决定是否 参与协作;
在所述目标节点将所述 Q个源节点信息反馈给所述全部或部分源节点的 步骤之前, 所述方法还包括: 根据以下信息中的一种或多种来选择接收所述 源节点信息的源节点: 通过源节点间的信道状况、 源节点间的距离、 源节点 的电池电量, 源节点的空闲 /繁忙状态。
12、 如权利要求 1所述的方法, 其中,
所述源节点和目标节点之间, 或者所述多个源节点之间的传输方式包括 放大转发 AF, 或解码转发 DF, 或编码协作通信 CC, 或多点协作 CoMP方式 中的一种或它们的组合。
13如权利要求 1至 12中任一项所述的方法, 其中,
所述源节点和目标节点是终端、 基站、 中继站或者中继单元。
14、 如权利要求 13所述的方法, 其中,
所述源节点和目标节点是单天线或者多天线的终端、 基站、 中继站或者 中继单元。
15、 一种编码协作系统, 包括 M个源节点及一个目标节点:
所述源节点设置为:向所述目标节点和其他源节点发送本源节点的数据; 所述目标节点设置为: 对所接收到的所述 M个源节点的数据进行解码, 若所有源节点的数据都解码正确, 则通知各源节点发送新的数据; 若不是所 有源节点的数据都解码正确, 则将解码不正确的数据对应的 Q个源节点的信 息反馈给全部或部分源节点;
所述 M个源节点中,所述接收到所述 Q个源节点的信息的源节点还设置 为: 若正确解码了所述 Q个源节点中的部分或全部源节点的数据, 则将解出 的所述 Q个源节点中的部分或全部源节点的数据发送给所述目标节点;
其中, M、 Q都为正整数, M > 2, Q M。
16、 如权利要求 15所述的编码协作系统, 其中,
所述目标节点是设置为: 将所述 Q个源节点的信息通知给其选定的多个 源节点, 或者广播给所述无线网络内的所有源节点, 其中, 所述 Q个源节点 的信息包括但不限于所述 Q个源节点的标识 ID信息。
17、 如权利要求 15所述的编码协作系统, 其中, 所述接收到所述 Q个 源节点的信息的源节点是设置为: 若没有正确解码所述目标节点所需要的数 据, 而自身源节点数据是所述目标节点所需要的数据, 则将自身源节点数据 发送给所述目标节点。
18、 如权利要求 15所述的编码协作系统, 其中, 所述接收到所述 Q个 源节点的信息的源节点是设置为: 将其正确解码的源节点的数据全部发送给 所述目标节点。
19、 如权利要求 18所述的编码协作系统, 所述接收到所述 Q个源节点 的信息的源节点还设置为: 将自身的源节点数据发送给所述目标节点。
20、 如权利要求 15所述的编码协作系统, 所述接收到所述 Q个源节点 的信息的源节点是设置为: 将所述 Q个源节点的数据发送给所述目标节点。
21、 如权利要求 15-20所述的编码协作系统, 其中, 所述接收到所述 Q个源节点的信息的源节点是设置为以如下方式发送源 节点的数据给所述目标节点:
直接发送所述源节点的数据给所述目标节点; 或者,
将源节点的数据重新编码后发送递增冗余数据给所述目标节点; 或者, 发送相同的冗余版本 RV的信息或不同冗余版本 RV的信息给所述目标 节点。
22、 如权利要求 15所述的编码协作系统, 其中, 所述接收到所述 Q个 源节点的信息的源节点还设置为: 接收到所述 Q个源节点的信息后, 向所述 目标节点发送指示信息, 所述指示信息包括但不限于该源节点即将发送的数 据组成情况。
23、 如权利要求 15所述的编码协作系统, 其中, 所述接收到所述 Q个 源节点的信息的源节点还设置为: 接收到所述 Q个源节点的信息后如果所述 源节点没有正确解码所述目标节点所需要的数据, 则釆取放大转发的方式发 送所述目标节点需要的数据。
24、 如权利要求 15所述的编码协作系统, 其中,
所述源节点和目标节点之间, 或者所述多个源节点之间的传输方式包括 放大转发 AF, 或解码转发 DF, 或编码协作通信 CC, 或多点协作 CoMP方式 中的一种或它们的组合。
25、 如权利要求 15至 24中任一项所述的编码协作系统, 其中, 所述源节点和目标节点是单天线或者多天线的终端、 基站、 中继站或者 中继单元。
PCT/CN2011/076726 2011-01-13 2011-06-30 一种无线网络及无线通信中的编码协作方法 WO2012094881A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110006752.5 2011-01-13
CN201110006752.5A CN102594487B (zh) 2011-01-13 2011-01-13 一种无线网络及无线通信中的编码协作方法

Publications (1)

Publication Number Publication Date
WO2012094881A1 true WO2012094881A1 (zh) 2012-07-19

Family

ID=46482721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076726 WO2012094881A1 (zh) 2011-01-13 2011-06-30 一种无线网络及无线通信中的编码协作方法

Country Status (2)

Country Link
CN (1) CN102594487B (zh)
WO (1) WO2012094881A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105915314A (zh) * 2016-04-14 2016-08-31 西安电子科技大学 一种基于以太网接口的协作通信编译码系统和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104184509B (zh) * 2014-09-05 2017-09-05 西安电子科技大学 无线多播系统中的中继协作传输方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901400A (zh) * 2005-07-04 2007-01-24 三星电子株式会社 用于无线通信系统的合作中继传输方法
US7380193B1 (en) * 2003-09-16 2008-05-27 Ofir Shalvi Jointly coded cooperative networking
CN101325540A (zh) * 2007-06-11 2008-12-17 华为技术有限公司 提高基于随机网络编码的多播传输效率的方法及装置
CN101399583A (zh) * 2008-11-07 2009-04-01 西安电子科技大学 蜂窝通信系统中的协作伙伴选择和预编码协作通信方法
US20100103869A1 (en) * 2008-10-28 2010-04-29 Nortel Networks Limited Transferring data in a mobile telephony network
CN101801039A (zh) * 2010-03-29 2010-08-11 华中科技大学 一种多基站协作中减小时延的方法
US20100246474A1 (en) * 2009-03-30 2010-09-30 Jinyun Zhang Relay Coded Multi-User Cooperative Communications for Uplink 4G Wireless Networks
CN101882979A (zh) * 2009-05-05 2010-11-10 中兴通讯股份有限公司 一种实现用户间协作的方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101848060B (zh) * 2010-05-12 2012-11-21 中国科学技术大学 一种自适应网络编码协作中继方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380193B1 (en) * 2003-09-16 2008-05-27 Ofir Shalvi Jointly coded cooperative networking
CN1901400A (zh) * 2005-07-04 2007-01-24 三星电子株式会社 用于无线通信系统的合作中继传输方法
CN101325540A (zh) * 2007-06-11 2008-12-17 华为技术有限公司 提高基于随机网络编码的多播传输效率的方法及装置
US20100103869A1 (en) * 2008-10-28 2010-04-29 Nortel Networks Limited Transferring data in a mobile telephony network
CN101399583A (zh) * 2008-11-07 2009-04-01 西安电子科技大学 蜂窝通信系统中的协作伙伴选择和预编码协作通信方法
US20100246474A1 (en) * 2009-03-30 2010-09-30 Jinyun Zhang Relay Coded Multi-User Cooperative Communications for Uplink 4G Wireless Networks
CN101882979A (zh) * 2009-05-05 2010-11-10 中兴通讯股份有限公司 一种实现用户间协作的方法及系统
CN101801039A (zh) * 2010-03-29 2010-08-11 华中科技大学 一种多基站协作中减小时延的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105915314A (zh) * 2016-04-14 2016-08-31 西安电子科技大学 一种基于以太网接口的协作通信编译码系统和方法
CN105915314B (zh) * 2016-04-14 2019-01-15 西安电子科技大学 一种基于以太网接口的协作通信编译码系统和方法

Also Published As

Publication number Publication date
CN102594487A (zh) 2012-07-18
CN102594487B (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
US10912148B2 (en) System and method for UE fountain relay based network
US10911183B2 (en) System and method for HARQ for cellular integrated D2D communications
KR101003196B1 (ko) 중계방식을 사용하는 무선통신시스템에서 재전송 장치 및방법
KR101762472B1 (ko) 트리플 플레이 프로토콜 - 네트워크 코딩된 세 노드의 양방향 협업으로 전송하기 위한 매체 접근 제어 계층 프로토콜
KR101634177B1 (ko) 데이터 패킷의 처리 및 전송 방법
US8358608B2 (en) Method and apparatus for HARQ operation with network coding
US8819529B2 (en) Method of communication
US20070070953A1 (en) Method of cooperatively relaying data in cellular networks for a broadcast multicast services
KR20100108514A (ko) 무선 통신 기지국 장치, 무선 통신 중계 장치, 무선 통신 단말 장치, 패킷 재송 방법 및 무선 통신 시스템
US20140010147A1 (en) Data retransmission method, relay station, base station, and communication system
US10630430B2 (en) System and method for dual-coding for dual-hops channels
US20220021483A1 (en) Methods and appratuses for broadcast multicast or groupcast transmission using vertical check blocks
US10673574B2 (en) Methods and apparatuses for group transmissions
CN108370293B (zh) 中继方法、中继器、目的地设备及其通信系统
JP5150530B2 (ja) 無線基地局装置及び無線通信方法
WO2012106842A1 (zh) 一种数据传输方法、无线通信系统、目的节点和中继节点
WO2012094881A1 (zh) 一种无线网络及无线通信中的编码协作方法
JP5312397B2 (ja) 通信システム、通信装置、及び、それらの通信方法、プログラム
KR101137014B1 (ko) 복수의 릴레이 장치를 포함하는 이동 통신 시스템 및 이 통신 시스템에서의 데이터 패킷의 전송 방법
WO2023137720A1 (en) Methods and apparatuses for network coding-based harq retransmission with scrambling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855576

Country of ref document: EP

Kind code of ref document: A1