WO2012094789A1 - 一种流体除铁方法及装置 - Google Patents

一种流体除铁方法及装置 Download PDF

Info

Publication number
WO2012094789A1
WO2012094789A1 PCT/CN2011/001946 CN2011001946W WO2012094789A1 WO 2012094789 A1 WO2012094789 A1 WO 2012094789A1 CN 2011001946 W CN2011001946 W CN 2011001946W WO 2012094789 A1 WO2012094789 A1 WO 2012094789A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
fluid
soft magnetic
passage
soft
Prior art date
Application number
PCT/CN2011/001946
Other languages
English (en)
French (fr)
Inventor
李泽
Original Assignee
Li Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110007958XA external-priority patent/CN102179294A/zh
Priority claimed from CN201110255593.2A external-priority patent/CN102319626B/zh
Application filed by Li Ze filed Critical Li Ze
Publication of WO2012094789A1 publication Critical patent/WO2012094789A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Definitions

  • the present invention relates to a magnetic separation method and apparatus.
  • the prior art technique for absorbing a ferromagnetic substance in a fluid flowing through a soft magnetic medium disposed between north and south magnetic poles is to clean a soft magnetic medium filled with a ferromagnetic substance.
  • the technique is to remove the soft magnetic medium from the magnetic field and then clean the ferromagnetic material on the soft magnetic medium by rinsing.
  • This method requires a lot of cleaning water, and the cleaning process The amount of wastewater generated is relatively large.
  • the cleaning effect of ferromagnetic substances deep in soft magnetic media (such as soft magnetic steel wool) is very poor, it is difficult to clean them, thus making these soft
  • the ability of magnetic media to remove ferromagnetic material is significantly reduced. Summary of the invention:
  • An object of the present invention is to provide a fluid removing method and apparatus capable of effectively recovering the ferromagnetic material of a soft magnetic medium.
  • the first solution of the fluid de-ironing method of the present invention is achieved by the process of absorbing a ferromagnetic substance in a fluid with a soft magnetic medium in a magnetic field between north and south magnetic poles, and cleaning a ferromagnetic substance on a soft magnetic medium, in particular
  • the soft magnetic medium is disposed in a non-magnetic cylinder with a plurality of perforations and rotating power on the side of the circumference, and the ferromagnetic substance in the fluid is extracted by the soft magnetic medium in the magnetic field between the north and south magnetic poles.
  • the process is fluid from the soft magnetic medium.
  • the non-magnetic cylinder of the medium is placed in the channel, and the non-magnetic cylinder is rotated by the rotating power to rotate the correction page (Article 91)
  • the non-magnetic cylinder drives the soft magnetic medium to rotate at a high speed, and the ferromagnetic substance on the soft magnetic medium is separated by centrifugal force and passes through a plurality of perforations provided on the side of the non-magnetic tube to enter the channel, and is collected along the channel.
  • Ferromagnetic material is collected in the tank.
  • the invention adopts a centrifugal method, and adopts a channel and a non-magnetic tube and a soft magnetic medium is disposed in the non-magnetic tube, so that the ferromagnetic substance on the soft magnetic medium obtains a centrifugal force of high-speed rotation, and the soft magnetic medium is set. In the non-magnetic cylinder, the physical form of the soft magnetic medium is facilitated.
  • the process of cleaning the ferromagnetic substance on the soft magnetic medium is performed after the non-magnetic cylinder provided with the soft magnetic medium is moved away from the magnetic field between the north and south magnetic poles or the magnetic field is eliminated.
  • the centrifugal force separates the ferromagnetic substance from the soft magnetic medium and enters the channel
  • the ferromagnetic substance easily enters the waste tank along the channel, but if it is in the magnetic field
  • the centrifugal force is large, those ferromagnetic substances that are strongly magnetically conductive are not easily separated from the soft magnetic medium, and the ferromagnetic substance that has lost the magnetic attraction after leaving or eliminating the magnetic field, even if it has strong magnetic permeability, It is also very easy to separate from the soft magnetic medium.
  • the ferromagnetic substance in the fluid is extracted by the soft magnetic medium.
  • the non-magnetic magnetic cylinder provided with the soft magnetic medium is placed in the channel, and the external magnetic field of the electromagnetic or permanent magnet acts on the fluid passage.
  • the soft magnetic medium inside causes the soft magnetic medium to generate a gradient magnetic field, and then introduces the fluid into the fluid channel and flows through the soft magnetic medium.
  • the ferromagnetic substance in the fluid is absorbed by the soft magnetic medium with magnetic attraction.
  • the soft magnetic medium cleaning process first stops the introduction of the fluid into the fluid passage, and then introduces the water from the bottom to the fluid passage, and takes the residual pulp after removing the ferromagnetic material, and then Stop the water injection from the bottom to the top, stop the magnetic force of the electromagnetic device or the permanent magnet device on the soft magnetic medium in the fluid channel, drain the water in the channel, turn the soft magnetic medium at high speed, and correct the page by centrifugal force. 91) The ferromagnetic material is separated from the soft magnetic medium.
  • the magnetic force of the electromagnetic device on the soft magnetic medium in the fluid passage is stopped by the power-off mode.
  • the soft magnetic medium is separated by separating the permanent magnet device from the soft magnetic medium.
  • the magnetic force of the permanent magnet device acts to stop the magnetic action of the permanent magnet device on the soft magnetic medium in the fluid passage.
  • the soft magnetic medium is a soft magnetic steel wool.
  • the soft magnetic steel wool is deformed even under the action of centrifugal force and concentrated on the four sides of the non-magnetic cylinder. However, once the cylinder stops rotating, the deformation force moves the soft magnetic steel wool back to the original position.
  • the fluid collecting groove is covered by the process of sucking the ferromagnetic substance in the fluid with the soft magnetic medium in the magnetic field between the north and south magnetic poles.
  • the second embodiment of the fluid removing method of the present invention is realized by disposing a soft magnetic medium member with rotational power in a cylindrical passage surrounding the electromagnetic coil on all sides, and the soft magnetic medium member includes a layer along the axis of the cylindrical passage. a plurality of layers of network soft magnetic bodies or soft magnetic steel hair bundles which are spaced apart from each other.
  • the electromagnetic coil is energized to pass the magnetic lines along the axis of the cylindrical passage to make the soft magnetic
  • the dielectric member generates a high gradient induced magnetic field.
  • the fluid is introduced into the cylindrical passage, and the fluid passes through a plurality of mesh soft magnetic bodies or soft magnetic steel bristle in the cylindrical passage, and the ferromagnetic substance in the fluid is softened by the mesh.
  • the high gradient magnetic force of the magnet or soft magnetic steel hairball is absorbed, and the fluid of the ferromagnetic material is cleaned out of the tubular passage to complete the work of removing the ferromagnetic material; when the mesh soft magnetic medium or the soft magnetic steel hairball correction page ( Rule 91)
  • the absorbed ferromagnetic material reaches a certain amount, the fluid is stopped from being introduced into the tubular passage, the residual slurry in the tubular passage is drained, the power is cut off, and the rotary power is driven to drive the mesh soft magnet or the soft magnetic steel to rotate at a high speed.
  • the ferromagnetic substance on the mesh soft magnetic or soft magnetic steel hairball that has lost the magnetic attraction is deflected away from the mesh soft magnetic body or the soft magnetic steel hair mass by the centrifugal force and flows onto the inner wall of the cylindrical passage. Under the action of gravity, it falls along the inner wall of the cylindrical passage to the ferromagnetic substance collecting groove below the cylindrical passage. Since the electromagnetic coil is surrounded by the circumference of the cylindrical passage, the generated electromagnetic magnetic lines are passed through the cylindrical passage along the cylindrical passage, so that the spaced apart mesh soft magnetic or soft magnetic steel hairballs are arranged at intervals.
  • a magnetic gradient is formed on the mesh to make the mesh soft magnetic body have a strong magnetic attraction force, so as to effectively carry out the work of ferromagnetic substances in the fluid at multiple levels, and the effect of removing the ferromagnetic material is ensured, and the centrifugal cleaning method can be used to effectively Soft magnetic medium or soft magnetic steel hairball for cleaning work.
  • the process of draining the residual slurry in the tubular passage is to introduce water from the bottom to the fluid passage, take out the residual pulp after removing the ferromagnetic material, and then stop the water injection from the bottom to the top, stop the electromagnetic device or never
  • the magnetic device acts on the magnetic force of the soft magnetic medium in the fluid passage, drains the water in the passage, rotates the soft magnetic medium at a high speed, and separates the ferromagnetic substance from the soft magnetic medium by centrifugal force.
  • water is added to the mesh soft magnetic medium or the soft magnetic steel hair mass while centrifugal cleaning. Due to the enhanced fluidity of the ferromagnetic material after the addition of water, the ferromagnetic substance is separated from the reticulated soft magnetic or soft magnetic steel under the action of centrifugal force and gravity and quickly falls down the cylindrical passage below the tubular passage. Ferromagnetic material is collected on the tank.
  • the soft magnetic medium member is a soft magnetic steel hair mass
  • the soft magnetic steel hair mass is set on the outer wall with several correction pages (Article 91)
  • the gap between the lower end of the circular frame and the cylindrical passage of the perforated non-magnetic material is closed on the outer wall to prevent the fluid from entering the outer wall.
  • the gap between the perforated non-magnetic material circular frame and the cylindrical channel prevents the ferromagnetic material in the fluid from being cleaned; when centrifugal cleaning, open the outer wall with a plurality of perforated non-magnetic materials, the lower end of the circular frame and the cylindrical channel
  • the gap between the two is such that the circular frame of the non-magnetic material having a plurality of perforations on the outer wall can smoothly rotate.
  • the first embodiment of the fluid iron removing device of the present invention is implemented by the method, including a magnetic field formed between north and south magnetic poles, a non-magnetic magnetic cylinder with a rotating power mechanism, a soft magnetic medium disposed in the non-magnetic magnetic cylinder, and a cavity ratio.
  • a large passage of the non-magnetic tube, a plurality of perforations are arranged on the side of the non-magnetic tube, and a fluid collecting groove is disposed outside the magnetic field of the non-magnetic tube outside the magnetic field, and the fluid inlet of the non-magnetic tube is directly opposite to the magnetic field
  • a fluid introduction port is provided, and the ferromagnetic substance outlet of the passage is provided with a ferromagnetic substance collecting groove.
  • the fluid introduction port introduces the fluid into the non-magnetic cylinder in the magnetic field, and the soft magnetic medium in the non-magnetic cylinder absorbs the ferromagnetic substance in the fluid, and the fluid separating the ferromagnetic material flows into the fluid collection tank.
  • the soft magnetic medium is filled with the ferromagnetic material
  • the non-magnetic cylinder is moved away from the magnetic field or the magnetic field is eliminated, the non-magnetic cylinder is placed in the channel, and then the non-magnetic cylinder is driven to rotate at a high speed by the rotary power mechanism.
  • the ferromagnetic substance on the soft magnetic medium is separated by centrifugal force into the passage through the non-magnetic cylinder, and falls into the ferromagnetic substance collecting tank along the passage, thereby cleaning the soft magnetic medium so that it can be effectively put back into use.
  • the channel is provided with a fluid inlet, a fluid outlet and a waste liquid discharge port.
  • the magnetic field formed between the north and south magnetic poles is an electromagnetic device or a permanent magnet device disposed on the outer side of the fluid passage, and a valve is arranged on the fluid inlet and the waste liquid discharge port.
  • the permanent magnet device is set to correct the page (Article 91)
  • the lower end of the channel is provided with a water inlet with a valve
  • the upper end of the fluid channel is provided with a sprinkler with a valve.
  • the ferromagnetic substance in the fluid is soft magnetic medium.
  • the fluid that has been removed and removed from the ferromagnetic material flows out of the fluid passage; after the ferromagnetic material absorbed by the soft magnetic medium reaches a certain amount, the valve on the fluid inlet is closed, the valve of the water inlet is blown, and water is introduced into the passage. After removing the ferromagnetic material from the channel, take it out of the channel from the fluid outlet. After the residual slurry in the channel is cleaned, close the valve of the water inlet, close the electromagnetic device or separate the permanent magnetic field from the soft magnetic medium.
  • the soft magnetic medium is removed from the external magnetic field, the soft magnetic medium loses the magnetic force, the valve of the waste liquid discharge port is opened, the water sprinkling device is opened, the non-magnetic magnetic tube is driven to rotate at a high speed by the rotary power mechanism, and the centrifugal force is used to clean the soft magnetic medium. Ferromagnetic material, the waste water is discharged out of the fluid passage through the waste discharge port until the soft magnetic medium is cleaned, and then heavy Above work.
  • the soft magnetic medium is made of soft magnetic steel wool. Since the ferromagnetic substance is cleaned by centrifugal force, it is easy to clean the ferromagnetic material deep into the steel wool, thereby utilizing the good ferromagnetic material of the soft magnetic steel wool, and at the same time, effectively cleaning the steel. The ferromagnetic material on the hair makes it effectively restore its original function.
  • a shutter is provided at the entrance of the fluid collection tank.
  • the function of the shutter is to prevent the ferromagnetic material remaining in the non-magnetic path from falling into the fluid collection tank.
  • the second embodiment of the fluid iron removing device of the present invention is realized by the following steps, including a frame, a vertically arranged cylindrical passage disposed on the frame, an electromagnetic coil, and a soft magnetic medium member with rotational power, and the electromagnetic coil is wound around The outer side of the channel, the soft magnetic medium member is placed on the cylindrical correction page (Article 91)
  • the soft magnetic medium member comprises a plurality of layers of mesh soft magnetic bodies or soft magnetic steel hair bundles which are spaced apart from each other
  • the rotary power is arranged on the frame
  • a fluid introduction port is arranged at the lower end inlet of the tubular passage and
  • the waste liquid discharge port with a valve is provided with a fluid outlet at the upper end of the tubular passage, and the material of the cylindrical passage is a non-magnetic material.
  • the electromagnetic coil is energized, so that the magnetic flux passes through the channel along the axis of the cylindrical channel, and the fluid is introduced into the channel from the inlet of the lower end of the tubular channel, and the ferromagnetic substance in the fluid is meshed with soft soft magnet or soft magnetic steel.
  • the fluid that has been taken up and cleaned up by the ferromagnetic material flows out of the fluid discharge port to complete the work of removing the ferromagnetic substance.
  • the cylinder is stopped.
  • the lower end of the passage is provided with a water inlet P with a valve, and a sprinkler with a valve is arranged at the upper end of the fluid passage.
  • the electromagnetic device is activated, the valve on the fluid inlet is opened, and the fluid is introduced into the channel.
  • the fluid passes through the soft magnetic medium, the ferromagnetic substance in the fluid is absorbed by the soft magnetic medium, and the fluid of the ferromagnetic substance is removed and flows out of the fluid.
  • the magnetic armor is wrapped around the periphery of the electromagnetic coil.
  • the rotary power includes a motor fixed on the frame, a rotating frame driven by the motor, the rotating frame is a rotating shaft fixed with several layers of shelves or a circular frame of non-magnetic material provided with a plurality of perforations on the outer side wall, and the soft magnetic medium member is fixed at
  • the shelf is disposed in a circular frame of a non-magnetic material provided on the outer side wall with a plurality of perforations.
  • the use of the shelf is conducive to the fixing of the physical shape of the mesh soft magnetic body, and effectively reduces the damage of the physical shape of the mesh soft magnetic body by the centrifugal power; the circular frame is provided with a plurality of perforations on the outer side wall, which can facilitate the layering of the physical form stable network.
  • the present invention has the advantages of combining the centrifugal non-magnetic cylinder and the non-magnetic magnetic channel and separating the ferromagnetic material on the soft magnetic medium by the centrifugal force generated by the non-magnetic magnetic cylinder, thereby having It can effectively recover the ability of soft magnetic medium to remove ferromagnetic substances, and is convenient and reliable to use, simple in structure and low in manufacturing cost.
  • the soft magnetic medium with the ideal physical form has the advantages of ensuring the effect of removing the ferromagnetic substance, and at the same time, it is convenient to use the centrifugal cleaning method, and the manufacturing cost is low. '
  • Correction page (Article 91) 1 is a schematic structural view of Embodiment 1 of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a non-magnetic cylinder according to Embodiment 1 of the first embodiment
  • Figure 3 is a schematic structural view of Embodiment 2 of the first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a non-magnetic cylinder of Embodiment 2 of the first embodiment
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 3;
  • Figure 6 is a schematic structural view of Embodiment 3.
  • Figure ⁇ is a schematic structural view of Embodiment 4 of the first scheme
  • Figure 8 is a schematic structural view of Embodiment 5 of the first embodiment
  • Embodiment 6 of Embodiment 1 is a schematic structural view of Embodiment 6 of Embodiment 1;
  • Figure 10 is a schematic structural view of Embodiment 1 of Scheme 2;
  • Figure 1 is a schematic structural view of Embodiment 2 of Scheme 2;
  • Figure 12 is a schematic structural view of a mesh-shaped soft magnetic body having a clamping frame fixed on both upper and lower sides;
  • Figure 13 is a schematic structural view of Embodiment 3 of the second embodiment;
  • FIG. 14 is a schematic structural view of a lower portion of a channel of Embodiment 3;
  • FIG. 15 is a schematic structural view of Embodiment 7 of Embodiment 1;
  • Figure 16 is a schematic view showing the structure of another connector of Embodiment 7 of the first embodiment. detailed description:
  • the first embodiment of the fluid iron removal method of the present invention is implemented by the method of extracting ferromagnetic substances in a fluid by a soft magnetic medium in a magnetic field between north and south magnetic poles, and cleaning a ferromagnetic substance on a soft magnetic medium, which is particularly
  • the soft magnetic medium is placed in a non-magnetic cylinder with a plurality of perforations and a rotating force on the side of the circumference, and a soft magnetic correction page is used in the magnetic field between the north and south magnetic poles (Article 91)
  • the process of drawing the ferromagnetic material in the fluid is that the fluid enters the non-magnetic cylinder from one end of the non-magnetic cylinder, absorbs the ferromagnetic material through the soft magnetic medium, and then exits from the other end of the non-magnetic cylinder into the lower side.
  • the process of cleaning the ferromagnetic material on the soft magnetic medium is to place the non-magnetic magnetic cylinder provided with the soft magnetic medium in the passage of the cavity larger than the non-magnetic magnetic cylinder, and drive the non-magnetic cylinder high speed through the rotating power.
  • the rotating, non-magnetic cylinder drives the 'soft magnetic medium to rotate at a high speed.
  • the ferromagnetic substance on the soft magnetic medium is separated by centrifugal force and passes through several perforations provided on the side of the non-magnetic tube to enter the channel and collect along the channel.
  • Into the ferromagnetic material collection tank is to place the non-magnetic magnetic cylinder provided with the soft magnetic medium in the passage of the cavity larger than the non-magnetic magnetic cylinder, and drive the non-magnetic cylinder high speed through the rotating power.
  • the rotating, non-magnetic cylinder drives the 'soft magnetic medium to rotate at a high speed.
  • the ferromagnetic substance on the soft magnetic medium
  • the process of cleaning the ferromagnetic substance on the soft magnetic medium is performed after the non-magnetic cylinder provided with the soft magnetic medium is moved away from the magnetic field between the north and south magnetic poles or the magnetic field is eliminated.
  • the soft magnetic medium is a soft magnetic steel wool
  • the soft magnetic medium disposed in the non-magnetic cylinder is a plurality of mesh plates placed in a spaced layer, the vertical magnetic lines of the mesh plate, and the non-magnetic cylinder is in the shape of a disk or a circular disk, when non-magnetic
  • the non-magnetic cylinder is moved away from the magnetic field formed between the magnetic poles of the north and south permanent magnets, and the rotating dynamic mechanism outside the magnetic field formed between the non-magnetic cylinder and the magnetic pole between the north and south permanent magnets Connected, the rotating power mechanism is activated to drive the non-magnetic cylinder to rotate, the ferromagnetic material on the soft magnetic medium is cleaned by centrifugal force, and then the non-magnetic cylinder is moved back into the magnetic field formed between the magnetic poles of the north and south permanent magnets. It is possible to rework the fluid to remove the ferromagnetic material.
  • the ferromagnetic substance in the fluid is extracted by the soft magnetic medium.
  • the non-magnetic magnetic cylinder provided with the soft magnetic medium is placed in the channel, and the external magnetic field of the electromagnetic or permanent magnet acts on the fluid passage.
  • the soft magnetic medium inside causes the soft magnetic medium to generate a gradient magnetic field, and then introduces the fluid into the fluid channel, 'flows through the soft magnetic medium, and corrects the page in the fluid (Article 91)
  • the ferromagnetic substance is sucked by the soft magnetic medium with magnetic attraction to complete the work of removing the ferromagnetic substance.
  • the soft magnetic medium cleaning process first stops the introduction of the fluid into the fluid passage, and then imports from the bottom to the fluid passage.
  • Water take out the residual pulp after the ferromagnetic material, and then stop the water injection from the bottom to the top, stop the electromagnetic device or the permanent magnet. Place the magnetic force on the soft magnetic medium in the fluid channel, and drain the water in the channel.
  • the high-speed rotating soft magnetic medium separates the ferromagnetic substance from the soft magnetic medium by centrifugal force.
  • the magnetic force of the electromagnetic device on the soft magnetic medium in the fluid passage is stopped by the power-off mode.
  • the permanent magnet device is used, the soft magnetic medium is separated from the soft magnetic medium by separating the permanent magnet device from the soft magnetic medium.
  • the magnetic force of the magnetic device acts to stop the magnetic action of the permanent magnet device on the soft magnetic medium in the fluid passage.
  • the fluid collecting tank is covered by the process of sucking the ferromagnetic substance in the fluid with a soft magnetic medium in the magnetic field between the north and south magnetic poles.
  • the second embodiment of the fluid removing method of the present invention is realized by disposing a soft magnetic medium member with rotational power in a cylindrical passage surrounding the electromagnetic coil on all sides, and the soft magnetic medium member includes a layer along the axis of the cylindrical passage. a plurality of layers of mesh soft magnetic bodies or soft magnetic steel hair bundles which are spaced apart from each other.
  • the electromagnetic coil When the ferromagnetic substance in the fluid is removed, the electromagnetic coil is energized to pass the magnetic lines along the axis of the cylindrical passage to make the soft magnetic
  • the dielectric member generates a high gradient induced magnetic field, and then introduces the fluid into the cylindrical passage to pass the fluid through the plurality of mesh soft magnetic bodies or soft magnetic steel bristle in the cylindrical passage, and the ferromagnetic substance in the fluid is meshed with the soft magnetic body.
  • Remaining pulp disconnecting the power supply, starting the rotating power to drive the mesh soft magnetic body or the soft magnetic steel wool group to rotate at a high speed, so that the ferromagnetic material on the mesh soft magnetic or soft magnetic steel hairball loses the magnetic attraction attraction in the centrifugal force
  • the lower jaw is separated from the mesh soft magnetic or soft magnetic steel hair mass and flows onto the inner wall of the cylindrical passage, and falls under the gravity of the cylindrical passage to the ferromagnetic substance collecting groove below the cylindrical passage.
  • the process of draining the residual slurry in the tubular passage is to introduce water from the bottom to the fluid passage, take out the residual pulp after removing the ferromagnetic material, and then stop the water injection from the bottom to the top to stop the electromagnetic device or the permanent magnet device.
  • the magnetic force of the soft magnetic medium in the fluid channel removes the water in the channel, rotates the soft magnetic medium at a high speed, and separates the ferromagnetic substance from the soft magnetic medium by centrifugal force.
  • the soft magnetic steel hairball is disposed in a circular frame of a non-magnetic material with a plurality of perforations on the outer wall.
  • the closed outer wall is provided with several a gap between the lower end of the perforated non-magnetic material round frame and the cylindrical passage to prevent fluid from entering the outer wall.
  • the gap between the circular frame of the non-magnetic material and the cylindrical passage with a plurality of perforations prevents the ferromagnetic material in the fluid from being obtained.
  • the fluid iron removal device of the present invention is implemented as follows:
  • Embodiment 1 of Embodiment 1 As shown in FIGS. 1 and 2, the fluid iron removing device of the present invention is realized by including a magnetic field 1 formed between the north and south permanent magnet poles 16 with the ferroniobium 16a, and is disposed in the magnetic field.
  • the channel 3, the non-magnetic cylinder 5 with the rotary power mechanism 4 disposed in the channel 3, the soft magnetic medium 6 disposed in the non-magnetic cylinder 5, the frame 15, the lifting power mechanism 13, and the channel 3 are tapered Shape and non-magnetic, the corresponding non-magnetic cylinder 5 is tapered, the non-magnetic cylinder 5 is rotatably disposed on the frame 15, and the frame '15 is connected with the lifting power mechanism 13, as shown in FIG.
  • the peri-side of the magnetic cylinder 5 is provided with a plurality of perforations 7 which are distributed in a mesh shape on the circumferential sides of the non-magnetic cylinder 5, and the fluid outlets 5a facing the lower end of the non-magnetic cylinder 5 are provided with a fluid collecting groove 8, which is opposite
  • the fluid inlet 5b at the upper end of the non-magnetic cylinder 5 is provided with a fluid introduction port 9, and the ferromagnetic substance collection groove 10 is disposed opposite the ferromagnetic substance outlet 3a at the lower end of the channel 3.
  • the soft magnetic medium 6 is made of soft magnetic steel wool.
  • a shutter 11 is provided at the entrance of the fluid collecting tank 8.
  • the shutter 1 1 is tapered so that the ferromagnetic substance falls into the ferromagnetic substance collecting tank 10 along the tapered shutter 1 1 .
  • the fluid introduction port introduces the fluid into the non-magnetic cylinder in the magnetic field, and the soft magnetic medium in the non-magnetic cylinder absorbs the ferromagnetic substance in the fluid, and the fluid separating the ferromagnetic material flows into the fluid collection tank.
  • the inlet of the fluid receiving tank 8 is covered by the shutter 1 1 , and then the non-magnetic cylinder 5 is lifted along the frame 15 by the lifting power mechanism 13 so that A channel is formed between the channel 3 and the non-magnetic cylinder 5, and then the non-magnetic cylinder is rotated at a high speed by a rotating power mechanism, and the soft correction page is used by centrifugal force (Article 91)
  • the ferromagnetic material on the magnetic medium separates and passes through the non-magnetic cylinder into the channel, and falls into the ferromagnetic substance collecting groove along the channel, thereby cleaning the soft magnetic medium so that it can be effectively put back into use.
  • Embodiment 2 of the first embodiment As shown in FIGS. 4, 5 and 3, in the embodiment, on the basis of the embodiment 1 ', the channel 3 is a linear non-magnetic channel that drives the magnetic field 1 through the power mechanism 2.
  • the non-magnetic cylinder 5 is a straight cylindrical non-magnetic cylinder 5 with a rotary power mechanism 4 disposed in the straight cylindrical non-magnetic conductive passage 3, and the diameter of the straight cylindrical non-magnetic conductive passage 3' is smaller than that of the straight cylindrical non-magnetic conductive
  • the outer diameter of the cylinder 5 is large, and a support frame 17 is disposed in the straight cylindrical non-magnetic conductive passage 3, and the straight cylindrical non-magnetic conductive cylinder 5 is rotatably disposed on the support frame 17, as shown in Fig.
  • the periphery of the non-magnetic conductive cylinder 5 A plurality of perforations 7 are arranged on the side, and the perforations 7 are distributed in a mesh shape on the side of the non-magnetic cylinder 5, and a fluid collecting groove 8 is disposed on the fluid outlet 5a of the lower end of the non-magnetic cylinder 5 under the magnetic field 1.
  • the fluid inlet 5b is disposed at the upper end of the non-magnetic cylinder 5.
  • the fluid introduction port 9 is provided with a ferromagnetic substance collecting groove 10 facing the ferromagnetic substance outlet 3a at the lower end of the non-magnetic path 3 outside the magnetic field 1.
  • a closing sleeve 12 is provided on the outer side of the straight cylindrical non-magnetic cylinder 5.
  • the perforation 7 of the straight cylindrical non-magnetic cylinder 5 is closed by the closing sleeve 12 to prevent the fluid from flowing out of the perforation 7, when it is necessary to clean the ferromagnetic on the soft magnetic medium.
  • the closure sleeve 12 is removed so that the ferromagnetic material emerges from the perforations 7.
  • a moving power mechanism 18 is disposed on the closure sleeve 12.
  • a baffle 14 is disposed between the rotary power mechanism 4 and the non-magnetic cylinder 5 to prevent the fluid from falling onto the rotary power mechanism 4 from damaging the rotary power mechanism 4.
  • Embodiment 3 of the first embodiment As shown in FIG. 6, this embodiment is the basic correction page of the first embodiment (Article 91) Above, the electromagnetic poles are used to replace the north and south permanent magnet poles 16.
  • Embodiment 4 of the first embodiment As shown in FIG. 7, the embodiment is based on the third embodiment, the channel 3 is a straight cylindrical non-magnetic channel 3, and the non-magnetic tube 5 is a straight tube with a rotary power mechanism 4.
  • the non-magnetic cylinder 5 has a diameter larger than the outer diameter of the straight cylindrical non-magnetic cylinder 5, and a support frame 17 is provided in the straight cylindrical non-magnetic passage 3, and the straight cylindrical non-magnetic cylinder The rotation is provided on the support frame 17, and the closure sleeve 12 is provided on the outer side of the straight cylindrical non-magnetic cylinder 5.
  • a baffle 14 is provided between the rotary power mechanism 4 and the non-magnetic cylinder 5.
  • Embodiment 5 of Embodiment 1 As shown in FIG. 8, this embodiment is based on Embodiment 4, the entire device is disposed in a lying shape, and both ends of the straight cylindrical non-magnetic tube 5 are respectively rotatably disposed on the support frame 17 And the fluid introduction port 9, the fluid outlet 5a of the straight cylindrical non-magnetic cylinder 5 is connected with a fluid outlet passage 19, the outlet of the fluid outlet passage 19 is opposite to the fluid collection tank 8, and the ferromagnetic substance collection tank 10 is located in a straight cylindrical non-magnetic permeability. At the end of the channel 3 exit.
  • the straight cylindrical non-magnetic cylinder 5 is rotated such that the fluid outlet 5a faces the fluid outlet passage 19, so that the fluid after the ferromagnetic material can be dropped from the fluid outlet 5a through the fluid outlet passage 19 into the fluid collection tank. 8 on.
  • Embodiment 6 of the first embodiment As shown in FIG. 9, the embodiment is based on the first and third embodiments, the fluid outlet 24 is located at the upper end of the passage 3, and the fluid introduction port 9 with the valve 20 is provided with a trick.
  • a waste liquid discharge port 21 of 20 is connected to the lower end of the passage 3, and a water inlet 23 with a valve 20 is provided at the lower end of the passage 3, and a sprinkler 22 with a valve 20 is provided at the upper portion of the passage 3.
  • Embodiment 7 of the first embodiment As shown in FIG. 15, the embodiment is based on the second embodiment.
  • the channel 3 is driven by the power mechanism 2 to move in and out of the magnetic field 1 and has an upper fluid inlet correction page (Article 91) ) 3a, the disk-shaped or circular disk channel of the lower end fluid outlet 3, the non-magnetic tube 5 is a frame, the soft magnetic medium 6 is a plurality of layers of mesh plates placed through the spacer layer of the frame 5, and the vertical magnetic lines of the mesh plate 6
  • the frame 5 of the plurality of mesh plates loaded with the spacer layer in the channel 3 is rotatably coupled to the power mechanism 2, and the rotary power mechanism 4 is disposed at a magnetic field formed between the north and south permanent magnet poles 16 with the ferroniobium 16a.
  • a connector is disposed between the frame 5 and the rotary power mechanism 4, and the connector includes an inlet 30a and a plug 30b respectively disposed on the axis of the frame 5 and the output shaft of the rotary power mechanism 4, or the connector 30 includes separate settings
  • the magnetizer 30c and the permanent magnet 30d (shown in FIG. 16) on the output shaft of the frame 5 axis and the rotary power mechanism 4 are shown.
  • the frame 5 is moved by the power mechanism 2 away from the magnetic field 1 formed between the north and south permanent magnet poles 16, and the frame 5 and the rotary power are transmitted through the connector 30.
  • the mechanism 4 is connected, the starting rotary power mechanism 4 drives the frame 5 to rotate, the ferromagnetic material on the soft magnetic medium 6 is cleaned by centrifugal force, and then the channel 3 is re-moved into the magnetic field 1 formed between the north and south permanent magnet poles 16, It is possible to re-work the fluid to remove the ferromagnetic material.
  • Embodiment 1 of Embodiment 2 As shown in FIG. 10, the fluid iron removing device of the present invention is realized by including a frame 25, a vertically disposed cylindrical passage 3 provided on the frame 25, and a ferroniobium.
  • the waste liquid discharge port 21 of 20 is provided with a fluid outlet 24 at the upper end of the cylindrical passage 3, and a cylindrical passage correction page (Article 91)
  • the material of 3 is a non-magnetic material.
  • a sprinkler 22 is disposed at the upper end of the cylindrical passage 3 to wet the ferromagnetic substance when centrifugally separating the ferromagnetic substance to enhance the fluidity of the ferromagnetic substance.
  • the centrifugal rotary power mechanism 4 includes a motor 4a fixed to the frame 25, and a turret 4b that is rotated by the motor 4a.
  • the turret 4b is a rotating shaft 4d to which a plurality of shelves 4c are fixed or as shown in Fig. 11.
  • the outer wall of the embodiment is provided with a plurality of non-magnetic material circular frames 4f having a plurality of perforations 4e, and the mesh soft magnetic bodies 26a are fixed to the shelf 4c or fixed in the circular frame 4f.
  • the mesh soft magnetic body 26a is a plate-shaped soft magnetic material provided with a plurality of meshes or a mesh woven by a soft magnetic material wire or a tiled soft magnetic bristles, and the mesh soft magnetic body 26a is a plate-shaped soft provided with a plurality of meshes.
  • the shelf 4c is a ring that is sleeved on the rotating shaft 4d, and the mesh soft magnetic body 26a is clamped and fixed by the ring 4g on the upper and lower sides thereof, as shown in FIG.
  • a non-magnetic magnetic separation strip 26b is disposed between the adjacent two mesh soft magnetic bodies 26a to prevent the adjacent two mesh soft magnetic bodies 26a from colliding together to form a magnetic short circuit and to break the formation of a high gradient magnetic field.
  • a non-magnetic material separating frame 26c is disposed between the mesh soft magnetic bodies; the partition 26c is used to affect the fluid.
  • the adjacent two mesh soft magnetic bodies 26a are prevented from coming together to form a magnetic short circuit, which destroys the formation of a high gradient magnetic field.
  • a bearing housing 27 is provided, and the turret 4b is coupled to the bearing housing 27 via a shaft 28. In this way, the smooth rotation of the centrifugal rotation is better ensured.
  • Embodiment 3 of Embodiment 2 As shown in Fig. 13, when the turret 4b is a non-magnetic circular frame 4f provided with a plurality of perforations 4e on the outer side wall, the soft magnetic medium member 26 is a soft magnetic steel bristles.
  • Correction page (Article 91) Soft-mechanical steel hairballs are used to move radially around when subjected to centrifugal force. However, after re-energizing, under the action of magnetic force, the soft-magnet steel hairballs will re-move and evenly distribute in the cylindrical fluid passage. inside.
  • the lower end 4fl of the non-magnetic circular frame 4f provided with a plurality of perforations 4e on the outer side wall is tapered, and the corresponding cylinder
  • the lower end 3a of the channel 3 is tapered, and the frame 25 is provided with a non-magnetic circular frame 4f for driving the outer side wall with a plurality of perforations 4e or a lifting power mechanism 13 for moving the cylindrical channel 3 up and down.
  • the non-magnetic circular frame 4f provided with the plurality of perforations 4e on the outer side wall is connected to the lower end 2a of the cylindrical fluid passage 2 by the lifting power mechanism 13, so that the outer side wall is provided with a plurality of perforations 4e.
  • the gap between the magnetic conducting circular frame 4f and the cylindrical fluid passage 2 is closed, and when the ferromagnetic material is centrifugally cleaned, the outer side wall is provided with a plurality of perforations 4e of the non-magnetic circular frame 4f and the lower end 3a of the cylindrical passage 3 by the lifting power mechanism 13.
  • the cleaned ferromagnetic material is discharged through the gap between the non-magnetic circular frame 4f provided with a plurality of perforations 4e on the outer side wall and the cylindrical passage 2.
  • a water inlet 23 with a valve 20 is connected to the lower end of the passage 3.

Landscapes

  • Cleaning In General (AREA)

Description

一种流体除铁方法及装置
技术领域- 本发明涉及一种磁选方法及装置。
背景技术:
现有的通过设置在南北磁极间的软磁介质吸取流经的流体中的 铁磁物质的技术所要解决的问题是对吸满铁磁物质的软磁介质的清 洁。 己有技'术是先将软磁介质从磁场中移开, 然后通过冲洗的方式将 软磁介质上的铁磁物质清洁干净,此种方法一来需要耗费大量的清洁 水, 而且, 清洗过程所产生的废水量是比较大的,'二来对于那些深藏 在软磁介质(如软磁钢毛) 内的铁磁物质的清洁效果是很差的, 很难 清洁出来, 从而使这些软磁介质的除铁磁物质的能力明显下降。 发明内容:
本发明的发明目的在于提供一种能有效恢复软磁介质除铁磁物 质能力的流体除铁方法及装置。
本发明的流体除铁方法的方案一是这样实现的,包括在南北磁极 间的磁场内用软磁介质吸取流体中的铁磁物质过程、清洁软磁介质上 的铁磁物质过程,其特别之处在于软磁介质设置在四周侧面设置有数 个穿孔的带有旋转动力的非导磁筒内,在南北磁极间的磁场内用软磁 介质吸取流体中的铁磁物质过程是流体从软磁介质的其中一端进入 非导磁筒内,经过软磁介质吸取铁磁物质后再从软磁介质的另一端出 来进入流体收集槽内,清洁软磁介质上的铁磁物质过程是将设置有软 磁介质的非导磁筒置于通道内, 通过旋转动力带动非导磁筒高速旋 更正页 (细则第 91条) 转, 非导磁筒则带动软磁介质高速旋转, 通过离心力将软磁介质上的 铁磁物质分离出来并穿过非导磁筒侧面所设置的数个穿孔进入通道 内,并沿通道收集到铁磁物质收集槽内。本发明由于采用离心的方式, 而且, 采用通道及非导磁筒并将软磁介质设置在非导磁筒内, 使软磁 介质上的铁磁物质获得高速旋转的离心力,将软磁介质设置在非导磁 筒内, 方便了软磁介质的物理形态的设置。
这里,将设置有软磁介质的非导磁筒移离南北磁极间的磁场后或 者消除磁场后才进行清洁软磁介质上的铁磁物质过程。虽然, 通^:离 心力将铁磁物质从软磁介质上分离并进入通道后,由于通道的磁力很 弱, 因此, 铁磁物质就很容易沿通道进入废料槽内, 但是, 如果在磁 场内进行, 即使离心力很大, 那些强导磁性的铁磁物质也是不容易从 软磁介质上分离的, 而离开或者消除磁场后, 失去了磁吸力的铁磁物 质, 即使其具有很强的导磁性, 也是很容易从软磁介质上分离开来。
这里,在南北磁极间的磁场内用软磁介质吸取流体中的铁磁物质 过程是将设置有软磁介质的非导磁筒置于通道内,通过电磁或者永磁 的外磁场作用于流体通道内的软磁介质上,使软磁介质产生有一定梯 度的感应磁场, 然后将流体导入到流体通道内流过软磁介质, 流体中 的铁磁物质被带有磁吸力的软磁介质所吸取,从而完成除铁磁物质的 工作, 软磁介质清洁过程是先停止往流体通道内导入流体, 然后由下 往上往流体通道内导入水, 将除铁磁物质后的余浆带出来, 然后停止 由下往上注水,停止电磁装置或者永磁装置对流体通道内的软磁介质 的磁力作用, 将通道内的水排走, 高速旋.转软磁介质, 通过离心力将 更正页 (细则第 91条) 铁磁物质从软磁介质上分离出来。
这里, '采用电磁装置时, 通过断电的方式停止电磁装置对流体通 道内的软磁介质的磁力作用, 采用永磁装置时, 通过将永磁装置与软 磁介质分离,使软磁介质离开永磁装置的磁力作用范围来停止永磁装 置对流体通道内的软磁介质的磁力作用。
采用高速旋转软磁介质,通过离心力将铁磁物质从软磁介质上分 离出来的方法时, 往软磁介质洒水, 以增加铁磁物质的流动性。
这里, 软磁介质是软磁钢毛。采用软磁钢毛, 即使在离心力的作 用下变形并往非导磁筒四边集中, 但是, 一旦筒停止旋转, 变形力又 使软磁钢毛重新移回到原有位置上。
为了防止通道内的铁磁物质进入流体收集槽内污染流体,在停止 在南北磁极间的磁场内用软磁介质吸取流体中的铁磁物质过程后将 流体收集槽遮盖住。
本发明的流体除铁方法的方案二是这样实现的,在四周面都围绕 电磁线圈的筒状通道内设置一带有旋转动力的软磁介质构件,软磁介 质构件包括沿筒状通道轴线层放的数层相互间隔开的层叠起来的网 状软磁体或者是软磁钢毛团, 除流体中的铁磁物质时, 往电磁线圈通 电, 使磁力线沿筒状通道轴线穿过通道, 使软磁介质构件产生高梯度 感应磁场, .然后, 将流体导入筒状通道内, 使流体经过筒状通道内的 数层网状软磁体或者软磁钢毛团,流体中的铁磁物质被网状软磁体或 者软磁钢毛团的高梯度磁力所吸取,清理了铁磁物质的流体流出筒状 通道从而完成除铁磁物质的工作;当网状软磁介质或者软磁钢毛团所 更正页 (细则第 91条) 吸取的铁磁物质达到一定量时, 停止往筒状通道导入流体, 排走筒状 通道内内的余浆, 断幵电源, 启动旋转动力带动网状软磁体或者软磁 钢毛团高速旋转,使网状软磁体或者软磁钢毛团上的失去了磁吸力吸 ' 引的铁磁物质在离心力的作用下甩离网状软磁体或者软磁钢毛团并 流动到筒状通道内壁上,在重力的作用下沿筒状通道内壁下落到筒状 通道下面的铁磁物质收集槽上。由于采用在筒状通道的四周面都围绕 电磁线圈,使所产生的电磁磁力线沿筒状通道的穿过筒状通道,这样, 在间隔开的层叠起来的网状软磁体或者软磁钢毛团上形成磁力梯度, 使网状软磁体具有了很强的磁吸力,以便有效地进行多层次吸取流体 中铁磁物质的工作, 保证了除铁磁物质效果, 采用离心清洁方式, 可 有效地对网状软磁介质或者软磁钢毛团进行清洁工作。
排走筒状通道内内的余浆的过程是由下往上往流体通道内'导入 水, 将除铁磁物质后的余浆带出来, 然后停止由下往上注水, 停止电 磁装置或者永磁装置对流体通道内的软磁介质的磁力作用,将通道内 的水排走, 高速旋转软磁介质, 通过离心力将铁磁物质从软磁介质上 分离出来。
这里, 为了更有效地对网状软磁介质或者软磁钢毛团进行清洁, 离心清洁的同时, 往网状软磁介质或者软磁钢毛团上加水。 由于加水 后, 铁磁物质的流动性增强, 使铁磁物质在离心力和重力的作用下甩 离网状软磁体或者软磁钢毛团并快速地沿筒状通道下落到筒状通道 ' 下面的铁磁物质收集槽上。
软磁介质构件是软磁钢毛团时,软磁钢毛团设置在外壁带有数个 更正页 (细则第 91条) 穿孔的非导磁材料圆框内, 当进行除流体中的铁磁物质时, 封闭外壁 带有数个穿孔的非导磁材料圆框下端与筒状通道间的间隙,以防止流 体进入外壁带有数个穿孔的非导磁材料圆框与筒状通道间的间隙使 流体中的铁磁物质得不到清理; 离心清洁时, 打开外壁带有数个穿孔 的非导磁材料圆框下端与筒状通道间的间隙,以便外壁带有数个穿孔 的非导磁材料圆框能顺利旋转。
本发明的流体除铁装置的方案一是这样实现的,包括由南北磁极 间形成的磁场、带有旋转动力机构的非导磁筒、 设置在非导磁筒内的 软磁介质、腔体比非导磁筒大的通道, 非导磁筒的四周侧面设置有数 个穿孔, 磁场外正对着非导磁筒的流体出口设置有流体收集槽, 磁场 外正对着非导磁筒的流体进口设置有流体导入口,通道的铁磁物质出 口设置有铁磁物质收集槽。工作时, 流体导入口将流体导入进磁场中 的非导磁筒内, 非导磁筒内的软磁介质将流体中的铁磁物质吸取下 来, 分离了铁磁物质的流体流进流体收集槽内'; 待软磁介质吸满了铁 磁物质后, 将非导磁筒移离磁场或者消除磁场, 将非导磁筒置于通道 内, 然后通过旋转动力机构带动非导磁筒高速旋转, 利用离心力将软 磁介质上的铁磁物质分离并穿过非导磁筒进入通道,并沿通道落入铁 磁物质收集槽内, 从而将软磁介质清洁干净, 以便其有效地重新投入 使用。
通道上设置有流体进口、流体出口和废液排放口, 由南北磁极间 形成的磁场是设置在流体通道外侧面的电磁装置或者永磁装置,流体 进口和废液排放口上均设置有阀门, 采用永磁装置时, 永磁装置设置 更正页 (细则第 91条) 在移动装置上或者通道设置在移动装置上,通道的下端设置有带有阀 门的水进口,在流体通道的上端设置有带有阀门的洒水装置。工作时, 启动电磁装置或者将通道置于永磁装置的磁力线作用范围内,打开流 体进口上的阀门, 将流体导入通道内, 流体经过软磁介质时, 流体中 的铁磁物质被软磁介质所吸取,清除了铁磁物质的流体流出流体通道 夕卜; 待软磁介质所吸取的铁磁物质达到一定量后, 关闭流体进口上的 阀门, 打幵水进口的阀门, 将水导入通道内, 将通道内的余浆除铁磁 物质后从流体出口带出通道外, 待通道内的余浆清理出去后, 关闭水 进口的阀门, 关闭电磁装置或者将永磁磁场与软磁介质分离, 使软磁 介质脱离外磁场的作用, 使软磁介质失去磁力, 打开废液排放口的阀 门, 打幵洒水装置, 通过旋转动力机构带动非导磁筒高速旋转, 利用 离心力来清洁软磁介质上的铁磁物质,废水通过废液排放口排出流体 通道外, 直至软磁介质被清洁干净为止, 然后重复上述工作。
这里, 软磁介质采用软磁钢毛。 由于采用离心力清理铁磁物质, 这样, 清理深入到钢毛内的铁磁物质就很容易, 从而既能利用软磁钢 毛的良好的除铁磁物质的能力, 同时, 又能有效地清理钢毛上的铁磁 物质, 使其有效地恢复原有的功能。
流体收集槽的入口处设置有遮板。遮板的作用是防止残留在非导 磁通道内的铁磁物质落入流体收集槽内。 ·
本发明的流体除铁装置的方案二是这样实现的,包括机架、设置 在机架上的垂直设置的筒状通道、 电磁线圈、带有旋转动力的软磁介 质构件, 电磁线圈绕接在通道的外侧面, 软磁介质构件设置在筒状通 更正页 (细则第 91条) 道内,软磁介质构件包括数层相互间隔开的层叠起来的网状软磁体或 者是软磁体钢毛团, 旋转动力设置在机架上, 在筒状通道的下端进口 处设置有流体导入口以及带有阀门的废液排放口,在筒状通道的上端 设置有流体出口, 筒状通道的材质是非导磁材料。 工作时, 往电磁线 圈通电, 使磁力线沿筒状通道轴线穿过通道, 将流体从筒状通道的下 端进口处引入通道内,流体中的铁磁物质被网状软磁体或者软磁体钢 毛团所吸取,清理了铁磁物质的流体从流体排出口流出从而完成除铁 磁物质的工作,待网状软磁介质或者软磁体钢毛团所吸取的铁磁物质 达到一定量时, 停止往筒状通道导入流体, 排走余浆, 断开电源, 打 开铁磁物质排泄口的阀门,启动旋转动力带动网状软磁体或者软磁体 钢毛团高速旋转,使网状软磁体或者软磁体钢毛团上的失去了磁吸力 吸引的铁磁物质在离心力的作用下甩离网状软磁.体或者软磁体钢毛 团并流动到筒状通道内壁上,在重力的作用下沿筒状通道内壁下落到 筒状通道下面并通过铁磁物质排泄口排泄到铁磁物质收集槽上。
通道的下端设置有带有阀门的水进 P,在流体通道的上端设置有 带有阀门的洒水装置。 工作时, 启动电磁装置, 打开流体进口上的阀 门, 将流体导入通道内, 流体经过软磁介质时, 流体中的铁磁物质被 软磁介质所吸取, 清除了铁磁物质的流体流出'流体通道外; 待软磁介 质所吸取的铁磁物质达到一定量后, 关闭流体进口上的阀门, 打开水 进口的阀门, 将水导入通道内, 将通道内的余浆除铁磁物质后从流体 出口带出通道外, 待通道内的余浆清理出去后, 关闭水进口的阀门, 关闭电磁装置,使软磁介质脱离外磁场的作用,使软磁介质失去磁力, 更正页 (细则第 91条) 打开废液排放口的阀门, 打幵洒水装置, 通过旋转动力机构带动软磁 介质构件高速 转, 利用离心力来清洁软磁介质上的铁磁物质, 废水 通过废液排放口排出流体通道外, 直至软磁介质被清洁干净为止, 然 后重复上述工作。
这里, 为了增强电磁磁力, 防止磁力外泄, 在电磁线圈的外围包 裹导磁铠甲。
旋转动力包括固定在机架上的电机、 由电机带动旋转的转动架, 转动架是固定有数层层架的转轴或者外侧壁设置有数个穿孔的非导 磁材料圆框,软磁介质构件固定在层架上或者设置在外侧壁设置有数 个穿孔的非导磁材料圆框内。采用层架, 有利于网状软磁体物理形态 的固定, 有效地降低离心动力对网状软磁体物理形态的破坏;采用外 侧壁设置有数个穿孔的圆框,可方便层放物理形态稳固的网状软磁体 或者物理形态不稳固的软磁体钢毛团,方便网状软磁体和软磁体钢毛 团的更换以及固定软磁体钢毛团的物理形态。
本发明与已有技术相比,由于采甩了将离心非导磁筒和非导磁通 道结合在一起并利用非导磁筒所产生的离心力分离软磁介质上的铁 磁物质, 因此, 具有能有效恢复软磁介质除铁磁物质能力的、 使用方 便可靠、 结构简单、 制造成本低的优点。 采用'由下往上排除余浆的方 式, 不会产生含铁磁物质的量大的余浆的优点。采用理想物理形态的 软磁介质, 具有保证除铁磁物质效果的, 同时, 方便用离心清洁方式 的, 制造成本低的优点。 '
附图说明: 更正页 (细则第 91条) 图 1为本发明方案一的实施例 1的结构示意图;
图 2为方案一的实施例 1非导磁筒的结构示意图;
图 3为本发明方案一的实施例 2的结构示意图;.
图 4为方案一的实施例 2的非导磁筒的结构示意图;
图 5为图 3的 A-A剖视图;
图 6为实施例 3的结构示意图;
图 Ί为方案一的实施例 4的结构示意图;
图 8为方案一的实施例 5的结构示意图;
图 9为方案一的实施例 6的结构示意图;
图 10为方案 2的实施例 1的结构示意图;
图 1 1为方案 2的实施例 2的结构示意图;
.图 12为上下两面固定有夹持架的网状软磁体的结构示意图; 图 13为方案 2的实施例 3的结构示意图;
图 14为方案 2实施例 3的通道下部分的结构示意图; 图 15为方案一的实施例 7的结构示意图;
图 16为方案一的实施例 7的另一种连接器的结构示意图。 具体实施方式:
现结合附图和实施例对本发明做进一步详细描述:
本发明的流体除铁方法实施例一是这样实现的,包括在南北磁极 间的磁场内用软磁介质吸取流体中的铁磁物质过程、.清洁软磁介质上 的铁磁物质过程,其特别之处在于软磁介质设置在四周侧面设置有数 个穿孔的带有 转动力的非导磁筒内,在南北磁极间的磁场内用软磁 更正页 (细则第 91条) 介质吸取流体中的铁磁物质过程是流体从非导磁筒的其中一端进入 非导磁筒内,经过软磁介质吸取铁磁物.质后再从非导磁筒的另一端出 来进入下面的流体收集槽内,清洁软磁介质上的铁磁物质过程是将设 置有软磁介质的非导磁筒置于腔体比非导磁筒大的通道内,通过旋转 动力带动非导磁筒高速旋转, 非导磁筒则带动'软磁介质高速旋转, 通 过离心力将软磁介质上的铁磁物质分离出来并穿过非导磁筒侧面所 设置的数个穿孔进入通道内, 并沿通道收集到铁磁物质收集槽内。
这里,将设置有软磁介质的非导磁筒移离南北磁极间的磁场后或 者消除磁场后才进行清洁软磁介质上的铁磁物质过程。
软磁介质是软磁钢毛;
或者, 非导磁筒内所设置的软磁介质为间隔层放的数层网状的 板, 网状的板垂直磁力线, 非导磁筒呈圆盘状或者圆弧盘状, 当非导 磁筒内的软磁介质吸满了铁磁物质后,将非导磁筒移离南北永磁体磁 极间形成的磁场,将非导磁筒与南北永磁体磁极间所形成的磁场外的 旋转动力机构连接起来, 启动旋转动力机构带动非导磁筒旋转, 通过 离心力将软磁介质上的铁磁物质清理出来, 然后, .将非导磁筒重新移 进南北永磁体磁极间形成的磁场内,就可以重新进行流体除铁磁物质 的工作了。
这里,在南北磁极间的磁场内用软磁介质吸取流体中的铁磁物质 过程是将设置有软磁介质的非导磁筒置于通道内,通过电磁或者永磁 的外磁场作用于流体通道内的软磁介质上,使软磁介质产生有一定梯 度的感应磁场, 然后将流体导入到流体通道内'流过软磁介质, 流体中 更正页 (细则第 91条) 的铁磁物质被带有磁吸力的软磁介质所吸取,从而完成除铁磁物质的 工作, 软磁介质清洁过程是先停止往流体通道内导入流体, 然后由下 往上往流体通道内导入水, 将除铁磁物质后的余浆带出来, 然后停止 由下往上注水,停止电磁装置或者永磁装.置对流体通道内的软磁介质 的磁力作用, 将通道内的水排走, 高速旋转软磁介质, 通过离心力将 铁磁物质从软磁介质上分离出来。
这里, 采用电磁装置时,通过断电的方式停止电磁装置对流体通 道内的软磁介质的磁力作用, 采用永磁装置时, 通过将永磁装置与软 磁介质分离,使软磁介质离开永磁装置的磁力作用范围来停止永磁装 置对流体通道内的软磁介质的磁力作用。
采用高速旋转软磁介质,通过离心力将铁磁物质从软磁介质上分 离出来的方法时, 往软磁介质洒水, 以增加铁磁物质的流动性。
在停止在南北磁极间的磁场内用软磁介质吸取流体中的铁磁物 质过程后将流体收集槽遮盖住。
本发明的流体除铁方法实施例二是这样实现的,在四周面都围绕 电磁线圈的筒状通道内设置一带有旋转动力的软磁介质构件,软磁介 质构件包括沿筒状通道轴线层放的数层相互间隔幵的层叠起来的网 状软磁体或者是软磁钢毛团, 除流体中的铁磁物质时, 往电磁线圈通 电, 使磁力线沿筒状通道轴线穿过通道, 使软磁介质构件产生高梯度 感应磁场, 然后, 将流体导入筒状通道内, 使流体经过筒状通道内的 数层网状软磁体或者软磁钢毛团,流体中的铁磁物质被网状软磁体或 者软磁钢毛团的高梯度磁力所吸取,清理了铁磁物质的流体流出筒状 更正页 (细则第 91条) ' 通道从而完成除铁磁物质的工作;当网状软磁介质或者软磁钢毛团所 吸取的铁磁物质达到一定量时, 停止往筒状通道导入流体, 排走筒状 通道内内的余浆, 断开电源, 启动旋转动力带动网状软磁体或者软磁 钢毛团高速旋转,使网状软磁体或者软磁钢毛团上的失去了磁吸力吸 引的铁磁物质在离心力的作用下甩离网状软磁体或者软磁钢毛团并 流动到筒状通道内壁上,在重力的作甩下沿筒状通道内壁下落到筒状 通道下面的铁磁物质收集槽上。
排走筒状通道内的余浆的过程是由下往上往流体通道内导入水, 将除铁磁物质后的余浆带出来, 然后停止由下往上注水, 停止电磁装 置或者永磁装置对流体通道内的软磁介质的磁力作用,将通道内的水 排走, 高速旋转软磁介质, 通过离心力将铁磁物质从软磁介质上分离 出来。
离心清洁的同时, 往网状软磁介质或者软磁钢毛团上加水。 由于 加水后, 铁磁物质的流动性增强, 使铁磁物质在离心力和重力的作用 下甩离网状软磁体并快速地沿筒状通道下落到筒状通道下面的铁磁 物质收集槽上。
软磁介质构件是软磁钢毛团时,软磁钢毛团设置在外壁带有数个 • 穿孔的非导磁材料圆框内, 当进行除流体中的铁磁物质时, 封闭外壁 带有数个穿孔的非导磁材料圆框下端与筒状通道间的间隙,以防止流 体进入外壁带有数个穿孔的非导磁材料圆框与筒状通道间的间隙使 流体中的铁磁物质得不到清理; 离心清洁时, 打开外壁带有数个穿孔 的非导磁材料圆框下端与筒状通道间的间隙,以便外壁带有数个穿孔 更正页 (细则第 91条) 的非导磁材料圆框能顺利旋转。
本发明的流体除铁装置是这样实现的:
方案一的实施例 1 : 如图 1、 2所示, 本发明的流体除铁装置是 这样实现的, 包括由带有铠铁 16a的南北永磁体磁极 16间形成的磁 场 1、 设置在磁场内的通道 3、 设置在通道 3内的带有旋转动力机构 4的非导磁筒 5、 设置在非导磁筒 5内的软磁介质 6、 机架 15、 提升 动力机构 13, 通道 3呈锥形且非导磁, 对应的非导磁筒 5呈锥形, 非导磁筒 5转动设置在机架 15上, 机架' 15与提升动力机构 13相连 接, 如图 2所示, 非导磁筒 5的四周侧面设置有数个穿孔 7, 穿孔 7 呈网状分布在非导磁筒 5的四周侧面,正对着非导磁筒 5下端的流体 出口 5a设置有流体收集槽 8, 正对着非导磁筒 5上端的流体进口 5b 设置有流体导入口 9, 正对着通道 3下端的铁磁物质出口 3a设置有 铁磁物质收集槽 10。
软磁介质 6采用软磁钢毛。
流体收集槽 8的入口处设置有遮板 11。 遮板 1 1呈锥形, 以便铁 磁物质沿锥形遮板 1 1落入铁磁物质收集槽 10内。
工作时,流体导入口将流体导入进磁场中的非导磁筒内, 非导磁 筒内的软磁介质将流体中的铁磁物质吸取下来,分离了铁磁物质的流 体流进流体收集槽内; 待软磁介质吸满了铁磁物质后, 通过遮板 1 1 将流体收巢槽 8的入口遮盖, 然后通过提升动力机构 13将非导磁筒 5连同机架 15提升一段距离, 以便在通道 3与非导磁筒 5间形成通 道, 然后通过旋转动力机构带动非导磁筒高速旋转, 利用离心力将软 更正页 (细则第 91条) 磁介质上的铁磁物质分离并穿过非导磁筒进入通道,并沿通道落入铁 磁物质收集槽内, 从而将软磁介质清洁干净, 以便其有效地重新投入 使用。
方案一的实施例 2: 如图 4、 5、 3所示, '本实施例时在实施例 1 ' 的¾础上,通道 3是通过动力机构 2带动进出磁场 1的直筒形非导磁 通道 3, 非导磁筒 5是设置在直筒形非导磁通道 3内的带有旋转动力 机构 4的直筒形非导磁筒 5, 直筒形非导磁通道 3'的直径比直筒形非 导磁筒 5的外径大, 在直筒形非导磁通道 3内设置有支撑架 17, 直 筒形非导磁筒 5转动设置在支撑架 17上, 如图 4所示, 非导磁筒 5 的四周侧面设置有数个穿孔 7, 穿孔 7呈网状分布在非导磁筒 5的四 周侧面, 磁场 1下面正对着非导磁筒 5下端的流体出口 5a设置有流 体收集槽 8, 磁场 1上面正对着非导磁筒 5上端的流体进口 5b设置 . 有流体导入口 9, 磁场 1外正对着非导磁通道 3下端的铁磁物质出口 3a设置有铁磁物质收集槽 10。
在直筒形非导磁筒 5的外侧面设置有封闭套 · 12。 使用时, 当需 要除流体中的铁磁物质时, 采用封闭套 12将直筒形非导磁筒 5的穿 孔 7封闭, 以防止流体从穿孔 7中流出, 当需要清洁软磁介质上的铁 磁物质时, 将封闭套 12移开, 以便铁磁物质从穿孔 7中出来。 封闭 套 12上设置有移动动力机构 18。
在旋转动力机构 4与非导磁筒 5间设置有挡板 14, 以避免流体 落到旋转动力机构 4上损伤旋转动力机构 4。 ·
' 方案一的实施例 3 : 如图 6所示, 本实施例是在实施例 1的基础 更正页 (细则第 91条) 上, 采用电磁磁极替代南北永磁体磁极 16。
方案一的实施例 4: 如图 7所示, 本实施例是在实施例 3的基础 上, 通道 3是直筒形非导磁通道 3, 非导磁筒 5是带有旋转动力机构 4的直筒形非导磁筒 5, 直筒形非导磁通道 3的直径比直筒形非导磁 筒 5的外径大, 在直筒形非导磁通道 3 内设置有支撑架 17, 直筒形 非导磁筒 5转动设置在支撑架 17上, 在直筒形非导磁筒 5的外侧面 设置有封闭套 12。在旋转动力机构 4与非导磁筒 5间设置有挡板 14。
方案一的实施例 5 :如图 8所示, 本实施例是在实施例 4的基础 上, 整个装置呈躺卧状设置, 直筒形非导磁筒 5的两端分别转动设置 在支撑架 17及流体导入口 9上,直筒形非导磁筒 5的流体出口 5a连 接有流体导出通道 19, 流体导出通道 19的出口对着流体收集槽 8, 铁磁物质收集槽 10位于直筒形非导磁通道 3端部出口处。 工作时, 转动直筒形非导磁筒 5, 使其流体出口 5a正对着流体导出通道 19, 这样, 除铁磁物质后的流体就能由流体出口 5a通过流体导出通道 19 落入流体收集槽 8上。
方案一的实施例 6 :如图 9所示, 本实施例是在实施例 1、 3的基 础上,流体出口 24位于通道 3的上端,带有阀门 20的流体导入口 9、 带有闽门 20的废液排放口 21连接于通道 3的下端,在通道 3的下端 设置有带有阀门 20的水进口 23,在通道 3的上部设置有带有阀门 20 的洒水装置 22。
方案一的实施例 7 :如图 15所示, 本实施例是在实施例二的基础 上,通道 3是通过动力机构 2带动进出磁场 1的且带有上端流体进口 更正页 (细则第 91条) 3a、 下端流体出口 3的圆盘状或者圆弧盘通道, 非导磁筒 5为框架, 软磁介质 6为通过框架 5间隔层放的数层网状的扳,网状的板 6垂直 磁力线,通道 3内的装载有间隔层放的数层网状的板的框架 5转动连 接在动力机构 2上,旋转动力机构 4设置在由带有铠铁 16a的南北永 磁体磁极 16间形成的磁场 1的外侧面, 在框架 5与旋转动力机构 4 间设置有连接器,连接器包括分别设置在框架 5轴线及旋转动力机构 4输出轴上的接入口 30a和插头 30b或者连接器 30包括分别设置在 框架 5轴线及旋转动力机构 4输出轴上的导磁体 30c、永磁体 30d (如 图 16所示)。 工作时, 当通道 3内的软磁介质 6吸满了铁磁物质后, 通过动力机构 2将框架 5移离南北永磁体磁极 16间形成的磁场 1, 通过连接器 30将框架 5及旋转动力机构 4连接起来, 启动旋转动力 机构 4带动框架 5旋转,通过离心力将软磁介质 6上的铁磁物质清理 出来, 然后, 将通道 3重新移进南北永磁体磁极 16间形成的磁场 1 内, 就可以重新进行流体除铁磁物质的工作了。
方案二的实施例 1 : 如图 10所示, 本发明的的流体除铁装置是 这样实现的, 包括机架 25、 设置在机架 25上的垂直设置的筒状通道 3、 带有铠铁 16a的电磁线圈 16、 带有旋转动力机构 4的软磁介质构 件 26, 电磁线圈 16绕接在通道 3的外侧面, 软磁介质构件 26设置 在筒状通道 3内, 软磁介质构件 26包括数层相互间隔开的层叠起来 的网状软磁体 26a, 旋转动力机构 4设置在机架 25上, 在筒状通道 3 的下端进口处设置有带有阀门 20的流体导入口 9以及带有阀门 20的 废液排放口 21, 在筒状通道 3的上端设置有流体出口 24, 筒状通道 更正页 (细则第 91条) 3的材质是.非导磁材料。
在筒状通道 3上端设置有洒水装置 22, 以便在离心分离铁磁物 质时, 对铁磁物质进行润湿, 以提升铁磁物质的流动性。
离心旋转动力机构 4包括固定在机架 25上的电机 4a、由电机 4a 带动旋转的转动架 4b, 如图 10所示, 转动架 4b是固定有数层层架 4c的转轴 4d或者如图 1 1所示(方案二的实施例 2 )的外壁带有数个 穿孔 4e的非导磁材料圆框 4f, 网状软磁体 26a固定在层架 4c上或者 固定在圆框 4f 内。 网状软磁体 26a是设置有数个网孔的板状软磁材 料或者由软磁材料丝编织的网或者是平铺的软磁刚毛, 网状软磁体 26a 是设置有数个网孔的板状软磁材料或者由软磁材料丝编织的网 时, 层架 4c是套接在转轴 4d的环, 网状软磁体 26a被其上下两面的 环 4g所夹持、 固定, 如图 12所示, 在相邻两网状软磁体 26a间设置 有非导磁分隔条 26b, 以防止相邻两网状软磁体 26a碰在一起形成磁 短路而破坏了高梯度磁场的形成。
如图 1 1所示, 转动架 4b是外侧壁设置有数个穿孔 4e的圆框 4f 时, 所设置的网状软磁体间设置有非导磁材料分隔架 26c; 采用分隔 架 26c既不影响流体的流通, 同时, 又防止相邻两网状软磁体 26a碰 在一起形成磁短路而破坏了高梯度磁场的形成。
在筒状通道 3的上端和下端设置有轴承座 27, 转动架 4b通过轴 28连接在轴承座 27上。 这样, 就更好地保证离心旋转的顺利进行。
方案二的实施例 3 : 如图 13所示, 转动架 4b是外侧壁设置有数 个穿孔 4e的非导磁圆框 4f时, 软磁介质构件 26是软磁体钢毛团。 更正页 (细则第 91条) 采用软磁体钢毛团, 虽然在离心力作用时, 会呈放射状往四周移动, 但是, 重新通电后, 在磁力的作用下, 软磁体钢毛团又会重新移动并 均匀分布在在筒状流体通道内的。
为了防止流体进入外侧壁设置有数个穿孔 4e的非导磁圆框 4f与 筒状通道 3的间隙, 外侧壁设置有数个穿孔 4e的非导磁圆框 4f的下 端 4fl呈锥形, 对应的筒状通道 3的下端 3a呈锥形, 在机架 25上设 置有带动外侧壁设置有数个穿孔 4e的非导磁圆框 4f或者筒状通道 3 上下移动的提升动力机构 13。 除铁磁物质时, 通过提升动力机构 13 使外侧壁设置有数个穿孔 4e的非导磁圆框 4f与筒状流体通道 2的下 端 2a连接起来, 以便将入外侧壁设置有数个穿孔 4e的非导磁圆框 4f 与筒状流体通道 2的间隙封闭, 离心清理铁磁物质时, 通过提升动力 机构 13使外侧壁设置有数个穿孔 4e的非导磁圆框 4f与筒状通道 3 的下端 3a分开, 以便清理出来的铁磁物质通过外侧壁设置有数个穿 孔 4e的非导磁圆框 4f与筒状通道 2的间隙排走。 - 方案二的实施例 4: 如图 14所示, 本实施例是在方案二的实施 例 1、 2、 3 '的基础上, 在通道 3的下端连接有带有阀门 20的水进口 23 ο
更正页 (细则第 91条)

Claims

1. 一种流体除铁方法, 其特征在于包括在南北磁极间的磁场内用软 磁介质吸取流体中的铁磁物质过程、 清洁软磁介质上的铁磁物质过 程,其特别之处在于软磁介质设置在四周侧面设置有数个穿孔的带有 旋转动力的非导磁筒内,在南北磁极间的磁场内用软磁介质吸取流体 中的铁磁物质过程是流体从非导磁筒的其中一端进入非导磁筒内,经 过软磁介质吸取铁磁物质后再从非导磁筒的另一端出来进入下面的 流体收集槽内,清洁软磁介质上的铁磁物质过程是将设置有软磁介质 的非导磁筒置于腔体比非导磁筒大的通道内,通过旋转动力带动非导 磁筒高速旋转, 非导磁筒则带动软磁介质高速旋转, 通过离心力将软 磁介质上的铁磁物质分离出来并穿过非导磁筒侧面所设置的数个穿 孔进入通道内, 并沿通道收集到铁磁物质收集槽内。
2.根据权利要求 1所述的流体除铁方法, 其特征在于在南北磁极间的 磁场内用软磁介质吸取流体中的铁磁物质过程是将设置有软磁介质 的非导磁筒置于通道内,通过电磁或者永磁的外磁场作用于流体通道 内的软磁介质上, 使软磁介质产生有一定梯度的感应磁场, 然后将流 体导入到流体通道内流过软磁介质,流体中的铁磁物质被带有磁吸力 的软磁介质所吸取, 从而完成除铁磁物质的工作, 软磁介质清洁过程 是先停止往流体通道内导入流体, 然后由下往上往流体通道内导入 水, 将除铁磁物质后的余浆带出来, 然后停止由下往上注水, 停止电 磁装置或者永磁装置对流体通道内的软磁介质的磁力作用,将通道内 替换页 (细则第 26条) 的水排走, 高速旋转软磁介质, 通过离心力将铁磁物质从软磁介质上 分离出来。
3. 根据权利要求 1或 2所述的流体除铁方法, 其特征在于采用电磁 装置时,通过断电的方式停止电磁装置对流体通道内的软磁介质的磁 力作用, 采用永磁装置时, 通过将永磁装置与软磁介质分离, 使软磁 介质离开永磁装置的磁力作用范围来停止永磁装置对流体通道内的 软磁介质的磁力作用。
4..根据权利要求 3所述的流体除铁方法,其特征在于软磁介质是软磁 钢毛;或者通道内所设置的软磁介质为通过框架间隔层放的数层网状 的板, 网状的板垂直磁力线, 通道为上端带有流体进口、 下端带有流 体出口的圆盘状或者圆弧盘状通道,当通道内的软磁介质吸满了铁磁 物质后, 将通道移离南北永磁体磁极间形成的磁场, 将通道内的框架 与南北永磁体磁极间所形成的磁场外的旋转动力机构连接起来,启动 旋转动力机构通过框架带动非导磁筒内的软磁介质旋转,通过离心力 将软磁介质上的铁磁物质清理出来, 然后, 将通道重新移进南北永磁 体磁极间形成的磁场内, 就可以重新进行流体除铁磁物质的工作了。
5. 一种流体除铁方法, 其特征在于在四周面都围绕电磁线圈的筒状 通道内设置一带有旋转动力的软磁介质构件,软磁介质构件包括沿筒 状通道轴线层放的数层相互间隔开的层叠起来的网状软磁体或者是 软磁钢毛团, 除流体中的铁磁物质时, 往电磁线圈通电, 使磁力线沿 筒状通道轴线穿过通道,使软磁介质构件产生高梯度感应磁场,然后, 将流体导入筒状通道内,使流体经过筒状通道内的数层网状软磁体或 替换页 (细则第 26条) 者软磁钢毛团,流体中的铁磁物质被网状软磁体或者软磁钢毛团的高 梯度磁力所吸取,清理了铁磁物质的流体流出筒状通道从而完成除铁 磁物质的工作;当网状软磁介质或者软磁钢毛团所吸取的铁磁物质达 到一定量时, 停止往筒状通道导入流体, 排走筒状通道内内的余浆, 断开电源, 启动旋转动力带动网状软磁体或者软磁钢毛团高速旋转, 使网状软磁体或者软磁钢毛团上的失去了磁吸力吸引的铁磁物质在 离心力的作用下鬼离网状软磁体或者软磁钢毛团并流动到筒状通道 内壁上,在重力的作用下沿筒状通道内壁下落到筒状通道下面的铁磁 物质收集槽上。
6. 根据权利要求 5所述的流体除铁方法, 其特征在于排走筒状通道 内的余浆的过程是由下往上往流体通道内导入水,将除铁磁物质后的 余浆带出来, 然后停止由下往上注水, 停止电磁装置或者永磁装置对 流体通道内的软磁介质的磁力作用, 将通道内的水排走, 高速旋转软 磁介质, 通过离心力将铁磁物质从软磁介质上分离出来。
7. 根据权利要求 5或 6所述的流体除铁方法, 其特征在于软磁介质 构件是软磁钢毛团时,软磁钢毛团设置在外壁带有数个穿孔的非导磁 材料圆框内, 当进行除流体中的铁磁物质时, 封闭外壁带有数个穿孔 的非导磁材料圆框下端与筒状通道间的间隙,以防止流体进入外壁带 有数个穿孔的非导磁材料圆框与筒状通道间的间隙使流体中的铁磁 物质得不到清理; 离心清洁时, 打开外壁带有数个穿孔的非导磁材料 圆框下端与筒状通道间的间隙,以便外壁带有数个穿孔的非导磁材料 圆框能顺利旋转。 替换页 (细则第 26条)
8. 根据权利要求 1或 2或 4或 5或 6所述的流体除铁方法, 其特征 在于离心清洁的同时, 往网状软磁介质或者软磁钢毛团上加水。
9. 根据权利要求 7所述的流体除铁方法, 其特征在于离心清洁的同 时, 往网状软磁介质或者软磁钢毛团上加水。
10. 一种流体除铁装置, 其特征在于包括由永磁体或者电磁南北磁极 间形成的磁场、带有旋转动力机构的非导磁筒、设置在非导磁筒内的 软磁介质、腔体比非导磁筒大的通道, 非导磁筒的四周侧面设置有数 个穿孔,磁场外面正对着非导磁筒其另一端的流体出口设置有流体收 集槽,磁场外面正对着非导磁筒其中一端的流体进口设置有流体导入 口, 通道端部的铁磁物质出口设置有铁磁物质收集槽。
11.根据权利要求 10所述的流体除铁装置, 其特征在于流体收集槽的 入口处设置有遮板。
12.根据权利要求 10或 11所述的流体除铁装置, 其特征在于设置有 机架、提升动力机构,通道呈锥形且非导磁,对应的非导磁筒呈锥形, 非导磁筒转动设置在机架上, 机架与提升动力机构相连接。
13.根据权利要求 10或 11所述的流体除铁装置, 其特征在于通道是 直筒形非导磁通道, 非导磁筒是带有旋转动力机构的直筒形非导磁 筒, 直筒形非导磁通道的直径比直筒形非导磁筒的外径大, 在直筒形 非导磁通道内设置有支撑架, 直筒形非导磁筒转动设置在支撑架上, 在直筒形非导磁筒的外侧面设置有封闭套,。
14.根据权利要求 13所述的流体除铁装置, 其特征在于通道上设置有 动力机构,流体收集槽设置在磁场下面正对着非导磁筒下端的流体出 替换页 (细则第 26条) 口, 流体导入口设置在磁场上面正对着非导磁筒上端的流体进口, 铁 磁物质收集槽设置在磁场外正对着非导磁通道下端的铁磁物质出口。
15. 根据权利要求 10或 11或 14所述的流体除铁装置, 其特征在于 软磁介质釆用软磁钢毛;或者通道是通过动力机构带动进出磁场的且 带有上端流体进口、下端流体出口的圆盘状或者圆弧盘通道, 非导磁 筒为框架, 软磁介质为通过框架间隔层放的数层网状的板, 网状的板 垂直磁力线,通道内的装载有间隔层放的数层网状的板的框架转动连 接在动力机构上,旋转动力机构设置在由带有铠铁的南北永磁体磁极 间形成的磁场的外侧面, 在框架与旋转动力机构间设置有连接器, 连 接器包括分别设置在框架轴线及旋转动力机构输出轴上的接入口和 插头或者连接器包括分别设置在框架轴线及旋转动力机构输出轴上 的导磁体、 永磁体。
16. 一种流体除铁装置, 其特征在于包括机架、 设置在机架上的垂直 设置的筒状通道、 电磁线圈、 带有旋转动力的软磁介质构件, 电磁线 圈绕接在通道的外侧面, 软磁介质构件设置在筒状通道内, 软磁介质 构件包括数层相互间隔开的层叠起来的网状软磁体或者是软磁体钢 毛团, 旋转动力设置在机架上, 在筒状通道的下端进口处设置有流体 导入口以及带有阀门的废液排放口,在筒状通道的上端设置有流体出 口, 筒状通道的材质是非导磁材料。
17. 根据权利要求 16所述的流体除铁装置, 其特征在于旋转动力包 括固定在机架上的电机、 由电机带动旋转的转动架, 转动架是固定有 数层层架的转轴或者外侧壁设置有数个穿孔的非导磁材料圆框,软磁 替换页 (细则第 26条) 介质构件固定在层架上或者设置在外侧壁设置有数个穿孔的非导磁 材料圆框内。
18. 根据权利要求 17所述的流体除铁装置, 其特征在于网状软磁体 是设置有数个网孔的板状软磁材料或者由软磁材料丝编织的网或者 是平铺的软磁刚毛。
19. 根据权利要求 18所述的流体除铁装置, 其特征在于层架是套接 在转轴的环, 网状软磁体被其上下两面的环所夹持、 固定。
20. 根据权利要求 19所述的流体除铁装置, 其特征在于在相邻两网 状软磁体间设置有非导磁分隔条。
21. 根据权利要求 17所述的流体除铁装置, 其特征在于转动架是外 侧壁设置有数个穿孔的非导磁圆框时,软磁介质构件是软磁体钢毛团 或者网状软磁体, 所设置的网状软磁体间设置有非导磁材料分隔架。
22. 根据权利要求 21 所述的流体除铁装置, 其特征在于外侧壁设置 有数个穿孔的非导磁圆框的下端呈锥形,对应的筒状通道的下端呈锥 形,在机架上设置有带动外侧壁设置有数个穿孔的非导磁圆框或者筒 状通道上下移动的提升动力机构。
23. 根据权利要求 17或 18或 19或 20或 21或 22所述的流体除铁装 置, 其特征在于在筒状通道的上端和下端设置有轴承座, 转动架通过 轴连接在轴承座上。
24. 根据权利要求 10或 11或 14或 16或 17或 18或 19或 20或 21 或 22所述的流体除铁装置, 其特征在于通道的下端设置有带有阀门 的水进口, 在流体通道的上端设置有带有阀门的洒水装置。 替换页 (细则第 26条)
25. 根据权利要求 10或 11或 14或 16或 17或 18或 19或 20或 21 或 22所述的流体除铁装置, 其特征在于在电磁线圈或者永磁体的外 围包裹导磁铠甲。
26. 根据权利要求 23所述的流体除铁装置, 其特征在于在电磁线圈 或者永磁体的外围包裹导磁铠甲, 在通道上端设置有洒水装置。
27. 根据权利要求 24所述的流体除铁装置, 其特征在于在电磁线圈 或者永磁体的外围包裹导磁铠甲。
替换页 (细则第 26条)
PCT/CN2011/001946 2011-01-14 2011-11-23 一种流体除铁方法及装置 WO2012094789A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110007958.X 2011-01-14
CN201110007958XA CN102179294A (zh) 2011-01-14 2011-01-14 一种流体除铁方法及装置
CN201110255593.2A CN102319626B (zh) 2011-09-01 2011-09-01 一种流体除铁方法及装置
CN201110255593.2 2011-09-01

Publications (1)

Publication Number Publication Date
WO2012094789A1 true WO2012094789A1 (zh) 2012-07-19

Family

ID=46506742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/001946 WO2012094789A1 (zh) 2011-01-14 2011-11-23 一种流体除铁方法及装置

Country Status (1)

Country Link
WO (1) WO2012094789A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315115A (ja) * 1987-06-15 1988-12-22 Nippon Steel Corp 磁気分離を施した磁性粒子の除去方法
CN1275445A (zh) * 1999-05-31 2000-12-06 中国科学院化工冶金研究所 从流体中分离磁性颗粒的连续式高梯度磁分离方法及装置
CN1297379A (zh) * 1998-04-16 2001-05-30 小嶋春夫 混入流体的磁性粒子的分离方法及分离系统和分离装置
CN101138748A (zh) * 2007-08-01 2008-03-12 李泽 一种流体连续除铁装置
CN101947491A (zh) * 2010-09-14 2011-01-19 李泽 一种流体除铁方法
CN201959860U (zh) * 2011-01-14 2011-09-07 李泽 一种流体除铁装置
CN102179294A (zh) * 2011-01-14 2011-09-14 李泽 一种流体除铁方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63315115A (ja) * 1987-06-15 1988-12-22 Nippon Steel Corp 磁気分離を施した磁性粒子の除去方法
CN1297379A (zh) * 1998-04-16 2001-05-30 小嶋春夫 混入流体的磁性粒子的分离方法及分离系统和分离装置
CN1275445A (zh) * 1999-05-31 2000-12-06 中国科学院化工冶金研究所 从流体中分离磁性颗粒的连续式高梯度磁分离方法及装置
CN101138748A (zh) * 2007-08-01 2008-03-12 李泽 一种流体连续除铁装置
CN101947491A (zh) * 2010-09-14 2011-01-19 李泽 一种流体除铁方法
CN201959860U (zh) * 2011-01-14 2011-09-07 李泽 一种流体除铁装置
CN102179294A (zh) * 2011-01-14 2011-09-14 李泽 一种流体除铁方法及装置

Similar Documents

Publication Publication Date Title
CN102343306B (zh) 一种电磁除铁方法及装置
US10058875B2 (en) Filter device and method for removing magnetizable particles from a liquid
WO2006117880A1 (ja) 磁気分離浄化装置および磁気分離浄化方法
CN104258989B (zh) 快捷清洗电磁除铁机
CN102319626B (zh) 一种流体除铁方法及装置
CN202191959U (zh) 一种电磁除铁装置
CA2032579C (fr) Separateur magnetique a haute intensite travaillant en humide
CN201959860U (zh) 一种流体除铁装置
CN104353549B (zh) 一种电磁除铁机
WO2012094789A1 (zh) 一种流体除铁方法及装置
CN210934083U (zh) 一种水体微塑料过滤装置
CN107282291B (zh) 一种高梯度除铁器
JP2001314777A (ja) 磁気固液分離装置
CN212262920U (zh) 一种污水处理用具有内部清洁机构的膜分离处理装置
CN205761715U (zh) 一种带有磁选结构的茶籽剥壳机
KR101263755B1 (ko) 반복 사용가능한 여과필터를 갖는 수처리 여과장치
CN105170324A (zh) 一种磁除铁方法及装置
CN102179294A (zh) 一种流体除铁方法及装置
CN205164302U (zh) 一种毛发过滤收集装置
CN204276144U (zh) 电磁除铁机
CN210986958U (zh) 一种番茄种子提取装置
JP2011020078A (ja) 磁性不純物分離装置
CN111531468B (zh) 一种磁性磨泥回收装置
CN104437850B (zh) 电磁式磁选机
CN106733150A (zh) 一种磁力除杂器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 11855696

Country of ref document: EP

Kind code of ref document: A1