WO2012090867A1 - Method for manufacturing light emitting device - Google Patents

Method for manufacturing light emitting device Download PDF

Info

Publication number
WO2012090867A1
WO2012090867A1 PCT/JP2011/079844 JP2011079844W WO2012090867A1 WO 2012090867 A1 WO2012090867 A1 WO 2012090867A1 JP 2011079844 W JP2011079844 W JP 2011079844W WO 2012090867 A1 WO2012090867 A1 WO 2012090867A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
phosphor
light emitting
manufacturing
emitting device
Prior art date
Application number
PCT/JP2011/079844
Other languages
French (fr)
Japanese (ja)
Inventor
清司 湯浅
卓史 波多野
鈴木 洋介
貴志 鷲巣
禄人 田口
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012550903A priority Critical patent/JP5494830B2/en
Publication of WO2012090867A1 publication Critical patent/WO2012090867A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a method for manufacturing a light emitting device.
  • a light emitting device that obtain white light by emitting light from a phosphor using light from a light emitting element such as an LED element as excitation light.
  • a light emitting device for example, a phosphor that emits yellow light by blue light emitted from the light emitting element is used, and a light emitting device that produces white light by mixing each light, or emitted from the light emitting element.
  • a light-emitting device that produces white light by using a phosphor that emits blue, green, and red light by ultraviolet light and mixing three colors of light emitted from the phosphor.
  • a light emitting element sealed with a phosphor layer As a configuration of such a light emitting device, a light emitting element sealed with a phosphor layer has been developed.
  • the phosphor layer is generally formed by applying and drying a solution in which the phosphor is dispersed, and the phosphor layer corresponds to a “wavelength conversion unit”.
  • a spray coating method is known as a method of forming a phosphor layer (wavelength conversion unit) (see, for example, Patent Document 1).
  • the spray coating method is easy to apply the phosphor layer to a thin and uniform thickness, but the range applied by spray coating is wider than the size of the light emitting element.
  • the coating liquid used for coating usually contains a component for fixing (solidifying) the phosphor to the light emitting element, the coated phosphor is solidified to the light emitting element as it is. Therefore, when applying only to the portion of the light emitting element, it is necessary to cover the portion where the phosphor is not required to be coated with a mask having a predetermined shape.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a light-emitting device that does not require complicated processing steps and can easily collect and reuse phosphors.
  • a light emitting element that emits light having a predetermined wavelength and a phosphor that emits fluorescence having a wavelength different from the excitation wavelength when excited by light emitted from the light emitting element are included.
  • the phosphor mixture is applied through the first mask, and then the first mask is removed to separate the phosphor-containing material from the first mask. Since the phosphor-containing material is separated before fixing, the phosphor-containing material can be easily recovered without going through complicated processing steps. As a result, the phosphor can be reused by further separating impurities from the separated phosphor-containing material.
  • FIG. 1 It is sectional drawing which shows schematic structure of a light-emitting device. It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing method of a light-emitting device. It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing method of a light-emitting device. It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing method of a light-emitting device. It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing method of a light-emitting device. It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing method of a light-emitting device. 2A to 2E are diagrams for easily explaining the manufacturing method of FIGS. 2A to 2E.
  • FIG. 6 is a view showing a modification of the manufacturing method of FIGS. 2A to 2E. It is sectional drawing which shows schematic structure of a light-emitting device. It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing apparatus of a light-emitting device. It is drawing for demonstrating the manufacturing method of FIG. 6 in detail.
  • FIG. 7B is a perspective view of FIG. 7A. It is a modification of a mask, Comprising: It is a figure for demonstrating the manufacturing method of FIG. 6 in detail. It is a perspective view of FIG. 8A. It is the modification of a mask, Comprising: It is the top view which showed a part of mask.
  • FIG. 10B is a perspective view of FIG. 10A. It is a modification of a mask, Comprising: It is a figure for demonstrating the manufacturing method of FIG. 6 in detail.
  • the light emitting device 100 includes an LED substrate 1 having a concave cross section.
  • a metal part 2 is provided in a recess (bottom part) of the LED substrate 1, and a rectangular parallelepiped LED element 3 is disposed on the metal part 2.
  • the LED element 3 is an example of a light emitting element that emits light of a predetermined wavelength.
  • a protruding electrode 4 is provided on the surface of the LED element 3 that faces the metal part 2, and the metal part 2 and the LED element 3 protrude. They are connected via electrodes 4 (flip chip type).
  • a blue LED element is used as the LED element 3.
  • a blue LED element is formed by laminating an n-GaN-based cladding layer, an InGaN light-emitting layer, a p-GaN-based cladding layer, and a transparent electrode on a sapphire substrate.
  • a wavelength converter 6 is formed in the recess of the LED substrate 1 so as to seal the periphery of the LED element 3.
  • the wavelength conversion unit 6 is a part that converts light having a predetermined wavelength emitted from the LED element 3 into light having a longer wavelength different from the light having a wavelength different from the wavelength of the LED element 3.
  • a phosphor that is excited to emit fluorescence having a wavelength different from the excitation wavelength is added.
  • the wavelength conversion unit 6 is formed so as to seal the periphery of the LED element 3, but the wavelength conversion unit 6 may be provided only on the periphery (upper surface and side surface) of the LED element 3, and the LED substrate.
  • the wavelength conversion unit 6 may not be provided in the concave portion 1.
  • the method for manufacturing the light emitting device 100 includes the following steps (1) to (5).
  • a first mask arrangement step of arranging a first mask 50 covering a part of the LED element 3 on the LED element 3 (see FIG. 2A).
  • Phosphor mixed liquid coating process for coating see FIG. 2B
  • First mask removing step for removing the first mask 50 from the LED element 3 see FIG.
  • a first mask 50 (hereinafter simply referred to as a mask 50) is pasted on the strip package 8.
  • the mask 50 has a strip shape (tape shape) like the strip package 8, and a through hole 52 corresponding to the concave portion 8 a of the strip package 8 is formed.
  • the mask 50 is made of an alcohol-resistant material, specifically, polyamide, polyimide, polyether ketone, polyether ether ketone, polyamide imide, polyphenylene sulfide, polyester, polyether imide, Polysulfone, polyethersulfone, polycarbonate, polymethyl methacrylate, polycycloolefin, modified polyphenylene oxide, liquid crystal polymer, polyacetal, polyolefin, polystyrene, fluororesin, acrylonitrile-butadiene-styrene copolymer, triacetyl cellulose, silicone, epoxy, It is composed of at least one resin material such as acrylic and epoxy silicone.
  • the mask 50 may be comprised from 1 type of resin materials among these resin materials, and may be comprised by the combination by 2 or more types of resin materials.
  • the thickness of the mask 50 is preferably 1.0 to 2.0 mm. If the thickness is less than 1.0 mm, the mask 50 itself may be warped (there is a possibility of peeling from the strip package 8). If the thickness exceeds 2.0 mm, the edge of the mask 50 is mixed with the phosphor. This is because it becomes an obstacle when the liquid 40 is applied and it is difficult to apply the liquid 40 in the design range.
  • a protective layer 54 may be formed on the surface of the mask 50.
  • the protective layer 54 is preferably made of at least one material of chromium oxide, chromium, nickel, diamond-like carbon, diamond, SiC, silicon nitride, and fluorine compound.
  • the protective layer 54 may be comprised from 1 type of resin materials among these materials, and may be comprised by the combination by 2 or more types of resin materials.
  • the protective layer 54 is made of chromium oxide, chromium, nickel, diamond-like carbon, diamond, SiC, or silicon nitride, it can be formed by PVD processing such as vapor deposition, sputtering, or ion plating, or CVD processing.
  • the protective layer 54 When the protective layer 54 is made of nickel or chrome, it can be formed by plating. Although nickel and chromium are metals, they become hard when thinned (Vickers hardness of about 500 to 900). In particular, since these two materials have a high film formation rate per unit time and a relatively low film stress, it is possible to increase the film thickness to 1 ⁇ m or more. When it is desired to form the protective layer 54 in a short time, or when it is desired to form a thick protective layer 54 having a thickness of 1 ⁇ m or more, both are optimal materials. Chromium oxide can be obtained by using chromium oxide itself as a film formation source or by a method of forming a film while doping oxygen in the process of forming chromium.
  • chromium oxide can also be obtained by heating and oxidizing the chromium film in the atmosphere. Chromium and chromium oxide are excellent in heat resistance, and are preferable when the mask 50 is used in a high temperature environment in the atmosphere of 100 ° C. or higher.
  • the diamond-like carbon film / diamond film can be formed by an ion plating method. A very hard film (Vickers 3000 or more) is obtained. Since the surface smoothness is good and the coating material adhered when cleaning the mask 50 can be easily removed, it is preferable when reducing the number of steps in the cleaning process.
  • SiC and silicon nitride films can also be formed on various materials such as CVD, sputtering, and ion plating on a material (Vickers 1000 to 3000) that has a hardness similar to that of diamond. It is possible to form a hard film on the mask 50 in accordance with existing equipment without additional investment. In addition, the acid / alkali / heat resistant performance is very good, and the range of selection of mask cleaning agents is expanded.
  • the necessary protective layer 54 can be selected according to the above various purposes. When the protective layer 54 is made of a fluorine compound, a Teflon (registered trademark) fluorine resin dissolved in a solvent may be applied to the mask 50 as it is and dried.
  • a fluorine film can be obtained by a very simple manufacturing method and a chemically stable film having hardness and heat resistance can be obtained.
  • the wettability with the coating solution on the film surface is small, and the attached coating agent can be easily removed.
  • the protective layer 54 increases the hardness of the surface of the mask 50 and improves the strength. Therefore, even when a hard phosphor is sprayed in the phosphor mixture application process described later, it is possible to prevent the mask 50 from being scraped by the phosphor and generating minute dust.
  • the protective layer 54 made of a fluorine compound is formed on the mask 50, the protective layer 54 has water repellency. Therefore, after the phosphor mixed solution 40 is applied and dried, the phosphor is easily separated in the separation step. Can be recovered and reused.
  • the mask 50 may be made of at least one metal material of Al, SUS (Steel Use Stainless), Cu, and Ti.
  • the metal mask 50 may be composed of one metal material among these metal materials, or may be composed of a combination (alloy) of two or more metal materials.
  • the type of SUS is preferably austenitic SUS such as SUS303, SUS304, SUS316, or SUS310 because rust is less likely to occur.
  • stainless steel invar material having a low low thermal expansion coefficient although rust is somewhat generated can minimize the influence of the displacement and shape change of the mask 50 due to the environmental temperature change, and gives a thermal history with the mask 50 applied.
  • the temperature-adjusted coating liquid 40 when applying the temperature-adjusted coating liquid 40 to the strip package 8, it is most preferable because the positional deviation between the mask 50 and the strip package 8 can be suppressed.
  • the above-mentioned protective layer 54 is preferably used on the surface of the mask 50 to prevent rust. Since the Al material is easy to process, when a large amount of the mask 50 having a more complicated shape is required, it becomes a preferable material for reducing the processing cost.
  • Cu has a very high thermal conductivity, and is preferable when it is desired to follow the substrate in a high temperature environment or a change in the temperature of the outer periphery.
  • the Cu mask 50 can also be used as a heat sink, and the temperature of the strip-shaped package 8 can be controlled through the mask 50 by bringing the Cu mask 50 into contact with a heat source or a cooling source. Since Ti is a light and high-strength material, it is preferable when making a mask 50 having a larger area than SUS-based materials.
  • the thickness of the metal mask 50 is preferably 0.2 to 2.0 mm. If the thickness is less than 0.2 mm, the mask 50 itself may be warped. If the thickness exceeds 2.0 mm, the end of the mask 50 becomes an obstacle when the liquid mixture 40 is applied. This makes it difficult to apply.
  • a protective layer 54 may be formed on the surface of the metal mask 50 similarly to the resin mask 50.
  • the metal mask 50 When the metal mask 50 is used, it can be machined, rolled, pressed, or the like.
  • the metal mask 50 has a high cost merit (but not as much as a resin material) and is relatively easy to process. Therefore, the metal mask 50 can be processed into a complicated shape, and the shape of the package 1 and the LED element 3 is changed. Can also respond. Furthermore, the metal mask 50 is superior in solvent resistance as compared to the case of resin, and can widely correspond to (use) the type of solvent used in the ceramic precursor solution.
  • the hardness of the metal mask 50 is approximately the same as or inferior to the hardness of the phosphor, if the protective layer 54 is formed on the surface of the mask 50, the strength of the surface of the mask 50 is improved. Even when a strong jet is received, the mask 50 can be prevented from being damaged by the strong phosphor.
  • the mask 50 may be made of at least one ceramic material of alumina, silicon nitride, silicon carbide, or zirconia.
  • the ceramic mask 50 may be composed of one ceramic material among these ceramic materials, or may be composed of a combination (alloy) of two or more ceramic materials.
  • Alumina is particularly excellent in workability and is preferable when a complex shape is required for the mask 50 with a ceramic material.
  • silicon nitride is also excellent in workability, but since its coefficient of thermal expansion is particularly low, the influence of displacement and shape change of the mask 50 due to environmental temperature changes can be minimized, and heat can be applied while the mask 50 is applied. When giving a history, the positional deviation between the mask 50 and the strip package 8 is most preferably suppressed.
  • Silicon carbide is a very hard material, and the mask 50 is hardly worn or damaged by the phosphor. It is preferable when you want to minimize the incidence of garbage. Zirconia has a low thermal conductivity, and when there is an instantaneous change in ambient heat, when it is not desired to convey the change to the strip package 8, for example, when drying the temperature-controlled coating solution 40, a halogen light or the like is used. When the surface is instantaneously heated to dry the moisture and the solution, unnecessary heating of the strip package 8 can be prevented.
  • the thickness of the ceramic mask is preferably 0.5 to 2.0 mm. If the thickness is less than 0.5 mm, the mask 50 itself may be warped.
  • the ceramic mask 50 can be produced by a method combining a sintering method and machining. According to the ceramic mask 50, since the hardness itself is large, it is possible to prevent the mask 50 from being damaged by a strong phosphor without providing a member such as the protective layer 54. Furthermore, according to the ceramic mask 50, as in the case of the metal mask 50, it is superior in solvent resistance compared to the case of the resin, and widely supports the types of solvents used in the ceramic precursor solution (use )can do. When the metal or ceramic mask 50 is used, it is not attached to the strip package 8 like the resin mask 50 but is placed at a predetermined position of the strip package 8 or fixed to the strip package 8. What is necessary is just to arrange
  • Phosphor mixture liquid application process The phosphor mixture liquid 40 (phosphor or additive) and process used in the phosphor mixture application process will be described.
  • Phosphor The phosphor is excited by the wavelength (excitation wavelength) of light emitted from the LED element 3 and emits fluorescence having a wavelength different from the excitation wavelength.
  • a YAG (yttrium, aluminum, garnet) phosphor that converts blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element into yellow light (wavelength 550 nm to 650 nm) is used.
  • Such phosphors use oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, and are mixed well in a stoichiometric ratio.
  • a mixed raw material is obtained.
  • a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of a solution obtained by dissolving a rare earth element of Y, Gd, Ce, or Sm in an acid with a stoichiometric ratio with oxalic acid, and aluminum oxide or gallium oxide.
  • an appropriate amount of fluoride such as ammonium fluoride is mixed with the obtained mixed raw material as a flux and pressed to obtain a molded body.
  • the obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the light emission characteristics of a phosphor.
  • the YAG phosphor is used.
  • the type of the phosphor is not limited to this.
  • other phosphors such as non-garnet phosphors containing no Ce are used. You can also.
  • the larger the particle size of the phosphor the higher the light emission efficiency (wavelength conversion efficiency).
  • the gap formed at the interface with the organometallic compound is increased, and the film strength of the formed ceramic layer is lowered.
  • the average particle diameter of the phosphor can be measured, for example, by a Coulter counter method.
  • the method for adjusting the viscosity of the phosphor mixture liquid 40 includes a technique of adding swollen particles or inorganic particles to the solvent. Any technique can be used as long as the phosphor mixture liquid 40 can be thickened. However, the present invention is not limited to this.
  • the swollen particles include layered silicate minerals.
  • the layered silicate mineral is preferably a swellable clay mineral having a structure such as a mica structure, a kaolinite structure, or a smectite structure, and particularly preferably a smectite structure rich in swellability. This is because by adding water to the mixed solution, a card house structure in which water enters and swells between layers of the smectite structure has an effect of greatly increasing the viscosity of the mixed solution. When the content of the layered silicate mineral in the ceramic layer is less than 1% by weight, the effect of increasing the viscosity of the mixed solution cannot be obtained sufficiently.
  • the content of the layered silicate mineral exceeds 20% by weight, the strength of the ceramic layer after heating is lowered. Therefore, the content of the layered silicate mineral is preferably 1% by weight to 20% by weight, and more preferably 1% by weight to 10% by weight.
  • a layered silicate mineral whose surface is modified (surface treatment) with an ammonium salt or the like can be used as appropriate.
  • Inorganic particles fill not only the thickening effect that increases the viscosity of the phosphor mixture 40, but also the gap that occurs at the interface between the organometallic compound and the phosphor. It also has a filling effect and a film strengthening effect that improves the film strength of the ceramic layer after heating.
  • the inorganic particles used in the present invention include oxide fine particles such as silicon oxide, titanium oxide and zinc oxide, fluoride fine particles such as magnesium fluoride, and the like.
  • silicon oxide fine particles such as silicon oxide, titanium oxide and zinc oxide
  • fluoride fine particles such as magnesium fluoride, and the like.
  • silicon oxide fine particles such as silicon oxide, titanium oxide and zinc oxide
  • fluoride fine particles such as magnesium fluoride
  • the content of the inorganic particles in the ceramic layer is preferably 1% by weight or more and 20% by weight or less, and more preferably 1% by weight or more and 10% by weight or less.
  • the average particle diameter of the inorganic particles is preferably 0.001 ⁇ m or more and 50 ⁇ m or less in consideration of the above-described effects.
  • the average particle diameter of the inorganic particles can be measured, for example, by a Coulter counter method.
  • phosphor mixed solution 40 As a preparation procedure of the phosphor mixed solution 40, lipophilic swelling particles or inorganic particles to which an organic cation is added or surface-treated are first premixed in an organic solvent. Thereafter, the phosphor or the phosphor and water are mixed. Thereby, swelling particle
  • the viscosity of the phosphor mixture 40 is 10 to 1000 cP, preferably 12 to 500 cP, more preferably 20 to 400 cP, and most preferably 50 to 300 cP. These viscosities were measured using a vibration viscometer (VM-10A-L manufactured by CBC).
  • the phosphor mixture liquid 40 may contain only swollen particles, may contain only inorganic particles, or may contain both swollen particles and inorganic particles. Since the phosphor mixture liquid 40 prepared as described above does not contain a fixing solution (ceramic precursor) for fixing the phosphor, it contains a phosphor containing phosphor from the first mask 50 in the separation step described later. It is easy to separate matter, and since there is no substance fixed to the phosphor, it is easy to regenerate the phosphor.
  • the coating device 10 of FIG. 2B mainly includes a movable table 20 that can move up and down, left and right, and back and forth, and a spray device 30 that can spray the phosphor mixture 40 described above.
  • the spray device 30 is disposed above the movable table 20.
  • the spray device 30 has a nozzle 32 into which air is sent, and an air compressor (not shown) for sending air is connected to the nozzle 32.
  • the hole diameter at the tip of the nozzle 32 is 20 ⁇ m to 2 mm, preferably 0.1 to 0.3 mm.
  • the nozzle 32 is movable up and down, left and right, and front and rear, like the moving table 20.
  • the spray gun W-101-142BPG manufactured by Anest Iwata is used as the nozzle 32
  • the OFP-071C manufactured by Anest Iwata is used as the compressor.
  • the angle of the nozzle 32 can be adjusted, and the nozzle 32 can be tilted with respect to the movable table 20 (or the LED substrate 1 installed on the moving table 20).
  • the angle of the nozzle 32 with respect to the injection target (LED substrate 1) is preferably in the range of 0 to 60 ° when the vertical direction from the injection target is 0 °.
  • a tank 36 is connected to the nozzle 32 via a connecting pipe 34.
  • a fluorescent liquid mixture 40 is stored in the tank 36.
  • the tank 36 contains a stirring bar, and the phosphor mixed solution 40 is constantly stirred.
  • the phosphor mixture liquid 40 is stirred, sedimentation of the phosphor having a large specific gravity can be suppressed, and a state in which the phosphor is dispersed in the phosphor mixture liquid 40 can be maintained.
  • Anest Iwata PC-51 is used as the tank.
  • a plurality of LED substrates 1 (on which the LED elements 3 are mounted in advance) are installed on the moving table 20, and the LED substrate 1 And the positional relationship between the nozzle 32 of the spray device 30 is adjusted.
  • the LED substrate 1 is installed on the moving table 20, and the LED substrate 1 and the tip end portion of the nozzle 32 are arranged to face each other.
  • the phosphor mixture liquid 40 can be uniformly applied as the distance between the LED substrate 1 and the nozzle 32 increases, but the film strength tends to decrease. It is suitable to keep the distance in the range of 3 to 30 cm.
  • the phosphor mixed solution 40 is sprayed from the nozzle 32 to apply the mixed solution 40 to the LED substrate 1 (phosphor applying step).
  • the moving base 20 and the nozzle 32 are moved to move the LED substrate 1 and the nozzle 32 back and forth and right and left.
  • Either one of the moving table 20 and the nozzle 32 may be fixed, and the other may be moved back and forth and left and right.
  • a method of applying a plurality of LED elements 3 in a direction orthogonal to the moving direction of the moving table 20 and moving the nozzle 32 in a direction orthogonal to the moving direction of the moving table 20 is also preferably used.
  • the mixed liquid 40 is sprayed from the tip of the nozzle 32 toward the LED substrate 1.
  • the distance between the LED substrate 1 and the nozzle 32 can be adjusted in the above range in consideration of the pressure of the air compressor.
  • the pressure of the compressor is adjusted so that the pressure at the inlet (tip) of the nozzle 32 is 0.14 MPa.
  • the phosphor mixed solution 40 can be applied onto the LED element 3.
  • Separation means As shown in FIG. 2D, as the separation means, the phosphor-containing material is separated from the mask 50 by vibrating the mask 50, for example. Further, the phosphor-containing material may be separated from the mask 50 by gravity. Specifically, the phosphor-containing material is separated by naturally drying the mask 50 so that the front and back surfaces are turned over or the mask 50 is tilted. Alternatively, the phosphor-containing material may be separated from the mask 50 by scraping the phosphor-containing material. Furthermore, a film (not shown) may be attached on the mask 50, and the phosphor-containing material attached to the film may be separated by peeling off the film.
  • An impurity removal step of removing impurities from the phosphor-containing material separated in the separation step of (4) may be performed.
  • the phosphor As a method of removing all impurities other than the former phosphor, only the phosphor is separated and recovered by dissolving the phosphor-containing material separated in the separation step with a solvent and filtering with a filter having a diameter smaller than 1 ⁇ m. be able to. This is because the particle size of the phosphor is larger than that of the swollen particles and inorganic particles, so that only the phosphor can be separated.
  • the phosphor and the swollen particles (and inorganic particles) are separated and recovered by baking the phosphor-containing material separated in the separation process at a high temperature of 100 ° C. to 120 ° C. be able to.
  • the phosphor obtained through the impurity removal step is then inspected for luminous efficiency (inspection step). Based on the luminous efficiency of the phosphor obtained in the inspection process, light emission in a predetermined color can be obtained by adjusting the ratio of the phosphor obtained in the collection and the unused phosphor that has not undergone the collection process.
  • the phosphor mixed liquid 40 to be produced can be produced again. Or you may produce the fluorescent substance liquid mixture 40 again only using the fluorescent substance obtained by collection
  • Fixing solution application process (5.1) Fixing solution
  • the fixing solution 42 is a solution in which a metal compound as a ceramic precursor is dispersed in a solvent. If a translucent ceramic can be formed, the kind of metal is used. There is no limit.
  • the fixing solution 42 may be a solution (sol-gel solution) in which ceramics are formed by heating the gel after gelation by a reaction such as hydrolysis. Further, by volatilizing the solvent component, the ceramic may be directly formed without gelation.
  • the metal compound may be an organic compound or an inorganic compound. Examples of preferable metal compounds include metal alkoxides, metal acetylacetonates, metal carboxylates, nitrates, and oxides. Of these, metal alkoxides are preferred because they are easily gelled by hydrolysis and polymerization reaction, and tetraethoxysilane is particularly preferred. A plurality of types of metal compounds may be used in combination.
  • the fixing solution it is preferable to appropriately contain water for hydrolysis, a solvent, a catalyst and the like in addition to the metal compound.
  • the solvent include alcohols such as methanol, ethanol, propanol, and butanol.
  • the catalyst include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrofluoric acid, ammonia and the like.
  • tetraethoxysilane it is preferable to use 138 parts by mass of ethyl alcohol and 52 parts by mass of pure water with respect to 100 parts by mass of tetraethoxysilane.
  • Polysilazane can also be used as a ceramic precursor.
  • the polysilazane used in the present invention is represented by the following general formula (i). (R 1 R 2 SiNR 3 ) n (i)
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an alkyl group, an aryl group, a vinyl group, or a cycloalkyl group, and at least one of R 1 , R 2 , and R 3
  • One is a hydrogen atom, preferably all are hydrogen atoms, and n represents an integer of 1 to 60.
  • the molecular shape of polysilazane may be any shape, for example, linear or cyclic.
  • Polysilazane represented by the above formula (i) and a reaction accelerator as required are dissolved in an appropriate solvent and cured by heating, excimer light treatment, UV light treatment, and excellent heat resistance and light resistance.
  • a ceramic film can be produced.
  • the effect of preventing penetration of moisture can be further improved by heat curing after irradiation with UVU radiation (eg, excimer light) containing a wavelength component in the range of 170 to 230 nm.
  • UVU radiation eg, excimer light
  • an acid, a base, or the like is preferably used, but it may not be used.
  • reaction accelerators include triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, acetic acid, nickel, iron, palladium , Metal carboxylates including iridium, platinum, titanium, and aluminum, but are not limited thereto. Particularly preferred when a reaction accelerator is used is a metal carboxylate, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
  • the solvent aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, and esters can be used.
  • methyl ethyl ketone Preferred are methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, ethyl ether, isopropyl ether, dibutyl ether, and ethyl butyl ether.
  • the polysilazane concentration is preferably higher, but since the increase in concentration leads to a shortening of the polysilazane storage period, the polysilazane is preferably dissolved in the solvent at 5% by mass or more and 50% by mass or less.
  • the fixing solution 42 may be applied onto the LED element 3 by arranging the mask 60. Thereafter, the second mask 60 may be removed from the LED element 3 to separate a metal compound or the like as a ceramic precursor in the fixing solution 42 attached from the second mask 60. Note that the second mask 60 can be the same as the first mask 50.
  • the wavelength conversion section 6 can be formed (completed) by drying the fixing solution 42 by heating after applying the fixing solution.
  • the heating temperature is preferably 120 ° C. to 500 ° C., and more preferably 120 ° C. to 200 ° C. from the viewpoint of further suppressing deterioration of the LED element 3 and the like.
  • the phosphor mixture liquid 40 is applied through the first mask 50, and then the first mask 50 is removed from the LED element 3, and the first mask 50. Since the phosphor-containing material is separated from the phosphor, and the phosphor-containing material is separated before fixing the phosphor, the phosphor-containing material can be easily recovered without going through complicated processing steps. As a result, the phosphor can be reused by further separating impurities from the separated phosphor-containing material. That is, in the present invention, since the phosphor mixture liquid 40 does not contain a fixing solution for fixing the phosphor, the phosphor-containing material can be easily separated from the first mask 50, and the phosphor mixture liquid 40 is not fluorescent.
  • the effect of easily regenerating the separated phosphor-containing material is obtained. Further, since the phosphor-containing material is separated from the first mask 50 by vibrating the first mask 50, using gravity, or scraping off, it can be easily separated by a simple method. . Further, since impurities are further removed from the phosphor-containing material separated from the first mask 50, only the phosphor can be recovered and reused. Further, by removing the impurities by heating the phosphor-containing material, the impurities can be easily removed. Further, since the emission efficiency of the collected phosphor is inspected, it is possible to sort out phosphors with good emission efficiency and reuse them.
  • the second mask 60 Since the second mask 60 is disposed on the LED element 3 and the fixing solution 42 is applied onto the LED element 3, the second mask 60 is recovered and the second mask 60 is used to fix the solution in the fixing solution 42. By separating the metal compound or the like, the metal compound or the like can also be reused. Further, as in the prior art, for example, in the case of Japanese Patent No. 4450547 and Japanese Patent Application Laid-Open No. 2005-311395, if the coating liquid is continuously applied using a mask, dust adheres to the wavelength conversion section obtained after drying. May have. When the present inventor examined the phenomenon for such a problem, when the coating solution contains an organic solvent such as isopropyl alcohol (IPA), a part of the mask is dissolved and peeled off by the alcohol solvent.
  • IPA isopropyl alcohol
  • the fragments are mixed in the coating solution.
  • the mask in addition to the generation of dust due to the dissolution, the mask is shaved by spraying a hard phosphor, so that minute dust is scattered and adheres to the wavelength conversion unit.
  • the mixed solution 40 when the mixed solution 40 is applied, by using the alcohol-resistant resin mask 50, dissolution by the alcohol solvent in the mixed solution 40 is suppressed, and the wavelength conversion unit 6.
  • the resin mask 50 when the resin mask 50 is used, it can be mass-produced by press molding or the like.
  • the resin mask 50 is cost-effective and can be disposable, and can be processed into a complicated shape. Therefore, even if the shape of the package 1 or the LED element 3 changes in the future, it becomes possible to cope with it. Further, when the protective layer 54 is formed on the surface of the mask 50, the strength of the surface of the mask 50 is improved, so that the mask 50 is damaged by the strong phosphor even when the liquid mixture 40 is strongly jetted. Can be prevented.
  • this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can change suitably.
  • the spray device 30 used in the phosphor mixed solution application step is used.
  • the liquid 42 may be applied to the LED element 3.
  • the configuration of the fixing liquid spray device 80 is the same as that of the phosphor mixed liquid spray device 30.
  • the fixing solution 42 may be applied by the spray device 80 through the mask 60.
  • the fixing liquid 42 and the phosphor mixture liquid 40 are more optimal in terms of ejection amount, ejection pressure, viscosity, etc., respectively. And each solution can be uniformly applied to the LED element 3 in a dispersed state.
  • the inner wall surface 81 that forms the concave portion 8a of the package 1 becomes a tapered surface so as to increase in diameter upward. It is preferable.
  • the mask 50F has a belt-like shape (tape shape) like the belt-like package 8, and as shown in FIG. 7B, a through-hole 52 having a rectangular shape in plan view is formed at a position corresponding to the concave portion 8a of the belt-like package 8. Yes.
  • a cover portion 51 is formed at a position corresponding to the upper side of the LED element 3 in the through hole 52 so as to cover the entire upper surface of the LED element 3.
  • the cover 51 has a rectangular shape that is slightly larger than the planar shape of the LED element 3.
  • the cover portion 51 is supported by a support portion 55 that spans the surfaces of the inner peripheral surface 53 that forms the through hole 52 that face each other. Therefore, the cover 51 covers the entire upper surface of the LED element 3, so that the mixed liquid 40 sprayed from the nozzle 32 of the spray device 30 flows so as to flow around the LED element 3 near the ridge line of the cover 51.
  • the jet of the liquid 40 changes.
  • the mixed solution 40 is uniformly attached to the side surface and the upper surface of the LED element 3.
  • the mask 50F may have a shape other than those shown in FIGS. 7A and 7B, and other mask shapes will be described below.
  • the mask 50A shown in FIGS. 8A and 8B has a band shape (tape shape) like the band package 8, and a rectangular through hole 52A in a plan view is formed at a position corresponding to the concave portion 8a of the band package 8. ing. Then, the inner peripheral surface 53A that forms the through hole 52A of the mask 50A has a taper having the same inclination angle so as to be substantially flush with the tapered surface that is the inner wall surface 81 that forms the concave portion 8a of the band-shaped package 8. It is a surface.
  • the liquid mixture 40 sprayed from the nozzle 32 of the spray device 30 flows smoothly along the tapered surface (inner peripheral surface 53A) and the tapered surface which is the inner wall surface 81 forming the recess 8a, and the side surface of the LED element 3 Go around to the side.
  • the jet can be collected around the LED element 3, and the mixed liquid 40 is uniformly attached to the side surface and the upper surface of the LED element 3.
  • the mask 50 ⁇ / b> B shown in FIG. 9A also has a strip shape (tape shape) like the strip package 8.
  • the mask 50 ⁇ / b> B has a mesh shape including a large number of meshes 56 ⁇ / b> B (through holes) at positions corresponding to the recesses 8 a of the strip-shaped package 8.
  • a large number of meshes 56B have a rectangular shape with a substantially uniform size.
  • a mask 50C shown in FIG. 9B is different from the mask 50B shown in FIG. 9A, and a lot of meshes 56C are meshes whose centers are dense and whose outer periphery is sparse.
  • the mask 50D shown in FIG. 9C differs from the mask 50B shown in FIG.
  • the uniform mesh mask 50B When the uniform mesh mask 50B is used, it is used when the density of the phosphor is relatively small and the liquid has a low viscosity and is easily diffused by a nozzle. The jet flow after passing through the mask tends to be mist-like and tends to adhere uniformly to the side surface.
  • 9B and 9C in the case where it is desired to have a mesh density difference between the center and the outer edge, the density of the phosphor is high and the straightness of the sprayed particles is strong, and the angle of the nozzle Or when the arrangement is adjusted.
  • the jet that reaches the mask flows in a sparse to dense direction of the mesh 56C. Diffuses, and the mixed liquid 40 is uniformly attached to the side surface and the upper surface of the LED element 3.
  • the mask 50D has an effect of making the film thickness of the side surface and the upper surface of the chip uniform when the nozzle is arranged at an oblique position of the chip or when the nozzle is sprayed at an angle. In this case, since the jet is inclined obliquely, it is easy to hit the side and not to the top.
  • the thickness of the phosphor can be uniformly attached.
  • the mesh-like masks 50B, 50C, and 50D shown in FIGS. 9A to 9C have a difference in flow rate in the jet flow than the mesh-like mask 50B shown in FIG. 9A. It is preferable in that it is easily generated.
  • 9A to 9C describe only mask portions at positions corresponding to the concave portions 8a of the strip package 8, and the outside of the mesh portions is as follows.
  • This is a mesh-free portion that is affixed to the upper surface of the strip package 8.
  • the shape of the meshes 56B, 56C, and 56D can be appropriately changed to a rectangular shape, a diamond shape, a circular shape, and the like depending on the spray conditions, the size shape of the LED element 3, and the like (for example, refer to the mask 50Da in FIG. 9D).
  • this mesh-structured mask since the entrainment of the jet is larger than the others, the thickness of the phosphor can be uniformly attached even if the inner wall surface of the package is not enlarged upward. .
  • a reflective member 82 such as Al or Ag is provided on the inner wall surface 81 that forms the recess 8 a of the strip package 8.
  • the reflective member 82 is provided in the same taper shape along the inner wall surface 81 which forms the recessed part 8a.
  • the mask 50 ⁇ / b> E has a band shape (tape shape) similarly to the band-shaped package 8, and a through hole 52 ⁇ / b> E having a rectangular shape in plan view is formed so as to correspond to the concave portion 8 a of the band-shaped package 8.
  • the inner peripheral surface 53E that forms the through hole 52E of the mask 50E is a tapered surface that covers a part of the reflecting member 82 along the shape of a part of the reflecting member 82. That is, the taper surface (inner peripheral surface 53A) of the mask 50A shown in FIGS. 8A and 8B further has a shape extending along the inner wall surface 81 that forms the recess 8a.
  • the inner peripheral surface 53E may have a shape that covers the entire reflecting member 82. Therefore, such a tapered surface (inner peripheral surface 53E) of the mask 50E covers the whole or a part of the reflecting member 82, so that the mixed liquid 40 ejected from the nozzle 32 of the spray device 30 becomes the tapered surface of the mask 50E.
  • the jet can be collected around the LED element 3, and the mixed liquid 40 is uniformly attached to the side surface and the upper surface of the LED element 3.
  • the LED element 3 is located along the mask 50E. This is particularly effective because the mixed liquid 40 is led to Further, since the mask 50E has a shape extending so as to cover a part or all of the reflecting member 82, the positioning of the mask 50E with respect to the strip package 8 is easy.
  • the inner peripheral surface 53E that forms the through hole 52E of the mask 50E may contact the inner wall surface 81 that forms the recess 8a as shown in FIGS. 10A and 10B, or as shown in FIG. 10C.
  • a space may be provided between the inner peripheral surface 53E and the inner wall surface 81.
  • the mask 50E can be used for the flip-chip type LED element 3.
  • the outer peripheral portions of the masks 50F and 50A to 50D shown in FIGS. 7 to 9 are provided with at least one of at least one of positioning notches, bosses, and holes for the band-shaped package 8. preferable.
  • the mask 50E shown in FIG. 10 since it has a shape that can be positioned with respect to the strip package 8, as described above, it is not necessary to provide positioning notches, bosses, holes, and the like.
  • the mask 50F can be made of the same material as the mask 50 described above.
  • the thickness of the mask 50F varies slightly depending on the material, but is preferably 0.2 to 2.0 mm. More preferably, it is 0.5 to 1.0 mm. If the thickness is less than 0.2 mm, jet flow rectification, entrainment, reflection, etc. will not occur, and it will not be possible to uniformly apply to the side surface of the LED element, and the mask 50F itself may be warped. (There is a possibility of peeling from the strip package 8). If the thickness exceeds 2.0 mm, the end of the mask 50F becomes an obstacle when the mixed liquid 40 is applied, and it becomes difficult to apply the liquid within the design range.
  • the masks 50A to 50E are the same as the thickness of the mask 50F, and the material is also the same.
  • a conductive member 57 is preferably provided on the back surface of the mask 50F. Specifically, it is preferable to provide a frame shape around the through hole 52 on the back surface of the mask 50F (see FIG. 7A).
  • the conductive member 57 for example, a member made of metal, conductive resin, carbon, or the like is preferable. It is necessary to dispose the mask 50F on the belt-like package 8 and make it adhere to it, and spray the mixed solution 40, and then release the mask 50F.
  • the mask 50F is made of a nonconductive material (nonmetal) such as resin or ceramic. When configured, the mask 50F and the strip-shaped package 8 are brought into close contact with each other due to static electricity, and are not easily peeled off.
  • the mask 50F can be easily peeled off from the strip package 8 by grounding and releasing static electricity.
  • a method of providing the conductive member 57 on the mask 50F for example, there are a film forming process by a sputtering method, a vapor deposition method or the like, or a method of directly attaching a thin member to the mask 50F by an adhesive or an insert.
  • the inner wall surface 81 that forms the concave portion 8a of the band-shaped package 8 is a tapered surface that expands upward, and the band-shaped package 8 is between the LED element 3 and the nozzle 32 of the spray device 30. Since the mask 50F that exposes at least a part of the concave portion 8a of the strip-shaped package 8 is disposed on the upper surface, the mixed liquid 40 sprayed from the nozzle 32 is a taper that is an inner wall surface 81 that forms the concave portion 8a of the strip-shaped package 8. It flows along the surface and adheres to the side surface and the upper surface of the LED element 3. As a result, the mixed liquid 40 can be uniformly applied to the side surface and the upper surface of the LED element 3.
  • the mask 50F exposes at least a part of the concave portion 8a of the strip-like package 8, the wraparound due to the jet of the mixed liquid 40 occurs between the portion covered with the mask 50F and the exposed portion. It can apply
  • a drive mechanism for rotating the nozzle is required, and the manufacturing apparatus is complicated and increases in size.
  • the nozzle that ejects the mixed liquid is used. There is no need to rotate the LED in a spiral, and no rotational drive mechanism is required, so that the manufacturing apparatus can be reduced in size, and the light emitting device 100 can be easily manufactured by applying the liquid mixture 40 to the side surface of the LED element 3. .
  • the mask 50F since the mask 50F has the cover part 51 which covers the whole upper surface of the LED element 3, the liquid mixture 40 flows so that it may wrap around the LED element 3 side in the vicinity of the ridgeline of the cover part 51, and a jet flow changes. ing. As a result, the mixed liquid 40 can be more uniformly attached to the side surface and the upper surface of the LED element 3. As described above, the mask 50F is provided with the cover portion 51 that covers the entire upper surface of the LED element 3, and the jet of the mixed liquid 40 can be changed only by improving the shape of the mask 50F. The mixed liquid 40 can be uniformly attached to the upper surface. In this respect as well, manufacturing can be facilitated.
  • the size and shape of the cover portion 51 of the mask 50F are adjusted depending on the condition of the phosphor after application. go. This delicate adjustment is also performed when other mask shapes are used.
  • the angle of the inner peripheral surface 53A that forms the through hole 52A is slightly changed to adjust the coating condition, and in the masks 50B to 50D, the mesh is adjusted. Adjust by changing the size and shape.
  • the angle of the inner peripheral surface 53E that forms the through hole 52E and the distance from the LED element 3 to the inner peripheral surface 53E are slightly changed and adjusted.
  • Methods for examining the coating condition include a method of obtaining a film thickness distribution by applying a sample to a dummy sample, cutting it, and observing a cross section, and a method of actually illuminating the LED with the phosphor after application to observe the color. After fine adjustment of the mask shape, a final mask shape suitable for the shape and characteristics of the target LED element is determined.
  • the inner peripheral surface 53 that forms the through hole 52 of the mask 50F shown in FIG. 7 is not a tapered surface, it is flush with the inner wall surface 81 that forms the recess 8a as in the mask 50A shown in FIG. It is good also as such a taper surface.
  • a light emitting element that is disposed in a recess recessed below the package and emits light of a predetermined wavelength, and a phosphor that is excited by light emitted from the light emitting element and emits fluorescence having a wavelength different from the excitation wavelength
  • the inner wall surface forming the concave portion of the package is a tapered surface that expands upward.
  • a mask for exposing at least a part of the recess of the package is disposed on the upper surface of the package. 2.
  • the mask has a through hole that exposes a recess of the package; 2.
  • the method for manufacturing a light-emitting device wherein the inner peripheral surface forming the through hole is a tapered surface that is substantially flush with the inner wall surface forming the recess of the package. 4).
  • the mask has a mesh shape in which positions corresponding to the recesses of the package are formed of a large number of meshes. 5.
  • the plurality of meshes are meshes having a dense center and a sparse outer periphery. 6). 5.
  • the method for manufacturing a light emitting device wherein the plurality of meshes are meshes having a sparse center and a dense outer periphery. 7.
  • a reflective member is disposed on the inner wall surface forming the concave portion of the package,
  • the mask has a through hole that exposes a recess of the package;
  • the inner peripheral surface that forms the through hole is a tapered surface that covers the whole or a part of the reflecting member along the shape of the whole or a part of the reflecting member.
  • Manufacturing method of light-emitting device 8).
  • 9. 9 The method for manufacturing a light emitting device according to claim 1, wherein a conductive member is provided on a back surface of the mask.
  • a method for manufacturing a light-emitting device comprising: a light-emitting element that emits light of a predetermined wavelength; and a wavelength conversion unit that includes a phosphor that is excited by light emitted from the light-emitting element and emits fluorescence having a wavelength different from the excitation wavelength.
  • the mask is polyamide, polyimide, polyetherketone, polyetheretherketone, polyamideimide, polyphenylene sulfide, polyester, polyetherimide, polysulfone, polyethersulfone, polycarbonate, polymethyl methacrylate, polycycloolefin, modified polyphenylene oxide, Light emission characterized by being composed of at least one resin material of liquid crystal polymer, polyacetal, polyolefin, polystyrene, fluororesin, acrylonitrile-butadiene-styrene copolymer, triacetyl cellulose, silicone, epoxy, acrylic, epoxy silicone Device manufacturing method.
  • a protective layer is formed on the surface of the mask, The method for manufacturing a light emitting device, wherein the protective layer is made of at least one material of chromium oxide, chromium, nickel, diamond-like carbon, diamond, SiC, silicon nitride, and fluorine compound. 13.
  • a method of manufacturing a light-emitting device, wherein the mask has a thickness of 0.5 to 2.0 mm. 14
  • the method of manufacturing a light emitting device, wherein the mask is made of at least one metal material of Al, SUS, Cu, and Ti. 15.
  • a protective layer is formed on the surface of the mask, The method for manufacturing a light emitting device, wherein the protective layer is made of at least one material of chromium oxide, chromium, nickel, diamond-like carbon, diamond, SiC, silicon nitride, and fluorine compound. 16.
  • a method for manufacturing a light-emitting device, wherein the mask has a thickness of 0.2 to 2.0 mm. 17.
  • the method for manufacturing a light emitting device wherein the mask is made of at least one ceramic material of alumina, silicon nitride, silicon carbide, or zirconia. 18.
  • the method for manufacturing the light emitting device according to Item 17 A method of manufacturing a light-emitting device, wherein the mask has a thickness of 0.5 to 2.0 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

This method for manufacturing a light emitting device comprises: a first mask disposition step for disposing a first mask on an LED element so as to cover part of that LED element; a phosphor mixture liquid application step for applying a phosphor mixture liquid in which phosphors are dispersed in a solvent to the LED element, part of which is covered by the first mask; a first mask removal step for removing the first mask from the LED element; a separation step for separating phosphor containing material that contains phosphors from the first mask; a fixing solution application step for applying a fixing solution that fixes the phosphors in the phosphor mixture liquid onto the LED element to which the phosphor mixture liquid has been applied; and a drying step for forming a wavelength conversion part by drying the fixing solution that has been applied onto the LED element.

Description

発光装置の製造方法Method for manufacturing light emitting device
 本発明は、発光装置の製造方法に関する。 The present invention relates to a method for manufacturing a light emitting device.
 従来から、照明などの用途において、LED素子などの発光素子の光を励起光として用いて蛍光体を発光させ、白色光を得る発光装置が開発されている。
 このような発光装置としては、例えば、発光素子から出射された青色光により黄色光を出射する蛍光体を用い、それぞれの光を混色させることで白色光とする発光装置や、発光素子から出射された紫外光により青色・緑色・赤色の光を出射する蛍光体を用いて、蛍光体から出射された3色の光を混色させることで白色光とする発光装置などが知られている。
2. Description of the Related Art Conventionally, in applications such as lighting, light emitting devices that obtain white light by emitting light from a phosphor using light from a light emitting element such as an LED element as excitation light have been developed.
As such a light emitting device, for example, a phosphor that emits yellow light by blue light emitted from the light emitting element is used, and a light emitting device that produces white light by mixing each light, or emitted from the light emitting element. There is known a light-emitting device that produces white light by using a phosphor that emits blue, green, and red light by ultraviolet light and mixing three colors of light emitted from the phosphor.
 このような発光装置の構成として、発光素子を、蛍光体層で封止したものが開発されている。蛍光体層は一般的に、蛍光体が分散された溶液を塗布・乾燥して形成され、当該蛍光体層が「波長変換部」に相当する。 As a configuration of such a light emitting device, a light emitting element sealed with a phosphor layer has been developed. The phosphor layer is generally formed by applying and drying a solution in which the phosphor is dispersed, and the phosphor layer corresponds to a “wavelength conversion unit”.
近年では、蛍光体層(波長変換部)を形成する方法としてスプレー塗布方法が知られている(例えば、特許文献1参照)。
 スプレー塗布方法は、蛍光体層を薄く均一な厚みに塗布し易いが、スプレー塗布により塗布される範囲は発光素子の大きさよりも広い範囲となってしまう。また、通常、塗布に用いられる塗布液は、蛍光体を発光素子に定着(固化)するための成分を含んでいるため、塗布した蛍光体はそのまま発光素子に固化されることになる。したがって、発光素子の部分にのみ塗布しようとすると、所定形状のマスクで蛍光体の塗布が不要な部分を覆って塗布しなければならない。
In recent years, a spray coating method is known as a method of forming a phosphor layer (wavelength conversion unit) (see, for example, Patent Document 1).
The spray coating method is easy to apply the phosphor layer to a thin and uniform thickness, but the range applied by spray coating is wider than the size of the light emitting element. In addition, since the coating liquid used for coating usually contains a component for fixing (solidifying) the phosphor to the light emitting element, the coated phosphor is solidified to the light emitting element as it is. Therefore, when applying only to the portion of the light emitting element, it is necessary to cover the portion where the phosphor is not required to be coated with a mask having a predetermined shape.
国際公開番号 WO03/034508 A1International Publication Number WO03 / 034508 A1
 しかしながら、マスクで覆ったとしてもマスク上で蛍光体が固化されてしまい、固化された蛍光体を回収し再利用するためには、マスクから固化した蛍光体の分離や、固化した蛍光体からの不純物の分離を行う必要があり、複雑な処理工程が必要となる。
 本発明は、上記事情に鑑みてなされたもので、複雑な処理工程が不要で、容易に蛍光体を回収して再利用することのできる発光装置の製造方法を提供することを目的としている。
However, even if it is covered with a mask, the phosphor is solidified on the mask, and in order to recover and reuse the solidified phosphor, separation of the solidified phosphor from the mask or separation from the solidified phosphor Impurities need to be separated, and complicated processing steps are required.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a light-emitting device that does not require complicated processing steps and can easily collect and reuse phosphors.
 上記課題を解決するため、本発明によれば、所定の波長の光を出射する発光素子と、前記発光素子からの出射光により励起されて励起波長と異なる波長の蛍光を出射する蛍光体を含有する波長変換部と、を有する発光装置の製造方法において、
 前記発光素子上に、当該発光素子の一部を覆う第1のマスクを配置する第1のマスク配置工程と、
 前記第1のマスクで一部が覆われた前記発光素子に、前記蛍光体を溶媒中に分散した蛍光体混合液を塗布する蛍光体混合液塗布工程と、
 前記発光素子上から前記第1のマスクを取り除く第1のマスク除去工程と、
 前記第1のマスクから前記蛍光体を含有する蛍光体含有物を分離する分離工程と、
 前記蛍光体混合液を塗布した前記発光素子上に、前記蛍光体を定着させる定着液を塗布する定着液塗布工程と、
 前記発光素子上に塗布した前記定着液を乾燥して、前記波長変換部を形成する乾燥工程と、を有することを特徴とする発光装置の製造方法が提供される。
In order to solve the above problems, according to the present invention, a light emitting element that emits light having a predetermined wavelength and a phosphor that emits fluorescence having a wavelength different from the excitation wavelength when excited by light emitted from the light emitting element are included. In a method for manufacturing a light emitting device having a wavelength conversion unit,
A first mask disposing step of disposing a first mask covering a part of the light emitting element on the light emitting element;
A phosphor mixture application step of applying a phosphor mixture in which the phosphor is dispersed in a solvent to the light emitting element partially covered with the first mask;
A first mask removing step of removing the first mask from the light emitting element;
A separation step of separating the phosphor-containing material containing the phosphor from the first mask;
A fixing solution applying step of applying a fixing solution for fixing the phosphor on the light emitting element to which the phosphor mixture solution is applied;
And a drying step of forming the wavelength conversion unit by drying the fixing solution applied on the light emitting element.
 本発明によれば、第1のマスクを介して蛍光体混合液を塗布し、その後、第1のマスクを除去して、第1のマスクから蛍光体含有物を分離しており、蛍光体を定着させる前に蛍光体含有物を分離させるので、複雑な処理工程を経ることなく、容易に蛍光体含有物を回収することができる。その結果、分離した蛍光体含有物からさらに不純物を分離することで、蛍光体を再利用することができる。 According to the present invention, the phosphor mixture is applied through the first mask, and then the first mask is removed to separate the phosphor-containing material from the first mask. Since the phosphor-containing material is separated before fixing, the phosphor-containing material can be easily recovered without going through complicated processing steps. As a result, the phosphor can be reused by further separating impurities from the separated phosphor-containing material.
発光装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a light-emitting device. 発光装置の製造装置及び製造方法を概略的に説明するための模式図である。It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing method of a light-emitting device. 発光装置の製造装置及び製造方法を概略的に説明するための模式図である。It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing method of a light-emitting device. 発光装置の製造装置及び製造方法を概略的に説明するための模式図である。It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing method of a light-emitting device. 発光装置の製造装置及び製造方法を概略的に説明するための模式図である。It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing method of a light-emitting device. 発光装置の製造装置及び製造方法を概略的に説明するための模式図である。It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing method of a light-emitting device. 図2A~図2Eの製造方法をわかりやすく説明するための図面である。2A to 2E are diagrams for easily explaining the manufacturing method of FIGS. 2A to 2E. 図2A~図2Eの製造方法の変形例を示す図面である。6 is a view showing a modification of the manufacturing method of FIGS. 2A to 2E. 発光装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of a light-emitting device. 発光装置の製造装置及び製造装置を概略的に説明するための模式図である。It is a schematic diagram for demonstrating schematically the manufacturing apparatus and manufacturing apparatus of a light-emitting device. 図6の製造方法を詳細に説明するための図面である。It is drawing for demonstrating the manufacturing method of FIG. 6 in detail. 図7Aの斜視図である。FIG. 7B is a perspective view of FIG. 7A. マスクの変形例であって、図6の製造方法を詳細に説明するための図である。It is a modification of a mask, Comprising: It is a figure for demonstrating the manufacturing method of FIG. 6 in detail. 図8Aの斜視図である。It is a perspective view of FIG. 8A. マスクの変形例であって、マスクの一部を示した平面図である。It is the modification of a mask, Comprising: It is the top view which showed a part of mask. マスクの変形例であって、マスクの一部を示した平面図である。It is the modification of a mask, Comprising: It is the top view which showed a part of mask. マスクの変形例であって、マスクの一部を示した平面図である。It is the modification of a mask, Comprising: It is the top view which showed a part of mask. マスクの変形例であって、マスクの一部を示した平面図である。It is the modification of a mask, Comprising: It is the top view which showed a part of mask. マスクの変形例であって、図6の製造方法を詳細に説明するための図である。It is a modification of a mask, Comprising: It is a figure for demonstrating the manufacturing method of FIG. 6 in detail. 図10Aの斜視図である。FIG. 10B is a perspective view of FIG. 10A. マスクの変形例であって、図6の製造方法を詳細に説明するための図である。It is a modification of a mask, Comprising: It is a figure for demonstrating the manufacturing method of FIG. 6 in detail.
 以下、図面を参照しながら本発明の好ましい実施形態について説明する。
 図1に示すとおり、発光装置100は、断面凹状のLED基板1を有している。LED基板1の凹部(底部)にはメタル部2が設けられ、メタル部2上に直方体状のLED素子3が配置されている。LED素子3は所定波長の光を出射する発光素子の一例であり、LED素子3のメタル部2に対向する面には突起電極4が設けられており、メタル部2とLED素子3とが突起電極4を介して接続されている(フリップチップ型)。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the light emitting device 100 includes an LED substrate 1 having a concave cross section. A metal part 2 is provided in a recess (bottom part) of the LED substrate 1, and a rectangular parallelepiped LED element 3 is disposed on the metal part 2. The LED element 3 is an example of a light emitting element that emits light of a predetermined wavelength. A protruding electrode 4 is provided on the surface of the LED element 3 that faces the metal part 2, and the metal part 2 and the LED element 3 protrude. They are connected via electrodes 4 (flip chip type).
 本実施形態では、LED素子3として青色LED素子を用いている。青色LED素子は、例えばサファイア基板上にn-GaN系クラッド層、InGaN発光層、p-GaN系クラッド層、及び透明電極を積層してなる。 In the present embodiment, a blue LED element is used as the LED element 3. For example, a blue LED element is formed by laminating an n-GaN-based cladding layer, an InGaN light-emitting layer, a p-GaN-based cladding layer, and a transparent electrode on a sapphire substrate.
 LED基板1の凹部にはLED素子3の周囲を封止するように波長変換部6が形成されている。波長変換部6は、LED素子3から出射される所定波長の光を、これとは異なる長波長の光に変換する部分であり、透光性を有するセラミック層中にLED素子3からの波長により励起されて、励起波長と異なる波長の蛍光を出す蛍光体が添加されている。
 ここでは、LED素子3の周囲を封止するように波長変換部6が形成されているが、波長変換部6は、LED素子3の周囲(上面及び側面)のみに設けられればよく、LED基板1の凹部には波長変換部6が設けられない構成とされてもよい。
A wavelength converter 6 is formed in the recess of the LED substrate 1 so as to seal the periphery of the LED element 3. The wavelength conversion unit 6 is a part that converts light having a predetermined wavelength emitted from the LED element 3 into light having a longer wavelength different from the light having a wavelength different from the wavelength of the LED element 3. A phosphor that is excited to emit fluorescence having a wavelength different from the excitation wavelength is added.
Here, the wavelength conversion unit 6 is formed so as to seal the periphery of the LED element 3, but the wavelength conversion unit 6 may be provided only on the periphery (upper surface and side surface) of the LED element 3, and the LED substrate. The wavelength conversion unit 6 may not be provided in the concave portion 1.
 続いて、発光装置100の製造方法について説明する。
 発光装置100の製造方法は、以下の(1)~(5)の工程を有している。
(1)LED素子3上に、当該LED素子3の一部を覆う第1のマスク50を配置する第1のマスク配置工程(図2A参照)
(2)第1のマスク50で一部が覆われたLED素子3に蛍光体を溶媒中に分散した蛍光体混合液40(蛍光体を定着させるための定着液を含有しない蛍光体混合液)を塗布する蛍光体混合液塗布工程(図2B参照)
(3)LED素子3上から第1のマスク50を取り除く第1のマスク除去工程(図2C参照)
(4)第1のマスク50から蛍光体を含有する蛍光体含有物を分離する分離工程(図2D参照)
(5)蛍光体混合液40を塗布したLED素子3上に、蛍光体混合液40中の蛍光体を定着させる定着液42を塗布する定着液塗布工程(図2E参照)
(6)LED素子3上に塗布した定着液42を乾燥する乾燥工程
Then, the manufacturing method of the light-emitting device 100 is demonstrated.
The method for manufacturing the light emitting device 100 includes the following steps (1) to (5).
(1) A first mask arrangement step of arranging a first mask 50 covering a part of the LED element 3 on the LED element 3 (see FIG. 2A).
(2) A phosphor mixed solution 40 in which a phosphor is dispersed in a solvent on the LED element 3 partially covered with the first mask 50 (a phosphor mixture not containing a fixing solution for fixing the phosphor). Phosphor mixed liquid coating process for coating (see FIG. 2B)
(3) First mask removing step for removing the first mask 50 from the LED element 3 (see FIG. 2C)
(4) Separation step of separating the phosphor-containing material containing the phosphor from the first mask 50 (see FIG. 2D)
(5) Fixing solution application step of applying a fixing solution 42 for fixing the phosphor in the phosphor mixture 40 onto the LED element 3 to which the phosphor mixture 40 is applied (see FIG. 2E).
(6) Drying step of drying the fixing solution 42 applied on the LED element 3
(1)第1のマスク配置工程
 第1のマスク配置工程では、図2Aに示すとおり、帯状パッケージ8上に第1のマスク50(以下、単にマスク50と言う)を貼り付ける。マスク50は帯状パッケージ8と同様に帯状(テープ状)を呈しており、帯状パッケージ8の凹部8aに対応する貫通孔52が形成されている。
 (1.1)マスク
 マスク50は耐アルコール性の材質から構成されており、具体的には、ポリアミド、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリフェニレンサルファイド、ポリエステル、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリカーボネート、ポリメチルメタクリレート、ポリシクロオレフィン、変性ポリフェニレンオキサイド、液晶ポリマー、ポリアセタール、ポリオレフィン、ポリスチレン、フッ素樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、トリアセチルセルロース、シリコーン、エポキシ、アクリル、エポキシシリコーンの少なくとも1つの樹脂材料から構成されている。マスク50は、これら樹脂材料のうち、1種の樹脂材料から構成されてもよいし、2種以上の樹脂材料による組み合わせで構成されてもよい。
 マスク50の厚さは好ましくは1.0~2.0mmである。厚さが1.0mm未満であるとマスク50自体が反り返る可能性があり(帯状パッケージ8から剥離する可能性があり)、厚さが2.0mmを超えるとマスク50の端部が蛍光体混合液40を塗布する際の妨害物となって設計範囲で塗布するのが困難になることによる。
(1) First Mask Placement Step In the first mask placement step, as shown in FIG. 2A, a first mask 50 (hereinafter simply referred to as a mask 50) is pasted on the strip package 8. The mask 50 has a strip shape (tape shape) like the strip package 8, and a through hole 52 corresponding to the concave portion 8 a of the strip package 8 is formed.
(1.1) Mask The mask 50 is made of an alcohol-resistant material, specifically, polyamide, polyimide, polyether ketone, polyether ether ketone, polyamide imide, polyphenylene sulfide, polyester, polyether imide, Polysulfone, polyethersulfone, polycarbonate, polymethyl methacrylate, polycycloolefin, modified polyphenylene oxide, liquid crystal polymer, polyacetal, polyolefin, polystyrene, fluororesin, acrylonitrile-butadiene-styrene copolymer, triacetyl cellulose, silicone, epoxy, It is composed of at least one resin material such as acrylic and epoxy silicone. The mask 50 may be comprised from 1 type of resin materials among these resin materials, and may be comprised by the combination by 2 or more types of resin materials.
The thickness of the mask 50 is preferably 1.0 to 2.0 mm. If the thickness is less than 1.0 mm, the mask 50 itself may be warped (there is a possibility of peeling from the strip package 8). If the thickness exceeds 2.0 mm, the edge of the mask 50 is mixed with the phosphor. This is because it becomes an obstacle when the liquid 40 is applied and it is difficult to apply the liquid 40 in the design range.
 マスク50の表面には保護層54(図3参照)が形成されてもよい。
 保護層54は、好ましくは酸化クロム、クロム、ニッケル、ダイヤモンドライクカーボン、ダイヤモンド、SiC、窒化珪素、フッ素化合物の少なくとも1つの材料から構成される。保護層54は、これら材料のうち、1種の樹脂材料から構成されてもよいし、2種以上の樹脂材料による組み合わせで構成されてもよい。
 保護層54を酸化クロム、クロム、ニッケル、ダイヤモンドライクカーボン、ダイヤモンド、SiC、窒化珪素で構成する場合には、蒸着やスパッタ、イオンプレーティングなどのPVD処理やCVD処理にて形成することができる。
 保護層54をニッケル、クロムで構成する場合はめっき処理にて成膜することも可能である。ニッケルやクロムは金属であるものの薄膜化することで硬くなる(ビッカース硬度500~900程度)。特にこの2者の材料は単位時間あたりの成膜レートが高く、膜応力も比較的強くないことから、1μm以上の厚膜化が可能である。短時間で保護層54を形成したい場合や、あるいは膜厚1μm以上の厚い保護層54を形成したい場合には両者とも最適な材料である。
 酸化クロムは酸化クロムそのものを成膜源とする場合と、クロムを成膜する工程に酸素をドープしながら成膜する方法でも得られる。さらに、酸化クロムは大気中でクロム膜を加熱・酸化処理することでも得られる。クロムや酸化クロムは耐熱性に優れており、100℃以上の大気中高温環境化でマスク50を使う場合に好ましい。
 ダイヤモンドライクカーボン膜・ダイヤモンド膜はイオンプレーティング法により成膜することができる。非常に硬い膜(ビッカース3000以上)が得られる。表面平滑性もよくマスク50を洗浄する際に付着した塗布材を簡単に落とすことができるため洗浄工程の工数を減らす場合に好ましい。
 SiC、窒化珪素膜もダイヤモンド系につぐ硬度を誇る材料である(ビッカース1000~3000)上に、CVD法・スパッタ法・イオンプレーティング法など各種製法で成膜することができる。追加投資することなく既存設備に合わせて硬い膜をマスク50に成膜することが可能となる。また、耐酸・耐アルカリ・耐熱性能が非常によく、マスク洗浄剤の選択範囲が広がる。
 以上のさまざまな目的に応じて必要とする保護層54を選択することができる。
 保護層54をフッ素化合物で構成する場合には、溶媒に溶かしたテフロン(登録商標)系のフッ素樹脂をそのままマスク50に塗布して乾燥させればよい。
 フッ素膜は非常に簡便な製法で硬く耐熱性を有した化学的に安定した膜が得られる。膜表面の塗布液との濡れ性も小さく、付着した塗布剤を簡単に落とすことができる。
 上記のこれらの保護層54をマスク50の表面に形成することで、マスク50の耐アルコール性能が向上することに加えて、保護層54によりマスク50の表面の硬度が高くなり強度が向上する。そのため、後述の蛍光体混合液塗布工程において硬い蛍光体を吹き付けられた場合でも、マスク50が蛍光体に削られて微小なゴミが発生することを抑制できる。
 また、マスク50に対しフッ素化合物による保護層54を形成すれば、保護層54が撥水性を具備するため、蛍光体混合液40を塗布して乾燥させた後に、分離工程において、蛍光体を容易に回収・再利用することができる。
A protective layer 54 (see FIG. 3) may be formed on the surface of the mask 50.
The protective layer 54 is preferably made of at least one material of chromium oxide, chromium, nickel, diamond-like carbon, diamond, SiC, silicon nitride, and fluorine compound. The protective layer 54 may be comprised from 1 type of resin materials among these materials, and may be comprised by the combination by 2 or more types of resin materials.
When the protective layer 54 is made of chromium oxide, chromium, nickel, diamond-like carbon, diamond, SiC, or silicon nitride, it can be formed by PVD processing such as vapor deposition, sputtering, or ion plating, or CVD processing.
When the protective layer 54 is made of nickel or chrome, it can be formed by plating. Although nickel and chromium are metals, they become hard when thinned (Vickers hardness of about 500 to 900). In particular, since these two materials have a high film formation rate per unit time and a relatively low film stress, it is possible to increase the film thickness to 1 μm or more. When it is desired to form the protective layer 54 in a short time, or when it is desired to form a thick protective layer 54 having a thickness of 1 μm or more, both are optimal materials.
Chromium oxide can be obtained by using chromium oxide itself as a film formation source or by a method of forming a film while doping oxygen in the process of forming chromium. Further, chromium oxide can also be obtained by heating and oxidizing the chromium film in the atmosphere. Chromium and chromium oxide are excellent in heat resistance, and are preferable when the mask 50 is used in a high temperature environment in the atmosphere of 100 ° C. or higher.
The diamond-like carbon film / diamond film can be formed by an ion plating method. A very hard film (Vickers 3000 or more) is obtained. Since the surface smoothness is good and the coating material adhered when cleaning the mask 50 can be easily removed, it is preferable when reducing the number of steps in the cleaning process.
SiC and silicon nitride films can also be formed on various materials such as CVD, sputtering, and ion plating on a material (Vickers 1000 to 3000) that has a hardness similar to that of diamond. It is possible to form a hard film on the mask 50 in accordance with existing equipment without additional investment. In addition, the acid / alkali / heat resistant performance is very good, and the range of selection of mask cleaning agents is expanded.
The necessary protective layer 54 can be selected according to the above various purposes.
When the protective layer 54 is made of a fluorine compound, a Teflon (registered trademark) fluorine resin dissolved in a solvent may be applied to the mask 50 as it is and dried.
A fluorine film can be obtained by a very simple manufacturing method and a chemically stable film having hardness and heat resistance can be obtained. The wettability with the coating solution on the film surface is small, and the attached coating agent can be easily removed.
By forming these protective layers 54 on the surface of the mask 50, in addition to improving the alcohol resistance performance of the mask 50, the protective layer 54 increases the hardness of the surface of the mask 50 and improves the strength. Therefore, even when a hard phosphor is sprayed in the phosphor mixture application process described later, it is possible to prevent the mask 50 from being scraped by the phosphor and generating minute dust.
Further, if the protective layer 54 made of a fluorine compound is formed on the mask 50, the protective layer 54 has water repellency. Therefore, after the phosphor mixed solution 40 is applied and dried, the phosphor is easily separated in the separation step. Can be recovered and reused.
 なお、マスク50は、Al、SUS(Steel Use Stainless)、Cu、Tiの少なくとも1つの金属材料から構成されてもよい。金属製のマスク50は、これら金属材料のうち、1種の金属材料から構成されてもよいし、2種以上の金属材料による組み合わせ(合金)で構成されてもよい。
 特にSUSの種類はSUS303,SUS304,SUS316,SUS310等のオーステナイト系SUSが錆の発生が起きにくく好ましい。また、錆はやや発生するものの低熱膨張計数が低いステンレスインバー材なども環境温度変化によるマスク50の位置ずれや形状変化の影響を最も小さく抑えることができ、マスク50をかけたまま熱履歴を与える際や、温調された塗布液40を帯状パッケージ8に塗布する際にマスク50と帯状パッケージ8との位置ずれを抑えることができ最も好ましい。このステンレスインバー材を用いる際には先述の保護層54をマスク50の表面に形成することが錆防止のために好ましい使い方である。
 Al材は加工がしやすいのでより形状が複雑なマスク50を大量に必要とする場合は加工コストを下げるために好ましい材料となる。
 Cuは熱伝導率が非常に高く、高温環境化や外周部の温度変化に基板を追随させたい場合に好ましい。Cu製のマスク50をヒートシンクとして用いることも可能で、Cu製のマスク50を熱源や冷却源と接触させることで、マスク50を介して帯状パッケージ8を温度コントロールすることが可能となる。
 Tiは軽く高強度の材料であるため、SUS系の材料と比較して大きな面積のマスク50を作る場合に好ましい。
 金属製のマスク50の厚さは好ましくは0.2~2.0mmである。厚さが0.2mm未満であるとマスク50自体が反り返る可能性があり、厚さが2.0mmを超えるとマスク50の端部が混合液40を塗布する際の妨害物となって設計範囲で塗布するのが困難になることによる。
 金属製のマスク50の表面には、樹脂製のマスク50と同様に、保護層54が形成されてもよい。
 金属製のマスク50を使用する場合、機械加工、圧延プレス、プレス加工などで加工可能である。
 金属製のマスク50によれば、(樹脂材料ほどではないが)コストメリットが高く、比較的加工し易いため、複雑な形状に加工することができ、パッケージ1やLED素子3の形状が変わっても対応することができる。
 さらに、金属製のマスク50によれば、樹脂製の場合に比較して、耐溶媒性に優れ、セラミック前駆体溶液に使用する溶媒の種類に広く対応(使用)することができる。
 また、金属製のマスク50の硬度は蛍光体の硬度とほぼ同じかそれより劣るため、マスク50の表面に保護層54を形成すれば、マスク50の表面の強度が向上するため、混合液40の強い噴射を受けたときでも、強硬な蛍光体によるマスク50の破損を防止することができる。
The mask 50 may be made of at least one metal material of Al, SUS (Steel Use Stainless), Cu, and Ti. The metal mask 50 may be composed of one metal material among these metal materials, or may be composed of a combination (alloy) of two or more metal materials.
In particular, the type of SUS is preferably austenitic SUS such as SUS303, SUS304, SUS316, or SUS310 because rust is less likely to occur. In addition, stainless steel invar material having a low low thermal expansion coefficient although rust is somewhat generated can minimize the influence of the displacement and shape change of the mask 50 due to the environmental temperature change, and gives a thermal history with the mask 50 applied. At this time, when applying the temperature-adjusted coating liquid 40 to the strip package 8, it is most preferable because the positional deviation between the mask 50 and the strip package 8 can be suppressed. When using this stainless steel invar material, the above-mentioned protective layer 54 is preferably used on the surface of the mask 50 to prevent rust.
Since the Al material is easy to process, when a large amount of the mask 50 having a more complicated shape is required, it becomes a preferable material for reducing the processing cost.
Cu has a very high thermal conductivity, and is preferable when it is desired to follow the substrate in a high temperature environment or a change in the temperature of the outer periphery. The Cu mask 50 can also be used as a heat sink, and the temperature of the strip-shaped package 8 can be controlled through the mask 50 by bringing the Cu mask 50 into contact with a heat source or a cooling source.
Since Ti is a light and high-strength material, it is preferable when making a mask 50 having a larger area than SUS-based materials.
The thickness of the metal mask 50 is preferably 0.2 to 2.0 mm. If the thickness is less than 0.2 mm, the mask 50 itself may be warped. If the thickness exceeds 2.0 mm, the end of the mask 50 becomes an obstacle when the liquid mixture 40 is applied. This makes it difficult to apply.
A protective layer 54 may be formed on the surface of the metal mask 50 similarly to the resin mask 50.
When the metal mask 50 is used, it can be machined, rolled, pressed, or the like.
The metal mask 50 has a high cost merit (but not as much as a resin material) and is relatively easy to process. Therefore, the metal mask 50 can be processed into a complicated shape, and the shape of the package 1 and the LED element 3 is changed. Can also respond.
Furthermore, the metal mask 50 is superior in solvent resistance as compared to the case of resin, and can widely correspond to (use) the type of solvent used in the ceramic precursor solution.
In addition, since the hardness of the metal mask 50 is approximately the same as or inferior to the hardness of the phosphor, if the protective layer 54 is formed on the surface of the mask 50, the strength of the surface of the mask 50 is improved. Even when a strong jet is received, the mask 50 can be prevented from being damaged by the strong phosphor.
 また、マスク50は、アルミナ、窒化珪素、炭化珪素、ジルコニアの少なくとも1つのセラミックス材料から構成されてもよい。セラミック製のマスク50は、これらセラミックス材料のうち、1種のセラミックス材料から構成されてもよいし、2種以上のセラミックス材料による組み合わせ(合金)で構成されてもよい。
 アルミナは特に加工性に優れており、セラミックス系材料で複雑な形状をマスク50に求める場合に好ましい。
 一方、窒化ケイ素も加工性は優れているが、特に熱膨張率が低いため、環境温度変化によるマスク50の位置ずれや形状変化の影響を最も小さく抑えることができ、マスク50をかけたまま熱履歴を与える際にマスク50と帯状パッケージ8との位置ずれが少なく抑えられて最も好ましい。
 炭化珪素は非常に硬い材料であり、蛍光体によるマスク50の摩耗・損傷はほとんどない。ごみの発生率を最小にしたい場合に好ましい。
 ジルコニアは熱伝導率が低く、瞬間的な周囲の熱の変化があった場合その変化を帯状パッケージ8に伝えたくない場合、例えば温調管理された塗布液40を乾燥させる際にハロゲンライト等で瞬間的に表面を熱して水分や溶液を乾燥させる際に、帯状パッケージ8の不要な加熱を防ぐことができる。
 セラミック製のマスクの厚さは好ましくは0.5~2.0mmである。厚さが0.5mm未満であるとマスク50自体が反り返る可能性があり、厚さが2.0mmを超えるとマスク50の端部が混合液40を塗布する際の妨害物となって設計範囲で塗布するのが困難になることによる。
 セラミック製のマスク50を使用する場合、焼結法と機械加工とを組み合わせた手法で生産可能である。
 セラミック製のマスク50によれば、硬度自体が大きいため、保護層54のような部材を設けなくても、強硬な蛍光体によるマスク50の破損を防止することができる。
 さらに、セラミック製のマスク50によれば、金属製のマスク50と同様に、樹脂製の場合に比較して、耐溶媒性に優れ、セラミック前駆体溶液に使用する溶媒の種類に広く対応(使用)することができる。
 金属製またはセラミック製のマスク50を使用する場合、樹脂製のマスク50のように帯状パッケージ8に貼付するのではなく、帯状パッケージ8の所定位置に載置するかまたは帯状パッケージ8に対し一定の間隔をあけて配置すればよい。
The mask 50 may be made of at least one ceramic material of alumina, silicon nitride, silicon carbide, or zirconia. The ceramic mask 50 may be composed of one ceramic material among these ceramic materials, or may be composed of a combination (alloy) of two or more ceramic materials.
Alumina is particularly excellent in workability and is preferable when a complex shape is required for the mask 50 with a ceramic material.
On the other hand, silicon nitride is also excellent in workability, but since its coefficient of thermal expansion is particularly low, the influence of displacement and shape change of the mask 50 due to environmental temperature changes can be minimized, and heat can be applied while the mask 50 is applied. When giving a history, the positional deviation between the mask 50 and the strip package 8 is most preferably suppressed.
Silicon carbide is a very hard material, and the mask 50 is hardly worn or damaged by the phosphor. It is preferable when you want to minimize the incidence of garbage.
Zirconia has a low thermal conductivity, and when there is an instantaneous change in ambient heat, when it is not desired to convey the change to the strip package 8, for example, when drying the temperature-controlled coating solution 40, a halogen light or the like is used. When the surface is instantaneously heated to dry the moisture and the solution, unnecessary heating of the strip package 8 can be prevented.
The thickness of the ceramic mask is preferably 0.5 to 2.0 mm. If the thickness is less than 0.5 mm, the mask 50 itself may be warped. If the thickness exceeds 2.0 mm, the end of the mask 50 becomes an obstacle when the liquid mixture 40 is applied. This makes it difficult to apply.
When the ceramic mask 50 is used, it can be produced by a method combining a sintering method and machining.
According to the ceramic mask 50, since the hardness itself is large, it is possible to prevent the mask 50 from being damaged by a strong phosphor without providing a member such as the protective layer 54.
Furthermore, according to the ceramic mask 50, as in the case of the metal mask 50, it is superior in solvent resistance compared to the case of the resin, and widely supports the types of solvents used in the ceramic precursor solution (use )can do.
When the metal or ceramic mask 50 is used, it is not attached to the strip package 8 like the resin mask 50 but is placed at a predetermined position of the strip package 8 or fixed to the strip package 8. What is necessary is just to arrange | position at intervals.
(2)蛍光体混合液塗布工程
 蛍光体混合液塗布工程で使用する蛍光体混合液40(蛍光体や添加剤)、工程について説明する。
 (2.1)蛍光体
 蛍光体は、LED素子3からの出射光の波長(励起波長)により励起されて、励起波長と異なる波長の蛍光を出射するものである。本実施形態では、青色LED素子から出射される青色光(波長420nm~485nm)を黄色光(波長550nm~650nm)に変換するYAG(イットリウム・アルミニウム・ガーネット)蛍光体を使用している。
 このような蛍光体は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、又は高温で容易に酸化物となる化合物を使用し、それらを化学量論比で十分に混合して混合原料を得る。或いは、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液をシュウ酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して混合原料を得る。そして、得られた混合原料にフラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得る。得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成し、蛍光体の発光特性を持つ焼結体を得る。
 なお、本実施形態ではYAG蛍光体を使用しているが、蛍光体の種類はこれに限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体等の他の蛍光体を使用することもできる。また、蛍光体の粒径が大きいほど発光効率(波長変換効率)は高くなる反面、有機金属化合物との界面に生じる隙間が大きくなって形成されたセラミック層の膜強度が低下する。従って、発光効率と有機金属化合物との界面に生じる隙間の大きさを考慮し、平均粒径が1μm以上50μm以下のものを用いることが好ましい。蛍光体の平均粒径は、例えばコールターカウンター法によって測定することができる。
(2) Phosphor mixture liquid application process The phosphor mixture liquid 40 (phosphor or additive) and process used in the phosphor mixture application process will be described.
(2.1) Phosphor The phosphor is excited by the wavelength (excitation wavelength) of light emitted from the LED element 3 and emits fluorescence having a wavelength different from the excitation wavelength. In this embodiment, a YAG (yttrium, aluminum, garnet) phosphor that converts blue light (wavelength 420 nm to 485 nm) emitted from the blue LED element into yellow light (wavelength 550 nm to 650 nm) is used.
Such phosphors use oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures, and are mixed well in a stoichiometric ratio. A mixed raw material is obtained. Alternatively, a coprecipitated oxide obtained by calcining a solution obtained by coprecipitation of a solution obtained by dissolving a rare earth element of Y, Gd, Ce, or Sm in an acid with a stoichiometric ratio with oxalic acid, and aluminum oxide or gallium oxide. Mix to obtain a mixed raw material. Then, an appropriate amount of fluoride such as ammonium fluoride is mixed with the obtained mixed raw material as a flux and pressed to obtain a molded body. The obtained molded body is packed in a crucible and fired in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body having the light emission characteristics of a phosphor.
In this embodiment, the YAG phosphor is used. However, the type of the phosphor is not limited to this. For example, other phosphors such as non-garnet phosphors containing no Ce are used. You can also. In addition, the larger the particle size of the phosphor, the higher the light emission efficiency (wavelength conversion efficiency). On the other hand, the gap formed at the interface with the organometallic compound is increased, and the film strength of the formed ceramic layer is lowered. Accordingly, in consideration of the size of the gap generated at the interface between the light emission efficiency and the organometallic compound, it is preferable to use one having an average particle diameter of 1 μm or more and 50 μm or less. The average particle diameter of the phosphor can be measured, for example, by a Coulter counter method.
(2.2)添加剤
 蛍光体混合液40の粘度を調整する方法としては膨潤粒子や無機粒子を溶媒に添加する手法が挙げられるが、蛍光体混合液40を増粘することができればいかなる手法も用いることが可能であり、これに限定されるわけではない。
(2.2) Additive The method for adjusting the viscosity of the phosphor mixture liquid 40 includes a technique of adding swollen particles or inorganic particles to the solvent. Any technique can be used as long as the phosphor mixture liquid 40 can be thickened. However, the present invention is not limited to this.
(2.2.1)膨潤粒子
 膨潤粒子としては例えば層状ケイ酸塩鉱物が挙げられる。
 層状ケイ酸塩鉱物は、雲母構造、カオリナイト構造、スメクタイト構造等の構造を有する膨潤性粘土鉱物が好ましく、膨潤性に富むスメクタイト構造が特に好ましい。これは混合液中に水を添加することで、スメクタイト構造の層間に水が進入して膨潤したカードハウス構造をとるため、混合液の粘性を大幅に増加させる効果があるためである。
 セラミック層中における層状ケイ酸塩鉱物の含有量が1重量%未満になると混合液の粘性を増加させる効果が十分に得られない。一方、層状ケイ酸塩鉱物の含有量が20重量%を超えると加熱後のセラミック層の強度が低下する。従って、層状ケイ酸塩鉱物の含有量は1重量%以上20重量%以下とすることが好ましく、1重量%以上10重量%以下がより好ましい。
 なお、有機溶媒との相溶性を考慮して、層状ケイ酸塩鉱物の表面をアンモニウム塩等で修飾(表面処理)したものを適宜用いることもできる。
(2.2.1) Swelled particles Examples of the swollen particles include layered silicate minerals.
The layered silicate mineral is preferably a swellable clay mineral having a structure such as a mica structure, a kaolinite structure, or a smectite structure, and particularly preferably a smectite structure rich in swellability. This is because by adding water to the mixed solution, a card house structure in which water enters and swells between layers of the smectite structure has an effect of greatly increasing the viscosity of the mixed solution.
When the content of the layered silicate mineral in the ceramic layer is less than 1% by weight, the effect of increasing the viscosity of the mixed solution cannot be obtained sufficiently. On the other hand, when the content of the layered silicate mineral exceeds 20% by weight, the strength of the ceramic layer after heating is lowered. Therefore, the content of the layered silicate mineral is preferably 1% by weight to 20% by weight, and more preferably 1% by weight to 10% by weight.
In consideration of compatibility with an organic solvent, a layered silicate mineral whose surface is modified (surface treatment) with an ammonium salt or the like can be used as appropriate.
(2.2.2)無機粒子
 無機粒子(酸化物微粒子)は、蛍光体混合液40の粘性を増加させる増粘効果だけでなく、有機金属化合物と、蛍光体との界面に生じる隙間を埋める充填効果、及び加熱後のセラミック層の膜強度を向上させる膜強化効果も有する。
 本発明に用いられる無機粒子としては、酸化ケイ素、酸化チタン、酸化亜鉛等の酸化物微粒子、フッ化マグネシウム等のフッ化物微粒子等が挙げられる。特に、有機金属化合物としてポリシロキサン等の含ケイ素有機化合物を用いる場合、形成されるセラミック層に対する安定性の観点から酸化ケイ素の微粒子を用いることが好ましい。
 セラミック層中における無機粒子の含有量が1重量%未満になると上述したそれぞれの効果が十分に得られない。一方、無機粒子の含有量が20重量%を超えると加熱後のセラミック層の強度が低下する。従って、セラミック層中における無機粒子の含有量は1重量%以上20重量%以下とすることが好ましく、1重量%以上10重量%以下がより好ましい。また、無機粒子の平均粒径は、上述したそれぞれの効果を考慮して0.001μm以上50μm以下のものを用いることが好ましい。無機粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。
(2.2.2) Inorganic particles Inorganic particles (oxide fine particles) fill not only the thickening effect that increases the viscosity of the phosphor mixture 40, but also the gap that occurs at the interface between the organometallic compound and the phosphor. It also has a filling effect and a film strengthening effect that improves the film strength of the ceramic layer after heating.
Examples of the inorganic particles used in the present invention include oxide fine particles such as silicon oxide, titanium oxide and zinc oxide, fluoride fine particles such as magnesium fluoride, and the like. In particular, when a silicon-containing organic compound such as polysiloxane is used as the organometallic compound, it is preferable to use silicon oxide fine particles from the viewpoint of stability with respect to the formed ceramic layer.
When the content of the inorganic particles in the ceramic layer is less than 1% by weight, the above-described effects cannot be sufficiently obtained. On the other hand, when the content of the inorganic particles exceeds 20% by weight, the strength of the ceramic layer after heating is lowered. Therefore, the content of the inorganic particles in the ceramic layer is preferably 1% by weight or more and 20% by weight or less, and more preferably 1% by weight or more and 10% by weight or less. The average particle diameter of the inorganic particles is preferably 0.001 μm or more and 50 μm or less in consideration of the above-described effects. The average particle diameter of the inorganic particles can be measured, for example, by a Coulter counter method.
(2.3)蛍光体混合液の調製
 蛍光体混合液40の調製手順としては、有機カチオンが添加された又は表面処理された親油性の膨潤粒子又は無機粒子を、先ず有機溶媒に予備混合し、その後に蛍光体、または蛍光体及び水を混合する。これにより、膨潤粒子又は無機粒子を均一に混合して増粘効果をより高めることができる。
 蛍光体混合液40の粘度は10~1000cPであり、好ましくは12~500cPであり、さらに好ましくは20~400cPであり、最も好ましくは50~300cPである。これら粘度は振動式粘度計(CBC社製VM-10A-L)を用いて測定されたものである。
 なお、蛍光体混合液40には、膨潤粒子のみが含有されてもよいし、無機粒子のみが含有されてもよいし、膨潤粒子と無機粒子との両方が含有されてもよい。
 上述のようにして調製した蛍光体混合液40は、蛍光体を定着させる定着液(セラミック前駆体)を含有しないので、後述する分離工程において第1のマスク50から蛍光体を含有する蛍光体含有物の分離がし易く、また、蛍光体に固着する物質がないため、蛍光体の再生がし易くなっている。
(2.3) Preparation of phosphor mixed solution As a preparation procedure of the phosphor mixed solution 40, lipophilic swelling particles or inorganic particles to which an organic cation is added or surface-treated are first premixed in an organic solvent. Thereafter, the phosphor or the phosphor and water are mixed. Thereby, swelling particle | grains or an inorganic particle can be mixed uniformly, and the thickening effect can be heightened more.
The viscosity of the phosphor mixture 40 is 10 to 1000 cP, preferably 12 to 500 cP, more preferably 20 to 400 cP, and most preferably 50 to 300 cP. These viscosities were measured using a vibration viscometer (VM-10A-L manufactured by CBC).
Note that the phosphor mixture liquid 40 may contain only swollen particles, may contain only inorganic particles, or may contain both swollen particles and inorganic particles.
Since the phosphor mixture liquid 40 prepared as described above does not contain a fixing solution (ceramic precursor) for fixing the phosphor, it contains a phosphor containing phosphor from the first mask 50 in the separation step described later. It is easy to separate matter, and since there is no substance fixed to the phosphor, it is easy to regenerate the phosphor.
(2.4)塗布装置
 蛍光体混合液40を塗布する場合、例えば図2Bの塗布装置10が使用される。
 塗布装置10は、主に、上下,左右,前後に移動可能な移動台20と、上記で説明した蛍光体混合液40を噴射可能なスプレー装置30と、を有している。
(2.4) Coating device When apply | coating the fluorescent substance liquid mixture 40, the coating device 10 of FIG. 2B is used, for example.
The coating device 10 mainly includes a movable table 20 that can move up and down, left and right, and back and forth, and a spray device 30 that can spray the phosphor mixture 40 described above.
 スプレー装置30は移動台20の上方に配置されている。
 スプレー装置30はエアーが送り込まれるノズル32を有しており、ノズル32にはエアーを送り込むためのエアーコンプレッサー(図示略)が接続されている。ノズル32の先端部の孔径は20μm~2mmであり、好ましくは0.1~0.3mmである。ノズル32は移動台20と同様に、上下,左右,前後に移動可能となっている。
 例えば、ノズル32としてはアネスト岩田社製スプレーガンW-101-142BPGが、コンプレッサーとしてはアネスト岩田社製OFP-071Cがそれぞれ使用される。
 ノズル32は角度調整も可能であり、移動台20(又はこれに設置されるLED基板1)に対し傾斜させることができるようになっている。被噴射物(LED基板1)に対するノズル32の角度は、当該被噴射物から垂直方向を0°とした場合、0~60°の範囲であることが好ましい。
 ノズル32には連結管34を介してタンク36が接続されている。タンク36には蛍光体混合液40が貯留されている。タンク36には撹拌子が入っており、蛍光体混合液40が常に撹拌されている。蛍光体混合液40を撹拌すれば、比重の大きい蛍光体の沈降を抑止することができ、蛍光体が蛍光体混合液40中で分散した状態を保持することができる。
 例えば、タンクとしてはアネスト岩田社製PC-51が使用される。
The spray device 30 is disposed above the movable table 20.
The spray device 30 has a nozzle 32 into which air is sent, and an air compressor (not shown) for sending air is connected to the nozzle 32. The hole diameter at the tip of the nozzle 32 is 20 μm to 2 mm, preferably 0.1 to 0.3 mm. The nozzle 32 is movable up and down, left and right, and front and rear, like the moving table 20.
For example, the spray gun W-101-142BPG manufactured by Anest Iwata is used as the nozzle 32, and the OFP-071C manufactured by Anest Iwata is used as the compressor.
The angle of the nozzle 32 can be adjusted, and the nozzle 32 can be tilted with respect to the movable table 20 (or the LED substrate 1 installed on the moving table 20). The angle of the nozzle 32 with respect to the injection target (LED substrate 1) is preferably in the range of 0 to 60 ° when the vertical direction from the injection target is 0 °.
A tank 36 is connected to the nozzle 32 via a connecting pipe 34. A fluorescent liquid mixture 40 is stored in the tank 36. The tank 36 contains a stirring bar, and the phosphor mixed solution 40 is constantly stirred. If the phosphor mixture liquid 40 is stirred, sedimentation of the phosphor having a large specific gravity can be suppressed, and a state in which the phosphor is dispersed in the phosphor mixture liquid 40 can be maintained.
For example, Anest Iwata PC-51 is used as the tank.
(2.5)蛍光体混合液の塗布
 実際に蛍光体混合液40を塗布する場合には、(LED素子3をあらかじめ実装した)複数のLED基板1を移動台20に設置し、LED基板1とスプレー装置30のノズル32との位置関係を調整する。
 詳しくは、LED基板1を移動台20に設置し、LED基板1とノズル32の先端部とを対向配置する。LED基板1とノズル32との距離を離すほど蛍光体混合液40を均一に塗布することが可能であるが、膜強度が低下する傾向もあるため、LED基板1とノズル32の先端部との距離は3~30cmの範囲に保持することが適している。
(2.5) Application of phosphor mixed solution When actually applying the phosphor mixed solution 40, a plurality of LED substrates 1 (on which the LED elements 3 are mounted in advance) are installed on the moving table 20, and the LED substrate 1 And the positional relationship between the nozzle 32 of the spray device 30 is adjusted.
Specifically, the LED substrate 1 is installed on the moving table 20, and the LED substrate 1 and the tip end portion of the nozzle 32 are arranged to face each other. The phosphor mixture liquid 40 can be uniformly applied as the distance between the LED substrate 1 and the nozzle 32 increases, but the film strength tends to decrease. It is suitable to keep the distance in the range of 3 to 30 cm.
 その後、LED基板1とノズル32とを互いに相対移動させながら、ノズル32から蛍光体混合液40を噴射してLED基板1に混合液40を塗布する(蛍光体塗布工程)。
 詳しくは、一方では、移動台20とノズル32とを移動させてLED基板1とノズル32とを前後左右に移動させる。移動台20とノズル32とのうちいずれか一方の位置を固定し、他方を前後左右に移動させてもよい。また、移動台20の移動方向と直交する方向にLED素子3を複数配置し、ノズル32を移動台20の移動方向と直交する方向に移動させながら塗布する方法も好ましく用いられる。他方では、ノズル32にエアーを送り込み、混合液40をノズル32の先端部からLED基板1に向けて噴射する。LED基板1とノズル32との距離についてはエアーコンプレッサーの圧力を考慮して上記の範囲で調整可能である。例えば、ノズル32の入り口部(先端部)の圧力が0.14MPaとなるようにコンプレッサーの圧力を調整する。
 以上の操作により、蛍光体混合液40をLED素子3上に塗布することができる。
Thereafter, while the LED substrate 1 and the nozzle 32 are moved relative to each other, the phosphor mixed solution 40 is sprayed from the nozzle 32 to apply the mixed solution 40 to the LED substrate 1 (phosphor applying step).
Specifically, on the other hand, the moving base 20 and the nozzle 32 are moved to move the LED substrate 1 and the nozzle 32 back and forth and right and left. Either one of the moving table 20 and the nozzle 32 may be fixed, and the other may be moved back and forth and left and right. A method of applying a plurality of LED elements 3 in a direction orthogonal to the moving direction of the moving table 20 and moving the nozzle 32 in a direction orthogonal to the moving direction of the moving table 20 is also preferably used. On the other hand, air is fed into the nozzle 32 and the mixed liquid 40 is sprayed from the tip of the nozzle 32 toward the LED substrate 1. The distance between the LED substrate 1 and the nozzle 32 can be adjusted in the above range in consideration of the pressure of the air compressor. For example, the pressure of the compressor is adjusted so that the pressure at the inlet (tip) of the nozzle 32 is 0.14 MPa.
By the above operation, the phosphor mixed solution 40 can be applied onto the LED element 3.
(3)第1のマスク除去工程
 第1のマスク除去工程では、図2Cに示すとおり、帯状パッケージ8からマスク50を剥離する。
(3) First Mask Removal Step In the first mask removal step, the mask 50 is peeled from the strip package 8 as shown in FIG. 2C.
(4)分離工程
 (4・1)分離手段
 図2Dに示すとおり、分離手段としては、マスク50を叩くなど、振動させることによって、マスク50から蛍光体含有物を分離する。
 また、重力によりマスク50から蛍光体含有物を分離してもよい。具体的には、マスク50を自然乾燥させて表裏面をひっくり返したり、マスク50を斜めに傾けることによって蛍光体含有物を分離する。
 また、蛍光体含有物を掻き取ることによって、マスク50から蛍光体含有物を分離するようにしてもよい。
 さらに、マスク50上にフィルム(図示しない)を貼り付けておき、このフィルムに付着した蛍光体含有物を、フィルムを剥がすことによって分離してもよい。
(4) Separation process (4.1) Separation means As shown in FIG. 2D, as the separation means, the phosphor-containing material is separated from the mask 50 by vibrating the mask 50, for example.
Further, the phosphor-containing material may be separated from the mask 50 by gravity. Specifically, the phosphor-containing material is separated by naturally drying the mask 50 so that the front and back surfaces are turned over or the mask 50 is tilted.
Alternatively, the phosphor-containing material may be separated from the mask 50 by scraping the phosphor-containing material.
Furthermore, a film (not shown) may be attached on the mask 50, and the phosphor-containing material attached to the film may be separated by peeling off the film.
 (4.2)不純物除去工程
 (4)の分離工程で分離した蛍光体含有物から不純物を除去する不純物除去工程を行ってもよい。不純物の除去方法としては、蛍光体以外の全てを不純物として除去する方法と、有機系の不純物のみを除去する方法の2通りがある。つまり、蛍光体のみを回収して再利用する方法と、不純物(膨潤粒子や無機粒子)の混ざった蛍光体を回収して再利用する方法とがある。
 前者の蛍光体以外の全ての不純物を除去する方法としては、分離工程で分離した蛍光体含有物を溶媒で溶かし、径が1μmより小さいフィルターで濾過することによって、蛍光体のみを分離・回収することができる。これは、膨潤粒子や無機粒子に比べて蛍光体の粒径は大きいため、蛍光体のみを分離することができる。
 後者の有機系の不純物のみを除去する方法としては、分離工程で分離した蛍光体含有物を100℃~120℃の高温で焼くことで蛍光体や膨潤粒子(及び無機粒子)を分離・回収することができる。なお、蛍光体以外の全ての不純物を除去した方が、再利用する際に、純度を高くすることができるのでより好ましい。
また、不純物除去工程を経て得られた蛍光体は、その後、発光効率を検査する(検査工程)。検査工程で得られた蛍光体の発光効率に基づいて、回収で得られた蛍光体と回収工程を経ていない未使用の蛍光体を混ぜる割合を調整することで、所定の色での発光が得られる蛍光体混合液40を再度作製することができる。あるいは、未使用の蛍光体を用いず、回収で得られた蛍光体のみを用いて蛍光体混合液40を再度作製しても良い。
(4.2) Impurity removal step An impurity removal step of removing impurities from the phosphor-containing material separated in the separation step of (4) may be performed. There are two methods for removing impurities, a method for removing everything other than phosphors as impurities and a method for removing only organic impurities. That is, there are a method of collecting and reusing only the phosphor, and a method of collecting and reusing a phosphor mixed with impurities (swelling particles and inorganic particles).
As a method of removing all impurities other than the former phosphor, only the phosphor is separated and recovered by dissolving the phosphor-containing material separated in the separation step with a solvent and filtering with a filter having a diameter smaller than 1 μm. be able to. This is because the particle size of the phosphor is larger than that of the swollen particles and inorganic particles, so that only the phosphor can be separated.
As a method for removing only the latter organic impurities, the phosphor and the swollen particles (and inorganic particles) are separated and recovered by baking the phosphor-containing material separated in the separation process at a high temperature of 100 ° C. to 120 ° C. be able to. In addition, it is more preferable to remove all impurities other than the phosphor because the purity can be increased when reused.
In addition, the phosphor obtained through the impurity removal step is then inspected for luminous efficiency (inspection step). Based on the luminous efficiency of the phosphor obtained in the inspection process, light emission in a predetermined color can be obtained by adjusting the ratio of the phosphor obtained in the collection and the unused phosphor that has not undergone the collection process. The phosphor mixed liquid 40 to be produced can be produced again. Or you may produce the fluorescent substance liquid mixture 40 again only using the fluorescent substance obtained by collection | recovery, without using an unused fluorescent substance.
(5)定着液塗布工程
 (5.1)定着液
 定着液42は、セラミック前駆体としての金属化合物を溶媒に分散させた溶液であり、透光性のセラミックスを形成することができれば金属の種類に制限はない。
(5) Fixing solution application process (5.1) Fixing solution The fixing solution 42 is a solution in which a metal compound as a ceramic precursor is dispersed in a solvent. If a translucent ceramic can be formed, the kind of metal is used. There is no limit.
 (5.1.1)ゾル-ゲル溶液
 定着液42としては、加水分解等の反応によりゲル化した後、ゲルを加熱することによりセラミックスが形成されるもの(ゾルゲル溶液)であってもよいし、溶媒成分を揮発させることにより、ゲル化することなく直接セラミックスが形成されるものであってもよい。
 前者(ゾルゲル溶液)の場合、金属化合物は有機化合物でもよいし無機化合物でもよい。好ましい金属化合物としては、例えば、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレート、硝酸塩、酸化物などが挙げられる。中でも金属アルコキシドは、加水分解と重合反応によりゲル化し易いため好ましく、特にテトラエトキシシランが好ましい。複数種の金属化合物を組み合わせて使用してもよい。定着液としては、上記金属化合物の他、加水分解用の水、溶媒、触媒等を適宜含有させることが好ましい。
 溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類が挙げられる。
 触媒としては、例えば、塩酸、硫酸、硝酸、酢酸、フッ酸、アンモニア等が挙げられる。
 金属化合物としてテトラエトキシシランを用いる場合、テトラエトキシシラン100質量部に対して、エチルアルコール138質量部、純水52質量部とすることが好ましい。
(5.1.1) Sol-gel solution The fixing solution 42 may be a solution (sol-gel solution) in which ceramics are formed by heating the gel after gelation by a reaction such as hydrolysis. Further, by volatilizing the solvent component, the ceramic may be directly formed without gelation.
In the former case (sol-gel solution), the metal compound may be an organic compound or an inorganic compound. Examples of preferable metal compounds include metal alkoxides, metal acetylacetonates, metal carboxylates, nitrates, and oxides. Of these, metal alkoxides are preferred because they are easily gelled by hydrolysis and polymerization reaction, and tetraethoxysilane is particularly preferred. A plurality of types of metal compounds may be used in combination. As the fixing solution, it is preferable to appropriately contain water for hydrolysis, a solvent, a catalyst and the like in addition to the metal compound.
Examples of the solvent include alcohols such as methanol, ethanol, propanol, and butanol.
Examples of the catalyst include hydrochloric acid, sulfuric acid, nitric acid, acetic acid, hydrofluoric acid, ammonia and the like.
When tetraethoxysilane is used as the metal compound, it is preferable to use 138 parts by mass of ethyl alcohol and 52 parts by mass of pure water with respect to 100 parts by mass of tetraethoxysilane.
 (5.1.2)ポリシラザン
 セラミック前駆体としてポリシラザンも使用可能である。
 本発明で用いられるポリシラザンとは下記一般式(i)で表される。
   (RSiNR … (i)
 式(i)中、R、R、及びRはそれぞれ独立して水素原子又はアルキル基、アリール基、ビニル基、シクロアルキル基を表し、R、R、Rのうち少なくとも1つは水素原子であり、好ましくはすべてが水素原子であり、nは1~60の整数を表す。
 ポリシラザンの分子形状はいかなる形状であってもよく、例えば、直鎖状又は環状であってもよい。
 上記式(i)に示すポリシラザンと必要に応じた反応促進剤を、適切な溶媒に溶かして塗布し、加熱やエキシマ光処理、UV光処理を行うことで硬化し、耐熱性、耐光性の優れたセラミック膜を作製することができる。特に、170~230nmの範囲の波長成分を含むUVU放射線(例えばエキシマ光)を照射して硬化させた後に、加熱硬化を行うとさらに水分の浸透防止効果を向上させることができる。
 反応促進剤としては酸、塩基などを用いることが好ましいが用いなくても良い。反応促進剤としては例えばトリエチルアミン、ジエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、塩酸、シュウ酸、フマル酸、スルホン酸、酢酸やニッケル、鉄、パラジウム、イリジウム、白金、チタン、アルミニウムを含む金属カルボン酸塩などが挙げられるがこれに限られない。
 反応促進剤を用いる場合に特に好ましいのは金属カルボン酸塩であり、添加量はポリシラザンを基準にして0.01~5mol%が好ましい添加量である。
 溶媒としては脂肪族炭化水素、芳香族炭化水素、ハロゲン炭化水素、エーテル類、エステル類を使用することができる。好ましくはメチルエチルケトン、テトラヒドロフラン、ベンゼン、トルエン、キシレン、ジメチルフルオライド、クロロホルム、四塩化炭素、エチルエーテル、イソプロピルエーテル、ジブチルエーテル、エチルブチルエーテルである。
 また、ポリシラザン濃度は高い方が好ましいが、濃度の上昇はポリシラザンの保存期間の短縮につながるため、ポリシラザンは、溶媒中に5質量%以上50質量%以下で溶解していることが好ましい。
(5.1.2) Polysilazane Polysilazane can also be used as a ceramic precursor.
The polysilazane used in the present invention is represented by the following general formula (i).
(R 1 R 2 SiNR 3 ) n (i)
In formula (i), R 1 , R 2 , and R 3 each independently represent a hydrogen atom or an alkyl group, an aryl group, a vinyl group, or a cycloalkyl group, and at least one of R 1 , R 2 , and R 3 One is a hydrogen atom, preferably all are hydrogen atoms, and n represents an integer of 1 to 60.
The molecular shape of polysilazane may be any shape, for example, linear or cyclic.
Polysilazane represented by the above formula (i) and a reaction accelerator as required are dissolved in an appropriate solvent and cured by heating, excimer light treatment, UV light treatment, and excellent heat resistance and light resistance. A ceramic film can be produced. In particular, the effect of preventing penetration of moisture can be further improved by heat curing after irradiation with UVU radiation (eg, excimer light) containing a wavelength component in the range of 170 to 230 nm.
As the reaction accelerator, an acid, a base, or the like is preferably used, but it may not be used. Examples of reaction accelerators include triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, acetic acid, nickel, iron, palladium , Metal carboxylates including iridium, platinum, titanium, and aluminum, but are not limited thereto.
Particularly preferred when a reaction accelerator is used is a metal carboxylate, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
As the solvent, aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, and esters can be used. Preferred are methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, ethyl ether, isopropyl ether, dibutyl ether, and ethyl butyl ether.
The polysilazane concentration is preferably higher, but since the increase in concentration leads to a shortening of the polysilazane storage period, the polysilazane is preferably dissolved in the solvent at 5% by mass or more and 50% by mass or less.
 (5.2)定着液の塗布
 図2Eに示すとおり、定着液42を塗布する場合は、蛍光体混合液40を塗布した場合と同様にして、図2Bと同様の塗布装置10を使用し、蛍光体混合液40が塗布されたLED素子3上に定着液42を塗布することができる。なお、蛍光体混合液40が塗布されたLED素子3上に定着液42を塗布する際、蛍光体混合液40が乾燥した状態であっても良いし、未乾燥の状態であってもよい。蛍光体混合液40を乾燥させた後に、定着液42を塗布する場合、定着液42をLED素子3上に塗布するときの塗布圧力によってLED素子3上の蛍光体が移動してしまうのを低減できるため、LED素子3の色度の均一性を高めることができる。
 なお、定着液42の塗布の際に、蛍光体混合液40を塗布した場合と同様に、蛍光体混合液40が塗布されたLED素子3上に、当該LED素子3の一部を覆う第2のマスク60を配置して、定着液42をLED素子3上に塗布してもよい。その後、LED素子3上から第2のマスク60を取り除いて、第2のマスク60から付着した定着液42中のセラミック前駆体としての金属化合物等を分離してもよい。なお、第2のマスク60は、第1のマスク50と同様のものを使用することができる。
(5.2) Application of Fixing Solution As shown in FIG. 2E, when the fixing solution 42 is applied, the same application apparatus 10 as in FIG. 2B is used in the same manner as when the phosphor mixed solution 40 is applied. A fixing solution 42 can be applied on the LED element 3 to which the phosphor mixed solution 40 is applied. In addition, when apply | coating the fixing liquid 42 on the LED element 3 to which the fluorescent substance mixed liquid 40 was apply | coated, the state which the fluorescent substance mixed liquid 40 may be dried may be sufficient. When the fixing liquid 42 is applied after the phosphor mixed liquid 40 is dried, the movement of the phosphor on the LED element 3 due to the application pressure when the fixing liquid 42 is applied onto the LED element 3 is reduced. Therefore, the chromaticity uniformity of the LED element 3 can be improved.
As in the case of applying the phosphor mixture liquid 40 when the fixing liquid 42 is applied, a second part of the LED element 3 covering the LED element 3 to which the phosphor mixture liquid 40 is applied is covered. The fixing solution 42 may be applied onto the LED element 3 by arranging the mask 60. Thereafter, the second mask 60 may be removed from the LED element 3 to separate a metal compound or the like as a ceramic precursor in the fixing solution 42 attached from the second mask 60. Note that the second mask 60 can be the same as the first mask 50.
(6)乾燥工程
 乾燥工程では、定着液塗布後に加熱することで定着液42を乾燥させて、波長変換部6を形成する(完成させる)ことができる。
 加熱温度としては、120℃~500℃が好ましく、LED素子3等の劣化をより抑制する観点からは120℃~200℃とすることがより好ましい。
(6) Drying Step In the drying step, the wavelength conversion section 6 can be formed (completed) by drying the fixing solution 42 by heating after applying the fixing solution.
The heating temperature is preferably 120 ° C. to 500 ° C., and more preferably 120 ° C. to 200 ° C. from the viewpoint of further suppressing deterioration of the LED element 3 and the like.
 以上、本発明の実施形態によれば、第1のマスク50を介して蛍光体混合液40を塗布し、その後、第1のマスク50をLED素子3上から除去して、第1のマスク50から蛍光体含有物を分離しており、蛍光体を定着させる前に蛍光体含有物を分離させるので、複雑な処理工程を経ることなく、容易に蛍光体含有物を回収することができる。その結果、分離した蛍光体含有物からさらに不純物を分離することで、蛍光体を再利用することができる。つまり、本発明では、蛍光体混合液40中に蛍光体を定着させる定着液を含有させないので、第1のマスク50から蛍光体含有物を分離し易く、また、蛍光体混合液40中では蛍光体に固着する物質が無いことから、分離した蛍光体含有物を再生し易いという効果が得られる。
 また、第1のマスク50を振動させたり、重力を利用したり、あるいは、掻き取ることによって第1のマスク50から蛍光体含有物を分離するので、簡易な方法で容易に分離することができる。
 また、第1のマスク50から分離した蛍光体含有物からさらに不純物を除去するので、蛍光体のみを回収して再利用することができる。また、蛍光体含有物を加熱することによって不純物を除去することによって、不純物の除去も容易となる。
 また、回収した蛍光体の発光効率を検査するので、発光効率の良い蛍光体を分別でき、それを再利用することができる。
 LED素子3上に、第2のマスク60を配置して、定着液42をLED素子3上に塗布するので、第2のマスク60を回収して、第2のマスク60から定着液42中の金属化合物等を分離することで、金属化合物等も再利用することができる。
 また、従来のように、例えば特許第4450547号公報や特開2005-311395号公報の場合には、マスクを使用して塗布液を塗布し続けると、乾燥後に得られる波長変換部にゴミが付着している場合がある。このような問題に対し、本発明者がその現象について検討したところ、塗布液中にイソプロピルアルコール(IPA)などの有機溶媒が含まれる場合、そのアルコール系溶媒によりマスクの一部が溶解して剥離し、その断片が塗布液中に混入するということがわかってきた。特に蛍光体を含むスプレー法にて直接塗布する場合、前記溶解によるゴミの発生に加えて、硬い蛍光体を吹き付けられることによってマスクが削られて微小なゴミが飛散し波長変換部に付着するという問題があった。そこで、上述のように、混合液40を塗布する場合に、耐アルコール性を有する樹脂製のマスク50を使用することによって、混合液40中のアルコール系溶媒による溶解が抑制され、波長変換部6に対してマスク50の溶解物によるゴミが混入するのを防止することができる。
 樹脂製のマスク50を使用する場合、プレス成形などで大量生産可能である。
 樹脂製のマスク50によれば、コストメリットが高く使い捨ても可能となり、複雑な形状にも加工できるため、パッケージ1やLED素子3などの形状が将来的に変わっても対応が可能となる。
 さらに、マスク50の表面に保護層54を形成した場合には、マスク50の表面の強度が向上するため、混合液40の強い噴射を受けたときでも、強硬な蛍光体によるマスク50の破損を防止することができる。
As described above, according to the embodiment of the present invention, the phosphor mixture liquid 40 is applied through the first mask 50, and then the first mask 50 is removed from the LED element 3, and the first mask 50. Since the phosphor-containing material is separated from the phosphor, and the phosphor-containing material is separated before fixing the phosphor, the phosphor-containing material can be easily recovered without going through complicated processing steps. As a result, the phosphor can be reused by further separating impurities from the separated phosphor-containing material. That is, in the present invention, since the phosphor mixture liquid 40 does not contain a fixing solution for fixing the phosphor, the phosphor-containing material can be easily separated from the first mask 50, and the phosphor mixture liquid 40 is not fluorescent. Since there is no substance that adheres to the body, the effect of easily regenerating the separated phosphor-containing material is obtained.
Further, since the phosphor-containing material is separated from the first mask 50 by vibrating the first mask 50, using gravity, or scraping off, it can be easily separated by a simple method. .
Further, since impurities are further removed from the phosphor-containing material separated from the first mask 50, only the phosphor can be recovered and reused. Further, by removing the impurities by heating the phosphor-containing material, the impurities can be easily removed.
Further, since the emission efficiency of the collected phosphor is inspected, it is possible to sort out phosphors with good emission efficiency and reuse them.
Since the second mask 60 is disposed on the LED element 3 and the fixing solution 42 is applied onto the LED element 3, the second mask 60 is recovered and the second mask 60 is used to fix the solution in the fixing solution 42. By separating the metal compound or the like, the metal compound or the like can also be reused.
Further, as in the prior art, for example, in the case of Japanese Patent No. 4450547 and Japanese Patent Application Laid-Open No. 2005-311395, if the coating liquid is continuously applied using a mask, dust adheres to the wavelength conversion section obtained after drying. May have. When the present inventor examined the phenomenon for such a problem, when the coating solution contains an organic solvent such as isopropyl alcohol (IPA), a part of the mask is dissolved and peeled off by the alcohol solvent. However, it has been found that the fragments are mixed in the coating solution. In particular, in the case of direct application by a spray method including a phosphor, in addition to the generation of dust due to the dissolution, the mask is shaved by spraying a hard phosphor, so that minute dust is scattered and adheres to the wavelength conversion unit. There was a problem. Therefore, as described above, when the mixed solution 40 is applied, by using the alcohol-resistant resin mask 50, dissolution by the alcohol solvent in the mixed solution 40 is suppressed, and the wavelength conversion unit 6. On the other hand, it is possible to prevent dust from being dissolved in the mask 50 from being mixed.
When the resin mask 50 is used, it can be mass-produced by press molding or the like.
The resin mask 50 is cost-effective and can be disposable, and can be processed into a complicated shape. Therefore, even if the shape of the package 1 or the LED element 3 changes in the future, it becomes possible to cope with it.
Further, when the protective layer 54 is formed on the surface of the mask 50, the strength of the surface of the mask 50 is improved, so that the mask 50 is damaged by the strong phosphor even when the liquid mixture 40 is strongly jetted. Can be prevented.
 なお、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
 例えば、上記実施形態の定着液塗布工程では、蛍光体混合液塗布工程で使用したスプレー装置30を使用するとしたが、図4に示すとおり、別途、定着液用のスプレー装置80を設けて、定着液42をLED素子3に塗布しても良い。定着液用のスプレー装置80の構成は蛍光体混合液用のスプレー装置30と同様である。この場合も、上述したとおり、蛍光体混合液40をマスク50を介してスプレー装置30で塗布した後、定着液42をマスク60を介してスプレー装置80で塗布すればよい。このように蛍光体混合液40と定着液42とを別のスプレー装置30,80で塗布することによって、定着液42と蛍光体混合液40を、それぞれ噴出量や噴出圧、粘度などをより最適化でき、LED素子3に対し各溶液をより分散させた状態で均一に塗布することができる。
In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can change suitably.
For example, in the fixing solution application process of the above embodiment, the spray device 30 used in the phosphor mixed solution application step is used. However, as shown in FIG. The liquid 42 may be applied to the LED element 3. The configuration of the fixing liquid spray device 80 is the same as that of the phosphor mixed liquid spray device 30. Also in this case, as described above, after the phosphor mixture liquid 40 is applied by the spray device 30 through the mask 50, the fixing solution 42 may be applied by the spray device 80 through the mask 60. In this way, by applying the phosphor mixture liquid 40 and the fixing liquid 42 with different spray devices 30 and 80, the fixing liquid 42 and the phosphor mixture liquid 40 are more optimal in terms of ejection amount, ejection pressure, viscosity, etc., respectively. And each solution can be uniformly applied to the LED element 3 in a dispersed state.
 ここで、上述したマスク50,60の形状のバリエーションについて説明する。
 なお、以下のマスクを使用する場合に、図5、図6、図7Aに示すように、パッケージ1の凹部8aを形成する内壁面81は、上方に向けて拡径するようにテーパー面となっていることが好ましい。
 マスク50Fは、帯状パッケージ8と同様に帯状(テープ状)をなしており、図7Bに示すとおり、帯状パッケージ8の凹部8aに対応する位置に、平面視矩形状の貫通穴52が形成されている。貫通穴52のうちLED素子3の上方に対応する位置には、LED素子3の上面全面を覆うように覆い部51が形成されている。この場合、覆い部51はLED素子3の平面形状よりも若干大きな矩形状をなしている。
 覆い部51は、貫通穴52を形成する内周面53のうち互いに対向する面に架け渡された支持部55によって支持されている。
 したがって、覆い部51がLED素子3の上面全面を覆うことにより、スプレー装置30のノズル32から噴射された混合液40が、覆い部51の稜線付近でLED素子3側に回り込むように流れ込み、混合液40の噴流が変化するようになっている。その結果、LED素子3の側面及び上面に混合液40が均一に付着される。
Here, the variation of the shape of the masks 50 and 60 will be described.
When the following mask is used, as shown in FIGS. 5, 6, and 7A, the inner wall surface 81 that forms the concave portion 8a of the package 1 becomes a tapered surface so as to increase in diameter upward. It is preferable.
The mask 50F has a belt-like shape (tape shape) like the belt-like package 8, and as shown in FIG. 7B, a through-hole 52 having a rectangular shape in plan view is formed at a position corresponding to the concave portion 8a of the belt-like package 8. Yes. A cover portion 51 is formed at a position corresponding to the upper side of the LED element 3 in the through hole 52 so as to cover the entire upper surface of the LED element 3. In this case, the cover 51 has a rectangular shape that is slightly larger than the planar shape of the LED element 3.
The cover portion 51 is supported by a support portion 55 that spans the surfaces of the inner peripheral surface 53 that forms the through hole 52 that face each other.
Therefore, the cover 51 covers the entire upper surface of the LED element 3, so that the mixed liquid 40 sprayed from the nozzle 32 of the spray device 30 flows so as to flow around the LED element 3 near the ridge line of the cover 51. The jet of the liquid 40 changes. As a result, the mixed solution 40 is uniformly attached to the side surface and the upper surface of the LED element 3.
 マスク50Fは図7A,図7Bに示す形状以外であってもよく、以下に、その他のマスク形状について説明する。
 図8A,図8Bに示すマスク50Aも、帯状パッケージ8と同様に帯状(テープ状)をなしており、帯状パッケージ8の凹部8aに対応する位置に、平面視矩形状の貫通穴52Aが形成されている。そして、マスク50Aの貫通穴52Aを形成する内周面53Aは、帯状パッケージ8の凹部8aを形成する内壁面81であるテーパー面に対してほぼ面一となるように、同じ傾斜角度を有するテーパー面となっている。
 したがって、スプレー装置30のノズル32から噴射された混合液40がテーパー面(内周面53A)及び凹部8aを形成する内壁面81であるテーパー面に沿ってスムーズに流れて、LED素子3の側面側に回り込む。その結果、噴流をLED素子3の周囲に集めることができ、LED素子3の側面及び上面に混合液40が均一に付着される。
The mask 50F may have a shape other than those shown in FIGS. 7A and 7B, and other mask shapes will be described below.
The mask 50A shown in FIGS. 8A and 8B has a band shape (tape shape) like the band package 8, and a rectangular through hole 52A in a plan view is formed at a position corresponding to the concave portion 8a of the band package 8. ing. Then, the inner peripheral surface 53A that forms the through hole 52A of the mask 50A has a taper having the same inclination angle so as to be substantially flush with the tapered surface that is the inner wall surface 81 that forms the concave portion 8a of the band-shaped package 8. It is a surface.
Therefore, the liquid mixture 40 sprayed from the nozzle 32 of the spray device 30 flows smoothly along the tapered surface (inner peripheral surface 53A) and the tapered surface which is the inner wall surface 81 forming the recess 8a, and the side surface of the LED element 3 Go around to the side. As a result, the jet can be collected around the LED element 3, and the mixed liquid 40 is uniformly attached to the side surface and the upper surface of the LED element 3.
 図9Aに示すマスク50Bも、帯状パッケージ8と同様に帯状(テープ状)をなしている。マスク50Bは、帯状パッケージ8の凹部8aに対応する位置が多数の網目56B(貫通穴)からなる網目形状をなしている。多数の網目56Bは、ほぼ均一な大きさの矩形状となっている。
 図9Bに示すマスク50Cは、図9Aに示すマスク50Bと異なり、多数の網目56Cは、その中心が密で、外周が疎の網目となっている。
 一方、図9Cに示すマスク50Dは、図9Aに示すマスク50Bと異なり、多数の網目56Dは、その中心が疎で、外周が密の網目となっている。
 図9B、図9Cに示すマスク50C及び50Dでは網目56C,56Dが形成されているので、スプレー装置30のノズル32から噴射された混合液40が多数の網目56C,56D間を流れ込み、噴流に流量差が発生することで、噴流が変化するようになっている。
 ノズル口の大きさやノズルとチップの位置・噴霧する液の粘性、混入される蛍光体の密度や重量等の諸所の条件により細かい設定は異なるが、一般的な傾向は、図9Aのように均一な網目マスク50Bを用いる場合は、蛍光体の密度が比較的小さく、また、液の粘度が低くノズルで拡散しやすい液の場合に用いる。マスク通過後の噴流が霧状になりやすく、側面に均一に付着しやすい。
 図9B,図9Cのマスク50C、50Dのように中心と外縁に網目の粗密差を持たせたい場合は主に蛍光体の密度が大きく噴霧された粒の直進性が強い場合と、ノズルの角度や配置を調整した場合に用いる。
 マスク50Cのように中心が密で、外周が疎の網目のマスクの場合、チップのほぼ直上付近にノズルを配置して噴霧すると、マスクに届いた噴流は網目56Cの疎から密の方向に噴流が拡散し、LED素子3の側面及び上面に混合液40を均一に付着される。
 一方、マスク50Dはチップの斜め位置にノズルを配置した場合や、あるいはノズルに角度を持たせて噴霧させた場合に、側面とチップ上面の膜厚を均一にする効果を有する。この場合の噴流は斜めに入斜されるので、側面につきやすく上面につきにくくなる。このような場合にマスク50Dを用いると、蛍光体の厚さを均一に付着させることができる。
 このようにノズルや液の条件や配置を変更しても、覆うマスクの形状を変更するだけでチップ側面に均一に蛍光体を付着することができる。
 なお、図9A~図9Cの網目状のマスク50B,50C,50Dのうち、図9B,図9Cの網目状マスク50C,50Dの方が、図9Aの網目状マスク50Bよりも噴流に流量差を発生させやすい点で好ましい。
 なお、図9A~図9Cに示した網目状のマスク50B,50C,50Dは、帯状パッケージ8の凹部8aに対応する位置のマスク部分のみ記載したものであって、この網目部分よりも外側は、帯状パッケージ8の上面に貼り付けられる網目の無い部分となっている。
 また、網目56B,56C,56Dの形状は、スプレー条件やLED素子3の大きさ形状等によって、矩形状、菱形、円形等に適宜変更可能である(例えば、図9Dのマスク50Da参照)。
 なお、この網目構造のマスクの場合は噴流の巻き込みが他と比べて大きいため、パッケージの内壁面が上方に向けて拡径していなくても蛍光体の厚さを均一に付着させることができる。
The mask 50 </ b> B shown in FIG. 9A also has a strip shape (tape shape) like the strip package 8. The mask 50 </ b> B has a mesh shape including a large number of meshes 56 </ b> B (through holes) at positions corresponding to the recesses 8 a of the strip-shaped package 8. A large number of meshes 56B have a rectangular shape with a substantially uniform size.
A mask 50C shown in FIG. 9B is different from the mask 50B shown in FIG. 9A, and a lot of meshes 56C are meshes whose centers are dense and whose outer periphery is sparse.
On the other hand, the mask 50D shown in FIG. 9C differs from the mask 50B shown in FIG. 9A in that many meshes 56D have a sparse center and a dense outer periphery.
In the masks 50C and 50D shown in FIGS. 9B and 9C, the meshes 56C and 56D are formed. Therefore, the mixed liquid 40 ejected from the nozzles 32 of the spray device 30 flows between the numerous meshes 56C and 56D, and the flow rate of the jet flows. Due to the difference, the jet changes.
Although the fine settings differ depending on various conditions such as the size of the nozzle mouth, the position of the nozzle and the tip, the viscosity of the liquid to be sprayed, the density and weight of the phosphor to be mixed, the general tendency is as shown in FIG. 9A When the uniform mesh mask 50B is used, it is used when the density of the phosphor is relatively small and the liquid has a low viscosity and is easily diffused by a nozzle. The jet flow after passing through the mask tends to be mist-like and tends to adhere uniformly to the side surface.
9B and 9C, in the case where it is desired to have a mesh density difference between the center and the outer edge, the density of the phosphor is high and the straightness of the sprayed particles is strong, and the angle of the nozzle Or when the arrangement is adjusted.
In the case of a mesh mask with a dense center and a sparse outer periphery, such as the mask 50C, when a nozzle is placed and sprayed in the vicinity of almost the top of the chip, the jet that reaches the mask flows in a sparse to dense direction of the mesh 56C. Diffuses, and the mixed liquid 40 is uniformly attached to the side surface and the upper surface of the LED element 3.
On the other hand, the mask 50D has an effect of making the film thickness of the side surface and the upper surface of the chip uniform when the nozzle is arranged at an oblique position of the chip or when the nozzle is sprayed at an angle. In this case, since the jet is inclined obliquely, it is easy to hit the side and not to the top. If the mask 50D is used in such a case, the thickness of the phosphor can be uniformly attached.
Thus, even if the conditions and arrangement of the nozzle and the liquid are changed, the phosphor can be uniformly attached to the side surface of the chip only by changing the shape of the mask to be covered.
Of the mesh- like masks 50B, 50C, and 50D shown in FIGS. 9A to 9C, the mesh- like masks 50C and 50D shown in FIGS. 9B and 9C have a difference in flow rate in the jet flow than the mesh-like mask 50B shown in FIG. 9A. It is preferable in that it is easily generated.
The mesh masks 50B, 50C, and 50D shown in FIGS. 9A to 9C describe only mask portions at positions corresponding to the concave portions 8a of the strip package 8, and the outside of the mesh portions is as follows. This is a mesh-free portion that is affixed to the upper surface of the strip package 8.
Further, the shape of the meshes 56B, 56C, and 56D can be appropriately changed to a rectangular shape, a diamond shape, a circular shape, and the like depending on the spray conditions, the size shape of the LED element 3, and the like (for example, refer to the mask 50Da in FIG. 9D).
In the case of this mesh-structured mask, since the entrainment of the jet is larger than the others, the thickness of the phosphor can be uniformly attached even if the inner wall surface of the package is not enlarged upward. .
 図10A,図10Bの場合、帯状パッケージ8の凹部8aを形成する内壁面81に、例えばAl、Ag等の反射性部材82が設けられている。反射性部材82は、凹部8aを形成する内壁面81に沿って、同様のテーパー形状に設けられている。マスク50Eは、帯状パッケージ8と同様に帯状(テープ状)をなしており、帯状パッケージ8の凹部8aに対応するように平面視矩形状の貫通穴52Eが形成されている。そして、マスク50Eの貫通穴52Eを形成する内周面53Eは、反射部材82の一部の形状に沿って、当該反射部材82の一部を覆うテーパー面となっている。つまり、図8A,図8Bに示すマスク50Aのテーパー面(内周面53A)がさらに、凹部8aを形成する内壁面81に沿って延出した形状となっている。
 なお、内周面53Eは、反射部材82の全部を覆う形状としてもよい。
 したがって、このようなマスク50Eのテーパー面(内周面53E)が反射部材82の全体又は一部を覆うことにより、スプレー装置30のノズル32から噴射された混合液40が、マスク50Eのテーパー面(内周面53E)に沿って流れて、LED素子3の側面側に回り込む。その結果、噴流をLED素子3の周囲に集めることができ、LED素子3の側面及び上面に混合液40が均一に付着される。
 また、帯状パッケージ8の凹部8aを形成する底面の大きさが大きく、凹部8aを形成する内壁面81からLED素子3までの距離が遠い場合に、このマスク50Eに沿ってLED素子3の近傍にまで混合液40が導かれるので、特に有効である。
 また、マスク50Eが、反射部材82の一部又は全部を覆うように延出した形状となっているので、帯状パッケージ8に対するマスク50Eの位置決めが容易である。
 なお、マスク50Eの貫通穴52Eを形成する内周面53Eは、図10A,図10Bに示すように、凹部8aを形成する内壁面81に接触しても良いし、図10Cに示すように、内周面53Eと内壁面81との間に空間を形成するようにして設けても良い。
 また、このマスク50Eは、フリップチップ型のLED素子3に使用することができる。
In the case of FIGS. 10A and 10B, a reflective member 82 such as Al or Ag is provided on the inner wall surface 81 that forms the recess 8 a of the strip package 8. The reflective member 82 is provided in the same taper shape along the inner wall surface 81 which forms the recessed part 8a. The mask 50 </ b> E has a band shape (tape shape) similarly to the band-shaped package 8, and a through hole 52 </ b> E having a rectangular shape in plan view is formed so as to correspond to the concave portion 8 a of the band-shaped package 8. The inner peripheral surface 53E that forms the through hole 52E of the mask 50E is a tapered surface that covers a part of the reflecting member 82 along the shape of a part of the reflecting member 82. That is, the taper surface (inner peripheral surface 53A) of the mask 50A shown in FIGS. 8A and 8B further has a shape extending along the inner wall surface 81 that forms the recess 8a.
The inner peripheral surface 53E may have a shape that covers the entire reflecting member 82.
Therefore, such a tapered surface (inner peripheral surface 53E) of the mask 50E covers the whole or a part of the reflecting member 82, so that the mixed liquid 40 ejected from the nozzle 32 of the spray device 30 becomes the tapered surface of the mask 50E. It flows along the (inner peripheral surface 53E) and turns around to the side surface side of the LED element 3. As a result, the jet can be collected around the LED element 3, and the mixed liquid 40 is uniformly attached to the side surface and the upper surface of the LED element 3.
Further, when the size of the bottom surface forming the concave portion 8a of the strip-shaped package 8 is large and the distance from the inner wall surface 81 forming the concave portion 8a to the LED element 3 is far, the LED element 3 is located along the mask 50E. This is particularly effective because the mixed liquid 40 is led to
Further, since the mask 50E has a shape extending so as to cover a part or all of the reflecting member 82, the positioning of the mask 50E with respect to the strip package 8 is easy.
Note that the inner peripheral surface 53E that forms the through hole 52E of the mask 50E may contact the inner wall surface 81 that forms the recess 8a as shown in FIGS. 10A and 10B, or as shown in FIG. 10C. A space may be provided between the inner peripheral surface 53E and the inner wall surface 81.
The mask 50E can be used for the flip-chip type LED element 3.
 図7~図9に示すマスク50F、50A~50Dの外周部には、図示しないが、帯状パッケージ8に対する位置決め用の切り欠き、ボス、穴のうちいずれか1種類以上を2箇所以上設けることが好ましい。
 ただし、図10に示すマスク50Eの場合、上述のように帯状パッケージ8に対して位置決めできる形状となっているので、位置決め用の切り欠き、ボス、穴等を設けなくてもよい。
Although not shown in the drawings, the outer peripheral portions of the masks 50F and 50A to 50D shown in FIGS. 7 to 9 are provided with at least one of at least one of positioning notches, bosses, and holes for the band-shaped package 8. preferable.
However, in the case of the mask 50E shown in FIG. 10, since it has a shape that can be positioned with respect to the strip package 8, as described above, it is not necessary to provide positioning notches, bosses, holes, and the like.
 マスク50Fは、上述したマスク50と同様の材質を用いることができる。
 マスク50Fの厚さは、材質により若干異なるが、0.2~2.0mmが好ましい。より好ましくは、0.5~1.0mmである。厚さが0.2mm未満であると、噴流の整流、巻き込み、反射等が発生せずに、LED素子の側面に均一に塗布することができなくなり、また、マスク50F自体が反り返る可能性がある(帯状パッケージ8から剥離する可能性がある)ことによる。厚さが2.0mmを超えるとマスク50Fの端部が混合液40を塗布する際の妨害物となって設計範囲で塗布するのが困難になることによる。
 なお、マスク50A~50Eについてもマスク50Fの厚さと同様であり、材質も同様である。
The mask 50F can be made of the same material as the mask 50 described above.
The thickness of the mask 50F varies slightly depending on the material, but is preferably 0.2 to 2.0 mm. More preferably, it is 0.5 to 1.0 mm. If the thickness is less than 0.2 mm, jet flow rectification, entrainment, reflection, etc. will not occur, and it will not be possible to uniformly apply to the side surface of the LED element, and the mask 50F itself may be warped. (There is a possibility of peeling from the strip package 8). If the thickness exceeds 2.0 mm, the end of the mask 50F becomes an obstacle when the mixed liquid 40 is applied, and it becomes difficult to apply the liquid within the design range.
The masks 50A to 50E are the same as the thickness of the mask 50F, and the material is also the same.
 マスク50Fの裏面には、導電性部材57を設けることが好ましい。具体的には、マスク50Fの裏面で貫通穴52の周縁に枠状に設けることが好ましい(図7A参照)。導電性部材57としては、例えば、金属や導電性樹脂、カーボン等から構成されるものが好ましい。
 マスク50Fを帯状パッケージ8に配置して密着させ、混合液40をスプレー塗布後、そのマスク50Fを離型する必要があるが、特にマスク50Fが樹脂やセラミックといった非導電性物質(非金属)で構成されている場合に、静電気によりマスク50Fと帯状パッケージ8とが密着して剥がれにくくなる。そこで、マスク50Fの裏面に導電性部材57を取り付けることによって、静電気をアースし逃がすことで容易にマスク50Fを帯状パッケージ8から剥がすことができる。
 導電性部材57をマスク50Fに設ける方法としては、例えばスパッタ法、蒸着法等による成膜プロセスや、接着剤やインサート等で薄い部材を直接マスク50Fに貼り付ける方法がある。
A conductive member 57 is preferably provided on the back surface of the mask 50F. Specifically, it is preferable to provide a frame shape around the through hole 52 on the back surface of the mask 50F (see FIG. 7A). As the conductive member 57, for example, a member made of metal, conductive resin, carbon, or the like is preferable.
It is necessary to dispose the mask 50F on the belt-like package 8 and make it adhere to it, and spray the mixed solution 40, and then release the mask 50F. In particular, the mask 50F is made of a nonconductive material (nonmetal) such as resin or ceramic. When configured, the mask 50F and the strip-shaped package 8 are brought into close contact with each other due to static electricity, and are not easily peeled off. Therefore, by attaching the conductive member 57 to the back surface of the mask 50F, the mask 50F can be easily peeled off from the strip package 8 by grounding and releasing static electricity.
As a method of providing the conductive member 57 on the mask 50F, for example, there are a film forming process by a sputtering method, a vapor deposition method or the like, or a method of directly attaching a thin member to the mask 50F by an adhesive or an insert.
 以上のように、帯状パッケージ8の凹部8aを形成する内壁面81が、上方に向けて拡径するテーパー面となっており、LED素子3とスプレー装置30のノズル32との間で帯状パッケージ8の上面に、帯状パッケージ8の凹部8aの少なくとも一部を露出させるマスク50Fを配置したので、ノズル32から噴射された混合液40が、帯状パッケージ8の凹部8aを形成する内壁面81であるテーパー面に沿って流れ込み、LED素子3の側面及び上面に付着する。その結果、LED素子3の側面及び上面に均一に混合液40を塗布することができる。また、マスク50Fは、帯状パッケージ8の凹部8aの少なくとも一部を露出するので、マスク50Fで覆われている部分と露出している部分とによって、混合液40の噴流による回り込みが発生し、LED素子3の側面及び上面に確実にかつ均一に塗布することができる。
 したがって、従来のように、例えば特許第445047号公報では、ノズルを回転させることで混合液及びガスの流れを螺旋状にして噴出し、これによって混合液がLED素子の上面及び側面に吹き付けられるようにしており、ノズルを回転させるための駆動機構が必要とされ、製造装置が複雑で大型化するという問題があったが、上述のようなマスク50Fを使用することで、混合液を噴射するノズルを螺旋状に回転させる必要もなく、回転駆動機構も必要がなくなり、製造装置の小型化を図れ、容易にLED素子3の側面に混合液40を塗布して発光装置100を製造することができる。
As described above, the inner wall surface 81 that forms the concave portion 8a of the band-shaped package 8 is a tapered surface that expands upward, and the band-shaped package 8 is between the LED element 3 and the nozzle 32 of the spray device 30. Since the mask 50F that exposes at least a part of the concave portion 8a of the strip-shaped package 8 is disposed on the upper surface, the mixed liquid 40 sprayed from the nozzle 32 is a taper that is an inner wall surface 81 that forms the concave portion 8a of the strip-shaped package 8. It flows along the surface and adheres to the side surface and the upper surface of the LED element 3. As a result, the mixed liquid 40 can be uniformly applied to the side surface and the upper surface of the LED element 3. In addition, since the mask 50F exposes at least a part of the concave portion 8a of the strip-like package 8, the wraparound due to the jet of the mixed liquid 40 occurs between the portion covered with the mask 50F and the exposed portion. It can apply | coat reliably and uniformly to the side surface and upper surface of the element 3. FIG.
Therefore, as in the prior art, for example, in Japanese Patent No. 445047, by rotating the nozzle, the flow of the liquid mixture and gas is ejected in a spiral shape, so that the liquid mixture is sprayed on the upper surface and side surfaces of the LED element. However, there is a problem that a drive mechanism for rotating the nozzle is required, and the manufacturing apparatus is complicated and increases in size. However, by using the mask 50F as described above, the nozzle that ejects the mixed liquid is used. There is no need to rotate the LED in a spiral, and no rotational drive mechanism is required, so that the manufacturing apparatus can be reduced in size, and the light emitting device 100 can be easily manufactured by applying the liquid mixture 40 to the side surface of the LED element 3. .
 また、マスク50Fは、LED素子3の上面全面を覆う覆い部51を有するので、混合液40が、覆い部51の稜線付近でLED素子3側に回り込むように流れ込み、噴流が変化するようになっている。その結果、LED素子3の側面及び上面に混合液40をより均一に付着することができる。このように、マスク50FにLED素子3の上面全面を覆う覆い部51を設けて、マスク50Fの形状を改良するだけで、混合液40の噴流を変化させることができ、LED素子3の側面及び上面に均一に混合液40を付着することができる。この点においても、製造の容易化を図ることができる。
 また、より具体的には蛍光体の密度やノズルの径、溶液の粘度により噴流の状態は変わるため、塗布後の蛍光体の塗り具合によってマスク50Fの覆い部51の大きさや形状を調整してゆく。この微妙な調整はほかのマスク形状を用いる際にも行われ、マスク50Aでは貫通穴52Aを形成する内周面53Aの角度を微妙に変えて塗り具合を調整し、マスク50B~50Dでは網目の大きさや形状を変えることで調整をする。マスク50Eでは貫通穴52Eを形成する内周面53Eの角度やLED素子3から内周面53Eまでの距離を微妙に変えて調整する。塗り具合を調べる方法はダミーサンプルに塗布して切断し、断面を観察することで膜厚分布を得る方法や、塗布後の蛍光体つきLEDを実際に光らせて色味を観察する方法などがある。これらのマスク形状の微小な調整を経て、対象となるLED素子の形状や特性に適合した最終的なマスク形状が決定される。
Moreover, since the mask 50F has the cover part 51 which covers the whole upper surface of the LED element 3, the liquid mixture 40 flows so that it may wrap around the LED element 3 side in the vicinity of the ridgeline of the cover part 51, and a jet flow changes. ing. As a result, the mixed liquid 40 can be more uniformly attached to the side surface and the upper surface of the LED element 3. As described above, the mask 50F is provided with the cover portion 51 that covers the entire upper surface of the LED element 3, and the jet of the mixed liquid 40 can be changed only by improving the shape of the mask 50F. The mixed liquid 40 can be uniformly attached to the upper surface. In this respect as well, manufacturing can be facilitated.
More specifically, since the jet state changes depending on the density of the phosphor, the diameter of the nozzle, and the viscosity of the solution, the size and shape of the cover portion 51 of the mask 50F are adjusted depending on the condition of the phosphor after application. go. This delicate adjustment is also performed when other mask shapes are used. In the mask 50A, the angle of the inner peripheral surface 53A that forms the through hole 52A is slightly changed to adjust the coating condition, and in the masks 50B to 50D, the mesh is adjusted. Adjust by changing the size and shape. In the mask 50E, the angle of the inner peripheral surface 53E that forms the through hole 52E and the distance from the LED element 3 to the inner peripheral surface 53E are slightly changed and adjusted. Methods for examining the coating condition include a method of obtaining a film thickness distribution by applying a sample to a dummy sample, cutting it, and observing a cross section, and a method of actually illuminating the LED with the phosphor after application to observe the color. After fine adjustment of the mask shape, a final mask shape suitable for the shape and characteristics of the target LED element is determined.
 なお、図7に示すマスク50Fの貫通穴52を形成する内周面53は、テーパー面となっていないが、図8に示すマスク50Aのように凹部8aを形成する内壁面81に面一となるようなテーパー面としても良い。 Although the inner peripheral surface 53 that forms the through hole 52 of the mask 50F shown in FIG. 7 is not a tapered surface, it is flush with the inner wall surface 81 that forms the recess 8a as in the mask 50A shown in FIG. It is good also as such a taper surface.
 以上の通り本発明の実施形態を説明したが、以下の1~18の内容も組み込まれるものである。1.パッケージの下方に窪む凹部内に配置されて所定の波長の光を出射する発光素子と、前記発光素子からの出射光により励起されて励起波長と異なる波長の蛍光を出射する蛍光体を含有する波長変換部と、を有する発光装置の製造方法において、
 前記パッケージの凹部を形成する内壁面が、上方に向けて拡径するテーパー面となっており、
 スプレー噴射口から前記蛍光体を溶媒に分散させた混合液を噴射させて、前記混合液を前記発光素子上に塗布して前記波長変換部を形成する工程で、前記発光素子と前記スプレー噴射口との間で前記パッケージの上面に、前記パッケージの凹部の少なくとも一部を露出させるマスクを配置したことを特徴とする発光装置の製造方法。
2.前記マスクは、前記発光素子の上面全面を覆う覆い部を有することを特徴とする第1項に記載の発光装置の製造方法。
3.前記マスクは、前記パッケージの凹部を露出させる貫通穴を有し、
 前記貫通穴を形成する内周面が、前記パッケージの凹部を形成する内壁面に対してほぼ面一となるテーパー面であることを特徴とする第1項に記載の発光装置の製造方法。
4.前記マスクは、前記パッケージの凹部に対応する位置が多数の網目からなる網目形状であることを特徴とする第1項に記載の発光装置の製造方法。
5.前記多数の網目は、中心が密で、外周が疎の網目であることを特徴とする第4項に記載の発光装置の製造方法。
6.前記多数の網目は、中心が疎で、外周が密の網目であることを特徴とする第4項に記載の発光装置の製造方法。
7.前記パッケージの凹部を形成する内壁面に、反射部材が配置されており、
 前記マスクは、前記パッケージの凹部を露出させる貫通穴を有し、
 前記貫通穴を形成する内周面が、前記反射部材の全体又は一部の形状に沿って、当該反射部材の全体又は一部を覆うテーパー面であることを特徴とする第1項に記載の発光装置の製造方法。
8.前記マスクは、0.2~2.0mmの厚さを有していることを特徴とする第1項~第7項のいずれか一項に記載の発光装置の製造方法。
9.前記マスクの裏面に導電性部材が設けられていることを特徴とする第1項~第8項のいずれか一項に記載の発光装置の製造方法。
Although the embodiment of the present invention has been described above, the following contents 1 to 18 are also incorporated. 1. A light emitting element that is disposed in a recess recessed below the package and emits light of a predetermined wavelength, and a phosphor that is excited by light emitted from the light emitting element and emits fluorescence having a wavelength different from the excitation wavelength In a method for manufacturing a light emitting device having a wavelength conversion unit,
The inner wall surface forming the concave portion of the package is a tapered surface that expands upward.
In the step of spraying a mixed liquid in which the phosphor is dispersed in a solvent from a spray injection port and applying the mixed liquid on the light emitting element to form the wavelength conversion unit, the light emitting element and the spray injection port A mask for exposing at least a part of the recess of the package is disposed on the upper surface of the package.
2. 2. The method for manufacturing a light-emitting device according to claim 1, wherein the mask has a cover that covers the entire upper surface of the light-emitting element.
3. The mask has a through hole that exposes a recess of the package;
2. The method for manufacturing a light-emitting device according to claim 1, wherein the inner peripheral surface forming the through hole is a tapered surface that is substantially flush with the inner wall surface forming the recess of the package.
4). 2. The method of manufacturing a light emitting device according to claim 1, wherein the mask has a mesh shape in which positions corresponding to the recesses of the package are formed of a large number of meshes.
5. 5. The method of manufacturing a light emitting device according to claim 4, wherein the plurality of meshes are meshes having a dense center and a sparse outer periphery.
6). 5. The method for manufacturing a light emitting device according to claim 4, wherein the plurality of meshes are meshes having a sparse center and a dense outer periphery.
7. A reflective member is disposed on the inner wall surface forming the concave portion of the package,
The mask has a through hole that exposes a recess of the package;
The inner peripheral surface that forms the through hole is a tapered surface that covers the whole or a part of the reflecting member along the shape of the whole or a part of the reflecting member. Manufacturing method of light-emitting device.
8). The method for manufacturing a light-emitting device according to any one of items 1 to 7, wherein the mask has a thickness of 0.2 to 2.0 mm.
9. 9. The method for manufacturing a light emitting device according to claim 1, wherein a conductive member is provided on a back surface of the mask.
10.所定の波長の光を出射する発光素子と、前記発光素子からの出射光により励起されて励起波長と異なる波長の蛍光を出射する蛍光体を含有する波長変換部とを、有する発光装置の製造方法において、
 前記蛍光体をアルコール系溶媒に分散させた塗布液を、前記発光素子上に塗布する工程と、
 塗布後の前記塗布液を加熱・焼成して前記波長変換部を形成する工程と、
 を備え、
 前記塗布液を塗布する工程では、前記発光素子上に耐アルコール性のマスクを配置することを特徴とする発光装置の製造方法。
11.第10項に記載の発光装置の製造方法において、
 前記マスクが、ポリアミド、ポリイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリアミドイミド、ポリフェニレンサルファイド、ポリエステル、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリカーボネート、ポリメチルメタクリレート、ポリシクロオレフィン、変性ポリフェニレンオキサイド、液晶ポリマー、ポリアセタール、ポリオレフィン、ポリスチレン、フッ素樹脂、アクリロニトリル-ブタジエン-スチレン共重合体、トリアセチルセルロース、シリコーン、エポキシ、アクリル、エポキシシリコーンの少なくとも1つの樹脂材料から構成されていることを特徴とする発光装置の製造方法。
12.第11項に記載の発光装置の製造方法において、
 前記マスクの表面には保護層が形成され、
 前記保護層が、酸化クロム、クロム、ニッケル、ダイヤモンドライクカーボン、ダイヤモンド、SiC、窒化珪素、フッ素化合物の少なくとも1つの材料から構成されていることを特徴とした発光装置の製造方法。
13.第11または第12項に記載の発光装置の製造方法において、
 前記マスクの厚さが0.5~2.0mmであることを特徴とする発光装置の製造方法。
14.第10項に記載の発光装置の製造方法において、
 前記マスクが、Al、SUS、Cu、Tiの少なくとも1つの金属材料から構成されていることを特徴とする発光装置の製造方法。
15.第14項に記載の発光装置の製造方法において、
 前記マスクの表面には保護層が形成され、
 前記保護層が、酸化クロム、クロム、ニッケル、ダイヤモンドライクカーボン、ダイヤモンド、SiC、窒化珪素、フッ素化合物の少なくとも1つの材料から構成されていることを特徴とした発光装置の製造方法。
16.第14項または第15項に記載の発光装置の製造方法において、
 前記マスクの厚さが0.2~2.0mmであることを特徴とする発光装置の製造方法。
17.第10項に記載の発光装置の製造方法において、
 前記マスクが、アルミナ、窒化珪素、炭化珪素、ジルコニアの少なくとも1つのセラミックス材料から構成されていることを特徴とする発光装置の製造方法。
18.第17項に記載の発光装置の製造方法において、
 前記マスクの厚さが0.5~2.0mmであることを特徴とする発光装置の製造方法。
10. A method for manufacturing a light-emitting device, comprising: a light-emitting element that emits light of a predetermined wavelength; and a wavelength conversion unit that includes a phosphor that is excited by light emitted from the light-emitting element and emits fluorescence having a wavelength different from the excitation wavelength. In
Applying a coating liquid in which the phosphor is dispersed in an alcohol solvent onto the light emitting element;
Heating and baking the coating solution after coating to form the wavelength conversion section;
With
In the step of applying the coating liquid, an alcohol-resistant mask is disposed on the light-emitting element.
11. In the method for manufacturing the light emitting device according to item 10,
The mask is polyamide, polyimide, polyetherketone, polyetheretherketone, polyamideimide, polyphenylene sulfide, polyester, polyetherimide, polysulfone, polyethersulfone, polycarbonate, polymethyl methacrylate, polycycloolefin, modified polyphenylene oxide, Light emission characterized by being composed of at least one resin material of liquid crystal polymer, polyacetal, polyolefin, polystyrene, fluororesin, acrylonitrile-butadiene-styrene copolymer, triacetyl cellulose, silicone, epoxy, acrylic, epoxy silicone Device manufacturing method.
12 In the method for manufacturing the light emitting device according to item 11,
A protective layer is formed on the surface of the mask,
The method for manufacturing a light emitting device, wherein the protective layer is made of at least one material of chromium oxide, chromium, nickel, diamond-like carbon, diamond, SiC, silicon nitride, and fluorine compound.
13. In the method for manufacturing a light emitting device according to item 11 or 12,
A method of manufacturing a light-emitting device, wherein the mask has a thickness of 0.5 to 2.0 mm.
14 In the method for manufacturing the light emitting device according to item 10,
The method of manufacturing a light emitting device, wherein the mask is made of at least one metal material of Al, SUS, Cu, and Ti.
15. In the method for manufacturing the light emitting device according to item 14,
A protective layer is formed on the surface of the mask,
The method for manufacturing a light emitting device, wherein the protective layer is made of at least one material of chromium oxide, chromium, nickel, diamond-like carbon, diamond, SiC, silicon nitride, and fluorine compound.
16. In the method for manufacturing a light emitting device according to item 14 or 15,
A method for manufacturing a light-emitting device, wherein the mask has a thickness of 0.2 to 2.0 mm.
17. In the method for manufacturing the light emitting device according to item 10,
The method for manufacturing a light emitting device, wherein the mask is made of at least one ceramic material of alumina, silicon nitride, silicon carbide, or zirconia.
18. In the method for manufacturing the light emitting device according to Item 17,
A method of manufacturing a light-emitting device, wherein the mask has a thickness of 0.5 to 2.0 mm.
3 LED素子(発光素子)
6 波長変換部
40 蛍光体混合液
42 定着液
50 第1のマスク
60 第2のマスク
100 発光装置
3 LED elements (light emitting elements)
6 Wavelength conversion unit 40 Phosphor mixture liquid 42 Fixing liquid 50 First mask 60 Second mask 100 Light emitting device

Claims (10)

  1.  所定の波長の光を出射する発光素子と、前記発光素子からの出射光により励起されて励起波長と異なる波長の蛍光を出射する蛍光体を含有する波長変換部と、を有する発光装置の製造方法において、
     前記発光素子上に、当該発光素子の一部を覆う第1のマスクを配置する第1のマスク配置工程と、
     前記第1のマスクで一部が覆われた前記発光素子に、前記蛍光体を溶媒中に分散した蛍光体混合液を塗布する蛍光体混合液塗布工程と、
     前記発光素子上から前記第1のマスクを取り除く第1のマスク除去工程と、
     前記第1のマスクから前記蛍光体を含有する蛍光体含有物を分離する分離工程と、
     前記蛍光体混合液を塗布した前記発光素子上に、前記蛍光体を定着させる定着液を塗布する定着液塗布工程と、
     前記発光素子上に塗布した前記定着液を乾燥して、前記波長変換部を形成する乾燥工程と、を有することを特徴とする発光装置の製造方法。
    A method of manufacturing a light-emitting device, comprising: a light-emitting element that emits light of a predetermined wavelength; and a wavelength conversion unit that includes a phosphor that is excited by light emitted from the light-emitting element and emits fluorescence having a wavelength different from the excitation wavelength. In
    A first mask disposing step of disposing a first mask covering a part of the light emitting element on the light emitting element;
    A phosphor mixture application step of applying a phosphor mixture in which the phosphor is dispersed in a solvent to the light emitting element partially covered with the first mask;
    A first mask removing step of removing the first mask from the light emitting element;
    A separation step of separating the phosphor-containing material containing the phosphor from the first mask;
    A fixing solution applying step of applying a fixing solution for fixing the phosphor on the light emitting element to which the phosphor mixture solution is applied;
    And a drying step of drying the fixing solution applied onto the light emitting element to form the wavelength conversion section.
  2.  前記分離工程は、前記第1のマスクを振動させることによって、前記第1のマスクから前記蛍光体含有物を分離することを特徴とする請求項1に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1, wherein the separating step separates the phosphor-containing material from the first mask by vibrating the first mask.
  3.  前記分離工程は、重力により前記第1のマスクから前記蛍光体含有物を分離することを特徴とする請求項1に記載の発光装置の製造方法。 The method of manufacturing a light emitting device according to claim 1, wherein the separating step separates the phosphor-containing material from the first mask by gravity.
  4.  前記分離工程は、前記蛍光体含有物を掻き取ることによって、前記第1のマスクから前記蛍光体含有物を分離することを特徴とする請求項1に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 1, wherein the separating step separates the phosphor-containing material from the first mask by scraping the phosphor-containing material.
  5.  前記分離工程で分離した前記蛍光体含有物から不純物を除去する不純物除去工程を有することを特徴とする請求項1~4のいずれか一項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 4, further comprising an impurity removal step of removing impurities from the phosphor-containing material separated in the separation step.
  6.  前記不純物除去工程は、前記蛍光体含有物を加熱することによって前記蛍光体含有物から不純物を除去することを特徴とする請求項5に記載の発光装置の製造方法。 6. The method for manufacturing a light emitting device according to claim 5, wherein the impurity removing step removes impurities from the phosphor-containing material by heating the phosphor-containing material.
  7.  前記不純物除去工程によって得られた蛍光体の発光効率を検査する検査工程を有することを特徴とする請求項5又は6に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to claim 5 or 6, further comprising an inspection step of inspecting the light emission efficiency of the phosphor obtained by the impurity removal step.
  8.  前記定着液塗布工程では、前記発光素子上に、当該発光素子の一部を覆う第2のマスクを配置して、前記定着液を前記発光素子上に塗布することを特徴とする請求項1~7のいずれか一項に記載の発光装置の製造方法。 The fixing liquid application step includes disposing a second mask covering a part of the light emitting element on the light emitting element, and applying the fixing liquid onto the light emitting element. 8. A method for manufacturing a light-emitting device according to claim 7.
  9.  前記蛍光体の体積平均粒径が1μm以上50μm以下であることを特徴とする請求項1~8のいずれか一項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 8, wherein the phosphor has a volume average particle diameter of 1 µm or more and 50 µm or less.
  10. 前記蛍光体混合液は、膨潤粒子を含むことを特徴とする請求項1~9のいずれか一項に記載の発光装置の製造方法。 The method for manufacturing a light emitting device according to any one of claims 1 to 9, wherein the phosphor mixture liquid includes swollen particles.
PCT/JP2011/079844 2010-12-28 2011-12-22 Method for manufacturing light emitting device WO2012090867A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550903A JP5494830B2 (en) 2010-12-28 2011-12-22 Method for manufacturing light emitting device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-291422 2010-12-28
JP2010291422 2010-12-28
JP2011-003887 2011-01-12
JP2011003887 2011-01-12
JP2011013817 2011-01-26
JP2011-013817 2011-01-26

Publications (1)

Publication Number Publication Date
WO2012090867A1 true WO2012090867A1 (en) 2012-07-05

Family

ID=46382973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079844 WO2012090867A1 (en) 2010-12-28 2011-12-22 Method for manufacturing light emitting device

Country Status (2)

Country Link
JP (2) JP5494830B2 (en)
WO (1) WO2012090867A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358370A (en) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Wavelength conversion paste material and semiconductor light emitting device and its manufacturing method
JP2008093662A (en) * 2007-11-05 2008-04-24 Dainippon Screen Mfg Co Ltd Coating apparatus and coating method
WO2010023993A1 (en) * 2008-08-27 2010-03-04 富士高分子工業株式会社 Light-emitting device and method for manufacturing same
JP2010226070A (en) * 2009-02-27 2010-10-07 Nichia Corp Light emitting device, and method of manufacturing the same
WO2011105185A1 (en) * 2010-02-26 2011-09-01 コニカミノルタオプト株式会社 Method for producing optical semiconductor element module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450547B2 (en) * 2002-08-29 2010-04-14 日亜化学工業株式会社 Method for manufacturing light emitting device
JP4366330B2 (en) * 2005-03-29 2009-11-18 パナソニック株式会社 Phosphor layer forming method and forming apparatus, and plasma display panel manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358370A (en) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Wavelength conversion paste material and semiconductor light emitting device and its manufacturing method
JP2008093662A (en) * 2007-11-05 2008-04-24 Dainippon Screen Mfg Co Ltd Coating apparatus and coating method
WO2010023993A1 (en) * 2008-08-27 2010-03-04 富士高分子工業株式会社 Light-emitting device and method for manufacturing same
JP2010226070A (en) * 2009-02-27 2010-10-07 Nichia Corp Light emitting device, and method of manufacturing the same
WO2011105185A1 (en) * 2010-02-26 2011-09-01 コニカミノルタオプト株式会社 Method for producing optical semiconductor element module

Also Published As

Publication number Publication date
JP2014135503A (en) 2014-07-24
JP5494830B2 (en) 2014-05-21
JPWO2012090867A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
Xuan et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays
JP4527197B2 (en) Semiconductor light emitting element and method for manufacturing semiconductor light emitting device
JP5431646B2 (en) Molded chip manufacturing method and apparatus
KR101478472B1 (en) Method of manufacturing light-emitting device
CN105190916B (en) Light emitting device with wavelength conversion layer
CN103907211B (en) The manufacture method of light-emitting device, illuminator and light-emitting device
CN110034221A (en) Light emitting device package processing procedure
JP2011238811A (en) Wavelength conversion element and light-emitting device
WO2011065322A1 (en) Method for manufacturing light emitting diode unit
WO2012086483A1 (en) Phosphor coating device, and method for manufacturing light-emitting device
WO2005123627A1 (en) Nitride sintered compact and method for production thereof
EP3321958A1 (en) Thermal interface material, manufacturing method thereof, thermally conductive pad, and heat sink system
TW201541671A (en) Wavelength conversion member and method for manufacturing same
JP6280637B2 (en) Epitaxial growth substrate and light emitting device using the same
JP5712949B2 (en) Method for manufacturing light emitting device
CN102569603A (en) Light emitting diode (LED) ceramic substrate and production method thereof
JP2008205229A (en) Semiconductor light-emitting element, semiconductor light-emitting apparatus, and manufacturing method
JP2007165507A (en) Substrate for mounting light emitting element and its manufacturing method, and light emitting element module, display device, lighting device, and traffic signal
JP5494830B2 (en) Method for manufacturing light emitting device
US20160372644A1 (en) Method of producing light emitting device
JP5308385B2 (en) Wavelength converting particle, wavelength converting member, and light emitting device
JP2014130903A (en) Semiconductor light-emitting device and manufacturing method of the same
WO2010140411A1 (en) Method for manufacturing light emitting device, and light emitting device
CN109755355A (en) Wavelength changing element and preparation method thereof
WO2015163110A1 (en) Wavelength conversion member and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550903

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853293

Country of ref document: EP

Kind code of ref document: A1