WO2012090808A1 - 表示装置の駆動方法 - Google Patents

表示装置の駆動方法 Download PDF

Info

Publication number
WO2012090808A1
WO2012090808A1 PCT/JP2011/079603 JP2011079603W WO2012090808A1 WO 2012090808 A1 WO2012090808 A1 WO 2012090808A1 JP 2011079603 W JP2011079603 W JP 2011079603W WO 2012090808 A1 WO2012090808 A1 WO 2012090808A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
display area
driving
display device
area
Prior art date
Application number
PCT/JP2011/079603
Other languages
English (en)
French (fr)
Inventor
藤原 晃史
知洋 木村
亜希子 宮崎
敏晴 楠本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012090808A1 publication Critical patent/WO2012090808A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0686Adjustment of display parameters with two or more screen areas displaying information with different brightness or colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix

Definitions

  • the present invention relates to a method for driving a display device including a backlight device including a light emitting diode.
  • LEDs light-emitting diodes
  • Patent Document 1 backlight devices using light-emitting diodes (hereinafter also referred to as LEDs) which are self-luminous elements as light sources have been proposed (for example, see Patent Document 1).
  • the light emitting diode has many advantages such as long life, low power consumption, and high brightness as compared with the cold cathode tube used as a conventional light source.
  • one light emitting diode emits a red (R) light emitting diode element, a green (G) light emitting diode element, and a blue (B) light emitting diode.
  • R red
  • G green
  • B blue
  • one light emitting diode includes a light emitting diode element of any one color and emits the color.
  • FIG. 16 is a block diagram showing a schematic configuration of the backlight device of Patent Document 1.
  • a plurality of light emitting diodes 120 that respectively emit red, green, and blue light are uniformly arranged on the light emitting unit printed circuit board 150 so as to correspond to the entire surface of the display panel. ing. Thereby, since it can light-emit uniformly within the display panel surface, a uniform display can be performed.
  • JP 2006-128125 A (published May 18, 2006)
  • liquid crystal display device in which the entire display area corresponding to one display panel is divided into a plurality of areas, and a different image is displayed for each divided display area.
  • the content to be displayed is different for each display area, and the required display quality is often different for each display area.
  • an object of the present invention is to reduce power consumption in a display device that can perform display by dividing a display area into a plurality of areas.
  • a display device driving method comprising a display panel having a plurality of display areas and a backlight for irradiating the display panel with light,
  • the backlight includes a plurality of light sources provided corresponding to each display area, The luminance of the light source is individually adjusted for each display area.
  • the first display area is driven by the 2D-dimming method (first local dimming method)
  • the second display area is By driving by the 0D-dimming method (second local dimming method)
  • the luminance of the light source (LED) can be controlled more finely in the first display area according to the display content.
  • the brightness of an arbitrary LED can be adjusted to be low, high-quality display can be achieved and power consumption can be reduced in the first display area.
  • the brightness can be adjusted to be low as a whole in accordance with the display content, so that power consumption can be reduced. Therefore, the power consumption of the entire display device can be reduced.
  • the backlight includes a plurality of light sources provided corresponding to each display region, and the luminance of the light source is individually set for each display region. adjust. Therefore, there is an effect that power consumption can be reduced in a display device that can perform display by dividing a display region into a plurality of regions.
  • FIG. 12 is a plan view illustrating a schematic configuration of a backlight unit according to Configuration Example 2.
  • FIG. 12 is a plan view illustrating a schematic configuration of a backlight unit according to Configuration Example 3.
  • FIG. 12 is a plan view illustrating a schematic configuration of a backlight unit according to Configuration Example 4.
  • FIG. 12 is a plan view illustrating a schematic configuration of a backlight unit according to Configuration Example 6.
  • FIG. 12 is a plan view illustrating a schematic configuration of a backlight unit according to Configuration Example 7.
  • FIG. 10 is a plan view illustrating a schematic configuration of a backlight unit according to Configuration Example 8.
  • A is a top view which shows schematic structure of the backlight unit which concerns on the example 9 of a structure
  • (b) is the side view. It is a block diagram which shows schematic structure of the conventional backlight apparatus.
  • FIG. 1 is an exploded perspective view showing a liquid crystal display device 69 according to the present embodiment. For the sake of convenience, only a relatively small number of light guide plates 43 to be described later is illustrated.
  • FIG. 2 is an exploded perspective view showing a part of the backlight unit 49 included in the liquid crystal display device 69.
  • the liquid crystal display device 69 includes a liquid crystal display panel 59, a backlight unit 49, and a housing HG (HG1 and HG2) sandwiching them.
  • liquid crystal (not shown) is composed of an active matrix substrate 51 provided with active elements such as TFT (Thin Film Transistor) (not shown) and a counter substrate 52 facing the active matrix substrate 51. ). That is, the active matrix substrate 51 and the counter substrate 52 are substrates for sandwiching liquid crystal, and are formed of transparent glass or the like.
  • a sealing material (not shown) is attached to the outer edge of the active matrix substrate 51 and the counter substrate 52, and the liquid crystal is sealed with this sealing material.
  • a polarizing film PL is provided so as to sandwich the active matrix substrate 51 and the counter substrate 52.
  • the liquid crystal display panel 59 is a non-light emitting display panel, it receives a light (backlight light) from the backlight unit 49 and exhibits a display function. Therefore, if the light from the backlight unit 49 can uniformly irradiate the entire surface of the liquid crystal display panel 59, the display quality of the liquid crystal display panel 59 is improved.
  • Such a backlight unit 49 includes an LED module MJ, a light guide plate set ST, a diffusion sheet 45, and prism sheets 46 and 47.
  • the LED module MJ is a module that emits light. As shown in FIG. 2, the LED module MJ is mounted on a mounting substrate 40 and electrodes formed on the mounting substrate surface 40U of the mounting substrate 40, and receives light to supply light. LED (Light Emitting Diode) 41 to emit.
  • the LED module MJ preferably includes a plurality of LEDs (light sources) 41, which are light emitting elements, in order to ensure the amount of light, and more preferably, the LEDs 41 are arranged in a matrix. However, in the drawing, only a part of the LEDs 41 is shown for convenience.
  • one direction in which the LEDs 41 are arranged is referred to as an X direction, and a direction intersecting (for example, orthogonal to) the X direction is referred to as a Y direction.
  • the kind of LED41 is not specifically limited.
  • one red light emitting (R) LED chip 42R, two green light emitting (G) LED chips 42G, and one blue light as shown in the front view of the LED 41 in FIG.
  • a GRGB arrangement when it arranges with LED chip 42G, LED chip 42R, LED chip 42G, and LED chip 42B from one end to the other end, it is called a GRGB arrangement.
  • the light guide plate set ST includes a light guide plate 43 and a reflection sheet 44.
  • the light guide plate 43 multi-reflects the light of the LED 41 incident thereon and emits the light to the outside. As shown in FIG. 2, the light guide plate 43 includes a light receiving piece 43R that receives light and an emission piece 43S connected to the light receiving piece 43R.
  • the light receiving piece 43R is a plate-like member and has a notch KC in a part of the side wall.
  • the notch KC has a space enough to surround the LED 41 while the light emitting surface 42L of the LED 41 faces the bottom KCb of the notch KC. Therefore, when the LED 41 is mounted so as to be accommodated in the notch KC, the bottom KCb of the notch KC becomes the light receiving surface 43Rs of the light guide plate 43.
  • the surface facing the mounting substrate 40 is a bottom surface 43Rb, and the surface opposite to the bottom surface 43Rb is the top surface 43Ru.
  • the emission pieces 43S are plate-like members that are arranged so as to line up with the light receiving pieces 43R and are located at the destination of light incident from the light receiving surface 43Rs.
  • the emitting piece 43S has a bottom surface 43Sb that is flush with the bottom surface 43Rb of the light receiving piece 43R, and has a top surface 43Su that causes a step that becomes higher than the top surface 43Ru of the light receiving piece 43R.
  • the top surface 43Su and the bottom surface 43Sb of the emission piece 43S are not parallel, and one surface is inclined with respect to the other surface. More specifically, as the light travels from the light receiving surface 43Rs, the bottom surface 43Sb is inclined so as to approach the top surface 43Su. That is, the emission piece 43S is tapered by gradually reducing the thickness (the distance between the top surface 43Su and the bottom surface 43Sb) as the light travels from the light receiving surface 43Rs.
  • the light guide plate 43 including the emission piece 43S is also referred to as a wedge-shaped light guide plate 43).
  • the light guide plate 43 including the light receiving piece 43R and the emission piece 43S receives light from the light receiving surface 43Rs, and transmits the light to the bottom surface 43b (43Rb ⁇ 43Sb) and the top surface 43u (43Ru ⁇ 43Su). Are reflected from the top surface 43Su to the outside (light emitted from the top surface 43Su is referred to as planar light).
  • the reflection sheet 44 covers the bottom surface 43b of the light guide plate 43 and reflects the light leaking from the bottom surface 43b back to the inside of the light guide plate 43 (however, in FIG. The reflection sheet 44 is omitted).
  • the light guide plates 43 in the light guide plate set ST as described above are arranged in a matrix according to the LEDs 41.
  • the top surface 43Ru of the light receiving piece 43R supports the bottom surface 43Sb of the emission piece 43S, and the same surface is completed by the collected top surface 43Su (the top surface 43Su is Gather together.)
  • the light guide plate sets ST are arranged along the X direction, the same surface is completed with the gathered top surfaces 43Su.
  • the top surface 43Su of the light guide plate 43 is arranged in a matrix, thereby forming a relatively large light emission surface (the light guide plate 43 arranged in a matrix is also referred to as a tandem light guide plate 43).
  • the diffusion sheet 45 is positioned so as to cover the top surface 43Su of the light guide plates 43 arranged in a matrix, diffuses the planar light from the light guide plate 43, and spreads the light throughout the liquid crystal display panel 59 (note that The diffusion sheet 45 and the prism sheets 46 and 47 are collectively referred to as an optical sheet group (45 to 47)).
  • the prism sheets 46 and 47 are, for example, optical sheets that have a prism shape in the sheet surface and deflect light emission characteristics, and are positioned so as to cover the diffusion sheet 45. Therefore, the prism sheets 46 and 47 collect the light traveling from the diffusion sheet 45 and improve the luminance. Note that the divergence directions of the lights collected by the prism sheet 46 and the prism sheet 47 intersect each other.
  • the front housing HG1 and the back housing HG2, which are the housings HG, are fixed while sandwiching the above-described backlight unit 49 and the liquid crystal display panel 59 covering the backlight unit 49 (how to fix are particularly limited) is not). That is, the front housing HG1 sandwiches the backlight unit 49 and the liquid crystal display panel 59 together with the back housing HG2, thereby completing the liquid crystal display device 69.
  • the back housing HG2 accommodates the light guide plate set ST, the diffusion sheet 45, and the prism sheets 46 and 47 while being stacked in this order.
  • This stacking direction is referred to as the Z direction (Note that the X direction, the Y direction, and the Z direction may be orthogonal to each other).
  • the light from the LED 41 passes through the light guide plate set ST and is emitted as planar light, and the planar light passes through the optical sheet group (45 to 47). As a result, the light is emitted as backlight light with increased luminance. Then, the backlight light reaches the liquid crystal display panel 59, and the liquid crystal display panel 59 displays an image by the backlight light.
  • the backlight unit (tandem backlight unit) 49 on which the tandem type light guide plate 43 is mounted can irradiate the display area of the liquid crystal display panel 59 partially because the emitted light can be controlled for each light guide plate 43. it can. Therefore, such a backlight unit 49 can be said to be a local dimming backlight unit 49.
  • FIG. 4 is a block diagram showing various members included in the liquid crystal display device 69 (the LED 41 shown in FIG. 4 is one of a plurality of LEDs 41). As shown in FIG. 4, the liquid crystal display device 69 includes a receiving unit 31, a video signal processing unit (control unit) 11, a liquid crystal display panel controller 32, an LED controller 21, an LED driver 33, and an LED 41.
  • the liquid crystal display device 69 includes a receiving unit 31, a video signal processing unit (control unit) 11, a liquid crystal display panel controller 32, an LED controller 21, an LED driver 33, and an LED 41.
  • the receiving unit 31 receives a video / audio signal such as a television broadcast signal (see white arrow), for example (hereinafter, the video signal included in the video / audio signal will be mainly described). Then, the reception unit 31 transmits the received video signal to the video signal processing unit 11.
  • a video / audio signal such as a television broadcast signal (see white arrow), for example (hereinafter, the video signal included in the video / audio signal will be mainly described). Then, the reception unit 31 transmits the received video signal to the video signal processing unit 11.
  • the video signal transmitted to the video signal processing unit 11 is referred to as a basic video signal (image data) for convenience, and a signal indicating red among the color video signals (basic color video signals) included in the basic video signal.
  • the basic red video signal FRS, the green signal is the basic green video signal FGS, and the blue signal is the basic blue video signal FBS.
  • the video signal processing unit 11 includes a built-in memory 12 and a processing control unit (control unit) 13.
  • the built-in memory 12 stores a look-up table (not shown) required for signal correction processing by the processing control unit 13.
  • the process control unit 13 generates a processed video signal based on the received basic color video signal (image data). Then, the processing control unit 13 transmits the processed video signal to the liquid crystal display panel controller 32 and the LED controller 21.
  • the processed video signal is, for example, a processed color video signal (processed red video signal RS, processed green) obtained by processing a basic color video signal (basic red video signal FRS, basic green video signal FGS, basic blue video signal FBS, etc.).
  • a video signal GS, a processed blue video signal BS), and synchronization signals (clock signal CLK, vertical synchronization signal VS, horizontal synchronization signal HS, etc.) relating to the processed color video signal.
  • the processed color video signal transmitted to the liquid crystal display panel controller 32 and the processed color video signal transmitted to the LED controller 21 are different. Therefore, in order to distinguish these processed color video signals, the processed color video signals transmitted to the liquid crystal display panel controller 32 are processed panel red video signal RSp, processed green video signal GSp for panel, and processed blue video signal for panel. Let BSp.
  • the processed color video signal (light source control data) transmitted to the LED controller 21 is a light source red video signal RSd, a light source green video signal GSd, and a light source blue video signal BSd. More specifically, the light source color video signals (RSd, GSd, BSd) are transmitted to the LED controller 21 after appropriate correction processing.
  • the light source color video signals (RSd, GSd, BSd) and the panel processed color video signals (RSp, GSp, BSp) have the following relationship with respect to the basic color video signals (FRS, FGS, FBS). Meet.
  • the liquid crystal display panel controller 32 controls the pixels of the liquid crystal display panel 59 based on the processed red video signal RSp for panel, the processed green video signal GSp for panel, the processed blue video signal BSp for panel, and the synchronization signals related to these signals. To do.
  • the LED controller 21 includes an LED driver control unit 22 and a pulse width modulation unit 23.
  • the LED driver control unit 22 transmits the light source color video signal from the video signal processing unit 11 to the pulse width modulation unit 23. Further, the LED driver control unit 22 generates a lighting timing signal TS of the LED 41 (specifically, the LED chip 42) from the synchronization signals (clock signal CLK, vertical synchronization signal VS, horizontal synchronization signal HS, etc.), and the LED driver 33. Send to.
  • a lighting timing signal TS of the LED 41 specifically, the LED chip 42
  • the synchronization signals clock signal CLK, vertical synchronization signal VS, horizontal synchronization signal HS, etc.
  • the pulse width modulation unit 23 adjusts the light emission time of the LED 41 based on the color video signal for the light source in a pulse width modulation (PWM) method.
  • a signal value used for such pulse width modulation is referred to as a PWM signal (PWM value).
  • PWM value A signal value used for such pulse width modulation is referred to as a PWM signal (PWM value).
  • PWM value A signal value used for such pulse width modulation is referred to as a PWM signal (PWM value).
  • PWM value pulse width modulation method
  • the pulse width modulation method is well known. For example, the backlight is driven at 120 Hz (120 blinks per second, cycle 8.33 ms), and the period of 8.33 ms is divided into 12 bits (4096). It is a method of controlling and changing with.
  • the LED driver 33 controls lighting of the LED 41 based on a signal (PWM signal, timing signal) from the LED controller 21.
  • the LED 41 includes one LED chip 42R (for example, a first light source), two LED chips 42G (for example, a second light source), and one LED chip 42B (for example, a third light source). . These LED chips 42 are controlled to be turned on by the LED driver 33 by a pulse width modulation method.
  • the tandem backlight unit 49 in which the wedge-shaped light guide plate 43 is spread has been described as an example. However, it is not limited to this.
  • the LED 41R, LED 41G, LED 41G, and LED 41B which are light sources, gather to generate white light in a mixed color and directly to the optical sheet group (45 to 47).
  • the light may be emitted (RGB added after the LED 41 means a light emission color). That is, a direct type backlight unit 49 may be used.
  • the receiving unit 31 receives a video / audio signal such as a television broadcast signal, and the video signal processing unit 11 processes the video signal in the received signal. Therefore, it can be said that such a liquid crystal display device 69 is also a television broadcast receiver.
  • the video signal processed by the liquid crystal display device 69 is not limited to television broadcasting. For example, it may be a video signal included in a recording medium on which content such as a movie is recorded or a video signal transmitted via the Internet.
  • the process control unit 13 may acquire the data generation program through communication from the communication network.
  • the communication network includes the Internet, infrared communication, etc. regardless of wired wireless.
  • the light source color video signal (light quantity adjustment data) subjected to the correction processing is expressed as a light source red video signal RSd ′, a light source green video signal GSd ′, and a light source blue video signal BSd ′ (that is, The signal after the correction process is marked with “'”).
  • the relationship between the PWM value, which is the color image signal for light source (RSd, GSd, BSd), and the luminance of the LED chip 42 that emits light according to the color image signal for light source is a directly proportional relationship.
  • the PWM value and the luminance of the LED chip 42 do not have a direct proportional relationship of 1: 1, for example, due to the instantaneous heat generation caused by the light emission of the LED chip 42. Therefore, the relationship between the PWM value of the white light from the LED 41 including the LED chip 42 and the brightness of the white light from the LED 41 is not easily proportional.
  • the present liquid crystal display device 69 has, for example, a configuration that compensates for the luminance shift using a general look-up table.
  • the processing controller 13 and the built-in memory 12 are incorporated in the LED controller 21, and the processing controller 13 (and thus the LED controller 21) transmits from the pulse width modulator 23.
  • the light source color video signals (RSd, BSd, GSd) are subjected to correction processing using a lookup table, and the light source color video signals (RSd ′, BSd ′, GSd ′) after the correction processing are obtained. You may transmit to the LED driver 33.
  • one display area (entire display area) corresponding to the entire surface of one liquid crystal display panel 59 is divided into a plurality of areas (display areas), and different images are displayed in each display area. indicate.
  • the liquid crystal display panel 59 is divided into two display areas (a first display area and a second display area), and the aspect ratio (aspect ratio) of the first display area is 16. : 9, the aspect ratio of the second display area is 5: 9, and the aspect ratio of the entire display area including the first and second display areas is 21: 9.
  • a full HD (Full (High Definition) image is displayed in the first display region without being reduced, and at the same time, other contents (for example, time, An image such as a calendar, character information associated with an image in the first display area, a multi-channel television image, or the like can be displayed.
  • FIG. 7 is a schematic diagram showing another configuration of the liquid crystal display panel 59.
  • the aspect ratio of the first display area is 16: 9
  • the aspect ratio of the second display area is 16: 1
  • the aspect ratio of the entire display area is 16:10.
  • the first display area and the second display area are arranged in the vertical direction.
  • the liquid crystal display panel 59 in FIG. 7A the aspect ratio of the first display area is 16: 9
  • the aspect ratio of the second display area is 16: 1
  • the aspect ratio of the entire display area is 16:10.
  • the first display area and the second display area are arranged in the vertical direction.
  • the 7B further includes a third display area, the aspect ratio of the first display area is 16: 9, the aspect ratio of the second display area is 5: 9, The aspect ratio is 21: 1, and the aspect ratio of the entire display area is 21:10. According to the configuration of FIG. 7B, it is possible to display different contents in the second display area and the third display area at the same time while displaying the full HD video in the first display area without reducing it. it can.
  • the backlight unit 49 may have a different configuration for each display area corresponding to each display area of the liquid crystal display panel 59, or may have the same configuration in each display area.
  • the specific structural example of the backlight unit 49 corresponding to the liquid crystal display panel 59 shown in FIG. 6 is demonstrated.
  • the light source arranged in the area corresponding to the first display area of the liquid crystal display panel 59 is the first light source
  • the light source arranged in the area corresponding to the second display area is the second light source. To do.
  • FIG. 8 is a plan view showing a schematic configuration of the backlight unit 49 according to Configuration Example 1.
  • the backlight unit 49 in FIG. 8 is a so-called direct-type backlight unit in which a light source is provided on the back side of the liquid crystal display panel 59, and one LED 41 (first light source) is provided in the first display area.
  • Red light emitting (R) LED chip (hereinafter also referred to as R-LED chip) 42R, one green light emitting (G) LED chip (hereinafter also referred to as G-LED chip) 42G, and one blue light emitting (B) LED chip (hereinafter also referred to as B-LED chip) 42B, and in the second display area, each LED 41 (second light source) has three white light emitting (W) LED chips (hereinafter referred to as 42W) (also called W-LED chip).
  • W white light emitting
  • the display is performed by the RGB LED chips in the first display area, it is possible to realize a display with a wide color reproduction range, and in the second display area, the display is performed by the W-LED having high luminous efficiency. Therefore, the power consumption of the second display area can be reduced compared to the first display area.
  • the number of LEDs 41 provided in the backlight unit 49 is not particularly limited in the first display area and the second display area, and the arrangement pitch of the LEDs 41 is different in the first display area and the second display area. They may be the same or different.
  • FIG. 9 is a plan view illustrating a schematic configuration of the backlight unit 49 according to Configuration Example 2.
  • light sources first light source and second light source
  • each LED 41 includes one R-LED in both the first and second display areas.
  • the chip 42R is composed of one G-LED chip 42G and one B-LED chip 42B.
  • the arrangement pitch of the LEDs 41 is different between the first and second display areas. For example, as shown in FIG. 9, the LEDs 41 are arranged at a narrow pitch (dense) in the first display area, and the LEDs 41 are arranged at a wide pitch (sparse) in the second display area.
  • the LEDs 41 (first light sources) are densely arranged in the first display area, so that high-quality display can be realized.
  • the LEDs 41 (second light sources) Since it is sparsely arranged, cost and power consumption can be reduced.
  • FIG. 10 is a plan view illustrating a schematic configuration of the backlight unit 49 according to Configuration Example 3.
  • the backlight unit 49 of FIG. 10 includes a plurality of LEDs 41 (first light sources) composed of an R-LED chip 42R, a G-LED chip 42G, and a B-LED chip 42B.
  • first light sources composed of an R-LED chip 42R, a G-LED chip 42G, and a B-LED chip 42B.
  • second LEDs 41 composed of R-LED chips 42R, G-LED chips 42G, and B-LED chips 42B Light sources
  • the number of LEDs 41 corresponding to the second display area may be one.
  • one or a plurality of LEDs 41 corresponding to the second display area may be arranged only on one side surface side, and the plurality of LEDs 41 corresponding to the second display area face each other on opposite side faces. It may be arranged as follows.
  • the backlight unit 49 in the second display area is configured such that light incident on the side surface of a light guide plate (not shown) provided on the back side of the liquid crystal display panel 59 is emitted from the top surface of the light guide plate to the outside. It is.
  • the backlight unit 49 is a direct type, so that a high-quality display can be realized.
  • the backlight unit 49 is an edge type. Cost and power consumption can be reduced.
  • the light source (second light source) arranged in the second display area is not limited to the LED, and a fluorescent tube such as CCFL (cold cathode tube) or HCFL (hot cathode tube) can also be used. .
  • CCFL cold cathode tube
  • HCFL hot cathode tube
  • FIG. 11 is a plan view illustrating a schematic configuration of a backlight unit 49 according to Configuration Example 4.
  • the backlight unit 49 of FIG. 11 has a plurality of LEDs 41 (first light sources) arranged in a matrix in the first display area, and a light source 41p (second light source) different from the LEDs in the second display area, for example, CCFL.
  • a fluorescent tube such as HCFL is disposed on the back side of the liquid crystal display panel 59.
  • the configuration of the optical sheet may be different between the first display area and the second display area.
  • the directivity of the optical sheet in the second display area is made higher than that in the first display area.
  • the cost can be reduced by not providing a prism sheet in the second display area. Thereby, in the second display area, desired luminance can be obtained with low power consumption.
  • FIG. 12 is a plan view illustrating a schematic configuration of the backlight unit 49 according to Configuration Example 6.
  • a light source first light source and second light source
  • each LED 41 includes three Ws in both the first display region and the second display region.
  • the size of each W-LED chip 42W differs between the first display area and the second display area.
  • LEDs have different luminous efficiencies depending on the chip size, and there are three types: small type (small), middle type (medium), and large type (large), and the large type has the highest luminous efficiency.
  • a large type W-LED chip 42W is provided in the first display area, and a middle type (medium) or small type (small) W-LED chip 42W is provided in the second display area.
  • a middle type (medium) W-LED chip 42W may be provided in the first display area, and a small type (small) W-LED chip 42W may be provided in the second display area.
  • FIG. 13 is a plan view illustrating a schematic configuration of the backlight unit 49 according to Configuration Example 7.
  • a light source first light source and second light source
  • each LED 41 includes three W-LEDs in both the first and second display areas.
  • the chip 42W is configured, the configuration of the phosphor of the W-LED chip 42W is different from each other.
  • LEDs have different light emission efficiency and color reproducibility depending on the structure of the phosphor. The light emission efficiency is high but the color reproducibility is narrow. The light emission efficiency is low but the color reproducibility is wide (so-called high color rendering type).
  • a high color rendering type W-LED chip 42W capable of vivid display is provided in the first display area, and the second display area is a type having high luminous efficiency with priority on power saving.
  • the W-LED chip 42W can be provided.
  • the backlight unit 49 has a different configuration for each display area corresponding to each display area of the liquid crystal display panel 59.
  • the backlight unit 49 according to the present configuration example 8 has the same configuration in each display area.
  • FIG. 14 is a plan view showing a schematic configuration of a backlight unit 49 according to Configuration Example 8.
  • a light source (first light source and second light source) is provided on the back side of the liquid crystal display panel 59, and each LED 41 includes one R-LED in both the first and second display areas.
  • the chip 42R is composed of one G-LED chip 42G and one B-LED chip 42B.
  • each LED 41 may be composed of three W-LED chips 42W.
  • FIG. 15 is a plan view illustrating a schematic configuration of a backlight unit 49 according to Configuration Example 9.
  • the light source first light source and second light source
  • the partition wall 60 for optically separating the first display area and the second display area can be easily formed. Therefore, since light leakage between the first display area and the second display area can be prevented, display quality can be improved.
  • the backlight unit 49 shown in FIG. 5 is integrally formed including the first display area and the second display area.
  • the backlight unit is provided for each display area. These backlight units may be combined individually to constitute one backlight unit corresponding to the liquid crystal display panel 59.
  • the backlight unit 49 in the first display area may be an edge type. Thereby, cost and power consumption can be further reduced.
  • the liquid crystal display device 69 according to the driving method 1 is driven by a local dimming method.
  • the local dimming method is a driving method for partially controlling the luminance of the light emitting surface by independently controlling each of the point light sources in a backlight unit having a plurality of point light sources such as LED light sources. is there.
  • the luminance of all LED light sources is uniformly controlled (hereinafter referred to as 0D-dimming method) and the luminance of a plurality of LED light sources in one direction (row direction or column direction) is uniform.
  • 1D-dimming method a method for independently controlling the brightness of any one LED light source, or a method for uniformly controlling the brightness of a plurality of LED light sources in an arbitrary region (hereinafter referred to as “the following”) 2D-dimming method).
  • the first display area is driven by the 2D-dimming method (first local dimming method), and the second display area Are driven by the 0D-dimming method (second local dimming method).
  • first local dimming method the brightness
  • the brightness of one LED 41 can be adjusted high, or the brightness of a plurality of LEDs 41 included in an arbitrary region can be adjusted low. Therefore, in the first display area, high-quality display can be performed and power consumption can be reduced.
  • the brightness can be adjusted to be low as a whole in accordance with the display content, so that power consumption can be reduced and each LED 41 can be controlled uniformly. It can be simplified and the cost can be reduced.
  • the driving method applied to the first display region and the second display region is not limited to the above combination, and different driving methods are adopted.
  • the first display area can be driven by the 2D-dimming method and the second display area can be driven by the 1D-dimming method.
  • the first display area may be driven by the 2D-dimming method, the 1D-dimming method, or the 0D-dimming method, and the second display region may be configured not to employ the local dimming method.
  • the driving frequency of the LED 41 is different between the first display area and the second display area.
  • a high frequency drive of 240 Hz is performed in the first display area
  • a low frequency drive of 120 Hz is performed in the second display area.
  • the combination of drive frequencies of the LEDs 41 applied to the first display region and the second display region is not limited to the above, and any drive frequency may be used.
  • the dimming method of the LED 41 is different between the first display area and the second display area.
  • driving is performed by a pulse width modulation (PWM) dimming method that adjusts the luminance by controlling the pulse width of the pulse voltage applied at a constant period, and the LED 41 flows in the second display area.
  • PWM pulse width modulation
  • Driving is performed by a current dimming method in which the luminance is adjusted by controlling the current.
  • the first display area is driven by the PWM dimming method
  • the second display area is a tube that adjusts the luminance by controlling the tube current flowing through the fluorescent tube. It can be set as the structure driven by an electric current light control system.
  • one entire display area corresponding to one liquid crystal display panel 59 is divided into a plurality of display areas, and a function of displaying different images in each display area ( (Hereinafter referred to as “divided screen display mode”) and a function for displaying one image in one display area (all display areas) corresponding to the entire surface of the liquid crystal display panel 59, which is a sum of the display areas (hereinafter referred to as “display screen”) And a configuration for switching between the split screen display mode and the full screen display mode based on the video signal received by the receiving unit 31.
  • the switching method between the split screen display mode and the full screen display mode can be realized by the following method, for example. That is, as shown in FIG. 4, the processing control unit 13 of the video signal processing unit 11 generates the display mode switching signal SSW based on the video signal received from the outside. Then, the process control unit 13 transmits a display mode switching signal SSW to the liquid crystal display panel controller 32.
  • the liquid crystal display panel controller 32 controls the pixels of the liquid crystal display panel 59 (see FIG. 1) based on the display mode switching signal SSW to display an image on the corresponding display area or one entire display area.
  • the liquid crystal display panel 59 is divided into two display areas (a first display area and a second display area), and the aspect ratio (aspect ratio) of the first display area is 16. : 9, the aspect ratio of the second display area is 5: 9, and the aspect ratio of the entire display area including the first and second display areas is 21: 9.
  • a full HD (Full High Definition) image is displayed in the first display area without being reduced, and at the same time,
  • Other contents for example, images such as time and calendar, character information associated with video in the first display area, multi-channel television video, etc.
  • images such as time and calendar, character information associated with video in the first display area, multi-channel television video, etc.
  • the full screen display mode it is possible to display a video such as movie content having an aspect ratio of 21: 9 without reducing it.
  • a video such as movie content having an aspect ratio of 21: 9
  • display is performed in the split screen display mode, and when video of movie content is received, display is performed in the full screen display mode. Is called.
  • the number of divisions of the display area is not limited to two, but may be three or more, and the aspect ratio of each display area is also limited to the above value. It is not a thing.
  • the backlight unit 49 may be configured differently for each display area corresponding to each display area of the liquid crystal display panel 59, and the same in each display area. It is good also as a structure. Therefore, each structural example according to the first embodiment can be applied.
  • the liquid crystal display device 69 has a function of switching between the split screen display mode and the full screen display mode, and the driving method of the backlight unit 49 is different for each display area.
  • the driving method of the backlight unit 49 is different for each display area.
  • a luminance difference display unevenness
  • the following driving methods 1 to 3 correspond to the driving methods 1 to 3 described in the first embodiment.
  • the luminance difference can be eliminated by switching the local dimming method between the first display region and the second display region and adjusting the luminance of each LED 41.
  • the first display area is driven by the 0D-dimming method in the full screen display mode.
  • the display brightness as a whole can be equalize
  • the display luminance can be made uniform by matching the method with the lower resolution (in the above example, the 0D-dimming method).
  • the local dimming system drive may be stopped. Even in this configuration, the brightness of the LEDs 41 in the first display area and the second display area can be matched, so that the display brightness as a whole can be made uniform.
  • the first display is achieved by adjusting the drive frequency of one LED 41 to the drive frequency of the other LED 41. Since the brightness of each LED 41 in the area and the second display area can be matched, the display brightness as a whole can be made uniform. For example, in the split display mode, when high frequency driving of 240 Hz is performed in the first display area and low frequency driving of 120 Hz is performed in the second display area, the first display area and the second display area are displayed in the full screen display mode. A high frequency drive of 240 Hz is assumed. Thereby, the brightness
  • the first display area and the second display area can be driven at a low frequency of 120 Hz.
  • the brightness of the LEDs 41 in the first display area and the second display area can be matched, and the power consumption can be further reduced.
  • the liquid crystal display device 69 has a configuration in which the dimming method of the LED 41 is different between the first display region and the second display region, by adjusting the dimming method of one LED 41 to the dimming method of the other LED 41, Since the brightness of each LED 41 in the first display area and the second display area can be matched, the display brightness as a whole can be made uniform.
  • the first display area and the second display area are displayed in the full screen display mode.
  • the region is driven by the PWM dimming method.
  • luminance of each LED41 of a 1st display area and a 2nd display area can be match
  • the quality of the entire screen can be improved.
  • the first display area and the second display area can be driven by a current dimming method.
  • the brightness of the LEDs 41 in the first display area and the second display area can be matched, and the power consumption can be further reduced.
  • the driving method 4 In the driving methods 1 to 3 shown in the first embodiment, in the full screen display mode, the brightness of each LED 41 in the first display area and the second display area is not adjusted, and the display brightness is adjusted on the liquid crystal display panel 59 side. You can go. Specifically, the liquid crystal display panel controller 32 (see FIG. 4) controls the pixels of the liquid crystal display panel 59 (see FIG. 1), and adjusts the transmittance of the liquid crystal for each RGB pixel, thereby displaying the entire display. The luminance can be made uniform.
  • the display panel includes at least a first display area and a second display area,
  • the first display area may be driven by the first local dimming method
  • the second display area may be driven by the second local dimming method.
  • the first local dimming method is a method of independently controlling the luminance of an arbitrary light source in the first display area
  • the second local dimming method is a uniform luminance of all the light sources in the second display area. This is a control method.
  • the display panel includes at least a first display area and a second display area
  • the backlight may be configured to perform high frequency driving in the first display area and perform low frequency driving in the second display area.
  • the display panel includes at least a first display area and a second display area,
  • the first display area can be driven by PWM dimming
  • the second display area can be driven by current dimming.
  • the display panel includes at least a first display area and a second display area, Corresponding to the first display region, a plurality of first light sources including at least a red light emitting diode element, a green light emitting diode element, and a blue light emitting diode element are disposed, Corresponding to the second display area, a plurality of second light sources including white light emitting diode elements may be arranged.
  • the display panel includes at least a first display area and a second display area
  • the arrangement pitch of a plurality of first light sources arranged corresponding to the first display area is smaller than the arrangement pitch of a plurality of second light sources arranged corresponding to the second display area.
  • the display panel includes at least a first display area and a second display area
  • the first light source corresponding to the first display area included in the backlight is disposed on the back side of the display panel
  • the second light source corresponding to the second display area included in the backlight may be arranged on the side surface side of the display panel.
  • the display panel includes at least a first display area and a second display area
  • the first light source corresponding to the first display area included in the backlight is composed of a light emitting diode
  • the second light source corresponding to the second display area included in the backlight may be configured by a fluorescent tube.
  • the display panel includes at least a first display area and a second display area
  • the directivity of the optical sheet corresponding to the second display area included in the backlight may be higher than the directivity of the optical sheet corresponding to the first display area included in the backlight.
  • the display panel includes at least a first display area and a second display area
  • the first light source corresponding to the first display area and the second light source corresponding to the second display area included in the backlight are configured by light emitting diodes,
  • the size of the first light source and the size of the second light source may be different from each other.
  • the light emitting diode may emit white light.
  • the same light source may be arranged in each display area.
  • the light source of each display area is made uniform so that the display luminance of each display area is uniform.
  • a configuration in which the brightness is individually adjusted may be employed.
  • the display panel has two or more display areas, The aspect ratio of at least one display area may be 16: 9.
  • the display panel includes a first display area and a second display area,
  • the aspect ratio of the first display area may be 16: 9, and the aspect ratio of the second display area may be 5: 9.
  • a full HD (Full High Definition) video is displayed in the first display area without being reduced, and at the same time, other contents (for example, images such as time and calendar, , Character information associated with the video in the first display area, multi-channel television video, etc.) can be displayed.
  • other contents for example, images such as time and calendar, , Character information associated with the video in the first display area, multi-channel television video, etc.
  • the aspect ratio of all the display areas corresponding to the entire surface of the display panel obtained by adding all the display areas may be 21: 9.
  • the video when one video is displayed in the entire display area obtained by adding up all the display areas (full screen display mode), the video such as movie content having an aspect ratio of 21: 9 is reduced. Can be displayed.
  • the display panel includes a first display area and a second display area,
  • the aspect ratio of the first display area is 16: 9
  • the aspect ratio of the second display area is 16: 1
  • all display areas corresponding to the entire surface of the display panel including all display areas are added.
  • An aspect ratio may be 16:10.
  • Each display area may be arranged in the horizontal direction or the vertical direction on the display panel surface.
  • a split screen display mode for displaying different images for each display region, and a full screen display mode for displaying one image in the entire display region corresponding to the entire surface of the display panel obtained by adding all the display regions can be switched between each other based on a video signal input from the outside.
  • the aspect ratio (aspect ratio) of the first display area is 16: 9, the aspect ratio of the second display area is 5: 9, and the entire display including the first and second display areas is combined.
  • the aspect ratio of the area is 21: 9
  • a full HD (Full High Definition) image is displayed in the first display area without being reduced, and at the same time in the second display area.
  • Can display other contents for example, images such as time and calendar, text information associated with video in the first display area, multi-channel television video, etc.
  • the full screen display mode it is possible to display a video such as movie content having an aspect ratio of 21: 9 without reducing it.
  • the display brightness is different for each display area
  • the luminance of the light source can be individually adjusted for each display region so that the display luminance is uniform in the entire display region.
  • the luminance difference (display unevenness) generated for each display area can be eliminated.
  • the display panel includes at least a first display area and a second display area
  • the backlight performs driving of the first local dimming method in the first display region, and driving of the second local dimming method in the second display region
  • the second local dimming system may be driven in the first display area and the second display area.
  • the display panel includes at least a first display area and a second display area, In the split screen display mode, high frequency driving is performed in the first display area, low frequency driving is performed in the second display area, In the full screen display mode, the high frequency driving may be performed in the first display area and the second display area.
  • the display panel includes at least a first display area and a second display area
  • the backlight is driven by a PWM dimming method in the first display region, and is driven by a current dimming method in the second display region.
  • the first display area and the second display area may be configured to be driven by the current dimming method.
  • the brightness of the light source is individually adjusted for each display area so that the display brightness is different for each display area.
  • the liquid crystal transmittance may be adjusted for each display area so that the display luminance is uniform in the entire display area.
  • the display device of the present invention can be suitably used for various applications such as mobile devices such as mobile phones and PDAs, and TVs.
  • Video signal processing unit 12 Built-in memory 13 Processing control unit 21 LED controller 22 LED driver control unit 23 Pulse width modulation unit 31 Reception unit 32 Liquid crystal display panel controller 33 LED driver 41 LED (first light source, second light source) 41R Red LED 41G green LED 41B Blue LED 42R Red LED chip (red LED element) 42G Green LED chip (Green LED) 42B Blue light emitting LED chip (light emitting diode element emitting blue light) 42W white light emitting LED chip (white light emitting diode element) 49 Backlight unit (backlight) 59 Liquid crystal display panel 60 Bulkhead 69 Liquid crystal display device

Abstract

 バックライトは、第1、第2表示領域に、R-LEDチップ(42R)、G-LEDチップ(42G)およびB-LEDチップ(42B)を1個ずつ含むLED(41)が配され、第1表示領域では2D-ディミング方式、第2表示領域では0D-ディミング方式の駆動を行う。これにより、表示領域を複数の領域に分割して表示を行う表示装置において、消費電力を削減する。

Description

表示装置の駆動方法
 本発明は、発光ダイオードを含むバックライト装置を備えた表示装置の駆動方法に関する。
 近年、液晶表示装置において、自発光素子である発光ダイオード(以下、LEDともいう)を光源として用いたバックライト装置が提案されている(例えば、特許文献1参照)。
 発光ダイオードは、従来の光源として用いられている冷陰極管と比較して、長寿命、低消費電力、高輝度といった多くの利点を有している。
 発光ダイオードを用いたバックライト装置では、1つの発光ダイオードが、赤(R)色を発光する発光ダイオード素子、緑(G)色を発光する発光ダイオード素子、青(B)色を発光する発光ダイオード素子を含み、これらの混色により白色を発光するタイプや、1つの発光ダイオードが、何れか一色の発光ダイオード素子を含み、当該色を発光するタイプなどがある。
 図16は、特許文献1のバックライト装置の概略構成を示すブロック図である。同図に示すように、このバックライト装置では、赤色、緑色、青色をそれぞれ発光する複数の発光ダイオード120が、表示パネルの全面に対応するように、発光部プリント基板150上に均一に配されている。これにより、表示パネル面内で均一に発光させることができるため、均一な表示を行うことができる。
日本国公開特許公報「特開2006-128125号公報(2006年5月18日公開)」
 ところで、近年、1枚の表示パネルに対応する全表示領域を複数の領域に分割して、分割した表示領域ごとに異なる画像を表示する液晶表示装置が提案されている。
 このような液晶表示装置では、表示するコンテンツが表示領域ごとに異なり、要求される表示品位も表示領域ごとに異なるものが多い。
 このような場合、上記従来のバックライト装置を用いた液晶表示装置では、各表示領域において同様の動作(駆動)が行われるため、無駄に消費される電力が増大することになる。
 そこで、本発明では、表示領域を複数の領域に分割して表示を行うことが可能な表示装置において、消費電力を削減することを目的とする。
 本発明に係る表示装置の駆動方法は、上記の課題を解決するために、
 複数の表示領域を有する表示パネルと、該表示パネルに光を照射するバックライトとを備えた表示装置の駆動方法であって、
 上記バックライトは、上記表示領域ごとに対応して設けられた複数の光源を含み、
 上記表示領域ごとに光源の輝度を個別に調整することを特徴とする。
 上記の構成によれば、例えば表示パネルが第1表示領域と第2表示領域とを含む場合、第1表示領域を2D-ディミング方式(第1ローカルディミング方式)により駆動し、第2表示領域を0D-ディミング方式(第2ローカルディミング方式)により駆動することにより、第1表示領域では、表示内容に応じてより細かく光源(LED)の輝度を制御できる。例えば、任意のLEDの輝度を低く調整することができるため、第1表示領域では、高画質の表示が可能になるとともに、消費電力を削減することができる。また、第2表示領域では、表示内容に応じて全体として輝度を低く調整することができるため、消費電力を削減することができる。そのため、表示装置全体としての消費電力を削減することができる。
 以上のように、本発明に係る表示装置の駆動方法では、上記バックライトは、上記表示領域ごとに対応して設けられた複数の光源を含み、上記表示領域ごとに上記光源の輝度を個別に調整する。そのため、表示領域を複数の領域に分割して表示を行うことが可能な表示装置において、消費電力を削減することができるという効果を奏する。
本実施の形態に係る液晶表示装置を示す分解斜視図である。 図1の液晶表示装置に含まれるバックライトユニットの一部を示す分解斜視図である。 (a)~(c)は、LEDチップが一端から他端に向かって、GRGB配列になったLEDの正面図である。 図1の液晶表示装置に含まれる種々部材を示すブロック図である。 本実施の形態に係る液晶表示装置を示す分解斜視図である。 本実施の形態に係る液晶表示パネルにおける表示領域を示す模式図である。 (a)および(b)は、本実施の形態に係る液晶表示パネルにおける他の表示領域を示す模式図である。 構成例1に係るバックライトユニットの概略構成を示す平面図である。 構成例2に係るバックライトユニットの概略構成を示す平面図である。 構成例3に係るバックライトユニットの概略構成を示す平面図である。 構成例4に係るバックライトユニットの概略構成を示す平面図である。 構成例6に係るバックライトユニットの概略構成を示す平面図である。 構成例7に係るバックライトユニットの概略構成を示す平面図である。 構成例8に係るバックライトユニットの概略構成を示す平面図である。 (a)は構成例9に係るバックライトユニットの概略構成を示す平面図であり、(b)はその側面図である。 従来のバックライト装置の概略構成を示すブロック図である。
 〔実施の形態1〕
 本発明の一実施の形態について図面を用いて説明する。なお、便宜上、部材符号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、記載される数値実施例は、一例にすぎず、その数値に限定されるものではない。
 まず、本実施の形態に係る液晶表示装置(表示装置)の概略構成について説明する。
 図1は、本実施の形態に係る液晶表示装置69を示す分解斜視図である。なお、後述する導光板43の個数は、便宜上、比較的少ない数しか図示していない。また、図2は、液晶表示装置69に含まれるバックライトユニット49の一部を示す分解斜視図である。
 図1に示すように、液晶表示装置69は、液晶表示パネル59と、バックライトユニット49と、それらを挟むハウジングHG(HG1・HG2)とを含む。
 液晶表示パネル59は、ローカルディミング方式を採用する。そのため、この液晶表示パネル59では、不図示のTFT(Thin Film Transistor)等のアクティブ素子が設けられたアクティブマトリクス基板51と、このアクティブマトリクス基板51に対向する対向基板52とで、液晶(不図示)を挟み込む。つまり、アクティブマトリクス基板51および対向基板52は、液晶を挟むための基板であり、透明なガラス等で形成される。
 なお、アクティブマトリクス基板51と対向基板52との外縁には、不図示のシール材が取り付けられ、このシール材により液晶を封止する。また、アクティブマトリクス基板51および対向基板52を挟むように、偏光フィルムPLが設けられている。
 この液晶表示パネル59は非発光型の表示パネルなので、バックライトユニット49からの光(バックライト光)を受光することにより表示機能を発揮する。そのため、バックライトユニット49からの光が液晶表示パネル59の全面を均一に照射できれば、液晶表示パネル59の表示品位が向上する。
 そして、このようなバックライトユニット49は、LEDモジュールMJ、導光板セットST、拡散シート45、プリズムシート46・47を含む。
 LEDモジュールMJは、光を発するモジュールであり、図2に示すように、実装基板40と、その実装基板40における実装基板面40Uに形成された電極に実装され、電流の供給を受けて光を発するLED(Light Emitting Diode)41と、を含む。
 また、LEDモジュールMJは、光量確保のために、複数の発光素子であるLED(光源)41を含むことが望ましく、さらに、LED41をマトリクス状に並列させることがより望ましい。ただし、図面では便宜上、一部のLED41のみが示されているにすぎない。なお、以降では、LED41の並ぶ一方向をX方向、このX方向に交差(例えば直交)する方向をY方向と称する。
 なお、LED41の種類は、特に限定されるものではない。一例として、図3の(a)のLED41の正面図に示すような、1個の赤色発光(R)のLEDチップ42R、2個の緑色発光(G)のLEDチップ42G、および1個の青色発光(B)のLEDチップ42Bを並列させ、混色により白色光を生成するLED41が挙げられる。なお、図3の(a)に示すように、一端から他端に向かって、LEDチップ42G、LEDチップ42R、LEDチップ42G、LEDチップ42Bと並ぶ場合、GRGB配列と称する。
 次に、導光板セットSTについて説明する。導光板セットSTは、導光板43と反射シート44とを含む。
 導光板43は、自身に入射するLED41の光を多重反射させて、外部に出射させる。この導光板43は、図2に示すように、光を受光する受光片43Rと、この受光片43Rにつながる出射片43Sとを含む。
 受光片43Rは、板状部材であり、側壁の一部分に切欠KCを有する。この切欠KCは、自身の底KCbにLED41の発光面42Lを対向させつつ、そのLED41を囲める程度のスペースを有する。そのため、この切欠KCに収まるようにLED41が取り付けられると、切欠KCの底KCbが導光板43の受光面43Rsとなる。なお、受光片43Rの側壁を挟む2面のうち、実装基板40側に向く面を底面43Rb、その底面43Rbの反対面を天面43Ruとする。
 出射片43Sは、受光片43Rに並ぶようにして連なり、受光面43Rsから入射する光の進行先に位置する板状部材である。この出射片43Sは、受光片43Rの底面43Rbと同一面(面一)となる底面43Sbを有する一方、受光片43Rの天面43Ruに対して高くなる段差を生じさせる天面43Suを有する。
 さらに、出射片43Sにおける天面43Suと底面43Sbとは、平行ではなく、一方面が他方面に対して傾斜する。詳説すると、受光面43Rsからの光の進行先に進むにつれて、底面43Sbが天面43Suに近づくように傾く。つまり、出射片43Sは、受光面43Rsからの光の進行先に進むにつれて、厚み(天面43Suと底面43Sbとの間隔)を徐々に薄くすることで、先細りする(なお、このような先細りした出射片43Sを含む導光板43は、くさび形の導光板43とも称される)。
 そして、このような受光片43Rと出射片43Sとを含む導光板43は、受光面43Rsから光を受光し、その光を底面43b(43Rb・43Sb)と天面43u(43Ru・43Su)との間で多重反射させ、天面43Suから外部に向けて出射させる(なお、天面43Suから出射する光は面状光と称される)。
 ただし、底面43bに対する光の入射角の関係上、その光が底面43bから出射してしまうこともある。そこで、このような事態を防止すべく、反射シート44は、導光板43の底面43bを覆い、その底面43bから漏れる光を導光板43内部に戻すように反射させる(ただし、図2では、便宜上、反射シート44は省略する)。
 なお、以上のような導光板セットSTにおける導光板43は、LED41に応じてマトリクス状に並ぶ。特に、このようにY方向に沿って導光板セットSTが並ぶ場合、受光片43Rの天面43Ruが出射片43Sの底面43Sbを支え、集まる天面43Suで同一面が完成する(天面43Suが面一で集まる)。
 また、X方向に沿って導光板セットSTが並ぶ場合でも、集まる天面43Suで同一面が完成する。その結果、導光板43の天面43Suは、マトリクス状に並ぶことで、比較的大型な光出射面となる(このようなマトリクス状に並ぶ導光板43をタンデム型導光板43とも称する)。
 拡散シート45は、マトリクス状に並ぶ導光板43の天面43Suを覆うように位置し、導光板43からの面状光を拡散させて、液晶表示パネル59全域に光をいきわたらせている(なお、この拡散シート45とプリズムシート46・47とを、まとめて光学シート群(45~47)とも称する)。
 プリズムシート46・47は、例えばシート面内にプリズム形状を有し、光の放射特性を偏向させる光学シートであり、拡散シート45を覆うように位置する。そのため、このプリズムシート46・47は、拡散シート45から進行してくる光を集光させ、輝度を向上させる。なお、プリズムシート46とプリズムシート47とによって集光される各光の発散方向は交差する関係にある。
 次に、ハウジングHGについて説明する。ハウジングHGである表ハウジングHG1と裏ハウジングHG2とは、以上のバックライトユニット49およびそのバックライトユニット49を覆う液晶表示パネル59を挟み込みつつ固定する(なお、固定の仕方は、特に限定されるものではない)。すなわち、表ハウジングHG1は、バックライトユニット49および液晶表示パネル59を裏ハウジングHG2とともに挟み込み、これにより、液晶表示装置69が完成する。
 なお、裏ハウジングHG2は、導光板セットST、拡散シート45、プリズムシート46・47を、この順で積み重ねつつ収容する。この積み重なる方向をZ方向と称する(なお、X方向、Y方向、Z方向は、互いに直交する関係であってもよい)。
 そして、以上のようなバックライトユニット49では、LED41からの光は導光板セットSTを経ることで面状光になって出射し、その面状光は光学シート群(45~47)を通過することで発光輝度を高めたバックライト光になって出射する。そして、このバックライト光が、液晶表示パネル59に到達し、そのバックライト光によって、液晶表示パネル59は画像を表示させる。
 ところで、タンデム型の導光板43を搭載するバックライトユニット(タンデム方式バックライトユニット)49は、導光板43毎に出射光を制御可能なために、液晶表示パネル59の表示領域を部分的に照射できる。そのため、このようなバックライトユニット49は、ローカルディミング方式のバックライトユニット49ともいえる。
 そこで、このようなローカルディミング方式のバックライトユニット49による発光制御について、以下に説明する。
 図4は、液晶表示装置69に含まれる種々部材を示すブロック図である(なお、この図4に示されるLED41は、複数あるLED41のうちの1つである)。この図4に示すように、液晶表示装置69は、受信部31、映像信号処理部(制御部)11、液晶表示パネルコントローラ32、LEDコントローラ21、LEDドライバ33、およびLED41を含む。
 受信部31は、例えば、テレビの放送信号(白色矢印参照)のような映像音声信号を受信する(なお、以降では、映像音声信号に含まれる映像信号について主体的に説明していく)。そして、受信部31は、受信した映像信号を映像信号処理部11に送信する。
 なお、映像信号処理部11に送信される映像信号を、便宜上、基礎映像信号(画像データ)とし、この基礎映像信号に含まれる色映像信号(基礎色映像信号)のうち、赤色を示す信号を基礎赤色映像信号FRS、緑色を示す信号を基礎緑色映像信号FGS、青色を示す信号を基礎青色映像信号FBS、とする。
 映像信号処理部11は、内蔵メモリ12と、処理制御部(制御部)13とを含む。内蔵メモリ12は、処理制御部13による信号への補正処理に要するルックアップテーブル(図示せず)を記憶する。
 処理制御部13は、受信した基礎色映像信号(画像データ)に基づいて、加工映像信号を生成する。そして、処理制御部13は、加工映像信号を、液晶表示パネルコントローラ32とLEDコントローラ21とに送信する。
 なお、加工映像信号は、例えば、基礎色映像信号(基礎赤色映像信号FRS、基礎緑色映像信号FGS、基礎青色映像信号FBS等)を加工処理した加工色映像信号(加工赤色映像信号RS、加工緑色映像信号GS、加工青色映像信号BS)、および加工色映像信号に関する同期信号(クロック信号CLK、垂直同期信号VS、水平同期信号HS等)である。
 ただし、液晶表示パネルコントローラ32に送信される加工色映像信号と、LEDコントローラ21に送信される加工色映像信号とは異なる。そこで、これらの加工色映像信号を区別すべく、液晶表示パネルコントローラ32に送信される加工色映像信号を、パネル用加工赤色映像信号RSp、パネル用加工緑色映像信号GSp、パネル用加工青色映像信号BSpとする。
 一方で、LEDコントローラ21に送信される加工色映像信号(光源制御データ)を、光源用赤色映像信号RSd、光源用緑色映像信号GSd、光源用青色映像信号BSdとする。なお、詳説すると、光源用色映像信号(RSd、GSd、BSd)は、適正な補正処理がされた後に、LEDコントローラ21に送信される。
 なお、光源用色映像信号(RSd、GSd、BSd)とパネル用加工色映像信号(RSp、GSp、BSp)とは、基礎色映像信号(FRS、FGS、FBS)に対して以下のような関係を満たす。
 ・ 基礎赤色映像信号FRS
  =パネル用加工赤色映像信号RSp×光源用赤色映像信号RSd
 ・ 基礎緑色映像信号FGS
  =パネル用加工緑色映像信号GSp×光源用緑色映像信号GSd
 ・ 基礎青色映像信号FBS
  =パネル用加工青色映像信号BSp×光源用青色映像信号BSd
 液晶表示パネルコントローラ32は、パネル用加工赤色映像信号RSp、パネル用加工緑色映像信号GSp、パネル用加工青色映像信号BSpと、これら信号に関する同期信号とに基づいて、液晶表示パネル59の画素を制御する。
 LEDコントローラ21は、LEDドライバ制御部22とパルス幅変調部23とを含む。
 LEDドライバ制御部22は、映像信号処理部11からの光源用色映像信号をパルス幅変調部23に送信する。また、LEDドライバ制御部22は、同期信号(クロック信号CLK、垂直同期信号VS、水平同期信号HS等)からLED41(詳説すると、LEDチップ42)の点灯タイミング信号TSを生成して、LEDドライバ33に送信する。
 パルス幅変調部23は、パルス幅変調(Pulse Width Modulation;PWM)方式で、光源用色映像信号に基づいて、LED41の発光時間を調整する。なお、このようなパルス幅変調に使用される信号値をPWM信号(PWM値)と称する。また、パルス幅変調方式とは、周知であり、例えば、バックライトを120Hz(1秒間に120回点滅、周期8.33ms)で駆動し、その8.33msの期間を12bit(4096)の分割幅で制御、変化させる方式のことである。
 LEDドライバ33は、LEDコントローラ21からの信号(PWM信号、タイミング信号)に基づいて、LED41を点灯制御する。
 LED41は、上述したとおり、1個のLEDチップ42R(例えば第1の光源)、2個のLEDチップ42G(例えば第2の光源)、1個のLEDチップ42B(例えば第3の光源)を含む。そして、これらのLEDチップ42は、LEDドライバ33によって、パルス幅変調方式で点灯制御される。
 以上では、くさび形の導光板43を敷き詰めたタンデム型バックライトユニット49を例に挙げて説明してきた。しかし、これに限定されるものではない。例えば、図5に示すように、バックライトユニット49では、光源であるLED41R、LED41G、LED41G、LED41Bが集まって、混色で白色光を生成し、光学シート群(45~47)に対して、直接、光を出射させてもよい(なお、LED41の後に付記されるRGBは発光色を意味する)。すなわち、直下型のバックライトユニット49であってもかまわない。
 また、以上では、受信部31がテレビ放送信号のような映像音声信号を受信し、その信号における映像信号を、映像信号処理部11が処理していた。そのため、このような液晶表示装置69は、テレビ放送受信装置ともいえる。しかし、液晶表示装置69が処理する映像信号は、テレビ放送に限定されるものではない。例えば、映画等のコンテンツを録画した記録媒体に含まれる映像信号や、インターネットを介して送信される映像信号であってもかまわない。
 また、処理制御部13は、通信ネットワークからの通信でデータ生成プログラムを取得してもよい。なお、通信ネットワークとしては、有線無線を問わず、インターネット、赤外線通等が挙げられる。
 ここで、ルックアップテーブルを用いた光源用色映像信号(RSd、GSd、BSd)に対する補正処理について簡単に説明する。なお、この補正処理の施された光源用色映像信号(光量調整データ)は、光源用赤色映像信号RSd’、光源用緑色映像信号GSd’、光源用青色映像信号BSd’と表記する(すなわち、補正処理された信号には「 ’」を付す)。
 通常、光源用色映像信号(RSd、GSd、BSd)であるPWM値と、光源用色映像信号に応じて発光するLEDチップ42の輝度との関係は、正比例の関係になっていることが望ましい。しかしながら、実際は、LEDチップ42の発光により生じる瞬間的な発熱の影響で、PWM値とLEDチップ42の輝度とが、例えば1:1の正比例の関係にならない。そのため、このようなLEDチップ42を含むLED41からの白色光におけるPWM値とLED41による白色光の輝度との関係も、正比例の関係にはなりにくい。そこで、本液晶表示装置69では、一例として、一般的なルックアップテーブルを用いて、輝度ズレを補償する構成を有している。
 なお、本液晶表示装置69では、LEDコントローラ21の内部に、処理制御部13および内蔵メモリ12が組み込まれており、その処理制御部13(ひいてはLEDコントローラ21)が、パルス幅変調部23から送信されてくる光源用色映像信号(RSd、BSd、GSd)に対して、ルックアップテーブルを用いた補正処理を行い、補正処理後の光源用色映像信号(RSd’、BSd’、GSd’)をLEDドライバ33に送信してもよい。
 (バックライトユニットの構成)
 本液晶表示装置69では、1枚の液晶表示パネル59の全面に対応する1つの表示領域(全表示領域)が複数の領域(表示領域)に分割されており、各表示領域において互いに異なる画像を表示する。
 液晶表示パネル59は、例えば、図6に示すように、2つの表示領域(第1表示領域、第2表示領域)に分割されており、第1表示領域のアスペクト比(横縦比)が16:9、第2表示領域のアスペクト比が5:9、第1および第2表示領域を合わせた全表示領域のアスペクト比が21:9で構成されている。図6の液晶表示パネル59の構成によれば、第1表示領域にフルHD(Full High Definition)映像を縮小することなく表示しつつ、同時に、第2表示領域に他のコンテンツ(例えば、時刻、カレンダーなどの画像や、第1表示領域の映像に関連付けられた文字情報や、多チャンネルのテレビ映像など)を表示させることができる。
 なお、表示領域の分割数は2つに限定されるものではなく、3つあるいはそれ以上であってもよく、各表示領域のアスペクト比も上記の値に限定されるものではない。さらに、各表示領域が並べられる方向も左右方向(図6参照)に限定されず、上下方向に並べられていても良い。図7は、液晶表示パネル59の他の構成を示す模式図である。図7の(a)の液晶表示パネル59では、第1表示領域のアスペクト比が16:9、第2表示領域のアスペクト比が16:1、全表示領域のアスペクト比が16:10で構成されており、第1表示領域および第2表示領域が上下方向に並べられている。図7の(b)の液晶表示パネル59では、さらに第3表示領域を含み、第1表示領域のアスペクト比が16:9、第2表示領域のアスペクト比が5:9、第3表示領域のアスペクト比が21:1、全表示領域のアスペクト比が21:10で構成されている。図7の(b)の構成によれば、第1表示領域にフルHD映像を縮小することなく表示しつつ、同時に、第2表示領域および第3表示領域に、互いに異なるコンテンツを表示させることができる。
 本液晶表示装置69では、バックライトユニット49は、液晶表示パネル59の各表示領域に対応して表示領域ごとに異なる構成としてもよく、また、各表示領域で同一の構成としてもよい。以下では、図6に示す液晶表示パネル59に対応するバックライトユニット49の具体的な構成例について説明する。また、バックライトユニット49において、液晶表示パネル59の第1表示領域に対応する領域に配置される光源を第1光源とし、第2表示領域に対応する領域に配置される光源を第2光源とする。
 (構成例1)
 図8は、構成例1に係るバックライトユニット49の概略構成を示す平面図である。図8のバックライトユニット49は、光源が液晶表示パネル59の背面側に設けられた、いわゆる直下型のバックライトユニットであり、第1表示領域では、各LED41(第1光源)が、1個の赤色発光(R)のLEDチップ(以下、R-LEDチップともいう)42R、1個の緑色発光(G)のLEDチップ(以下、G-LEDチップともいう)42G、および1個の青色発光(B)のLEDチップ(以下、B-LEDチップともいう)42Bで構成され、第2表示領域では、各LED41(第2光源)が、3個の白色発光(W)のLEDチップ(以下、W-LEDチップともいう)42Wで構成されている。
 このように、第1表示領域では、RGBの各LEDチップにより表示が行われるため、色再現範囲の広い表示を実現することができ、第2表示領域では、発光効率が高いW-LEDにより表示が行われるため、第1表示領域と比較して第2表示領域の消費電力を低減することができる。
 なお、バックライトユニット49に設けられるLED41の数量は、第1表示領域および第2表示領域で特に限定されるものではなく、また、LED41の配列ピッチは、第1表示領域および第2表示領域で同一であってもよいし、異なっていていてもよい。
 (構成例2)
 図9は、構成例2に係るバックライトユニット49の概略構成を示す平面図である。図9のバックライトユニット49は、光源(第1光源および第2光源)が液晶表示パネル59の背面側に設けられ、第1および第2表示領域とも、各LED41が、1個のR-LEDチップ42R、1個のG-LEDチップ42G、および1個のB-LEDチップ42Bで構成されているが、各LED41の配列ピッチが第1および第2表示領域で異なっている。例えば、図9に示すように、第1表示領域では、各LED41が狭いピッチ(密)で配列され、第2表示領域では、各LED41が広いピッチ(疎)で配列されている。
 このように、第1表示領域では、各LED41(第1光源)が密に配されているため高画質の表示を実現することができ、第2表示領域では、各LED41(第2光源)が疎に配されているため、コストおよび消費電力を低減することができる。
 (構成例3)
 図10は、構成例3に係るバックライトユニット49の概略構成を示す平面図である。図10のバックライトユニット49は、第1表示領域では、R-LEDチップ42R、G-LEDチップ42G、B-LEDチップ42Bで構成される複数のLED41(第1光源)が、液晶表示パネル59の背面側にマトリクス状に配列され(直下型バックライトユニット)、第2表示領域では、R-LEDチップ42R、G-LEDチップ42G、B-LEDチップ42Bで構成される複数のLED41(第2光源)が、液晶表示パネル59の側面側に一列に配列されている(エッジ型バックライトユニット)。なお、第2表示領域に対応するLED41の数量は1つであってもよい。また、第2表示領域に対応する1つあるいは複数のLED41が、一方の側面側にのみ配されていてもよく、また、第2表示領域に対応する複数のLED41が、向かい合う両側面に互いに向かい合うように配されていてもよい。そして、第2表示領域のバックライトユニット49は、液晶表示パネル59の背面側に設けられた導光板(図示せず)の側面に入射した光が、導光板の天面から外部に出射する構成である。
 このように、第1表示領域では、バックライトユニット49を直下型とすることにより、高画質の表示を実現することができ、第2表示領域では、バックライトユニット49をエッジ型とすることにより、コストおよび消費電力を低減することができる。
 なお、第2表示領域に配される光源(第2光源)は、LEDに限定されるものではなく、CCFL(冷陰極管)、HCFL(熱陰極管)等の蛍光管を使用することもできる。
 (構成例4)
 図11は、構成例4に係るバックライトユニット49の概略構成を示す平面図である。図11のバックライトユニット49は、第1表示領域では、複数のLED41(第1光源)がマトリクス状に配列され、第2表示領域では、LEDとは異なる光源41p(第2光源)、例えばCCFL、HCFL等の蛍光管が液晶表示パネル59の背面側に配されている。
 このように、第1表示領域では、RGB-LEDを使用することにより、高画質の表示を実現することができ、第2表示領域では、CCFL、HCFL等を使用することにより、コストおよび消費電力を低減することができる。
 (構成例5)
 第1表示領域と第2表示領域とで、光学シートの構成を異ならせても良い。例えば、第2表示領域の光学シートの指向性を第1表示領域のそれよりも高くする。また、第1表示領域にプリズムシートと呼ばれる輝度上昇フィルムを設けることにより、輝度を上昇させる構成としてもよい。なお、第2表示領域にはプリズムシートを設けないことによりコストの低減を図ることができる。これにより、第2表示領域では、低消費電力で所望の輝度を得ることができる。
 (構成例6)
 図12は、構成例6に係るバックライトユニット49の概略構成を示す平面図である。図12のバックライトユニット49は、光源(第1光源および第2光源)が液晶表示パネル59の背面側に設けられ、第1表示領域および第2表示領域ともに、各LED41が、3個のW-LEDチップ42Wで構成されているが、各W-LEDチップ42Wのサイズが第1表示領域および第2表示領域で異なっている。一般に、LEDはチップサイズによって発光効率が異なり、スモールタイプ(小)、ミドルタイプ(中)、ラージタイプ(大)の3種類が存在し、ラージタイプが最も発光効率が高い。そこで、本構成例6では、例えば、第1表示領域にラージタイプのW-LEDチップ42Wを設け、第2表示領域にミドルタイプ(中)あるいはスモールタイプ(小)のW-LEDチップ42Wを設けた構成や、第1表示領域にミドルタイプ(中)のW-LEDチップ42Wを設け、第2表示領域にスモールタイプ(小)のW-LEDチップ42Wを設けた構成とすることができる。
 このように、第2表示領域に、第1表示領域よりも発光効率の低いW-LEDチップ42Wを設けることにより、コストおよび消費電力を低減することができる。
 (構成例7)
 図13は、構成例7に係るバックライトユニット49の概略構成を示す平面図である。図13のバックライトユニット49は、光源(第1光源および第2光源)が液晶表示パネル59の背面側に設けられ、第1および第2表示領域とも、各LED41が、3個のW-LEDチップ42Wで構成されているが、W-LEDチップ42Wの蛍光体の構成が互いに異なっている。一般に、LEDは、蛍光体の構成上の違いによって発光効率および色再現性が異なり、発光効率は高いが色再現性が狭いタイプ、発光効率は低いが色再現性が広いタイプ(いわゆる高演色タイプ)がある。本構成例7では、第1表示領域には、鮮やかな表示が可能な高演色タイプのW-LEDチップ42Wを設け、第2表示領域には、省消費電力を優先して発光効率が高いタイプのW-LEDチップ42Wを設けた構成とすることができる。
 (構成例8)
 上記構成例1~7では、バックライトユニット49は、液晶表示パネル59の各表示領域に対応して表示領域ごとに異なる構成である。本構成例8に係るバックライトユニット49は、各表示領域で同一の構成を有している。
 図14は、構成例8に係るバックライトユニット49の概略構成を示す平面図である。図14のバックライトユニット49は、光源(第1光源および第2光源)が液晶表示パネル59の背面側に設けられ、第1および第2表示領域とも、各LED41が、1個のR-LEDチップ42R、1個のG-LEDチップ42G、および1個のB-LEDチップ42Bで構成されている。なお、第1および第2表示領域とも、各LED41が、3個のW-LEDチップ42Wで構成されていてもよい。
 (構成例9)
 図15は、構成例9に係るバックライトユニット49の概略構成を示す平面図である。図15に示すように、第1表示領域と第2表示領域との境界部分には光源(第1光源および第2光源)を配置しない構成とすることもできる。これにより、第1表示領域と第2表示領域とを光学的に分離するための隔壁60を容易に形成することができる。そのため、第1表示領域および第2表示領域間の光漏れを防ぐことができるため、表示品位を高めることができる。
 ここで、図5に示すバックライトユニット49は、第1表示領域および第2表示領域を含んで一体型に形成されているが、本発明の液晶表示装置69では、バックライトユニットが表示領域ごとに個別に形成され、これらのバックライトユニットが結合して、液晶表示パネル59に対応する1つのバックライトユニットを構成していてもよい。
 また、上記の各構成例において、第1表示領域のバックライトユニット49をエッジ型としてもよい。これにより、コストおよび消費電力をさらに低減することができる。
 次に、本液晶表示装置69の駆動方法について以下に説明する。
 (駆動方法1)
 駆動方法1に係る液晶表示装置69では、ローカルディミング方式により駆動する。ローカルディミング方式とは、LED光源のような点状光源を複数備えたバックライトユニットにおいて、上記点状光源それぞれを独立的に制御することにより、発光面の輝度を部分的にコントロールする駆動方式である。また、ローカルディミング方式には、全てのLED光源の輝度を全面均一に制御する方式(以下、0D-ディミング方式という)と、1方向(行方向あるいは列方向)の複数のLED光源の輝度を均一に制御する方式(以下、1D-ディミング方式)と、任意の1つのLED光源の輝度を独立して制御する方式あるいは任意の領域内の複数のLED光源の輝度を均一に制御する方式(以下、2D-ディミング方式という)とがある。
 本駆動方法1では、例えば、構成例8に係るバックライトユニット49において、図14に示すように、第1表示領域を2D-ディミング方式(第1ローカルディミング方式)により駆動し、第2表示領域を0D-ディミング方式(第2ローカルディミング方式)により駆動する。これにより、第1表示領域では、表示内容に応じてより細かくLED41の輝度を制御できる。例えば、1つのLED41の輝度を高く調整する、あるいは、任意の領域に含まれる複数のLED41の輝度を低く調整することができる。そのため、第1表示領域では、高画質の表示が可能になるとともに、消費電力を削減することができる。また、第2表示領域では、表示内容に応じて全体として輝度を低く調整することができるため、消費電力を削減することができるとともに、各LED41を均一に制御することができるため、回路構成を簡略化でき、コストを削減することができる。
 なお、本液晶表示装置69では、第1表示領域および第2表示領域に適用される駆動方式は、上記の組み合わせに限定されず、互いに異なる駆動方式が採用される。例えば、図9の構成例2に係るバックライトユニット49では、第1表示領域を2D-ディミング方式により駆動し、第2表示領域を1D-ディミング方式により駆動する構成とすることができる。また、第1表示領域を2D-ディミング方式あるいは1D-ディミング方式もしくは0D-ディミング方式により駆動し、第2表示領域はローカルディミング方式を採用しない構成とすることもできる。
 (駆動方法2)
 駆動方法2に係る本液晶表示装置69では、第1表示領域および第2表示領域でLED41の駆動周波数が異なっている。例えば、第1表示領域では240Hzの高周波数駆動を行い、第2表示領域では120Hzの低周波数駆動を行う。これにより、第1表示領域では、高画質化を図ることができ、また、動画性能を高めることができるため3D表示に好適となる。第2表示領域では、消費電力を削減することができる。なお、本液晶表示装置69では、第1表示領域および第2表示領域に適用されるLED41の駆動周波数の組み合わせに上記に限定されず、互いに異なる駆動周波数であればよい。
 (駆動方法3)
 駆動方法3に係る本液晶表示装置69では、第1表示領域および第2表示領域でLED41の調光方式が異なっている。例えば、第1表示領域では、一定周期で印加されるパルス電圧のパルス幅を制御して輝度を調整するパルス幅変調(PWM)調光方式により駆動を行い、第2表示領域では、LED41を流れる電流を制御して輝度を調整する電流調光方式により駆動を行う。これにより、第1表示領域では、低輝度側に制御することにより黒挿入効果が得られるため、動画性能を高めることができる。また、第2表示領域では、低周波数駆動をしてもフリッカが発生しないため、消費電力を削減しつつ、表示品位の低下を防ぐことができる。なお、図11の構成例4に係るバックライトユニット49では、第1表示領域をPWM調光方式により駆動し、第2表示領域を、蛍光管を流れる管電流を制御して輝度を調整する管電流調光方式により駆動する構成とすることができる。
 〔実施の形態2〕
 本発明に係る実施の形態2について、図面を用いて説明すれば、以下のとおりである。
 なお、以下の説明では、主に、実施の形態1に係る液晶表示装置69との相違点について説明するものとし、実施の形態1で説明した各構成要素と同一の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 本実施の形態に係る液晶表示装置69は、1枚の液晶表示パネル59に対応する1つの全表示領域が複数の表示領域に分割されており、各表示領域において互いに異なる画像を表示する機能(以下、「分割画面表示モード」という)、および、各表示領域を足し合わせた、液晶表示パネル59の全面に対応する1つの表示領域(全表示領域)に1つの画像を表示する機能(以下、「全画面表示モード」という)を有するとともに、受信部31が受信した映像信号に基づいて、分割画面表示モードおよび全画面表示モードを切り替える構成を有している。
 分割画面表示モードおよび全画面表示モードの切り替え方法は、例えば以下の方法により実現可能である。すなわち、図4に示すように、映像信号処理部11の処理制御部13が、外部から受信した映像信号に基づいて、表示モード切替信号SSWを生成する。そして、処理制御部13は、表示モード切替信号SSWを、液晶表示パネルコントローラ32に送信する。液晶表示パネルコントローラ32は、表示モード切替信号SSWに基づいて、液晶表示パネル59(図1参照)の画素を制御して、対応する表示領域あるいは1つの全表示領域に画像を表示させる。
 液晶表示パネル59は、例えば、図6に示すように、2つの表示領域(第1表示領域、第2表示領域)に分割されており、第1表示領域のアスペクト比(横縦比)が16:9、第2表示領域のアスペクト比が5:9、第1および第2表示領域を合わせた全表示領域のアスペクト比が21:9で構成されている。図6の液晶表示パネル59の構成によれば、分割画面表示モードでは、実施の形態1と同様、第1表示領域にフルHD(Full High Definition)映像を縮小することなく表示しつつ、同時に、第2表示領域には他のコンテンツ(例えば、時刻、カレンダーなどの画像や、第1表示領域の映像に関連付けられた文字情報や、多チャンネルのテレビ映像など)を表示させることができる。また、全画面表示モードでは、アスペクト比21:9の映画コンテンツなどの映像を縮小することなく表示させることができる。そして、本液晶表示装置の構成では、例えばフルHD映像を受信した場合には、分割画面表示モードで表示が行われ、映画コンテンツの映像を受信した場合には、全画面表示モードで表示が行われる。
 なお、図7に示すように、表示領域の分割数は2つに限定されるものではなく、3つあるいはそれ以上であってもよく、各表示領域のアスペクト比も上記の値に限定されるものではない。
 本液晶表示装置69では、実施の形態1と同様、バックライトユニット49は、液晶表示パネル59の各表示領域に対応して表示領域ごとに異なる構成としてもよく、また、各表示領域で同一の構成としてもよい。よって、上記実施の形態1に係る各構成例を適用することができる。
 ここで、本液晶表示装置69では、分割画面表示モードおよび全画面表示モードを切り替えて表示を行う機能を有し、表示領域ごとにバックライトユニット49の駆動方式が異なっているため、分割画面表示モードから全画面表示モードに切り替えて表示を行った場合に、表示領域ごとに輝度差(表示ムラ)が生じるおそれがある。そこで、この表示領域ごとの輝度差を解消するための駆動方法について以下に説明する。以下の駆動方法1~3は、実施の形態1に示した駆動方法1~3に対応する。
 (駆動方法1)
 本液晶表示装置69がローカルディミング方式により駆動する場合は、第1表示領域および第2表示領域のローカルディミング方式を切り替えて、各LED41の輝度を調整することにより輝度差を解消することができる。例えば、分割画面表示モードにおいて、第1表示領域では2D-ディミング方式により駆動し、第2表示領域では0D-ディミング方式により駆動する場合、全画面表示モードでは、第1表示領域を0D-ディミング方式に切り替える。これにより、第1表示領域および第2表示領域の各LED41の輝度を合わせることができるため、全体としての表示輝度を均一化することができる。このように、全画面表示モードでは、解像度が低い方の方式(上記の例では、0D-ディミング方式)に合わせることにより表示輝度を均一化することができる。
 なお、全画面表示モードでは、ローカルディミング方式の駆動を停止する構成としても良い。この構成でも、第1表示領域および第2表示領域の各LED41の輝度を合わせることができるため、全体としての表示輝度を均一化することができる。
 (駆動方法2)
 本液晶表示装置69が、第1表示領域および第2表示領域でLED41の駆動周波数が異なる構成の場合には、一方のLED41の駆動周波数を他方のLED41の駆動周波数に合わせることにより、第1表示領域および第2表示領域の各LED41の輝度を合わせることができるため、全体としての表示輝度を均一化することができる。例えば、分割表示モードにおいて、第1表示領域では240Hzの高周波数駆動を行い、第2表示領域では120Hzの低周波数駆動を行う場合、全画面表示モードでは、第1表示領域および第2表示領域を240Hzの高周波数駆動とする。これにより、第1表示領域および第2表示領域の各LED41の輝度を合わせることができる。また、全画面を高画質化することができる。
 なお、全画面表示モードにおいて、第1表示領域および第2表示領域を120Hzの低周波数駆動とすることもできる。この構成では、第1表示領域および第2表示領域の各LED41の輝度を合わせることができるとともに、消費電力をより削減することができる。
 (駆動方法3)
 本液晶表示装置69が、第1表示領域および第2表示領域でLED41の調光方式が異なる構成の場合には、一方のLED41の調光方式を他方のLED41の調光方式に合わせることにより、第1表示領域および第2表示領域の各LED41の輝度を合わせることができるため、全体としての表示輝度を均一化することができる。例えば、分割表示モードにおいて、第1表示領域ではPWM調光方式により駆動を行い、第2表示領域では電流調光方式により駆動を行う場合、全画面表示モードでは、第1表示領域および第2表示領域をPWM調光方式により駆動を行う。これにより、第1表示領域および第2表示領域の各LED41の輝度を合わせることができる。また、全画面を高画質化することができる。
 なお、全画面表示モードにおいて、第1表示領域および第2表示領域を電流調光方式により駆動を行う構成とすることもできる。この構成では、第1表示領域および第2表示領域の各LED41の輝度を合わせることができるとともに、消費電力をより削減することができる。
 (駆動方法4)
 実施の形態1に示した駆動方法1~3において、全画面表示モードでは、第1表示領域および第2表示領域の各LED41の輝度調整を行わず、液晶表示パネル59側で表示輝度の調整を行っても良い。具体的には、液晶表示パネルコントローラ32(図4参照)が液晶表示パネル59(図1参照)の画素を制御して、液晶の透過率をRGB画素ごとに調整することによって、全体としての表示輝度を均一化することができる。
 本発明の表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記第1表示領域では第1ローカルディミング方式の駆動を行い、上記第2表示領域では第2ローカルディミング方式の駆動を行う構成とすることもできる。
 上記表示装置の駆動方法では、
 上記第1ローカルディミング方式は、上記第1表示領域における任意の光源の輝度を独立して制御する方式であり、上記第2ローカルディミング方式は、上記第2表示領域における全ての光源の輝度を均一に制御する方式である。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記バックライトは、上記第1表示領域では高周波数駆動を行い、上記第2表示領域では低周波数駆動を行う構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記第1表示領域ではPWM調光方式による駆動を行い、上記第2表示領域では電流調光方式による駆動を行う構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記第1表示領域に対応して、少なくとも赤色発光の発光ダイオード素子と、緑色発光の発光ダイオード素子と、青色発光の発光ダイオード素子と、を含む第1光源が複数配置されているとともに、
 上記第2表示領域に対応して、白色発光の発光ダイオード素子を含む第2光源が複数配置されている構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記バックライトにおいて、上記第1表示領域に対応して複数配置される第1光源の配列ピッチが、上記第2表示領域に対応して複数配置される第2光源の配列ピッチよりも小さい構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記バックライトに含まれる上記第1表示領域に対応する第1光源は、上記表示パネルの背面側に配置され、
 上記バックライトに含まれる上記第2表示領域に対応する第2光源は、上記表示パネルの側面側に配置されている構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記バックライトに含まれる上記第1表示領域に対応する第1光源は、発光ダイオードで構成され、
 上記バックライトに含まれる上記第2表示領域に対応する第2光源は、蛍光管で構成されている構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記バックライトに含まれる上記第2表示領域に対応する光学シートの指向性が、上記バックライトに含まれる上記第1表示領域に対応する光学シートの指向性よりも高い構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記バックライトに含まれる、上記第1表示領域に対応する第1光源および上記第2表示領域に対応する第2光源は、発光ダイオードで構成され、
 上記第1光源のサイズと、上記第2光源のサイズとが、互いに異なっている構成とすることもできる。
 上記表示装置の駆動方法では、上記発光ダイオードは、白色光を発光する構成とすることもできる。
 上記表示装置の駆動方法では、各表示領域に同一の光源が配置されている構成とすることもできる。
 上記表示装置の駆動方法では、
 全ての表示領域を足し合わせた上記表示パネルの全面に対応する全表示領域に1つの画像を表示する場合には、各表示領域の表示輝度が均一になるように、上記表示領域ごとに光源の輝度を個別に調整する構成とすることもできる。
 これにより、全表示領域に1つの画像を表示する場合に表示領域ごとに生じる輝度差(表示ムラ)を解消することができる。
 上記表示装置の駆動方法では、
 上記表示パネルは、2以上の表示領域を有し、
 少なくとも1つの表示領域のアスペクト比が、16:9である構成とすることもできる。
 上記の構成によれば、フルHD(Full High Definition)映像を縮小する構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示パネルは、第1表示領域と、第2表示領域とを含み、
 上記第1表示領域のアスペクト比が16:9であり、上記第2表示領域のアスペクト比が5:9である構成とすることもできる。
 上記の構成によれば、第1表示領域にフルHD(Full High Definition)映像を縮小することなく表示しつつ、同時に、第2表示領域には他のコンテンツ(例えば、時刻、カレンダーなどの画像や、第1表示領域の映像に関連付けられた文字情報や、多チャンネルのテレビ映像など)を表示させることができる。
 上記表示装置の駆動方法では、
 全ての表示領域を足し合わせた上記表示パネルの全面に対応する全表示領域のアスペクト比が、21:9である構成とすることもできる。
 上記の構成によれば、全ての表示領域を足し合わせた全表示領域に1つの映像を表示する場合(全画面表示モード)には、アスペクト比21:9の映画コンテンツなどの映像を縮小することなく表示させることができる。
 上記表示装置の駆動方法では、
 上記表示パネルは、第1表示領域と、第2表示領域とを含み、
 上記第1表示領域のアスペクト比が16:9であり、上記第2表示領域のアスペクト比が16:1であり、全ての表示領域を足し合わせた上記表示パネルの全面に対応する全表示領域のアスペクト比が、16:10である構成とすることもできる。
 上記表示装置の駆動方法では、
 各表示領域が、上記表示パネル面における左右方向あるいは上下方向に並べられている構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示領域ごとに異なる画像を表示する分割画面表示モードと、全ての表示領域を足し合わせた上記表示パネルの全面に対応する全表示領域に1つの画像を表示する全画面表示モードとを含み、
 外部から入力された映像信号に基づいて、上記分割画面表示モードおよび上記全画面表示モードを相互に切り替える構成とすることもできる。
 上記の方法によれば、例えば、第1表示領域のアスペクト比(横縦比)が16:9、第2表示領域のアスペクト比が5:9、第1および第2表示領域を合わせた全表示領域のアスペクト比が21:9で構成されている場合、分割画面表示モードでは、第1表示領域にフルHD(Full High Definition)映像を縮小することなく表示しつつ、同時に、第2表示領域には他のコンテンツ(例えば、時刻、カレンダーなどの画像や、第1表示領域の映像に関連付けられた文字情報や、多チャンネルのテレビ映像など)を表示させることができる。また、全画面表示モードでは、アスペクト比21:9の映画コンテンツなどの映像を縮小することなく表示させることができる。
 上記表示装置の駆動方法では、
 上記分割画面表示モードでは、上記表示領域ごとに表示輝度が異なる一方、
 上記全画面表示モードでは、上記全表示領域で表示輝度が均一になるように、上記表示領域ごとに光源の輝度を個別に調整する構成とすることもできる。
 上記の方法によれば、分割画面表示モードから全画面表示モードに切り替えて表示を行った場合に、表示領域ごとに生じる輝度差(表示ムラ)を解消することができる。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記バックライトは、上記分割画面表示モードでは、上記第1表示領域において第1ローカルディミング方式の駆動を行い、上記第2表示領域において第2ローカルディミング方式の駆動を行い、
 上記全画面表示モードでは、上記第1表示領域および第2表示領域において、上記第2ローカルディミング方式の駆動を行う構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記分割画面表示モードでは、上記第1表示領域において高周波数駆動を行い、上記第2表示領域において低周波数駆動を行い、
 上記全画面表示モードでは、上記第1表示領域および第2表示領域において、上記高周波数駆動を行う構成とすることもできる。
 上記表示装置の駆動方法では、
 上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
 上記バックライトは、上記分割画面表示モードでは、上記第1表示領域においてPWM調光方式による駆動を行い、上記第2表示領域において電流調光方式による駆動を行い、
 上記全画面表示モードでは、上記第1表示領域および第2表示領域において、上記電流調光方式による駆動を行う構成とすることもできる。
 上記表示装置の駆動方法では、
 上記分割画面表示モードでは、上記表示領域ごとに表示輝度が異なるように、上記表示領域ごとに光源の輝度を個別に調整する一方、
 上記全画面表示モードでは、上記全表示領域で表示輝度が均一になるように、上記表示領域ごとに液晶の透過率を調整する構成とすることもできる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明の表示装置は、携帯電話、PDA等のモバイル機器、TV等の各種用途に好適に用いることができる。
11  映像信号処理部
12  内蔵メモリ
13  処理制御部
21  LEDコントローラ
22  LEDドライバ制御部
23  パルス幅変調部
31  受信部
32  液晶表示パネルコントローラ
33  LEDドライバ
41  LED(第1光源、第2光源)
41R 赤色発光のLED
41G 緑色発光のLED
41B 青色発光のLED
42R 赤色発光のLEDチップ(赤色発光の発光ダイオード素子)
42G 緑色発光のLEDチップ(緑色発光の発光ダイオード素子)
42B 青色発光のLEDチップ(青色発光の発光ダイオード素子)
42W 白色発光のLEDチップ(白色発光の発光ダイオード素子)
49  バックライトユニット(バックライト)
59  液晶表示パネル
60  隔壁
69  液晶表示装置

Claims (25)

  1.  複数の表示領域を有する表示パネルと、該表示パネルに光を照射するバックライトとを備えた表示装置の駆動方法であって、
     上記バックライトは、上記表示領域ごとに対応して設けられた複数の光源を含み、
     上記表示領域ごとに上記光源の輝度を個別に調整することを特徴とする表示装置の駆動方法。
  2.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記第1表示領域では第1ローカルディミング方式の駆動を行い、上記第2表示領域では第2ローカルディミング方式の駆動を行うことを特徴とする請求項1に記載の表示装置の駆動方法。
  3.  上記第1ローカルディミング方式は、上記第1表示領域における任意の光源の輝度を独立して制御する方式であり、上記第2ローカルディミング方式は、上記第2表示領域における全ての光源の輝度を均一に制御する方式であることを特徴とする請求項2に記載の表示装置の駆動方法。
  4.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記第1表示領域では高周波数駆動を行い、上記第2表示領域では低周波数駆動を行うことを特徴とする請求項1に記載の表示装置の駆動方法。
  5.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記第1表示領域ではPWM調光方式による駆動を行い、上記第2表示領域では電流調光方式による駆動を行うことを特徴とする請求項1に記載の表示装置の駆動方法。
  6.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記第1表示領域に対応して、少なくとも赤色発光の発光ダイオード素子と、緑色発光の発光ダイオード素子と、青色発光の発光ダイオード素子と、を含む第1光源が複数配置されているとともに、
     上記第2表示領域に対応して、白色発光の発光ダイオード素子を含む第2光源が複数配置されていることを特徴とする請求項1に記載の表示装置の駆動方法。
  7.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記バックライトにおいて、上記第1表示領域に対応して複数配置される第1光源の配列ピッチが、上記第2表示領域に対応して複数配置される第2光源の配列ピッチよりも小さいことを特徴とする請求項1に記載の表示装置の駆動方法。
  8.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記バックライトに含まれる上記第1表示領域に対応する第1光源は、上記表示パネルの背面側に配置され、
     上記バックライトに含まれる上記第2表示領域に対応する第2光源は、上記表示パネルの側面側に配置されていることを特徴とする請求項1に記載の表示装置の駆動方法。
  9.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記バックライトに含まれる上記第1表示領域に対応する第1光源は、発光ダイオードで構成され、
     上記バックライトに含まれる上記第2表示領域に対応する第2光源は、蛍光管で構成されていることを特徴とする請求項1に記載の表示装置の駆動方法。
  10.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記バックライトに含まれる上記第2表示領域に対応する光学シートの指向性が、上記バックライトに含まれる上記第1表示領域に対応する光学シートの指向性よりも高いことを特徴とする請求項1に記載の表示装置の駆動方法。
  11.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記バックライトに含まれる、上記第1表示領域に対応する第1光源および上記第2表示領域に対応する第2光源は、発光ダイオードで構成され、
     上記第1光源のサイズと、上記第2光源のサイズとが、互いに異なっていることを特徴とする請求項1に記載の表示装置の駆動方法。
  12.  上記発光ダイオードは、白色光を発光することを特徴とする請求項11に記載の表示装置の駆動方法。
  13.  各表示領域に同一の光源が配置されていることを特徴とする請求項1に記載の表示装置の駆動方法。
  14.  全ての表示領域を足し合わせた上記表示パネルの全面に対応する全表示領域に1つの画像を表示する場合には、各表示領域の表示輝度が均一になるように、上記表示領域ごとに光源の輝度を個別に調整することを特徴とする請求項1に記載の表示装置の駆動方法。
  15.  上記表示パネルは、2以上の表示領域を有し、
     少なくとも1つの表示領域のアスペクト比が、16:9であることを特徴とする請求項1~14の何れか1項に記載の表示装置の駆動方法。
  16.  上記表示パネルは、第1表示領域と、第2表示領域とを含み、
     上記第1表示領域のアスペクト比が16:9であり、上記第2表示領域のアスペクト比が5:9であることを特徴とする請求項1~14の何れか1項に記載の表示装置の駆動方法。
  17.  全ての表示領域を足し合わせた上記表示パネルの全面に対応する全表示領域のアスペクト比が、21:9であることを特徴とする請求項15または16に記載の表示装置の駆動方法。
  18.  上記表示パネルは、第1表示領域と、第2表示領域とを含み、
     上記第1表示領域のアスペクト比が16:9であり、上記第2表示領域のアスペクト比が16:1であり、全ての表示領域を足し合わせた上記表示パネルの全面に対応する全表示領域のアスペクト比が、16:10であることを特徴とする請求項1~14の何れか1項に記載の表示装置の駆動方法。
  19.  各表示領域が、上記表示パネル面における左右方向あるいは上下方向に並べられていることを特徴とする請求項15に記載の表示装置の駆動方法。
  20.  上記表示領域ごとに異なる画像を表示する分割画面表示モードと、全ての表示領域を足し合わせた上記表示パネルの全面に対応する全表示領域に1つの画像を表示する全画面表示モードとを含み、
     外部から入力された映像信号に基づいて、上記分割画面表示モードおよび上記全画面表示モードを相互に切り替えることを特徴とする請求項1に記載の表示装置の駆動方法。
  21.  上記分割画面表示モードでは、上記表示領域ごとに表示輝度が異なる一方、
     上記全画面表示モードでは、上記全表示領域で表示輝度が均一になるように、上記表示領域ごとに光源の輝度を個別に調整することを特徴とする請求項20に記載の表示装置の駆動方法。
  22.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記分割画面表示モードでは、上記第1表示領域において第1ローカルディミング方式の駆動を行い、上記第2表示領域において第2ローカルディミング方式の駆動を行い、
     上記全画面表示モードでは、上記第1表示領域および第2表示領域において、上記第2ローカルディミング方式の駆動を行うことを特徴とする請求項21に記載の表示装置の駆動方法。
  23.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記分割画面表示モードでは、上記第1表示領域において高周波数駆動を行い、上記第2表示領域において低周波数駆動を行い、
     上記全画面表示モードでは、上記第1表示領域および第2表示領域において、上記高周波数駆動を行うことを特徴とする請求項22に記載の表示装置の駆動方法。
  24.  上記表示パネルは、少なくとも、第1表示領域と、第2表示領域とを含み、
     上記分割画面表示モードでは、上記第1表示領域においてPWM調光方式による駆動を行い、上記第2表示領域において電流調光方式による駆動を行い、
     上記全画面表示モードでは、上記第1表示領域および第2表示領域において、上記電流調光方式による駆動を行うことを特徴とする請求項23に記載の表示装置の駆動方法。
  25.  上記分割画面表示モードでは、上記表示領域ごとに表示輝度が異なるように、上記表示領域ごとに光源の輝度を個別に調整する一方、
     上記全画面表示モードでは、上記全表示領域で表示輝度が均一になるように、上記表示領域ごとに液晶の透過率を調整することを特徴とする請求項20に記載の表示装置の駆動方法。
PCT/JP2011/079603 2010-12-28 2011-12-21 表示装置の駆動方法 WO2012090808A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-294107 2010-12-28
JP2010294107 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090808A1 true WO2012090808A1 (ja) 2012-07-05

Family

ID=46382917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079603 WO2012090808A1 (ja) 2010-12-28 2011-12-21 表示装置の駆動方法

Country Status (1)

Country Link
WO (1) WO2012090808A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108062916A (zh) * 2016-11-09 2018-05-22 Lg 电子株式会社 显示装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271393A (ja) * 2009-05-19 2010-12-02 Hitachi Ltd 画像表示装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271393A (ja) * 2009-05-19 2010-12-02 Hitachi Ltd 画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108062916A (zh) * 2016-11-09 2018-05-22 Lg 电子株式会社 显示装置

Similar Documents

Publication Publication Date Title
TWI328132B (ja)
JP4172455B2 (ja) バックライト用光源ユニット、液晶表示用バックライト装置及び透過型カラー液晶表示装置
JP4605096B2 (ja) バックライト装置及びカラー画像表示装置
JP4701806B2 (ja) バックライト装置及び液晶表示装置
JP5079882B2 (ja) バックライトユニット、液晶表示装置、輝度制御方法、輝度制御プログラム、および記録媒体
JP4666387B2 (ja) バックライトユニット及び該ユニットを備える画像表示装置
US20060007111A1 (en) Liquid crystal display device having good image quality
JP2004191490A (ja) 液晶表示装置
WO2012111471A1 (ja) 表示装置
US20130278650A1 (en) Color image display device and control method thereof
US20090153462A1 (en) Illumination device and display apparatus provided with the same
JP2006236701A (ja) バックライト装置及び液晶表示装置
JP2006012819A (ja) 発光ダイオードを利用する液晶表示装置のバックライトユニットとその駆動方法
US8791966B2 (en) Display device and electric apparatus
US20130342766A1 (en) Illumination device, display device, and television reception device
US20090160754A1 (en) Liquid crystal display device, television apparatus, and method for controlling liquid crystal display device
JP5294667B2 (ja) 液晶表示装置
WO2011043094A1 (ja) 照明装置、及び表示装置
WO2012090809A1 (ja) 表示装置およびその駆動方法
JP2006284906A (ja) バックライト装置及び液晶表示装置
JP5307834B2 (ja) バックライトユニット、液晶表示装置、データ生成方法、データ生成プログラム、および記録媒体
JP2006228575A (ja) 発光ダイオード素子、バックライト装置及び液晶表示装置
WO2012090808A1 (ja) 表示装置の駆動方法
JP2016035806A (ja) バックライト装置およびそれを備えた液晶表示装置
WO2008065766A1 (fr) Dispositif lumineux, affichage et récepteur de télévision

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP