WO2012090754A1 - Method for producing glass substrate for recording medium - Google Patents

Method for producing glass substrate for recording medium Download PDF

Info

Publication number
WO2012090754A1
WO2012090754A1 PCT/JP2011/079330 JP2011079330W WO2012090754A1 WO 2012090754 A1 WO2012090754 A1 WO 2012090754A1 JP 2011079330 W JP2011079330 W JP 2011079330W WO 2012090754 A1 WO2012090754 A1 WO 2012090754A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
polishing
recording medium
abrasive
producing
Prior art date
Application number
PCT/JP2011/079330
Other languages
French (fr)
Japanese (ja)
Inventor
典子 島津
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2012090754A1 publication Critical patent/WO2012090754A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means

Definitions

  • the present invention relates to a method for producing a glass substrate for a recording medium.
  • the magnetic head thermally expands due to the heat generated by the heat generating element provided in the magnetic head, and the magnetic head is operated so as to slightly protrude in the air bearing surface (ABS) direction. Flying height can be kept constant.
  • a head equipped with such a DFH mechanism has a flying height of about several nanometers, defects such as head crashes tend to occur when a magnetic recording medium is used. In order to reduce such defects, it is required to improve the surface smoothness of the magnetic recording medium.
  • Patent Document 1 As an attempt to increase the surface smoothness of a glass substrate, for example, in Japanese Patent Application Laid-Open No. 2010-238310 (Patent Document 1), a glass substrate is polished by traversing a polishing grindstone with a predetermined amount of movement. A technique for reducing the size and number of surface defects has been proposed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2009-087441 controls the potential difference between the glass substrate and the aggregated silica particles and impurity particles contained in the polishing liquid when the glass substrate is polished with silica particles.
  • a technique is disclosed that suppresses the formation of surface defects on the main surface of the glass substrate by polishing while polishing.
  • Patent Document 3 discloses a technique for polishing a glass substrate under neutral liquid conditions using cerium oxide.
  • a glass substrate for a magnetic recording medium is usually subjected to evaluation of deposits attached to the surface and end surface of the glass substrate by an optical defect inspection apparatus (OSA: Optical Surface Analyzer) after the final cleaning.
  • OSA optical defect inspection apparatus
  • the glass substrate manufactured by the methods of Patent Documents 1 and 3 has an advantage that the number of defects is determined to be small even by evaluation by OSA, and the manufacturing efficiency of the magnetic recording medium is high.
  • Patent Document 2 can suppress surface defects caused by silica particles to some extent by controlling the potential difference between the aggregated silica particles and impurity particles contained in the polishing liquid and the glass substrate.
  • the above-mentioned problem caused by the abrasive itself could not be solved.
  • the above problem cannot be solved by controlling only the potential difference between the glass substrate and the abrasive.
  • the present inventor investigated the cause of the defect and found that the cause was that the abrasive used for polishing the end face of the glass substrate adhered to the end face of the glass substrate. That is, when the abrasive attached to the end surface of the glass substrate scatters from the end surface to the main surface during the formation of the magnetic film, and this causes a defect such as a head crash later when used as a magnetic recording medium for a recording apparatus. I got the knowledge.
  • the present invention has been made under such circumstances, and the object of the present invention is to prevent the scattering of the abrasive from the end surface of the glass substrate to the main surface during the formation of the magnetic film.
  • An object of the present invention is to provide a method for manufacturing a glass substrate for a recording medium that is less likely to cause errors.
  • the inventors' research has revealed that the cause of adhesion of the abrasive to the glass substrate is due to polishing with a neutral polishing liquid. That is, when neutral and rough polishing was performed, it was found that the zeta potential of the polishing agent approaches the isoelectric point, so that the polishing agent easily adheres to the glass substrate.
  • the abrasive remains on the end surface of the glass substrate by appropriately controlling the zeta potential of the abrasive, the glass substrate precursor, and the polishing brush. It was found that it was possible to prevent the abrasive from being scattered from the end surface of the glass substrate to the main surface during the formation of the magnetic film, and this could make it difficult to cause a subsequent error, and the present invention was completed.
  • the method for producing a glass substrate for a recording medium of the present invention uses a glass substrate precursor, and comprises a step of polishing an end surface of the glass substrate precursor with a polishing brush using a polishing liquid containing an abrasive.
  • the polishing step when the zeta potential of the abrasive is ⁇ pol, the zeta potential of the polishing brush is ⁇ brush, and the zeta potential of the glass substrate precursor is ⁇ sub, both ⁇ pol and ⁇ sub are less than 0 mV, ⁇ sub is smaller than ⁇ brush.
  • ⁇ sub is preferably ⁇ 30 mV or less.
  • the pH of the polishing liquid is preferably 9 or more and 13 or less.
  • the polishing liquid further contains a dispersant, and the dispersant is preferably at least one selected from the group consisting of a polycarboxylic acid, a urethane resin, and an acrylic resin.
  • the abrasive is preferably composed of one or more selected from the group consisting of cerium oxide, zirconium oxide, and aluminum oxide.
  • the polishing liquid further contains a water-soluble polymer, and the water-soluble polymer is selected from the group consisting of polyvinyl alcohol, modified polyvinyl alcohol, polyvinyl pyrrolidone, methacrylic acid copolymer, polymethacrylamide copolymer, and polyethylene glycol. It is preferable that it consists of 1 or more types.
  • the polishing liquid further contains a surfactant, and the surfactant preferably contains a sulfonic acid surfactant, a phosphoric acid surfactant, or a nonionic surfactant.
  • the polishing brush is preferably made of one or more materials selected from the group consisting of aramid fibers, polybutylene terephthalate, and polypropylene.
  • the method for producing a glass substrate for a recording medium of the present invention has the above-described configuration, and thus can prevent the abrasive from scattering from the end surface of the glass substrate to the main surface during the formation of the magnetic film. It shows an extremely excellent effect that it is difficult for subsequent errors to occur. For this reason, the glass substrate for recording media manufactured by the manufacturing method of this invention shows the effect that a late error does not generate
  • the method for producing a glass substrate for a recording medium of the present invention includes at least a step of polishing an end surface of a glass substrate precursor with a polishing brush using a polishing liquid containing an abrasive (hereinafter referred to as “end surface polishing step”).
  • the method for producing a glass substrate for a recording medium of the present invention can include other steps as long as the chemical strengthening step and the end surface polishing step are thus included.
  • a disk processing process for processing the glass substrate precursor into a disk shape for example, a lapping process for adjusting the parallelism and thickness of the glass substrate precursor, and the surface smoothness of the glass substrate precursor are improved.
  • Rough polishing process for polishing precision polishing process for polishing to improve the smoothness of the glass substrate precursor than polishing in the rough polishing process, chemical strengthening to form a chemically strengthened layer on the surface and end face of the glass substrate precursor
  • Examples of the process include a cleaning process for cleaning the surface and the end face of the glass substrate precursor.
  • the glass substrate for a recording medium produced by the present invention is used as a substrate for an information recording medium in an information recording apparatus such as a hard disk drive device, and its size and shape are not particularly limited.
  • the outer diameter is 2.5 inches, 1.8 inches, 1 inch, 0.8 inches, etc.
  • the thickness is 2 mm, 1 mm, 0.65 mm, 0.8 mm, etc. be able to.
  • a hole for setting in the information recording apparatus may be formed in the disc-shaped central portion.
  • ⁇ Disk processing process> In the disk processing step, first, a glass material is melted (glass melting step), molten glass is poured into a lower mold, and press molding is performed with an upper mold to obtain a disk-shaped glass substrate precursor (press molding process).
  • the disk-shaped glass substrate precursor may be produced by cutting a sheet glass formed by, for example, a downdraw method or a float method with a grinding stone, without using such a press molding process.
  • the glass material is not particularly limited as long as it can be chemically strengthened by ion exchange.
  • soda lime glass mainly composed of SiO 2 , Na 2 O, CaO
  • R ′ Mg, Ca, Sr, Ba
  • aluminosilicate glass and borosilicate glass are particularly preferable because they are excellent in impact resistance and vibration resistance.
  • the total of SiO 2 , Al 2 O 3 and B 2 O 3 is 50 to 85% by mass, and the total of LiO 2 , Na 2 and K 2 O is 0.1 to 20% by mass. %, And the total of MgO, CaO, BaO, SrO and ZnO is 2 to 20% by mass.
  • SiO 2 is 50 to 70% by mass
  • Al 2 O 3 is 0 to 20% by mass
  • B 2 O 3 is 0 to 5% by mass. .
  • the glass substrate precursor press-molded as described above is perforated at the center with a core drill or the like having a diamond grindstone or the like in the cutter (coring process).
  • the end face of the hole is referred to as an inner peripheral end face.
  • a lapping process is performed on both the front and back surfaces of the glass substrate precursor.
  • the lapping process can be performed by, for example, a grinding process, whereby the overall shape of the glass substrate precursor, that is, the parallelism, flatness, and thickness of the glass substrate precursor can be preliminarily adjusted.
  • End face polishing process The end surface of the glass substrate precursor after the lapping step is polished with a polishing brush using a polishing liquid containing an abrasive. Specifically, a polishing liquid containing an abrasive is supplied to the polishing brush, the polishing brush is disposed so as to contact the end surface of the glass substrate precursor, and then the polishing brush is applied while rotating the glass substrate precursor. Thus, the end face of the glass substrate precursor is polished.
  • the “end face” in the present invention means the inner peripheral end face and the outer peripheral end face of the glass substrate precursor.
  • the polishing in the end face polishing step using the polishing brush, if the zeta potential of the abrasive is ⁇ pol, the zeta potential of the polishing brush is ⁇ brush, and the zeta potential of the glass substrate precursor is ⁇ sub, Further, the polishing is characterized in that the polishing is carried out by setting it to be less than 0 mV and ⁇ sub to be smaller than ⁇ brush. Thus, adhesion of the abrasive to the glass substrate precursor can be prevented by making the zeta potential of the abrasive and the glass substrate precursor negative.
  • the zeta potential of the glass substrate precursor lower than the zeta potential of the polishing brush, the repulsive force of the abrasive with respect to the glass substrate precursor is increased, and the abrasive is easily separated from the glass substrate precursor. (Prevents adhesion of abrasive). By preventing the adhesion of the abrasive in this way, it is possible to prevent the abrasive from being scattered from the end surface of the glass substrate to the main surface, thereby preventing the occurrence of subsequent defects when processed as a magnetic recording medium. Can do.
  • the zeta potential means that when a solid is dispersed in a solvent, charge separation occurs at the interface between the solution and the solid, and a potential difference occurs near the interface. It means the potential difference between the potential and the potential of the solvent sufficiently away from the interface.
  • the ⁇ potential is repulsive between those having a positive ⁇ potential or between those having a negative ⁇ potential, and is attractive between those having a positive ⁇ potential and those having a negative ⁇ potential. As the absolute value of the ⁇ potential is larger, a stronger attractive force or repulsive force is applied.
  • the present invention makes use of such ⁇ potential characteristics to make both the ⁇ potential of the glass substrate precursor and the ⁇ potential of the polishing agent negative, and in particular, to increase the absolute value of the ⁇ potential of the glass substrate precursor.
  • the repulsive force between the glass substrate precursor and the abrasive is increased so that the abrasive does not adhere to the end face of the glass substrate precursor or even if it adheres, it can be easily removed in the cleaning process.
  • a conventionally known method can be used, but an electrophoresis method, a streaming potential method, an ultrasonic method, an ESA method, or the like is used. It is preferable.
  • the above ⁇ sub is preferably ⁇ 30 mV or less.
  • the abrasive can be more easily electrically separated from the glass substrate precursor.
  • the method is not limited to this method. For example, additives such as a dispersant and the glass composition are changed. Therefore, it is possible to change ⁇ sub.
  • the abrasive contained in the above polishing liquid is preferably contained at 1 to 15% by mass, more preferably 3 to 7% by mass. Moreover, it is preferable that the average particle diameter of an abrasive
  • polishing agent is 1 micrometer or more and 2.5 micrometers or less, More preferably, they are 1 micrometer or more and 1.5 micrometers or less.
  • the abrasive used in the above is made of at least one selected from the group consisting of cerium oxide, zirconium oxide, and aluminum oxide. This is because such an abrasive can efficiently polish the glass substrate precursor and can easily control the zeta potential of the abrasive.
  • the zeta potential of such an abrasive can be reduced by adding a polycarboxylic acid-based dispersant as the composition of the polishing liquid in which the abrasive is dispersed.
  • the zeta potential of the polishing agent can be lowered by making the polishing solution liquid alkaline.
  • the liquid property of the polishing liquid is not particularly limited as long as the zeta potential of the polishing agent can be controlled to ⁇ 30 mV or less, but is preferably alkaline, more preferably pH. 9 or more and 13 or less. By using a polishing liquid having such a liquid property, it becomes easy to adjust the zeta potential of the abrasive to minus.
  • the above polishing liquid preferably contains a dispersant.
  • the dispersant is preferably at least one selected from the group consisting of polycarboxylic acids, urethane resins, and acrylic resins. By including such a dispersing agent, it is possible to uniformly disperse the abrasive in the polishing liquid, and thus it is possible to efficiently polish the end face of the glass substrate precursor.
  • the polishing liquid preferably further contains a water-soluble polymer.
  • the water-soluble polymer is preferably composed of at least one selected from the group consisting of polyvinyl alcohol, modified polyvinyl alcohol, polyvinyl pyrrolidone, methacrylic acid copolymer, polymethacrylamide copolymer, and polyethylene glycol.
  • the polishing liquid preferably further contains a surfactant.
  • a surfactant one or more selected from the group consisting of a sulfonic acid surfactant, a phosphoric acid surfactant, or a nonionic surfactant can be used.
  • a surfactant such as hydroxyl group ethylidene phosphophone (HEDP: 1-Hydroxy Ethylidene-1,1-Diphosphonic Acid)
  • HEDP 1-Hydroxy Ethylidene-1,1-Diphosphonic Acid
  • the polishing brush for polishing the end surface of the glass substrate precursor is preferably composed of one or more selected from the group consisting of aramid fibers, polybutylene terephthalate, and polypropylene.
  • the end face shape can be created while controlling the zeta potential more easily.
  • the zeta potential of the polishing brush or the glass substrate can be adjusted by bringing the water-soluble polymer or surfactant into contact with the surface prior to the polishing treatment. It is possible to increase or decrease the value of the zeta potential by adjusting the treatment time with the surfactant and the concentration of the water-soluble polymer and the surfactant used in the treatment.
  • the value of the zeta potential decreases, and the OH group or COOH group
  • the zeta potential value tends to increase.
  • the front and back surfaces of the glass substrate precursor after the end face polishing step are polished with a polishing pad using a polishing liquid containing an abrasive.
  • a polishing liquid containing an abrasive is supplied to the surface of the glass substrate precursor, and the polishing pads are arranged so as to be in contact with both the front and back surfaces of the glass substrate precursor. By rotating in the reverse direction, the surface of the glass substrate precursor is polished.
  • the polishing pad used in the rough polishing step for example, a urethane foam pad can be used, and a hard pad having a hardness A of about 80 to 90 is preferable.
  • polishing agent and polishing liquid as those described in the end face polishing step can be used. Further, by controlling the zeta potential of the polishing pad, the polishing agent, and the polishing liquid in the same manner as the polishing brush, it is possible to make it difficult for the polishing agent to adhere to the front and back surfaces of the glass substrate precursor.
  • the precision polishing step is performed to further improve the surface smoothness of the glass substrate precursor, and is a step of polishing the glass substrate precursor by a polishing method with higher accuracy than the above rough polishing step.
  • a precision polishing step it is preferable to perform mirror polishing of the front and back surfaces of the glass substrate using a polishing pad of a polyurethane-based soft polisher with a double-side polishing apparatus having a planetary gear mechanism.
  • the polishing liquid used here for example, a dispersion in which colloidal silica having an average particle size of 40 nm or less is dispersed in ultrapure water, more preferably colloidal silica having an average particle size of 20 to 40 nm is used. Use dispersed ones.
  • a chemically strengthened layer is formed on the surface and the end face of the glass substrate precursor subjected to the above-described precision polishing.
  • Such a process usually reinforces the surface of the glass substrate precursor using a chemical strengthening treatment liquid.
  • Such a chemical strengthening process can employ
  • a step of immersing the glass substrate precursor in a chemical strengthening treatment liquid can be exemplified.
  • a chemical strengthening layer is formed in the area
  • alkali metal ions such as lithium ions and sodium ions contained in the glass substrate precursor are further reduced.
  • alkali metal ions such as potassium ions having a large ion radius are substituted. Compressive stress is generated in the ion-exchanged region due to the strain caused by the difference in ion radius, and the surface of the glass substrate precursor is strengthened in the region.
  • Examples of such chemical strengthening treatment liquid include a solution in which potassium nitrate (60%) and sodium nitrate (40%) are mixed.
  • the glass substrate on which the chemical strengthening layer is formed is preferably washed with a neutral detergent and pure water and dried. By performing such cleaning, it is possible to wash away the adhesion of foreign substances contained in the chemical strengthening treatment liquid, and to stabilize the surface of the glass substrate for recording media and to have excellent long-term storage stability. it can.
  • a glass substrate for a recording medium can be produced as described above.
  • the method of manufacturing the glass substrate for recording medium of the present invention is not limited to the above-described manufacturing method, and may be manufactured by reversing the order of the precision polishing step and the chemical strengthening step, for example. Thus, even if the glass substrate for recording media is manufactured, the same performance as the glass substrate for recording media manufactured by the above manufacturing method can be obtained.
  • Example 1 a glass substrate for a recording medium was manufactured by the following steps.
  • a multicomponent glass material made of amorphous glass was prepared.
  • aluminosilicate glass was used as the composition of the glass material.
  • the chemical composition of the glass material SiO 2 is 50 to 70 wt%, Al 2 O 3 is 0 to 20 wt%, B 2 O 3 0 to 5 wt% (however, SiO 2, Al 2 O 3 , and B 2 O 3 is 50 to 85% by mass), Li 2 O, Na 2 O, and K 2 O are 0.1 to 20% by mass, MgO, CaO, BaO, SrO, and ZnO. Was 2 to 20% by mass.
  • a disk-shaped glass substrate precursor was formed by molding the above glass material by a direct press method. And the hole was made in the center part of the glass substrate precursor using the grindstone, and it was set as the disk-shaped glass substrate precursor which has a circular hole in the center part. Furthermore, the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor were chamfered.
  • ⁇ Lapping process> The glass substrate precursor whose end face was polished as described above was ground on both the front and back surfaces of the glass substrate precursor using abrasive grains having a particle size of # 1000. Thereby, while adjusting the glass substrate precursor to the thickness of about 0.95 mm, the parallelism of the glass substrate precursor was improved.
  • the surface roughness of the end surface (inner periphery, outer periphery) of the glass substrate with a polishing brush is about 1.0 ⁇ m at the maximum height (Rmax), arithmetic average roughness (Ra) was polished to about 0.3 ⁇ m.
  • a polishing brush made of nylon 6 was used, and a polishing liquid was included in advance.
  • a polishing agent made of cerium oxide having an average particle diameter of 1.5 ⁇ m was mixed with water, so that the concentration of the polishing agent was 7% by mass. Further, the pH was adjusted to 10 by adding 1 mol / L potassium hydroxide.
  • the zeta potential ⁇ pol of the abrasive contained in such a polishing liquid was measured by applying an applied voltage of 60 mV / cm using a flow cell unit. Further, the zeta potential ⁇ sub of the glass substrate precursor and the zeta potential ⁇ brush of the polishing brush were each measured by preparing a 37 mm ⁇ 16 mm ⁇ 5 mm sample and using a flat plate cell. These zeta potentials were measured using a zeta potential / particle size measurement system (product name: ELSZ-2 (manufactured by Otsuka Electronics Co., Ltd.). As a result of the above zeta potential measurement, ⁇ pol was ⁇ 50 mV.
  • ⁇ sub was ⁇ 40 mV
  • ⁇ brush was ⁇ 30 mV.
  • the zeta potential of the polishing brush and the glass substrate was adjusted to adjust the time of contact with the phosphate surfactant solution as a surfactant before polishing treatment in addition to adjusting the pH of the polishing solution. To adjust each. Specifically, it adjusted by changing the density
  • ⁇ Precision polishing process> Using a double-side polishing apparatus having a planetary gear mechanism, the front and back surfaces of the glass substrate precursor were mirror-polished using a polishing pad of a polyurethane-based soft polisher.
  • the polishing liquid used was a dispersion of colloidal silica having an average particle diameter of 20 nm in ultrapure water.
  • the glass substrate precursor was immersed in an aqueous NaOH solution having a concentration of 3 to 5% by mass and subjected to alkali cleaning while applying ultrasonic waves. Furthermore, it wash
  • Examples 2 to 8, Comparative Examples 1 to 3> Compared to Example 1 above, the zeta potentials of the abrasive, the polishing brush, and the glass substrate precursor in the rough polishing step are different as shown in Table 1, and by adding a sulfuric acid aqueous solution or potassium hydroxide to the polishing liquid.
  • the glass substrates for recording media of Examples 2 to 8 and Comparative Examples 1 to 3 were prepared in the same manner as in Example 1 except that the pH of the polishing liquid was different as shown in Table 1.
  • the number of recording medium glass substrates in which errors were detected was counted using the TA test head equipped with the DFH mechanism for the recording medium glass substrates thus prepared.
  • the collision error means a collision error that occurred between 5 mm from the outer peripheral end surface of the glass substrate for recording medium. The smaller the number of collision errors, the better the surface smoothness of the glass substrate for recording medium. Is shown.
  • the glass substrates for recording media manufactured by the manufacturing methods of Examples 1 to 8 had a polishing agent that scattered from the end surface to the main surface due to a decrease in the polishing agent adhering to the end surface. It was confirmed that collision errors are less likely to occur due to the decrease. In contrast, the recording medium glass substrates manufactured by the manufacturing methods of Comparative Examples 1 to 3 are likely to cause a collision error because the abrasive adhered to the end surface of the magnetic film is scattered on the main surface when the magnetic film is formed. confirmed.
  • the glass substrate for a recording medium manufactured according to the manufacturing method of the present invention performs rough polishing by controlling the zeta potential of the polishing agent, the glass substrate precursor, and the polishing brush, so that the end surface of the polishing agent is removed. It is clear that it was possible to prevent adhesion and to prevent the abrasive from scattering from the end surface to the main surface, thereby making it difficult to cause a collision error.

Abstract

Provided is a method that is for producing a glass substrate for a recording medium and, by means of preventing splattering of a polishing agent from the end surface to the principal surface of the glass substrate, whereby it is difficult for subsequent errors to arise. The method for producing a glass substrate for a recording medium is characterized by: containing a step for polishing the end surface of a glass substrate precursor by means of a polishing brush using a polishing liquid containing a polishing agent; and in the polishing step, when the zeta potential of the polishing agent is ζpol, the zeta potential of the polishing brush is ζbrush, and the zeta potential of the glass substrate precursor is ζsub, both ζpol and ζsub being less than 0 mV, and ζsub being smaller than ζbrush.

Description

記録媒体用ガラス基板を製造する方法Method for producing glass substrate for recording medium
 本発明は、記録媒体用ガラス基板を製造する方法に関する。 The present invention relates to a method for producing a glass substrate for a recording medium.
 近年、ハードディスクドライブ(HDD)においては、磁気記録媒体の記録容量が高密度化してきていることに伴い、磁気記録媒体に対する記録読取り用ヘッドの浮上量(フライングハイト)をより減少させたものとなっている。そのようなヘッドとして、DFH(Dynamic Flying Hight)機構を搭載したヘッドも普及している。 In recent years, in a hard disk drive (HDD), as the recording capacity of a magnetic recording medium has increased, the flying height of the recording / reading head with respect to the magnetic recording medium has been further reduced. ing. As such a head, a head equipped with a DFH (Dynamic Flying Height) mechanism is also widespread.
 DFH機構は、磁気ヘッドに設けられた発熱素子の発熱によって磁気ヘッドが熱膨張し、磁気ヘッドが浮上面(ABS:Air bearing surface)方向にわずかに突出するように動作させるものであり、これによりフライングハイトを一定に保つことができる。 In the DFH mechanism, the magnetic head thermally expands due to the heat generated by the heat generating element provided in the magnetic head, and the magnetic head is operated so as to slightly protrude in the air bearing surface (ABS) direction. Flying height can be kept constant.
 このようなDFH機構を搭載したヘッドは、フライングハイトが数nm程度であるため、磁気記録媒体を使用したときにヘッドクラッシュなどの不良が生じやすい。このような不良を減少するために、磁気記録媒体の表面平滑性を高めることが要求されている。 Since a head equipped with such a DFH mechanism has a flying height of about several nanometers, defects such as head crashes tend to occur when a magnetic recording medium is used. In order to reduce such defects, it is required to improve the surface smoothness of the magnetic recording medium.
 ガラス基板の表面平滑性を高める試みとして、たとえば特開2010-238310号公報(特許文献1)には、予め決められた移動量で研磨砥石をトラバースさせてガラス基板を研磨することにより、ガラス基板の表面欠陥の大きさおよび個数を減少させる技術が提案されている。 As an attempt to increase the surface smoothness of a glass substrate, for example, in Japanese Patent Application Laid-Open No. 2010-238310 (Patent Document 1), a glass substrate is polished by traversing a polishing grindstone with a predetermined amount of movement. A technique for reducing the size and number of surface defects has been proposed.
 また、特開2009-087441号公報(特許文献2)には、シリカ粒子を用いてガラス基板を研磨するときに、ガラス基板と研磨液に含まれる凝集したシリカ粒子や不純物粒子との電位差を制御しながら研磨することによって、ガラス基板の主表面の表面欠陥が形成されるのを抑制する技術が開示されている。さらに、特開2007-254259号公報(特許文献3)には、酸化セリウムを用いて中性の液性条件下でガラス基板を研磨する技術が開示されている。 Japanese Patent Application Laid-Open No. 2009-087441 (Patent Document 2) controls the potential difference between the glass substrate and the aggregated silica particles and impurity particles contained in the polishing liquid when the glass substrate is polished with silica particles. A technique is disclosed that suppresses the formation of surface defects on the main surface of the glass substrate by polishing while polishing. Furthermore, Japanese Patent Application Laid-Open No. 2007-254259 (Patent Document 3) discloses a technique for polishing a glass substrate under neutral liquid conditions using cerium oxide.
特開2010-238310号公報JP 2010-238310 A 特開2009-087441号公報JP 2009-087441 A 特開2007-254259号公報JP 2007-254259 A
 磁気記録媒体用のガラス基板は、通常、最終洗浄を終えた後に光学式欠陥検査装置(OSA:Optical Surface Analyzer)によってガラス基板の表面および端面に付着した付着物の評価を行なう。上記特許文献1および3の方法によって製造されたガラス基板は、OSAによる評価でも、欠陥数が少ないと判定され、磁気記録媒体の製造効率が高いという利点を有する。 A glass substrate for a magnetic recording medium is usually subjected to evaluation of deposits attached to the surface and end surface of the glass substrate by an optical defect inspection apparatus (OSA: Optical Surface Analyzer) after the final cleaning. The glass substrate manufactured by the methods of Patent Documents 1 and 3 has an advantage that the number of defects is determined to be small even by evaluation by OSA, and the manufacturing efficiency of the magnetic recording medium is high.
 しかしながら、特許文献1および3の方法で製造された磁気記録媒体を用いたときに、後発的にヘッドクラッシュなどの不良が生じることがあった。また、特許文献2に開示された研磨方法は、研磨液に含まれる凝集したシリカ粒子および不純物粒子とガラス基板との電位差を制御することによって、シリカ粒子による表面欠陥はある程度抑制することができるものの、研磨剤自体に起因した上記の問題を解決することはできなかった。また、更なる検討の結果、上記の問題は、ガラス基板と研磨剤との電位差のみを制御しても解決することはできず、研磨ブラシに付着した研磨剤粒子があると、劣化した研磨剤粒子が排出されずに凝集し、ゼータ電位が変化してガラス基板に再付着することも原因となっていることが判明した。 However, when the magnetic recording medium manufactured by the methods of Patent Documents 1 and 3 is used, defects such as a head crash may occur later. Further, the polishing method disclosed in Patent Document 2 can suppress surface defects caused by silica particles to some extent by controlling the potential difference between the aggregated silica particles and impurity particles contained in the polishing liquid and the glass substrate. The above-mentioned problem caused by the abrasive itself could not be solved. Further, as a result of further studies, the above problem cannot be solved by controlling only the potential difference between the glass substrate and the abrasive. If there are abrasive particles adhering to the abrasive brush, the degraded abrasive It was found that the particles were aggregated without being discharged, and the zeta potential was changed and reattached to the glass substrate.
 本発明者は、上記不良の原因を究明したところ、ガラス基板の端面を研磨するときに使用する研磨剤がガラス基板の端面に付着していることが原因であることがわかった。すなわち、ガラス基板の端面に付着した研磨剤が磁性膜の成膜時に端面から主表面に飛散し、これが記録装置用の磁気記録媒体として用いたときに後発的にヘッドクラッシュなどの不良を引き起こすとの知見を得た。 The present inventor investigated the cause of the defect and found that the cause was that the abrasive used for polishing the end face of the glass substrate adhered to the end face of the glass substrate. That is, when the abrasive attached to the end surface of the glass substrate scatters from the end surface to the main surface during the formation of the magnetic film, and this causes a defect such as a head crash later when used as a magnetic recording medium for a recording apparatus. I got the knowledge.
 本発明は、このような状況下においてなされたものであり、その目的とするところは、磁性膜の成膜時にガラス基板の端面から主表面への研磨剤の飛散を防ぐことにより、後発的なエラーが発生しにくい記録媒体用ガラス基板を製造する方法を提供することにある。 The present invention has been made under such circumstances, and the object of the present invention is to prevent the scattering of the abrasive from the end surface of the glass substrate to the main surface during the formation of the magnetic film. An object of the present invention is to provide a method for manufacturing a glass substrate for a recording medium that is less likely to cause errors.
 本発明者の研究により、上記研磨剤のガラス基板への付着の原因は、中性の研磨液を用いて研磨することによるものであることが明らかとなった。すなわち、中性で粗研磨すると、研磨剤のゼータ電位が等電点に近づくことによって該研磨剤がガラス基板に付着しやすくなるという知見が得られた。 The inventors' research has revealed that the cause of adhesion of the abrasive to the glass substrate is due to polishing with a neutral polishing liquid. That is, when neutral and rough polishing was performed, it was found that the zeta potential of the polishing agent approaches the isoelectric point, so that the polishing agent easily adheres to the glass substrate.
 そして、上記知見に基づいてさらに検討を重ねた結果、研磨する工程において、研磨剤、ガラス基板前駆体、および研磨ブラシのゼータ電位を適切に制御することによって、ガラス基板の端面に研磨剤を残留しにくくし、磁性膜の成膜時にガラス基板の端面から主表面への研磨剤の飛散を防ぐことができ、これが後発的なエラーを発生しにくくし得ることを見出し、本発明を完成した。 As a result of further investigation based on the above knowledge, in the polishing step, the abrasive remains on the end surface of the glass substrate by appropriately controlling the zeta potential of the abrasive, the glass substrate precursor, and the polishing brush. It was found that it was possible to prevent the abrasive from being scattered from the end surface of the glass substrate to the main surface during the formation of the magnetic film, and this could make it difficult to cause a subsequent error, and the present invention was completed.
 すなわち、本発明の記録媒体用ガラス基板を製造する方法は、ガラス基板前駆体を用いるものであって、ガラス基板前駆体の端面を研磨剤を含む研磨液を用いて研磨ブラシによって研磨する工程を含み、該研磨する工程において、研磨剤のゼータ電位をζpolとし、研磨ブラシのゼータ電位をζbrushとし、ガラス基板前駆体のゼータ電位をζsubとすると、ζpolおよびζsubはいずれも、0mV未満であり、かつζsubは、ζbrushより小さいことを特徴とする。 That is, the method for producing a glass substrate for a recording medium of the present invention uses a glass substrate precursor, and comprises a step of polishing an end surface of the glass substrate precursor with a polishing brush using a polishing liquid containing an abrasive. In the polishing step, when the zeta potential of the abrasive is ζpol, the zeta potential of the polishing brush is ζbrush, and the zeta potential of the glass substrate precursor is ζsub, both ζpol and ζsub are less than 0 mV, Ζsub is smaller than ζbrush.
 ζsubは、-30mV以下であることが好ましい。研磨液のpHは9以上13以下であることが好ましい。上記の研磨液は、さらに分散剤を含み、該分散剤は、ポリカルボン酸、ウレタン樹脂、およびアクリル樹脂からなる群より選択される1種以上であることが好ましい。 Ζsub is preferably −30 mV or less. The pH of the polishing liquid is preferably 9 or more and 13 or less. The polishing liquid further contains a dispersant, and the dispersant is preferably at least one selected from the group consisting of a polycarboxylic acid, a urethane resin, and an acrylic resin.
 研磨剤は、酸化セリウム、酸化ジルコニウム、および酸化アルミニウムからなる群より選択される1種以上からなることが好ましい。 The abrasive is preferably composed of one or more selected from the group consisting of cerium oxide, zirconium oxide, and aluminum oxide.
 研磨液は、さらに水溶性ポリマーを含み、該水溶性ポリマーは、ポリビニルアルコール、変性ポリビニルアルコール、ポリビニルピロリドン、メタアクリル酸共重合体、ポリメタアクリルアミド共重合体、およびポリエチレングリコールからなる群より選択される1種以上からなることが好ましい。 The polishing liquid further contains a water-soluble polymer, and the water-soluble polymer is selected from the group consisting of polyvinyl alcohol, modified polyvinyl alcohol, polyvinyl pyrrolidone, methacrylic acid copolymer, polymethacrylamide copolymer, and polyethylene glycol. It is preferable that it consists of 1 or more types.
 研磨液は、さらに界面活性剤を含み、該界面活性剤は、スルホン酸系界面活性剤、リン酸系界面活性剤、または非イオン界面活性剤を含むことが好ましい。研磨ブラシは、アラミド系繊維、ポリブチレンテレフタレート、およびポリプロピレンからなる群より選択される1種以上の材料からなることが好ましい。 The polishing liquid further contains a surfactant, and the surfactant preferably contains a sulfonic acid surfactant, a phosphoric acid surfactant, or a nonionic surfactant. The polishing brush is preferably made of one or more materials selected from the group consisting of aramid fibers, polybutylene terephthalate, and polypropylene.
 本発明の記録媒体用ガラス基板を製造する方法は、上記のような構成を有することにより、磁性膜の成膜時にガラス基板の端面から主表面への研磨剤の飛散を防ぐことができ、もって後発的なエラーが発生しにくいという極めて優れた効果を示す。このため、本発明の製造方法によって製造された記録媒体用ガラス基板は、後発的なエラーが発生しにくいという効果を示す。 The method for producing a glass substrate for a recording medium of the present invention has the above-described configuration, and thus can prevent the abrasive from scattering from the end surface of the glass substrate to the main surface during the formation of the magnetic film. It shows an extremely excellent effect that it is difficult for subsequent errors to occur. For this reason, the glass substrate for recording media manufactured by the manufacturing method of this invention shows the effect that a late error does not generate | occur | produce easily.
 以下、本発明についてさらに詳細に説明する。
 <記録媒体用ガラス基板を製造する方法>
 本発明の記録媒体用ガラス基板を製造する方法は、ガラス基板前駆体の端面を研磨剤を含む研磨液を用いて研磨ブラシで研磨する工程(以下、「端面研磨工程」)を少なくとも含むものである。
Hereinafter, the present invention will be described in more detail.
<Method for producing glass substrate for recording medium>
The method for producing a glass substrate for a recording medium of the present invention includes at least a step of polishing an end surface of a glass substrate precursor with a polishing brush using a polishing liquid containing an abrasive (hereinafter referred to as “end surface polishing step”).
 本発明の記録媒体用ガラス基板を製造する方法は、このように化学強化工程と端面研磨工程とを含む限り、他の工程を含むことができる。このような他の工程としては、たとえばガラス基板前駆体を円盤状に加工する円盤加工工程、ガラス基板前駆体の平行度および厚みなどを調整するラッピング工程、ガラス基板前駆体の表面平滑性を高める研磨を行なう粗研磨工程、粗研磨工程で行なう研磨よりもガラス基板前駆体の平滑性を高める研磨を行なう精密研磨工程、ガラス基板前駆体の表面および端面に対して化学強化層を形成する化学強化工程、ガラス基板前駆体の表面および端面を洗浄する洗浄工程等を挙げることができる。 The method for producing a glass substrate for a recording medium of the present invention can include other steps as long as the chemical strengthening step and the end surface polishing step are thus included. As such other processes, for example, a disk processing process for processing the glass substrate precursor into a disk shape, a lapping process for adjusting the parallelism and thickness of the glass substrate precursor, and the surface smoothness of the glass substrate precursor are improved. Rough polishing process for polishing, precision polishing process for polishing to improve the smoothness of the glass substrate precursor than polishing in the rough polishing process, chemical strengthening to form a chemically strengthened layer on the surface and end face of the glass substrate precursor Examples of the process include a cleaning process for cleaning the surface and the end face of the glass substrate precursor.
 <記録媒体用ガラス基板>
 本発明で製造される記録媒体用ガラス基板は、ハードディスクドライブ装置等の情報記録装置において情報記録媒体の基板として用いられるものであり、その大きさや形状は特に限定されない。たとえば、外径が2.5インチ、1.8インチ、1インチ、0.8インチなどであり、厚みが2mm、1mm、0.65mm、0.8mmなどである、円板状のものとすることができる。また、その円板状の中央部には、情報記録装置にセットするための孔が開けられていてもよい。
<Glass substrate for recording medium>
The glass substrate for a recording medium produced by the present invention is used as a substrate for an information recording medium in an information recording apparatus such as a hard disk drive device, and its size and shape are not particularly limited. For example, the outer diameter is 2.5 inches, 1.8 inches, 1 inch, 0.8 inches, etc., and the thickness is 2 mm, 1 mm, 0.65 mm, 0.8 mm, etc. be able to. Further, a hole for setting in the information recording apparatus may be formed in the disc-shaped central portion.
 <円盤加工工程>
 円盤加工工程では、まず、ガラス素材を溶融し(ガラス溶融工程)、溶融ガラスを下型に流し込み、上型によってプレス成形して円板状のガラス基板前駆体を得る(プレス成形工程)。なお、円板状のガラス基板前駆体は、このようなプレス成形工程によらず、たとえばダウンドロー法やフロート法で形成したシートガラスを研削砥石で切り出して作製してもよい。
<Disk processing process>
In the disk processing step, first, a glass material is melted (glass melting step), molten glass is poured into a lower mold, and press molding is performed with an upper mold to obtain a disk-shaped glass substrate precursor (press molding process). Note that the disk-shaped glass substrate precursor may be produced by cutting a sheet glass formed by, for example, a downdraw method or a float method with a grinding stone, without using such a press molding process.
 ここで、上記ガラス素材としては、イオン交換による化学強化が可能なガラスであれば特に限定されない。たとえば、SiO2、Na2O、CaOを主成分としたソーダライムガラス、SiO2、Al23、R2O(R=K、Na、Li)を主成分としたアルミノシリケートガラス、ボロシリケートガラス、Li2O-SiO2系ガラス、Li2O-Al23-SiO2系ガラス、R’O-Al23-SiO2系ガラス(R’=Mg、Ca、Sr、Ba)などを使用することができる。中でも、アルミノシリケートガラスやボロシリケートガラスは、耐衝撃性や耐振動性に優れるため特に好ましい。上記ガラス素材の組成として、SiO2とAl23とB23との合計が50~85質量%であり、LiO2とNa2とK2Oとの合計が0.1~20質量%であり、MgOとCaOとBaOとSrOとZnOとの合計が2~20質量%であるものを用いることができる。中でも、ガラス素材としては、SiO2は50~70質量%であり、Al23は0~20質量%であり、B23は0~5質量であるものを好適に用いることができる。 Here, the glass material is not particularly limited as long as it can be chemically strengthened by ion exchange. For example, soda lime glass mainly composed of SiO 2 , Na 2 O, CaO, aluminosilicate glass mainly composed of SiO 2 , Al 2 O 3 , R 2 O (R = K, Na, Li), borosilicate Glass, Li 2 O—SiO 2 glass, Li 2 O—Al 2 O 3 —SiO 2 glass, R′O—Al 2 O 3 —SiO 2 glass (R ′ = Mg, Ca, Sr, Ba) Etc. can be used. Among these, aluminosilicate glass and borosilicate glass are particularly preferable because they are excellent in impact resistance and vibration resistance. As the composition of the glass material, the total of SiO 2 , Al 2 O 3 and B 2 O 3 is 50 to 85% by mass, and the total of LiO 2 , Na 2 and K 2 O is 0.1 to 20% by mass. %, And the total of MgO, CaO, BaO, SrO and ZnO is 2 to 20% by mass. Among them, as the glass material, SiO 2 is 50 to 70% by mass, Al 2 O 3 is 0 to 20% by mass, and B 2 O 3 is 0 to 5% by mass. .
 次いで、上記のようにプレス成形したガラス基板前駆体は、カッター部にダイヤモンド砥石等を備えたコアドリル等で中心部に孔が開けられる(コアリング加工工程)。以下では、この孔の端面を内周端面という。 Next, the glass substrate precursor press-molded as described above is perforated at the center with a core drill or the like having a diamond grindstone or the like in the cutter (coring process). Hereinafter, the end face of the hole is referred to as an inner peripheral end face.
 <ラッピング工程>
 上記のガラス基板前駆体の表裏の両面に対し、ラッピング加工を施す。ここで、ラッピング加工は、たとえば研削加工によって行なうことができ、これによりガラス基板前駆体の全体形状、すなわちガラス基板前駆体の平行度、平坦度および厚みを予備調整することができる。
<Lapping process>
A lapping process is performed on both the front and back surfaces of the glass substrate precursor. Here, the lapping process can be performed by, for example, a grinding process, whereby the overall shape of the glass substrate precursor, that is, the parallelism, flatness, and thickness of the glass substrate precursor can be preliminarily adjusted.
 <端面研磨工程>
 上記ラッピング工程後のガラス基板前駆体の端面を研磨剤を含む研磨液を用いて研磨ブラシによって研磨する。具体的には、研磨ブラシに研磨剤を含む研磨液を供給し、ガラス基板前駆体の端面に接触するように研磨ブラシを配置した上で、ガラス基板前駆体を回転させながら、研磨ブラシをあてることにより、ガラス基板前駆体の端面を研磨する。なお、本発明における「端面」とは、ガラス基板前駆体の内周端面および外周端面を意味する。
<End face polishing process>
The end surface of the glass substrate precursor after the lapping step is polished with a polishing brush using a polishing liquid containing an abrasive. Specifically, a polishing liquid containing an abrasive is supplied to the polishing brush, the polishing brush is disposed so as to contact the end surface of the glass substrate precursor, and then the polishing brush is applied while rotating the glass substrate precursor. Thus, the end face of the glass substrate precursor is polished. The “end face” in the present invention means the inner peripheral end face and the outer peripheral end face of the glass substrate precursor.
 本発明は、上記研磨ブラシを用いた端面研磨工程において、研磨剤のゼータ電位をζpolとし、研磨ブラシのゼータ電位をζbrushとし、ガラス基板前駆体のゼータ電位をζsubとすると、ζpolおよびζsubはいずれも、0mV未満であり、かつζsubは、ζbrushより小さくなるように設定して研磨することを特徴とする。このように研磨剤およびガラス基板前駆体のゼータ電位をそれぞれマイナスとすることにより、ガラス基板前駆体への研磨剤の付着を防止することができる。 According to the present invention, in the end face polishing step using the polishing brush, if the zeta potential of the abrasive is ζpol, the zeta potential of the polishing brush is ζbrush, and the zeta potential of the glass substrate precursor is ζsub, Further, the polishing is characterized in that the polishing is carried out by setting it to be less than 0 mV and ζsub to be smaller than ζbrush. Thus, adhesion of the abrasive to the glass substrate precursor can be prevented by making the zeta potential of the abrasive and the glass substrate precursor negative.
 そして、ガラス基板前駆体のゼータ電位を研磨ブラシのゼータ電位よりも低くすることにより、ガラス基板前駆体に対する研磨剤の反発力が高められ、研磨剤が電気的にガラス基板前駆体から離れやすくする(研磨剤の付着を防ぐ)ことができる。このように研磨剤の付着を防止することにより、ガラス基板の端面から主表面への研磨剤の飛散を防ぐことができ、もって磁気記録媒体として加工したときの後発的な不良の発生を防ぐことができる。 And by making the zeta potential of the glass substrate precursor lower than the zeta potential of the polishing brush, the repulsive force of the abrasive with respect to the glass substrate precursor is increased, and the abrasive is easily separated from the glass substrate precursor. (Prevents adhesion of abrasive). By preventing the adhesion of the abrasive in this way, it is possible to prevent the abrasive from being scattered from the end surface of the glass substrate to the main surface, thereby preventing the occurrence of subsequent defects when processed as a magnetic recording medium. Can do.
 ここで、ゼータ電位(ζ電位)とは、溶媒中に固体が分散されているときに、その溶液と固体との界面に電荷分離が起こり、その界面近傍で電位差が生じたときの界面近傍の電位と、該界面から十分離れた溶媒の電位との電位差を意味する。かかるζ電位は、プラスのζ電位を有するもの同士またはマイナスのζ電位を有するもの同士の間で斥力が働き、プラスのζ電位を有するものとマイナスのζ電位を有するものとでは引力が働く。そして、ζ電位の絶対値が大きいものほど強力な引力または斥力が働くこととなる。本発明は、このようなζ電位の特性を利用して、ガラス基板前駆体のζ電位と研磨剤のζ電位とをいずれもマイナスとし、特にガラス基板前駆体のζ電位の絶対値を大きくすることにより、ガラス基板前駆体と研磨剤との斥力を高め、研磨剤がガラス基板前駆体の端面に付着しないように、または付着しても洗浄工程で容易に取れやすくしたものである。 Here, the zeta potential (ζ potential) means that when a solid is dispersed in a solvent, charge separation occurs at the interface between the solution and the solid, and a potential difference occurs near the interface. It means the potential difference between the potential and the potential of the solvent sufficiently away from the interface. The ζ potential is repulsive between those having a positive ζ potential or between those having a negative ζ potential, and is attractive between those having a positive ζ potential and those having a negative ζ potential. As the absolute value of the ζ potential is larger, a stronger attractive force or repulsive force is applied. The present invention makes use of such ζ potential characteristics to make both the ζ potential of the glass substrate precursor and the ζ potential of the polishing agent negative, and in particular, to increase the absolute value of the ζ potential of the glass substrate precursor. Thus, the repulsive force between the glass substrate precursor and the abrasive is increased so that the abrasive does not adhere to the end face of the glass substrate precursor or even if it adheres, it can be easily removed in the cleaning process.
 上記ガラス基板前駆体、研磨剤、および研磨ブラシのζ電位を測定する方法としては、従来公知の方法を用いることができるが、電気泳動法、流動電位法、超音波法、ESA法などを用いることが好ましい。 As a method for measuring the ζ potential of the glass substrate precursor, the abrasive, and the polishing brush, a conventionally known method can be used, but an electrophoresis method, a streaming potential method, an ultrasonic method, an ESA method, or the like is used. It is preferable.
 上記のζsubは、-30mV以下であることが好ましい。このようにガラス基板前駆体のゼータ電位を定めることにより、研磨剤がガラス基板前駆体から電気的により離れやすくすることができる。かかるζsubを下げるためには、研磨剤を分散した研磨液のpHを変化させることが好ましく挙げられるが、この手法のみに限られるものではなく、たとえば分散剤等の添加剤やガラス組成を変化させることによってζsubを変化させても差し支えない。 The above ζsub is preferably −30 mV or less. By determining the zeta potential of the glass substrate precursor in this manner, the abrasive can be more easily electrically separated from the glass substrate precursor. In order to lower the ζsub, it is preferable to change the pH of the polishing liquid in which the abrasive is dispersed. However, the method is not limited to this method. For example, additives such as a dispersant and the glass composition are changed. Therefore, it is possible to change ζsub.
 上記の研磨液に含まれる研磨剤は、1~15質量%で含まれていることが好ましく、より好ましくは3~7質量%である。また、研磨剤の平均粒子径は、1μm以上2.5μm以下であることが好ましく、より好ましくは1μm以上1.5μm以下である。 The abrasive contained in the above polishing liquid is preferably contained at 1 to 15% by mass, more preferably 3 to 7% by mass. Moreover, it is preferable that the average particle diameter of an abrasive | polishing agent is 1 micrometer or more and 2.5 micrometers or less, More preferably, they are 1 micrometer or more and 1.5 micrometers or less.
 上記で用いられる研磨剤は、酸化セリウム、酸化ジルコニウム、および酸化アルミニウムからなる群より選択される1種以上からなるものを用いることが好ましい。このような研磨剤は、ガラス基板前駆体を効率よく研磨することができ、しかも研磨剤のゼータ電位を制御しやすいからである。かかる研磨剤のゼータ電位は、研磨剤を分散した研磨液の組成としてポリカルボン酸系分散剤を添加することにより、研磨剤のゼータ電位を低下させることができる。また、研磨液の液性をアルカリ性とすることによっても、研磨剤のゼータ電位を低下させることができる。 It is preferable that the abrasive used in the above is made of at least one selected from the group consisting of cerium oxide, zirconium oxide, and aluminum oxide. This is because such an abrasive can efficiently polish the glass substrate precursor and can easily control the zeta potential of the abrasive. The zeta potential of such an abrasive can be reduced by adding a polycarboxylic acid-based dispersant as the composition of the polishing liquid in which the abrasive is dispersed. In addition, the zeta potential of the polishing agent can be lowered by making the polishing solution liquid alkaline.
 また、研磨液の液性は、研磨剤のゼータ電位を-30mV以下に制御することができるものであれば、特に限定されるものではないが、アルカリ性であることが好ましく、より好ましくはpHが、9以上13以下である。このような液性を有する研磨液を用いることにより、研磨剤のゼータ電位をマイナスに調整しやすくなる。 The liquid property of the polishing liquid is not particularly limited as long as the zeta potential of the polishing agent can be controlled to −30 mV or less, but is preferably alkaline, more preferably pH. 9 or more and 13 or less. By using a polishing liquid having such a liquid property, it becomes easy to adjust the zeta potential of the abrasive to minus.
 上記の研磨液は、分散剤を含むことが好ましい。該分散剤は、ポリカルボン酸、ウレタン樹脂、およびアクリル樹脂からなる群より選択される1種以上であることが好ましい。このような分散剤を含むことにより、研磨液中に研磨剤を均一に分散させることができ、もってガラス基板前駆体の端面を効率的に研磨することができる。 The above polishing liquid preferably contains a dispersant. The dispersant is preferably at least one selected from the group consisting of polycarboxylic acids, urethane resins, and acrylic resins. By including such a dispersing agent, it is possible to uniformly disperse the abrasive in the polishing liquid, and thus it is possible to efficiently polish the end face of the glass substrate precursor.
 研磨液は、さらに水溶性ポリマーを含むことが好ましい。該該水溶性ポリマーは、ポリビニルアルコール、変性ポリビニルアルコール、ポリビニルピロリドン、メタアクリル酸共重合体、ポリメタアクリルアミド共重合体、およびポリエチレングリコールからなる群より選択される1種以上からなることが好ましい。このような水溶性ポリマーを研磨液に導入することにより、研磨剤のゼータ電位を調整することができる。すなわち、水溶性ポリマーの組成としてメタアクリル酸共重合体を用いることにより、研磨剤のゼータ電位を低下させることができ、水溶性ポリマーの組成としてポリエチレングリコールを用いることにより、研磨剤のゼータ電位を上昇させることができる。 The polishing liquid preferably further contains a water-soluble polymer. The water-soluble polymer is preferably composed of at least one selected from the group consisting of polyvinyl alcohol, modified polyvinyl alcohol, polyvinyl pyrrolidone, methacrylic acid copolymer, polymethacrylamide copolymer, and polyethylene glycol. By introducing such a water-soluble polymer into the polishing liquid, the zeta potential of the abrasive can be adjusted. That is, by using a methacrylic acid copolymer as the composition of the water-soluble polymer, the zeta potential of the abrasive can be lowered. By using polyethylene glycol as the composition of the water-soluble polymer, the zeta potential of the abrasive can be reduced. Can be raised.
 研磨液は、さらに界面活性剤を含むことが好ましい。該界面活性剤は、スルホン酸系界面活性剤、リン酸系界面活性剤、または非イオン界面活性剤からなる群より選択される1種以上を用いることができる。このような界面活性剤を研磨液に導入することにより、研磨剤のゼータ電位を調整することができる。すなわち、水酸基エチリデンフォスフォン(HEDP:1-Hydroxy Ethylidene-1,1-Diphosphonic Acid)のような界面活性剤を用いることにより、研磨剤のゼータ電位を増加させることができる傾向があり、スルファミン酸のような界面活性剤を用いることにより、研磨剤のゼータ電位を低下させることができる傾向がある。 The polishing liquid preferably further contains a surfactant. As the surfactant, one or more selected from the group consisting of a sulfonic acid surfactant, a phosphoric acid surfactant, or a nonionic surfactant can be used. By introducing such a surfactant into the polishing liquid, the zeta potential of the polishing agent can be adjusted. In other words, by using a surfactant such as hydroxyl group ethylidene phosphophone (HEDP: 1-Hydroxy Ethylidene-1,1-Diphosphonic Acid), the zeta potential of the abrasive tends to be increased. By using such a surfactant, the zeta potential of the abrasive tends to be lowered.
 本発明において、ガラス基板前駆体を端面を研磨する研磨ブラシは、アラミド系繊維、ポリブチレンテレフタレート、およびポリプロピレンからなる群より選択される1種以上からなることが好ましい。このような材料からなる研磨ブラシを用いることにより、より簡便にゼータ電位を制御しながら端面形状を作り込むことができる。
また、研磨ブラシやガラス基板のゼータ電位は 研磨液のpHを変更することに加えて、上記水溶性ポリマーまたは界面活性剤と研磨処理前に接触させることにより調整することも可能である。界面活性剤による処理時間や処理に用いる水溶性ポリマーや界面活性剤の濃度を調整することでゼータ電位の値を上昇させたり、下降させることが可能である。例えば、水溶性ポリマーとの接触時間を長くして、ガラス基板や研磨ブラシにおけるOH基やCOOH基の導入量を増加させた場合には、ゼータ電位の値は減少し、OH基やCOOH基の導入量を低下させた場合にはゼータ電位の値は増加する傾向を示す。
In the present invention, the polishing brush for polishing the end surface of the glass substrate precursor is preferably composed of one or more selected from the group consisting of aramid fibers, polybutylene terephthalate, and polypropylene. By using a polishing brush made of such a material, the end face shape can be created while controlling the zeta potential more easily.
In addition to changing the pH of the polishing liquid, the zeta potential of the polishing brush or the glass substrate can be adjusted by bringing the water-soluble polymer or surfactant into contact with the surface prior to the polishing treatment. It is possible to increase or decrease the value of the zeta potential by adjusting the treatment time with the surfactant and the concentration of the water-soluble polymer and the surfactant used in the treatment. For example, when the contact time with the water-soluble polymer is increased and the amount of OH groups or COOH groups introduced into the glass substrate or polishing brush is increased, the value of the zeta potential decreases, and the OH group or COOH group When the introduction amount is decreased, the zeta potential value tends to increase.
 <粗研磨工程>
 上記端面研磨工程後のガラス基板前駆体の表裏面を研磨剤を含む研磨液を用いて研磨パッドによって研磨する。具体的には、ガラス基板前駆体の表面に研磨剤を含む研磨液を供給し、ガラス基板前駆体の表裏の両面に接触するように研磨パッドを配置した上で、表裏面それぞれの研磨パッドを逆方向に回転させることにより、ガラス基板前駆体の表面を研磨する。粗研磨工程で用いられる研磨パッドとしては、たとえば発泡ウレタン製のパッドを使用することができ、好ましくは硬度Aで80~90程度の硬度を有する硬質パッドである。
<Rough polishing process>
The front and back surfaces of the glass substrate precursor after the end face polishing step are polished with a polishing pad using a polishing liquid containing an abrasive. Specifically, a polishing liquid containing an abrasive is supplied to the surface of the glass substrate precursor, and the polishing pads are arranged so as to be in contact with both the front and back surfaces of the glass substrate precursor. By rotating in the reverse direction, the surface of the glass substrate precursor is polished. As the polishing pad used in the rough polishing step, for example, a urethane foam pad can be used, and a hard pad having a hardness A of about 80 to 90 is preferable.
 ここで、研磨剤および研磨液は、上記の端面研磨工程で述べたものと同様のものを用いることができる。また、研磨パッドと研磨剤と研磨液のゼータ電位を上記研磨ブラシと同様に制御することにより、ガラス基板前駆体の表裏面に研磨剤を付着しにくくすることができる。 Here, the same polishing agent and polishing liquid as those described in the end face polishing step can be used. Further, by controlling the zeta potential of the polishing pad, the polishing agent, and the polishing liquid in the same manner as the polishing brush, it is possible to make it difficult for the polishing agent to adhere to the front and back surfaces of the glass substrate precursor.
 <精密研磨工程>
 精密研磨工程は、ガラス基板前駆体の表面平滑性をより高めるために行なわれるものであり、上記の粗研磨工程よりもより精度の高い研磨方法でガラス基板前駆体を研磨する工程である。このような精密研磨工程は、遊星歯車機構を有する両面研磨装置により、ポリウレタン系軟質ポリシャの研磨パッドを用いて、ガラス基板の表裏面の鏡面研磨を行なうことが好ましい。ここで用いる研磨液としては、たとえば、超純水に平均粒子径が40nm以下のコロイダルシリカを分散させたものを使用することが好ましく、より好ましくは、20~40nmの平均粒子径のコロイダルシリカを分散させたものを使用することである。
<Precision polishing process>
The precision polishing step is performed to further improve the surface smoothness of the glass substrate precursor, and is a step of polishing the glass substrate precursor by a polishing method with higher accuracy than the above rough polishing step. In such a precision polishing step, it is preferable to perform mirror polishing of the front and back surfaces of the glass substrate using a polishing pad of a polyurethane-based soft polisher with a double-side polishing apparatus having a planetary gear mechanism. As the polishing liquid used here, for example, a dispersion in which colloidal silica having an average particle size of 40 nm or less is dispersed in ultrapure water, more preferably colloidal silica having an average particle size of 20 to 40 nm is used. Use dispersed ones.
 <化学強化工程>
 化学強化工程では、上記の精密研磨を行なったガラス基板前駆体の表面および端面に対し、化学強化層を形成する。かかる工程は、通常、ガラス基板前駆体の表面を化学強化処理液を用いて強化するものである。このような化学強化工程は、記録媒体用ガラス基板の製造方法において化学強化工程として知られる従来公知の方法を特に限定することなく採用することができる。
<Chemical strengthening process>
In the chemical strengthening step, a chemically strengthened layer is formed on the surface and the end face of the glass substrate precursor subjected to the above-described precision polishing. Such a process usually reinforces the surface of the glass substrate precursor using a chemical strengthening treatment liquid. Such a chemical strengthening process can employ | adopt without specifically limiting the conventionally well-known method known as a chemical strengthening process in the manufacturing method of the glass substrate for recording media.
 具体的には、たとえば、ガラス基板前駆体を化学強化処理液に浸漬させる工程等を挙げることができる。これにより、ガラス基板前駆体の表面および端面において、表面から数μmの領域、好ましくは5μm程度の領域に化学強化層が形成される。 Specifically, for example, a step of immersing the glass substrate precursor in a chemical strengthening treatment liquid can be exemplified. Thereby, a chemical strengthening layer is formed in the area | region of several micrometers from the surface, Preferably about 5 micrometers in the surface and end surface of a glass substrate precursor.
 より詳しくは、このような化学強化工程は、加熱された化学強化処理液にガラス基板前駆体を浸漬させることによって、ガラス基板前駆体に含まれるリチウムイオンやナトリウムイオン等のアルカリ金属イオンをそれよりイオン半径の大きなカリウムイオン等のアルカリ金属イオンに置換するイオン交換法によって行なわれる。イオン半径の違いによって生じる歪みにより、イオン交換された領域に圧縮応力が発生し、その領域においてガラス基板前駆体の表面が強化される。このような化学強化処理液としては、たとえば、硝酸カリウム(60%)と硝酸ナトリウム(40%)とを混合した溶液等を挙げることができる。 More specifically, in such a chemical strengthening step, by immersing the glass substrate precursor in a heated chemical strengthening treatment solution, alkali metal ions such as lithium ions and sodium ions contained in the glass substrate precursor are further reduced. This is carried out by an ion exchange method in which alkali metal ions such as potassium ions having a large ion radius are substituted. Compressive stress is generated in the ion-exchanged region due to the strain caused by the difference in ion radius, and the surface of the glass substrate precursor is strengthened in the region. Examples of such chemical strengthening treatment liquid include a solution in which potassium nitrate (60%) and sodium nitrate (40%) are mixed.
 <最終洗浄工程>
 上記の化学強化層を形成したガラス基板に対し、中性洗剤および純水にて洗浄し乾燥させることが好ましい。このような洗浄を行なうことにより、化学強化処理液に含まれる異物の付着を洗い流すことができる他、記録媒体用ガラス基板の表面を安定にし、長期の保存安定性に優れたものとすることができる。以上のようにして記録媒体用ガラス基板を作製することができる。
<Final cleaning process>
The glass substrate on which the chemical strengthening layer is formed is preferably washed with a neutral detergent and pure water and dried. By performing such cleaning, it is possible to wash away the adhesion of foreign substances contained in the chemical strengthening treatment liquid, and to stabilize the surface of the glass substrate for recording media and to have excellent long-term storage stability. it can. A glass substrate for a recording medium can be produced as described above.
 本発明の記録媒体用ガラス基板を製造する方法は、上述した製造方法のみに限られるものではなく、たとえば精密研磨工程と化学強化工程との順序を逆にして製造してもよい。このように記録媒体用ガラス基板を製造しても、上記の製造方法で製造した記録媒体用ガラス基板と同等の性能を得ることができる。 The method of manufacturing the glass substrate for recording medium of the present invention is not limited to the above-described manufacturing method, and may be manufactured by reversing the order of the precision polishing step and the chemical strengthening step, for example. Thus, even if the glass substrate for recording media is manufactured, the same performance as the glass substrate for recording media manufactured by the above manufacturing method can be obtained.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 〔実施例1〕
 本実施例では、以下の各工程によって記録媒体用ガラス基板を製造した。
[Example 1]
In this example, a glass substrate for a recording medium was manufactured by the following steps.
 <円盤加工工程>
 まず、アモルファスガラスからなる多成分系のガラス素材を用意した。かかるガラス素材の構成としては、アルミノシリケートガラスを用いた。このガラス素材の化学組成は、SiO2が50~70質量%、Al23が0~20質量%、B23が0~5質量%(ただし、SiO2、Al23、およびB23の合計が50質量~85質量%)、Li2O、Na2O、およびK2Oの合計が0.1~20質量%、MgO、CaO、BaO、SrO、およびZnOの合計が2~20質量%であった。
<Disk processing process>
First, a multicomponent glass material made of amorphous glass was prepared. As the composition of the glass material, aluminosilicate glass was used. The chemical composition of the glass material, SiO 2 is 50 to 70 wt%, Al 2 O 3 is 0 to 20 wt%, B 2 O 3 0 to 5 wt% (however, SiO 2, Al 2 O 3 , and B 2 O 3 is 50 to 85% by mass), Li 2 O, Na 2 O, and K 2 O are 0.1 to 20% by mass, MgO, CaO, BaO, SrO, and ZnO. Was 2 to 20% by mass.
 上記のガラス素材をダイレクトプレス法で成形することによって、ディスク状のガラス基板前駆体を形成した。そして、砥石を用いてガラス基板前駆体の中央部分に孔をあけ、中心部に円孔を有するディスク状のガラス基板前駆体とした。さらに、ガラス基板前駆体の外周端面および内周端面に面取加工を施した。 A disk-shaped glass substrate precursor was formed by molding the above glass material by a direct press method. And the hole was made in the center part of the glass substrate precursor using the grindstone, and it was set as the disk-shaped glass substrate precursor which has a circular hole in the center part. Furthermore, the outer peripheral end surface and the inner peripheral end surface of the glass substrate precursor were chamfered.
 <ラッピング工程>
 上記で端面を研磨したガラス基板前駆体に対し、#1000の粒度の砥粒を用いて、ガラス基板前駆体の表裏の両面を研削した。これにより、ガラス基板前駆体を0.95mm程度の厚みに調整したとともに、ガラス基板前駆体の平行度を高めた。
<Lapping process>
The glass substrate precursor whose end face was polished as described above was ground on both the front and back surfaces of the glass substrate precursor using abrasive grains having a particle size of # 1000. Thereby, while adjusting the glass substrate precursor to the thickness of about 0.95 mm, the parallelism of the glass substrate precursor was improved.
 <端面研磨工程>
 続いて、ガラス基板前駆体を回転させながら、研磨ブラシによりガラス基板の端面(内周、外周)の表面粗さを、最大高さ(Rmax)で1.0μm程度、算術平均粗さ(Ra)で0.3μm程度になるように研磨した。ここで、研磨ブラシは、ナイロン6からなるものを用い、予め研磨液を含ませた。かかる研磨液は、1.5μmの平均粒子径の酸化セリウムからなる研磨剤を水に混合し、研磨剤の濃度を7質量%とした。さらに1mol/Lの水酸化カリウムを添加することによりpHを10に調製した。
<End face polishing process>
Subsequently, while rotating the glass substrate precursor, the surface roughness of the end surface (inner periphery, outer periphery) of the glass substrate with a polishing brush is about 1.0 μm at the maximum height (Rmax), arithmetic average roughness (Ra) Was polished to about 0.3 μm. Here, a polishing brush made of nylon 6 was used, and a polishing liquid was included in advance. In this polishing liquid, a polishing agent made of cerium oxide having an average particle diameter of 1.5 μm was mixed with water, so that the concentration of the polishing agent was 7% by mass. Further, the pH was adjusted to 10 by adding 1 mol / L potassium hydroxide.
 このような研磨液に含まれる研磨剤のゼータ電位ζpolは、フローセルユニットを用いて、60mV/cmの印加電圧を加えることによって測定した。また、ガラス基板前駆体のゼータ電位ζsubおよび研磨ブラシのゼータ電位ζbrushは、それぞれ37mm×16mm×5mmのサンプルを作製し、平板セルを用いることによって測定した。なお、これらのゼータ電位の測定には、ゼータ電位・粒径測定システム(製品名:ELSZ-2(大塚電子株式会社製)を用いた。上記のゼータ電位の測定の結果、ζpolは-50mVであり、ζsubは-40mVであり、ζbrushは-30mVであった。
また、本実施例においては、研磨ブラシ及びガラス基板のゼータ電位は、研磨液のpHを調整したことに加え、研磨処理前に界面活性剤としてリン酸系界面活性剤溶液と接触させる時間を調整することで、それぞれ調整した。具体的には、リン酸系界面活性剤(モノアルキルリン酸塩溶液)の濃度を変更することで調整した。この際、濃度を高くした場合には、ゼータ電位は減少し、低くした場合には増加(するか未処理と変化なし)する傾向を示す。
The zeta potential ζpol of the abrasive contained in such a polishing liquid was measured by applying an applied voltage of 60 mV / cm using a flow cell unit. Further, the zeta potential ζsub of the glass substrate precursor and the zeta potential ζ brush of the polishing brush were each measured by preparing a 37 mm × 16 mm × 5 mm sample and using a flat plate cell. These zeta potentials were measured using a zeta potential / particle size measurement system (product name: ELSZ-2 (manufactured by Otsuka Electronics Co., Ltd.). As a result of the above zeta potential measurement, ζpol was −50 mV. Yes, ζsub was −40 mV, and ζbrush was −30 mV.
In this example, the zeta potential of the polishing brush and the glass substrate was adjusted to adjust the time of contact with the phosphate surfactant solution as a surfactant before polishing treatment in addition to adjusting the pH of the polishing solution. To adjust each. Specifically, it adjusted by changing the density | concentration of phosphoric acid type surfactant (monoalkyl phosphate solution). At this time, when the concentration is increased, the zeta potential decreases, and when the concentration is decreased, the zeta potential tends to increase (or remain unchanged with no treatment).
 <粗研磨工程>
 次に、ガラス基板の両主表面を研磨できる研磨装置を用いて粗研磨を実施した。研磨パッドには、硬質ポリッシャを用いた。かかる研磨パッドには、上記の研磨液と同様のものを含ませたものを用いた。
<Rough polishing process>
Next, rough polishing was performed using a polishing apparatus capable of polishing both main surfaces of the glass substrate. A hard polisher was used for the polishing pad. As this polishing pad, one containing the same polishing liquid as described above was used.
 <精密研磨工程>
 遊星歯車機構を有する両面研磨装置により、ポリウレタン系軟質ポリシャの研磨パッドを用いて、ガラス基板前駆体の表裏面を鏡面研磨した。研磨液は、超純水に、平均粒子径が20nmのコロイダルシリカを分散させたものを用いた。
<Precision polishing process>
Using a double-side polishing apparatus having a planetary gear mechanism, the front and back surfaces of the glass substrate precursor were mirror-polished using a polishing pad of a polyurethane-based soft polisher. The polishing liquid used was a dispersion of colloidal silica having an average particle diameter of 20 nm in ultrapure water.
 <洗浄工程>
 続いて、ガラス基板前駆体を、3~5質量%の濃度のNaOH水溶液に浸漬して超音波を印加しながら、アルカリ洗浄を行なった。さらに、中性洗剤、純水、IPA、およびIPA(蒸気乾燥)の各洗浄槽に順次浸漬して洗浄した。
<Washing process>
Subsequently, the glass substrate precursor was immersed in an aqueous NaOH solution having a concentration of 3 to 5% by mass and subjected to alkali cleaning while applying ultrasonic waves. Furthermore, it wash | cleaned by immersing in each washing tank of neutral detergent, a pure water, IPA, and IPA (steam drying) sequentially.
 <化学強化工程>
 続いて、硝酸カリウム(60%)と硝酸ナトリウム(40%)とを混合して化学強化溶液を用意した。そして、この化学強化溶液を400℃に加熱したとともに、上記の洗浄後のガラス基板前駆体を300℃に予熱した上で、それを上記化学強化処理液に約3時間浸漬することにより化学強化処理を行なった。ここでの浸漬は、ガラス基板前駆体の表面全体を均一に化学強化するために、複数のガラス基板前駆体を端面で保持したホルダに収納した状態で行なった。このようにしてガラス基板前駆体の全表面に化学強化層を形成した。化学強化工程を終えた後は、ガラス基板前駆体を20℃の水槽に浸漬して急冷し、約10分維持することにより、記録媒体用ガラス基板を作製した。
<Chemical strengthening process>
Subsequently, potassium nitrate (60%) and sodium nitrate (40%) were mixed to prepare a chemical strengthening solution. And while heating this chemical strengthening solution to 400 degreeC and preheating the glass substrate precursor after said washing | cleaning to 300 degreeC, it is immersed in the said chemical strengthening process liquid for about 3 hours, and chemical strengthening process is carried out. Was done. The immersion here was carried out in a state where a plurality of glass substrate precursors were housed in a holder held on the end face in order to uniformly chemically strengthen the entire surface of the glass substrate precursor. In this way, a chemically strengthened layer was formed on the entire surface of the glass substrate precursor. After finishing the chemical strengthening step, the glass substrate precursor was immersed in a 20 ° C. water bath, quenched, and maintained for about 10 minutes, thereby producing a glass substrate for recording medium.
 <最終洗浄工程>
 上記急冷を終えた記録媒体用ガラス基板を、約40℃に加熱した硫酸に浸漬することによって洗浄した。そして、硫酸で洗浄した後のガラス基板を純水を満たした洗浄槽に浸漬させて洗浄し、さらに、同記録媒体用ガラス基板をIPAを満たした洗浄槽に浸漬させることによって洗浄した。
<Final cleaning process>
The glass substrate for recording medium after the rapid cooling was washed by immersing it in sulfuric acid heated to about 40 ° C. Then, the glass substrate after washing with sulfuric acid was washed by immersing it in a washing tank filled with pure water, and further, the glass substrate for recording medium was washed by immersing it in a washing tank filled with IPA.
 <実施例2~8、比較例1~3>
 上記の実施例1に対し、粗研磨工程における研磨剤と研磨ブラシとガラス基板前駆体とのゼータ電位が表1のように異なること、および研磨液に硫酸水溶液または水酸化カリウムを添加することにより、研磨液のpHが表1のように異なること以外は、実施例1と同様の方法によって、実施例2~8および比較例1~3の記録媒体用ガラス基板を作製した。
<Examples 2 to 8, Comparative Examples 1 to 3>
Compared to Example 1 above, the zeta potentials of the abrasive, the polishing brush, and the glass substrate precursor in the rough polishing step are different as shown in Table 1, and by adding a sulfuric acid aqueous solution or potassium hydroxide to the polishing liquid. The glass substrates for recording media of Examples 2 to 8 and Comparative Examples 1 to 3 were prepared in the same manner as in Example 1 except that the pH of the polishing liquid was different as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <製造不良の評価>
 上記の製造方法によって製造した記録媒体用ガラス基板を各実施例および各比較例においてそれぞれ15枚ずつ作製した。かかる記録媒体用ガラス基板の欠陥数および衝突エラー数を以下のようにして測定することにより、記録媒体用ガラス基板が均一に化学強化できているか否かを評価した。
<Evaluation of manufacturing defects>
15 glass substrates for recording media produced by the above production method were produced in each Example and each Comparative Example. By measuring the number of defects and the number of collision errors of the glass substrate for recording medium as follows, it was evaluated whether or not the glass substrate for recording medium could be chemically strengthened uniformly.
 (欠陥数)
 上記で作製した各実施例および各比較例の記録媒体用ガラス基板の15枚をそれぞれ、光学式表面検査機(製品名:Optical Surface Analyzer:Candela6300(Candela社製))を用いて、磁気ヘッドの浮上を妨げる異物や、サーマルアスペリティ障害の原因となる異物の有無を検査した。そして、15枚の記録媒体用ガラス基板のうちの最も異物が多いものの異物の個数を表2の「表面欠陥数」および「端面欠陥数」の欄に示した。なお、表面欠陥数および端面欠陥数が少ないほど、記録媒体用ガラス基板の表面平滑性が優れていることを示している。
(Number of defects)
Using the optical surface inspection machine (product name: Optical Surface Analyzer: Candela 6300 (manufactured by Candela)), each of the 15 glass substrates for recording media of each of the examples and comparative examples prepared above was used. The presence or absence of foreign matter that hinders ascent or thermal asperity failure was examined. The number of foreign substances of the 15 recording medium glass substrates having the largest number of foreign substances is shown in the “number of surface defects” and “number of end face defects” columns in Table 2. In addition, it has shown that the surface smoothness of the glass substrate for recording media is excellent, so that the number of surface defects and the number of end surface defects are small.
 (衝突エラー数)
 このようにして作製した記録媒体用ガラス基板に対し、DFH機構を搭載したTAテストヘッドを用いてエラーが検出された記録媒体用ガラス基板の枚数を数えた。表2の「衝突エラー数」の欄に、衝突エラーが生じた記録媒体用ガラス基板の枚数を示す。なお、衝突エラーとは、記録媒体用ガラス基板の外周端面から5mmの間に起きた衝突エラーを意味し、衝突エラーの枚数が少ないほど、記録媒体用ガラス基板の表面平滑性が優れていることを示している。
(Number of collision errors)
The number of recording medium glass substrates in which errors were detected was counted using the TA test head equipped with the DFH mechanism for the recording medium glass substrates thus prepared. In the column of “number of collision errors” in Table 2, the number of recording medium glass substrates on which a collision error has occurred is shown. The collision error means a collision error that occurred between 5 mm from the outer peripheral end surface of the glass substrate for recording medium. The smaller the number of collision errors, the better the surface smoothness of the glass substrate for recording medium. Is shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、実施例1~8の製造方法で製造された記録媒体用ガラス基板は、その端面に付着した研磨剤が減ったことにより、端面から主表面に飛散する研磨剤も減ったために、衝突エラーが生じにくいことを確認できた。これに対し、比較例1~3の製造方法で製造された記録媒体用ガラス基板は、磁性膜の成膜時にその端面に付着した研磨剤が主表面に飛散したため、衝突エラーが生じやすいことが確認された。 As is clear from Table 2, the glass substrates for recording media manufactured by the manufacturing methods of Examples 1 to 8 had a polishing agent that scattered from the end surface to the main surface due to a decrease in the polishing agent adhering to the end surface. It was confirmed that collision errors are less likely to occur due to the decrease. In contrast, the recording medium glass substrates manufactured by the manufacturing methods of Comparative Examples 1 to 3 are likely to cause a collision error because the abrasive adhered to the end surface of the magnetic film is scattered on the main surface when the magnetic film is formed. confirmed.
 したがって、本発明の製造方法に従って製造された記録媒体用ガラス基板は、研磨剤、ガラス基板前駆体、および研磨ブラシのゼータ電位を制御して粗研磨を行なったことにより、その端面に研磨剤の付着を防止するとともに、端面から主表面への研磨剤の飛散を防止することができ、もって衝突エラーを生じにくくできたことが明らかである。 Therefore, the glass substrate for a recording medium manufactured according to the manufacturing method of the present invention performs rough polishing by controlling the zeta potential of the polishing agent, the glass substrate precursor, and the polishing brush, so that the end surface of the polishing agent is removed. It is clear that it was possible to prevent adhesion and to prevent the abrasive from scattering from the end surface to the main surface, thereby making it difficult to cause a collision error.
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is also planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

Claims (8)

  1.  ガラス基板前駆体を用いて記録媒体用ガラス基板を製造する方法であって、
     前記ガラス基板前駆体の端面を研磨剤を含む研磨液を用いて研磨ブラシにより研磨する工程を含み、
     前記研磨する工程において、前記研磨剤のゼータ電位をζpolとし、前記研磨ブラシのゼータ電位をζbrushとし、前記ガラス基板前駆体のゼータ電位をζsubとすると、前記ζpolおよび前記ζsubはいずれも、0mV未満であり、かつ前記ζsubは、前記ζbrushより小さい、記録媒体用ガラス基板を製造する方法。
    A method for producing a glass substrate for a recording medium using a glass substrate precursor,
    Polishing the end surface of the glass substrate precursor with a polishing brush using a polishing liquid containing an abrasive;
    In the polishing step, when the zeta potential of the abrasive is ζpol, the zeta potential of the polishing brush is ζbrush, and the zeta potential of the glass substrate precursor is ζsub, both ζpol and ζsub are less than 0 mV. And the ζsub is smaller than the ζbrush to produce a glass substrate for a recording medium.
  2.  前記ζsubは、-30mV以下である、請求項1に記載の記録媒体用ガラス基板を製造する方法。 The method for producing a glass substrate for a recording medium according to claim 1, wherein the ζsub is -30 mV or less.
  3.  前記研磨液のpHは、9以上13以下である、請求項1に記載の記録媒体用ガラス基板を製造する方法。 The method for producing a glass substrate for a recording medium according to claim 1, wherein the pH of the polishing liquid is 9 or more and 13 or less.
  4.  前記研磨液は、さらに分散剤を含み、
     前記分散剤は、ポリカルボン酸、ウレタン樹脂、およびアクリル樹脂からなる群より選択される1種以上である、請求項1に記載の記録媒体用ガラス基板を製造する方法。
    The polishing liquid further contains a dispersant,
    The method for producing a glass substrate for a recording medium according to claim 1, wherein the dispersant is at least one selected from the group consisting of polycarboxylic acid, urethane resin, and acrylic resin.
  5.  前記研磨剤は、酸化セリウム、酸化ジルコニウム、および酸化アルミニウムからなる群より選択される1種以上からなる、請求項1に記載の記録媒体用ガラス基板を製造する方法。 The method for producing a glass substrate for a recording medium according to claim 1, wherein the abrasive comprises one or more selected from the group consisting of cerium oxide, zirconium oxide, and aluminum oxide.
  6.  前記研磨液は、さらに水溶性ポリマーを含み、
     前記水溶性ポリマーは、ポリビニルアルコール、変性ポリビニルアルコール、ポリビニルピロリドン、メタアクリル酸共重合体、ポリメタアクリルアミド共重合体、およびポリエチレングリコールからなる群より選択される1種以上からなる、請求項1に記載の記録媒体用ガラス基板を製造する方法。
    The polishing liquid further contains a water-soluble polymer,
    The water-soluble polymer comprises at least one selected from the group consisting of polyvinyl alcohol, modified polyvinyl alcohol, polyvinyl pyrrolidone, methacrylic acid copolymer, polymethacrylamide copolymer, and polyethylene glycol. A method for producing the glass substrate for a recording medium according to the description.
  7.  前記研磨液は、さらに界面活性剤を含み、
     前記界面活性剤は、スルホン酸系界面活性剤、リン酸系界面活性剤、または非イオン界面活性剤を含む、請求項1に記載の記録媒体用ガラス基板を製造する方法。
    The polishing liquid further contains a surfactant,
    The method for producing a glass substrate for a recording medium according to claim 1, wherein the surfactant includes a sulfonic acid surfactant, a phosphoric acid surfactant, or a nonionic surfactant.
  8.  前記研磨ブラシは、アラミド系繊維、ポリブチレンテレフタレート、およびポリプロピレンからなる群より選択される1種以上の材料からなる、請求項1に記載の記録媒体用ガラス基板を製造する方法。 2. The method for producing a glass substrate for a recording medium according to claim 1, wherein the polishing brush is made of one or more materials selected from the group consisting of aramid fibers, polybutylene terephthalate, and polypropylene.
PCT/JP2011/079330 2010-12-28 2011-12-19 Method for producing glass substrate for recording medium WO2012090754A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010292325 2010-12-28
JP2010-292325 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090754A1 true WO2012090754A1 (en) 2012-07-05

Family

ID=46382865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079330 WO2012090754A1 (en) 2010-12-28 2011-12-19 Method for producing glass substrate for recording medium

Country Status (1)

Country Link
WO (1) WO2012090754A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154558A (en) * 2003-11-25 2005-06-16 Kishimoto Sangyo Co Ltd Detergent
JP2006120912A (en) * 2004-10-22 2006-05-11 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing semiconductor device
JP2006306924A (en) * 2005-04-26 2006-11-09 Kao Corp Polishing fluid composition
JP2010080022A (en) * 2008-09-29 2010-04-08 Showa Denko Kk Method of manufacturing vertical magnetic recording medium
JP2010086632A (en) * 2008-10-02 2010-04-15 Konica Minolta Opto Inc Method for manufacturing glass substrate for magnetic recording medium
JP2010192041A (en) * 2009-02-18 2010-09-02 Fuji Electric Device Technology Co Ltd Method of manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium manufactured by the method, and perpendicular magnetic recording medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154558A (en) * 2003-11-25 2005-06-16 Kishimoto Sangyo Co Ltd Detergent
JP2006120912A (en) * 2004-10-22 2006-05-11 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing semiconductor device
JP2006306924A (en) * 2005-04-26 2006-11-09 Kao Corp Polishing fluid composition
JP2010080022A (en) * 2008-09-29 2010-04-08 Showa Denko Kk Method of manufacturing vertical magnetic recording medium
JP2010086632A (en) * 2008-10-02 2010-04-15 Konica Minolta Opto Inc Method for manufacturing glass substrate for magnetic recording medium
JP2010192041A (en) * 2009-02-18 2010-09-02 Fuji Electric Device Technology Co Ltd Method of manufacturing glass substrate for magnetic recording medium, glass substrate for magnetic recording medium manufactured by the method, and perpendicular magnetic recording medium

Similar Documents

Publication Publication Date Title
US8919150B2 (en) Method of manufacturing an ion-exchanged glass article
JP4185266B2 (en) Manufacturing method of substrate for information recording medium
US9186771B2 (en) Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
US9299382B2 (en) Method of manufacturing a glass substrate for a magnetic disk and method of manufacturing a magnetic disk
JP5168387B2 (en) Method for manufacturing glass substrate for magnetic recording medium
WO2013046583A1 (en) Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium
JP4198607B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
US20100081013A1 (en) Magnetic disk substrate and magnetic disk
JP5319095B2 (en) Manufacturing method of glass substrate for magnetic disk
JP5297281B2 (en) Manufacturing method of glass substrate for magnetic disk
JP2010079948A (en) Method of manufacturing glass substrate for magnetic disk
JP5339010B1 (en) Manufacturing method of glass substrate for HDD
WO2012090755A1 (en) Method for producing glass substrate for recording medium
JP2009087483A (en) Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium
JP5778165B2 (en) Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
JP6480611B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
WO2012090754A1 (en) Method for producing glass substrate for recording medium
JP2010238298A (en) Method for manufacturing glass substrate for magnetic disk
JP2010086631A (en) Method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
WO2012090597A1 (en) Method for producing glass substrate for recording medium
WO2012090598A1 (en) Method for producing glass substrate for recording medium
JP6081580B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk
JP2010080026A (en) Method for manufacturing substrate for magnetic disk
WO2013099083A1 (en) Method for manufacturing glass substrate for hdd
WO2014115495A1 (en) Method for manufacturing glass substrate for hard disk

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP