WO2012090352A1 - Patterned glass substrate, manufacturing method therefor, and transfer film used in manufacturing method - Google Patents

Patterned glass substrate, manufacturing method therefor, and transfer film used in manufacturing method Download PDF

Info

Publication number
WO2012090352A1
WO2012090352A1 PCT/JP2011/004801 JP2011004801W WO2012090352A1 WO 2012090352 A1 WO2012090352 A1 WO 2012090352A1 JP 2011004801 W JP2011004801 W JP 2011004801W WO 2012090352 A1 WO2012090352 A1 WO 2012090352A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
glass substrate
light shielding
glass
conductive pattern
Prior art date
Application number
PCT/JP2011/004801
Other languages
French (fr)
Japanese (ja)
Inventor
陽太 矢野
永史 小川
晴香 徳田
庸介 小池
健太 大沢
秀明 篠崎
Original Assignee
日本板硝子株式会社
株式会社トッパンTdkレーベル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社, 株式会社トッパンTdkレーベル filed Critical 日本板硝子株式会社
Priority to JP2012550673A priority Critical patent/JP5901537B2/en
Publication of WO2012090352A1 publication Critical patent/WO2012090352A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens

Definitions

  • the present invention relates to a glass substrate with a pattern, a manufacturing method thereof, and a transfer film used in the manufacturing method, and relates to a window glass for an automobile having a conductive pattern layer such as an antenna on its surface and a manufacturing method thereof.
  • a conductive pattern layer such as an antenna wire or a defogger is sintered on the surface of a window glass of an automobile or the like.
  • a conductive pattern layer is a method in which a conductive paste containing silver and glass frit is screen-printed on the surface of the window glass, and the conductive pattern layer is sintered on the window glass surface by heat treatment (for example, Patent Documents).
  • 1) and a transfer film having a conductive pattern layer in which a conductive pattern layer containing silver and glass frit is formed in advance, and an adhesive layer provided on one surface of the conductive pattern layer is pasted on the window glass surface It forms by the method (for example, patent document 2) etc. which decompose
  • a light shielding layer (so-called black ceramic) made of a black ceramic layer is sintered at the peripheral portion.
  • the light shielding layer is formed by applying a black ceramic paste containing a pigment such as black or gray and glass frit to the surface of the window glass by screen printing and sintering the window glass surface by heat treatment. Since the conductive pattern layer may be provided on the peripheral edge of the window glass so as not to be noticeable, when the light-shielding layer is provided, the arrangement positions of both may overlap.
  • the conductive pattern layer containing silver is white, so that there is a problem that it is conspicuous on the black light shielding layer and has a poor appearance.
  • the surface of the light-shielding layer before sintering is rougher than that of the glass substrate. Therefore, in the method using a transfer film, the adhesion between the adhesive layer and the light-shielding layer is poor, and the conductive layer Sintering failure and poor conductivity due to bubbles remaining between the conductive pattern layer and the light shielding layer, and traces of the transfer film remain on the light shielding layer even after the conductive pattern layer is formed. Therefore, a method for forming a conductive pattern layer on a light-shielding layer using a transfer film has not been implemented so far.
  • the conductive pattern layer is formed on the light-shielding layer by using the transfer film by the examination of the applicants. Since the edge portion of the light shielding layer forms a stepped portion on the glass substrate, when the conductive pattern layer has a portion that crosses the edge portion of the light shielding layer, the conductive pattern layer is the edge of the light shielding layer. The shape cannot be followed, the adhesion between the conductive pattern layer, the light shielding layer and the glass substrate is lowered, and the conductivity may be lowered due to poor sintering.
  • the adhesive layer prevents diffusion of gas generated from the light shielding layer, and bubbles are formed on the surface of the light shielding layer after sintering. It remains and the appearance looks worse.
  • the transfer film may be stored in a state in which a plurality of transfer films are laminated to each other.
  • a laminate including a conductive pattern layer and an adhesive layer is supported on a support film that can be peeled off from the laminate, and is adhered.
  • Some layers are laminated together such that the layers are releasably in contact with the back of another support film.
  • the support film that supports the laminate is strip-shaped, the adhesive layer is continuous with the support film, a plurality of conductive pattern layers are intermittently arranged in the longitudinal direction of the support film, and the transfer film is wound on a reel. In some cases, each layer is laminated in the radial direction of the reel.
  • the conductive pattern layer is often harder than the adhesive layer, so that the portion of the adhesive layer sandwiched between the conductive pattern layers in the stacking direction is the conductive pattern. Compressed between layers, the film thickness may be reduced.
  • the followability adheresiveness
  • the conductive pattern layer cannot be appropriately attached at a predetermined position.
  • the light-shielding layer has a rougher surface than the glass substrate, there is a problem that the adhesive layer cannot be properly adhered.
  • the film thickness of only the portion sandwiched between the conductive pattern layers becomes thin, the surface of the adhesive layer becomes uneven, and it becomes easy to bite bubbles when attaching the adhesive layer to the glass substrate surface or the like There is.
  • the outside glass substrate and the inside glass substrate constituting the laminated glass are thermoformed, it is generally performed in a state in which both glass substrates are overlapped, so that the light shielding layer is on the contact surface of both glass substrates. In some cases, both glass substrates are fused via the light shielding layer. Therefore, in conventional laminated glass for automobiles, a light shielding layer is formed on the inner surface of the vehicle outside glass substrate, a conductive pattern layer is formed on the inner surface of the vehicle inner glass substrate, and the light shielding layer and the conductive pattern layer are overlapped. Measures were taken to prevent them from forming. However, in this case, the heating process for sintering the light shielding layer and the heating process for forming the vehicle outer glass substrate and the vehicle inner glass substrate must be performed separately, and productivity is poor. There was a problem.
  • the present invention has been made in view of the above problems, and provides a method for producing a patterned glass substrate, which can satisfactorily form a conductive pattern layer on a light shielding layer using a transfer film.
  • Another object of the present invention is to provide a patterned glass substrate having a conductive pattern layer that is not conspicuous on the light shielding layer and is well bonded to the light shielding layer by using this production method. Moreover, let it be a subject to provide the transfer film used for said manufacturing method and a glass substrate with a pattern.
  • the present invention provides a method for producing a patterned glass substrate (1) having a conductive pattern layer (8) containing a glass component on the surface, the glass substrate (3).
  • a transfer film (20) having a laminate (30) and a support film (21) releasably laminated on a surface of the laminate opposite to the adhesive layer is provided on the outer surface of the light shielding layer.
  • the conductive pattern layer can be satisfactorily formed on the light shielding layer using the transfer film.
  • the conductive pattern layer in the second step, includes a portion that crosses an edge of the light shielding layer on the glass substrate.
  • the conductive pattern layer A part of is sintered on the glass substrate.
  • the degree of freedom in the arrangement of the conductive pattern layer can be increased.
  • the edge portion of the light shielding layer on the glass substrate forms an inclined surface that forms an angle of 10 ° or less with the surface of the glass substrate.
  • a light shielding layer is formed.
  • the conductive pattern layer easily follows the surface of the light shielding layer at the edge of the light shielding layer, suppresses poor sintering of the conductive layer to the light shielding layer and the glass substrate, and suppresses poor conductivity. be able to. Even when the thickness of the conductive pattern layer is thinner than that of the light shielding layer, the conductive layer can be satisfactorily disposed on the edge portion of the light shielding layer. In other words, the thickness of the conductive pattern layer can be made thinner than that of the light shielding layer.
  • Another aspect of the present invention is characterized in that the thermal decomposition temperature of the laminate excluding the conductive pattern layer is lower than the melting temperature of the glass component contained in the light shielding layer. That is, in the heating process of the light shielding layer and the laminate in the third step, the thermal decomposition (weight reduction) of the laminate excluding the conductive pattern layer is completed before the glass component contained in the light shielding layer starts to melt. It is characterized by.
  • the laminate excluding the conductive pattern layer decomposes faster than the glass component of the light shielding layer melts, the conductive pattern is generated when the glass component of the light shielding layer melts and generates gas.
  • the laminate excluding the layers does not already exist, and the gas generated from the light shielding layer can diffuse from the light shielding layer to the outside. Therefore, bubbles do not remain inside and on the surface of the light shielding layer, and the appearance of the light shielding layer is improved.
  • the maximum height in the surface roughness of the light shielding layer formed on the glass substrate in the first step is less than the film thickness of the adhesive layer of the transfer film. It is characterized by that.
  • the maximum height (Rmax) means that only the reference length is extracted from the roughness curve in the direction of the average line, and the distance between the peak line and the valley line of the extracted part is the direction of the vertical magnification of the roughness curve. And the value is expressed in micrometers ( ⁇ m).
  • the pressure-sensitive adhesive layer easily adheres to the surface of the light shielding layer.
  • Another aspect of the present invention is characterized in that the method further includes a step of pressing the laminate on the glass substrate between the second step and the third step.
  • the pressure-sensitive adhesive layer is more easily adhered to the light shielding layer and the glass substrate, and the conductive pattern is reliably sintered to the light shielding layer and the glass substrate.
  • Another aspect of the present invention is characterized in that the method further includes a step of heating the stacked body between the second step and the third step.
  • the adhesive layer since the adhesive layer is generally softened after the support film that is harder than the laminate is removed, the adhesive layer easily follows the surface shape of the light shielding layer and the glass substrate.
  • Another aspect of the present invention further includes a step of heating the light shielding layer and pre-sintering the light shielding layer on the glass substrate after the first step and before the third step. .
  • the adhesive layer is easily adhered, and the conductive pattern is sintered to the light shielding layer and the glass substrate. It will surely be done.
  • the light shielding layer is heated in advance to dissipate the gas that accompanies the firing, so that gas is generated from the light shielding layer during heating when firing the conductive pattern layer. No gas remains inside and on the surface of the light shielding layer. Therefore, the appearance of the light shielding layer can be formed satisfactorily.
  • the adhesive layer of the transfer film is made of a material having a glass transition temperature of ⁇ 60 ° C. or higher and ⁇ 20 ° C. or lower.
  • the pressure-sensitive adhesive layer is formed to be relatively soft and can reliably adhere to the surface of the light shielding layer.
  • Another aspect of the present invention is characterized in that the thickness of the adhesive layer of the transfer film is 3 ⁇ m or more and 15 ⁇ m or less, more preferably 3 ⁇ m or more and 7 ⁇ m or less.
  • the pressure-sensitive adhesive layer can reliably adhere to the surface of the light-shielding layer whose surface irregularities are generally larger than those of the glass substrate. Moreover, by setting the film thickness to 7 ⁇ m or less, the pressure-sensitive adhesive layer can be made as thin as possible within a range where the adhesiveness can be secured, and the pressure-sensitive adhesive layer can disappear at an early stage during heating.
  • the adhesive layer of the transfer film prepared in the second step includes a hard inner layer (36) having a relatively high glass transition temperature and a soft material having a relatively low glass transition temperature. And an outer layer (37).
  • the hard inner layer resists compression, so that the adhesive layer can maintain a predetermined film thickness.
  • the soft outer layer ensures the flexibility of the adhesive layer surface, the adhesion to the glass substrate or the like can be improved.
  • the glass transition temperature of the hard inner layer is ⁇ 30 ° C. or more and 0 ° C. or less
  • the glass transition temperature of the soft outer layer is ⁇ 20 ° C. or less
  • the glass of the hard inner layer is The temperature is 10 ° C. or more lower than the transition temperature.
  • the soft outer layer has a weight average molecular weight of 70,000 to 200,000
  • the hard inner layer has a weight average molecular weight of 300,000 to 1,500,000.
  • the hard inner layer and the soft outer layer can be suitably formed.
  • Another aspect of the present invention is characterized in that the thickness of the hard inner layer is 2 ⁇ m or more and 7 ⁇ m or less.
  • Another aspect of the present invention is characterized in that the thickness of the soft outer layer is 3 ⁇ m or more and 10 ⁇ m or less.
  • the soft outer layer can remain on the outer surface of the adhesive layer.
  • a patterned glass substrate (1) comprising a glass substrate (3), a pigment and a glass component, and a light shielding layer (6) sintered on the surface of the glass substrate,
  • a conductive pattern layer (8) sintered on the light shielding layer, and the conductive pattern layer includes a conductive layer (11) including a glass component, a pigment and a glass component, and surrounds the conductive layer.
  • the conductive layer is surrounded by the covering layer, it can be made inconspicuous even on the light shielding layer.
  • the conductive pattern layer includes a portion crossing an edge of the light shielding layer on the glass substrate.
  • the degree of freedom in the arrangement of the conductive pattern layer can be increased.
  • the conductive pattern layer has a thickness of 20 ⁇ m or less, and the edge portion forms an inclined surface having an angle of 10 ° or less with the surface of the glass substrate. To do.
  • the conductive pattern layer can be satisfactorily formed even when the conductive pattern layer crosses the edge portion of the light shielding layer.
  • the glass substrate is a window glass for an automobile, and the light shielding layer and the conductive pattern layer are provided on an inner surface of the glass substrate.
  • the appearance of the patterned glass substrate can be improved.
  • the glass substrate is a glass substrate constituting the inside of a laminated window glass for an automobile, and the light shielding layer and the conductive pattern layer are on the inside surface of the glass substrate. It is provided.
  • the light shielding layer and the conductive pattern layer are disposed so as to avoid the mating surfaces of the glass substrates constituting the laminated window glass.
  • the conductive pattern layer can be baked.
  • a laminate (30) including a conductive pattern layer (8) and an adhesive layer (28) is detachably laminated on a surface of the laminate opposite to the adhesive layer.
  • a transfer film used to sinter the conductive pattern layer onto the substrate by transferring the laminate to the surface of the substrate and heating the laminate. Includes a hard inner layer (36) having a relatively high glass transition temperature and a soft outer layer (37) having a relatively low glass transition temperature.
  • the hard inner layer resists compression, so that the adhesive layer can maintain a predetermined film thickness.
  • the soft outer layer ensures the flexibility of the adhesive layer surface, the adhesion to the glass substrate or the like can be improved.
  • Another aspect of the present invention is characterized in that the transfer film is wound in a belt shape, and a plurality of the conductive pattern layers are arranged along the longitudinal direction of the support film. To do.
  • the transfer film can be stored in a form wound on a reel. In this storage mode, the transfer film can be easily taken out and the workability is good.
  • Another aspect of the present invention is characterized in that the thickness of the hard inner layer of the adhesive layer is 2 ⁇ m or more and 7 ⁇ m or less.
  • Another aspect of the present invention is characterized in that the thickness of the soft outer layer of the adhesive layer is 3 ⁇ m or more and 10 ⁇ m or less.
  • the soft outer layer can remain on the outer surface of the adhesive layer.
  • the glass transition temperature of the hard inner layer is ⁇ 30 to 0 ° C.
  • the glass transition temperature of the soft outer layer is ⁇ 20 ° C. or less
  • the glass transition temperature of the hard inner layer is It is 10 ° C. or more lower than the temperature.
  • the soft outer layer has a weight average molecular weight of 70,000 to 200,000
  • the hard inner layer has a weight average molecular weight of 300,000 to 1,500,000.
  • the hard inner layer and the soft outer layer can be suitably formed.
  • the conductive pattern layer can be formed at a position overlapping the light shielding layer without deteriorating the appearance.
  • FIG. 1 Schematic side view of the windshield of an automobile viewed from the inside II-II sectional view of FIG. III-III sectional view of Fig. 1 Schematic showing the cross section of the transfer film and the storage form of the transfer film Explanatory drawing which shows the process in which a light shielding layer and a conductive pattern layer are formed on a glass substrate Schematic showing the state where the transfer film is stuck on the glass substrate and the light shielding layer Graph showing surface shape of shading layer
  • the glass substrate 1 with a conductive pattern layer which concerns on embodiment is applied to the vehicle inside board
  • the windshield 10 is interposed between the outside glass substrate 2 constituting the outside surface of the vehicle, the inside glass substrate 3 constituting the inside surface of the vehicle, and both the glass substrates 2 and 3, and the both glass substrates 2 and 3 are bonded to each other. And an intermediate film 4 made of resin.
  • a light-shielding layer (so-called black ceramic) 6 made of a black ceramic layer is sintered at the peripheral edge of the vehicle inner surface 5 of the vehicle interior glass substrate 3.
  • the conductive pattern layer 8 is sintered with a portion that crosses the edge 7 of the light shielding layer 6 on the glass substrate 3.
  • the light shielding layer 6 in the present invention is a layer made of a glass component containing a pigment, and is bonded onto the glass substrate 3 by fusing the glass component to the surface of the glass substrate 3.
  • the pigment preferably contains at least one of copper oxide, chromium oxide, iron oxide and manganese oxide, and these may be used alone, in combination of plural types, or in combination with other pigments.
  • the light shielding layer 6 is not particularly limited as long as it has a light shielding function, but preferably exhibits a dark color such as black or gray.
  • the glass component includes crystallized glass and amorphous glass such as bismuth borosilicate and zinc borosilicate as essential components, and transition metal oxidation including at least one oxide of vanadium, manganese, iron, and cobalt as necessary. And additives such as alumina.
  • the conductive pattern layer 8 includes a conductive layer 11 made of a glass component containing a conductive material and a coating layer 15, 16 made of a glass component containing a pigment and surrounding (covering) the conductive layer 11. And have.
  • the conductive layer 11 includes a linear portion 13 that forms an antenna pattern, and a feed portion 14 that is wider than the linear portion 13 provided at one end of the linear portion 13.
  • the conductive material may be gold, silver, copper, or an alloy thereof. In the present embodiment, the conductive material includes silver.
  • the conductive layer 11 has conductivity by including a conductive material.
  • the pigment contained in the coating layers 15 and 16 can include a pigment applicable to the light shielding layer 6 described above, and preferably exhibits a dark color such as black or gray, and is composed of the same pigment as the light shielding layer 6. Is preferred.
  • the glass component contained in the conductive layer 11 and the coating layers 15 and 16 includes crystallized glass and amorphous glass such as bismuth borosilicate and zinc borosilicate as essential components, and vanadium, manganese, iron, and An additive such as transition metal oxide containing at least one oxide of cobalt or alumina is included.
  • the covering layers 15 and 16 in this embodiment are formed by laminating two layers of the first covering layer 15 and the second covering layer 16 so as to sandwich the conductive layer 11.
  • the linear portion 13 is covered in all directions while the power feeding portion 14 is covered so that the outer surface facing the vehicle interior is exposed.
  • the glass components are fused to each other, and are fused to the surface of the light shielding layer 6 and the surface of the glass substrate 3.
  • the patterned glass substrate 1 configured as described above is applied to the vehicle interior glass substrate 3 constituting the laminated glass, and since both the light shielding layer 6 and the conductive pattern layer 8 are provided on the vehicle interior surface 5, the vehicle exterior glass substrate.
  • the light shielding layer 6 and the conductive pattern layer 8 can be fired simultaneously, and the productivity is good.
  • the linear portion 13 of the conductive layer 11 containing silver and being baked to be white is covered with the covering layers 15 and 16 having the same color as or similar to the light shielding layer 6, so that it can be seen from the inside of the vehicle.
  • the conductive pattern layer 8 can be made inconspicuous on the light shielding layer 6 and the appearance of the windshield 10 can be enhanced.
  • the structure of the transfer film 20 used in the manufacturing process of the window glass with a conductive pattern layer mentioned later is demonstrated.
  • the transfer film 20 includes the conductive pattern layer 8 before the heat treatment, which becomes the conductive pattern layer 8 by being heated (baked), and is attached to the surfaces of the glass substrate 3 and the light shielding layer 6. By being attached, the conductive pattern layer 8 can be easily formed on the surfaces of the glass substrate 3 and the light shielding layer 6.
  • a laminated body 30 including a conductive pattern layer 8 is laminated on one surface of a support film 21 having peelability.
  • a resin layer made of an organic material that can be removed by baking is laminated in order to improve transferability.
  • the transfer film 20 according to this embodiment includes a protective layer 23, a second coating layer 16, a conductive layer 11, a first coating layer 15, an intermediate layer 27, an adhesive layer 28 (hard layer) on a support film 21.
  • the inner layer 36 and the soft outer layer 37) are laminated in this order.
  • a coating solution for the intermediate layer 27 is applied on the temporary support to form the intermediate layer 27, and then the first coating layer 15 is formed thereon.
  • the conductive layer 11 is printed using a pattern by screen printing, and then the conductive layer 11 paste is printed on the first coating layer 15 by screen printing using a pattern plate to form the conductive layer 11.
  • the paste for the second coating layer 16 is printed using a pattern by screen printing to form the second coating layer 16 so as to cover the conductive layer 11, and a protective layer is further formed thereon.
  • a protective layer 23 is formed by applying a coating solution for the layer 23, and a support film 21 having peelability is bonded thereto to obtain a first laminate.
  • an adhesive for the soft outer layer 37 and an adhesive for the hard inner layer 36 constituting the adhesive layer 28 are sequentially applied to another temporary support, and an adhesive layer comprising the soft outer layer 37 and the hard inner layer 36 is applied. 28 is formed to obtain a second laminate. Finally, the temporary support is peeled off from the first laminate, and the intermediate layer 27 of the first laminate is bonded to the adhesive layer 28 (hard inner layer 36) of the second laminate. 20 can be made. In other embodiments, the adhesive layer 28 may be a single layer.
  • the support film 21 is peelable from the laminate 30 including the conductive pattern layer 8.
  • the support film 21 has a release layer 31 made of silicone or alkyd resin on the surface opposite to the laminate 30 side, and a re-peeling slightly adhesive layer 32 on the surface of the laminate 30 side.
  • the support film 21 may be subjected to roughening treatment such as embossing or sandblasting for improving workability.
  • the support film 21 is preferably made of a flexible material so as not to impair the adhesion of the laminate 30 to the light shielding layer 6 and the surface of the glass substrate 3, for example, polyethylene, polyimide, polyethylene terephthalate. Plastics such as acrylic and paper can be used.
  • polyethylene is used as the material, it is preferably 25 ⁇ m or less.
  • the conductive layer 11 contains a conductive material for developing conductivity after firing, a glass frit for thermally fusing with a substrate to express mechanical strength, and an organic binder that can be removed by firing, It is comprised in the shape which has a shape part and an electric power feeding part.
  • a conductive material for developing conductivity after firing, a glass frit for thermally fusing with a substrate to express mechanical strength, and an organic binder that can be removed by firing, It is comprised in the shape which has a shape part and an electric power feeding part.
  • the conductive material a powder of gold, silver, copper, or the like, or an alloy powder containing these can be used, and a material corresponding to a desired function after firing may be appropriately selected and used. From the viewpoint of forming a sintered body of the conductive layer 11, it is desirable to select a material that is excellent in conductivity, can be baked in the atmosphere, and is inexpensive.
  • Silver, silver-palladium, silver-platinum For example, a conductive material
  • the glass frit is included for the purpose of providing the conductive pattern layer 8 with mechanical strength and chemical resistance against sulfuric acid, salt water, and the like, and fusing the conductive layer 11 and the coating layers 15 and 16 by heat melting. Yes.
  • a glass frit having a suitable composition can be appropriately selected and used in consideration of a balance such as a firing temperature and a heat shrinkage rate.
  • the glass frit includes, for example, crystallized glass and amorphous glass such as bismuth borosilicate and zinc borosilicate as an essential component, and a transition containing at least one oxide of vanadium, manganese, iron, and cobalt as necessary. It contains additives such as metal oxide and alumina.
  • the organic binder contained in the conductive layer 11 of the present invention is not particularly limited as long as it is a material that can be removed by firing.
  • materials that can be easily removed by thermal decomposition by firing include resins such as acrylic, methylcellulose, nitrocellulose, ethylcellulose, vinyl acetate, polyvinyl petital, polyvinyl acetal, polyvinyl alcohol, polyethylene oxide, and polyester. Or it can be mixed and used.
  • the plasticizer can be appropriately selected and used from fatty acid esters and phosphate esters.
  • the coating layers 15 and 16 include a glass frit and an organic binder that can be removed by firing, in addition to a black pigment.
  • the black pigment contains at least one kind of chromium oxide, cobalt oxide, copper oxide, or a combination thereof for expressing the concealability after firing and making the appearance black.
  • the glass frit is thermally melted to give the coating layers 15 and 16 mechanical strength and chemical resistance against sulfuric acid, salt water, etc., and the coating layers 15 and 16, the conductive layer 11, the light shielding layer 6, and the glass substrate 3. Is included for the purpose of fusing.
  • the glass frit and the organic binder those similar to those used for the conductive layer 11 can be appropriately selected and used.
  • the conductive pattern layer 8 is formed by laminating two black layers of the first coating layer 15 and the second coating layer 16 so as to sandwich the conductive layer 11. According to this aspect, since the conductive layer 11 is surrounded by the two coating layers 15 and 16, it can be reliably concealed and the appearance can be improved. In addition, the part corresponding to the electric power feeding part 14 of the conductive layer 11 is not provided with the 2nd coating layer 16 in order to expose the vehicle inner surface of the electric power feeding part 14 after sintering.
  • the line widths of the covering layers 15 and 16 are preferably wider than the line width of the conductive layer 11. Preferably, the pattern width of the second covering layer 16 is 0.2 mm or more wider than the pattern width of the conductive layer 11.
  • the adhesive layer 28 includes a hard inner layer 36 laminated on the intermediate layer 27 side, and a soft outer layer 37 laminated on a side different from the intermediate layer 27 side of the hard inner layer 36 and serving as a contact surface of the glass substrate 3 or the like.
  • the hard inner layer 36 and the soft outer layer 37 are not particularly limited as long as they are organic materials that can be removed by baking and have appropriate tackiness when bonded to the light-shielding layer 6 and the glass substrate 3, but are acrylic having tackiness at room temperature. System, rubber, and methacrylic and acrylic monomers can be copolymerized to use a pressure sensitive adhesive such as a resin set at a desired glass transition temperature.
  • acrylic monomers methyl acrylate, ethyl acrylate, butyl acrylate, stearyl acrylate and 2-ethylhexyl acrylate can be applied.
  • methacrylic monomers ethyl methacrylate, butyl methacrylate, methacrylic acid are applicable. Isobutyl, stearyl methacrylate and the like can be applied.
  • the glass transition temperature can be adjusted by changing the mixing ratio of each monomer.
  • the hard inner layer 36 is formed of a polymer material having a glass transition temperature of ⁇ 30 ° C. or higher and 0 ° C. or lower. When defined using other parameters, the hard inner layer 36 is a polymer material having a weight average molecular weight of 300,000 to 1,500,000.
  • the soft outer layer 37 is made of a polymer material having a glass transition temperature of ⁇ 20 ° C. or lower and lower by 10 ° C. or more than the hard inner layer 36.
  • the hard inner layer 36 is a polymer material having a weight average molecular weight of 70,000 to 200,000.
  • the thickness of the hard inner layer 36 is 2 ⁇ m or more and 7 ⁇ m, preferably 4 ⁇ m or more and 7 ⁇ m or less.
  • the thickness of the soft outer layer 37 is 3 ⁇ m or more and 10 ⁇ m or less, preferably 7 ⁇ m or more and 10 ⁇ m or less. If the combined thickness of the hard inner layer 36 and the soft outer layer 37 is less than 2 ⁇ m, the adhesive force is insufficient and the transferability is lowered, and if it is thicker than 10 ⁇ m, the generation amount of pyrolysis gas increases and the decomposition is completed. Therefore, the conductive pattern layer 8 and the light shielding layer 6 are likely to be defective, and are likely to be defective in firing.
  • the pressure-sensitive adhesive layer 28 is formed so as to have a larger film thickness of the hard inner layer 36 and the soft outer layer 37 than the maximum height Rmax in the surface roughness of the light shielding layer 6 so that the adhesive layer 28 can be securely adhered to the surface of the light shielding layer 6. It is preferable that The film thickness of the soft outer layer 37 may be larger than the maximum height Rmax in the surface roughness of the light shielding layer 6.
  • the thickness of the adhesive layer 28 is, for example, 2 ⁇ m to 10 ⁇ m. From the viewpoint of adhesion, the thickness of the adhesive layer 28 is preferably 7 ⁇ m to 10 ⁇ m. If the film thickness is less than 2 ⁇ m, the adhesive strength is insufficient and transferability is lowered. If the film thickness is greater than 10 ⁇ m, the amount of pyrolysis gas increases, and the time required for the completion of the decomposition increases. 8 and the light-shielding layer 6 are likely to be defective, and are likely to be defective in firing.
  • the organic matter constituting the adhesive layer 28 has a thermal decomposition temperature lower than the glass transition point of the glass frit contained in the light shielding layer 6, and constitutes the adhesive layer 28.
  • the thermal decomposition temperature of the organic substance is preferably 30 ° C. or more, more preferably 50 ° C. or more lower than the glass transition point of the glass frit contained in the light shielding layer 6.
  • the thermal decomposition temperature of the adhesive layer 28 is preferably 500 ° C. or less.
  • the pressure-sensitive adhesive layer 28 has a thickness of 10 ⁇ m or less so that the conductive pattern layer 8 and the light shielding layer 6 are heated (fired) relatively quickly and thermally decomposed. From the viewpoint of thermal decomposition, the thickness of the adhesive layer 28 is preferably 7 ⁇ m or less. As described above, when the adhesiveness to the surface of the light shielding layer 6 is taken into consideration, the thickness of the adhesive layer 28 is 2 ⁇ m or more and 10 ⁇ m or less, more preferably 2 ⁇ m or more and 7 ⁇ m or less.
  • the adhesive layer 28 may be formed on the entire surface of the support film 21 having peelability so as to cover the conductive pattern layer 8, or a pattern similar to that of the conductive pattern layer 8 may be formed. In the present embodiment, the adhesive layer 28 is formed on the entire surface of the support film 21.
  • the intermediate layer 27 and the protective layer 23 are layers that can be selectively added, and are not essential to the present invention.
  • the intermediate layer 27 is provided between the conductive pattern layer 8 and the adhesive layer 28 in order to prevent the solvent or organic matter contained in the adhesive of the adhesive layer 28 from entering the conductive pattern layer 8.
  • the material used for the intermediate layer 27 is not particularly limited as long as it is an organic substance that can be removed by firing, and may be the same as the organic binder used for the conductive layer 11 and the coating layers 15 and 16, and particularly has a glass transition temperature.
  • a polymer resin having a temperature of 50 ° C. or higher can be preferably used.
  • the intermediate layer 27 may be formed by copolymerizing methacrylic and acrylic monomers and setting a desired glass transition temperature.
  • Methacrylic and acrylic monomers can be applied by changing the blending ratios of those exemplified for the adhesive layer 28.
  • the organic matter constituting the intermediate layer 27 has a thermal decomposition temperature lower than the glass transition point of the glass frit contained in the light shielding layer 6, and the organic matter constituting the intermediate layer 27 is thermally decomposed.
  • the temperature is preferably 30 ° C. or more, more preferably 50 ° C. or more lower than the glass transition point of the glass frit contained in the light shielding layer 6.
  • the thermal decomposition temperature of the organic matter constituting the intermediate layer 27 is preferably 500 ° C.
  • the intermediate layer 27 is preferably made as thin as possible so that the conductive pattern layer 8 and the light shielding layer 6 are heated (fired) relatively quickly, and the thickness is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less. More preferably, it is 5 ⁇ m or less. On the other hand, the intermediate layer 27 is 0.5 ⁇ m or more, more preferably 1 ⁇ m or more in order to stabilize the barrier effect. Therefore, the thickness of the adhesive layer 28 is 1 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 7 ⁇ m or less, and further preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the intermediate layer 27 may be formed on the entire surface of the support film 21 having peelability so as to cover the conductive pattern layer 8, or a pattern similar to that of the conductive pattern layer 8 may be formed. In the present embodiment, the intermediate layer 27 is formed on the entire surface of the support film 21.
  • the protective layer 23 is provided so as to cover the conductive pattern layer 8 for the purpose of preventing foreign matters from attaching or scratching to the conductive pattern layer 8 before firing transferred to the substrate.
  • the material used for the protective layer 23 is not particularly limited as long as it is an organic substance that can be removed by firing, and may be the same as the organic substance used for the conductive layer 11 and the coating layers 15 and 16.
  • the protective layer 23 may be formed by copolymerizing methacrylic and acrylic monomers and setting a desired glass transition temperature. Methacrylic monomers and acrylic monomers can be applied to those exemplified for the adhesive layer 28 by changing the blending ratio.
  • the organic material constituting the protective layer 23 is formed of a material having a thermal decomposition temperature lower than the glass transition point of the glass frit contained in the light shielding layer 6, similarly to the adhesive layer 28, and constitutes the protective layer 23.
  • the thermal decomposition temperature of the organic substance is preferably 30 ° C. or more, more preferably 50 ° C. or more lower than the glass transition point of the glass frit contained in the light shielding layer 6.
  • the thermal decomposition temperature of the intermediate layer 27 may be 500 ° C.
  • the protective layer 23 is preferably made as thin as possible so that the conductive pattern layer 8 and the light shielding layer 6 are heated (fired) relatively quickly, and the thickness is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less. It is.
  • the protective layer 23 is preferably 3 ⁇ m or more so that the conductive pattern layer 8 can be covered. Therefore, the thickness of the protective layer 23 is 3 ⁇ m or more and 10 ⁇ m or less, more preferably 3 ⁇ m or more and 6 ⁇ m or less.
  • the protective layer 23 may be formed on the entire surface of the support film 21 having peelability so as to cover the conductive pattern layer 8, or a pattern similar to that of the conductive pattern layer 8 may be formed.
  • the storage form of the transfer film 20 can take a reel form 41, a stack form 42, and a single layer form 43.
  • the support film 21 is formed in a band shape, and the laminate 30 including the conductive pattern layer 8, the protective layer 23, the intermediate layer 27, and the adhesive layer 28 is intermittently formed along the longitudinal direction of the support film 21. It is supported on the support film 21.
  • the laminate 30 may be supported on either the outer surface or the inner surface of the support film 21.
  • the protective layer 23, the intermediate layer 27, and the adhesive layer 28 may be continuous along the support film 21, and only the conductive pattern layer 8 may be intermittently disposed in the longitudinal direction of the support film 21. Good.
  • a plurality of conductive pattern layers 8 are arranged along the longitudinal direction of the support film 21.
  • the transfer film 20 is wound around a reel 44 such that the adhesive layer 28 contacts the back surface of the support film 21 (side different from the protective layer 23 side).
  • the end of the continuous transfer film 20 is pulled out and the adhesive layer 28 is exposed for use.
  • each transfer film 20 is cut in advance so as to include one conductive pattern layer 8, and the adhesive layer 28 of each transfer film 20 is in contact with the back surface of the support film 21 of the other transfer film 20.
  • a separator film 46 having a silicone layer that can be peeled off from the adhesive layer 28 is attached to the adhesive layer 28 located at the lowermost layer.
  • the transfer film 20 located in the uppermost layer is peeled off from the other lower transfer film 20, and the adhesive layer 28 is exposed for use.
  • each transfer film 20 is cut in advance so as to include one conductive pattern layer 8, and the adhesive layer 28 of each transfer film 20 is provided with a silicone layer that can be peeled off from the adhesive layer 28.
  • the provided separator film 46 is affixed. In use, the separator film 46 is peeled off from the adhesive layer 28 of the transfer film 20 to expose the adhesive layer 28.
  • the reel form 41 and the stack form 42 are advantageous in that it is not necessary to provide the separator film 46 on each transfer film 20 as compared with the single layer form 43, but the adhesive layer 28 is interposed between the overlapping conductive pattern layers 8. Has the disadvantage of receiving compressive force.
  • the adhesive layer 28 is composed of the hard inner layer 36 and the soft outer layer 37, the hard inner layer 36 resists the compressive force, and the adhesive layer 28 is It can be maintained above the thickness. Therefore, even if the transfer film 20 is stored in the reel form 41 or the stack form 42, the film thickness is maintained against the pressure applied from the conductive pattern layer 8 between the conductive pattern layers 8 with which the hard inner layer 36 overlaps. Can do. Thereby, the thickness of the adhesive layer 28 can be maintained at 2 ⁇ m or more necessary for exhibiting adhesiveness.
  • the soft outer layer 37 which is softer than the hard inner layer 36, is provided as a contact surface for the bonding target such as the glass substrate 3, so that the surface of the surface of the bonding target is followed. It can be further bonded.
  • the adhesive layer 28 can be brought into close contact with the surface irregularities of the light shielding layer 6 and can be reliably adhered. Further, by increasing the flexibility of the support film 21, the flexibility of the laminate 30 is maintained even when supported by the support film 21, and the pressure-sensitive adhesive layer 28 has unevenness on the surface of the light shielding layer 6 and the light shielding layer. 6 can follow and adhere to the edge 7.
  • a glass substrate 3 is prepared.
  • a general float plate glass can be applied, and the softening point thereof may be 650 to 700 ° C.
  • a colored ceramic paste (light-shielding paste) is printed in a predetermined pattern on the surface of the glass substrate 3 by screen printing and dried to form the light-shielding layer 6.
  • the colored ceramic paste contains pigments and glass frit as main components, and contains a resin such as ethyl cellulose and an organic solvent such as pine oil as necessary.
  • the pigment preferably contains at least one of copper oxide, chromium oxide, iron oxide and manganese oxide, and these may be used alone, in combination of plural kinds, or in combination with other pigments.
  • Glass frit contains transitional metal oxidation containing crystallized glass and amorphous glass such as bismuth borosilicate and zinc borosilicate as essential components, and optionally containing at least one oxide of vanadium, manganese, iron, and cobalt. And additives such as alumina.
  • the content of each component in the colored ceramic paste is, for example, 10 to 35 mass% for pigment, 50 to 70 mass% for glass frit, 5 to 20 mass% for resin, and 5 to 30 mass% for organic solvent.
  • the content of each component in the colored ceramic paste is such that the angle ⁇ formed between the inclined surface 9 formed on the edge 7 on the glass substrate 3 of the light shielding layer 6 after drying and the surface of the glass substrate 3 is 0 °. It is desirable that the angle is set to be greater than 10 °, more preferably greater than 0 ° and less than 5 °.
  • the mass% of the resin is reduced within a range in which the form of the light shielding layer 6 can be maintained, The mass% may be increased.
  • a resin having a low viscosity may be selected.
  • the content of each component in the colored ceramic paste is preferably set so that the maximum height Rmax of the surface roughness of the light-shielding layer 6 after drying is 10 ⁇ m or less, more preferably 5 ⁇ m or less.
  • the maximum height Rmax decreases as the viscosity of the colored ceramic paste decreases.
  • Screen printing may be performed using a polyester screen of about 100 to 300 mesh, and drying may be performed at 150 ° C. for about 10 minutes. By drying, the organic solvent in the light shielding layer 6 is evaporated, and the light shielding layer 6 is evaporated to dryness.
  • a transfer film 20 having the above-described configuration is prepared.
  • the transfer film 20 is attached to the glass substrate 3 on which the light shielding layer 6 is formed by the adhesive layer 28.
  • the transfer film 20 is disposed so that the conductive pattern layer 8 crosses over the edge 7 on the surface of the glass substrate 3 of the light shielding layer 6, and the adhesive layer 28 is disposed on the surfaces of the light shielding layer 6 and the glass substrate 3. Stick.
  • the transfer film 20 may be attached so as to be located only on the surface of the light shielding layer 6.
  • the back surface of the support film 21 of the transfer film 20 is covered with a roller 50. Press toward the glass substrate 3 side.
  • the material of the surface of the roller 50 is not particularly limited, but is preferably a flexible rubber, silicone material, or resin material.
  • the pressure applied to the transfer film 20 by the roller 50 is preferably as large as possible so long as the laminate 30 is not crushed (buckled).
  • the pressure by the roller 50 is such that pressure is applied particularly to the portion corresponding to the edge 7 of the light shielding layer 6 so that the adhesive layer 28 wraps around the corner of the edge 7 of the light shielding layer 6. Is preferred.
  • the support film 21 of the transfer film 20 is peeled from the protective layer 23 as shown in FIG.
  • the back surface of the protective layer 23 of the transfer film 20 is pressed to the glass substrate 3 side with a heated roller 51, and the adhesive layer 28, the light shielding layer 6, and the glass substrate 3 are pressed.
  • An aging treatment is performed to increase the adhesion with the surface of the material.
  • the temperature of the roller 51 is heated to 100 ° C. or more and pressed for about 10 minutes.
  • the pressing may be performed by setting the pressure to 0.5 MPa and moving the roller 51 along the protective layer 23 at 10 mm / second.
  • the protective layer 23, the intermediate layer 27, and the adhesive layer 28 constituting the laminate 30 are softened, and the adhesive layer 28 is further adhered to the light shielding layer 6, and the corner portion of the edge portion 7 of the light shielding layer 6 is formed. To get around.
  • the material of the surface of the roller 51 is not particularly limited, but is preferably a silicone material that does not adhere to the protective layer 23 and has flexibility.
  • the pressure applied to the transfer film 20 by the roller 51 is preferably as large as possible so that the laminate 30 is not crushed (buckled) in order to enhance the adhesion between the adhesive layer 28, the light shielding layer 6 and the surface of the glass substrate 3.
  • the pressing by the roller 51 is to apply pressure particularly to the portion corresponding to the edge 7 of the light shielding layer 6 so that the adhesive layer 28 goes around the corner of the edge 7 of the light shielding layer 6. Is preferred.
  • the step of pressing the back surface of the protective layer 23 has a higher effect of bringing the adhesive layer 28 into close contact with the light shielding layer 6 than the step of pressing the back surface of the support film 21. This is because the support film 21 is harder than the laminated body 30, and thus the followability of the laminated body 30 to the light shielding layer 6 can be improved by removing the support film 21.
  • heat treatment (firing) is performed on the glass substrate 3 on which the light shielding layer 6 and the laminate 30 are laminated, and as shown in FIG. 5G, the conductive pattern layer 8 is replaced with the light shielding layer 6 and the glass substrate. Then, the conductive pattern layer 8 after sintering is formed.
  • the heat treatment is performed at a firing temperature of 550 to 700 ° C. for 1 to 20 minutes. More preferably, the heat treatment is performed at a firing temperature of 550 to 650 ° C. for 1 to 10 minutes. This baking may be performed simultaneously with the bending process of the glass plate and, if necessary, the strengthening treatment.
  • the glass substrate 3 is gradually cooled (an operation for relaxing the cooling rate) so that distortion (perspective and reflection) is not generated or remains in the glass substrate 3.
  • the glass substrate 3 and the light shielding layer 6, the conductive layer 11 and the coating layer 15 16 is firmly bonded to each other, and the mutual adhesion is improved.
  • the temperature in this heat treatment is a predetermined temperature that is equal to or higher than the thermal decomposition temperature of the organic matter contained in the adhesive layer 28, the intermediate layer 27, and the protective layer 23 and less than or equal to the glass point transfer of the glass frit contained in the light shielding layer 6.
  • the temperature may be maintained for a predetermined period of time, for example, 1 to 5 minutes, and then raised to a temperature higher than the glass point transfer of the glass frit contained in the light shielding layer 6.
  • the laminate 30 is attached to the light shielding layer 6 and the glass substrate 3, and the support film 21 is peeled off, and then the heat treatment is performed to soften the adhesive layer 28. Can follow and adhere more closely to the surface of the light shielding layer 6 and the shape of the edge 7. Since the support film 21 is less flexible than the laminated body 30 and there is a possibility that the bending of the laminated body 30 may be suppressed, the adhesive layer 28 follows the light shielding layer 6 and the like further when the support film 21 is removed. This is because it can be bent.
  • the adhesion between the pressure-sensitive adhesive layer 28, the light shielding layer 6, and the glass substrate 3 can be enhanced also by the step of pressing the laminated body 30 against the glass substrate 3 after peeling the support film 21.
  • the step of pressing the laminated body 30 against the glass substrate 3 after peeling the support film 21 By increasing the adhesion between the adhesive layer 28 and the light shielding layer 6 and the glass substrate 3, sintering failure between the conductive pattern layer 8, the light shielding layer 6 and the glass substrate 3 after firing the laminate 30, The bubble entrainment between the conductive pattern layer 8 and the light shielding layer 6 and the glass substrate 3 is suppressed.
  • the thermal decomposition temperature of the organic matter contained in the adhesive layer 28, the intermediate layer 27 and the protective layer 23 is set lower than the melting temperature of the glass frit in the light shielding layer 6, when the conductive pattern layer 8 and the light shielding layer 6 are baked,
  • the adhesive layer 28, the intermediate layer 27, and the protective layer 23 are decomposed faster than the glass frit in the light shielding layer 6 is melted. Therefore, the gas generated when the glass frit of the light shielding layer 6 is melted can diffuse to the outside, and the light shielding layer 6 is fired satisfactorily.
  • the temperature in the heat treatment is initially a predetermined temperature that is equal to or higher than the thermal decomposition temperature of the organic matter contained in the adhesive layer 28, the intermediate layer 27, and the protective layer 23 and lower than the glass point transfer of the glass frit contained in the light shielding layer 6.
  • the temperature is raised to a temperature, and this temperature is maintained for a predetermined period, and then the temperature is raised to a temperature higher than the glass point transfer of the glass frit contained in the light shielding layer 6.
  • the adhesive layer 28, the intermediate layer 27, and the protective layer 23 can be reliably decomposed.
  • the second procedure after the step of printing and drying the light shielding layer 6 in the first procedure shown in FIG. 5B and before the step of attaching the transfer film 20, the light shielding layer 6 is subjected to the firing temperature 580. It includes a preliminary firing step in which the heat treatment is performed at ⁇ 700 ° C. for 1 to 20 minutes to sinter the light shielding layer 6. Thereby, the organic matter in the light shielding layer 6 is volatilized or burned and decomposed, and the glass frit is melted and fused to each other. After this step, it is the same as the first procedure.
  • the unevenness of the surface of the light shielding layer 6 and the inclination of the shape of the edge portion 7 are alleviated by melting the glass frit by temporary firing, and the adhesive layer 28 and the light shielding layer 6 of the transfer film 20 are reduced. Adhesion (adhesiveness) can be improved. Further, when the light shielding layer 6 is baked, there is no laminated body 30 covering the light shielding layer 6, so that the gas generated from the light shielding layer 6 by the diffusion diffuses without being held inside or on the surface of the light shielding layer 6, The light shielding layer 6 is formed satisfactorily.
  • Example 1 which is one example of the transfer film 20 was configured as follows.
  • a PET film “A70” provided with a silicone release layer (manufactured by Teijin DuPont Films Ltd., film size 20 cm ⁇ 30 cm thickness 50 ⁇ m) was prepared.
  • a coating solution for the intermediate layer 27 a polymer (thermal decomposition temperature 450 ° C.) prepared by copolymerizing methyl acrylate and methyl methacrylate at a predetermined blending ratio and adjusting the glass transition temperature Tg to 55 ° C. A solution dissolved in toluene was prepared.
  • a coating solution for the protective layer 23 As a coating solution for the protective layer 23, a polymer (thermal decomposition temperature 400 ° C.) prepared by copolymerizing methyl acrylate and isobutyl methacrylate at a predetermined blending ratio and adjusting the glass transition temperature Tg to 50 ° C. An aqueous solution was prepared. Moreover, the conductive layer paste containing glass frit, silver powder, and an organic binder was prepared as a paste for conductive layers.
  • the components of the conductive layer paste are: silver: 70-80%, terpineol, dibutycarbitol: 10-20%, ethyl cellulose, rosin resin: 1-10%, glass made of bismuth, zinc, boron, silica, barium, and the like, and Metal oxide: 1 to 10%, additive 1 to 10%.
  • the coating layer paste was prepared by dispersing a composite pigment of chromium oxide and copper oxide, glass frit, and organic binder with a three-roll mill.
  • acrylic resin BR102 manufactured by Mitsubishi Rayon Co., Ltd.
  • bis (2-butoxyethyl) ether manufactured by Wako Pure Chemical Industries, Ltd.
  • the intermediate layer 27 was formed by applying a coating solution for the intermediate layer to the entire surface of the temporary support having the peelability using a Mayer bar so as to have a thickness of 1.5 ⁇ m.
  • the size of the portion corresponding to the linear portion 13 of the conductive pattern layer 8 is 0.4 mm wide ⁇ 500 mm long and the size corresponding to the power feeding portion 14 is screen-printed with paste for the coating layer.
  • the conductive layer paste is screen-printed on the first coating layer 15 so that the size of the portion corresponding to the linear portion 13 of the conductive pattern layer 8 is 0.2 mm wide ⁇ 500 mm long.
  • the conductive layer 11 was formed by printing so that the size of the portion corresponding to the portion 14 was 5 mm ⁇ 5 mm and the thickness was 10 ⁇ m.
  • the second coating layer 16 was formed so as to cover the conductive layer 11 by printing so that the size was 0.4 mm wide ⁇ 500 mm long and 5 ⁇ m thick.
  • the coating liquid for the protective layer is applied to a thickness of 5 ⁇ m using a Mayer bar so as to cover the entire surface of the intermediate layer 27.
  • a protective layer 23 was formed.
  • a PET film “SRL-0504” manufactured by Lintec Co., Ltd. having a film thickness of 25 ⁇ m coated with the slightly adhesive layer 32 to be the support film 21 was prepared.
  • the fine adhesive surface of this PET film is bonded to the protective layer 23 formed on the temporary support, and pressure is applied from above the temporary support using a rubber roller at a pressure of 0.5 kg / cm.
  • a laminate was made.
  • a PET film “A31” provided with a silicone release layer (manufactured by Teijin DuPont Films Ltd., film size 20 cm ⁇ 30 cm, thickness 50 ⁇ m) was prepared.
  • a pressure-sensitive adhesive material was applied to the entire surface of the other temporary support having peelability so as to have various thicknesses using a Mayer bar to prepare a second laminate.
  • the adhesive a polymer prepared by copolymerizing methyl acrylate and n-butyl acrylate at a predetermined blending ratio and adjusting the glass transition temperature Tg to ⁇ 36 ° C. was dissolved in toluene and used. The thickness of the adhesive layer 28 was 7 ⁇ m.
  • the temporary support was peeled off from the first laminate, and the intermediate layer 27 of the first laminate was bonded to the adhesive layer 28 of the second laminate to produce a transfer film 20.
  • Comparative Example 2 glass transition temperature Tg: ⁇ 19 ° C., 6 ⁇ m was produced by changing only the material and thickness of the adhesive layer 28 from Example 1.
  • the glass transition temperature Tg-19 ° C. of the adhesive layer 28 in Comparative Example 2 was adjusted by changing the blending ratio of methyl acrylate and n-butyl acrylate.
  • Example 10 which is one example of the patterned glass substrate 1 was configured as follows.
  • the colored ceramic paste is mainly composed of 20% by mass of pigment mainly composed of copper oxide, chromium oxide, iron oxide or manganese oxide, 10% by mass of cellulose resin, 10% by mass of pine oil, bismuth borosilicate or zinc borosilicate.
  • the composition contained 65% by mass of glass frit (melting temperature of about 500 ° C.) as a component, and the viscosity was 200 dPa ⁇ s.
  • a colored ceramic paste was screen-printed on the peripheral edge of one surface of the glass substrate 3 to form the light shielding layer 6.
  • the conditions for screen printing are polyester screen: 200 mesh, coat thickness: 6 ⁇ m, tension: 20 Nm, squeegee hardness: 65 degrees, attachment angle: 75 degrees, and printing speed: 300 mm / s.
  • the glass substrate 3 was dried at 150 ° C. for 10 minutes in a drying furnace.
  • the dried light shielding layer 6 had a film thickness of 25 ⁇ m, a maximum surface roughness height Rmax of 5 ⁇ m, and an angle ⁇ between the inclined surface 9 of the edge 7 and the surface of the glass substrate 3 was 5 °.
  • the adhesive layer 28 side of the transfer film 20 according to Example 1 described above is placed on the surface of the light shielding layer 6 and the glass substrate 3 so that the conductive pattern layer 8 crosses the edge portion 7 of the light shielding layer 6. Pasted.
  • the back side of the support film 21 was pressed against the glass substrate 3 with a pressure of 0.5 MPa by a rubber roller 50.
  • the support film 21 was peeled off from the protective layer 23, and the back side of the protective layer 23 was pressed against the glass substrate 3 side with a silicone roller 51 heated to 200 ° C. to perform an aging treatment.
  • the pressure of the roller 51 against the protective layer 23 was 0.5 MPa, and the roller 51 was moved along the protective layer 23 at 10 mm / second.
  • the glass substrate 3 onto which the laminate 30 including the conductive pattern layer 8 was transferred was baked using an electric furnace. Firing is performed in an air atmosphere at a rate of temperature increase of 95 ° C./minute from room temperature to 600 ° C., and after maintaining that temperature for 3 minutes, heating is stopped and the mixture is allowed to cool naturally to 100 ° C. or less. (Slow cooling).
  • the cooled glass plate was taken out from the electric furnace to obtain a patterned glass substrate 1 on which a fired body of the conductive pattern layer 8 was formed.
  • the patterned glass substrate 1 thus obtained is referred to as Example 10.
  • Example 10 For the purpose of comparison with Example 10 described above, with Example 10, with the pattern obtained by performing only the pressing process at room temperature without heating the roller 51 in the aging process after peeling the support film 21.
  • the glass substrate 1 with the pattern 10 obtained by omitting only the pressing process by the roller 51 of the protective layer 23 after removing the support film 21 from the comparative example 10 and the laminated film 30 was heated to 200 ° C. for 10 minutes instead.
  • the glass substrate 1 with a pattern obtained by omitting the heat treatment after peeling of the comparative example 11 and the support film 21 and the pressing treatment of the protective layer 23 is referred to as comparative example 12.
  • Example 12 the light shielding layer 6 is heated and fired between the printing / drying process and the transfer film 20 attaching process on the glass substrate 3, and the transfer film is formed on the fired light shielding layer 6 and the glass substrate 3.
  • Example 11 was pasted.
  • the conditions for firing the light shielding layer 6 are the same as the conditions for firing the light shielding layer 6 and the conductive pattern layer 8 in the process of producing Example 10.
  • the glass substrate 1 with a pattern obtained by omitting the heat treatment after peeling the support film 21 and the pressing treatment of the protective layer 23 is referred to as Example 12.
  • the adhesive layer 28 made of a material having a low glass transition temperature, that is, a soft material, has higher adhesion to the light shielding layer 6. confirmed. Further, from comparison with Examples 1 to 3 and Comparative Example 1, it was confirmed that the thicker the adhesive layer 28, the higher the adhesion to the light shielding layer 6. This is because the adhesive layer 28 is softer, and the thicker the adhesive layer 28 is, the deeper the unevenness on the surface of the light shielding layer 6 is, and the contact area increases, and bubbles are formed between the adhesive layer 28 and the light shielding layer 6. This is thought to be due to not being bitten.
  • Example 10 As shown in Table 2, from the comparison between Example 10 and Comparative Examples 10 to 12, the support film 21 was peeled and then pressed with a heated roller 51. Has been confirmed to be fused well to the light shielding layer 6. This is considered to be due to the fact that the laminate 30 is softened and the followability to the surface of the light-shielding layer 6 is increased by performing the heating and pressing treatment in a state where the support film 21 that is harder than the laminate 30 is removed. It is done. In addition, it was confirmed that the thing which performed only one of heating or pressing still has insufficient tracking of the laminated body 30 to the light shielding layer 6.
  • the conductive pattern layer 8 after sintering is obtained by temporarily firing the light shielding layer 6 before the step of attaching the transfer film 20 to the light shielding layer 6. Has been confirmed to be fused well to the light shielding layer 6.
  • FIG. 7 the result of having measured the surface shape of the edge part vicinity of the light shielding layer 6 just before sticking the transfer film 20 of Example 10 and Example 11 is shown.
  • the light-shielding layer 6 that has been pre-sintered has a smaller film thickness and a smaller surface roughness than those that have not been pre-fired, and the rising angle at the edge 7. (An angle formed with the surface of the glass substrate 3) is small.
  • Example 13 compared with Comparative Example 10, it is considered that the adhesive layer 28 is easily adhered to the light shielding layer 6, and the conductive pattern layer 8 is well fused to the light shielding layer 6. Therefore, when temporary baking was performed, after peeling off the support film 21, it was confirmed that the favorable electroconductive pattern layer 8 is obtained even if neither a heat processing nor a press process is implemented.
  • the thickness of the light-shielding layer 6 after firing was 13 to 18 ⁇ m
  • the thickness of the conductive pattern layer 8 after firing was 16 to 17 ⁇ m. It was.
  • the angle ⁇ formed by the inclined surface 9 of the edge 7 after firing and the surface of the glass substrate 3 was 9 °.
  • a soft pressure-sensitive adhesive material is formed on the entire surface having the peelability of the PET film “A31” as a temporary support.
  • a Meyer bar was applied using a Meyer bar to a thickness of 5 ⁇ m to produce a soft outer layer 37.
  • the soft adhesive material a polymer prepared by copolymerizing methyl acrylate and n-butyl acrylate at a predetermined blending ratio and adjusting the glass transition temperature Tg to ⁇ 36 ° C. was dissolved in toluene and used.
  • a hard adhesive material was applied on the soft outer layer 37 so as to have a thickness of 5 ⁇ m using a Mayer bar, and the hard inner layer 36 was produced.
  • the hard adhesive material a polymer prepared by copolymerizing methyl acrylate and n-butyl acrylate at a predetermined blending ratio and adjusting the glass transition temperature Tg to ⁇ 29 ° C. was dissolved in toluene and used.
  • the temporary support was peeled from the first laminate, and the intermediate layer of the first laminate was bonded to the hard inner layer 36 of the second laminate, thereby producing the transfer film 20.
  • the present invention is not limited to the above-described embodiment, and can be widely modified.
  • the present invention can be applied to tempered glass constituting rear window glass and side door glass.
  • SYMBOLS 1 Patterned glass substrate, 2 ... Car outside glass substrate, 3 ... Car inside glass substrate, 6 ... Light-shielding layer, 7 ... Edge edge part, 8 ... Conductive pattern layer, 9 ... Inclined surface, 10 ... Car windshield , 11 ... conductive layer, 13 ... linear part, 14 ... power feeding part, 15 ... first covering layer, 16 ... second covering layer, 20 ... transfer film, 21 ... support film, 23 ... protective layer, 27 ... Intermediate layer 28 ... Adhesive layer 30 ... Laminate 31 ... Peeling layer 32 ... Slightly adhesive layer 36 ... Hard inner layer 37 ... Soft outer layer 41 ... Reel form 42 ... Stack form 43 ... Single layer Form, 44 ... reel, 46 ... separator film, 50, 51 ... roller

Abstract

Provided are: a patterned glass substrate having a conductive pattern layer which does not stand out even on a light-shielding layer, and which is well bonded with the light-shielding layer; and a method for manufacturing the patterned glass substrate. The patterned glass substrate (1) is characterized by containing: a glass substrate (3); a light-shielding layer (6) that contains a pigment and a glass component, and that is sintered on the surface of the glass substrate; and a conductive pattern layer (8) that is sintered on the light-shielding layer. The patterned glass substrate (1) is further characterized in that the conductive pattern layer comprises: a conductive layer containing a glass component; and a covering layer (12) that contains a pigment and a glass component, and envelops the conductive layer.

Description

パターン付きガラス基板、その製造方法及びその製造方法に使用する転写フィルムGLASS SUBSTRATE WITH PATTERN, ITS MANUFACTURING METHOD, AND TRANSFER FILM USED FOR THE MANUFACTURING METHOD
 本発明は、パターン付きガラス基板、その製造方法及びその製造方法に使用する転写フィルムに係り、例えばアンテナ等の導電性パターン層を表面に備えた自動車用窓ガラス及びその製造方法に関する。 The present invention relates to a glass substrate with a pattern, a manufacturing method thereof, and a transfer film used in the manufacturing method, and relates to a window glass for an automobile having a conductive pattern layer such as an antenna on its surface and a manufacturing method thereof.
 自動車等の窓ガラスの表面に、アンテナ線やデフォッガ等の導電性パターン層を焼結させたものが公知となっている。このような導電性パターン層は、銀及びガラスフリットを含む導電性ペーストを窓ガラスの表面にスクリーン印刷し、加熱処理によって窓ガラス表面上に導電性パターン層を焼結させる手法(例えば、特許文献1)や、銀及びガラスフリットを含む導電性パターン層が予め形成された導電性パターン層と、導電性パターン層の一面に設けられた粘着層とを有する転写フィルムを窓ガラス表面に貼付し、加熱処理によって転写フィルムの粘着層を分解すると共に、窓ガラス表面上に導電性パターン層を焼結させる手法(例えば、特許文献2)等によって形成される。 It is known that a conductive pattern layer such as an antenna wire or a defogger is sintered on the surface of a window glass of an automobile or the like. Such a conductive pattern layer is a method in which a conductive paste containing silver and glass frit is screen-printed on the surface of the window glass, and the conductive pattern layer is sintered on the window glass surface by heat treatment (for example, Patent Documents). 1) and a transfer film having a conductive pattern layer in which a conductive pattern layer containing silver and glass frit is formed in advance, and an adhesive layer provided on one surface of the conductive pattern layer is pasted on the window glass surface, It forms by the method (for example, patent document 2) etc. which decompose | disassemble the adhesion layer of a transfer film by heat processing, and sinter a conductive pattern layer on the window glass surface.
特開2008-44800号公報JP 2008-44800 A 特開2008-311356号公報JP 2008-311356 A
 ところで、自動車用窓ガラスでは、外観上の見栄えを良くする観点から、周縁部に黒色セラミック層からなる遮光層(いわゆる、黒セラ)を焼結したものがある。遮光層は、黒又はグレーといった顔料及びガラスフリットを含む黒色セラミックスペーストをスクリーン印刷により窓ガラス表面に塗布し、加熱処理によって窓ガラス表面上に焼結させることによって形成される。上記の導電性パターン層は、目立たないようにするために窓ガラスの周縁部に設けられることがあるため、遮光層を設けた場合には、両者の配置箇所が重なることがある。 By the way, from the viewpoint of improving the appearance of the automobile window glass, there is one in which a light shielding layer (so-called black ceramic) made of a black ceramic layer is sintered at the peripheral portion. The light shielding layer is formed by applying a black ceramic paste containing a pigment such as black or gray and glass frit to the surface of the window glass by screen printing and sintering the window glass surface by heat treatment. Since the conductive pattern layer may be provided on the peripheral edge of the window glass so as not to be noticeable, when the light-shielding layer is provided, the arrangement positions of both may overlap.
 しかしながら、導電性パターン層を遮光層に重ねて配置する場合には、銀を含む導電性パターン層は、白色を呈するため、黒色の遮光層上で目立ち、外観上の見栄えが悪いという問題が生じる。また、製造上の問題として、焼結前の遮光層の表面は、ガラス基板に比べて表面粗さが粗いため、転写フィルムを用いる手法では、粘着層と遮光層との密着性が悪く、導電性パターン層と遮光層との間に気泡が残留する等の原因により、焼結不良及び導電性不良が生じることと、導電性パターン層の形成後も転写フィルムの跡が遮光層上に残ることとが考えられるため、これまで転写フィルムを用いて導電性パターン層を遮光層上に形成しようとする手法は実施されていなかった。 However, in the case where the conductive pattern layer is disposed so as to overlap the light shielding layer, the conductive pattern layer containing silver is white, so that there is a problem that it is conspicuous on the black light shielding layer and has a poor appearance. . Also, as a manufacturing problem, the surface of the light-shielding layer before sintering is rougher than that of the glass substrate. Therefore, in the method using a transfer film, the adhesion between the adhesive layer and the light-shielding layer is poor, and the conductive layer Sintering failure and poor conductivity due to bubbles remaining between the conductive pattern layer and the light shielding layer, and traces of the transfer film remain on the light shielding layer even after the conductive pattern layer is formed. Therefore, a method for forming a conductive pattern layer on a light-shielding layer using a transfer film has not been implemented so far.
 その他、出願人らの検討によって、転写フィルムを用いて導電性パターン層を遮光層上に形成しようとする場合には以下のような問題が確認されている。ガラス基板上で遮光層の端縁部は段部を形成するため、導電性パターン層が遮光層の端縁部を横切る部分を有する場合には、導電性パターン層が遮光層の端縁部の形状に追従できず、導電性パターン層と遮光層及びガラス基板との密着性が低下し、焼結不良により導電性が低下する虞がある。転写フィルムと遮光層とを共に加熱し、導電性パターン層及び遮光層を焼結させる場合には、粘着層が遮光層から発生するガスの拡散を妨げ、焼結後に遮光層の表面に気泡が残留し、外観上の見栄えが悪化する。 In addition, the following problems have been confirmed when the conductive pattern layer is formed on the light-shielding layer by using the transfer film by the examination of the applicants. Since the edge portion of the light shielding layer forms a stepped portion on the glass substrate, when the conductive pattern layer has a portion that crosses the edge portion of the light shielding layer, the conductive pattern layer is the edge of the light shielding layer. The shape cannot be followed, the adhesion between the conductive pattern layer, the light shielding layer and the glass substrate is lowered, and the conductivity may be lowered due to poor sintering. When both the transfer film and the light shielding layer are heated to sinter the conductive pattern layer and the light shielding layer, the adhesive layer prevents diffusion of gas generated from the light shielding layer, and bubbles are formed on the surface of the light shielding layer after sintering. It remains and the appearance looks worse.
 また、導電性パターン層を形成するために使用される転写フィルムにも種々の問題がある。転写フィルムは、複数枚が互いに積層された状態で保管されることがあり、例えば、導電性パターン層及び粘着層を含む積層体を、積層体に対して剥離可能な支持フィルムに支持させ、粘着層が他の支持フィルムの背面に剥離可能に接触するようにして互いに積層させたものがある。また、積層体を支持する支持フィルムを帯状とし、粘着層を支持フィルムともに連続したものとし、導電性パターン層を支持フィルムの長手方向に複数個断続的に配列し、転写フィルムをリールに巻き取り、各層をリールの径方向に積層させたものがある。このように積層させた状態で保管する転写フィルムでは、導電性パターン層の方が粘着層より硬いことが多いため、積層方向において導電性パターン層に挟まれた部分の粘着層が、導電性パターン層間で圧縮され膜厚が薄くなることがある。粘着層の膜厚が薄くなると、貼り付けられる表面への追従性(密着性)が低下し、導電性パターン層を適切に所定の位置に貼り付けることができないという問題がある。特に、遮光層はガラス基板に比べて表面粗さが粗いため、粘着層が適切に粘着することができないという問題がある。また、導電性パターン層間に挟まれた部分のみの膜厚が薄くなることで、粘着層の表面が凸凹になり、粘着層をガラス基板表面等に貼り付ける際に気泡を噛み込みやすくなるという問題がある。このような粘着層の薄膜化を避けるために、圧縮を受けても薄膜化しない比較的硬質な材料から粘着層を形成することが考えられるが、硬質な材料は粘着性が低くガラス基板等への密着性が低下するという問題がある。 Also, there are various problems with the transfer film used for forming the conductive pattern layer. The transfer film may be stored in a state in which a plurality of transfer films are laminated to each other. For example, a laminate including a conductive pattern layer and an adhesive layer is supported on a support film that can be peeled off from the laminate, and is adhered. Some layers are laminated together such that the layers are releasably in contact with the back of another support film. Also, the support film that supports the laminate is strip-shaped, the adhesive layer is continuous with the support film, a plurality of conductive pattern layers are intermittently arranged in the longitudinal direction of the support film, and the transfer film is wound on a reel. In some cases, each layer is laminated in the radial direction of the reel. In the transfer film stored in such a laminated state, the conductive pattern layer is often harder than the adhesive layer, so that the portion of the adhesive layer sandwiched between the conductive pattern layers in the stacking direction is the conductive pattern. Compressed between layers, the film thickness may be reduced. When the thickness of the adhesive layer is reduced, the followability (adhesiveness) to the surface to be attached is lowered, and there is a problem that the conductive pattern layer cannot be appropriately attached at a predetermined position. In particular, since the light-shielding layer has a rougher surface than the glass substrate, there is a problem that the adhesive layer cannot be properly adhered. In addition, since the film thickness of only the portion sandwiched between the conductive pattern layers becomes thin, the surface of the adhesive layer becomes uneven, and it becomes easy to bite bubbles when attaching the adhesive layer to the glass substrate surface or the like There is. In order to avoid such thinning of the adhesive layer, it is conceivable to form the adhesive layer from a relatively hard material that does not become thin even when subjected to compression. There is a problem that the adhesion of the resin is lowered.
 合わせガラスを構成する車外側ガラス基板及び車内側ガラス基板を加熱成形する際には、両ガラス基板を重ね合わせた状態で行うことが一般的であるため、遮光層が両ガラス基板の接触面にある場合には遮光層を介して両ガラス基板が融着する。そのため、従来の自動車用合わせガラスでは、車外側ガラス基板の車内面に遮光層を形成し、車内側ガラス基板の車内面に導電性パターン層を形成し、遮光層と導電性パターン層とを重ねて形成しないようにする対策が採られていた。しかしながら、この場合には、遮光層を焼結させるための加熱工程と、車外側ガラス基板及び車内側ガラス基板を成形するための加熱工程とを別々に行わなければならず、生産性が悪いという問題があった。 When the outside glass substrate and the inside glass substrate constituting the laminated glass are thermoformed, it is generally performed in a state in which both glass substrates are overlapped, so that the light shielding layer is on the contact surface of both glass substrates. In some cases, both glass substrates are fused via the light shielding layer. Therefore, in conventional laminated glass for automobiles, a light shielding layer is formed on the inner surface of the vehicle outside glass substrate, a conductive pattern layer is formed on the inner surface of the vehicle inner glass substrate, and the light shielding layer and the conductive pattern layer are overlapped. Measures were taken to prevent them from forming. However, in this case, the heating process for sintering the light shielding layer and the heating process for forming the vehicle outer glass substrate and the vehicle inner glass substrate must be performed separately, and productivity is poor. There was a problem.
 本発明は、以上の問題を鑑みてなされたものであって、転写フィルムを用いて遮光層上に導電性パターン層を良好に形成することができる、パターン付きガラス基板の製造方法を提供すると共に、この製造方法を用いて遮光層上においても目立つことなく、かつ遮光層と良好に結合した導電性パターン層を有するパターン付きガラス基板を提供することを課題とする。また、上記の製造方法及びパターン付きガラス基板に使用される転写フィルムを提供することを課題とする。 The present invention has been made in view of the above problems, and provides a method for producing a patterned glass substrate, which can satisfactorily form a conductive pattern layer on a light shielding layer using a transfer film. Another object of the present invention is to provide a patterned glass substrate having a conductive pattern layer that is not conspicuous on the light shielding layer and is well bonded to the light shielding layer by using this production method. Moreover, let it be a subject to provide the transfer film used for said manufacturing method and a glass substrate with a pattern.
 上記課題を解決するために、本発明は、表面に、ガラス成分を含む導電性パターン層(8)が焼結されたパターン付きガラス基板(1)の製造方法であって、ガラス基板(3)の一部に、顔料及びガラス成分を含む遮光ペーストを塗布し、前記ガラス基板上に遮光層(6)を形成する第1工程と、導電性パターン層(8)及び粘着層(28)を含む積層体(30)と、前記積層体の、前記粘着層とは反対側の面に剥離可能に積層された支持フィルム(21)とを有する転写フィルム(20)を前記遮光層の外面に前記粘着層が当接するように前記転写フィルムを前記ガラス基板に貼付し、続いて前記支持フィルムを前記積層体から剥離し、前記積層体を前記ガラス基板に転写する第2工程と、前記ガラス基板、前記遮光層、及び前記積層体を共に加熱し、前記粘着層を除去して、前記遮光層を前記ガラス基板上に焼結させ、かつ前記導電性パターン層を前記遮光層上に焼結させる第3工程とを含むことを特徴とする。 In order to solve the above-mentioned problems, the present invention provides a method for producing a patterned glass substrate (1) having a conductive pattern layer (8) containing a glass component on the surface, the glass substrate (3). A first step of applying a light-shielding paste containing a pigment and a glass component to a part of the glass substrate and forming a light-shielding layer (6) on the glass substrate; and a conductive pattern layer (8) and an adhesive layer (28). A transfer film (20) having a laminate (30) and a support film (21) releasably laminated on a surface of the laminate opposite to the adhesive layer is provided on the outer surface of the light shielding layer. A second step of affixing the transfer film to the glass substrate so that the layers come into contact with each other, subsequently peeling the support film from the laminate, and transferring the laminate to the glass substrate; Light-shielding layer and the laminate And a third step of heating together, removing the adhesive layer, sintering the light shielding layer on the glass substrate, and sintering the conductive pattern layer on the light shielding layer. To do.
 この構成によれば、転写フィルムを用いて遮光層上に導電性パターン層を良好に形成することができる。 According to this configuration, the conductive pattern layer can be satisfactorily formed on the light shielding layer using the transfer film.
 本発明の他の側面は、前記第2工程において、前記導電性パターン層が、前記ガラス基板上の前記遮光層の端縁部を横切る部分を含み、前記第3工程において、前記導電性パターン層の一部が前記ガラス基板上に焼結されることを特徴とする。 In another aspect of the present invention, in the second step, the conductive pattern layer includes a portion that crosses an edge of the light shielding layer on the glass substrate. In the third step, the conductive pattern layer A part of is sintered on the glass substrate.
 この構成によれば、導電性パターン層の配置における自由度を高めることができる。 According to this configuration, the degree of freedom in the arrangement of the conductive pattern layer can be increased.
 本発明の他の側面は、前記第1工程において、前記遮光層の前記ガラス基板上における前記端縁部が、前記ガラス基板の表面と10°以下の角度をなす傾斜面を形成するように前記遮光層を形成することを特徴とする。 According to another aspect of the present invention, in the first step, the edge portion of the light shielding layer on the glass substrate forms an inclined surface that forms an angle of 10 ° or less with the surface of the glass substrate. A light shielding layer is formed.
 この構成によれば、遮光層の端縁部において導電性パターン層が遮光層表面に追従しやすくなり、導電層の遮光層及びガラス基板への焼結不良を抑制し、導電性不良を抑制することができる。また、導電性パターン層の膜厚が遮光層より薄いような場合にも、遮光層の端縁部に導電層を良好に配設することができる。換言すると、導電性パターン層の膜厚を遮光層より薄くすることができる。 According to this configuration, the conductive pattern layer easily follows the surface of the light shielding layer at the edge of the light shielding layer, suppresses poor sintering of the conductive layer to the light shielding layer and the glass substrate, and suppresses poor conductivity. be able to. Even when the thickness of the conductive pattern layer is thinner than that of the light shielding layer, the conductive layer can be satisfactorily disposed on the edge portion of the light shielding layer. In other words, the thickness of the conductive pattern layer can be made thinner than that of the light shielding layer.
 本発明の他の側面は、前記導電性パターン層を除く前記積層体の熱分解温度が前記遮光層に含まれるガラス成分の溶融温度よりも低いことを特徴とする。すなわち、第3工程における遮光層及び積層体の加熱過程では、遮光層に含まれるガラス成分が溶融を開始する前に、導電性パターン層を除く積層体の熱分解(重量減少)が完了することを特徴とする。 Another aspect of the present invention is characterized in that the thermal decomposition temperature of the laminate excluding the conductive pattern layer is lower than the melting temperature of the glass component contained in the light shielding layer. That is, in the heating process of the light shielding layer and the laminate in the third step, the thermal decomposition (weight reduction) of the laminate excluding the conductive pattern layer is completed before the glass component contained in the light shielding layer starts to melt. It is characterized by.
 この構成によれば、導電性パターン層を除く積層体が、遮光層のガラス成分が溶融するよりも早く分解するため、遮光層のガラス成分が溶融してガスを発生する際には導電性パターン層を除く積層体は既に存在せず、遮光層から発生したガスは遮光層から外部へと拡散することができる。そのため、遮光層の内部および表面に気泡が残留せず、遮光層の外観上の見栄えがよくなる。 According to this configuration, since the laminate excluding the conductive pattern layer decomposes faster than the glass component of the light shielding layer melts, the conductive pattern is generated when the glass component of the light shielding layer melts and generates gas. The laminate excluding the layers does not already exist, and the gas generated from the light shielding layer can diffuse from the light shielding layer to the outside. Therefore, bubbles do not remain inside and on the surface of the light shielding layer, and the appearance of the light shielding layer is improved.
 本発明の他の側面は、前記第1工程において前記ガラス基板上に形成する前記遮光層の表面粗さにおける最大高さが、前記転写フィルムの前記粘着層の膜厚未満となるように形成することを特徴とする。ここで、最大高さ(Rmax)とは、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜き取り部分の山頂線と谷底線との間隔を粗さ曲線の縦倍率の方向に測定し、この値をマイクロメートル(μm)で表したものをいう。 In another aspect of the present invention, the maximum height in the surface roughness of the light shielding layer formed on the glass substrate in the first step is less than the film thickness of the adhesive layer of the transfer film. It is characterized by that. Here, the maximum height (Rmax) means that only the reference length is extracted from the roughness curve in the direction of the average line, and the distance between the peak line and the valley line of the extracted part is the direction of the vertical magnification of the roughness curve. And the value is expressed in micrometers (μm).
 この構成によれば、粘着層が遮光層の表面に密着し易くなる。 According to this configuration, the pressure-sensitive adhesive layer easily adheres to the surface of the light shielding layer.
 本発明の他の側面は、前記第2工程と前記第3工程の間に、前記積層体を前記ガラス基板上に押圧する工程を更に含むことを特徴とする。 Another aspect of the present invention is characterized in that the method further includes a step of pressing the laminate on the glass substrate between the second step and the third step.
 この構成によれば、粘着層が遮光層及びガラス基板により密着しやすくなり、導電性パターンの遮光層及びガラス基板への焼結が確実に行われるようになる。 According to this configuration, the pressure-sensitive adhesive layer is more easily adhered to the light shielding layer and the glass substrate, and the conductive pattern is reliably sintered to the light shielding layer and the glass substrate.
 本発明の他の側面は、前記第2工程と前記第3工程の間に、前記積層体を加熱する工程を更に含むことを特徴とする。 Another aspect of the present invention is characterized in that the method further includes a step of heating the stacked body between the second step and the third step.
 この構成によれば、一般的に積層体よりも硬い支持フィルムを除去した後に、粘着層を軟化させるため、粘着層が遮光層及びガラス基板の表面形状に追従しやすくなる。 According to this configuration, since the adhesive layer is generally softened after the support film that is harder than the laminate is removed, the adhesive layer easily follows the surface shape of the light shielding layer and the glass substrate.
 本発明の他の側面は、前記第1工程の後から前記第3工程の前までの間に、前記遮光層を加熱し、前記遮光層を前記ガラス基板上に仮焼結させる工程を更に含む。 Another aspect of the present invention further includes a step of heating the light shielding layer and pre-sintering the light shielding layer on the glass substrate after the first step and before the third step. .
 この構成によれば、仮焼結によって遮光層の表面の凹凸及び端縁部の傾斜が緩和されるため、粘着層が密着しやすくなり、導電性パターンの遮光層及びガラス基板への焼結が確実に行われるようになる。また、転写フィルムを遮光層上に貼り付ける前に、予め遮光層を加熱し、焼成に伴うガスを放散させているため、導電性パターン層を焼成する際の加熱時で遮光層からガスが発生せず、遮光層の内部及び表面にガスが残留することがない。そのため、遮光層の外観を良好に形成することができる。 According to this configuration, since the unevenness of the surface of the light shielding layer and the inclination of the edge portion are alleviated by the preliminary sintering, the adhesive layer is easily adhered, and the conductive pattern is sintered to the light shielding layer and the glass substrate. It will surely be done. In addition, before the transfer film is applied onto the light shielding layer, the light shielding layer is heated in advance to dissipate the gas that accompanies the firing, so that gas is generated from the light shielding layer during heating when firing the conductive pattern layer. No gas remains inside and on the surface of the light shielding layer. Therefore, the appearance of the light shielding layer can be formed satisfactorily.
 本発明の他の側面は、前記転写フィルムの前記粘着層を、ガラス転移温度が-60℃以上-20℃以下の材料で構成することを特徴とする。 Another aspect of the present invention is characterized in that the adhesive layer of the transfer film is made of a material having a glass transition temperature of −60 ° C. or higher and −20 ° C. or lower.
 この構成によれば、粘着層は比較的軟質に形成され、遮光層の表面に確実に密着することができる。 According to this configuration, the pressure-sensitive adhesive layer is formed to be relatively soft and can reliably adhere to the surface of the light shielding layer.
 本発明の他の側面は、前記転写フィルムの前記粘着層の膜厚を、3μm以上15μm以下、より好ましくは3μm以上7μm以下とすることを特徴とする。 Another aspect of the present invention is characterized in that the thickness of the adhesive layer of the transfer film is 3 μm or more and 15 μm or less, more preferably 3 μm or more and 7 μm or less.
 この構成によれば、表面の凹凸がガラス基板に比べて一般に大きくなる遮光層の表面に対して、粘着層は確実に密着できるようになる。また、膜厚を7μm以下とすることで、粘着層を粘着性が確保できる範囲内で可能な限り薄膜化し、加熱時に粘着層が早い段階で消失するようにすることができる。 According to this configuration, the pressure-sensitive adhesive layer can reliably adhere to the surface of the light-shielding layer whose surface irregularities are generally larger than those of the glass substrate. Moreover, by setting the film thickness to 7 μm or less, the pressure-sensitive adhesive layer can be made as thin as possible within a range where the adhesiveness can be secured, and the pressure-sensitive adhesive layer can disappear at an early stage during heating.
 本発明の他の側面は、前記第2工程において準備する前記転写フィルムの前記粘着層が、相対的に高いガラス転移温度を有する硬質内側層(36)と相対的に低いガラス転移温度を有する軟質外側層(37)とを含むことを特徴とする。 In another aspect of the present invention, the adhesive layer of the transfer film prepared in the second step includes a hard inner layer (36) having a relatively high glass transition temperature and a soft material having a relatively low glass transition temperature. And an outer layer (37).
 この構成によれば、保管時に積層され、粘着層が導電性パターン層間において圧縮されても、硬質内側層が圧縮に抗するため、粘着層は所定の膜厚を維持することができる。また、軟質外側層が粘着層表面の柔軟性を確保するため、ガラス基板等への密着性を高めることができる。 According to this configuration, even when the adhesive layer is laminated during storage and the adhesive layer is compressed between the conductive pattern layers, the hard inner layer resists compression, so that the adhesive layer can maintain a predetermined film thickness. Moreover, since the soft outer layer ensures the flexibility of the adhesive layer surface, the adhesion to the glass substrate or the like can be improved.
 本発明の他の側面は、前記硬質内側層のガラス転移温度が-30℃以上0℃以下であり、前記軟質外側層のガラス転移温度が-20℃以下であり、かつ前記硬質内側層のガラス転移温度より10℃以上低温であることを特徴とする。また、前記軟質外側層の重量平均分子量が7万以上20万以下であり、前記硬質内側層の重量平均分子量が30万以上150万以下であることを特徴とする。 In another aspect of the present invention, the glass transition temperature of the hard inner layer is −30 ° C. or more and 0 ° C. or less, the glass transition temperature of the soft outer layer is −20 ° C. or less, and the glass of the hard inner layer is The temperature is 10 ° C. or more lower than the transition temperature. The soft outer layer has a weight average molecular weight of 70,000 to 200,000, and the hard inner layer has a weight average molecular weight of 300,000 to 1,500,000.
 この構成によれば、硬質内側層及び軟質外側層を好適に形成することができる。 According to this configuration, the hard inner layer and the soft outer layer can be suitably formed.
 本発明の他の側面は、前記硬質内側層の厚さは、2μm以上7μm以下であることを特徴とする。 Another aspect of the present invention is characterized in that the thickness of the hard inner layer is 2 μm or more and 7 μm or less.
 この構成によれば、粘着層のガラス基板等への粘着に必要な膜厚を確保することができる。 According to this configuration, it is possible to ensure a film thickness necessary for adhesion of the adhesive layer to the glass substrate or the like.
 本発明の他の側面は、前記軟質外側層の厚さは、3μm以上10μm以下であることを特徴とする。 Another aspect of the present invention is characterized in that the thickness of the soft outer layer is 3 μm or more and 10 μm or less.
 この構成によれば、転写フィルムが積層状態で保管され、粘着層が圧縮される場合にも、軟質外側層を粘着層の外面に残存させることができる。 According to this configuration, even when the transfer film is stored in a laminated state and the adhesive layer is compressed, the soft outer layer can remain on the outer surface of the adhesive layer.
 本発明の他の側面は、パターン付きガラス基板(1)であって、ガラス基板(3)と、顔料及びガラス成分を含み、前記ガラス基板の表面に焼結された遮光層(6)と、前記遮光層上に焼結された導電性パターン層(8)とを含み、前記導電性パターン層が、ガラス成分を含む導電層(11)と、顔料及びガラス成分を含み、前記導電層を包囲する被覆層(15,16)とを有することを特徴とする。 Another aspect of the present invention is a patterned glass substrate (1) comprising a glass substrate (3), a pigment and a glass component, and a light shielding layer (6) sintered on the surface of the glass substrate, A conductive pattern layer (8) sintered on the light shielding layer, and the conductive pattern layer includes a conductive layer (11) including a glass component, a pigment and a glass component, and surrounds the conductive layer. And a covering layer (15, 16).
 この構成によれば、導電層は被覆層に包囲されているため、遮光層上においても目立たないようにすることができる。 According to this configuration, since the conductive layer is surrounded by the covering layer, it can be made inconspicuous even on the light shielding layer.
 本発明の他の側面は、前記導電性パターン層が、前記ガラス基板上の前記遮光層の端縁部を横切る部分を含むことを特徴とする。 Another aspect of the present invention is characterized in that the conductive pattern layer includes a portion crossing an edge of the light shielding layer on the glass substrate.
 この構成によれば、導電性パターン層の配置における自由度を高めることができる。 According to this configuration, the degree of freedom in the arrangement of the conductive pattern layer can be increased.
 本発明の他の側面は、前記導電性パターン層の厚さが、20μm以下であり、前記端縁部が前記ガラス基板の表面と10°以下の角度をなす傾斜面を形成することを特徴とする。 In another aspect of the present invention, the conductive pattern layer has a thickness of 20 μm or less, and the edge portion forms an inclined surface having an angle of 10 ° or less with the surface of the glass substrate. To do.
 この構成によれば、導電性パターン層が遮光層の端縁部を横切る場合にも導電性パターン層を良好に形成することができる。 According to this configuration, the conductive pattern layer can be satisfactorily formed even when the conductive pattern layer crosses the edge portion of the light shielding layer.
 本発明の他の側面は、前記ガラス基板は、自動車用窓ガラスであり、前記遮光層及び前記導電性パターン層は、前記ガラス基板の車内側の面上に設けられることを特徴とする。 Another aspect of the present invention is characterized in that the glass substrate is a window glass for an automobile, and the light shielding layer and the conductive pattern layer are provided on an inner surface of the glass substrate.
 この構成によれば、パターン付きガラス基板の外観上の見栄えを良くすることができる。 According to this configuration, the appearance of the patterned glass substrate can be improved.
 本発明の他の側面は、前記ガラス基板は、自動車用合わせ窓ガラスの車内側を構成するガラス基板であり、前記遮光層及び前記導電性パターン層は、該ガラス基板の車内側の面上に設けられることを特徴とする。 In another aspect of the present invention, the glass substrate is a glass substrate constituting the inside of a laminated window glass for an automobile, and the light shielding layer and the conductive pattern layer are on the inside surface of the glass substrate. It is provided.
 この構成によれば、合わせ窓ガラスを構成する各ガラス基板の合わせ面を避けて遮光層及び導電性パターン層を配置するため、各ガラス基板を重ね合わせて加熱成形する際に同時に、遮光層及び導電性パターン層の焼成を行うことができる。 According to this configuration, the light shielding layer and the conductive pattern layer are disposed so as to avoid the mating surfaces of the glass substrates constituting the laminated window glass. The conductive pattern layer can be baked.
 本発明の他の側面は、導電性パターン層(8)及び粘着層(28)を含む積層体(30)と、前記積層体の、前記粘着層とは反対側の面に剥離可能に積層された支持フィルム(21)とを有し、前記積層体を基体の表面に転写し、加熱することによって前記導電性パターン層を前記基体に焼結するために用いる転写フィルムであって、前記粘着層は、相対的に高いガラス転移温度を有する硬質内側層(36)と相対的に低いガラス転移温度を有する軟質外側層(37)とを含むことを特徴とする。 According to another aspect of the present invention, a laminate (30) including a conductive pattern layer (8) and an adhesive layer (28) is detachably laminated on a surface of the laminate opposite to the adhesive layer. A transfer film used to sinter the conductive pattern layer onto the substrate by transferring the laminate to the surface of the substrate and heating the laminate. Includes a hard inner layer (36) having a relatively high glass transition temperature and a soft outer layer (37) having a relatively low glass transition temperature.
 この構成によれば、保管時に積層され、粘着層が導電性パターン層間において圧縮されても、硬質内側層が圧縮に抗するため、粘着層は所定の膜厚を維持することができる。また、軟質外側層が粘着層表面の柔軟性を確保するため、ガラス基板等への密着性を高めることができる。 According to this configuration, even when the adhesive layer is laminated during storage and the adhesive layer is compressed between the conductive pattern layers, the hard inner layer resists compression, so that the adhesive layer can maintain a predetermined film thickness. Moreover, since the soft outer layer ensures the flexibility of the adhesive layer surface, the adhesion to the glass substrate or the like can be improved.
 本発明の他の側面は、当該転写フィルムは帯状をなして巻き取られた形態をなし、前記導電性パターン層は前記支持フィルムの長手方向に沿って複数個が配列されていることを特徴とする。 Another aspect of the present invention is characterized in that the transfer film is wound in a belt shape, and a plurality of the conductive pattern layers are arranged along the longitudinal direction of the support film. To do.
 この構成によれば、粘着層は転写フィルムを積層状態で保管しても所定の膜厚を維持することができるため、転写フィルムをリールに巻き取った形態で保管することができる。この保管形態では、転写フィルムの取り出しが容易であり、作業性が良い。 According to this configuration, since the adhesive layer can maintain a predetermined film thickness even when the transfer film is stored in a laminated state, the transfer film can be stored in a form wound on a reel. In this storage mode, the transfer film can be easily taken out and the workability is good.
 本発明の他の側面は、前記粘着層の前記硬質内側層の厚さは、2μm以上7μm以下であることを特徴とする。 Another aspect of the present invention is characterized in that the thickness of the hard inner layer of the adhesive layer is 2 μm or more and 7 μm or less.
 この構成によれば、粘着層のガラス基板等への粘着に必要な膜厚を確保することができる。 According to this configuration, it is possible to ensure a film thickness necessary for adhesion of the adhesive layer to the glass substrate or the like.
 本発明の他の側面は、前記粘着層の前記軟質外側層の厚さは、3μm以上10μm以下であることを特徴とする。 Another aspect of the present invention is characterized in that the thickness of the soft outer layer of the adhesive layer is 3 μm or more and 10 μm or less.
 この構成によれば、転写フィルムが積層状態で保管され、粘着層が圧縮される場合にも、軟質外側層を粘着層の外面に残存させることができる。 According to this configuration, even when the transfer film is stored in a laminated state and the adhesive layer is compressed, the soft outer layer can remain on the outer surface of the adhesive layer.
 本発明の他の側面は、前記硬質内側層のガラス転移温度が-30以上0℃以下であり、前記軟質外側層のガラス転移温度が-20℃以下であり、かつ前記硬質内側層のガラス転移温度より10℃以上低温である。また、前記軟質外側層の重量平均分子量が7万以上20万以下であり、前記硬質内側層の重量平均分子量が30万以上150万以下であることを特徴とする。 In another aspect of the present invention, the glass transition temperature of the hard inner layer is −30 to 0 ° C., the glass transition temperature of the soft outer layer is −20 ° C. or less, and the glass transition temperature of the hard inner layer is It is 10 ° C. or more lower than the temperature. The soft outer layer has a weight average molecular weight of 70,000 to 200,000, and the hard inner layer has a weight average molecular weight of 300,000 to 1,500,000.
 この構成によれば、硬質内側層及び軟質外側層を好適に形成することができる。 According to this configuration, the hard inner layer and the soft outer layer can be suitably formed.
 以上の構成によれば、外観を損なうことなく、遮光層と重なる位置に導電性パターン層を形成することができる。 According to the above configuration, the conductive pattern layer can be formed at a position overlapping the light shielding layer without deteriorating the appearance.
自動車のフロントガラスを車内側から見た概略側面図Schematic side view of the windshield of an automobile viewed from the inside 図1のII-II断面図II-II sectional view of FIG. 図1のIII-III断面図III-III sectional view of Fig. 1 転写フィルムの断面及び転写フィルムの保管形態を示す概略図Schematic showing the cross section of the transfer film and the storage form of the transfer film ガラス基板上に遮光層及び導電性パターン層を形成する過程を示す説明図Explanatory drawing which shows the process in which a light shielding layer and a conductive pattern layer are formed on a glass substrate 転写フィルムをガラス基板及び遮光層上に貼付した状態を示す概略図Schematic showing the state where the transfer film is stuck on the glass substrate and the light shielding layer 遮光層の表面形状を現すグラフGraph showing surface shape of shading layer
 以下、図面を参照して、本発明を自動車のフロントガラス(ウインドシールドガラス)に適用した一実施形態を詳細に説明する。 Hereinafter, an embodiment in which the present invention is applied to an automobile windshield (windshield glass) will be described in detail with reference to the drawings.
 (導電性パターン層付きガラス基板)
 図1及び図2に示すように、実施形態に係る導電性パターン層付きガラス基板1は、合わせガラスである自動車用フロントガラス10の車内側基板に適用されるものである。フロントガラス10は、車外面を構成する車外側ガラス基板2と、車内面を構成する車内側ガラス基板3と、両ガラス基板2、3の間に介装され、両ガラス基板2、3を接着する樹脂製の中間膜4とを有している。車内側ガラス基板3の車内面5の周縁部には、黒色セラミック層からなる遮光層(いわゆる、黒セラ)6が焼結されている。ガラス基板3及び遮光層6の表面上には、ガラス基板3上における遮光層6の端縁部7を横切る部分を有して、導電性パターン層8が焼結されている。
(Glass substrate with conductive pattern layer)
As shown in FIG.1 and FIG.2, the glass substrate 1 with a conductive pattern layer which concerns on embodiment is applied to the vehicle inside board | substrate of the windshield 10 for motor vehicles which is a laminated glass. The windshield 10 is interposed between the outside glass substrate 2 constituting the outside surface of the vehicle, the inside glass substrate 3 constituting the inside surface of the vehicle, and both the glass substrates 2 and 3, and the both glass substrates 2 and 3 are bonded to each other. And an intermediate film 4 made of resin. A light-shielding layer (so-called black ceramic) 6 made of a black ceramic layer is sintered at the peripheral edge of the vehicle inner surface 5 of the vehicle interior glass substrate 3. On the surface of the glass substrate 3 and the light shielding layer 6, the conductive pattern layer 8 is sintered with a portion that crosses the edge 7 of the light shielding layer 6 on the glass substrate 3.
 本発明における遮光層6は、顔料を含むガラス成分からなる層であり、ガラス成分がガラス基板3の表面に融着することによって、ガラス基板3上に結合している。顔料は、酸化銅、酸化クロム、酸化鉄及び酸化マンガンの少なくとも一種を含むものであることが好ましく、これらを単独で、又は複数種を混合して、あるいは、その他の顔料と混合して用いてもよい。遮光層6は、遮光機能を有するものであれば特に制限はないが、黒又はグレーなどの濃色を呈することが好ましい。ガラス成分は、ホウケイ酸ビスマス、ホウケイ酸亜鉛などの結晶化ガラス及び非晶質ガラスを必須成分として含み、必要に応じてバナジウム、マンガン、鉄、及びコバルトの少なくとも1つの酸化物を含む遷移金属酸化物やアルミナ等の添加剤を含んでいる。 The light shielding layer 6 in the present invention is a layer made of a glass component containing a pigment, and is bonded onto the glass substrate 3 by fusing the glass component to the surface of the glass substrate 3. The pigment preferably contains at least one of copper oxide, chromium oxide, iron oxide and manganese oxide, and these may be used alone, in combination of plural types, or in combination with other pigments. . The light shielding layer 6 is not particularly limited as long as it has a light shielding function, but preferably exhibits a dark color such as black or gray. The glass component includes crystallized glass and amorphous glass such as bismuth borosilicate and zinc borosilicate as essential components, and transition metal oxidation including at least one oxide of vanadium, manganese, iron, and cobalt as necessary. And additives such as alumina.
 図3に示すように、導電性パターン層8は、導電性材料を含むガラス成分からなる導電層11と、顔料を含むガラス成分からなり、導電層11を包囲(被覆)する被覆層15、16とを有している。導電層11は、アンテナパターンを構成する線状部13と、線状部13の一端に設けられた線状部13よりも幅広の給電部14とを有している。導電性材料は、金、銀、銅や、これらの合金であってよく、本実施形態では銀を含むものとする。導電層11は、導電性材料を含むことで導電性を有している。被覆層15,16に含まれる顔料は、上述した遮光層6に適用可能な顔料を含むことができ、黒又はグレーなどの濃色を呈することが好ましく、遮光層6と同じ顔料で構成することが好ましい。導電層11及び被覆層15,16に含まれるガラス成分は、ホウケイ酸ビスマス、ホウケイ酸亜鉛などの結晶化ガラス及び非晶質ガラスを必須成分として含み、必要に応じてバナジウム、マンガン、鉄、及びコバルトの少なくとも1つの酸化物を含む遷移金属酸化物やアルミナ等の添加剤を含んでいる。 As shown in FIG. 3, the conductive pattern layer 8 includes a conductive layer 11 made of a glass component containing a conductive material and a coating layer 15, 16 made of a glass component containing a pigment and surrounding (covering) the conductive layer 11. And have. The conductive layer 11 includes a linear portion 13 that forms an antenna pattern, and a feed portion 14 that is wider than the linear portion 13 provided at one end of the linear portion 13. The conductive material may be gold, silver, copper, or an alloy thereof. In the present embodiment, the conductive material includes silver. The conductive layer 11 has conductivity by including a conductive material. The pigment contained in the coating layers 15 and 16 can include a pigment applicable to the light shielding layer 6 described above, and preferably exhibits a dark color such as black or gray, and is composed of the same pigment as the light shielding layer 6. Is preferred. The glass component contained in the conductive layer 11 and the coating layers 15 and 16 includes crystallized glass and amorphous glass such as bismuth borosilicate and zinc borosilicate as essential components, and vanadium, manganese, iron, and An additive such as transition metal oxide containing at least one oxide of cobalt or alumina is included.
 本実施形態における被覆層15、16は、導電層11を挟むように、第1の被覆層15及び第2の被覆層16の2つの層を積層することによって形成されており、導電層11の線状部13を全方位にわたって被覆する一方、給電部14をその車内側を向く外面が露呈するように被覆する。導電層11及び被覆層15、16は、それぞれのガラス成分が互いに融着すると共に、遮光層6の表面及びガラス基板3の表面に融着している。 The covering layers 15 and 16 in this embodiment are formed by laminating two layers of the first covering layer 15 and the second covering layer 16 so as to sandwich the conductive layer 11. The linear portion 13 is covered in all directions while the power feeding portion 14 is covered so that the outer surface facing the vehicle interior is exposed. In the conductive layer 11 and the coating layers 15 and 16, the glass components are fused to each other, and are fused to the surface of the light shielding layer 6 and the surface of the glass substrate 3.
 以上のように構成したパターン付きガラス基板1は、合わせガラスを構成する車内側ガラス基板3に適用され、その車内面5に遮光層6及び導電性パターン層8を共に備えるため、車外側ガラス基板2と車内側ガラス基板3とを重ねて加熱成形する際に同時に、遮光層6及び導電性パターン層8の焼成を行うことができ、生産性が良い。また、銀を含み、焼成されることによって白色を呈する導電層11の線状部13を、遮光層6と同色または近い色を呈する被覆層15,16で隠蔽することによって、車内側から見ても導電性パターン層8が遮光層6上で目立たないようにし、フロントガラス10の外観上の見栄えを高めることができる。 The patterned glass substrate 1 configured as described above is applied to the vehicle interior glass substrate 3 constituting the laminated glass, and since both the light shielding layer 6 and the conductive pattern layer 8 are provided on the vehicle interior surface 5, the vehicle exterior glass substrate. When the 2 and the vehicle interior glass substrate 3 are stacked and thermoformed, the light shielding layer 6 and the conductive pattern layer 8 can be fired simultaneously, and the productivity is good. Further, the linear portion 13 of the conductive layer 11 containing silver and being baked to be white is covered with the covering layers 15 and 16 having the same color as or similar to the light shielding layer 6, so that it can be seen from the inside of the vehicle. In addition, the conductive pattern layer 8 can be made inconspicuous on the light shielding layer 6 and the appearance of the windshield 10 can be enhanced.
 (転写フィルム)
 後述する導電性パターン層付き窓ガラスの製造工程において使用する転写フィルム20の構成について説明する。転写フィルム20は、加熱(焼成)処理されることによって導電性パターン層8となる、加熱処理前の導電性パターン層8を予め含むものであり、ガラス基板3及び遮光層6の表面上に貼り付けられることによって、ガラス基板3及び遮光層6の表面上に導電性パターン層8を簡単に形成することができる。
(Transfer film)
The structure of the transfer film 20 used in the manufacturing process of the window glass with a conductive pattern layer mentioned later is demonstrated. The transfer film 20 includes the conductive pattern layer 8 before the heat treatment, which becomes the conductive pattern layer 8 by being heated (baked), and is attached to the surfaces of the glass substrate 3 and the light shielding layer 6. By being attached, the conductive pattern layer 8 can be easily formed on the surfaces of the glass substrate 3 and the light shielding layer 6.
 図4に示すように、剥離性を有する支持フィルム21の一面上には、導電性パターン層8を含む積層体30が積層されている。導電性パターン層8の両面には、転写性を向上させるために、焼成除去可能な有機物よりなる樹脂層が積層されている。具体的には、この実施形態による転写フィルム20は、支持フィルム21上に保護層23、第2の被覆層16、導電層11、第1の被覆層15、中間層27、粘着層28(硬質内側層36、軟質外側層37)がこの順に積層された構成となっている。 As shown in FIG. 4, a laminated body 30 including a conductive pattern layer 8 is laminated on one surface of a support film 21 having peelability. On both surfaces of the conductive pattern layer 8, a resin layer made of an organic material that can be removed by baking is laminated in order to improve transferability. Specifically, the transfer film 20 according to this embodiment includes a protective layer 23, a second coating layer 16, a conductive layer 11, a first coating layer 15, an intermediate layer 27, an adhesive layer 28 (hard layer) on a support film 21. The inner layer 36 and the soft outer layer 37) are laminated in this order.
 このような積層構造を形成するには、例えば、まず、中間層27用の塗布液を仮支持体の上に塗布して中間層27を形成し、その上に、第1の被覆層15用のペーストを、スクリーン印刷によりパターンを用いて印刷し、次に導電層11用のペーストを、パターンの版を用いてスクリーン印刷により第1の被覆層15上に印刷して、導電層11を形成し、次に、第2の被覆層16用のペーストを、スクリーン印刷によりパターンを用いて印刷して、導電層11を覆うように第2の被覆層16を形成し、この上に更に、保護層23用の塗布液を塗布して保護層23を形成し、そこに、剥離性を有する支持フィルム21を貼り合わせて、第1の積層物を得る。他方、別の仮支持体に、粘着層28を構成する軟質外側層37用の粘着剤及び硬質内側層36用の粘着材を順次塗布し、軟質外側層37及び硬質内側層36からなる粘着層28を形成して、第2の積層物を得る。最後に、第1の積層物から仮支持体を剥がし、第1の積層物の中間層27を第2の積層物の粘着層28(硬質内側層36)と貼り合わせれば、本発明の転写フィルム20を作製することができる。なお、他の実施形態においては、粘着層28を単一の層としてもよい。 In order to form such a laminated structure, for example, first, a coating solution for the intermediate layer 27 is applied on the temporary support to form the intermediate layer 27, and then the first coating layer 15 is formed thereon. The conductive layer 11 is printed using a pattern by screen printing, and then the conductive layer 11 paste is printed on the first coating layer 15 by screen printing using a pattern plate to form the conductive layer 11. Next, the paste for the second coating layer 16 is printed using a pattern by screen printing to form the second coating layer 16 so as to cover the conductive layer 11, and a protective layer is further formed thereon. A protective layer 23 is formed by applying a coating solution for the layer 23, and a support film 21 having peelability is bonded thereto to obtain a first laminate. On the other hand, an adhesive for the soft outer layer 37 and an adhesive for the hard inner layer 36 constituting the adhesive layer 28 are sequentially applied to another temporary support, and an adhesive layer comprising the soft outer layer 37 and the hard inner layer 36 is applied. 28 is formed to obtain a second laminate. Finally, the temporary support is peeled off from the first laminate, and the intermediate layer 27 of the first laminate is bonded to the adhesive layer 28 (hard inner layer 36) of the second laminate. 20 can be made. In other embodiments, the adhesive layer 28 may be a single layer.
 支持フィルム21は、導電性パターン層8を含む積層体30と剥離性を有するものである。本実施形態では、支持フィルム21は、積層体30側と反対の面にシリコーン系やアルキド樹脂系などからなる剥離層31を有し、積層体30側の面に再剥離用の微粘着層32を有する。支持フィルム21は、施工性向上のために、エンボス加工やサンドブラスト等の粗面化処理したものであっても良い。支持フィルム21は、積層体30の遮光層6及びガラス基板3の表面への密着性を損なわないように、可撓性のある材料から構成されることが好ましく、例えば、ポリエチレン、ポリイミド、ポリエチレンテレフタレート、アクリルなどのプラスチックや紙などを使用できる。各種材料を使用した場合において、支持フィルム21は、可撓性をより一層高めるために、薄膜化されることが望ましい。例えば、材質にポリエチレンを適用した場合には、25μm以下であることが好ましい。 The support film 21 is peelable from the laminate 30 including the conductive pattern layer 8. In the present embodiment, the support film 21 has a release layer 31 made of silicone or alkyd resin on the surface opposite to the laminate 30 side, and a re-peeling slightly adhesive layer 32 on the surface of the laminate 30 side. Have The support film 21 may be subjected to roughening treatment such as embossing or sandblasting for improving workability. The support film 21 is preferably made of a flexible material so as not to impair the adhesion of the laminate 30 to the light shielding layer 6 and the surface of the glass substrate 3, for example, polyethylene, polyimide, polyethylene terephthalate. Plastics such as acrylic and paper can be used. When various materials are used, it is desirable that the support film 21 be thinned in order to further increase the flexibility. For example, when polyethylene is used as the material, it is preferably 25 μm or less.
 導電層11は、焼成後に導電性を発現するための導電性材料と、基板と熱融着して機械的強度を発現するためガラスフリットと、焼成により除去可能な有機バインダとを含有し、線状部及び給電部を有する形状に構成されている。導電性材料としては金、銀、銅等の粉体や、これらを含む合金の粉体を用いることができ、焼成後の所望の機能に応じた材料を適宜選択して使用すればよい。導電層11の焼結体を形成するという観点から、導電性に優れると共に、大気中での焼成が可能で、且つ安価である材料を選択するのが望ましく、銀、銀-パラジウム、銀-白金等の銀を主成分とした導電性材料を好適に用いることができる。 The conductive layer 11 contains a conductive material for developing conductivity after firing, a glass frit for thermally fusing with a substrate to express mechanical strength, and an organic binder that can be removed by firing, It is comprised in the shape which has a shape part and an electric power feeding part. As the conductive material, a powder of gold, silver, copper, or the like, or an alloy powder containing these can be used, and a material corresponding to a desired function after firing may be appropriately selected and used. From the viewpoint of forming a sintered body of the conductive layer 11, it is desirable to select a material that is excellent in conductivity, can be baked in the atmosphere, and is inexpensive. Silver, silver-palladium, silver-platinum For example, a conductive material containing silver as a main component can be preferably used.
 ガラスフリットは、熱溶融することによって、導電性パターン層8に機械的強度、硫酸や塩水等に対する耐薬品性を与えると共に、導電層11と被覆層15、16と融着する目的で含まれている。ガラスフリットは、焼成温度や熱収縮率などのバランスを考慮して、好適な組成のものを適宜選定して用いることができる。ガラスフリットは、例えば、ホウケイ酸ビスマス、ホウケイ酸亜鉛などの結晶化ガラス及び非晶質ガラスを必須成分として含み、必要に応じてバナジウム、マンガン、鉄、及びコバルトの少なくとも1つの酸化物を含む遷移金属酸化物やアルミナ等の添加剤を含んでいる。 The glass frit is included for the purpose of providing the conductive pattern layer 8 with mechanical strength and chemical resistance against sulfuric acid, salt water, and the like, and fusing the conductive layer 11 and the coating layers 15 and 16 by heat melting. Yes. A glass frit having a suitable composition can be appropriately selected and used in consideration of a balance such as a firing temperature and a heat shrinkage rate. The glass frit includes, for example, crystallized glass and amorphous glass such as bismuth borosilicate and zinc borosilicate as an essential component, and a transition containing at least one oxide of vanadium, manganese, iron, and cobalt as necessary. It contains additives such as metal oxide and alumina.
 本発明の導電層11に含まれる有機バインダとしては、焼成除去可能な材料であれば特に限定されない。焼成による熱分解によって除去されやすい材料としては、アクリル、メチルセルロース、ニトロセルロース、エチルセルロース、酢酸ビニル、ポリビニルプチラール、ポリビニルアセタール、ポリビニルアルコール、ポリエチレンオキサイド、ポリエステルなどの樹脂が挙げられ、これらを単独で、または混合して使用することができる。また、有機成分として、焼成前の塗膜に可撓性を付与する目的で、可塑剤を加えてもよい。可塑剤は、脂肪酸エステルやリン酸エステルなどの中から、適宜選定して用いることができる。 The organic binder contained in the conductive layer 11 of the present invention is not particularly limited as long as it is a material that can be removed by firing. Examples of materials that can be easily removed by thermal decomposition by firing include resins such as acrylic, methylcellulose, nitrocellulose, ethylcellulose, vinyl acetate, polyvinyl petital, polyvinyl acetal, polyvinyl alcohol, polyethylene oxide, and polyester. Or it can be mixed and used. Moreover, you may add a plasticizer as an organic component in order to provide flexibility to the coating film before baking. The plasticizer can be appropriately selected and used from fatty acid esters and phosphate esters.
 被覆層15,16は、黒色顔料のほか、ガラスフリットと、焼成により除去可能な有機バインダとを含む。黒色顔料は、焼成後に隠蔽性を発現し、外観を黒色に見せるための酸化クロム、酸化コバルト、酸化銅またはこれらの組み合わせたもの少なくとも1種類含む。ガラスフリットは、熱溶融することによって、被覆層15、16に機械的強度、硫酸や塩水等に対する耐薬品性を与えると共に、被覆層15、16と導電層11、遮光層6及びガラス基板3とを融着する目的で含まれている。ガラスフリット及び有機バインダとしては、導電層11に用いるものと同様のものを、適宜選定して用いることができる。 The coating layers 15 and 16 include a glass frit and an organic binder that can be removed by firing, in addition to a black pigment. The black pigment contains at least one kind of chromium oxide, cobalt oxide, copper oxide, or a combination thereof for expressing the concealability after firing and making the appearance black. The glass frit is thermally melted to give the coating layers 15 and 16 mechanical strength and chemical resistance against sulfuric acid, salt water, etc., and the coating layers 15 and 16, the conductive layer 11, the light shielding layer 6, and the glass substrate 3. Is included for the purpose of fusing. As the glass frit and the organic binder, those similar to those used for the conductive layer 11 can be appropriately selected and used.
 導電性パターン層8は、導電層11を挟むように、第1の被覆層15及び第2の被覆層16の2つの黒色層を積層することによって形成される。この態様によれば、導電層11は、2つの被覆層15、16で包囲されるため、確実に隠蔽され外観を向上させることができる。なお、導電層11の給電部14に対応する部分は、焼結後において給電部14の車内面を露出させるために、第2の被覆層16が設けられていない。被覆層15、16の線幅は導電層11の線幅よりも広いことが好ましい。好ましくは、第2の被覆層16のパターン幅が導電層11のパターン幅より0.2mm以上広い方が良い。 The conductive pattern layer 8 is formed by laminating two black layers of the first coating layer 15 and the second coating layer 16 so as to sandwich the conductive layer 11. According to this aspect, since the conductive layer 11 is surrounded by the two coating layers 15 and 16, it can be reliably concealed and the appearance can be improved. In addition, the part corresponding to the electric power feeding part 14 of the conductive layer 11 is not provided with the 2nd coating layer 16 in order to expose the vehicle inner surface of the electric power feeding part 14 after sintering. The line widths of the covering layers 15 and 16 are preferably wider than the line width of the conductive layer 11. Preferably, the pattern width of the second covering layer 16 is 0.2 mm or more wider than the pattern width of the conductive layer 11.
 粘着層28は、中間層27側に積層された硬質内側層36と、硬質内側層36の中間層27側と異なる側に積層され、ガラス基板3等の接触面となる軟質外側層37とを有する。硬質内側層36及び軟質外側層37は、遮光層6及びガラス基板3に貼り合せたときに適度な粘着性を有する焼成除去可能な有機物であれば特に限定されないが、常温でタック性を有するアクリル系、ゴム系、及びメタクリル系とアクリル系のモノマーを共重合し、所望のガラス転移温度に設定した樹脂などの粘着剤を使用できる。アクリル系モノマーとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸ステアリル及びアクリル酸2エチルヘキシル等を適用することができ、メタクリル系モノマーとしては、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸イソブチル及びメタクリル酸ステアリル等を適用することができる。また、ヒートラミネートなどで施工をする場合には、ラミネート温度で軟化する有機物を用いても良い。ガラス転移温度は、例えばメタクリル系とアクリル系のモノマーを共重合した樹脂の場合、各モノマーの配合比を変更することによって調整することができる。 The adhesive layer 28 includes a hard inner layer 36 laminated on the intermediate layer 27 side, and a soft outer layer 37 laminated on a side different from the intermediate layer 27 side of the hard inner layer 36 and serving as a contact surface of the glass substrate 3 or the like. Have. The hard inner layer 36 and the soft outer layer 37 are not particularly limited as long as they are organic materials that can be removed by baking and have appropriate tackiness when bonded to the light-shielding layer 6 and the glass substrate 3, but are acrylic having tackiness at room temperature. System, rubber, and methacrylic and acrylic monomers can be copolymerized to use a pressure sensitive adhesive such as a resin set at a desired glass transition temperature. As acrylic monomers, methyl acrylate, ethyl acrylate, butyl acrylate, stearyl acrylate and 2-ethylhexyl acrylate can be applied. As methacrylic monomers, ethyl methacrylate, butyl methacrylate, methacrylic acid are applicable. Isobutyl, stearyl methacrylate and the like can be applied. Moreover, when constructing by heat lamination etc., you may use the organic substance which softens at the lamination temperature. For example, in the case of a resin obtained by copolymerizing methacrylic and acrylic monomers, the glass transition temperature can be adjusted by changing the mixing ratio of each monomer.
 硬質内側層36は、ガラス転移温度が-30℃以上0℃以下の高分子材料から形成されている。また、他のパラメータを用いて規定すると、硬質内側層36は、重量平均分子量が30万以上150万以下の高分子材料である。 The hard inner layer 36 is formed of a polymer material having a glass transition temperature of −30 ° C. or higher and 0 ° C. or lower. When defined using other parameters, the hard inner layer 36 is a polymer material having a weight average molecular weight of 300,000 to 1,500,000.
 軟質外側層37は、ガラス転移温度が、-20℃以下であり、かつ硬質内側層36に比較して10℃以上低い高分子材料から形成されている。また、他のパラメータを用いて規定すると、硬質内側層36は、重量平均分子量が7万以上20万以下の高分子材料である。 The soft outer layer 37 is made of a polymer material having a glass transition temperature of −20 ° C. or lower and lower by 10 ° C. or more than the hard inner layer 36. When defined using other parameters, the hard inner layer 36 is a polymer material having a weight average molecular weight of 70,000 to 200,000.
 硬質内側層36の厚さは、2μm以上7μmであり、好ましくは4μm以上7μm以下である。軟質外側層37の厚さは、3μm以上10μm以下であり、好ましくは7μm以上10μm以下である。硬質内側層36及び軟質外側層37を合わせた膜厚が2μm未満だと粘着力が不足し転写性が低下し、10μmよりも厚くなると熱分解ガスの発生量が多くなると共に、分解が完了するまでに要する時間が長くなるため導電性パターン層8及び遮光層6に欠陥が生じやすく焼成不良になりやすい。 The thickness of the hard inner layer 36 is 2 μm or more and 7 μm, preferably 4 μm or more and 7 μm or less. The thickness of the soft outer layer 37 is 3 μm or more and 10 μm or less, preferably 7 μm or more and 10 μm or less. If the combined thickness of the hard inner layer 36 and the soft outer layer 37 is less than 2 μm, the adhesive force is insufficient and the transferability is lowered, and if it is thicker than 10 μm, the generation amount of pyrolysis gas increases and the decomposition is completed. Therefore, the conductive pattern layer 8 and the light shielding layer 6 are likely to be defective, and are likely to be defective in firing.
 粘着層28は、遮光層6の表面に確実に密着できるように、遮光層6の表面粗さにおける最大高さRmaxよりも硬質内側層36と軟質外側層37とを合わせた膜厚が大きく形成されていることが好ましい。なお、軟質外側層37の膜厚が、遮光層6の表面粗さにおける最大高さRmaxよりも大きく形成されていてもよい。粘着層28の膜厚は、例えば2μm~10μmである。密着性の観点からは、粘着層28の膜厚が7μm~10μmであることが好ましい。膜厚が2μm未満だと粘着力が不足し転写性が低下し、10μmよりも厚くなると熱分解ガスの発生量が多くなると共に、分解が完了するまでに要する時間が長くなるため導電性パターン層8及び遮光層6に欠陥が生じやすく焼成不良になりやすい。 The pressure-sensitive adhesive layer 28 is formed so as to have a larger film thickness of the hard inner layer 36 and the soft outer layer 37 than the maximum height Rmax in the surface roughness of the light shielding layer 6 so that the adhesive layer 28 can be securely adhered to the surface of the light shielding layer 6. It is preferable that The film thickness of the soft outer layer 37 may be larger than the maximum height Rmax in the surface roughness of the light shielding layer 6. The thickness of the adhesive layer 28 is, for example, 2 μm to 10 μm. From the viewpoint of adhesion, the thickness of the adhesive layer 28 is preferably 7 μm to 10 μm. If the film thickness is less than 2 μm, the adhesive strength is insufficient and transferability is lowered. If the film thickness is greater than 10 μm, the amount of pyrolysis gas increases, and the time required for the completion of the decomposition increases. 8 and the light-shielding layer 6 are likely to be defective, and are likely to be defective in firing.
 また、粘着層28(硬質内側層36及び軟質外側層37)を構成する有機物は、遮光層6に含まれるガラスフリットのガラス転移点よりも低い熱分解温度を有し、粘着層28を構成する有機物の熱分解温度は、遮光層6に含まれるガラスフリットのガラス転移点よりも30℃以上、より好ましくは50℃以上低いことが好ましい。例えば、遮光層6に含まれるガラスフリットのガラス転移点が550℃である場合には、粘着層28の熱分解温度は500℃以下にするとよい。 The organic matter constituting the adhesive layer 28 (the hard inner layer 36 and the soft outer layer 37) has a thermal decomposition temperature lower than the glass transition point of the glass frit contained in the light shielding layer 6, and constitutes the adhesive layer 28. The thermal decomposition temperature of the organic substance is preferably 30 ° C. or more, more preferably 50 ° C. or more lower than the glass transition point of the glass frit contained in the light shielding layer 6. For example, when the glass transition point of the glass frit contained in the light shielding layer 6 is 550 ° C., the thermal decomposition temperature of the adhesive layer 28 is preferably 500 ° C. or less.
 粘着層28は、導電性パターン層8及び遮光層6の加熱(焼成)時に、比較的速やかに熱分解するように、厚さが10μm以下である。熱分解の観点からは、粘着層28の膜厚が7μm以下であることが好ましい。上述したように、遮光層6表面への密着性を考慮すると、粘着層28の膜厚は、2μm以上10μm以下、より好ましくは2μm以上7μm以下である。 The pressure-sensitive adhesive layer 28 has a thickness of 10 μm or less so that the conductive pattern layer 8 and the light shielding layer 6 are heated (fired) relatively quickly and thermally decomposed. From the viewpoint of thermal decomposition, the thickness of the adhesive layer 28 is preferably 7 μm or less. As described above, when the adhesiveness to the surface of the light shielding layer 6 is taken into consideration, the thickness of the adhesive layer 28 is 2 μm or more and 10 μm or less, more preferably 2 μm or more and 7 μm or less.
 粘着層28は、導電性パターン層8を覆うように、剥離性を有する支持フィルム21の全面に形成してもよく、或いは導電性パターン層8と同様のパターンを形成するようにしてもよい。本実施形態では、粘着層28は支持フィルム21の全面に形成されるものとする。 The adhesive layer 28 may be formed on the entire surface of the support film 21 having peelability so as to cover the conductive pattern layer 8, or a pattern similar to that of the conductive pattern layer 8 may be formed. In the present embodiment, the adhesive layer 28 is formed on the entire surface of the support film 21.
 中間層27及び保護層23は、選択的に付加し得る層であって、本発明に必須の構成ではない。中間層27は、粘着層28の粘着剤が含有する溶剤や有機物が導電性パターン層8に浸み込むことを防止するために、導電性パターン層8と粘着層28との間に設けられる。中間層27に用いる材料としては、焼成除去可能な有機物であれば特に限定されず、導電層11や被覆層15、16に用いられる有機バインダと同様なものであってよく、特にガラス転移温度が50℃以上の高分子樹脂を好適に使用することができる。例えば、中間層27は、メタクリル系とアクリル系のモノマーを共重合し、所望のガラス転移温度に設定したものであってよい。メタクリル系及びアクリル系モノマーは、粘着層28について例示したものについての配合比を変更して適用し得る。また、中間層27を構成する有機物は、粘着層28と同様に、遮光層6に含まれるガラスフリットのガラス転移点よりも低い熱分解温度を有し、中間層27を構成する有機物の熱分解温度は、遮光層6に含まれるガラスフリットのガラス転移点よりも30℃以上、より好ましくは50℃以上低いことが好ましい。例えば、中間層27に含まれるガラスフリットのガラス転移点が550℃である場合には、中間層27を構成する有機物の熱分解温度は500℃にするとよい。 The intermediate layer 27 and the protective layer 23 are layers that can be selectively added, and are not essential to the present invention. The intermediate layer 27 is provided between the conductive pattern layer 8 and the adhesive layer 28 in order to prevent the solvent or organic matter contained in the adhesive of the adhesive layer 28 from entering the conductive pattern layer 8. The material used for the intermediate layer 27 is not particularly limited as long as it is an organic substance that can be removed by firing, and may be the same as the organic binder used for the conductive layer 11 and the coating layers 15 and 16, and particularly has a glass transition temperature. A polymer resin having a temperature of 50 ° C. or higher can be preferably used. For example, the intermediate layer 27 may be formed by copolymerizing methacrylic and acrylic monomers and setting a desired glass transition temperature. Methacrylic and acrylic monomers can be applied by changing the blending ratios of those exemplified for the adhesive layer 28. Similarly to the adhesive layer 28, the organic matter constituting the intermediate layer 27 has a thermal decomposition temperature lower than the glass transition point of the glass frit contained in the light shielding layer 6, and the organic matter constituting the intermediate layer 27 is thermally decomposed. The temperature is preferably 30 ° C. or more, more preferably 50 ° C. or more lower than the glass transition point of the glass frit contained in the light shielding layer 6. For example, when the glass transition point of the glass frit contained in the intermediate layer 27 is 550 ° C., the thermal decomposition temperature of the organic matter constituting the intermediate layer 27 is preferably 500 ° C.
 中間層27は、導電性パターン層8及び遮光層6の加熱(焼成)時に、比較的速やかに熱分解するように、できるだけ薄膜化するのが好ましく、厚さが10μm以下、より好ましくは7μm以下、更に好ましくは5μm以下である。一方、中間層27は、バリア効果を安定にするために0.5μm以上、より好ましくは1μm以上である。そのため、粘着層28の厚さは、1μm以上10μm以下、より好ましくは1μm以上7μm以下、更に好ましくは1μm以上5μm以下である。 The intermediate layer 27 is preferably made as thin as possible so that the conductive pattern layer 8 and the light shielding layer 6 are heated (fired) relatively quickly, and the thickness is preferably 10 μm or less, more preferably 7 μm or less. More preferably, it is 5 μm or less. On the other hand, the intermediate layer 27 is 0.5 μm or more, more preferably 1 μm or more in order to stabilize the barrier effect. Therefore, the thickness of the adhesive layer 28 is 1 μm or more and 10 μm or less, more preferably 1 μm or more and 7 μm or less, and further preferably 1 μm or more and 5 μm or less.
 中間層27は、導電性パターン層8を覆うように、剥離性を有する支持フィルム21の全面に形成しても良く、導電性パターン層8と同様のパターンを形成するようにしてもよい。本実施形態では、中間層27は支持フィルム21の全面に形成されるものとする。 The intermediate layer 27 may be formed on the entire surface of the support film 21 having peelability so as to cover the conductive pattern layer 8, or a pattern similar to that of the conductive pattern layer 8 may be formed. In the present embodiment, the intermediate layer 27 is formed on the entire surface of the support film 21.
 保護層23は、基板に転写した焼成前の導電性パターン層8に、異物が付着したり傷が発生したりするのを防ぐ等の目的で、導電性パターン層8を覆うように設けられる。保護層23に用いる材料としては、焼成除去可能な有機物であれば特に限定されず、導電層11や被覆層15、16に用いられる有機物と同様のものであってよい。例えば、保護層23は、メタクリル系とアクリル系のモノマーを共重合し、所望のガラス転移温度に設定したものであってよい。メタクリル系及びアクリル系モノマーは、粘着層28について例示したものについて配合比を変更して適用し得る。また、保護層23を構成する有機物は、粘着層28と同様に、遮光層6に含まれるガラスフリットのガラス転移点よりも低い熱分解温度を有する材料から形成されており、保護層23を構成する有機物の熱分解温度は、遮光層6に含まれるガラスフリットのガラス転移点よりも30℃以上、より好ましくは50℃以上低いことが好ましい。例えば、保護層23に含まれるガラスフリットのガラス転移点が550℃である場合には、中間層27の熱分解温度は500℃にするとよい。 The protective layer 23 is provided so as to cover the conductive pattern layer 8 for the purpose of preventing foreign matters from attaching or scratching to the conductive pattern layer 8 before firing transferred to the substrate. The material used for the protective layer 23 is not particularly limited as long as it is an organic substance that can be removed by firing, and may be the same as the organic substance used for the conductive layer 11 and the coating layers 15 and 16. For example, the protective layer 23 may be formed by copolymerizing methacrylic and acrylic monomers and setting a desired glass transition temperature. Methacrylic monomers and acrylic monomers can be applied to those exemplified for the adhesive layer 28 by changing the blending ratio. The organic material constituting the protective layer 23 is formed of a material having a thermal decomposition temperature lower than the glass transition point of the glass frit contained in the light shielding layer 6, similarly to the adhesive layer 28, and constitutes the protective layer 23. The thermal decomposition temperature of the organic substance is preferably 30 ° C. or more, more preferably 50 ° C. or more lower than the glass transition point of the glass frit contained in the light shielding layer 6. For example, when the glass transition point of the glass frit contained in the protective layer 23 is 550 ° C., the thermal decomposition temperature of the intermediate layer 27 may be 500 ° C.
 保護層23は、導電性パターン層8及び遮光層6の加熱(焼成)時に、比較的速やかに熱分解するように、できるだけ薄膜化するのが好ましく、厚さが10μm以下、より好ましくは7μm以下である。なお、保護層23は、導電性パターン層8を覆うことができるように3μm以上であることが好ましい。そのため、保護層23の厚さは、3μm以上10μm以下、より好ましくは3μm以上6μm以下である。保護層23は、導電性パターン層8を覆うように、剥離性を有する支持フィルム21の全面に形成しても良く、導電性パターン層8と同様のパターンを形成するようにしてもよい。 The protective layer 23 is preferably made as thin as possible so that the conductive pattern layer 8 and the light shielding layer 6 are heated (fired) relatively quickly, and the thickness is preferably 10 μm or less, more preferably 7 μm or less. It is. The protective layer 23 is preferably 3 μm or more so that the conductive pattern layer 8 can be covered. Therefore, the thickness of the protective layer 23 is 3 μm or more and 10 μm or less, more preferably 3 μm or more and 6 μm or less. The protective layer 23 may be formed on the entire surface of the support film 21 having peelability so as to cover the conductive pattern layer 8, or a pattern similar to that of the conductive pattern layer 8 may be formed.
 図4に示すように、転写フィルム20の保管形態としては、リール形態41、スタック形態42及び単層形態43を取り得る。リール形態41では、支持フィルム21が帯状に形成され、支持フィルム21の長手方向に沿って、導電性パターン層8、保護層23、中間層27及び粘着層28からなる積層体30が断続的に支持フィルム21上に支持されている。積層体30は、支持フィルム21の外面及び内面のいずれに支持されていてもよい。なお、他の実施形態では、保護層23、中間層27及び粘着層28を支持フィルム21に沿って連続させ、導電性パターン層8のみを支持フィルム21の長手方向に断続的に配置してもよい。導電性パターン層8は、支持フィルム21の長手方向に沿って複数個が配置されている。転写フィルム20は、粘着層28が支持フィルム21の背面(保護層23側と異なる側)が接触するようにして、リール44に巻き取られた形態となっている。使用時には、連続した転写フィルム20の端部を引き出し、粘着層28を露出させて使用する。なお、導電性パターン層8を含む1枚の独立した転写フィルム20とすることができるように、支持フィルム21にミシン目等の加工を行ってもよい。 As shown in FIG. 4, the storage form of the transfer film 20 can take a reel form 41, a stack form 42, and a single layer form 43. In the reel form 41, the support film 21 is formed in a band shape, and the laminate 30 including the conductive pattern layer 8, the protective layer 23, the intermediate layer 27, and the adhesive layer 28 is intermittently formed along the longitudinal direction of the support film 21. It is supported on the support film 21. The laminate 30 may be supported on either the outer surface or the inner surface of the support film 21. In other embodiments, the protective layer 23, the intermediate layer 27, and the adhesive layer 28 may be continuous along the support film 21, and only the conductive pattern layer 8 may be intermittently disposed in the longitudinal direction of the support film 21. Good. A plurality of conductive pattern layers 8 are arranged along the longitudinal direction of the support film 21. The transfer film 20 is wound around a reel 44 such that the adhesive layer 28 contacts the back surface of the support film 21 (side different from the protective layer 23 side). In use, the end of the continuous transfer film 20 is pulled out and the adhesive layer 28 is exposed for use. In addition, you may process perforation etc. to the support film 21 so that it can be set as the independent transfer film 20 containing the electroconductive pattern layer 8. FIG.
 スタック形態42では、各転写フィルム20は、1つの導電性パターン層8を含むように予め切断され、各転写フィルム20の粘着層28が他の転写フィルム20の支持フィルム21の背面に接触するようにして積層されている。最下層に位置する粘着層28には、粘着層28に対して剥離可能なシリコーン層を備えたセパレータフィルム46が貼付されている。使用時には、最上層に位置する転写フィルム20を他の一層下の転写フィルム20から剥離し、粘着層28を露出させて使用する。 In the stack form 42, each transfer film 20 is cut in advance so as to include one conductive pattern layer 8, and the adhesive layer 28 of each transfer film 20 is in contact with the back surface of the support film 21 of the other transfer film 20. Are stacked. A separator film 46 having a silicone layer that can be peeled off from the adhesive layer 28 is attached to the adhesive layer 28 located at the lowermost layer. At the time of use, the transfer film 20 located in the uppermost layer is peeled off from the other lower transfer film 20, and the adhesive layer 28 is exposed for use.
 単層形態43では、各転写フィルム20は、1つの導電性パターン層8を含むように予め切断され、各転写フィルム20の粘着層28には、粘着層28に対して剥離可能なシリコーン層を備えたセパレータフィルム46が貼付されている。使用時には、転写フィルム20の粘着層28からセパレータフィルム46を剥離し、粘着層28を露出させて使用する。 In the single layer form 43, each transfer film 20 is cut in advance so as to include one conductive pattern layer 8, and the adhesive layer 28 of each transfer film 20 is provided with a silicone layer that can be peeled off from the adhesive layer 28. The provided separator film 46 is affixed. In use, the separator film 46 is peeled off from the adhesive layer 28 of the transfer film 20 to expose the adhesive layer 28.
 リール形態41やスタック形態42は、単層形態43に比べてセパレータフィルム46を一枚ごとの転写フィルム20に設けなくてよい点で利点があるが、重なり合う導電性パターン層8間において粘着層28が圧縮力を受けるという欠点がある。 The reel form 41 and the stack form 42 are advantageous in that it is not necessary to provide the separator film 46 on each transfer film 20 as compared with the single layer form 43, but the adhesive layer 28 is interposed between the overlapping conductive pattern layers 8. Has the disadvantage of receiving compressive force.
 以上のように構成した転写フィルム20は、粘着層28が硬質内側層36と軟質外側層37とから構成されているため、硬質内側層36が圧縮力に抗して、粘着層28を所定の厚さ以上に維持することができる。そのため、転写フィルム20をリール形態41やスタック形態42で保管しても、硬質内側層36が重なり合う導電性パターン層8間において導電性パターン層8から加わる圧力に抗し、膜厚を維持することができる。これにより、粘着層28の厚さは、粘着性を発揮するのに必要な2μm以上に維持することができる。また、硬質内側層36に加えて、ガラス基板3等の接着対象物に対する接触面として硬質内側層36よりも軟質な軟質外側層37を設けたため、接着対象物の表面の表面に追従してより一層接着できるようになっている。 In the transfer film 20 configured as described above, since the adhesive layer 28 is composed of the hard inner layer 36 and the soft outer layer 37, the hard inner layer 36 resists the compressive force, and the adhesive layer 28 is It can be maintained above the thickness. Therefore, even if the transfer film 20 is stored in the reel form 41 or the stack form 42, the film thickness is maintained against the pressure applied from the conductive pattern layer 8 between the conductive pattern layers 8 with which the hard inner layer 36 overlaps. Can do. Thereby, the thickness of the adhesive layer 28 can be maintained at 2 μm or more necessary for exhibiting adhesiveness. In addition to the hard inner layer 36, the soft outer layer 37, which is softer than the hard inner layer 36, is provided as a contact surface for the bonding target such as the glass substrate 3, so that the surface of the surface of the bonding target is followed. It can be further bonded.
 また、遮光層6の表面粗さにおける最大高さRmaxよりも膜厚を厚くしたため、粘着層28が遮光層6の表面の凹凸に追従して密着することができ、確実に粘着できる。また、支持フィルム21の可撓性を高めたことによって、支持フィルム21に支持された状態においても積層体30の可撓性が維持され、粘着層28が遮光層6の表面の凹凸や遮光層6の端縁部7に追従して密着することができる。 Further, since the film thickness is made thicker than the maximum height Rmax in the surface roughness of the light shielding layer 6, the adhesive layer 28 can be brought into close contact with the surface irregularities of the light shielding layer 6 and can be reliably adhered. Further, by increasing the flexibility of the support film 21, the flexibility of the laminate 30 is maintained even when supported by the support film 21, and the pressure-sensitive adhesive layer 28 has unevenness on the surface of the light shielding layer 6 and the light shielding layer. 6 can follow and adhere to the edge 7.
 (導電性パターン層付き窓ガラスの製造方法)
 図5及び図6を参照し、上述した転写フィルム20を用いて、ガラス基板3上に遮光層6及び導電性パターン層8を形成する第1の手順を説明する。
(Method for producing window glass with conductive pattern layer)
With reference to FIG.5 and FIG.6, the 1st procedure which forms the light shielding layer 6 and the electroconductive pattern layer 8 on the glass substrate 3 using the transfer film 20 mentioned above is demonstrated.
 最初に、図5(A)に示すように、ガラス基板3を準備する。ガラス基板3は、一般的なフロート板ガラスを適用することができ、その軟化点は650~700℃であってよい。 First, as shown in FIG. 5A, a glass substrate 3 is prepared. As the glass substrate 3, a general float plate glass can be applied, and the softening point thereof may be 650 to 700 ° C.
 次の工程では、図5(B)に示すように、スクリーン印刷によって、着色セラミックスペースト(遮光ペースト)をガラス基板3の表面上に所定のパターンで印刷し、乾燥させて遮光層6を形成する。着色セラミックスペーストは、顔料及びガラスフリットを主要成分とするものであり、必要に応じてエチルセルロース等の樹脂や、パインオイル等の有機溶剤を含有する。 In the next step, as shown in FIG. 5B, a colored ceramic paste (light-shielding paste) is printed in a predetermined pattern on the surface of the glass substrate 3 by screen printing and dried to form the light-shielding layer 6. . The colored ceramic paste contains pigments and glass frit as main components, and contains a resin such as ethyl cellulose and an organic solvent such as pine oil as necessary.
 顔料は、酸化銅、酸化クロム、酸化鉄及び酸化マンガンの少なくとも一種を含むものであることが好ましく、これらを単独で、又は複数種を混合して、或いはその他の顔料と混合して用いてもよい。ガラスフリットは、ホウケイ酸ビスマス、ホウケイ酸亜鉛などの結晶化ガラス及び非晶質ガラスを必須成分として含み、必要に応じてバナジウム、マンガン、鉄、及びコバルトの少なくとも1つの酸化物を含む遷移金属酸化物やアルミナ等の添加剤を含んでいる。 The pigment preferably contains at least one of copper oxide, chromium oxide, iron oxide and manganese oxide, and these may be used alone, in combination of plural kinds, or in combination with other pigments. Glass frit contains transitional metal oxidation containing crystallized glass and amorphous glass such as bismuth borosilicate and zinc borosilicate as essential components, and optionally containing at least one oxide of vanadium, manganese, iron, and cobalt. And additives such as alumina.
 着色セラミックスペーストにおける各成分の含有量は、例えば、顔料が10~35質量%、ガラスフリットが50~70質量%、樹脂が5~20質量%、有機溶媒が5~30質量%である。着色セラミックスペーストにおける各成分の含有量は、乾燥後の遮光層6のガラス基板3上における端縁部7に形成される傾斜面9と、ガラス基板3の表面とのなす角度θが、0°より大きく10°以下、より好ましくは0°より大きく5°以下となるように設定されることが望ましい。傾斜面9とガラス基板3の表面とのなす角度θは、着色セラミックスペーストの粘度が低いほど小さくなるため、遮光層6の形態を維持できる範囲で、樹脂の質量%を低下させ、有機溶媒の質量%を増大させるとよい。また、粘度の低い樹脂を選択するとよい。 The content of each component in the colored ceramic paste is, for example, 10 to 35 mass% for pigment, 50 to 70 mass% for glass frit, 5 to 20 mass% for resin, and 5 to 30 mass% for organic solvent. The content of each component in the colored ceramic paste is such that the angle θ formed between the inclined surface 9 formed on the edge 7 on the glass substrate 3 of the light shielding layer 6 after drying and the surface of the glass substrate 3 is 0 °. It is desirable that the angle is set to be greater than 10 °, more preferably greater than 0 ° and less than 5 °. Since the angle θ formed between the inclined surface 9 and the surface of the glass substrate 3 is smaller as the viscosity of the colored ceramic paste is lower, the mass% of the resin is reduced within a range in which the form of the light shielding layer 6 can be maintained, The mass% may be increased. A resin having a low viscosity may be selected.
 また、着色セラミックスペーストにおける各成分の含有量は、乾燥後の遮光層6の表面粗さの最大高さRmaxが10μm以下、より好ましくは5μm以下となるように、設定されていることが好ましい。最大高さRmaxは、着色セラミックスペーストの粘度が低いほど小さくなる。 Further, the content of each component in the colored ceramic paste is preferably set so that the maximum height Rmax of the surface roughness of the light-shielding layer 6 after drying is 10 μm or less, more preferably 5 μm or less. The maximum height Rmax decreases as the viscosity of the colored ceramic paste decreases.
 スクリーン印刷は、100~300メッシュ程度のポリエステルスクリーン等を用いて行えばよく、乾燥は150℃で10分程度行えばよい。乾燥によって、遮光層6中の有機溶剤が蒸発し、遮光層6は蒸発乾固される。 Screen printing may be performed using a polyester screen of about 100 to 300 mesh, and drying may be performed at 150 ° C. for about 10 minutes. By drying, the organic solvent in the light shielding layer 6 is evaporated, and the light shielding layer 6 is evaporated to dryness.
 次の工程では、上述した構成を有する転写フィルム20を準備する。そして、続く工程では、図5(C)及び図6に示すように、転写フィルム20を遮光層6が形成されたガラス基板3に、その粘着層28によって貼り付ける。転写フィルム20は、導電性パターン層8が遮光層6のガラス基板3の表面上における端縁部7を横切る(跨ぐ)ように配置され、粘着層28は遮光層6及びガラス基板3の表面に粘着する。なお、他の実施形態では、転写フィルム20が遮光層6の表面上のみに位置するように貼り付けてもよい。 In the next step, a transfer film 20 having the above-described configuration is prepared. Then, in the subsequent step, as shown in FIGS. 5C and 6, the transfer film 20 is attached to the glass substrate 3 on which the light shielding layer 6 is formed by the adhesive layer 28. The transfer film 20 is disposed so that the conductive pattern layer 8 crosses over the edge 7 on the surface of the glass substrate 3 of the light shielding layer 6, and the adhesive layer 28 is disposed on the surfaces of the light shielding layer 6 and the glass substrate 3. Stick. In other embodiments, the transfer film 20 may be attached so as to be located only on the surface of the light shielding layer 6.
 次の工程では、図5(D)に示すように、粘着層28と遮光層6及びガラス基板3の表面との密着性を高めるために、転写フィルム20の支持フィルム21の背面をローラ50でガラス基板3側へと押圧する。ローラ50の表面の材質は、特に限定しないが、柔軟性を有するゴム、シリコーン材料や樹脂材料であることが好ましい。ローラ50によって転写フィルム20に加える圧力は、積層体30が圧壊(座屈)しない範囲で大きいほど好ましい。ローラ50による押圧は、遮光層6の端縁部7の隅部に粘着層28が回り込むようにするために、遮光層6の端縁部7に対応する部分に特に圧力が加わるようにすることが好ましい。 In the next step, as shown in FIG. 5D, in order to improve the adhesion between the adhesive layer 28, the light shielding layer 6 and the surface of the glass substrate 3, the back surface of the support film 21 of the transfer film 20 is covered with a roller 50. Press toward the glass substrate 3 side. The material of the surface of the roller 50 is not particularly limited, but is preferably a flexible rubber, silicone material, or resin material. The pressure applied to the transfer film 20 by the roller 50 is preferably as large as possible so long as the laminate 30 is not crushed (buckled). The pressure by the roller 50 is such that pressure is applied particularly to the portion corresponding to the edge 7 of the light shielding layer 6 so that the adhesive layer 28 wraps around the corner of the edge 7 of the light shielding layer 6. Is preferred.
 次の工程では、図5(E)に示すように、転写フィルム20の支持フィルム21を保護層23から剥離する。 In the next step, the support film 21 of the transfer film 20 is peeled from the protective layer 23 as shown in FIG.
 次の工程では、図5(F)に示すように、転写フィルム20の保護層23の背面を加熱したローラ51でガラス基板3側へと押圧し、粘着層28と遮光層6及びガラス基板3の表面との密着性を高めるエイジング処理を行う。エイジング処理は、ローラ51の温度を100℃以上に加熱し、約10分間押圧を行う。押圧は、圧力を0.5MPaとし、ローラ51を保護層23に沿って10mm/秒で移動させることによって行うとよい。このエイジング処理によって、積層体30を構成する保護層23、中間層27及び粘着層28が軟化し、粘着層28が遮光層6により一層密着する共に、遮光層6の端縁部7の隅部に回り込むようになる。 In the next step, as shown in FIG. 5 (F), the back surface of the protective layer 23 of the transfer film 20 is pressed to the glass substrate 3 side with a heated roller 51, and the adhesive layer 28, the light shielding layer 6, and the glass substrate 3 are pressed. An aging treatment is performed to increase the adhesion with the surface of the material. In the aging process, the temperature of the roller 51 is heated to 100 ° C. or more and pressed for about 10 minutes. The pressing may be performed by setting the pressure to 0.5 MPa and moving the roller 51 along the protective layer 23 at 10 mm / second. By this aging treatment, the protective layer 23, the intermediate layer 27, and the adhesive layer 28 constituting the laminate 30 are softened, and the adhesive layer 28 is further adhered to the light shielding layer 6, and the corner portion of the edge portion 7 of the light shielding layer 6 is formed. To get around.
 ローラ51の表面の材質は、特に限定しないが、保護層23に粘着せず、柔軟性を有するシリコーン材料であることが好ましい。ローラ51によって転写フィルム20に加える圧力は、粘着層28と遮光層6及びガラス基板3の表面との密着性を高めるために、積層体30が圧壊(座屈)しない範囲で大きいほど好ましい。ローラ51による押圧は、遮光層6の端縁部7の隅部に粘着層28が回り込むようにするために、遮光層6の端縁部7に対応する部分に特に圧力が加わるようにすることが好ましい。この保護層23の背面を押圧する工程は、支持フィルム21の背面を押圧する工程よりも、粘着層28を遮光層6に密着させる効果が高い。支持フィルム21は、積層体30よりも硬いため、支持フィルム21を取り除くことで積層体30の遮光層6への追従性を高めることができるためである。 The material of the surface of the roller 51 is not particularly limited, but is preferably a silicone material that does not adhere to the protective layer 23 and has flexibility. The pressure applied to the transfer film 20 by the roller 51 is preferably as large as possible so that the laminate 30 is not crushed (buckled) in order to enhance the adhesion between the adhesive layer 28, the light shielding layer 6 and the surface of the glass substrate 3. The pressing by the roller 51 is to apply pressure particularly to the portion corresponding to the edge 7 of the light shielding layer 6 so that the adhesive layer 28 goes around the corner of the edge 7 of the light shielding layer 6. Is preferred. The step of pressing the back surface of the protective layer 23 has a higher effect of bringing the adhesive layer 28 into close contact with the light shielding layer 6 than the step of pressing the back surface of the support film 21. This is because the support film 21 is harder than the laminated body 30, and thus the followability of the laminated body 30 to the light shielding layer 6 can be improved by removing the support film 21.
 上述した、支持フィルム21の剥離後のエイジング処理工程は、付加的な工程であるため、他の実施形態においては、実施しなくてもよい。 Since the above-described aging treatment process after peeling of the support film 21 is an additional process, it may not be performed in other embodiments.
 次の工程では、遮光層6及び積層体30が積層されたガラス基板3の加熱処理(焼成)を行い、図5(G)に示すように、導電性パターン層8を遮光層6及びガラス基板3上に融着させ、焼結後の導電性パターン層8を形成する。加熱処理は、焼成温度550~700℃で1~20分間行う。より好ましくは、加熱処理は、焼成温度550~650℃で1~10分間行う。この焼成は、ガラス板の曲げ加工や必要に応じて強化処理と同時に行ってもよい。加熱処理の後は、ガラス基板3に歪み(透視及び反射)が発生或いは残存しないように、ガラス基板3の徐冷(冷却速度を緩和する操作)を行う。 In the next step, heat treatment (firing) is performed on the glass substrate 3 on which the light shielding layer 6 and the laminate 30 are laminated, and as shown in FIG. 5G, the conductive pattern layer 8 is replaced with the light shielding layer 6 and the glass substrate. Then, the conductive pattern layer 8 after sintering is formed. The heat treatment is performed at a firing temperature of 550 to 700 ° C. for 1 to 20 minutes. More preferably, the heat treatment is performed at a firing temperature of 550 to 650 ° C. for 1 to 10 minutes. This baking may be performed simultaneously with the bending process of the glass plate and, if necessary, the strengthening treatment. After the heat treatment, the glass substrate 3 is gradually cooled (an operation for relaxing the cooling rate) so that distortion (perspective and reflection) is not generated or remains in the glass substrate 3.
 この加熱処理の際、遮光層6、保護層23、導電層11、被覆層15、16、中間層27及び粘着層28に含まれる有機物は揮発または燃焼して分解する。保護層23、中間層27及び粘着層28の分解が進むにつれて、導電性パターン層8は、遮光層6及びガラス基板3の表面に接近し、最終的に第1の被覆層15において遮光層6及びガラス基板3の表面に接触する。続いて、遮光層6、導電層11及び被覆層15、16に含まれるガラスフリットが、溶融し、互いに融着する。ガラスフリットの流動点は300~700℃である。また、ガラス基板3の流動点は850℃以上であり、焼成において流動することはないが、曲げ加工可能な程度に軟化するので、ガラス基板3と遮光層6、導電層11及び被覆層15、16とは強固に結合され、互いの密着性も向上する。 During the heat treatment, organic substances contained in the light shielding layer 6, the protective layer 23, the conductive layer 11, the coating layers 15 and 16, the intermediate layer 27, and the adhesive layer 28 are volatilized or burned and decomposed. As the decomposition of the protective layer 23, the intermediate layer 27, and the adhesive layer 28 proceeds, the conductive pattern layer 8 approaches the surface of the light shielding layer 6 and the glass substrate 3, and finally the light shielding layer 6 in the first covering layer 15. And it contacts the surface of the glass substrate 3. Subsequently, the glass frit contained in the light shielding layer 6, the conductive layer 11, and the coating layers 15 and 16 is melted and fused to each other. The pour point of the glass frit is 300 to 700 ° C. Further, the glass substrate 3 has a pour point of 850 ° C. or higher and does not flow in firing, but is softened to the extent that it can be bent. Therefore, the glass substrate 3 and the light shielding layer 6, the conductive layer 11 and the coating layer 15 16 is firmly bonded to each other, and the mutual adhesion is improved.
 この加熱処理における温度は、最初に、粘着層28、中間層27及び保護層23に含まれる有機物の熱分解温度以上であり、かつ遮光層6に含まれるガラスフリットのガラス点移転以下の所定温度に昇温した後、この温度を例えば1~5分といった所定期間維持し、その後に遮光層6に含まれるガラスフリットのガラス点移転以上の温度に昇温するようにしてもよい。このように昇温することによって、遮光層6に含まれるガラスフリットの溶融が開始する前に、粘着層28、中間層27及び保護層23を確実に分解することができる。 First, the temperature in this heat treatment is a predetermined temperature that is equal to or higher than the thermal decomposition temperature of the organic matter contained in the adhesive layer 28, the intermediate layer 27, and the protective layer 23 and less than or equal to the glass point transfer of the glass frit contained in the light shielding layer 6. After the temperature is raised, the temperature may be maintained for a predetermined period of time, for example, 1 to 5 minutes, and then raised to a temperature higher than the glass point transfer of the glass frit contained in the light shielding layer 6. By raising the temperature in this way, the adhesive layer 28, the intermediate layer 27, and the protective layer 23 can be reliably decomposed before the glass frit contained in the light shielding layer 6 starts to melt.
 以上に説明した製造方法によれば、積層体30を遮光層6及びガラス基板3上に貼り付け、支持フィルム21を剥離した後に、粘着層28を軟化させるべく加熱処理を行うため、粘着層28は遮光層6の表面及び端縁部7の形状により一層追従し、密着することができる。支持フィルム21は、積層体30よりも可撓性が低く、積層体30の撓みを抑制する虞があるため、この支持フィルム21を取り除いた状態では、粘着層28は遮光層6等により一層追従して撓むことができるためである。同様に、支持フィルム21を剥離した後に、積層体30をガラス基板3に押圧する工程によっても、粘着層28と遮光層6及びガラス基板3との密着性を高めることができる。粘着層28と遮光層6及びガラス基板3との密着性が高まることによって、積層体30を焼成した後の、導電性パターン層8と遮光層6及びガラス基板3との焼結不良や、導電性パターン層8と遮光層6及びガラス基板3との間への気泡の噛み込みが抑制される。 According to the manufacturing method described above, the laminate 30 is attached to the light shielding layer 6 and the glass substrate 3, and the support film 21 is peeled off, and then the heat treatment is performed to soften the adhesive layer 28. Can follow and adhere more closely to the surface of the light shielding layer 6 and the shape of the edge 7. Since the support film 21 is less flexible than the laminated body 30 and there is a possibility that the bending of the laminated body 30 may be suppressed, the adhesive layer 28 follows the light shielding layer 6 and the like further when the support film 21 is removed. This is because it can be bent. Similarly, the adhesion between the pressure-sensitive adhesive layer 28, the light shielding layer 6, and the glass substrate 3 can be enhanced also by the step of pressing the laminated body 30 against the glass substrate 3 after peeling the support film 21. By increasing the adhesion between the adhesive layer 28 and the light shielding layer 6 and the glass substrate 3, sintering failure between the conductive pattern layer 8, the light shielding layer 6 and the glass substrate 3 after firing the laminate 30, The bubble entrainment between the conductive pattern layer 8 and the light shielding layer 6 and the glass substrate 3 is suppressed.
 また、粘着層28、中間層27及び保護層23に含まれる有機物の熱分解温度を遮光層6中のガラスフリットの溶融温度よりも低くしたため、導電性パターン層8及び遮光層6の焼成時に、遮光層6中のガラスフリットが溶融するよりも早く、粘着層28、中間層27及び保護層23が分解する。そのため、遮光層6のガラスフリットが溶融することによって発生するガスが外部へと拡散することができ、遮光層6が良好に焼成される。特に、加熱処理における温度を、最初に、粘着層28、中間層27及び保護層23に含まれる有機物の熱分解温度以上であり、かつ遮光層6に含まれるガラスフリットのガラス点移転以下の所定温度に昇温し、この温度を所定期間維持し、その後に遮光層6に含まれるガラスフリットのガラス点移転以上の温度に昇温することによって、遮光層6のガラスフリットの溶融する前に、確実に粘着層28、中間層27及び保護層23を分解することができる。 Further, since the thermal decomposition temperature of the organic matter contained in the adhesive layer 28, the intermediate layer 27 and the protective layer 23 is set lower than the melting temperature of the glass frit in the light shielding layer 6, when the conductive pattern layer 8 and the light shielding layer 6 are baked, The adhesive layer 28, the intermediate layer 27, and the protective layer 23 are decomposed faster than the glass frit in the light shielding layer 6 is melted. Therefore, the gas generated when the glass frit of the light shielding layer 6 is melted can diffuse to the outside, and the light shielding layer 6 is fired satisfactorily. In particular, the temperature in the heat treatment is initially a predetermined temperature that is equal to or higher than the thermal decomposition temperature of the organic matter contained in the adhesive layer 28, the intermediate layer 27, and the protective layer 23 and lower than the glass point transfer of the glass frit contained in the light shielding layer 6. Before the glass frit of the light shielding layer 6 is melted, the temperature is raised to a temperature, and this temperature is maintained for a predetermined period, and then the temperature is raised to a temperature higher than the glass point transfer of the glass frit contained in the light shielding layer 6. The adhesive layer 28, the intermediate layer 27, and the protective layer 23 can be reliably decomposed.
 次に、上述した第1の手順と一部の工程が異なる第2の手順について説明する。第2の手順では、図5(B)に示す第1の手順の遮光層6を印刷、乾燥させる工程の後であって転写フィルム20を貼り付ける工程の前に、遮光層6を焼成温度580~700℃で1~20分間の加熱処理を行い、遮光層6を焼結させる仮焼成の工程を含む。これにより、遮光層6中の有機物が揮発または燃焼して分解すると共に、ガラスフリットが、溶融して互いに融着する。この工程の後は、第1の手順と同様である。 Next, a second procedure that differs from the first procedure described above in some steps will be described. In the second procedure, after the step of printing and drying the light shielding layer 6 in the first procedure shown in FIG. 5B and before the step of attaching the transfer film 20, the light shielding layer 6 is subjected to the firing temperature 580. It includes a preliminary firing step in which the heat treatment is performed at ˜700 ° C. for 1 to 20 minutes to sinter the light shielding layer 6. Thereby, the organic matter in the light shielding layer 6 is volatilized or burned and decomposed, and the glass frit is melted and fused to each other. After this step, it is the same as the first procedure.
 この第2の手順によれば、仮焼成よるガラスフリットの溶融によって遮光層6の表面の凹凸および端縁部7の形状の傾斜が緩和され、転写フィルム20の粘着層28と遮光層6との密着性(接着性)を高めることができる。また、遮光層6を焼成する際には遮光層6を覆う積層体30が存在しないため、焼成によって遮光層6から発生したガスは遮光層6の内部や表面に保持されることなく拡散し、遮光層6が良好に形成される。 According to the second procedure, the unevenness of the surface of the light shielding layer 6 and the inclination of the shape of the edge portion 7 are alleviated by melting the glass frit by temporary firing, and the adhesive layer 28 and the light shielding layer 6 of the transfer film 20 are reduced. Adhesion (adhesiveness) can be improved. Further, when the light shielding layer 6 is baked, there is no laminated body 30 covering the light shielding layer 6, so that the gas generated from the light shielding layer 6 by the diffusion diffuses without being held inside or on the surface of the light shielding layer 6, The light shielding layer 6 is formed satisfactorily.
 (転写フィルム)
 転写フィルム20の一実施例である実施例1を以下のように構成した。仮支持体として、シリコーン系剥離層を設けたPETフィルム「A70」(帝人デュポンフイルム(株)製、フイルムサイズ20cm×30cm厚さ50μm)を用意した。中間層27の塗布液としては、アクリル酸メチルとメタクリル酸メチルとを所定の配合比で共重合させて、ガラス転移温度Tgが55℃となるように調整したポリマー(熱分解温度450℃)をトルエンに溶解した溶液を用意した。保護層23の塗布液としては、アクリル酸メチルとメタクリル酸イソブチルとを所定の配合比で共重合させて、ガラス転移温度Tgが50℃となるように調整したポリマー(熱分解温度400℃)の水溶液を用意した。また、導電層用のペーストとして、ガラスフリット、銀粉体及び有機バインダを含有する導電層ペーストを用意した。導電層ペーストの成分は、銀:70~80%、ターピネオール、ジブチカルビトール:10~20%、エチルセルロース、ロジン系樹脂:1~10%、ビスマス、亜鉛、ホウ素、シリカ、バリウム等よりなるガラス及び金属酸化物:1~10%、添加剤1~10%である。被覆層用のペーストは、酸化クロムと酸化銅の複合顔料と、ガラスフリット、及び有機バインダを、3本ロールミルで分散して作製した。有機バインダとしては、アクリル系樹脂であるBR102(三菱レーヨン(株)製)を、ビス(2-ブトキシエチル)エーテル(和光純薬工業(株)製)で溶解し、P/R=80/20に調整したものを用意した。
(Transfer film)
Example 1 which is one example of the transfer film 20 was configured as follows. As a temporary support, a PET film “A70” provided with a silicone release layer (manufactured by Teijin DuPont Films Ltd., film size 20 cm × 30 cm thickness 50 μm) was prepared. As a coating solution for the intermediate layer 27, a polymer (thermal decomposition temperature 450 ° C.) prepared by copolymerizing methyl acrylate and methyl methacrylate at a predetermined blending ratio and adjusting the glass transition temperature Tg to 55 ° C. A solution dissolved in toluene was prepared. As a coating solution for the protective layer 23, a polymer (thermal decomposition temperature 400 ° C.) prepared by copolymerizing methyl acrylate and isobutyl methacrylate at a predetermined blending ratio and adjusting the glass transition temperature Tg to 50 ° C. An aqueous solution was prepared. Moreover, the conductive layer paste containing glass frit, silver powder, and an organic binder was prepared as a paste for conductive layers. The components of the conductive layer paste are: silver: 70-80%, terpineol, dibutycarbitol: 10-20%, ethyl cellulose, rosin resin: 1-10%, glass made of bismuth, zinc, boron, silica, barium, and the like, and Metal oxide: 1 to 10%, additive 1 to 10%. The coating layer paste was prepared by dispersing a composite pigment of chromium oxide and copper oxide, glass frit, and organic binder with a three-roll mill. As an organic binder, acrylic resin BR102 (manufactured by Mitsubishi Rayon Co., Ltd.) is dissolved in bis (2-butoxyethyl) ether (manufactured by Wako Pure Chemical Industries, Ltd.), and P / R = 80/20 The thing adjusted to was prepared.
 まず、中間層用の塗布液を、仮支持体の剥離性を有する側の全面に、メイヤーバーを用いて、厚さ1.5μmとなるように塗布し、中間層27を形成した。その上に、被覆層用のペーストを、スクリーン印刷により、導電性パターン層8の線状部13に対応する部分のサイズが幅0.4mm×長さ500mm、給電部14に対応する部分のサイズが5.4mm×5.4mm、厚さ5μmとなるように印刷し、第1の被覆層15を形成した。次に、この第1の被覆層15の上に、導電層ペーストを、スクリーン印刷により、導電性パターン層8の線状部13に対応する部分のサイズが幅0.2mm×長さ500mm、給電部14に対応する部分のサイズが5mm×5mm、厚さ10μmとなるように印刷し、導電層11を形成した。次に、この導電層11の上に、被覆層用ペーストを、スクリーン印刷により、導電性パターン層8のうち給電部14に対応する部分を除いた部分、すなわち線状部13に対応する部分について、サイズが幅0.4mm×長さ500mm、厚さ5μmとなるように印刷し、導電層11を覆うように第2の被覆層16を形成した。この第2の被覆層16及び中間層27の上に、上記の保護層用の塗布液を、メイヤーバーを用いて、厚さ5μmとなるように塗布し、中間層27の全面を覆うように、保護層23を形成した。 First, the intermediate layer 27 was formed by applying a coating solution for the intermediate layer to the entire surface of the temporary support having the peelability using a Mayer bar so as to have a thickness of 1.5 μm. On top of that, the size of the portion corresponding to the linear portion 13 of the conductive pattern layer 8 is 0.4 mm wide × 500 mm long and the size corresponding to the power feeding portion 14 is screen-printed with paste for the coating layer. Was printed to be 5.4 mm × 5.4 mm and a thickness of 5 μm to form the first coating layer 15. Next, the conductive layer paste is screen-printed on the first coating layer 15 so that the size of the portion corresponding to the linear portion 13 of the conductive pattern layer 8 is 0.2 mm wide × 500 mm long. The conductive layer 11 was formed by printing so that the size of the portion corresponding to the portion 14 was 5 mm × 5 mm and the thickness was 10 μm. Next, a portion of the conductive pattern layer 8 excluding the portion corresponding to the power feeding portion 14, that is, the portion corresponding to the linear portion 13, is formed on the conductive layer 11 by screen printing with a coating layer paste. The second coating layer 16 was formed so as to cover the conductive layer 11 by printing so that the size was 0.4 mm wide × 500 mm long and 5 μm thick. On the second coating layer 16 and the intermediate layer 27, the coating liquid for the protective layer is applied to a thickness of 5 μm using a Mayer bar so as to cover the entire surface of the intermediate layer 27. A protective layer 23 was formed.
 次に、支持フィルム21となる、微粘着層32が塗布された膜厚25μmのPETフィルム「SRL-0504」(リンテック(株)製)を用意した。このPETフィルムの微粘着面を、仮支持体上に形成した保護層23と貼り合わせ、ゴムローラーを用いて、0.5kg/cmの圧力で仮支持体上から加圧を行い、第1の積層物を作製した。 Next, a PET film “SRL-0504” (manufactured by Lintec Co., Ltd.) having a film thickness of 25 μm coated with the slightly adhesive layer 32 to be the support film 21 was prepared. The fine adhesive surface of this PET film is bonded to the protective layer 23 formed on the temporary support, and pressure is applied from above the temporary support using a rubber roller at a pressure of 0.5 kg / cm. A laminate was made.
 他方、別の仮支持体として、シリコーン系剥離層を設けたPETフィルム「A31」(帝人デュポンフイルム(株)製、フイルムサイズ20cm×30cm、厚さ50μm)を用意した。この別の仮支持体の剥離性を有する側全面に、粘着材を、メイヤーバーを用いて各種厚さになるように塗布し、第2の積層物を作製した。粘着材には、アクリル酸メチルとアクリル酸nブチルとを所定の配合比で共重合させて、ガラス転移温度Tgが-36℃となるように調整したポリマーをトルエンに溶解し、使用した。粘着層28の厚さは、7μmとした。最後に、第1の積層物から仮支持体を剥がし、第1の積層物の中間層27を第2の積層物の粘着層28と貼り合わせ、転写フィルム20を作製した。 On the other hand, as another temporary support, a PET film “A31” provided with a silicone release layer (manufactured by Teijin DuPont Films Ltd., film size 20 cm × 30 cm, thickness 50 μm) was prepared. A pressure-sensitive adhesive material was applied to the entire surface of the other temporary support having peelability so as to have various thicknesses using a Mayer bar to prepare a second laminate. As the adhesive, a polymer prepared by copolymerizing methyl acrylate and n-butyl acrylate at a predetermined blending ratio and adjusting the glass transition temperature Tg to −36 ° C. was dissolved in toluene and used. The thickness of the adhesive layer 28 was 7 μm. Finally, the temporary support was peeled off from the first laminate, and the intermediate layer 27 of the first laminate was bonded to the adhesive layer 28 of the second laminate to produce a transfer film 20.
 以上に説明した転写フィルム20の実施例1と対比する目的で、実施例1に対して粘着層28の厚さのみを変更して、実施例2(12μm)、実施例3(22μm)、比較例1(3μm)を作製した。また、実施例1に対して粘着層28の材質および厚さのみを変更して、比較例2(ガラス転移温度Tg:-19℃、6μm)を作製した。比較例2の、粘着層28のガラス転移温度Tg-19℃は、アクリル酸メチルとアクリル酸nブチルとの配合比を変更することによって調整した。 For the purpose of comparison with Example 1 of the transfer film 20 described above, only the thickness of the adhesive layer 28 was changed from Example 1, and Example 2 (12 μm), Example 3 (22 μm), and comparison Example 1 (3 μm) was prepared. Further, Comparative Example 2 (glass transition temperature Tg: −19 ° C., 6 μm) was produced by changing only the material and thickness of the adhesive layer 28 from Example 1. The glass transition temperature Tg-19 ° C. of the adhesive layer 28 in Comparative Example 2 was adjusted by changing the blending ratio of methyl acrylate and n-butyl acrylate.
 (パターン付きガラス基板)
 パターン付きガラス基板1の一実施例である実施例10を以下のように構成した。ガラス基板3には、厚さ2.0mmのガラス板(フロートガラス、日本板硝子株式会社製)を用意した。着色セラミックスペーストは、酸化銅、酸化クロム、酸化鉄または酸化マンガンを主成分とする顔料を20質量%、セルロース樹脂を10質量%、パインオイルを10質量%、ホウケイ酸ビスマスまたはホウケイ酸亜鉛を主成分とするガラスフリット(溶融温度約500℃)を65質量%含む構成とし、粘度を200dPa・sとした。ガラス基板3の一面の周縁部に、着色セラミックスペーストをスクリーン印刷し、遮光層6を形成した。スクリーン印刷の条件は、ポリエステルスクリーン:200メッシュ、コート厚み:6μm、テンション:20Nm、スキージ硬度:65度、取り付け角度:75度、印刷速度:300mm/sである。印刷後は、ガラス基板3を乾燥炉にて150℃、10分の乾燥を行った。乾燥後の遮光層6は、膜厚が25μm、表面粗さの最大高さRmaxが5μm、端縁部7の傾斜面9とガラス基板3の表面とのなす角度θが5°であった。
(Glass substrate with pattern)
Example 10 which is one example of the patterned glass substrate 1 was configured as follows. For the glass substrate 3, a 2.0 mm thick glass plate (float glass, manufactured by Nippon Sheet Glass Co., Ltd.) was prepared. The colored ceramic paste is mainly composed of 20% by mass of pigment mainly composed of copper oxide, chromium oxide, iron oxide or manganese oxide, 10% by mass of cellulose resin, 10% by mass of pine oil, bismuth borosilicate or zinc borosilicate. The composition contained 65% by mass of glass frit (melting temperature of about 500 ° C.) as a component, and the viscosity was 200 dPa · s. A colored ceramic paste was screen-printed on the peripheral edge of one surface of the glass substrate 3 to form the light shielding layer 6. The conditions for screen printing are polyester screen: 200 mesh, coat thickness: 6 μm, tension: 20 Nm, squeegee hardness: 65 degrees, attachment angle: 75 degrees, and printing speed: 300 mm / s. After printing, the glass substrate 3 was dried at 150 ° C. for 10 minutes in a drying furnace. The dried light shielding layer 6 had a film thickness of 25 μm, a maximum surface roughness height Rmax of 5 μm, and an angle θ between the inclined surface 9 of the edge 7 and the surface of the glass substrate 3 was 5 °.
 続いて、上述した実施例1に係る転写フィルム20の粘着層28側を、導電性パターン層8が遮光層6の端縁部7を横切るようにして、遮光層6及びガラス基板3の表面に貼り付けた。そして支持フィルム21の背面側をゴム製のローラ50によって、ガラス基板3側に0.5MPaの圧力で押圧を行った。続いて、支持フィルム21を保護層23から剥離し、保護層23の背面側を200℃に加熱したシリコーン製のローラ51で、ガラス基板3側に押圧し、エイジング処理を行った。ローラ51の保護層23に対する圧力は0.5MPaとし、ローラ51を保護層23に沿って10mm/秒で移動させた。 Subsequently, the adhesive layer 28 side of the transfer film 20 according to Example 1 described above is placed on the surface of the light shielding layer 6 and the glass substrate 3 so that the conductive pattern layer 8 crosses the edge portion 7 of the light shielding layer 6. Pasted. The back side of the support film 21 was pressed against the glass substrate 3 with a pressure of 0.5 MPa by a rubber roller 50. Subsequently, the support film 21 was peeled off from the protective layer 23, and the back side of the protective layer 23 was pressed against the glass substrate 3 side with a silicone roller 51 heated to 200 ° C. to perform an aging treatment. The pressure of the roller 51 against the protective layer 23 was 0.5 MPa, and the roller 51 was moved along the protective layer 23 at 10 mm / second.
 導電性パターン層8を含む積層体30が転写されたガラス基板3を、電気炉を用いて、焼成した。焼成は、大気雰囲気中で、昇温速度95℃/分で、室温から600℃まで昇温し、その温度を3分間維持した後、加熱を停止し、自然放冷で100℃以下まで冷却すること(徐冷)により、行った。冷却されたガラス板を電気炉から取り出し、導電性パターン層8の焼成体を形成したパターン付きガラス基板1を得た。このようにして得たパターン付きガラス基板1を実施例10とする。 The glass substrate 3 onto which the laminate 30 including the conductive pattern layer 8 was transferred was baked using an electric furnace. Firing is performed in an air atmosphere at a rate of temperature increase of 95 ° C./minute from room temperature to 600 ° C., and after maintaining that temperature for 3 minutes, heating is stopped and the mixture is allowed to cool naturally to 100 ° C. or less. (Slow cooling). The cooled glass plate was taken out from the electric furnace to obtain a patterned glass substrate 1 on which a fired body of the conductive pattern layer 8 was formed. The patterned glass substrate 1 thus obtained is referred to as Example 10.
 以上に説明した実施例10と対比する目的で、実施例10に対して、支持フィルム21剥離後のエイジング処理において、ローラ51の加熱を行わずに室温で押圧処理のみを行って得たパターン付きガラス基板1を比較例10、支持フィルム21剥離後の保護層23のローラ51による押圧処理のみを省略し、代わりに積層体30を200℃に10分間加熱して得たパターン付きガラス基板1を比較例11、支持フィルム21剥離後の加熱処理及び保護層23の押圧処理を省略して得たパターン付きガラス基板1を比較例12とする。また、ガラス基板3上に遮光層6を印刷・乾燥工程と転写フィルム20の貼り付け工程との間に、遮光層6を加熱焼成し、焼成後の遮光層6及びガラス基板3上に転写フィルムを貼り付けたものを実施例11とする。遮光層6の焼成条件は、実施例10を作製する過程において遮光層6及び導電性パターン層8を焼成するときの条件と同じである。また、実施例13において、支持フィルム21剥離後の加熱処理及び保護層23の押圧処理を省略して得たパターン付きガラス基板1を実施例12とする。 For the purpose of comparison with Example 10 described above, with Example 10, with the pattern obtained by performing only the pressing process at room temperature without heating the roller 51 in the aging process after peeling the support film 21. The glass substrate 1 with the pattern 10 obtained by omitting only the pressing process by the roller 51 of the protective layer 23 after removing the support film 21 from the comparative example 10 and the laminated film 30 was heated to 200 ° C. for 10 minutes instead. The glass substrate 1 with a pattern obtained by omitting the heat treatment after peeling of the comparative example 11 and the support film 21 and the pressing treatment of the protective layer 23 is referred to as comparative example 12. Further, the light shielding layer 6 is heated and fired between the printing / drying process and the transfer film 20 attaching process on the glass substrate 3, and the transfer film is formed on the fired light shielding layer 6 and the glass substrate 3. Example 11 was pasted. The conditions for firing the light shielding layer 6 are the same as the conditions for firing the light shielding layer 6 and the conductive pattern layer 8 in the process of producing Example 10. Moreover, in Example 13, the glass substrate 1 with a pattern obtained by omitting the heat treatment after peeling the support film 21 and the pressing treatment of the protective layer 23 is referred to as Example 12.
 (転写フィルムの密着性評価)
 実施例1~3及び比較例1~2の転写フィルム20の遮光層6への密着性について評価を行った。評価は、上述したパターン付きガラス基板1の作製過程において、転写フィルム20の粘着層28側を、遮光層6及びガラス基板3の表面に貼り付け、ローラ50で押圧した後の支持フィルム21を剥離する際に、積層体30が支持フィルム21に追従して粘着層28が遮光層6から剥離したか否かによって行った。評価は、目視によって行い、粘着層28の遮光層6からの剥離が全く確認されなかったものを○、一部において剥離が確認されたものを△、大部分において剥離が確認されたものを×とした。結果を、以下の表1に示す。
(Evaluation of adhesion of transfer film)
The adhesion of the transfer films 20 of Examples 1 to 3 and Comparative Examples 1 and 2 to the light shielding layer 6 was evaluated. Evaluation is made in the process of producing the patterned glass substrate 1 described above, by sticking the adhesive layer 28 side of the transfer film 20 to the surface of the light shielding layer 6 and the glass substrate 3, and peeling the support film 21 after pressing with the roller 50. When doing, it was performed by whether the laminated body 30 followed the support film 21 and the adhesion layer 28 peeled from the light shielding layer 6. FIG. The evaluation was performed by visual inspection, and the case where peeling of the pressure-sensitive adhesive layer 28 from the light-shielding layer 6 was not confirmed was ○, the case where peeling was confirmed in part was △, and the case where peeling was confirmed in most was × It was. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1と比較例2との比較から、ガラス転移温度が低い材質、すなわち軟らかい材質で粘着層28を作製した方が、遮光層6への密着性が高いことが確認された。また、実施例1~3及び比較例1との比較から粘着層28が厚い方が遮光層6への密着性が高いことが確認された。これは、粘着層28が軟らかい方が、また厚い方が遮光層6表面の凹凸の深部まで粘着層28が入り込み、接触面積が増大するともに、粘着層28及び遮光層6との間に気泡を噛み込まないためであると考えられる。 As shown in Table 1, from the comparison between Example 1 and Comparative Example 2, the adhesive layer 28 made of a material having a low glass transition temperature, that is, a soft material, has higher adhesion to the light shielding layer 6. confirmed. Further, from comparison with Examples 1 to 3 and Comparative Example 1, it was confirmed that the thicker the adhesive layer 28, the higher the adhesion to the light shielding layer 6. This is because the adhesive layer 28 is softer, and the thicker the adhesive layer 28 is, the deeper the unevenness on the surface of the light shielding layer 6 is, and the contact area increases, and bubbles are formed between the adhesive layer 28 and the light shielding layer 6. This is thought to be due to not being bitten.
 (製造方法の評価)
 実施例10~12及び比較例10~12のパターン付きガラス基板1について、導電性パターン層8の形態について評価を行った。評価は、焼成後の導電性パターン層8の外観を目視で確認することによって行った。評価は、導電性パターン層8が遮光層6に確実に融着し、気泡の噛み込みがないものを○、一部において導電性パターン層8の遮光層6からの浮き上がりや気泡の噛み込みが確認されたものを△、大部分において導電性パターン層8の遮光層6からの浮き上がりや気泡の噛み込みが確認されたもの×とした。この評価では、特に遮光層6の端縁部7における導電性パターン層8の形態に注目した。結果を、以下の表2に示す。
(Evaluation of manufacturing method)
For the patterned glass substrates 1 of Examples 10 to 12 and Comparative Examples 10 to 12, the form of the conductive pattern layer 8 was evaluated. Evaluation was performed by visually confirming the appearance of the conductive pattern layer 8 after firing. In the evaluation, the conductive pattern layer 8 is surely fused to the light shielding layer 6 and there is no entrapment of bubbles, and in part, the conductive pattern layer 8 is lifted from the light shielding layer 6 or the entrapment of bubbles. What was confirmed was indicated by Δ, and most of the conductive pattern layer 8 was confirmed to be lifted from the light-shielding layer 6 or bubbled x. In this evaluation, attention was paid particularly to the form of the conductive pattern layer 8 at the edge 7 of the light shielding layer 6. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例10と比較例10~12との比較から、支持フィルム21を剥離した後に、加熱したローラ51で押圧処理を行ったものは、焼成後の導電性パターン層8が遮光層6に良好に融着することが確認された。これは、積層体30に比べて硬い支持フィルム21を除去した状態で加熱及び押圧処理を行うことにより、積層体30が軟化して遮光層6表面への追従性が高まったことに起因すると考えられる。なお、加熱または押圧の一方しか行わなかったものは、積層体30の遮光層6への追従が未だ不十分であることが確認された。 As shown in Table 2, from the comparison between Example 10 and Comparative Examples 10 to 12, the support film 21 was peeled and then pressed with a heated roller 51. Has been confirmed to be fused well to the light shielding layer 6. This is considered to be due to the fact that the laminate 30 is softened and the followability to the surface of the light-shielding layer 6 is increased by performing the heating and pressing treatment in a state where the support film 21 that is harder than the laminate 30 is removed. It is done. In addition, it was confirmed that the thing which performed only one of heating or pressing still has insufficient tracking of the laminated body 30 to the light shielding layer 6.
 また、実施例11及び12と、比較例12との比較から、転写フィルム20を遮光層6に貼り付ける工程の前に遮光層6を仮焼成することで、焼結後の導電性パターン層8が遮光層6に良好に融着することが確認された。図7に、実施例10及び実施例11の、転写フィルム20を貼り付ける直前における遮光層6の端縁部付近の表面形状を測定した結果を示す。図7に示すように、仮焼結を行った遮光層6は、仮焼成を行っていないものに比較して膜厚が薄くなるとともに表面粗さが小さくなり、さらに端縁部7における立ち上がり角度(ガラス基板3表面となす角度)が小さくなっている。これは、遮光層6の仮焼成を行うことによって、遮光層6中の有機物が揮発または燃焼して分解すると共に、遮光層6中のガラスフリットが溶融され、遮光層6の表面形状が鈍らされたためである。そのため、実施例13では比較例10に対して、粘着層28が遮光層6に密着し易くなり、導電性パターン層8が遮光層6に良好に融着したと考えられる。そのため、仮焼成を行った場合には、支持フィルム21を剥離した後に、加熱処理及び押圧処理のいずれも実施しなくても良好な導電性パターン層8が得られることが確認された。なお、実施例10~12及び比較例10~12のいずれも、焼成後の遮光層6の膜厚は13~18μmであり、焼成後の導電性パターン層8の膜厚は16~17μmであった。また、焼成後の端縁部7の傾斜面9とガラス基板3の表面とのなす角度θが9°であった。 Further, from the comparison between Examples 11 and 12 and Comparative Example 12, the conductive pattern layer 8 after sintering is obtained by temporarily firing the light shielding layer 6 before the step of attaching the transfer film 20 to the light shielding layer 6. Has been confirmed to be fused well to the light shielding layer 6. In FIG. 7, the result of having measured the surface shape of the edge part vicinity of the light shielding layer 6 just before sticking the transfer film 20 of Example 10 and Example 11 is shown. As shown in FIG. 7, the light-shielding layer 6 that has been pre-sintered has a smaller film thickness and a smaller surface roughness than those that have not been pre-fired, and the rising angle at the edge 7. (An angle formed with the surface of the glass substrate 3) is small. This is because the organic matter in the light shielding layer 6 is volatilized or burned and decomposed by pre-baking the light shielding layer 6, and the glass frit in the light shielding layer 6 is melted, and the surface shape of the light shielding layer 6 is blunted. This is because. Therefore, in Example 13, compared with Comparative Example 10, it is considered that the adhesive layer 28 is easily adhered to the light shielding layer 6, and the conductive pattern layer 8 is well fused to the light shielding layer 6. Therefore, when temporary baking was performed, after peeling off the support film 21, it was confirmed that the favorable electroconductive pattern layer 8 is obtained even if neither a heat processing nor a press process is implemented. In each of Examples 10 to 12 and Comparative Examples 10 to 12, the thickness of the light-shielding layer 6 after firing was 13 to 18 μm, and the thickness of the conductive pattern layer 8 after firing was 16 to 17 μm. It was. Moreover, the angle θ formed by the inclined surface 9 of the edge 7 after firing and the surface of the glass substrate 3 was 9 °.
 他の実施例として、粘着層28を硬質内側層36及び軟質外側層37の2層とする場合には、仮支持体としてのPETフィルム「A31」の剥離性を有する側全面に、軟質粘着材を、メイヤーバーを用いて厚さが5μmになるように塗布し、軟質外側層37を作製した。軟質粘着材には、アクリル酸メチルとアクリル酸nブチルとを所定の配合比で共重合させて、ガラス転移温度Tgが-36℃となるように調整したポリマーをトルエンに溶解し、使用した。次に、軟質外側層37の上に硬質粘着材を、メイヤーバーを用いて厚さが5μmになるように塗布し、硬質内側層36を作製した。硬質粘着材には、アクリル酸メチルとアクリル酸nブチルとを所定の配合比で共重合させて、ガラス転移温度Tgが-29℃となるように調整したポリマーをトルエンに溶解し、使用した。最後に、第1の積層物から仮支持体を剥がし、第1の積層物の中間層を第2の積層物の硬質内側層36と貼り合わせ、転写フィルム20を作製した。 As another example, when the pressure-sensitive adhesive layer 28 is composed of two layers, a hard inner layer 36 and a soft outer layer 37, a soft pressure-sensitive adhesive material is formed on the entire surface having the peelability of the PET film “A31” as a temporary support. Was applied using a Meyer bar to a thickness of 5 μm to produce a soft outer layer 37. As the soft adhesive material, a polymer prepared by copolymerizing methyl acrylate and n-butyl acrylate at a predetermined blending ratio and adjusting the glass transition temperature Tg to −36 ° C. was dissolved in toluene and used. Next, a hard adhesive material was applied on the soft outer layer 37 so as to have a thickness of 5 μm using a Mayer bar, and the hard inner layer 36 was produced. As the hard adhesive material, a polymer prepared by copolymerizing methyl acrylate and n-butyl acrylate at a predetermined blending ratio and adjusting the glass transition temperature Tg to −29 ° C. was dissolved in toluene and used. Finally, the temporary support was peeled from the first laminate, and the intermediate layer of the first laminate was bonded to the hard inner layer 36 of the second laminate, thereby producing the transfer film 20.
 以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。例えば、本発明は、リアウインドウガラスやサイドドアガラスを構成する強化ガラスに適用することができる。 This is the end of the description of the specific embodiment, but the present invention is not limited to the above-described embodiment, and can be widely modified. For example, the present invention can be applied to tempered glass constituting rear window glass and side door glass.
 1…パターン付ガラス基板、2…車外側ガラス基板、3…車内側ガラス基板、6…遮光層、7…端縁部、8…導電性パターン層、9…傾斜面、10…自動車用フロントガラス、11…導電層、13…線状部、14…給電部、15…第1の被覆層、16…第2の被覆層、20…転写フィルム、21…支持フィルム、23…保護層、27…中間層、28…粘着層、30…積層体、31…剥離層、32…微粘着層、36…硬質内側層、37…軟質外側層、41…リール形態、42…スタック形態、43…単層形態、44…リール、46…セパレータフィルム、50、51…ローラ DESCRIPTION OF SYMBOLS 1 ... Patterned glass substrate, 2 ... Car outside glass substrate, 3 ... Car inside glass substrate, 6 ... Light-shielding layer, 7 ... Edge edge part, 8 ... Conductive pattern layer, 9 ... Inclined surface, 10 ... Car windshield , 11 ... conductive layer, 13 ... linear part, 14 ... power feeding part, 15 ... first covering layer, 16 ... second covering layer, 20 ... transfer film, 21 ... support film, 23 ... protective layer, 27 ... Intermediate layer 28 ... Adhesive layer 30 ... Laminate 31 ... Peeling layer 32 ... Slightly adhesive layer 36 ... Hard inner layer 37 ... Soft outer layer 41 ... Reel form 42 ... Stack form 43 ... Single layer Form, 44 ... reel, 46 ... separator film, 50, 51 ... roller

Claims (26)

  1.  表面に、ガラス成分を含む導電性パターン層が焼結されたパターン付きガラス基板の製造方法であって、
     前記ガラス基板の一部に、顔料及びガラス成分を含む遮光ペーストを塗布し、前記ガラス基板上に遮光層を形成する第1工程と、
     導電性パターン層及び粘着層を含む積層体と、前記積層体の、前記粘着層とは反対側の面に剥離可能に積層された支持フィルムとを有する転写フィルムを前記遮光層の外面に前記粘着層が当接するように前記転写フィルムを前記ガラス基板に貼付し、続いて前記支持フィルムを前記積層体から剥離し、前記積層体を前記ガラス基板に転写する第2工程と、
     前記ガラス基板、前記遮光層及び前記積層体を共に加熱し、前記粘着層を除去して、前記遮光層を前記ガラス基板上に焼結させ、かつ前記導電性パターン層を前記遮光層上に焼結させる第3工程とを含むことを特徴とするパターン付きガラス基板の製造方法。
    On the surface, a method for producing a patterned glass substrate in which a conductive pattern layer containing a glass component is sintered,
    Applying a light-shielding paste containing a pigment and a glass component to a part of the glass substrate, and forming a light-shielding layer on the glass substrate;
    A transfer film having a laminate including a conductive pattern layer and an adhesive layer, and a support film that is detachably laminated on a surface of the laminate opposite to the adhesive layer is provided on the outer surface of the light shielding layer. A second step of affixing the transfer film to the glass substrate so that the layers come into contact with each other, subsequently peeling the support film from the laminate, and transferring the laminate to the glass substrate;
    The glass substrate, the light shielding layer and the laminate are heated together, the adhesive layer is removed, the light shielding layer is sintered on the glass substrate, and the conductive pattern layer is baked on the light shielding layer. A method for producing a patterned glass substrate, comprising a third step of binding.
  2.  前記第2工程において、前記導電性パターン層が前記ガラス基板上の前記遮光層の端縁部を横切る部分を含み、
     前記第3工程において、前記導電性パターン層の一部が前記ガラス基板上に焼結されることを特徴とする請求項1に記載のパターン付きガラス基板の製造方法。
    In the second step, the conductive pattern layer includes a portion crossing an edge of the light shielding layer on the glass substrate,
    The method for producing a patterned glass substrate according to claim 1, wherein a part of the conductive pattern layer is sintered on the glass substrate in the third step.
  3.  前記第1工程において、前記遮光層の前記ガラス基板上における前記端縁部が、前記ガラス基板の表面と10°以下の角度をなす傾斜面を形成するように前記遮光層を形成することを特徴とする請求項2に記載のパターン付きガラス基板の製造方法。 In the first step, the light shielding layer is formed such that the edge portion of the light shielding layer on the glass substrate forms an inclined surface having an angle of 10 ° or less with the surface of the glass substrate. The manufacturing method of the glass substrate with a pattern of Claim 2.
  4.  前記導電性パターン層を除く前記積層体の熱分解温度が前記遮光層に含まれるガラス成分の溶融温度よりも低いことを特徴とする請求項1~請求項3のいずれか1つの項に記載のパターン付きガラス基板の製造方法。 The thermal decomposition temperature of the laminate excluding the conductive pattern layer is lower than the melting temperature of the glass component contained in the light shielding layer, according to any one of claims 1 to 3. A method for producing a patterned glass substrate.
  5.  前記第1工程において前記ガラス基板上に形成する前記遮光層の表面粗さにおける最大高さが、前記転写フィルムの前記粘着層の膜厚未満となるように形成することを特徴とする請求項1~請求項4のいずれか1つの項に記載のパターン付きガラス基板の製造方法。 2. The film is formed so that a maximum height in surface roughness of the light shielding layer formed on the glass substrate in the first step is less than a film thickness of the adhesive layer of the transfer film. A method for producing a patterned glass substrate according to any one of claims 4 to 5.
  6.  前記第2工程と前記第3工程の間に、前記積層体を前記ガラス基板上に押圧する工程を更に含むことを特徴とする請求項1~請求項5のいずれか1つの項に記載のパターン付きガラス基板の製造方法。 The pattern according to any one of claims 1 to 5, further comprising a step of pressing the laminated body onto the glass substrate between the second step and the third step. A manufacturing method of a glass substrate.
  7.  前記第2工程と前記第3工程の間に、前記積層体を加熱する工程を更に含むことを特徴とする請求項1~請求項6のいずれか1つの項に記載のパターン付きガラス基板の製造方法。 The patterned glass substrate according to any one of claims 1 to 6, further comprising a step of heating the laminated body between the second step and the third step. Method.
  8.  前記第1工程の後から前記第3工程の前までの間に、前記遮光層を加熱し、前記遮光層を前記ガラス基板上に仮焼結させる工程を更に含むことを特徴とする請求項1~請求項7のいずれか1つの項に記載のパターン付きガラス基板の製造方法。 2. The method of claim 1, further comprising a step of heating the light-shielding layer and pre-sintering the light-shielding layer on the glass substrate between after the first step and before the third step. A method for producing a patterned glass substrate according to any one of claims 7 to 10.
  9.  前記転写フィルムの前記粘着層を、ガラス転移温度が-60℃以上-20℃以下の材料で構成することを特徴とする請求項1~請求項8のいずれかの1つの項に記載のパターン付きガラス基板の製造方法。 9. The pattern according to claim 1, wherein the adhesive layer of the transfer film is made of a material having a glass transition temperature of −60 ° C. or higher and −20 ° C. or lower. A method for producing a glass substrate.
  10.  前記転写フィルムの前記粘着層の膜厚を、3μm以上15μm以下、より好ましくは3μm以上7μm以下とすることを特徴とする請求項1~請求項9のいずれか1つの項に記載のパターン付きガラス基板の製造方法。 The patterned glass according to any one of claims 1 to 9, wherein the thickness of the adhesive layer of the transfer film is 3 袖 m to 15 袖 m, more preferably 3 袖 m to 7 袖 m. A method for manufacturing a substrate.
  11.  前記第2工程において準備する前記転写フィルムの前記粘着層が、相対的に高いガラス転移温度を有する硬質内側層と相対的に低いガラス転移温度を有する軟質外側層とを含むことを特徴とする請求項1~請求項8のいずれか1つの項に記載のパターン付きガラス基板の製造方法。 The adhesive layer of the transfer film prepared in the second step includes a hard inner layer having a relatively high glass transition temperature and a soft outer layer having a relatively low glass transition temperature. The method for producing a patterned glass substrate according to any one of claims 1 to 8.
  12.  前記硬質内側層のガラス転移温度が-30℃以上0℃以下であり、前記軟質外側層のガラス転移温度が-20℃以下であり、かつ前記硬質内側層のガラス転移温度より10℃以上低温であることを特徴とする請求項11に記載のパターン付きガラス基板の製造方法。 The glass transition temperature of the hard inner layer is −30 ° C. or more and 0 ° C. or less, the glass transition temperature of the soft outer layer is −20 ° C. or less, and 10 ° C. or more lower than the glass transition temperature of the hard inner layer. The manufacturing method of the glass substrate with a pattern of Claim 11 characterized by the above-mentioned.
  13.  前記軟質外側層の重量平均分子量が7万以上20万以下であり、前記硬質内側層の重量平均分子量が30万以上150万以下であることを特徴とする請求項11又は請求項12に記載のパターン付きガラス基板の製造方法。 The weight average molecular weight of the soft outer layer is 70,000 or more and 200,000 or less, and the weight average molecular weight of the hard inner layer is 300,000 or more and 1,500,000 or less. A method for producing a patterned glass substrate.
  14.  前記硬質内側層の厚さは、2μm以上7μm以下であることを特徴とする請求項11~請求項13のいずれか1つの項に記載のパターン付きガラス基板の製造方法。 14. The method for producing a patterned glass substrate according to claim 11, wherein the thickness of the hard inner layer is 2 μm or more and 7 μm or less.
  15.  前記軟質外側層の厚さは、3μm以上10μm以下であることを特徴とする請求項11~請求項14のいずれか1つの項に記載のパターン付きガラス基板の製造方法。 15. The method for producing a patterned glass substrate according to claim 11, wherein the thickness of the soft outer layer is 3 μm or more and 10 μm or less.
  16.  パターン付きガラス基板であって、
     ガラス基板と、
     顔料及びガラス成分を含み、前記ガラス基板の表面に焼結された遮光層と、
     前記遮光層上に焼結された導電性パターン層とを含み、
     前記導電性パターン層が、ガラス成分を含む導電層と、顔料及びガラス成分を含み、前記導電層を包囲する被覆層とを有することを特徴とするパターン付きガラス基板。
    A patterned glass substrate,
    A glass substrate;
    A light-shielding layer containing a pigment and a glass component and sintered on the surface of the glass substrate;
    A conductive pattern layer sintered on the light shielding layer,
    The glass substrate with a pattern, wherein the conductive pattern layer has a conductive layer containing a glass component, and a coating layer containing a pigment and a glass component and surrounding the conductive layer.
  17.  前記導電性パターン層が、前記ガラス基板上の前記遮光層の端縁部を横切る部分を含むことを特徴とする請求項16に記載のパターン付きガラス基板。 The patterned glass substrate according to claim 16, wherein the conductive pattern layer includes a portion crossing an edge portion of the light shielding layer on the glass substrate.
  18.  前記導電性パターン層の厚さが、20μm以下であり、
     前記端縁部が前記ガラス基板の表面と10°以下の角度をなす傾斜面を形成することを特徴とする請求項17に記載のパターン付きガラス基板。
    The conductive pattern layer has a thickness of 20 μm or less,
    18. The patterned glass substrate according to claim 17, wherein the edge portion forms an inclined surface that forms an angle of 10 [deg.] Or less with the surface of the glass substrate.
  19.  前記ガラス基板は、自動車用窓ガラスであり、前記遮光層及び前記導電性パターン層は、前記ガラス基板の車内側の面上に設けられることを特徴とする請求項16~請求項18のいずれか1つの項に記載のパターン付きガラス基板。 The glass substrate is a window glass for an automobile, and the light shielding layer and the conductive pattern layer are provided on an inner surface of the glass substrate. The patterned glass substrate according to one item.
  20.  前記ガラス基板は、自動車用合わせ窓ガラスの車内側を構成するガラス基板であり、前記遮光層及び前記導電性パターン層は、該ガラス基板の車内側の面上に設けられることを特徴とする請求項16~請求項19のいずれか1つの項に記載のパターン付きガラス基板。 The said glass substrate is a glass substrate which comprises the vehicle inside of the laminated window glass for motor vehicles, The said light shielding layer and the said electroconductive pattern layer are provided on the surface inside the vehicle of this glass substrate, It is characterized by the above-mentioned. Item 20. The patterned glass substrate according to any one of items 16 to 19.
  21.  導電性パターン層及び粘着層を含む積層体と、前記積層体の、前記粘着層とは反対側の面に剥離可能に積層された支持フィルムとを有し、前記積層体を基体の表面に転写し、加熱することによって前記導電性パターン層を前記基体に焼結するために用いる転写フィルムであって、
     前記粘着層は、相対的に高いガラス転移温度を有する硬質内側層と相対的に低いガラス転移温度を有する軟質外側層とを含むことを特徴とする転写フィルム。
    A laminate including a conductive pattern layer and an adhesive layer; and a support film that is detachably laminated on a surface of the laminate opposite to the adhesive layer, and the laminate is transferred to the surface of the substrate. And a transfer film used for sintering the conductive pattern layer to the substrate by heating,
    The transfer film, wherein the adhesive layer includes a hard inner layer having a relatively high glass transition temperature and a soft outer layer having a relatively low glass transition temperature.
  22.  当該転写フィルムは帯状をなして巻き取られた形態をなし、前記導電性パターン層は前記支持フィルムの長手方向に沿って複数個が配列されていることを特徴とする請求項21に記載の転写フィルム。 The transfer according to claim 21, wherein the transfer film is wound in a belt shape, and a plurality of the conductive pattern layers are arranged along a longitudinal direction of the support film. the film.
  23.  前記粘着層の前記硬質内側層の厚さは、2μm以上7μm以下であることを特徴とする請求項21又は請求項22に記載の転写フィルム。 The transfer film according to claim 21 or 22, wherein the thickness of the hard inner layer of the adhesive layer is 2 µm or more and 7 µm or less.
  24.  前記粘着層の前記軟質外側層の厚さは、3μm以上10μm以下であることを特徴とする請求項21~請求項23のいずれか1つの項に3に記載の転写フィルム。 The transfer film according to any one of claims 21 to 23, wherein the thickness of the soft outer layer of the adhesive layer is 3 µm or more and 10 µm or less.
  25.  前記硬質内側層のガラス転移温度が-30以上0℃以下であり、前記軟質外側層のガラス転移温度が-20℃以下であり、かつ前記硬質内側層のガラス転移温度より10℃以上低温であることを特徴とする請求項21~請求項24のいずれか1つの項に記載の転写フィルム。 The glass transition temperature of the hard inner layer is −30 to 0 ° C., the glass transition temperature of the soft outer layer is −20 ° C. or less, and 10 ° C. or more lower than the glass transition temperature of the hard inner layer. The transfer film according to any one of claims 21 to 24, wherein:
  26.  前記軟質外側層の重量平均分子量が7万以上20万以下であり、前記硬質内側層の重量平均分子量が30万以上150万以下であることを特徴とする請求項21~請求項25のいずれか1つの項に記載の転写フィルム。 The weight average molecular weight of the soft outer layer is from 70,000 to 200,000, and the weight average molecular weight of the hard inner layer is from 300,000 to 1,500,000. The transfer film according to one item.
PCT/JP2011/004801 2010-12-28 2011-08-29 Patterned glass substrate, manufacturing method therefor, and transfer film used in manufacturing method WO2012090352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550673A JP5901537B2 (en) 2010-12-28 2011-08-29 Manufacturing method of glass substrate with pattern

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-294207 2010-12-28
JP2010-294183 2010-12-28
JP2010-294194 2010-12-28
JP2010294207 2010-12-28
JP2010294183 2010-12-28
JP2010294194 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090352A1 true WO2012090352A1 (en) 2012-07-05

Family

ID=46382498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004801 WO2012090352A1 (en) 2010-12-28 2011-08-29 Patterned glass substrate, manufacturing method therefor, and transfer film used in manufacturing method

Country Status (2)

Country Link
JP (3) JP5901537B2 (en)
WO (1) WO2012090352A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525643A (en) * 2014-06-12 2017-09-07 エージーシー グラス ユーロップAgc Glass Europe Heated glass panel
JP2019106642A (en) * 2017-12-13 2019-06-27 マツダ株式会社 Glass antenna

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168310A (en) * 2016-03-16 2017-09-21 株式会社トッパンTdkレーベル Transfer film for anti-fog heater and windshield for vehicle
JP6851046B2 (en) * 2017-03-21 2021-03-31 豊田合成株式会社 Thermal transfer sheet, manufacturing method of decorative products, and decorative products

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175010U (en) * 1985-04-22 1986-10-31
WO2009101919A1 (en) * 2008-02-13 2009-08-20 Nippon Sheet Glass Company, Limited Window pane with sintered conductive ceramic

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08276699A (en) * 1995-04-06 1996-10-22 Dainippon Printing Co Ltd Adhesive layer transfer sheet, image-forming method using said sheet, and image-forming matter
JPH08276696A (en) * 1995-04-06 1996-10-22 Dainippon Printing Co Ltd Adhesive layer transfer sheet, image-forming method using said sheet, and image-forming matter
JP2000151080A (en) * 1998-09-07 2000-05-30 Asahi Glass Co Ltd Transfer print patterning method and glass with print pattern formed thereon using the same
DE19940790B4 (en) * 1999-08-27 2004-12-09 Leonhard Kurz Gmbh & Co Transfer film for applying a decorative layer arrangement to a substrate and method for its production
JP4453355B2 (en) * 2003-12-12 2010-04-21 旭硝子株式会社 Window glass for vehicle with conductor and method of manufacturing the same
JP2007305622A (en) * 2006-05-08 2007-11-22 Seiko Epson Corp Thin film element and its fabrication process, thin film circuit device and its fabrication process, and electronic apparatus
JP4900917B2 (en) * 2006-07-14 2012-03-21 フジコピアン株式会社 Protective layer transfer sheet
JP5307360B2 (en) * 2007-06-13 2013-10-02 株式会社トッパンTdkレーベル Transfer film for firing and method for forming substrate with functional pattern
JP5229529B2 (en) * 2007-07-20 2013-07-03 株式会社トッパンTdkレーベル Transfer film for firing and method for forming substrate with functional pattern
JP5040031B2 (en) * 2007-06-13 2012-10-03 株式会社トッパンTdkレーベル Transfer film for baking
JP2009292040A (en) * 2008-06-05 2009-12-17 Sony Corp Thermal transfer laminated film, thermal transfer sheet, and image forming device
JP5153550B2 (en) * 2008-09-30 2013-02-27 日本写真印刷株式会社 Transfer sheet having metal thin film on part of sheet surface and having polyester anchor layer, and method for producing the same
JP5350731B2 (en) * 2008-09-30 2013-11-27 日本写真印刷株式会社 Transfer sheet having metal thin film on part of sheet surface and having acrylic anchor layer, and method for producing the same
JP2010082964A (en) * 2008-09-30 2010-04-15 Nissha Printing Co Ltd Transfer sheet having metal thin film in part of sheet surface and epoxy based anchor layer and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61175010U (en) * 1985-04-22 1986-10-31
WO2009101919A1 (en) * 2008-02-13 2009-08-20 Nippon Sheet Glass Company, Limited Window pane with sintered conductive ceramic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017525643A (en) * 2014-06-12 2017-09-07 エージーシー グラス ユーロップAgc Glass Europe Heated glass panel
JP2019106642A (en) * 2017-12-13 2019-06-27 マツダ株式会社 Glass antenna

Also Published As

Publication number Publication date
JP2015186996A (en) 2015-10-29
JP2015193253A (en) 2015-11-05
JP5992069B2 (en) 2016-09-14
JP5901537B2 (en) 2016-04-13
JP6012808B2 (en) 2016-10-25
JPWO2012090352A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP6012808B2 (en) Glass substrate with pattern
JP6153514B2 (en) Ceramic color paste, ceramic color, glass with ceramic color and method for producing the same
CN110191799A (en) Laminated glass and its manufacturing method
TW201226201A (en) Transparent protective plate, flat panel display, and method for producing flat panel display
JP2015530942A (en) Laminated body including pressure-sensitive adhesive layer and method for producing the same
JP6537320B2 (en) Laminates for infrared transmission and visible hiding
WO2011122499A1 (en) Method for producing transfer body
JP5830033B2 (en) Glass substrate with pattern and method for manufacturing the same
JP5293466B2 (en) Rolled transfer film and method for producing the same
JP5229529B2 (en) Transfer film for firing and method for forming substrate with functional pattern
JP6202727B2 (en) Manufacturing method of decorative sheet
JP5600458B2 (en) Manufacturing method of glass plate provided with transfer-type film for baking and fired body
JP2016135562A (en) Laminate, production method of conductive substrate using the same, production method of electronic device, and transfer tool
JP6699784B2 (en) Laminated body, method of manufacturing conductive substrate using the same, method of manufacturing electronic device, and transfer tool
KR102035927B1 (en) A thin film for smart phone and a method thereof
JP2008249882A (en) Method of manufacturing composite filter for display
JP2010146849A (en) Member for push-button switch, key panel, and electronic equipment
JP6341493B2 (en) Manufacturing method of decorative sheet
JP5040031B2 (en) Transfer film for baking
EP2165851A1 (en) Transfer films for burning and method of forming substrate with functional pattern
JP2010012714A (en) Method for manufacturing functional thin-film, functional thin-film, method for manufacturing functional thin-film laminated base material, and functional thin-film laminated base material
JP2010182871A (en) Wiring circuit member
JP5369329B2 (en) Transfer film for baking
JP2004277534A (en) Pressure-sensitive adhesive sheet and its manufacturing method
JP3921454B2 (en) Method for manufacturing multilayer unit for multilayer ceramic electronic component and multilayer unit for multilayer ceramic electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853019

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550673

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853019

Country of ref document: EP

Kind code of ref document: A1