WO2012090259A1 - 風力発電用風車の制振装置および風力発電用風車 - Google Patents

風力発電用風車の制振装置および風力発電用風車 Download PDF

Info

Publication number
WO2012090259A1
WO2012090259A1 PCT/JP2010/073514 JP2010073514W WO2012090259A1 WO 2012090259 A1 WO2012090259 A1 WO 2012090259A1 JP 2010073514 W JP2010073514 W JP 2010073514W WO 2012090259 A1 WO2012090259 A1 WO 2012090259A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
damping device
wind turbine
wind power
wind
Prior art date
Application number
PCT/JP2010/073514
Other languages
English (en)
French (fr)
Inventor
川端 稔
久保 充司
Original Assignee
三菱重工業株式会社
三菱重工鉄構エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45806880&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012090259(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱重工業株式会社, 三菱重工鉄構エンジニアリング株式会社 filed Critical 三菱重工業株式会社
Priority to JP2011514576A priority Critical patent/JP5594696B2/ja
Priority to CN2010800028350A priority patent/CN102713278A/zh
Priority to CA2735345A priority patent/CA2735345C/en
Priority to PCT/JP2010/073514 priority patent/WO2012090259A1/ja
Priority to KR1020117008394A priority patent/KR101255502B1/ko
Priority to AU2010291891A priority patent/AU2010291891A1/en
Priority to US13/047,876 priority patent/US8322975B2/en
Publication of WO2012090259A1 publication Critical patent/WO2012090259A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/91Mounting on supporting structures or systems on a stationary structure
    • F05B2240/912Mounting on supporting structures or systems on a stationary structure on a tower
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • F05B2260/964Preventing, counteracting or reducing vibration or noise by damping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • the present invention relates to a vibration damping device suitable for being applied to a wind turbine for wind power generation.
  • the nacelle is installed at the upper end of the props, the rotor head and wind turbine rotor blades are attached to the nacelle, and the entire wind turbine for wind power generation is completed At this stage, the natural frequency of the column changes (decreases) each time. Therefore, it is preferable that the natural frequency of the vibration damping device can be changed accordingly.
  • the present invention has been made in view of such circumstances, and can be installed in a narrow space in the support column without increasing the weight of the support column, and can change its natural frequency.
  • An object of the present invention is to provide a wind turbine vibration damping device for wind power generation.
  • a wind turbine damping device for wind power generation is a damping device for a wind turbine for wind power generation installed in a column of a wind turbine for wind power generation, and extends along a vertical direction, and An oscillating rod suspended from a beam provided at an upper portion of the support via a first universal joint, a flange portion extending outward in the horizontal direction from an upper end portion of the oscillating rod, and the oscillating rod
  • a pendulum having a weight attached to a moving rod and capable of moving up and down along a vertical direction, and an upper end of the pendulum are attached to the beam via a second universal joint, And a plurality of damping devices to which lower ends thereof are attached via a third universal joint.
  • the wind turbine damping device for wind power generation there is an effect of increasing the attenuation of the primary column vibration, and the effect of suppressing the vibration and amplitude of the primary column accompanying the rotation of the wind turbine rotor by increasing the attenuation.
  • pillar can be avoided and the windmill for wind power generations whose hub height exceeds 100 m can be designed easily.
  • a part of the damping device for example, a damper (attenuator)
  • a damper attenuator
  • the natural frequency of the damping device is changed by moving the weight up and down along the axial direction of the rocking rod.
  • the natural frequency of the damping device is changed by moving the weight up and down along the axial direction of the rocking rod.
  • the beam is a beam that supports a top floor provided at the top of the support column.
  • the vibration damping device since the vibration damping device is installed at a position where the damping effect is most obtained, the vibration damping device can be further reduced in size.
  • a maintenance floor is provided immediately below the top floor and at a position where an operator can access the damping device.
  • the damping device can be maintained easily and quickly, and the maintenance workability can be improved.
  • the wind turbine for wind power generation according to the present invention can be installed in a narrow space in the support column without increasing the weight of the support column, and the vibration suppression of the wind turbine for wind power generation capable of changing its natural frequency Equipment.
  • the wind turbine for wind power generation it is possible to cope with the increase in size of the wind turbine for wind power generation having a hub height exceeding 100 m.
  • the wind turbine vibration damping device for wind power generation according to the present invention, it can be installed in a narrow space in the column without increasing the weight of the column, and its natural frequency can be changed. There is an effect.
  • FIG. 1 is a perspective view schematically showing an overall configuration of a vibration damping device for a wind turbine for wind power generation according to an embodiment of the present invention. It is a figure which shows typically the whole structure of the damping device of the windmill for wind power generation concerning one Embodiment of this invention, Comprising: It is the figure seen from the front of a support
  • FIG. 8 is a cross-sectional view taken along line AA in FIG.
  • FIG. 1 is a side view showing an outline of a wind turbine for wind power generation provided with a vibration control device for wind turbine for wind power generation according to an embodiment of the present invention, and is a view seen from the left side of a column.
  • FIG. 3 is a cross-sectional view showing the inside of a column of a wind turbine for wind power generation provided with a vibration control device for a wind turbine for wind power generation according to the embodiment, viewed from the left side of the column
  • FIG. 3 is a wind power generation according to the present embodiment
  • FIG. 4 is an enlarged view of the main part of FIG. 3, and FIG.
  • FIG. 5 is a vertical beam and a horizontal beam arranged on the lower surface of the top floor, and these beams are attached to these beams. It is a figure for demonstrating the positional relationship of a universal joint, Comprising: The figure which looked at the top floor from upper direction, FIG. 6: is a perspective view which shows typically the whole structure of the damping device of the windmill for wind power generation concerning this embodiment, FIG. 7 schematically shows the overall configuration of the wind turbine damping device for wind power generation according to this embodiment. FIG. 8 is a cross-sectional view taken along the line AA of FIG. 7, and FIG. 9 is an enlarged view of the main part of the coupling device. It is the figure seen from the front.
  • the wind turbine 1 for wind power generation is configured to be rotatable around a substantially horizontal axis line with a column (tower) 3 standing on a foundation 2, a nacelle 4 installed at the upper end of the column 3.
  • the rotor head 5 provided in the nacelle 4 and a plurality of, for example, three wind turbine rotor blades 6 mounted radially around the rotation axis of the rotor head 5 are provided.
  • the wind force applied to the wind turbine rotor blade 6 from the direction of the rotation axis of the rotor head 5 is converted into power for rotating the rotor head 5 around the rotation axis.
  • an anemometer 7 for measuring the peripheral wind speed value At the upper part of the nacelle 4, an anemometer 7 for measuring the peripheral wind speed value, an anemometer 8 for measuring the wind direction, and a lightning rod (not shown) are provided.
  • a generator connected to the rotor head 5 via a coaxial gearbox is installed inside the nacelle 4, although not shown in the figure. In other words, the generator output is obtained from the generator by driving the generator by increasing the rotation of the rotor head 5 with the gearbox.
  • the wind turbine vibration damping device 11 includes, for example, a top floor 12 provided at the uppermost portion in the column 3. It is installed so as to be suspended from the horizontal beam 15 and the vertical beam 16 (see FIGS. 3 to 7) supporting the lower surface 14.
  • the lower surface 14 of the top floor 12 is a ceiling surface of an elevator stop floor (maintenance floor) 13 provided immediately below the top floor 12.
  • Reference numeral 17 in FIG. 2 indicates a portion called “ladder” provided from the bottom to the top of the support 3 along the height direction (longitudinal direction) of the support 3.
  • An elevator (not shown) moves up and down inside.
  • the vibration damping device 11 includes a plurality of (two (two) in the present embodiment) pendulum type TMD (Tuned Mass Damper). 18 is provided.
  • Each pendulum type TMD 18 includes one pendulum 21 and a plurality (four in this embodiment) of oil dampers (attenuators) 22.
  • the pendulum 21 includes a swing rod 23, a flange portion (saddle portion) 24, and a weight 25.
  • the swing rod 23 extends along the height direction of the column 3 (see FIGS. 1 and 2).
  • the flange portion 24 extends radially outward along the circumferential direction from the outer surface (outer peripheral surface) of the upper end portion of the swing rod 23 (a plane orthogonal to the axial direction (longitudinal direction) of the swing rod 23, that is, a horizontal plane.
  • the weight 25 is attached to the oscillating rod 23 and is configured to be movable up and down along the axial direction of the oscillating rod 23, that is, the vertical direction.
  • the weight 25 indicated by a solid line in FIG. 3 has a pendulum length (the distance from the center of the universal joint 31 to the center in the height direction (vertical direction in FIG. 3) of the weight 25) of 3 m. Is shown. Further, the weight 25 indicated by a two-dot chain line (virtual line) in FIG. 3 is a distance from the pendulum length (the center of the universal joint 31 to the center in the height direction of the weight 25 (vertical direction in FIG. 3)). ) Is 7 m.
  • the swing rod 23 constituting one (left) pendulum type TMD 18 is suspended via a (first) universal joint (universal joint) 31 as shown in FIG.
  • the universal joint 31 is orthogonal to the central axis of the support column 3 extending along the height direction of the support column 3, extends along the lateral (left / right) direction (left / right direction in FIG. 5) of the support column 3, and Is attached to the lower surface of the central portion of the cross beam 15 located in the left half (left half in FIG. 5).
  • the swing rod 23 constituting the other (right) pendulum type TMD 18 is suspended through a universal joint 31 as shown in FIG.
  • the universal joint 31 is orthogonal to the central axis of the support column 3 extending along the height direction of the support column 3 and extends along the lateral direction of the support column 3, and the right half of the support column 3 (the right half in FIG. 5). It is attached to the lower surface of the center part of the cross beam 15 located in the center.
  • a vertical beam 16 orthogonal to the central portion of the horizontal beam 15 located in the left half of the column 3 is connected (joined) so as to be continuous with the horizontal beam 15 in a plane including the horizontal beam 15.
  • a vertical beam 16 that is orthogonal to the central portion of the horizontal beam 15 located in the right half of the column 3 is connected (joined) so as to be continuous with the horizontal beam 15 in a plane including the horizontal beam 15.
  • the upper end of the oil damper 22 is attached to the lower surface of the horizontal beam 15 equidistant from the center of the horizontal beam 15 located in the left half of the column 3 in the left-right direction (second) universal joint (universal joint) 32. One is attached to each.
  • One universal joint 32 to which the upper end portion of the oil damper 22 is attached is attached to the lower surface of the lateral beam 15 equidistant from the center of the lateral beam 15 located in the right half of the column 3 in the left-right direction.
  • One universal joint 32 to which the upper end of the oil damper 22 is attached is attached to the lower surface of the vertical beam 16 that is equidistant from the center of the horizontal beam 15 located in the right half of the column 3 in the vertical direction.
  • the flange portion 24 is a (substantially) disk-shaped member that has a circular shape in plan view.
  • the lower end portion of the oil damper 22 is attached to the upper surface of the flange portion 24 located immediately below the universal joint 32 (opposite the universal joint 32) (third) universal joint (universal joint) 33 (FIG. 3, FIG. 4) are attached one by one.
  • the weight 25 includes, for example, a plurality of annular (donut-shaped) weights having the same inner diameter, the same outer diameter, and the same weight along the axial direction of the swing rod 23 ( In this embodiment, 15 sheets are stacked. In this embodiment, the total weight of the weights 25 is set to 3.3 tons. Further, in the present embodiment, when the pendulum length (the distance from the center of the universal joint 31 to the center in the height direction of the weight 25 (vertical direction in FIG. 3)) is 3 m, the vibration control device 11 is unique. The vibration frequency is 0.3 Hz, and the swing width (stroke) of the tip (lower end) of the swing rod 23 is ⁇ 300 mm.
  • the natural frequency of the vibration control device 11 is set to 0.2 Hz
  • the swing width (stroke) of the tip (lower end) of the swing rod 23 is set to ⁇ 200 mm.
  • 3 and 4 is a positioning (drop prevention) mechanism (for example, a pin) that positions the weight 25 and prevents the weight 25 from falling.
  • the connecting device 41 includes a plurality (two in this embodiment) of connecting rods (flat bars) 42, a plurality of connecting rods 42 (each of which is connected to each end of the connecting rod 42 and the outer surface (outer peripheral surface) of the weight 25).
  • four connectors 43 are provided.
  • the connecting rods 42 intersect each other at a predetermined angle (for example, 60 degrees) when the vibration damping device 11 is viewed from below (or above), as shown in FIG.
  • the vibration damping devices 11 are arranged so as to be parallel to each other when viewed from the front (or the rear).
  • a spherical (sliding) bearing 44 is connected to (attached to) each end of the connecting rod 42.
  • each connector 43 includes two upper and lower (a set of) eye plates 45 and 46, bolts (pins) 47, and nuts 48.
  • the eye plates 45 and 46 protrude from the outer surface of the weight 25 so as to sandwich the end of the corresponding connecting rod 42 from above and below.
  • Bolts (pins) 47 are inserted into through holes (not shown) provided in the eye plates 45 and 46 and through holes (not shown) provided in the inner ring (not shown) of the spherical bearing 44.
  • the nut 48 is screwed to the tip (lower end) of the bolt 47.
  • the vibration damping device 11 has an effect of increasing the attenuation of the primary column vibration, and has an effect of suppressing the vibration and amplitude of the column primary accompanying the rotation of the wind turbine rotor by the increase in attenuation. Thereby, the weight increase of the support
  • a part of the vibration damping device 11 (for example, a damper (attenuator)) is not fixed to the inner wall surface of the column 3, it is not necessary to reinforce the inner wall surface of the column 3, and the weight of the column 3 is reduced. An increase can be avoided.
  • the natural frequency of the vibration control device 11 is changed by moving the weight 25 up and down along the axial direction of the swing rod 23. That is, when assembling the wind turbine 1 for wind power generation, when only the support 3 is completed, when the nacelle 4 is installed at the upper end of the support 3, the rotor head 5 and the wind turbine rotor blade 6 are attached to the nacelle 4.
  • the natural frequency of the column 3 is changed each time according to the stage where the entire power generating windmill 1 is completed. Thereby, the wind turbine 1 for wind power generation can be assembled safely and promptly.
  • the other pendulum type TMD 18 connected via the connecting device 41 controls vibration.
  • the other pendulum type TMD 18 connected via the connecting device 41 works as a fail-safe). Thereby, the reliability of the damping device 11 can be improved.
  • the vibration damping device 11 since the vibration damping device 11 according to the present embodiment is suspended from the top floor 12 where the damping effect is most obtained, the vibration damping device 11 can be further reduced in size.
  • the elevator stop floor (maintenance floor) is located at a position where the oil damper 22 can be maintained, that is, an accessible position. ) 13 is provided. Thereby, the oil damper 22 can be maintained easily and quickly, and the maintenance workability can be improved.
  • the wind turbine 1 for wind power generation can be installed in a narrow space in the support column 3 without increasing the weight of the support column 3, and can control its natural frequency.
  • a vibration device 11 is provided. Thereby, it can respond to the enlargement of the windmill for wind power generation whose hub height exceeds 100 m.
  • the vibration damping device 11 including the two pendulum type TMDs 18 is described as a specific example, but the present invention is not limited to this.
  • a single pendulum type TMD 18 may be suspended through a single universal joint 31.
  • the universal joint 31 is attached to the central portion of the vertical beam 16 and to the lower surface of the central portion of the horizontal beam 15.
  • the vertical beam 16 is a beam that is orthogonal to the central axis of the column 3 extending along the height direction of the column 3 and extends along the vertical (front-rear) direction (vertical direction in FIG.
  • the horizontal beam 15 is a beam that is orthogonal to the center axis of the column 3 extending along the height direction of the column 3 and extends along the horizontal (left and right) direction (left and right direction in FIG. 10) of the column 3.
  • FIG. 11 it can also be set as the structure which suspended one pendulum type TMD18 through the three universal joints 31.
  • the first universal joint 31 is attached to the front half of the vertical beam 16 and to the lower surface of the central portion of the horizontal beam 15 orthogonal to the front half of the vertical beam 16.
  • the second of the universal joints 31 is attached to the right half of the horizontal beam 15 and to the lower surface of the central part of the vertical beam 16 orthogonal to the central part of the horizontal beam 15.
  • the third of the universal joint 31 is attached to the left half of the horizontal beam 15 and to the lower surface of the central portion of the vertical beam 16 orthogonal to the central portion of the horizontal beam 15.

Abstract

支柱の重量増加を伴うことなく、支柱内の狭小なスペースに設置することができるとともに、その固有振動数を変化させることができる風力発電用風車の制振装置を提供する。支柱の高さ方向に沿って延びるとともに、前記支柱の上部に設けられた梁15,16に、第1のユニバーサルジョイント31を介して吊り下げられた揺動ロッド23と、前記揺動ロッド23の上端部外表面から、周方向に沿って径方向外側に延びるフランジ部24と、前記揺動ロッド23に取り付けられ、かつ、前記揺動ロッド23の軸方向に沿って昇降可能な重錘25と、を備えた振子21と、前記梁15,16に、第2のユニバーサルジョイント32を介してその上端部が取り付けられ、前記フランジ部24に、第3のユニバーサルジョイント33を介してその下端部が取り付けられる複数本の減衰装置22と、を備えている。

Description

風力発電用風車の制振装置および風力発電用風車
 本発明は、風力発電用風車に適用されて好適な制振装置に関するものである。
 近年、風力発電用風車は、その発電効率の向上および発電量の増大を図るために大型化し、そのハブ高さ(地面からハブ中心までの高さ)が100mを超えるものが実現に向けて設計されている。
 しかしながら、ハブ高さが100mを超えるものでは、支柱(タワー)の一次固有振動数が、ローターヘッドおよび風車回転翼の回転に伴う共振域と合致し、支柱の疲労荷重が大幅に増加してしまうおそれがある。そのため、支柱の疲労荷重を低減させるために支柱の肉厚を厚くしなければならず、支柱の重量が大幅に増加してしまうといった問題点があった。
 そこで、このような問題点を回避するため、例えば、特許文献1に開示された制振装置を用いて、支柱の一次固有振動数が、ローターヘッドおよび風車回転翼の回転に伴う共振域と合致しても応答を低減することもできる。
特開2008-31735号公報
 しかしながら、特許文献1に開示された制振装置を風力発電用風車に適用した場合、ダンパー(減衰装置)の一端が支柱の内壁面に固定されることになる。そのため、当該支柱の内壁面を補強しなければならず、支柱の重量が増加してしまうといった問題点があった。
 また、制振装置を風力発電用風車に適用するにあたっては、美観を損ねるような構造とならないようにするとともに、支柱内の狭小なスペースに設置しなければならないため、制振装置をできるだけ小型化する必要がある。
 さらに、風力発電用風車を組み立てていく際、支柱のみが完成した段階、支柱の上端にナセルが設置された段階、ナセルにローターヘッドおよび風車回転翼が取り付けられ、風力発電用風車の全体が完成した段階で、支柱の固有振動数は、その都度変化していく(小さくなっていく)。そのため、それにあわせて制振装置の固有振動数を変化させることができると好適である。
 本発明は、このような事情に鑑みてなされたものであって、支柱の重量増加を伴うことなく、支柱内の狭小なスペースに設置することができるとともに、その固有振動数を変化させることができる風力発電用風車の制振装置を提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を採用した。
 本発明に係る風力発電用風車の制振装置は、風力発電用風車の支柱の内部に格納して設置される風力発電用風車の制振装置であって、鉛直方向に沿って延びるとともに、前記支柱の上部に設けられた梁に、第1のユニバーサルジョイントを介して吊り下げられた揺動ロッドと、前記揺動ロッドの上端部から、水平方向に沿って外側に延びるフランジ部と、前記揺動ロッドに取り付けられ、かつ、鉛直方向に沿って昇降可能な重錘と、を備えた振子と、前記梁に、第2のユニバーサルジョイントを介してその上端部が取り付けられ、前記フランジ部に、第3のユニバーサルジョイントを介してその下端部が取り付けられる複数本の減衰装置と、を備えている。
 本発明に係る風力発電用風車の制振装置によれば、支柱1次振動の減衰を増加させる効果があり、減衰増加により風車回転翼の回転に伴う支柱1次の振動・振幅を抑制する効果がある。これにより、支柱の重量増加を回避することができ、ハブ高さが100mを超える風力発電用風車を容易に設計することができる。
 また、制振装置の一部(例えば、ダンパー(減衰装置))が支柱の内壁面に固定されることはないので、当該支柱の内壁面を補強する必要がなくなり、支柱の重量増加を回避することができる。
 さらにまた、重錘を揺動ロッドの軸方向に沿って昇降させることにより、制振装置の固有振動数が変化することになる。すなわち、風力発電用風車を組み立てていく際、支柱のみが完成した段階、支柱の上端にナセルが設置された段階、ナセルにローターヘッドおよび風車回転翼が取り付けられ、風力発電用風車の全体が完成した段階に応じて、支柱の固有振動数がその都度変化させられることになる。これにより、風力発電用風車を安全、かつ、速やかに組み立てていくことができる。
 上記風力発電用風車の制振装置において、前記振子と前記減衰装置とを備えた振子式TMDを少なくとも二基備え、隣り合う前記重錘同士が、連結装置を介して互いに連結されているとさらに好適である。
 このような風力発電用風車の制振装置によれば、一方の振子式TMDを構成する減衰装置の一部または全部が故障した場合(機能しなくなった場合)でも、連結装置を介して連結されたもう一方の振子式TMDにより制振される(連結装置41を介して連結されたもう一方の振子式TMD18がフェールセーフとして働く)ことになる。これにより、当該制振装置の信頼性を向上させることができる。
 上記風力発電用風車の制振装置において、前記梁は、前記支柱の最上部に設けられたトップフロアを支持する梁であるとさらに好適である。
 このような風力発電用風車の制振装置によれば、減衰効果が最も得られる位置に設置されることになるので、当該制振装置のさらなる小型化を図ることができる。
 上記風力発電用風車の制振装置において、前記トップフロアの直下で、かつ、作業員が前記減衰装置にアクセス可能な位置に、メンテナンスフロアが設けられているとさらに好適である。
 このような風力発電用風車の制振装置によれば、減衰装置を容易、かつ、迅速にメンテナンスすることができ、メンテナンスの作業性を向上させることができる。
 本発明に係る風力発電用風車は、支柱の重量増加を伴うことなく、支柱内の狭小なスペースに設置することができるとともに、その固有振動数を変化させることができる風力発電用風車の制振装置を具備している。
 本発明に係る風力発電用風車によれば、ハブ高さが100mを超える風力発電用風車の大型化に対応することができる。
 本発明に係る風力発電用風車の制振装置によれば、支柱の重量増加を伴うことなく、支柱内の狭小なスペースに設置することができるとともに、その固有振動数を変化させることができるという効果を奏する。
本発明の一実施形態に係る風力発電用風車の制振装置を具備した風力発電用風車の概略を示す側面図であって、支柱の左側方から見た図である。 本発明の一実施形態に係る風力発電用風車の制振装置を具備した風力発電用風車の支柱内の様子を示す断面図であって、支柱の左側方から見た図である。 本発明の一実施形態に係る風力発電用風車の制振装置の構成を示す図である。 図3の要部を拡大して示す図である。 トップフロアの下面に配置された縦梁および横梁、およびこれら梁に取り付けられたユニバーサルジョイントの位置関係を説明するための図であって、トップフロアを上方から見た図である。 本発明の一実施形態に係る風力発電用風車の制振装置の全体構成を模式的に示す斜視図である。 本発明の一実施形態に係る風力発電用風車の制振装置の全体構成を模式的に示す図であって、支柱の前方から見た図である。 図7のA-A矢視断面図である。 連結装置の要部を拡大して示す図であって、支柱の前方から見た図である。 他の実施形態に係るトップフロアの下面に配置された縦梁および横梁、およびこれら梁に取り付けられたユニバーサルジョイントの位置関係を説明するための図であって、トップフロアを上方から見た図である。 別の実施形態に係るトップフロアの下面に配置された縦梁および横梁、およびこれら梁に取り付けられたユニバーサルジョイントの位置関係を説明するための図であって、トップフロアを上方から見た図である。
 1 風力発電用風車
 3 支柱(タワー)
11 制振装置(風力発電用風車の制振装置)
12 トップフロア
13 エレベータ停止フロア(メンテナンスフロア)
15 横梁
16 縦梁
18 振子式TMD
21 振子
22 オイルダンパー(減衰装置)
23 揺動ロッド
24 フランジ部
25 重錘
31 (第1の)ユニバーサルジョイント
32 (第2の)ユニバーサルジョイント
33 (第3の)ユニバーサルジョイント
41 連結装置
 本発明の一実施形態に係る風力発電用風車の制振装置について、図1から図9を参照しながら説明する。
 図1は本発明の一実施形態に係る風力発電用風車の制振装置を具備した風力発電用風車の概略を示す側面図であって、支柱の左側方から見た図、図2は本実施形態に係る風力発電用風車の制振装置を具備した風力発電用風車の支柱内の様子を示す断面図であって、支柱の左側方から見た図、図3は本実施形態に係る風力発電用風車の制振装置の構成を示す図、図4は図3の要部を拡大して示す図、図5はトップフロアの下面に配置された縦梁および横梁、およびこれら梁に取り付けられたユニバーサルジョイントの位置関係を説明するための図であって、トップフロアを上方から見た図、図6は本実施形態に係る風力発電用風車の制振装置の全体構成を模式的に示す斜視図、図7は本実施形態に係る風力発電用風車の制振装置の全体構成を模式的に示す図であって、支柱の前方から見た図、図8は図7のA-A矢視断面図、図9は連結装置の要部を拡大して示す図であって、支柱の前方から見た図である。
 図1に示すように、風力発電用風車1は、基礎2上に立設される支柱(タワー)3と、支柱3の上端に設置されるナセル4と、略水平な軸線周りに回転可能にしてナセル4に設けられるローターヘッド5と、ローターヘッド5の回転軸線周りに放射状に取り付けられた複数枚、例えば、3枚の風車回転翼6とを備えている。そして、ローターヘッド5の回転軸線方向から風車回転翼6にあたった風の力が、ローターヘッド5を回転軸線周りに回転させる動力に変換されるようになっている。
 ナセル4の上部には、周辺の風速値を測定する風速計7と、風向を測定する風向計8と、避雷針(図示せず)とが備えられている。
 ナセル4の内部には、いずれも図示を省略しているが、ローターヘッド5と同軸の増速機を介して連結された発電機が設置されている。すなわち、ローターヘッド5の回転を増速機で増速して発電機を駆動することにより、発電機より発電機出力が得られるようになっている。
 図2に示すように、本実施形態に係る風力発電用風車の制振装置(以下、「制振装置」という。)11は、例えば、支柱3内の最上部に設けられたトップフロア12の下面14を支持する横梁15および縦梁16(図3から図7参照)から吊り下げられるようにして設置されている。ここで、トップフロア12の下面14とは、トップフロア12の直下に設けられたエレベータ停止フロア(メンテナンスフロア)13の天井面のことである。
 なお、図2中の符号17は、支柱3の高さ方向(長手方向)に沿って支柱3の最下部から最上部にわたって設けられた「ラダー」と呼ばれる部分を示しており、このラダー17の内部には、図示しないエレベータが昇降するようになっている。
 図6、図7に示すように、本実施形態に係る制振装置11は、複数台(本実施形態では二台(二基))の振子式TMD(Tuned Mass Damper:チューンド・マス・ダンパー)18を備えている。
 各振子式TMD18は、一つの振子21と、複数本(本実施形態では四本)のオイルダンパー(減衰装置)22とを備えている。
 図3、図4、図6、図7の少なくともいずれか一図に示すように、振子21は、揺動ロッド23と、フランジ部(鍔部)24と、重錘25とを備えている。揺動ロッド23は、支柱3(図1、図2参照)の高さ方向に沿って延びている。フランジ部24は、揺動ロッド23の上端部外表面(外周面)から、周方向に沿って径方向外側に延びる(揺動ロッド23の軸方向(長手方向)と直交する平面、すなわち、水平面に沿って外方に延びている。重錘25は、揺動ロッド23に取り付けられ、かつ、揺動ロッド23の軸方向、すなわち、鉛直方向に沿って昇降可能に構成されている。
 なお、図3中に実線で示す重錘25は、振子長さ(ユニバーサルジョイント31の中心から、重錘25の高さ方向(図3において上下方向)における中心までの距離)を3mとした場合を示している。
 また、図3中に二点鎖線(仮想線)で示す重錘25は、振子長さ(ユニバーサルジョイント31の中心から、重錘25の高さ方向(図3において上下方向)における中心までの距離)を7mとした場合を示している。
 一方(左方)の振子式TMD18を構成する揺動ロッド23は、図5に示すように、(第1の)ユニバーサルジョイント(自在継手)31を介して吊り下げられている。このユニバーサルジョイント31は、支柱3の高さ方向に沿って延びる支柱3の中心軸線に直交するとともに、支柱3の横(左右)方向(図5において左右方向)に沿って延び、かつ、支柱3の左半分(図5において左半分)に位置する横梁15の中央部下面に取り付けられている。また、他方(右方)の振子式TMD18を構成する揺動ロッド23は、図5に示すように、ユニバーサルジョイント31を介して吊り下げられている。このユニバーサルジョイント31は、支柱3の高さ方向に沿って延びる支柱3の中心軸線に直交するとともに、支柱3の横方向に沿って延び、かつ、支柱3の右半分(図5において右半分)に位置する横梁15の中央部下面に取り付けられている。
 支柱3の左半分に位置する横梁15の中央部には、横梁15を含む平面内において横梁15と連続するようにして直交する縦梁16が接続(接合)されている。また、支柱3の右半分に位置する横梁15の中央部には、横梁15を含む平面内において横梁15と連続するようにして直交する縦梁16が接続(接合)されている。
 また、支柱3の左半分に位置する横梁15の中央から左右方向に等距離いった横梁15の下面には、オイルダンパー22の上端部が取り付けられる(第2の)ユニバーサルジョイント(自在継手)32がそれぞれ一つずつ取り付けられている。支柱3の左半分に位置する横梁15の中央から縦(前後)方向(図5において上下方向)に等距離いった縦梁16の下面には、オイルダンパー22の上端部が取り付けられるユニバーサルジョイント32がそれぞれ一つずつ取り付けられている。支柱3の右半分に位置する横梁15の中央から左右方向に等距離いった横梁15の下面には、オイルダンパー22の上端部が取り付けられるユニバーサルジョイント32がそれぞれ一つずつ取り付けられている。支柱3の右半分に位置する横梁15の中央から縦方向に等距離いった縦梁16の下面には、オイルダンパー22の上端部が取り付けられるユニバーサルジョイント32がそれぞれ一つずつ取り付けられている。
 図3、図4、図6、図7に示すように、フランジ部24は、平面視円形状を呈する(略)円盤状の部材である。ユニバーサルジョイント32の直下に位置する(ユニバーサルジョイント32と対向する)フランジ部24の上面には、オイルダンパー22の下端部が取り付けられる(第3の)ユニバーサルジョイント(自在継手)33(図3、図4参照)がそれぞれ一つずつ取り付けられている。
 図3、図4に示すように、重錘25は、例えば、同じ内径、同じ外径、同じ重さの環状(ドーナツ状)の重りを、揺動ロッド23の軸方向に沿って複数枚(本実施形態では15枚)積層したものであり、本実施形態では、重錘25の総重量は、3.3トンに設定されている。
 また、本実施形態では、振子長さ(ユニバーサルジョイント31の中心から、重錘25の高さ方向(図3において上下方向)における中心までの距離)を3mとした場合、制振装置11の固有振動数が0.3Hz、揺動ロッド23の先端(下端)の振り幅(ストローク)が±300mmになる。また、振子長さを7mとした場合、制振装置11の固有振動数が0.2Hz、揺動ロッド23の先端(下端)の振り幅(ストローク)が±200mmになるように設定されている。
 なお、図3、図4中の符号34は、重錘25を位置決めし、重錘25の落下を防止する位置決め(落下防止)機構(例えば、ピン)である。
 図6、図7、図8に示すように、一方の振子式TMD18を構成する重錘25と、他方の振子式TMD18を構成する重錘25とは、連結装置41を介して互いに連結されている。
 連結装置41は、複数本(本実施形態では二本)の連結棒(フラットバー)42と、連結棒42の各端部と重錘25の外表面(外周面)とを連結する複数個(本実施形態では四個)の連結具43(図9参照)とを備えている。
 連結棒42は、図6、図8に示すように、制振装置11を下方(または上方)から見たときに、互いに所定の角度(例えば、60度)で交差し、図7に示すように、制振装置11を前方(または後方)から見たときに、互いに平行になるようにして配置されている。また、連結棒42の各端部には、球面(滑り)軸受44が連結されている(取り付けられている)。
 図9に示すように、各連結具43は、上下二枚(一組)のアイプレート45,46と、ボルト(ピン)47と、ナット48とを備えている。アイプレート45,46は、重錘25の外表面から対応する連結棒42の端部を上下から挟み込むようにして突出している。ボルト(ピン)47は、アイプレート45,46に設けられた貫通穴(図示せず)および球面軸受44の内輪(図示せず)に設けられた貫通穴(図示せず)に挿通される。ナット48は、ボルト47の先端(下端)に螺合される。
 本実施形態に係る制振装置11よれば、支柱1次振動の減衰を増加させる効果があり、減衰増加により風車回転翼の回転に伴う支柱1次の振動・振幅を抑制する効果がある。これにより、支柱3の重量増加を回避することができ、ハブ高さが100mを超える風力発電用風車1を容易に設計することができる。
 また、制振装置11の一部(例えば、ダンパー(減衰装置))が支柱3の内壁面に固定されることはないので、当該支柱3の内壁面を補強する必要がなくなり、支柱3の重量増加を回避することができる。
 さらに、重錘25を揺動ロッド23の軸方向に沿って昇降させることにより、制振装置11の固有振動数が変化することになる。すなわち、風力発電用風車1を組み立てていく際、支柱3のみが完成した段階、支柱3の上端にナセル4が設置された段階、ナセル4にローターヘッド5および風車回転翼6が取り付けられ、風力発電用風車1の全体が完成した段階に応じて、支柱3の固有振動数がその都度変化させられることになる。これにより、風力発電用風車1を安全、かつ、速やかに組み立てていくことができる。
 さらにまた、一方の振子式TMD18を構成するオイルダンパー22の一部または全部が故障した場合(機能しなくなった場合)でも、連結装置41を介して連結されたもう一方の振子式TMD18により制振される(連結装置41を介して連結されたもう一方の振子式TMD18がフェールセーフとして働く)ことになる。これにより、当該制振装置11の信頼性を向上させることができる。
 さらにまた、本実施形態に係る制振装置11は、減衰効果が最も得られるトップフロア12からつりさげられることになるので、当該制振装置11のさらなる小型化を図ることができる。
 さらにまた、トップフロア12の直下で、かつ、作業員が立って手を上に延ばすと、オイルダンパー22のメンテナンスをすることができる位置、すなわち、アクセス可能な位置に、エレベータ停止フロア(メンテナンスフロア)13が設けられている。これにより、オイルダンパー22を容易、かつ、迅速にメンテナンスすることができ、メンテナンスの作業性を向上させることができる。
 一方、本実施形態に係る風力発電用風車1は、支柱3の重量増加を伴うことなく、支柱3内の狭小なスペースに設置することができるとともに、その固有振動数を変化させることができる制振装置11を具備している。これにより、ハブ高さが100mを超える風力発電用風車の大型化に対応することができる。
 なお、本発明は上述した実施形態に限定されるものではなく、適宜必要に応じて変形・変更実施可能である。
 例えば、上述した実施形態では、二基の振子式TMD18を備えた制振装置11を一具体例として挙げて説明したが、本発明はこれに限定されるものではない。例えば、図10に示すように、一つのユニバーサルジョイント31を介して一基の振子式TMD18を吊り下げた構成とすることもできる。この場合、ユニバーサルジョイント31は、縦梁16の中央部で、かつ、横梁15の中央部下面に取り付けられている。縦梁16は、支柱3の高さ方向に沿って延びる支柱3の中心軸線に直交するとともに、支柱3の縦(前後)方向(図10において上下方向)に沿って延びる梁である。横梁15は、支柱3の高さ方向に沿って延びる支柱3の中心軸線に直交するとともに、支柱3の横(左右)方向(図10において左右方向)に沿って延びる梁である。
 また、図11に示すように、三つのユニバーサルジョイント31を介して一基の振子式TMD18を吊り下げた構成とすることもできる。この場合、ユニバーサルジョイント31の一つ目は、縦梁16の前半部で、かつ、この縦梁16の前半部に直交する横梁15の中央部下面に取り付けられている。
ユニバーサルジョイント31の二つ目は、横梁15の右半部で、かつ、この横梁15の中央部に直交する縦梁16の中央部下面に取り付けられている。ユニバーサルジョイント31の三つ目は、横梁15の左半部で、かつ、この横梁15の中央部に直交する縦梁16の中央部下面に取り付けられている。

Claims (5)

  1.  風力発電用風車の支柱の内部に格納して設置される風力発電用風車の制振装置であって、
     鉛直方向に沿って延びるとともに、前記支柱の上部に設けられた梁に、第1のユニバーサルジョイントを介して吊り下げられた揺動ロッドと、
     前記揺動ロッドの上端部から、水平方向に沿って外側に延びるフランジ部と、
     前記揺動ロッドに取り付けられ、かつ、鉛直方向に沿って昇降可能な重錘と、を備えた振子と、
     前記梁に、第2のユニバーサルジョイントを介してその上端部が取り付けられ、前記フランジ部に、第3のユニバーサルジョイントを介してその下端部が取り付けられる複数本の減衰装置と、を備えていることを特徴とする風力発電用風車の制振装置。
  2.  前記振子と前記減衰装置とを備えた振子式TMDを少なくとも二基備え、
     隣り合う前記重錘同士が、連結装置を介して互いに連結されていることを特徴とする請求項1に記載の風力発電用風車の制振装置。
  3.  前記梁は、前記支柱の最上部に設けられたトップフロアを支持する梁であることを特徴とする請求項1または2に記載の風力発電用風車の制振装置。
  4.  前記トップフロアの直下で、かつ、作業員が前記減衰装置にアクセス可能な位置に、メンテナンスフロアが設けられていることを特徴とする請求項3に記載の風力発電用風車の制振装置。
  5.  請求項1から4のいずれか一項に記載の風力発電用風車の制振装置を具備していることを特徴とする風力発電用風車。
PCT/JP2010/073514 2010-12-27 2010-12-27 風力発電用風車の制振装置および風力発電用風車 WO2012090259A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011514576A JP5594696B2 (ja) 2010-12-27 2010-12-27 風力発電用風車の制振装置および風力発電用風車
CN2010800028350A CN102713278A (zh) 2010-12-27 2010-12-27 风力发电用风车的减震装置及风力发电用风车
CA2735345A CA2735345C (en) 2010-12-27 2010-12-27 Vibration control apparatus of wind turbine generator and wind turbine generator
PCT/JP2010/073514 WO2012090259A1 (ja) 2010-12-27 2010-12-27 風力発電用風車の制振装置および風力発電用風車
KR1020117008394A KR101255502B1 (ko) 2010-12-27 2010-12-27 풍력 발전용 풍차의 제진 장치 및 풍력 발전용 풍차
AU2010291891A AU2010291891A1 (en) 2010-12-27 2010-12-27 Vibration control apparatus of wind turbine generator and wind turbine generator
US13/047,876 US8322975B2 (en) 2010-12-27 2011-03-15 Vibration control apparatus of wind turbine generator and wind turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073514 WO2012090259A1 (ja) 2010-12-27 2010-12-27 風力発電用風車の制振装置および風力発電用風車

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/047,876 Continuation US8322975B2 (en) 2010-12-27 2011-03-15 Vibration control apparatus of wind turbine generator and wind turbine generator

Publications (1)

Publication Number Publication Date
WO2012090259A1 true WO2012090259A1 (ja) 2012-07-05

Family

ID=45806880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073514 WO2012090259A1 (ja) 2010-12-27 2010-12-27 風力発電用風車の制振装置および風力発電用風車

Country Status (7)

Country Link
US (1) US8322975B2 (ja)
JP (1) JP5594696B2 (ja)
KR (1) KR101255502B1 (ja)
CN (1) CN102713278A (ja)
AU (1) AU2010291891A1 (ja)
CA (1) CA2735345C (ja)
WO (1) WO2012090259A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505778A (ja) * 2012-12-04 2016-02-25 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 制振モジュールもしくは装置、構造用の構造セグメント、および制振モジュールを有する風力発電装置

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL217887B1 (pl) * 2010-11-16 2014-08-29 Wisene Spółka Z Ograniczoną Odpowiedzialnością Zestaw do mocowania urządzenia pomiarowego, zwłaszcza dalmierza, do monitorowanego elementu konstrukcji obiektu budowlanego, zwłaszcza dachu, sposób mocowania urządzenia pomiarowego za pomocą takiego zestawu i zawiesie do mocowania urządzenia pomiarowego
US9175467B2 (en) * 2011-03-04 2015-11-03 Moog Inc. Structural damping system and method
AU2011331934A1 (en) * 2011-04-22 2012-11-08 Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co., Ltd. Vibration control apparatus, wind turbine generator and vibration control method
US8823199B2 (en) 2011-11-25 2014-09-02 Rupert Stephen Tull de Salis Fluid driven turbine
US8985948B2 (en) 2012-02-21 2015-03-24 Clean Green Energy LLC Fluid driven vertical axis turbine
EP3008335A1 (en) * 2013-06-11 2016-04-20 Vestas Wind Systems A/S Wind turbine tower having a damper
CN103291553A (zh) * 2013-06-27 2013-09-11 上海交通大学 带谐和吸收装置的浮式双叶风电机
KR101466101B1 (ko) * 2013-08-23 2014-11-27 삼성중공업 주식회사 풍력 발전 장치
DK201370627A1 (en) * 2013-10-28 2015-05-11 Vestas Wind Sys As Method of damping wind turbine tower oscillations
DE102015000788A1 (de) * 2015-01-26 2016-07-28 Senvion Gmbh Verfahren zum Errichten einer Windenergieanlage und Windenergieanlage
DE102015000787A1 (de) * 2015-01-26 2016-07-28 Senvion Gmbh Lastaufnahmemittel für einen Turm oder eine Turmsektion einer Windenergieanlage und Verfahren zum Errichten einer Windenergieanlage
DK178546B1 (en) * 2015-05-13 2016-06-13 Scada Int Aps System til detektering af fundamentsbevægelse i en vindmølle
KR101726323B1 (ko) 2016-06-13 2017-04-12 (주)티이솔루션 일방향 제진장치용 제진축 자동조정장치를 구비한 풍력발전 시스템
KR101722669B1 (ko) * 2016-06-16 2017-04-12 주식회사 천일 동조질량댐퍼를 이용한 내진 조명타워
EP3269997B1 (en) * 2016-07-14 2020-01-01 Siemens Gamesa Renewable Energy A/S Oscillation absorber for a structure
DE102017107912A1 (de) * 2017-04-12 2018-10-18 Wobben Properties Gmbh Schwingungsdämpfung eines Windenergieanlagenturms
CN107448054B (zh) * 2017-09-12 2019-07-05 广东电网有限责任公司电力科学研究院 一种基于双摆式减振器的输电塔减振方法
US11732690B2 (en) 2018-04-18 2023-08-22 Fm Energie Gmbh & Co. Kg Damping cardanic suspension for pendulum dampers
EP3874177B1 (de) * 2018-10-31 2023-11-29 FM Energie GmbH & Co. KG Elastische gelenke mit torsionsanschlag und ihre verwendung in schwingungstilgern
US11754050B2 (en) * 2018-12-20 2023-09-12 Vestas Wind Systems A/S Modular tower damper system
WO2021164938A1 (de) * 2020-02-17 2021-08-26 Fm Energie Gmbh & Co.Kg Adaptiver schwingungstilger zur dämpfung niedriger erregerfrequenzen
CN111946134B (zh) * 2020-09-08 2022-05-06 青岛帅一钢结构有限公司 一种5g楼顶用信号发射塔
CN112128063A (zh) * 2020-09-16 2020-12-25 周德旺 一种升降的海上风力发电机
CN112555104B (zh) * 2020-12-01 2024-04-16 江苏铁科新材料股份有限公司 风力发电机组塔筒用防扭转复合质量阻尼器
CN113047464A (zh) * 2021-04-02 2021-06-29 哈尔滨工业大学 一种用于大型建筑结构抑制风致振动的被动扫荡射流装置
EP4086459A1 (en) * 2021-05-06 2022-11-09 General Electric Renovables España S.L. Wind turbine having eigenfrequency modifier
CN114838078B (zh) * 2022-03-17 2024-02-06 北京工业大学 一种用于风力发电机振动控制的放大阻尼传递系统
CN114856286B (zh) * 2022-06-16 2024-01-23 国网江苏省电力有限公司建设分公司 一种钢管塔杆件涡激共振的自动控制装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129948U (ja) * 1991-03-08 1992-11-30 日本電信電話株式会社 振子型制振装置
JP2002517660A (ja) * 1998-05-29 2002-06-18 エンエーゲー ミコン アクティーゼルスカブ 揺動作用減衰手段を備えた風力タービン
JP2006207502A (ja) * 2005-01-28 2006-08-10 Kajima Corp 風力発電装置の建設方法及び建設装置
JP2008151119A (ja) * 2006-12-13 2008-07-03 General Electric Co <Ge> アクティブタワーダンパ
JP2008190645A (ja) * 2007-02-06 2008-08-21 Shimizu Corp 振動低減機構およびその諸元設定方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789174A (en) * 1973-03-07 1974-01-29 Gen Electric Earthquake-protective support system for electrical apparatus
US4320602A (en) * 1979-01-17 1982-03-23 Richardson John R Stabilizing structures against oscillation
JPS5997342A (ja) * 1982-11-26 1984-06-05 Nippon Kokan Kk <Nkk> 振り子式動吸振器
JPS63147072A (ja) * 1986-12-09 1988-06-20 日本鋼管株式会社 制振装置
JPH0226390A (ja) * 1988-07-15 1990-01-29 Mitsubishi Electric Corp 耐震支持装置
JPH0254942U (ja) * 1988-10-14 1990-04-20
JPH083288B2 (ja) * 1989-04-25 1996-01-17 鹿島建設株式会社 連結式振り子水槽ダンパー
JPH07122351B2 (ja) * 1991-12-04 1995-12-25 三菱重工業株式会社 振り子式制振装置
JPH11159191A (ja) 1997-11-25 1999-06-15 Toshiba Corp 制振装置
DE19856500B4 (de) * 1998-12-08 2005-12-08 Franz Mitsch Schwingungstilger
WO2000036724A2 (en) * 1998-12-17 2000-06-22 Dan-Control Engineering A/S Wind mill with a suspension for cables and the like, such suspension for cables and the like and a holder for such suspension
JP2008031735A (ja) 2006-07-28 2008-02-14 Tokyo Electric Power Co Inc:The 塔状構造物の制振装置
KR20100114016A (ko) * 2007-11-28 2010-10-22 베스타스 윈드 시스템스 에이/에스 풍력 터빈의 진동 감쇠 방법
US7922448B2 (en) 2008-09-19 2011-04-12 General Electric Company Differential vibration control for wind turbines

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129948U (ja) * 1991-03-08 1992-11-30 日本電信電話株式会社 振子型制振装置
JP2002517660A (ja) * 1998-05-29 2002-06-18 エンエーゲー ミコン アクティーゼルスカブ 揺動作用減衰手段を備えた風力タービン
JP2006207502A (ja) * 2005-01-28 2006-08-10 Kajima Corp 風力発電装置の建設方法及び建設装置
JP2008151119A (ja) * 2006-12-13 2008-07-03 General Electric Co <Ge> アクティブタワーダンパ
JP2008190645A (ja) * 2007-02-06 2008-08-21 Shimizu Corp 振動低減機構およびその諸元設定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505778A (ja) * 2012-12-04 2016-02-25 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 制振モジュールもしくは装置、構造用の構造セグメント、および制振モジュールを有する風力発電装置
US10024378B2 (en) 2012-12-04 2018-07-17 Wobben Properties Gmbh Vibration-limiting module and device, structural segment for a structural installation, and wind turbine having a vibration-limiting module

Also Published As

Publication number Publication date
CN102713278A (zh) 2012-10-03
JPWO2012090259A1 (ja) 2014-06-05
KR20120111911A (ko) 2012-10-11
JP5594696B2 (ja) 2014-09-24
CA2735345C (en) 2013-06-25
US8322975B2 (en) 2012-12-04
US20120063915A1 (en) 2012-03-15
AU2010291891A1 (en) 2012-07-19
KR101255502B1 (ko) 2013-04-16
CA2735345A1 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP5594696B2 (ja) 風力発電用風車の制振装置および風力発電用風車
US8648488B2 (en) Wind turbine
US10626850B2 (en) Load carrying structure for a multirotor wind turbine
JP4831847B1 (ja) 制振装置、風力発電装置及び制振方法
CN109219701B (zh) 多转子风轮机
JP5022487B2 (ja) 風車用タワー及び風力発電装置
JP6921086B2 (ja) マルチローター風力タービンの風力タービンコンポーネントを据付け又は撤去する方法
WO2009126696A1 (en) Wind-driven generation of power
JP2008540918A (ja) 構造タワー
WO2017108050A1 (en) Methods for mounting or dismounting a wind turbine component of a multirotor wind turbine
US11293406B2 (en) Arrangement of tower structures braced by tendons
JP2019074079A (ja) 風力発電装置
CN104912734A (zh) 一种可防失速的垂直轴风力机
KR101117476B1 (ko) 수직형 풍력발전장치
JP2017207029A (ja) 風力発電装置用の吊り荷昇降装置及び吊り荷昇降方法
KR200476725Y1 (ko) 풍력설비 타워용 지지 고정장치
JP2012122546A (ja) 風力発電用風車の制振装置
KR20230146463A (ko) 가요성 커플링을 지닌 풍력 터빈 프레임
WO2015071788A1 (en) Multi-windmill
KR20150105099A (ko) 타워모듈과, 이를 구비하는 모듈러 풍력타워 및, 풍력타워구조물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002835.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010291891

Country of ref document: AU

Ref document number: 565/MUMNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2735345

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2011514576

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117008394

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10816433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1005383

Country of ref document: BR

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI1005383

Country of ref document: BR