WO2012089060A1 - 中央悬挂装置、货车转向架及快运铁路货车 - Google Patents

中央悬挂装置、货车转向架及快运铁路货车 Download PDF

Info

Publication number
WO2012089060A1
WO2012089060A1 PCT/CN2011/084467 CN2011084467W WO2012089060A1 WO 2012089060 A1 WO2012089060 A1 WO 2012089060A1 CN 2011084467 W CN2011084467 W CN 2011084467W WO 2012089060 A1 WO2012089060 A1 WO 2012089060A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
bolster
spring
frame
plate
Prior art date
Application number
PCT/CN2011/084467
Other languages
English (en)
French (fr)
Inventor
徐世锋
邵文东
胡海滨
于跃斌
李立东
吕可维
邢书明
张得荣
刘新强
Original Assignee
齐齐哈尔轨道交通装备有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齐齐哈尔轨道交通装备有限责任公司 filed Critical 齐齐哈尔轨道交通装备有限责任公司
Priority to EP11852730.8A priority Critical patent/EP2647541B1/en
Publication of WO2012089060A1 publication Critical patent/WO2012089060A1/zh
Priority to US13/597,209 priority patent/US8671845B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F3/00Types of bogies
    • B61F3/02Types of bogies with more than one axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/04Bolster supports or mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/50Other details
    • B61F5/52Bogie frames

Definitions

  • the present invention relates to a truck bogie technology, and more particularly to a center suspension device, a truck bogie, and an express railway wagon. Background technique
  • the express freight car bogie is an important component of the fast railway freight transport vehicle, and its structural performance plays an important role in the stability, stability and safety of the vehicle. Apply force through the truck's bogie and distribute the axle weight evenly.
  • the domestic and international express freight car bogies generally adopt a two-line suspension structure, that is, a series of axle box positioning suspension devices and a two-line central suspension device.
  • the two-line suspension is a common structure for ensuring high-speed operation of vehicles, and the second-line central suspension device is installed. Suspension between the bogie frame and the bolster to mitigate shocks, attenuate vibrations, and improve vehicle stability.
  • FIG. 1 is a top view of a prior art truck bogie structure
  • FIG. 2 is a front view of the truck bogie structure of FIG. 1.
  • the central suspension device in the railway freight car bogie includes a frame 3 The bolster 2 and the longitudinal brace I of the connecting frame 3 and the bolster 2 and the rubber pile spring 1.
  • the longitudinal traction force and the braking force transmission sequence of the vehicle are: the longitudinal force and the braking force from the lower core plate 9 are transmitted to the bolster 2, and the second traction rod seat 41 on the bolster 2 is transmitted to the longitudinal traction rod 4,
  • the first traction rod seat 42 is transmitted from the longitudinal traction rod 4 to the frame 3, is transmitted from the first traction rod holder 42 to the frame 3, and then transmitted by the frame 3 to the axle box spring set 8 of the axle box suspension device, and finally by the shaft
  • the box spring set 8 is transmitted to the wheel set.
  • Transverse force transmission sequence of the vehicle The lateral force from the lower core disc 9 is transmitted to the bolster 2, which is transmitted from the bolster 2 to the longitudinal traction rod 4, which is transmitted to the frame 3 by the longitudinal traction rod 4 and the rubber pile spring 1, and transmitted by the frame 3
  • the axle box spring set 8 is then transmitted to the wheel set by the axle box spring set 8
  • the lateral force transmission sequence of the track-to-wheel pair is: the wheel pair transmits the lateral force to the frame 3, which is transmitted by the frame 3 to the longitudinal traction link 4 and
  • the rubber stack spring 1 is then buffered by the longitudinal traction rod 4 and the rubber pile spring 1 and transmitted to the bolster 2.
  • FIG. 3 is a schematic structural view of the central suspension device of FIG. 1
  • FIG. 4 is a schematic structural view of the rubber spring of FIG. 3, as shown in FIG. 3 and FIG. 4, in the vertical direction, the frame 3 and the bolster 2 are passed through a rubber pile.
  • the springs 1 are joined together, and in the longitudinal direction, the frame 3 and the bolster 2 are joined together by a longitudinal traction rod 4.
  • the rubber stack spring 1 includes a rubber body 15, an upper liner 16, an upper positioning pin 17, a lower liner 18, and a lower positioning pin 19.
  • the upper lining plate 16 and the upper positioning pin 17 are welded together, and the upper positioning pin 17 is inserted into the opening of the lower cover of the bolster 2 to realize the positioning connection of the rubber stack spring 1 and the bolster 2; the lower lining plate 18 and the lower positioning pin 19 are welded. Together, the lower positioning pin 19 is inserted into the opening of the upper cover of the frame 3 to realize the positioning connection of the rubber stack spring 1 and the frame 3.
  • the central suspension device of the structure generates a compression deformation under the vertical load of the rubber pile spring during the running of the vehicle, and generates shear deformation under the lateral load, so that the vertical vibration and the lateral impact can be buffered, thereby Reduce the dynamic stress.
  • the rubber pile spring in the central suspension device is a rubber spring pile that requires a large rigidity structure in the lateral direction to ensure the vertical bearing capacity, but the lateral rigidity is increased, which will affect the stability of the empty vehicle operation; If it is increased, the vertical deflection will be reduced, which will reduce the adaptability of the vehicle to the track at high speed, resulting in the problem of easy derailment of the vehicle.
  • FIG. 5 is a schematic structural view of the longitudinal traction rod of FIG. 1.
  • the second traction rod seat 41 on the bolster 2 transmits longitudinal and braking forces to the rubber pad assembly 47, and is transmitted to the belt through the nut 44.
  • the bow I rod 43 is further composed of a rubber pad that is transferred from the traction rod 43 to the other end of the bow I rod 43 and then transmitted to the first traction rod holder 42 on the frame 3, and then transmitted to the frame 3.
  • the inner cylinder 46 is a wear-resistant member of a non-metallic material, and the washer 45 is used to prevent the nut 44 from loosening.
  • the invention provides a central suspension device, a freight car bogie and an express railway wagon, which solves the problem that the central suspension device has unstable running due to large lateral rigidity and small vertical deflection at light load.
  • the present invention provides a central suspension device comprising: a frame, a bolster and a longitudinal traction rod, one end of the longitudinal traction rod is connected to the frame, and the other end of the longitudinal traction rod and the rocker a pillow joint, the central suspension device further comprising a rubber stack spring group composed of at least two rubber pile springs, wherein a bottom end of each rubber pile spring is respectively connected to the frame, and at least one rubber pile in the rubber pile spring group a top end of the spring is coupled to the bolster and at least one rubber There is a gap between the top of the stack spring and the bolster.
  • the present invention also provides another central suspension device for arranging between the frame of the truck bogie and the bolster, the central suspension comprising a rubber stack spring set of at least two rubber stack springs, each rubber pile The bottom ends of the springs are respectively coupled to the frame, and a top end of at least one rubber pile spring of the rubber pile spring group is coupled to the bolster and a gap exists between a tip end of the at least one rubber pile spring and the bolster.
  • the present invention also provides a freight car bogie comprising: an axle box suspension device and the above-described central suspension device, the axle box suspension device being coupled to the central suspension device by a frame.
  • the longitudinal bow I pull rod comprises two ball hinges and a traction pull rod connected between the two ball hinges
  • each ball hinge comprises a ball hinge shaft and a ball joint sleeve
  • the ball a central portion of the hinge shaft has a convex spherical surface
  • the ball joint has a concave spherical surface
  • the convex spherical surface cooperates with the concave spherical surface
  • the center of the bolster is provided with a lower core plate, and two side supports are symmetrically disposed on the bolster relative to the lower core plate, and a center distance between the two side supports is greater than 1520 mm.
  • the present invention also provides an express railway wagon including the above-described truck bogie.
  • the technical effect of one aspect of the present invention is that by providing a plurality of rubber pile springs having different heights and heights, it is realized that the rubber pile spring group has two or more stages of rigidity in both the vertical direction and the lateral direction. In light load or no-load conditions, it has a large vertical deflection, which improves the safety of the vehicle during high-speed operation and adaptability to the track. It has a small lateral stiffness and high dynamic stability of the empty car; When it is overloaded, it has a large lateral stiffness, which not only improves the bearing capacity of the rubber stack spring, but also satisfies the lateral stiffness requirement and improves the high-speed operation safety of the vehicle.
  • the technical effect of another aspect of the present invention is that the transmission of the force between the bolster and the frame is realized by using the longitudinal brace I of the ball hinge structure, which not only reduces the lateral shear deformation, but also provides a smaller
  • the lateral stiffness helps to reduce the lateral additional stiffness of the bogie, but also facilitates installation and maintenance, reducing installation difficulty and manufacturing costs.
  • the technical effect of still another aspect of the invention is: by setting the distance between the two side bearings to be greater than 1520 mm, the side rotation resistance torque is effectively increased, and the increase of the side rotation resistance torque can increase the maximum traveling speed of the vehicle, and at the same time, Smaller anti-roller tilt angle, larger rollback
  • the complex torque can effectively suppress the roll of the vehicle body and improve the safety of the vehicle.
  • FIG. 1 is a plan view showing a structure of a truck bogie in the prior art
  • Figure 2 is a front elevational view showing the structure of the truck bogie shown in Figure 1;
  • Figure 3 is a schematic structural view of the central suspension device of Figure 1;
  • Figure 4 is a schematic view showing the structure of the rubber pile spring of Figure 3;
  • Figure 5 is a schematic structural view of the longitudinal traction rod of Figure 1;
  • Figure 6 is a front elevational view of the first embodiment of the central suspension device of the present invention.
  • Figure 7 is a front elevational view of the rubber stack spring set of the second embodiment of the central suspension device of the present invention
  • Figure 8 is a plan view of the rubber stack spring set of Figure 7;
  • FIG. 9 is a front view of the first bottom plate and the second bottom plate in an integrated structure in the embodiment shown in FIG. 7;
  • FIG. 10 is a plan view showing the first bottom plate and the second bottom plate in FIG.
  • Figure 11 is a schematic view showing a positioning structure of a second rubber pile spring in the embodiment shown in Figure 7;
  • Figure 12 is a front view of a rubber pile spring group in the third embodiment of the central suspension device of the present invention; a top view of the first embodiment;
  • Figure 14 is a front elevational view of the truck bogie shown in Figure 13;
  • Figure 15 is a schematic structural view of the longitudinal traction rod in the embodiment of the truck bogie shown in Figure 13;
  • Figure 16 is a cross-sectional view of the longitudinal traction rod shown in Figure 15 taken along line AA';
  • Figure 17 is a schematic structural view of the ball hinge of Figure 16;
  • FIG. 18 is a schematic structural view of a second embodiment of a truck bogie according to the present invention. detailed description
  • FIG. 6 is a front view of the first embodiment of the central suspension device of the present invention, as shown in FIG.
  • the central suspension of the example comprises: a frame 3, a bolster 2, a longitudinal traction tie 4 and a rubber stack spring set 10 consisting of three rubber stack springs.
  • One end of the longitudinal traction rod 4 is connected to the frame 3, and the other end of the longitudinal traction rod 4 is connected to the bolster 2, and the bottom end of each rubber pile spring is divided.
  • the top end of the rubber pile spring in the middle of the rubber stack spring group 10 is connected to the bolster 2, and the top end of the two rubber pile springs on both sides exists between the bolster 2 and the bolster 2 Clearance H.
  • the rubber pile spring group 10 between the frame 3 and the bolster 2 includes three rubber pile springs, and the rubber pile spring in the middle has a large free height, and the two ends are respectively framed and shaken at no load or light load.
  • Pillow connection the free height of the rubber pile springs on both sides can be set smaller, so that there is a gap between the top end and the bolster when it is no-load or light load, which does not contribute to the rigidity of the entire rubber pile spring.
  • the tops of the two sides or one are in contact with the bolster to increase the overall lateral stiffness and increase the ability to withstand vertical loads.
  • the intermediate rubber springs are connected to the frame 3 and the bolster 2, respectively.
  • the vertical load is transmitted from the bolster to the frame through the middle rubber pile spring, and the lateral load is passed through the middle rubber pile.
  • the spring is transmitted to the bolster. Therefore, under a small vertical load, a small transverse shear stiffness can be achieved to ensure the stability of the empty car at high speed.
  • only the middle rubber pile spring and the frame are connected with the bolster, and the vertical deflection of the entire rubber pile spring group is relatively large, which improves the safety of the vehicle at high speed and the adaptability to the track.
  • the rubber pile spring in the middle is compressed, and the rubber pile springs on both sides are in contact with the bolster.
  • the three rubber pile springs jointly bear the vertical and lateral loads, which not only improves the bearing capacity of the rubber pile spring, but also satisfies The lateral stiffness requirement increases the safety of the vehicle at high speed.
  • the central suspension device facilitates the mutual conversion between different stiffnesses when the vehicle is empty and heavy, and thus is suitable for use in a fast-track vehicle with safe and stable operation.
  • Figure 7 is a front view of the rubber stack spring set of the second embodiment of the central suspension device of the present invention
  • Figure 8 is a plan view of the rubber stack spring set of Figure 7
  • Figure 9 is the first bottom plate and the second of the embodiment shown in Figure 7.
  • the bottom plate is a front view of the integrated structure
  • FIG. 10 is a first bottom plate and a second bottom plate of FIG.
  • the top view of the body structure, as shown in FIG. 7 to FIG. 10, the present embodiment is based on the first embodiment shown in FIG.
  • the rubber stack spring group 10 includes a second rubber pile spring 1 1 and two a rubber pile spring 12, the first rubber pile spring 12 is disposed on both sides of the second rubber pile spring 11, the top end of the second rubber pile spring 11 is connected with the bolster 2, and the bolster 2 is the rubber pile of FIG. a first rubber pile 61, a first bottom plate 65, a top wear plate 63, a first upper liner 62 and a first positioning pin 64, the first rubber pin 61 above the spring group
  • the bottom plate 65 is fixed to the bottom end of the first rubber body 61
  • the first upper liner 62 is fixed to the top end of the first rubber body 61
  • the top wear plate 63 passes the first positioning.
  • the pin 64 is fixed to the first upper lining plate 62.
  • the edge of the first bottom plate 65 is provided with a lower rib 66 for restricting the rotation or lateral movement of the first bottom plate 65 relative to the frame 3, the frame 3 There is a broken line frame below the rubber pile spring group in FIG. 7, and there is a gap between the top surface wear plate 63 and the bolster 2.
  • the second rubber stack spring 11 may include a second rubber body 51, a second top plate 54 and a second bottom plate 52, and the second bottom plate 52 is fixed to the bottom end of the second rubber body 51.
  • the second top plate 54 is fixed to the top end of the second rubber body 51, and the edge of the second top plate 54 is provided with an upper block for restricting the rotation or lateral movement of the second top plate relative to the bolster 2 a side 55, an edge of the second bottom plate 52 is provided with a lower rib 53 for restricting rotation or lateral movement of the second bottom plate relative to the frame 3, and a lower rib 66 is disposed at an edge of the first bottom plate 65.
  • the top edge 54 is provided with an upper rib 55 and a lower rib 53 at the edge of the second bottom plate 52 for positioning to prevent rotation and lateral movement between the rubber stack spring and the frame or the bolster, avoiding the prior art.
  • the use of the locating pin connection has the problem of rotation in the circumferential direction, and at the same time reduces the wear of the connecting member.
  • the integral structure of the rib and the bottom plate or the top plate can avoid the welded structure and improve the reliability of the connection.
  • the second bottom plate 52 and the first bottom plate 65 may be disposed separately or together.
  • the second bottom plate 52 is coupled to the first bottom plate 65.
  • the second bottom plate 52 and the first bottom plate 65 may be fixed by a connecting member as shown in FIG. 8, such as a screw 13 or the like, or the second bottom plate 52 as shown in FIGS. 9 and 10.
  • An integral structure bottom plate 14 formed with the first bottom plate 65. Connecting the second bottom plate to the first bottom plate facilitates overall positioning.
  • the frame transmits the lateral force received on the wheel pair to the rubber pile spring through the set lower rib, and is buffered by the rubber pile spring.
  • the upper rib is transmitted to the bolster to achieve the transmission and slowing of the lateral load.
  • the top end is not in contact with the bolster, and the second rubber pile spring 11 in the middle carries vertical and lateral loads, specifically, the middle
  • the second rubber pile spring 11 is positioned and connected to the bolster 2 via the upper rib 55, and the second rubber pile spring 11 in the middle is positioned and coupled to the frame 3 through the lower rib 53 and the vertical load is transmitted from the bolster 2 to the second in the middle.
  • the rubber pile spring 11 is transferred to the frame 3; the lateral load is transmitted from the frame 3 through the lower rib 53 to the intermediate second rubber pile spring 11, to the upper rib 55, and to the bolster through the upper rib 55.
  • the second rubber pile spring 11 and the first rubber pile springs 12 on both sides collectively carry vertical and lateral loads.
  • the second rubber pile spring 11 is transmitted in the same manner as the idle force; the first rubber pile spring 12 on both sides is positioned and connected to the frame 3 through the lower rib 66, and the first rubber pile spring 12 and the middle portion on both sides
  • the two rubber pile springs 11 are connected together by screws 13 or are connected together by the bottom plate 14 of the unitary structure, and the top wear plates 63 and the first positioning pins 64 of the first rubber pile springs 12 on both sides are interspersed.
  • the top wear plate 63 can be made of a non-metallic material to facilitate the increase of friction with the bolster.
  • the transverse shear deformation of the first rubber pile spring 12 on both sides is realized by the friction between the non-metal top wear plate 63 and the bolster 2, thereby ensuring the vertical bearing capacity and the lateral stiffness requirement, thereby ensuring Heavy-duty high-speed safe operation requirements.
  • the rubber spring and the frame or the bolster can be prevented by adopting the positioning method of the upper rib integrated with the top plate or the lower rib integrated with the bottom plate.
  • the rotation and lateral movement between the two avoid the possibility of rotation in the circumferential direction and reduce the wear.
  • the integral structure of the rib and the bottom plate or the top plate also avoids the use of the welded joint structure, thereby improving the reliability of the connection; Or when no-load, the lateral force is transmitted by the upper rib and the lower rib to achieve a small transverse shear stiffness, which ensures the stability of the high-speed operation of the empty car; the friction between the non-metal top wear plate and the bolster
  • the realization of transverse shear deformation can not only ensure the vertical bearing capacity, but also meet the lateral stiffness requirements, thus ensuring the high-speed and safe operation requirements of heavy vehicles.
  • Figure 11 is a schematic view showing a positioning structure of the second rubber pile spring in the embodiment shown in Figure 7,
  • the positioning between the second rubber pile spring 11 and the bolster 2 and between the second rubber pile spring 11 and the frame 3 can also be realized by the positioning pin of the prior art.
  • the second rubber pile spring 11 includes a second rubber body 51, a second upper liner 56, a second upper positioning pin 57 fixed to the second upper liner 56, a second lower liner 58 and a second lower positioning pin 59 fixed to the second lower lining plate 58 , the bottom end of the second rubber body 51 is fixed to the second lower lining plate 58 , The second lower liner 58 is connected to the frame 3 by the second lower positioning pin 59, and the top end of the second rubber body 51 is fixed to the second upper liner 56, the second upper The lining plate 56 and the bolster 2 are connected by the second upper positioning pin 57, and the second lower lining plate 58 is connected to the first bottom plate 65.
  • the second rubber pile spring can be positioned by the positioning pin or the positioning pin can be positioned
  • Figure 12 is a front elevational view of the rubber stack spring set of the third embodiment of the central suspension device of the present invention.
  • the present embodiment differs from the rubber stack spring set shown in Figure 7 above in that the first rubber pile spring 12 is One, placed in the middle, the second rubber pile springs 1 1 are two, which are arranged on both sides of the first rubber pile spring 12, that is, the tops of the two rubber pile springs on both sides are connected with the bolster, and the rubber in the middle There is a gap between the top of the stack spring and the bolster.
  • the first rubber pile spring 12 only bears the lateral force and the vertical force when it is in heavy load, and the two-stage stiffness between the light load and the heavy load is realized. Adjustment, its working principle and effect are similar, and will not be described again.
  • the rubber pile spring in the rubber stack spring group may be cuboid or cylindrical. In the specific use, reasonable selection can be made according to different requirements of rigidity.
  • the central suspension of any of the above embodiments is defined to include a frame, a bolster, a longitudinal traction rod, and a rubber stack spring set.
  • the central suspension device may also be defined to include only a rubber stack spring group, the rubber stack spring group being composed of at least two rubber pile springs, the bottom ends of each rubber pile spring being respectively connected to the frame, the rubber a top end of at least one rubber pile spring of the stack spring group is coupled to the bolster and a gap exists between a top end of the at least one rubber pile spring and the bolster, and the central suspension device including only the rubber stack spring group may be disposed on Between the frame of the truck bogie and the bolster.
  • the truck bogie in this case may be defined to include an axle box suspension device, a frame, a bolster and a longitudinal traction rod, one end of the longitudinal traction rod is connected to the frame, and the other end is connected to the bolster.
  • the axle box suspension is connected to the central suspension by the frame, and its working principle and technical achievement are similar to those of the above embodiments.
  • FIG 13 is a plan view of the first embodiment of the truck bogie according to the present invention
  • Figure 14 is a front view of the truck bogie shown in Figure 13, as shown in Figure 13 and Figure 14, the central suspension device in this embodiment is the above Figure 6 ⁇
  • the central suspension device of Figure 12 the truck truck of the present embodiment includes an axle box suspension device and In the above central suspension device, one end of the longitudinal traction link 4 is connected to the frame 3, and the other end is connected to the bolster 2.
  • the axle box suspension is connected to the central suspension device via the frame 3.
  • the axle box suspension device comprises an axle box composition 5, a vertical damper 7, and an axle box spring group 8.
  • the vertical damper 7 can adopt hydraulic vibration damping, which can better alleviate the vibration of the wheel pair against the frame 3 when the vertical load is different, and prolong the fatigue life of the frame 3.
  • a transverse damper 6 is also connected between the frame 3 and the bolster 2, and the lateral damper 6 improves the lateral dynamic performance of the vehicle at high speeds.
  • This embodiment can implement the technical solution of any embodiment of the above-mentioned central suspension device, and its working principle and technical effects are similar, and will not be described again.
  • Figure 15 is a structural schematic view of the longitudinal traction rod in the embodiment of the truck bogie shown in Figure 13
  • Figure 16 is a cross-sectional view of the longitudinal traction rod of Figure 15 taken along line AA
  • Figure 17 is a schematic view of the structure of the ball hinge of Figure 16.
  • the longitudinal traction rod 4 includes two ball joints 410 and a traction rod 43 connected between the two ball hinges 410, one of which is composed of a ball joint and a frame 3.
  • the first traction rod holder 42 is connected to the other, and the other ball joint is connected to the second traction rod holder 41 disposed on the bolster 2.
  • Each of the ball hinges 410 includes a ball joint shaft 402 and a ball joint sleeve 408.
  • the spherical hinge shaft 402 and the inner side surface of the ball joint 408 are hingedly engaged by a spherical curved surface.
  • the central portion of the ball hinge shaft 402 has a convex spherical surface
  • the ball joint 408 has a concave spherical surface
  • the convex spherical surface cooperates with the concave spherical surface
  • one end of the ball hinge shaft 402 of the ball hinge 410 is The first traction rod holder 42 is connected
  • the end of the ball hinge shaft 402 of the other ball hinge composition 410 is connected to the second traction rod holder 41
  • each ball hinge is connected to the traction rod 43 through the ball joint 408. .
  • the end of the ball hinge shaft 402 is connected to the first traction rod base 42 and the second traction rod base 41 by bolts 405 and nuts 404, and a split pin 406 may be disposed on the bolt 405 to prevent the nut 404 from The bolt 405 slips off.
  • a split pin 406 may be disposed on the bolt 405 to prevent the nut 404 from The bolt 405 slips off.
  • the pad 403 is adjusted to determine the mounting position of the bolster 2 to facilitate positive adjustment during bolster assembly. Adjustment pad 403 may require selection of different thicknesses.
  • the ball joint shaft 402 When the lateral force is transmitted to the ball joint shaft 402 at one end of the longitudinal traction rod 4 through the first traction rod holder 42, the ball joint shaft 402 can be rotated at an angle with respect to the ball joint 408, thereby reducing lateral shear deformation, and thus The smaller lateral stiffness helps to reduce the lateral additional stiffness of the bogie.
  • a hinged structure having an elastic structure may be disposed between the mating faces of the ball hinge shaft 402 and the ball joint 408
  • the middle sleeve 409 such as the hinged middle sleeve made of rubber, can make the ball joint composition 410 have a greater elastic deformation, and also facilitates the maintenance of the ball joint composition.
  • the traction rod 43 is provided with a mounting hole (not shown), and the traction rod 43 can be made by casting or forging, and the connection between the outer side surface of the ball joint 408 and the mounting hole is an interference fit, longitudinal traction
  • the ball joint 408 can be integrated with the traction rod 43 by sufficient pre-tightening force, so that the force of each direction transmitted on the bolster is transmitted to the ball joint 410 through the traction rod 43 and then by the ball.
  • the hinge composition 410 is passed to the frame and finally passed to the wheel pair.
  • the longitudinal brace I rod with the ball joint structure can not only overcome the deformation of the rubber pad in the prior art, but also solve the problem of looseness of the nut, and also solve the wear problem between the inner tube and the traction rod, and also avoid the manufacture on the traction rod.
  • the threading process reduces the manufacturing cost of the longitudinal traction rod and also avoids the safety hazards caused by defects in the threading process.
  • the transmission of the force between the bolster and the frame is further realized by using the longitudinal traction rod formed by the ball hinge structure, which not only reduces the lateral direction.
  • the shear deformation provides a small lateral stiffness, which helps to reduce the lateral additional stiffness of the bogie, and also facilitates installation and maintenance, reducing installation difficulty and manufacturing cost.
  • the lateral stiffness of the vehicle is 50%-70%, and the critical speed of the empty vehicle is increased by 40-80 km/h, which not only effectively solves the technical problem of high-speed operation stability of empty vehicles, but also solves the technical problem of vertical bearing during heavy load, ensuring Safety when heavy vehicles are running at high speed.
  • the longitudinal traction rod 4 can also adopt the prior art structure shown in FIG. 5, that is, the longitudinal traction rod 4 includes two sets of rubber mats 47 and is connected to the two sets of rubber mats.
  • a traction rod 43 is disposed between one set of rubber pads and a first traction rod base 42 disposed on the frame 3, and another set of rubber pads and a second traction rod seat 41 disposed on the bolster 2 Connected, two sets of rubber pad components are respectively fixed by nuts 44 at both ends of the traction rod 43.
  • An inner cylinder 46 for reducing wear is disposed between each set of rubber mat members 47 and the traction rods 43.
  • the inner cylinder 46 and the traction rods 43 are gap-fitted to reduce the inner cylinder 46 and The wear caused by the relative movement between the traction rods 43.
  • the working principle and effect of the longitudinal traction rod of this type are similar to those in the prior art, and will not be described again.
  • FIG. 18 is a schematic structural view of a second embodiment of a freight car bogie according to the present invention, which is shaken in this embodiment.
  • the center of the pillow 2 is provided with a lower core plate 9, on which two side supports 100 are symmetrically arranged with respect to the lower core plate 9, and a center distance L between the two side supports 100 is greater than 1520 mm.
  • the center distance in the prior art is generally fixed at 1520 mm, thereby limiting the space for increasing the critical speed of the vehicle.
  • the center distance of the two side supports 100 is greater than 1520 mm, which is beneficial to increase the side rotation resistance torque, thereby improving the traveling speed of the vehicle, and on the other hand, reducing the anti-roll roll inclination angle of the vehicle, thereby facilitating the truck.
  • Driving safety is beneficial to increase the side rotation resistance torque, thereby improving the traveling speed of the vehicle, and on the other hand, reducing the anti-roll roll inclination angle of the vehicle, thereby facilitating the truck.
  • the bypass resistance torque of the truck is proportional to the center distance between the two sides, the friction coefficient of the side wear plate and the pressure of the side bearing. Therefore, by increasing the side center distance, the side resistance torque can be effectively increased. , and the increase of the bypass resistance torque can increase the maximum speed of the vehicle.
  • the vehicle body When the vehicle is traveling in a curve, the vehicle body will roll sideways with respect to the bolster, and the vehicle body relies on its own gravity to form a rollback recovery torque to prevent the vehicle body from rolling, and increasing the distance between the two side supports can achieve a smaller anti-roller inclination angle.
  • the larger rollback recovery torque can effectively suppress the roll of the vehicle body and improve the safety of the vehicle.
  • the center distance L of the two side bearings is selected to be 2000 mm, and the distance between the two side supports is 1520 mm, and the side rotation resistance torque is increased by 31.6%, which can increase the critical speed of the vehicle by 16%, thereby solving the maximum vehicle.
  • the problem of low running speed, and in the case of a side bearing clearance of 5 mm, the anti-roll roll inclination angle of the vehicle is reduced by 31.5%, thereby ensuring the safety of the vehicle.
  • the center distance between the two side bearings is 1520 mm, which is smaller than the distance between the beams on both sides of the bogie frame, that is, as shown in Fig. 1, the two side supports 100 are disposed on the bolster, located at The inner side of the side sill 31, so that the force exerted by the vehicle body on the side 100 causes a bending moment effect on the bolster 2.
  • the center distance L between the two side supports is preferably set equal to the lateral distance between the side beams 31, and the side bearing 100 of each side is located directly above the side members 31 of the side bogie 3. Therefore, the bending moment effect generated by the force of the side bearing 100 on the bolster 2 is reduced, and the reliability of the bolster is improved.
  • the present invention also provides an express freight wagon, comprising the freight car bogie according to any one of the above embodiments of FIG. 13 to FIG. 18, the express freight car can be a fast transport railway container truck, a fast transport box car, a express refrigerated truck or a express car transport vehicle, etc. .

Description

中央悬挂装置、 货车转向架及快运铁路货车 技术领域 本发明涉及货车转向架技术, 尤其涉及一种中央悬挂装置、 货车转向架 及快运铁路货车。 背景技术
快运货车转向架是快速铁路货物运输车辆的重要部件, 其结构性能对 车辆运行的平稳性、 稳定性和安全性具有重要作用。 通过快运货车转向架 用力, 并使轴重均匀分配。 目前国内外快运货车转向架一般采用两系悬挂 结构, 即一系轴箱定位悬挂装置和二系中央悬挂装置, 采用两系悬挂是保 证车辆高速运行的通用结构, 其中二系中央悬挂装置是安装在转向架构架 和摇枕之间的悬挂装置, 用于减緩冲击, 衰减振动, 提高车辆运行的稳定 性。
图 1为现有技术中货车转向架结构的俯视图, 图 2为图 1所示货车转向 架结构的主视图, 如图 1和图 2所示, 铁路货车转向架中的中央悬挂装置包 括构架 3、摇枕 2以及连接构架 3和摇枕 2的纵向牵弓 I拉杆 4和橡胶堆弹簧 1。 车辆行驶中, 车辆的纵向牵引力和制动力传递顺序为: 来自下心盘 9的纵向 力和制动力传给摇枕 2, 由摇枕 2上的第二牵引拉杆座 41传给纵向牵引拉杆 4, 由纵向牵引拉杆 4传给构架 3上的第一牵引拉杆座 42, 由第一牵引拉杆 座 42传给构架 3 , 再由构架 3传给轴箱悬挂装置的轴箱弹簧组 8 , 最后由轴 箱弹簧组 8传给轮对。 车辆的横向力传递顺序: 来自下心盘 9的横向力传递 给摇枕 2, 由摇枕 2传给纵向牵引拉杆 4, 由纵向牵引拉杆 4和橡胶堆弹簧 1 传递给构架 3 , 由构架 3传给轴箱弹簧组 8 , 再由轴箱弹簧组 8传给轮对, 轨 道对轮对的横向力传递顺序为: 轮对将横向力传递给构架 3 , 由构架 3传递 给纵向牵引拉杆 4和橡胶堆弹簧 1 , 再由纵向牵引拉杆 4和橡胶堆弹簧 1緩 冲后传递给摇枕 2。
图 3为图 1中的中央悬挂装置的结构示意图, 图 4为图 3中橡胶堆弹簧 的结构示意图, 如图 3和图 4所示, 在垂向, 构架 3和摇枕 2通过橡胶堆弹 簧 1连接在一起, 在纵向, 构架 3和摇枕 2通过纵向牵引拉杆 4连接在一 起。 橡胶堆弹簧 1包括橡胶本体 15、 上衬板 16、 上定位销 17、 下衬板 18和 下定位销 19。 上衬板 16和上定位销 17焊接在一起, 上定位销 17插入摇枕 2 下盖板开口处, 实现橡胶堆弹簧 1与摇枕 2的定位连接; 下衬板 18和下定位 销 19焊接在一起, 下定位销 19插入构架 3上盖板开口处, 实现橡胶堆弹簧 1 与构架 3 的定位连接。 该结构的中央悬挂装置在车辆运行时, 橡胶堆弹簧 在垂向承受垂直载荷作用下产生压缩变形,在横向载荷作用下产生剪切变形, 因此能够緩冲垂向的振动和横向的冲击, 从而减小动应力。 然而, 该中央悬 挂装置中的橡胶堆弹簧为保证垂向的承载能力, 横向需要较大的刚度结构的 橡胶弹簧堆, 但是横向刚度加大, 将影响空车运行的稳定性; 同时, 横向刚 度加大, 垂向挠度将减小, 这将降低车辆高速运行时对轨道的适应性, 从而 导致车辆易脱轨的问题。
图 5为图 1中纵向牵引拉杆的结构示意图, 如图 5所示, 摇枕 2上的第 二牵引拉杆座 41将纵向力和制动力传递给橡胶垫组成 47, 并通过螺母 44传 递给牵弓 I拉杆 43 ,再由牵引拉杆 43传递到牵弓 I拉杆 43另一端的橡胶垫组成 , 然后再传递给构架 3上的第一牵引拉杆座 42, 再传给构架 3。 其中, 内筒 46 是非金属材料的耐磨件, 垫圈 45用于防止螺母 44松动。 该结构的纵向牵引 拉杆在下心盘 9通过摇枕 2传递过来的横向作用力下 ,橡胶垫组成 47受扭转 和压缩变形, 压缩刚度较大, 转向架的横向附加刚度增大, 增加约 30%, 从 而严重影响了车辆的动力学性能, 不利于车辆的空车运行。 发明内容
本发明提供一种中央悬挂装置、 货车转向架及快运铁路货车, 用以解决 上述中央悬挂装置在轻载时因横向刚度大, 垂向挠度小而出现运行不稳的 问题。
为实现上述目的, 本发明提供一种中央悬挂装置, 包括: 构架、 摇枕和 纵向牵引拉杆, 所述纵向牵引拉杆的一端与所述构架连接, 所述纵向牵引拉 杆的另一端与所述摇枕连接, 所述中央悬挂装置还包括由至少两个橡胶堆弹 簧构成的橡胶堆弹簧组, 每个橡胶堆弹簧的底端分别与所述构架连接, 所述 橡胶堆弹簧组中至少一个橡胶堆弹簧的顶端与所述摇枕连接且至少一个橡胶 堆弹簧的顶端与所述摇枕之间存在间隙。
本发明还提供另一种中央悬挂装置, 用于设置在货车转向架的构架和摇 枕之间,所述中央悬挂装置包括由至少两个橡胶堆弹簧构成的橡胶堆弹簧组, 每个橡胶堆弹簧的底端分别与所述构架连接, 所述橡胶堆弹簧组中至少一个 橡胶堆弹簧的顶端与所述摇枕连接且至少一个橡胶堆弹簧的顶端与所述摇枕 之间存在间隙。
本发明还提供一种货车转向架, 包括: 轴箱悬挂装置和上述的中央悬 挂装置, 所述轴箱悬挂装置通过构架与所述中央悬挂装置连接。
其中一实施例中, 所述纵向牵弓 I拉杆包括两个球铰组成和连接在两个球 铰组成之间的牵引拉杆, 每个球铰组成包括球铰轴和球铰套, 所述球铰轴的 中部具有外凸球面, 所述球铰套具有内凹球面, 所述外凸球面与所述内凹球 面铰接相配合, 其中一个球铰组成的球铰轴的端部与所述构架上设置的第一 牵引拉杆座连接, 另一个球铰组成的球铰轴的端部与所述摇枕上设置的第二 牵弓 I拉杆座连接, 所述球铰套与所述牵弓 I拉杆连接。
其中一实施例中, 所述摇枕中心设置有下心盘, 在所述摇枕上相对所述 下心盘对称设置有两个旁承, 两个旁承之间的中心距大于 1520毫米。
本发明还提供一种快运铁路货车, 包括上述的货车转向架。
本发明一个方面的技术效果是: 通过设置多个自由高不相同的橡胶堆 弹簧, 实现了橡胶堆弹簧组垂向和横向均具有两级或两级以上的刚度。 在 轻载或空载工况时, 具有较大的垂向挠度, 提高了车辆高速运行时的安全 性和对轨道的适应性, 具有较小的横向刚度, 空车动力学稳定性较高; 重 载时, 具有较大的横向刚度, 既提高了橡胶堆弹簧的承载能力, 又满足了 横向刚度需求, 提高车辆高速运行安全性。
本发明另一个方面的技术效果是:通过采用球铰组成结构构成的纵向牵 弓 I拉杆实现摇枕与构架之间作用力的传递, 不仅减小了横向的剪切变形, 从而提供较小的横向刚度, 有利于降低转向架的横向附加刚度, 而且还便于 安装维护, 降低了安装难度和制造成本。
本发明又一个方面的技术效果是: 通过将两旁承中心距设置为大于 1520毫米,有效提高旁承回转阻力矩, 而旁承回转阻力矩的增加能提高车 辆的最大行驶速度, 同时还可获得更小的抗侧滚倾斜角度, 更大的侧滚回 复力矩, 从而可有效抑制车体的侧滚, 提高车辆行驶的安全性。 附图说明
图 1为现有技术中货车转向架结构的俯视图;
图 2为图 1所示货车转向架结构的主视图;
图 3为图 1中的中央悬挂装置的结构示意图;
图 4为图 3中橡胶堆弹簧的结构示意图;
图 5为图 1中纵向牵引拉杆的结构示意图;
图 6为本发明中央悬挂装置实施例一的主视图;
图 7为本发明中央悬挂装置实施例二中橡胶堆弹簧组的主视图; 图 8为图 7所示橡胶堆弹簧组的俯视图;
图 9为图 7所示实施例中第一底板与第二底板为一体结构的主视图; 图 10为图 9中第一底板与第二底板为一体结构的俯视图;
图 11为图 7所示实施例中第二橡胶堆弹簧的一种定位结构示意图; 图 12为本发明中央悬挂装置实施例三中橡胶堆弹簧组的主视图; 图 13为本发明货车转向架实施例一的俯视图;
图 14为图 13所示货车转向架的主视图;
图 15为图 13所示的货车转向架实施例中纵向牵引拉杆的结构示意图; 图 16为图 15所示纵向牵引拉杆沿 AA'向的剖视图;
图 17为图 16中球铰组成的结构示意图;
图 18为本发明货车转向架实施例二的结构示意图。 具体实施方式
以下结合附图对本发明的具体实施例进行详细说明。 以下实施例以中 央悬挂装置实现横向和垂向两级刚度为例进行说明, 但不限于此, 本领域 图 6为本发明中央悬挂装置实施例一的主视图, 如图 6所示, 本实施 例的中央悬挂装置包括: 构架 3、 摇枕 2、 纵向牵引拉杆 4和由三个橡胶堆 弹簧构成的橡胶堆弹簧组 10。所述纵向牵引拉杆 4的一端与所述构架 3连接, 所述纵向牵引拉杆 4的另一端与所述摇枕 2连接, 每个橡胶堆弹簧的底端分 别与所述构架 3连接,所述橡胶堆弹簧组 10中中间的橡胶堆弹簧的顶端与所 述摇枕 2连接, 两侧的两个橡胶堆弹簧的顶端与所述摇枕 2之间存在间隙 H。
本实施例中,构架 3与摇枕 2之间的橡胶堆弹簧组 10包括三个橡胶堆弹簧, 中间的橡胶堆弹簧的自由高较大,空载或轻载时两端分别与构架和摇枕连接, 两侧的橡胶堆弹簧的自由高可以设置的小一些, 使其空载或轻载时顶端与摇 枕之间留有间隙, 对整个橡胶堆弹簧的刚度没有贡献, 重载时两侧的两个或 一个的顶端与摇枕接触, 提高整体的横向刚度, 提高承受垂向载荷的能力。
具体来说, 空载时, 仅有中间的橡胶堆弹簧分别与构架 3和摇枕 2连接, 垂向载荷由摇枕通过中间的橡胶堆弹簧传递给构架, 横向载荷由构架通过中 间的橡胶堆弹簧传递给摇枕。 因此, 在承受较小的垂向载荷下, 得以实现很 小的横向剪切刚度, 保证空车高速运行的稳定性。 另一方面, 仅有中间的橡 胶堆弹簧与构架与摇枕连接, 整个橡胶堆弹簧组的垂向挠度相对较大, 提高 了车辆高速运行时的安全性和对轨道的适应性。 重载时, 中间的橡胶堆弹簧 受到压缩, 两侧的橡胶堆弹簧与摇枕接触, 由三个橡胶堆弹簧共同来承受垂 向和横向载荷, 既提高了橡胶堆弹簧的承载能力, 又满足了横向刚度需求, 提高车辆高速运行安全性。
实际应用中, 本领域技术人员可以根据需求设置橡胶堆弹簧的数量及 每个橡胶堆弹簧的自由高, 只要使空载时其中一个橡胶堆弹簧与其他橡胶 堆弹簧的高度不同, 即可获得垂向和横向均具有两级或两级以上刚度的橡 胶堆弹簧组, 从而满足实际工况的刚度需求。 本实施例通过设置多个自由 高不相同的橡胶堆弹簧, 实现了橡胶堆弹簧组垂向和横向均具有两级或两 级以上的刚度。 在轻载或空载工况时, 具有较大的垂向挠度, 提高了车辆 高速运行时的安全性和对轨道的适应性, 具有较小的横向刚度, 空车动力 学稳定性较高; 重载时, 具有较大的横向刚度, 既提高了橡胶堆弹簧的承 载能力, 又满足了横向刚度需求, 提高车辆高速运行安全性, 因此, 本实 施例中具有横向和垂向多级刚度的中央悬挂装置便于车辆空车和重载时不 同刚度间的相互转换, 从而较适用于安全稳定运行的快速轨道车辆中。
图 7为本发明中央悬挂装置实施例二中橡胶堆弹簧组的主视图, 图 8 为图 7所示橡胶堆弹簧组的俯视图, 图 9为图 7所示实施例中第一底板与 第二底板为一体结构的主视图, 图 10为图 9中第一底板与第二底板为一 体结构的俯视图, 如图 7至图 10所示, 本实施例在上述图 6所示实施例 一的基础上, 进一步地, 橡胶堆弹簧组 10包括第二橡胶堆弹簧 1 1和两个第 一橡胶堆弹簧 12, 第一橡胶堆弹簧 12设置于第二橡胶堆弹簧 1 1的两侧, 所 述第二橡胶堆弹簧 11的顶端与摇枕 2连接,摇枕 2为图 7中橡胶堆弹簧组上 方的虚线框, 所述第一橡胶堆弹簧 12包括第一橡胶体 61、 第一底板 65、 顶 面磨耗板 63、 第一上衬板 62和第一定位销 64, 所述第一底板 65与所述第一 橡胶体 61的底端固接,所述第一上衬板 62与所述第一橡胶体 61的顶端固接, 所述顶面磨耗板 63通过所述第一定位销 64固接在所述第一上衬板 62上,所 述第一底板 65的边缘设置有用于限制所述第一底板 65相对所述构架 3转动 或横向移动的下挡边 66, 构架 3为图 7中橡胶堆弹簧组下方的虚线框, 所述 顶面磨耗板 63与所述摇枕 2之间存在间隙。
在本实施例中, 第二橡胶堆弹簧 1 1可以包括第二橡胶体 51、 第二顶板 54和第二底板 52, 所述第二底板 52与所述第二橡胶体 51的底端固接, 所述 第二顶板 54与所述第二橡胶体 51的顶端固接,所述第二顶板 54的边缘设置 有用于限制所述第二顶板相对所述摇枕 2转动或横向移动的上挡边 55 , 所述 第二底板 52的边缘设置有用于限制所述第二底板相对所述构架 3转动或横向 移动的下挡边 53 , 在第一底板 65的边缘设置下挡边 66、 在第二顶板 54的边 缘设置上挡边 55以及在第二底板 52的边缘设置下挡边 53用于定位,防止橡 胶堆弹簧与构架或摇枕之间的转动和横向移动, 避免了现有技术中采用定位 销连接在圆周方向上存在旋转的问题, 同时也降低了连接件的磨耗, 挡边与 底板或顶板一体结构可避免了焊接结构, 提高了连接的可靠性。
在具体应用中, 第二底板 52与第一底板 65可以分开设置, 也可连接在 一起, 在图 8和图 10中, 第二底板 52与所述第一底板 65连接在一起。 具体 使用时, 第二底板 52与第一底板 65之间可以采用如图 8所示的连接部件固 接, 连接部件如螺钉 13等, 或者如图 9和图 10所示的由第二底板 52与第一 底板 65形成的一体结构底板 14。 将第二底板与第一底板连接在一起有利于 整体定位。
实际应用中, 车辆在曲线轨道中行驶时, 会受到轨道的横向冲击力, 构 架将轮对上的受到的横向力通过设置的下挡边传递给橡胶堆弹簧, 经过橡胶 堆弹簧緩冲后通过上挡边传递给摇枕, 实现横向载荷的传递和减緩。 具体来 说, 轻载时, 由于两侧的第一橡胶堆弹簧 12自由高较小, 所以其顶端与摇枕 不接触, 中间的第二橡胶堆弹簧 11承载垂向和横向载荷, 具体为, 中间的第 二橡胶堆弹簧 11通过上挡边 55与摇枕 2定位连接, 中间的第二橡胶堆弹簧 11 通过下挡边 53与构架 3定位联接, 垂向载荷由摇枕 2传递给中间的第二橡胶堆 弹簧 11、 再传递给构架 3; 横向载荷由构架 3通过下挡边 53传递给中间的第二 橡胶堆弹簧 11、 再传递给上挡边 55、 通过上挡边 55再传递给摇枕 2。 在承受较 小的垂向载荷下, 得以实现很小的横向剪切刚度, 保证空车高速运行的稳定 性。 重载时, 第二橡胶堆弹簧 11和两侧的第一橡胶堆弹簧 12共同承载垂向和 横向载荷。 第二橡胶堆弹簧 11与空车时作用力的传递方式相同; 两侧的第一 橡胶堆弹簧 12通过下挡边 66与构架 3定位连接,两侧的第一橡胶堆弹簧 12和中 间的第二橡胶堆弹簧 11之间通过螺钉 13将底板连接在一起, 或者通过一体结 构的底板 14连接在一起, 两侧的第一橡胶堆弹簧 12的顶面磨耗板 63和第一定 位销 64过盈压入, 顶面磨耗板 63可采用非金属材料制成, 有利于增加与摇枕 之间的摩擦力。通过非金属顶面磨耗板 63与摇枕 2之间的摩擦力实现两侧的第 一橡胶堆弹簧 12的横向剪切变形, 既能保证垂向承载能力, 又能满足横向刚 度要求, 从而保证重车高速安全运行要求。
本实施例在上述实施例一达到的技术效果的技术上, 进一步地, 通过采 用与顶板一体的上挡边或与底板一体的下挡边的定位方式, 可以防止橡胶堆 弹簧与构架或摇枕之间的转动和横向移动, 避免了在圆周方向上存在旋转的 可能, 减少磨耗, 挡边与底板或顶板一体结构还避免了使用焊接连接结构, 从而提高了连接的可靠性; 同时在轻载或空载时, 利用上挡边和下挡边传递 横向作用力, 实现很小的横向剪切刚度, 保证空车高速运行的稳定; 通过 非金属顶面磨耗板与摇枕之间的摩擦力实现横向剪切变形, 既能保证垂向承 载能力, 又能满足横向刚度要求, 从而保证重车高速安全运行要求。
图 11为图 7所示实施例中第二橡胶堆弹簧的一种定位结构示意图,如图
11所示, 在上述实施例二中, 第二橡胶堆弹簧 11与摇枕 2之间以及第二橡 胶堆弹簧 11与构架 3之间的定位也可采用现有技术中的定位销实现。具体为 , 第二橡胶堆弹簧 11 包括第二橡胶体 51、 第二上衬板 56、 与所述第二上衬板 56固接的第二上定位销 57、第二下衬板 58和与所述第二下衬板 58固接的第 二下定位销 59, 所述第二橡胶体 51的底端与所述第二下衬板 58固接, 所述 第二下衬板 58与所述构架 3之间通过所述第二下定位销 59连接, 所述第二 橡胶体 51的顶端与所述第二上衬板 56固接,所述第二上衬板 56与所述摇枕 2之间通过所述第二上定位销 57连接, 所述第二下衬板 58与所述第一底板 65连接。 在上述实施例二中第二橡胶堆弹簧可采用定位销定位也可采用定位 销定位结合挡边定位, 采用定位销定位, 其工作原理及效果与现有技术类似, 不再赘述。
图 12为本发明中央悬挂装置实施例三中橡胶堆弹簧组的主视图, 如 图 12所示, 本实施例与上述图 7所示橡胶堆弹簧组的区别在于, 第一橡 胶堆弹簧 12为一个, 置于中间, 第二橡胶堆弹簧 1 1为两个, 分设于第一橡 胶堆弹簧 12的两侧, 即设置两侧的两个橡胶堆弹簧的顶端与摇枕连接, 而 中间的橡胶堆弹簧的顶端与摇枕之间存在间隙, 同样, 第一橡胶堆弹簧 12 也只是在重载时与摇枕接触承载横向力和垂向力, 实现轻载与重载时两级刚 度间相互调整, 其工作原理及效果类似, 不再赘述。
在上述任一实施例中, 橡胶堆弹簧组中的橡胶堆弹簧可以为长方体形或 者圆柱形。 具体使用中可根据刚度不同要求进行合理选择。
上述的任一实施例中的中央悬挂装置限定为包括构架、 摇枕、 纵向牵引 拉杆和橡胶堆弹簧组。 实际中, 中央悬挂装置也可以限定为仅包括橡胶堆弹 簧组, 所述橡胶堆弹簧组由至少两个橡胶堆弹簧构成, 每个橡胶堆弹簧的底 端分别与所述构架连接, 所述橡胶堆弹簧组中至少一个橡胶堆弹簧的顶端与 所述摇枕连接且至少一个橡胶堆弹簧的顶端与所述摇枕之间存在间隙, 这种 仅包括橡胶堆弹簧组的中央悬挂装置可以设置于货车转向架的构架和摇枕之 间。 进一步地, 仅包括橡胶堆弹簧组的中央悬挂装置中所述橡胶堆弹簧组以 及所述橡胶堆弹簧组与架构、 摇枕、 纵向牵引拉杆之间的连接关系如上述任 一实施例中所述。 对应地, 这种情况下的货车转向架可限定为包括轴箱悬挂 装置、 构架、 摇枕和纵向牵引拉杆, 纵向牵引拉杆的一端与所述构架连接, 另一端与所述摇枕连接, 所述轴箱悬挂装置通过所述构架与中央悬挂装置连 接,其工作原理与达到的技术效果相对现有技术来说与上述任一实施例类似。
图 13为本发明货车转向架实施例一的俯视图, 图 14为图 13所示货车 转向架的主视图, 如图 13和图 14所示, 本实施例中的中央悬挂装置为上 述图 6〜图 12的中央悬挂装置,本实施例的货车转向架包括轴箱悬挂装置和 上述的中央悬挂装置, 纵向牵引拉杆 4的一端与所述构架 3连接, 另一端与 所述摇枕 2连接, 所述轴箱悬挂装置通过所述构架 3与所述中央悬挂装置 连接。 其中轴箱悬挂装置包括轴箱组成 5、 垂向减振器 7、 轴箱弹簧组 8。 垂向减振器 7可采用液压减振, 可以较好的緩解垂向不同载重时轮对对构 架 3的振动, 延长构架 3的疲劳寿命。 构架 3和摇枕 2之间还连接有横向 减振器 6, 横向减振器 6可改善车辆高速运行时横向的动力学性能。
本实施例可以实现上述中央悬挂装置任一实施例的技术方案, 其工作 原理及达到的技术效果类似, 不再赘述。
图 15为图 13所示的货车转向架实施例中纵向牵引拉杆的结构示意图, 图 16为图 15所示纵向牵引拉杆沿 AA,向的剖视图, 图 17为图 16中球铰 组成的结构示意图, 如图 15〜图 17所示, 本实施例中, 纵向牵引拉杆 4包 括两个球铰组成 410和连接在两个球铰组成 410之间的牵引拉杆 43 , 其中一 个球铰组成与构架 3上设置的第一牵引拉杆座 42连接,另一个球铰组成与所 述摇枕 2上设置的第二牵引拉杆座 41连接, 每个球铰组成 410包括球铰轴 402和球铰套 408,所述球铰轴 402和所述球铰套 408的内侧面之间通过球形 曲面铰接配合。 球铰轴 402中部具有外凸球面, 球铰套 408具有内凹球面, 所述外凸球面与所述内凹球面相配合, 其中一个球铰组成 410的球铰轴 402 的端部与所述第一牵引拉杆座 42连接,另一个球铰组成 410的球铰轴 402的 端部与所述第二牵引拉杆座 41连接,每个球铰组成通过球铰套 408与所述牵 引拉杆 43连接。
实际应用中, 球铰轴 402的端部通过螺栓 405和螺母 404实现与第一牵 引拉杆座 42和第二牵引拉杆座 41的连接, 还可以在螺栓 405上设置开口销 406以防螺母 404从螺栓 405上滑脱。 为了保证转向架的性能, 需要对摇枕 在组装中进行正位调整 , 本实施例中, 在球铰轴 402与第一牵引拉杆座 42和 第二牵引拉杆座 41之间还可以分别设置有调整垫 403以确定摇枕 2的安装位 置, 以利于摇枕组装过程中的正位调整。 调整垫 403可以需要选择不同厚度。 当横向力通过第一牵引拉杆座 42传递给纵向牵引拉杆 4一端的球铰轴 402 时, 球铰轴 402相对球铰套 408可以转动一定角度, 从而可减少横向的剪切 变形, 因此可提供较小的横向刚度, 有利于降低转向架的横向附加刚度。
球铰轴 402与球铰套 408的配合面之间还可设置有具有弹性结构的铰接 中套 409, 如采用橡胶制成的铰接中套, 可以使球铰组成 410具有更大的弹 性变形量, 同时也为球铰组成的维护提供了便利。 牵引拉杆 43上设置有安装 孔 (未示出 ) , 牵引拉杆 43可以通过铸造或锻造制成, 所述球铰套 408的外 侧面与所述安装孔之间的连接为过盈配合, 纵向牵引拉杆安装过程中可以通 过足够的预紧力使球铰套 408与牵引拉杆 43连为一体,从而使摇枕上传递来 的各个方向的作用力通过牵引拉杆 43传递给球铰组成 410,再由球铰组成 410 传递给构架, 最后传递给轮对。
采用球铰结构的纵向牵弓 I拉杆不仅能够克服现有技术中橡胶垫组成的 变形易引起螺母松动问题, 还解决了内筒与牵引拉杆之间的磨耗问题, 同 时还避免了牵引拉杆上制造螺纹的工艺过程, 降低了纵向牵引拉杆的制造 成本, 而且还可避免由制造螺纹过程出现的缺陷而导致的安全隐患。
本实施例在达到上述中央悬挂装置任一实施例的技术效果的基础上, 进一步通过采用球铰组成结构构成的纵向牵引拉杆实现摇枕与构架之间 作用力的传递, 不仅减小了横向的剪切变形, 提供较小的横向刚度, 有利于 降低转向架的横向附加刚度, 而且还便于安装维护, 降低了安装难度和制造 成本。 通过采用上述空车重载时具有两级垂向、 横向刚度的中央悬挂装置和 采用球铰结构的纵向牵引拉杆, 经动力学仿真理论计算和滚振试验以及线 路试验验证结果表明, 能够降低空车横向刚度达 50%-70%, 提高空车临界 速度 40-80千米 /小时, 既有效解决了空车高速运行稳定性技术难题, 又解 决了重载时垂向承载的技术问题, 保证重车高速运行时的安全性。
在上述货车转向架实施例中纵向牵引拉杆 4也可以采用如图 5所示的 现有技术中的结构形式, 即纵向牵引拉杆 4包括两组橡胶垫组成 47和连接 在两组橡胶垫组成 47之间的牵引拉杆 43 ,其中一组橡胶垫组成与所述构架 3 上设置的第一牵引拉杆座 42连接,另一组橡胶垫组成与所述摇枕 2上设置的 第二牵引拉杆座 41连接, 两组橡胶垫组成分别由螺母 44固定在所述牵引拉 杆 43的两端。在每组橡胶垫组成 47与所述牵引拉杆 43之间设置有用于减小 磨耗的内筒 46, 所述内筒 46与所述牵引拉杆 43之间为间隙配合, 以减小内 筒 46与牵引拉杆 43之间相对运动产生的磨耗, 这种结构形式的纵向牵引拉 杆其工作原理及效果与现有技术中的类似, 不再赘述。
图 18 为本发明货车转向架实施例二的结构示意图, 本实施例中的摇 枕 2的中心设置有下心盘 9, 在所述摇枕 2上相对所述下心盘 9对称设置有 两个旁承 100, 两个旁承 100之间的中心距 L大于 1520毫米。 现有技术 中的中心距一般固定为 1520毫米, 从而限制了车辆临界速度的提高空间。 本实施例中两旁承 100的中心距大于 1520毫米, 一方面有利于提高旁承 回转阻力矩, 从而提高车辆的行驶速度, 另一方面可减小车辆的抗侧滚倾 斜角度, 从而有利于货车行驶的安全性。
具体来说, 货车的旁承回转阻力矩与两旁承中心距、 旁承磨耗板的摩 擦系数以及旁承所承受的压力成正比, 因此通过增大旁承中心距可有效提 高旁承回转阻力矩, 而旁承回转阻力矩的增加能提高车辆的最大行驶速 度。 车辆曲线行驶时, 车体将相对摇枕发生侧滚, 而车体依靠自身的重力 形成的侧滚回复力矩阻止车体侧滚, 增大两旁承中心距可以获得更小的抗 侧滚倾斜角度, 更大的侧滚回复力矩, 从而可有效抑制车体的侧滚, 提高 车辆行驶的安全性。 优选的, 两旁承中心距 L选为 2000毫米, 相对现有 技术中两旁承中心距为 1520毫米, 旁承回转阻力矩增加了 31.6%, 能够提 高车辆的临界速度 16%,从而解决了车辆最大行驶速度不高的问题,而且, 在旁承间隙为 5毫米的情况下, 车辆的抗侧滚倾斜角度降低了 31.5%, 从 而对车辆的安全性起到了保障作用。
现有技术中两个旁承之间的中心距为 1520 毫米, 其小于在转向架的 构架两侧梁之间的距离, 即如图 1所示, 两个旁承 100设置在摇枕上, 位 于侧梁 31的内侧, 从而车体施加在旁 ? 100上的作用力会对摇枕 2产生 弯矩效应, 车辆行驶中, 反复的冲击加速摇枕的疲劳失效, 从而降低其可 靠性。 本发明在实际应用中, 优选将两旁承之间的中心距 L设置为等于两 侧梁 31之间的横向距离, 且每边的旁承 100位于该边转向架 3的侧梁 31 的正上方, 从而减少旁承 100对摇枕 2的作用力产生的弯矩效应, 提高摇 枕的可靠性。
本实施例在达到上述实施例一技术效果的基础上, 进一步地, 通过将 两旁承中心距设置为大于 1520毫米, 有效提高旁承回转阻力矩, 而旁承 回转阻力矩的增加能提高车辆的最大行驶速度, 同时还可获得更小的抗侧 滚倾斜角度, 更大的侧滚回复力矩, 从而可有效抑制车体的侧滚, 提高车 辆行 3史的安全性。 本发明还提供一种快运铁路货车,包括上述图 13〜图 18中任一实施例 的货车转向架, 该快运货车可以为快运铁路集装箱车、 快运棚车、 快运冷 藏车或快运小汽车运输车等。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种中央悬挂装置, 包括构架、 摇枕和纵向牵引拉杆, 所述纵向牵引 拉杆的一端与所述构架连接, 另一端与所述摇枕连接, 其特征在于, 所述中 央悬挂装置还包括由至少两个橡胶堆弹簧构成的橡胶堆弹簧组, 每个橡胶堆 弹簧的底端分别与所述构架连接, 所述橡胶堆弹簧组中至少一个橡胶堆弹簧 的顶端与所述摇枕连接且至少一个橡胶堆弹簧的顶端与所述摇枕之间存在间 隙。
2、 根据权利要求 1所述的装置, 其特征在于, 所述橡胶堆弹簧组包括第 一橡胶堆弹簧和第二橡胶堆弹簧, 且所述第二橡胶堆弹簧的顶端与所述摇枕 连接; 所述第一橡胶堆弹簧包括第一橡胶体、 第一底板、 顶面磨耗板、 第一 上衬板和第一定位销, 所述第一底板与所述第一橡胶体的底端固接, 所述第 一上衬板与所述第一橡胶体的顶端固接, 所述顶面磨耗板通过所述第一定位 销固接在所述第一上衬板上, 所述第一底板的边缘设置有用于限制所述第一 底板相对所述构架转动或横向移动的下挡边, 所述顶面磨耗板与所述摇枕之 间存在间隙。
3、 根据权利要求 2所述的装置, 其特征在于, 所述第二橡胶堆弹簧包括 第二橡胶体、 第二顶板和第二底板, 所述第二底板与所述第二橡胶体的底端 固接, 所述第二顶板与所述第二橡胶体的顶端固接, 所述第二顶板的边缘设 置有用于限制所述第二顶板相对所述摇枕转动或横向移动的上挡边, 所述第 二底板的边缘设置有用于限制所述第二底板相对所述构架转动或横向移动的 下挡边, 所述第二底板与所述第一底板连接。
4、 根据权利要求 3所述的装置, 其特征在于, 所述第一底板和所述第二 底板通过连接部件固接。
5、 根据权利要求 3所述的装置, 其特征在于, 所述第一底板和所述第二 底板为一体结构。
6、 根据权利要求 2所述的装置, 其特征在于, 所述第二橡胶堆弹簧包括 第二橡胶体、 第二上衬板、 与所述第二上衬板固接的第二上定位销、 第二下 衬板和与所述第二下衬板固接的第二下定位销, 所述第二橡胶体的底端与所 述第二下衬板固接, 所述第二下衬板与所述构架之间通过所述第二下定位销 连接, 所述第二橡胶体的顶端与所述第二上衬板固接, 所述第二上衬板与所 述摇枕之间通过所述第二上定位销连接, 所述第二下衬板与所述第一底板连 接。
7、 根据权利要求 2〜6中任一项所述的装置, 其特征在于, 所述第一橡胶 堆弹簧为两个, 分设所述第二橡胶堆弹簧的两侧, 或者, 所述第二橡胶堆弹 簧为两个, 分设所述第一橡胶堆弹簧的两侧。
8、 根据权利要求 2〜6中任一项所述的装置, 其特征在于, 所述顶面磨耗 板的材质为非金属材料。
9、 根据权利要求 1〜6中任一项所述的装置, 其特征在于, 所述橡胶堆弹 簧为长方体形或者圆柱形。
10、 一种中央悬挂装置, 用于设置在货车转向架的构架和摇枕之间, 其 特征在于, 所述中央悬挂装置包括由至少两个橡胶堆弹簧构成的橡胶堆弹簧 组, 每个橡胶堆弹簧的底端分别与所述构架连接, 所述橡胶堆弹簧组中至少 一个橡胶堆弹簧的顶端与所述摇枕连接且至少一个橡胶堆弹簧的顶端与所述 摇枕之间存在间隙。
11、 一种高速货车转向架, 其特征在于, 包括轴箱悬挂装置和上述权 利要求 1〜9中任一项所述的中央悬挂装置, 所述轴箱悬挂装置通过所述构 架与所述中央悬挂装置连接。
12、 根据权利要求 11 所述的货车转向架, 其特征在于, 所述纵向牵引 拉杆包括两个球铰组成和连接在两个球铰组成之间的牵引拉杆, 每个球铰组 成包括球铰轴和球铰套, 所述球铰轴的中部具有外凸球面, 所述球铰套具有 内凹球面, 所述外凸球面与所述内凹球面铰接相配合, 其中一个球铰组成的 球铰轴的端部与所述构架上设置的第一牵引拉杆座连接, 另一个球铰组成的 球铰轴的端部与所述摇枕上设置的第二牵引拉杆座连接, 每个球铰组成的球 铰套分别与所述牵引拉杆连接。
13、 根据权利要求 12 所述的货车转向架, 其特征在于, 所述球铰轴与 所述球铰套的配合面之间设置有具有弹性结构的铰接中套。
14、 根据权利要求 12 所述的货车转向架, 其特征在于, 所述牵引拉杆 上设置有安装孔,所述球铰套的外侧面与所述安装孔之间的连接为过盈配合。
15、 根据权利要求 11 所述的货车转向架, 其特征在于, 所述纵向牵引 拉杆包括两组橡胶垫组成和连接在两组橡胶垫组成之间的牵引拉杆, 其中一 组橡胶垫组成与所述构架上设置的第一牵引拉杆座连接, 另一组橡胶垫组成 与所述摇枕上设置的第二牵引拉杆座连接, 两组橡胶垫组成分别由螺母固定 在所述牵引拉杆的两端。
16、 根据权利要求 15 所述的货车转向架, 其特征在于, 每组橡胶垫组 成与所述牵引拉杆之间设置有用于减小磨耗的内筒, 所述内筒与所述牵引拉
4干之间为间隙配合。
17、 根据权利要求 11〜16中任一项所述的货车转向架, 其特征在于, 所 述摇枕中部设置有下心盘, 在所述摇枕上相对所述下心盘对称设置有两个旁 两个旁 之间的中心距大于 1520毫米。
18、 根据权利要求 17所述的货车转向架, 其特征在于, 所述中心距 为 2000毫米。
19、 根据权利要求 17所述的货车转向架, 其特征在于, 所述中心距 等于所述构架的两侧梁之间的横向距离, 且两个旁承分别设置于每个侧梁 的正上方。
20、 一种快运铁路货车, 其特征在于, 包括如权利要求 11〜19中任一 项所述的货车转向架。
PCT/CN2011/084467 2011-01-01 2011-12-22 中央悬挂装置、货车转向架及快运铁路货车 WO2012089060A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11852730.8A EP2647541B1 (en) 2011-01-01 2011-12-22 Central suspension apparatus, goods wagon bogie and express railroad goods wagon
US13/597,209 US8671845B2 (en) 2011-01-01 2012-08-28 Central suspension device, wagon bogie and express railway wagon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110000333.0 2011-01-01
CN201110000333.0A CN102556097B (zh) 2011-01-01 2011-01-01 中央悬挂装置及具有该装置的高速货车转向架

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/597,209 Continuation US8671845B2 (en) 2011-01-01 2012-08-28 Central suspension device, wagon bogie and express railway wagon

Publications (1)

Publication Number Publication Date
WO2012089060A1 true WO2012089060A1 (zh) 2012-07-05

Family

ID=46382303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084467 WO2012089060A1 (zh) 2011-01-01 2011-12-22 中央悬挂装置、货车转向架及快运铁路货车

Country Status (5)

Country Link
US (1) US8671845B2 (zh)
EP (1) EP2647541B1 (zh)
CN (1) CN102556097B (zh)
PL (1) PL2647541T3 (zh)
WO (1) WO2012089060A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210284204A1 (en) * 2018-07-03 2021-09-16 Siemens Mobility GmbH Wheel set intermediate frame for a rail vehicle
CN113879352A (zh) * 2021-11-22 2022-01-04 中车长春轨道客车股份有限公司 轨道车辆转向架四悬臂式牵引中心装置

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101844567B (zh) * 2010-04-27 2011-11-09 南车长江车辆有限公司 大抗菱刚度铁道货车转向架
CN101830233B (zh) * 2010-05-14 2011-11-09 南车长江车辆有限公司 全旁承承载式铁道货车转向架
RU2606411C1 (ru) * 2015-07-31 2017-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Елецкий государственный университет им. И.А. Бунина" Трёхосная тележка локомотива
CN106541960B (zh) * 2016-11-04 2018-10-30 中国神华能源股份有限公司 铁路货车的轴箱弹性垫及其转向架
CN106809233B (zh) * 2017-01-23 2018-11-30 中车长江车辆有限公司 铁路快运货车转向架
CN106696980B (zh) * 2017-01-23 2018-11-30 中车长江车辆有限公司 铁路快运货车转向架用摇枕
RU171993U1 (ru) * 2017-04-06 2017-06-23 РЕЙЛ 1520 АйПи ЛТД Тележка двухосная грузового вагона
CN107117183B (zh) * 2017-04-26 2020-03-24 中车唐山机车车辆有限公司 用于轨道车辆的中央牵引装置及轨道车辆
CN106994981B (zh) * 2017-05-19 2023-09-01 江苏瑞铁轨道装备股份有限公司 一种中央悬挂装置及铁路货车转向架
CN107628054A (zh) * 2017-09-06 2018-01-26 中车长春轨道客车股份有限公司 同向布置三向解耦式一系悬挂组成
US11027755B2 (en) 2017-12-04 2021-06-08 Standard Car Truck Company Railroad car truck with warp restraints
RU181149U1 (ru) * 2018-03-27 2018-07-05 Открытое акционерное общество "Тверской вагоностроительный завод" (ОАО "ТВЗ") Рама тележки железнодорожного транспортного средства
CN108757796A (zh) * 2018-06-13 2018-11-06 株洲时代新材料科技股份有限公司 一种提高机车橡胶堆抗疲劳性能的方法及机车橡胶堆
RU186720U1 (ru) * 2018-10-23 2019-01-30 Общество с ограниченной ответственностью "Всесоюзный научно-исследовательский центр транспортных технологий" (ООО "ВНИЦТТ") Боковая опора железнодорожного транспортного средства
CN109435983B (zh) * 2018-11-27 2023-09-15 江苏瑞铁轨道装备股份有限公司 一种悬挂式货车系统
CN110937043A (zh) * 2019-12-30 2020-03-31 中铁十四局集团大盾构工程有限公司 一种载重平板拖车
CN112519826B (zh) * 2020-12-09 2022-05-17 中车唐山机车车辆有限公司 转向架及轨道车辆
CN114152451B (zh) * 2021-11-10 2023-06-06 柳州铁道职业技术学院 一种快速货车转向架的转向动力检测装置及方法
CN114162166B (zh) * 2022-01-13 2024-02-27 西南交通大学 一种采用新型柔性构架和永磁直驱电机的内轴箱转向架
CN114559976B (zh) * 2022-01-13 2024-02-27 西南交通大学 一种用于轨道车辆转向架的采用回转支承的柔性构架
CN115107818B (zh) * 2022-01-20 2024-04-26 中铁宝桥集团有限公司 铰接式单轨架空游览车转向架

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2546292Y (zh) * 2002-06-12 2003-04-23 段扬名 铁道货车车辆用弹性旁承
WO2006021360A1 (de) * 2004-08-24 2006-03-02 Bombardier Transportation Gmbh Drehgestell für schienenfahrzeuge
CN2851046Y (zh) * 2005-04-18 2006-12-27 中国北车集团齐齐哈尔铁路车辆(集团)有限责任公司 铁路货车转向架钢弹簧与橡胶垫组合中央悬挂装置
JP2009197986A (ja) * 2008-02-25 2009-09-03 Bridgestone Corp 空気ばね装置
CN101830235A (zh) * 2010-05-14 2010-09-15 南车长江车辆有限公司 空重两级摩擦式下旁承

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1924237A (en) * 1929-07-10 1933-08-29 Glascodine Richard Thomson Bogie truck for railway and like vehicles
US1936389A (en) * 1932-07-11 1933-11-21 Gen Steel Castings Corp Spring device
US2538380A (en) * 1946-05-22 1951-01-16 Gen Steel Castings Corp Railway truck
US2674449A (en) * 1950-09-15 1954-04-06 Cardwell Westinghouse Co Bolster spring
US2747519A (en) * 1950-11-13 1956-05-29 American Steel Foundries Snubbed truck
US3315555A (en) * 1961-10-23 1967-04-25 Gen Steel Ind Inc Anchor link
US3547045A (en) * 1968-02-02 1970-12-15 Gen Steel Ind Inc Resilient railway car truck
US3762694A (en) * 1970-04-06 1973-10-02 Unity Railway Supply Co Inc Spring group
US3865045A (en) * 1974-04-25 1975-02-11 Gen Steel Ind Inc Railway vehicle truck with device for damping oscillations about swivel axis
US4108080A (en) * 1975-04-29 1978-08-22 Acf Industries, Incorporated Railway car truck and side bearing assembly
GB1532495A (en) * 1976-02-20 1978-11-15 British Steel Corp Railway wagon suspension unit
SE446708B (sv) * 1984-11-22 1986-10-06 Asea Ab Dempningsanordning vid boggi for relsgaende fordon
DE69809120T2 (de) * 1997-05-24 2003-07-17 Powell Duffryn Rail Ltd Verbessertes Drehgestell für Schienenfahrzeuge
JPH10181596A (ja) * 1998-02-16 1998-07-07 Hitachi Ltd 鉄道車両用軸ばね装置
CN2375535Y (zh) * 1999-06-03 2000-04-26 株洲车辆厂 铁道车辆用弹性常接触式下旁承
CN2517641Y (zh) * 2001-12-17 2002-10-23 齐齐哈尔铁路车辆(集团)有限责任公司 高速货车转向架
JP2004148947A (ja) * 2002-10-30 2004-05-27 Kawasaki Heavy Ind Ltd 非線形特性バネ及びそれを用いた軸はり式台車
CN100450845C (zh) * 2006-07-19 2009-01-14 南车眉山车辆有限公司 快速铁路货车转向架
CN201136506Y (zh) * 2007-12-12 2008-10-22 中国南车集团眉山车辆厂 铁路货车转向架橡胶堆
CN201321050Y (zh) * 2008-08-12 2009-10-07 西安轨道交通装备有限责任公司 铁路货车用转向架
CN101480960A (zh) * 2009-02-26 2009-07-15 齐齐哈尔轨道交通装备有限责任公司 一种纵向牵引装置及带有该纵向牵引装置的转向架

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2546292Y (zh) * 2002-06-12 2003-04-23 段扬名 铁道货车车辆用弹性旁承
WO2006021360A1 (de) * 2004-08-24 2006-03-02 Bombardier Transportation Gmbh Drehgestell für schienenfahrzeuge
CN2851046Y (zh) * 2005-04-18 2006-12-27 中国北车集团齐齐哈尔铁路车辆(集团)有限责任公司 铁路货车转向架钢弹簧与橡胶垫组合中央悬挂装置
JP2009197986A (ja) * 2008-02-25 2009-09-03 Bridgestone Corp 空気ばね装置
CN101830235A (zh) * 2010-05-14 2010-09-15 南车长江车辆有限公司 空重两级摩擦式下旁承

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210284204A1 (en) * 2018-07-03 2021-09-16 Siemens Mobility GmbH Wheel set intermediate frame for a rail vehicle
CN113879352A (zh) * 2021-11-22 2022-01-04 中车长春轨道客车股份有限公司 轨道车辆转向架四悬臂式牵引中心装置

Also Published As

Publication number Publication date
EP2647541A1 (en) 2013-10-09
US20120318165A1 (en) 2012-12-20
PL2647541T3 (pl) 2017-09-29
EP2647541B1 (en) 2016-11-30
EP2647541A4 (en) 2014-08-06
CN102556097B (zh) 2014-07-30
CN102556097A (zh) 2012-07-11
US8671845B2 (en) 2014-03-18

Similar Documents

Publication Publication Date Title
WO2012089060A1 (zh) 中央悬挂装置、货车转向架及快运铁路货车
US11084510B2 (en) Bolster of bogie
EP2783939B1 (en) High speed railway vehicle bogie
CN106809233B (zh) 铁路快运货车转向架
CN106828516B (zh) 一种铁路非标集装箱运输平车
US11208123B2 (en) Frame of bogie
WO2011063633A1 (zh) 货车转向架及货车
AU2004271647A1 (en) Railroad freight car truck suspension yaw stabilizer, and corresponding method
CN103661463A (zh) 一种高速铁路货车转向架
WO2022120933A1 (zh) 转向架横梁、转向架及轨道车辆
US5168815A (en) Railroad car moving vehicle
CN103112467A (zh) 一种低动力作用径向焊接转向架
CN111959550A (zh) 一种构架及其转向架
CN1899902A (zh) 快速铁路货车转向架
CN110667635A (zh) 一种轴箱内置式转向架构架
WO2020073420A1 (zh) 一种可提供复合减振力的铁路货车转向架减振装置
CN106994981B (zh) 一种中央悬挂装置及铁路货车转向架
CN203593001U (zh) 一种高速铁路货车转向架
EP4086136A1 (en) Bolster-less framed bogie suitable for high-speed freight wagon
WO2023138584A1 (zh) 高动态性能铁路货车转向架
CZ2018298A3 (cs) Podvozek kolejového vozidla, zejména nákladního vozu
CN112277971A (zh) 摇枕
CN202413822U (zh) 高速铁路货车转向架二系悬挂装置
CN219544774U (zh) 一种适用于轨道工程车用导框式转向架构架
CN202389393U (zh) 旁承安装结构、货车转向架及快运货车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852730

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011852730

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011852730

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE