WO2012086935A2 - 엔진실린더 - Google Patents

엔진실린더 Download PDF

Info

Publication number
WO2012086935A2
WO2012086935A2 PCT/KR2011/009120 KR2011009120W WO2012086935A2 WO 2012086935 A2 WO2012086935 A2 WO 2012086935A2 KR 2011009120 W KR2011009120 W KR 2011009120W WO 2012086935 A2 WO2012086935 A2 WO 2012086935A2
Authority
WO
WIPO (PCT)
Prior art keywords
piston
laser
cylinder
dead center
engine cylinder
Prior art date
Application number
PCT/KR2011/009120
Other languages
English (en)
French (fr)
Other versions
WO2012086935A3 (ko
Inventor
강민구
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Publication of WO2012086935A2 publication Critical patent/WO2012086935A2/ko
Publication of WO2012086935A3 publication Critical patent/WO2012086935A3/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • F02F1/20Other cylinders characterised by constructional features providing for lubrication

Definitions

  • the present invention relates to an engine cylinder, and more particularly to an engine cylinder that can improve the wear resistance of the cylinder and the piston ring.
  • the engine is operated by the piston reciprocating up and down by the combustion pressure generated by the fuel combustion in the combustion chamber inside the engine cylinder.
  • the vertical reciprocating motion of the piston is converted into rotational motion by the crank mechanism. Accordingly, rotational power can be obtained.
  • the inner circumferential surface of the cylinder is in friction with the piston ring, which causes wear on the inner circumferential surface and the piston ring of the cylinder. Wear on the inner circumferential surface of the cylinder is mainly caused when the up and down reciprocating piston is located at the top of the cylinder, that is, located at and near the top dead center (TDC).
  • TDC top dead center
  • abrasion of the inner circumferential surface of the cylinder occurs mainly in the region where the piston is in contact with the piston when the piston is located at the top dead center, among which the point A and the second ring where the piston top ring comes into contact with each other. The most wear occurs at the point B where) touches.
  • the engine cylinder block is loaded with a cylinder liner made of special cast iron or steel with excellent surface hardness.However, in a small engine, the cylinder liner is difficult to use due to cost and manufacturing difficulties. ⁇ In large engines, the operating environment of the engine is deteriorated due to the strengthening of environmental regulations and the continuous improvement of the engine. Therefore, the use of the conventional cylinder liner is limited.
  • the present invention has been made in view of the above-described problems, and can be minimized the cost and processing time of the cylinder processing process while minimizing the wear amount of the cylinder and piston rings by strengthening the wear resistance and lubricity only in the region of the large amount of wear of the cylinder inner peripheral surface
  • the purpose is to provide an engine cylinder.
  • the present invention is an engine cylinder in which the piston 10 vertically reciprocates in the inside, and a plurality of laser curing portions 22 hardened by a laser in a predetermined region of the inner circumferential surface thereof are mutually Curing patterns 21 spaced apart from each other; And (ii) a plurality of oil grooves 31 formed in a portion where the plurality of laser hardening portions 22 are not formed, wherein the predetermined region is formed when the piston 10 reaches a top dead center.
  • An engine cylinder characterized in that the area in contact with the.
  • the top dead center means a position when the piston comes to the top of the inside of the engine cylinder
  • the bottom dead center means a position when the piston comes to the bottom of the inside of the engine cylinder
  • a hardening pattern made of a laser hardening part and an oil groove having a fine size are formed on the inner circumferential surface of the cylinder to improve wear resistance and lubricity of the inner circumferential surface of the cylinder and the piston rings.
  • the laser hardening portion and the oil groove are formed only in the area where the wear is concentrated, thereby simplifying the process for processing the laser hardening portion and the oil groove, thereby improving the productivity of the cylinder.
  • a hardening pattern is formed in a hardened region 5% to 32% from the top dead center of the piston in the section between the top dead center and the bottom dead center of the piston where wear of the cylinder inner circumference is concentrated.
  • the wear resistance can be maximized.
  • oil grooves can be formed in the hardened area while maximizing abrasion resistance of the inner circumferential surface of the cylinder by hardening, thereby improving lubricity.
  • the improvement can also minimize the amount of wear of the piston rings.
  • the oil groove in the region of 5% to 50% distance from the top dead center of the piston in the section between the top dead center and the bottom dead center of the piston, it is possible to prevent unnecessary processing of the oil groove, thereby improving the productivity of the cylinder Of course, it is possible to prevent excessive consumption of engine oil.
  • FIG. 1 is a cross-sectional view schematically showing a general engine cylinder.
  • FIG. 2 is a view schematically illustrating a state in which a piston reciprocates inside an engine cylinder according to an embodiment of the present invention, and compares the piston to a top dead center and a bottom dead center.
  • FIG. 3 is an exploded view showing the hardened region in the inner circumferential surface of the engine cylinder of FIG.
  • FIG. 4 is an exploded view schematically illustrating a hardened region and a grooved region of the inner circumferential surface of the engine cylinder of FIG. 2.
  • the piston 10 reciprocates in an up and down direction therein.
  • the piston 10 has a top ring or a first ring (11, top ring), the second ring (12, second ring), the oil ring 13 is formed to be spaced apart from each other in the vertical direction to inject the oil into the combustion chamber It prevents oil from scraping off the inner circumference of the cylinder.
  • the distance between the top dead center and the bottom dead center of the piston 10 is called a stroke or a stroke section.
  • the inner circumferential surface of the cylinder is in friction with the first ring 11, the second ring 12, and the oil ring 13.
  • the wear caused by the frictional movement occurs most frequently in the region in contact with the piston when the piston 10 is at the top dead center of the cylinder inner circumferential surface.
  • wear is concentrated in the region where the first ring 11 and the second ring 12 contact. Accordingly, in order to minimize the amount of wear, when the piston 10 is at the top dead center, the first ring 11 and the second ring 12 are in contact with the inner circumferential surface of the region where the piston is located.
  • the structure should be improved around the area.
  • the curing pattern 21 refers to a pattern formed by the plurality of laser curing units 22 on the laser curing region 20.
  • the cured pattern 21 may include a first row in which the plurality of laser curing parts 22 are spaced apart from each other in the circumferential direction (X-axis direction), and the first row and the piston movement direction (Y-axis).
  • X-axis direction first row and the piston movement direction
  • Y-axis piston movement direction
  • Direction spaced apart in the second row
  • the third row formed spaced apart from the second row and the piston movement direction (Y-axis direction)
  • the third row spaced apart from the third row and the piston movement direction (Y-axis direction).
  • a fourth row that is formed.
  • the four rows are arranged, but the number of one row constituting the plurality of rows may be changed according to engine specifications such as the capacity of the cylinder.
  • the laser hardening parts 22 of adjacent rows mutually shift
  • the laser curing unit 22 in the first row and the laser curing unit 22 in the second row are arranged in a zigzag form while being shifted in the circumferential direction (X-axis direction).
  • the laser curing unit 22 may be formed through a mask having the same shape as that of the curing pattern 21, but may be formed by various other methods.
  • the laser curing unit 22 is formed to have a rectangular shape, but the shape of the laser curing unit 22 may be configured in various shapes such as a dimple shape.
  • the area which the laser hardening part 22 occupies is 50% or more and 80% or less of the area of the hardening area
  • the hardness (hardness) of the inner circumferential surface of the engine cylinder has been illustrated to form the laser curing portion 22 by laser irradiation.
  • high frequency heat treatment may be used to improve hardness.
  • high frequency heat treatment may cause deformation of the inner circumferential surface of the cylinder during machining and may not be easy to control the depth of heat treatment.
  • a method of forming a nitride layer by performing nitriding heat treatment on the inner circumferential surface of the cylinder, or forming a coating and plating layer may be used, but in this case, the process is to be processed to the unnecessary part because the entire process should be performed on the entire cylinder.
  • the distance between the first ring 11 and the oil ring 13 corresponds to a distance of 5% to 50% with respect to the stroke section from the top dead center, and this area is grooved as shown in FIG. 4.
  • the area 30 was set.
  • the oil groove 31 is formed in an area of less than 5% of the stroke from the top dead center, but preferably, the oil groove 31 is formed in an area of 5% or more.
  • the oil groove 31 having a fine size is formed to allow the engine oil supplied to stay for a predetermined time to improve lubrication performance. That is, the hardness of the laser is increased by the laser hardening part 22 to improve abrasion resistance, and the lubrication performance is improved by the oil groove 31 having a fine size, so that the inner circumferential surface of the cylinder, the first ring 11, the second ring 12 and The amount of wear of the oil ring 13 was minimized.
  • the oil groove 31 is processed in a portion of the groove processing region 30 in which the laser curing portion 22 is not formed in the curing region 20.
  • the hardening pattern 21 and the oil groove 31 may be overlapped with each other, when the oil groove 31 is overlapped with the hardening pattern 21, processing is difficult, and the hardening pattern 21 is formed in the oil groove 31. There is a problem that when forming the overlap may form the processed form.
  • the depth of the oil groove 31 having a fine size is greater than 0 mm and less than 0.02 mm (0 mm oil groove depth ⁇ 0.02), which further improves wear resistance even when the depth of the oil groove 31 exceeds 0.02 mm. This is because there is no effect and the amount of oil staying in the oil groove 31 increases, so that the consumption of engine oil increases.
  • the oil groove 31 may also be formed by a laser processing method, but various processing methods other than laser processing may be used as necessary.
  • the shape of the oil groove 31 is not particularly limited and may have various shapes (eg, circular, elliptical, square, etc.).
  • the area occupied by the oil groove 31 is preferably 5% or more and 25% or less of the area of the grooving area 30. When the area occupied by the oil groove 31 is less than 5% of the groove processing area 30, the effect of the oil groove 31 is not well exhibited, and when it exceeds 25%, the consumption of engine oil increases.
  • Comparative Example 1 was a wear test on the general cylinder without any processing
  • Comparative Example 2 was a wear test on the cylinder formed only the oil groove
  • Comparative Example 3 was a wear test on the cylinder formed only the laser hardened portion (22)
  • the oil groove 31 and the laser hardened portion 22 was formed in a wear test cylinder.
  • the laser cured portion was formed by irradiating a laser at a speed of 7.9 mm / s using diode laser equipment on each cylinder inner peripheral surface.
  • the oil grooves were filled with oil (10W40) in the processed oil grooves after processing at 1000 mm / s speed using Nd: YAG laser equipment on the inner circumferential surface of each cylinder.
  • the area ratio and depth of the formed laser hardened portion and the oil groove are shown in Table 1 below.
  • the engine cylinders according to Examples and Comparative Examples 1 to 3 were subjected to abrasion test in a reciprocating tester (bore size ⁇ 100) capable of simulating piston ring-cylinder bore motion. Test conditions were load 300N, Frequency 10Hz, Stroke 10mm, Temperature 80 °C, and tested for 5 hours under lubrication with engine oil. Wear acceleration particles were used in the engine oil for the accelerated test, and the average value is shown in FIG. 5 after the test was performed three times.
  • the laser curing portion 22 and the oil groove 31 is formed on the inner peripheral surface of the cylinder, the cylinder used in the concept including a cylinder liner, laser curing portion 22 to the cylinder liner And the oil groove 31 is also included in the spirit of the present invention.

Abstract

본 발명에 따른 엔진실린더는, 내부에서 피스톤(10)이 상하 왕복 운동을 하며, 내주면 중 소정의 영역에 (i) 레이저에 의해 경화된 복수의 레이저 경화부(22)가 상호 이격하여 배치된 경화 패턴(21); 및 (ii) 상기 복수의 레이저 경화부(22)가 형성되지 않은 부분에 형성된 복수의 오일홈(31)을 포함하며, 상기 소정의 영역은, 상기 피스톤(10)이 상사점에 도달하였을 때 피스톤과 접촉하는 영역인 것을 특징으로 한다.

Description

엔진실린더
본 발명은 엔진실린더에 관한 것으로서, 특히 실린더와 피스톤 링의 내마모성을 향상시킬 수 있는 엔진실린더에 관한 것이다.
일반적으로 엔진은 연료가 엔진실린더 내부의 연소실에서 연소되어 발생하는 연소압력에 의해 피스톤이 상하 왕복 운동을 하게 되어 작동하게 된다. 이러한 피스톤의 상하 왕복 운동은 크랭크 기구에 의하여 회전 운동으로 변환된다. 이에 따라 회전 동력을 얻을 수 있다.
이러한 과정에서 실린더의 내주면은 피스톤 링과 마찰이 되고 이로 인하여 실린더의 내주면과 피스톤 링에 마모가 발생하게 된다. 실린더 내주면의 마모는 상하 왕복 운동하는 피스톤이 실린더 속에서 최상단에 왔을 때의 위치, 즉, 상사점(TDC, Top Dead Center)과 그 근방에 위치하고 있을 때 주로 발생하게 된다.
도 1을 참조하면, 실린더 내주면의 마모는 피스톤이 상사점에 위치할 때, 피스톤과 접촉하고 있는 영역에서 주로 발생하고, 그중에서도 피스톤 탑 링(Top Ring)이 접촉하는 A 지점과 세컨드 링(Second Ring)이 접촉하는 B 지점에서 가장 많은 마모가 발생하게 된다.
이러한 마모는 엔진 출력을 저하시키고, 연료 소모를 증가시켜 연비를 악화시키며, 엔진 오일의 소비를 증가시킨다. 마모가 심할 경우, 엔진의 수명까지 단축된다.
엔진실린더 블록에서는 이러한 문제를 해결하고 실린더를 보호하기 위하여 표면 경도가 우수한 특수 주철이나 강 재질의 실린더 라이너가 장입되어 사용되고 있으나, 소형 엔진에서는 비용과 제작상의 어려움 등으로 실린더 라이너를 사용하기 어렵고, 중·대형엔진에서도 환경규제의 강화, 엔진의 지속적인 성능 개선 등으로 인하여 엔진의 작동환경이 악화되어 가고 있어 종래의 실린더 라이너로는 그 사용에 한계가 있다.
본 발명은 전술한 문제점을 감안하여 안출된 것으로서, 실린더 내주면 중 마모량이 큰 영역에만 내마모성과 윤활성을 강화하여 실린더 및 피스톤 링들의 마모량을 최소화시키면서도 실린더의 가공 공정의 비용이나 가공 시간을 최소화할 수 있는 엔진실린더를 제공하는데 그 목적이 있다.
상기한 목적을 해결하기 위해 본 발명은 내부에서 피스톤(10)이 상하 왕복 운동을 하는 엔진실린더로서, 내주면 중 소정의 영역에 (i) 레이저에 의해 경화된 복수의 레이저 경화부(22)가 상호 이격하여 배치된 경화 패턴(21); 및 (ii) 상기 복수의 레이저 경화부(22)가 형성되지 않은 부분에 형성된 복수의 오일홈(31)을 포함하며, 상기 소정의 영역은, 상기 피스톤(10)이 상사점에 도달하였을 때 피스톤과 접촉하는 영역인 것을 특징으로 하는 엔진실린더를 제공한다.
이때, 상기 상사점은 피스톤이 엔진실린더 내부의 최상단에 왔을 때의 위치를 의미하며, 하사점은 피스톤이 엔진실린더 내부의 최하단에 왔을 때의 위치를 의미한다.
본 발명에 따른 엔진실린더는 레이저 경화부로 이루어진 경화 패턴과 미세한 크기의 오일홈이 실린더 내주면에 형성되어 실린더 내주면 및 피스톤 링들의 내마모성과 윤활성이 향상된다.
또한, 레이저 경화부와 오일홈이 마모가 집중되는 영역에만 형성되어 레이저 경화부와 오일홈을 가공하기 위한 공정을 간소화할 수 있고, 이로 인해 실린더의 생산성을 향상시킬 수 있게 된다.
특히, 실린더 내주면의 마모가 집중되는 피스톤의 상사점과 하사점 사이의 구간 중 상기 피스톤의 상사점으로부터 5% ~ 32% 거리의 경화 영역에 경화 패턴이 형성되어 실린더 내주면의 가공 공정이 더욱 간소화되면서도 내마모성을 극대화할 수 있게 된다.
또한, 경화 패턴이 복수의 행으로 형성되고, 인접하는 행의 레이저 경화부가 상호 어긋나게 배치됨으로써, 실린더 내주면의 경화 영역 전체에 고르게 내마모성을 향상시킬 수 있게 된다.
또한, 경화 패턴의 형성 면적이 경화 영역 면적의 50% ~ 80%가 되도록 함으로써, 경화에 의한 실린더 내주면의 내마모성을 최대화하면서도 경화 영역에 오일홈을 형성할 수 있어 윤활성도 향상시킬 수 있고, 이러한 윤활성 향상에 의해 피스톤 링들의 마모량도 최소화할 수 있다.
한편, 오일홈을 피스톤의 상사점과 하사점 사이의 구간 중 피스톤의 상사점으로부터 5% ~ 50% 거리의 영역에 형성함으로써, 불필요한 오일홈의 가공을 방지할 수 있고, 이에 의해 실린더의 생산성 향상은 물론 엔진 오일이 과다하게 소비되는 것을 방지할 수 있게 된다.
도 1은 일반적인 엔진실린더를 개략적으로 나타낸 단면도이다.
도 2는 본 발명의 일 실시예에 따른 엔진실린더의 내부에 피스톤이 왕복 운동하는 상태를 개략적으로 나타낸 것으로서, 피스톤이 상사점에 있을 때와 하사점에 있을 때를 비교하여 도시한 도면이다.
도 3은 도 2의 엔진실린더 내주면 중 경화 영역을 전개하여 나타낸 전개도이다.
도 4는 도 2의 엔진실린더 내주면 중 경화 영역과 홈 가공영역을 개략적으로 나타낸 전개도이다.
도 5는 실시예 및 비교예 1 내지 3에서 엔진실린더 내주면과 피스톤 링의 마모량을 보여주는 그래프이다.
이하, 본 발명의 일 실시예에 따른 엔진실린더에 대하여 상세히 설명한다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 엔진실린더는 그 내부에 피스톤(10)이 상하 방향으로 왕복 운동한다. 상기 피스톤(10)에는 탑 링 또는 제 1 링(11, top ring), 제 2 링(12, second ring), 오일링(13)이 상하 방향으로 상호 이격하여 형성되어 연소실에 오일이 유입되는 것을 방지하는 반면 실린더 내주면의 오일을 긁어 내리는 역할을 한다. 한편, 피스톤(10)의 상사점과 하사점 사이의 거리를 행정 거리 또는 행정 구간이라고 한다.
실린더의 내주면은 상기 제 1 링(11), 제 2 링(12), 오일링(13)과 상호 마찰 운동을 하게 된다. 이러한 마찰 운동에 의한 마모는, 전술한 바와 같이, 실린더 내주면 중 피스톤(10)이 상사점에 있을 때 피스톤과 접촉하는 영역에서 가장 많이 발생한다. 특히, 제 1 링(11)과 제 2 링(12)이 접촉하는 영역에 마모가 집중된다. 따라서, 마모량을 최소화하기 위해서는 피스톤(10)이 상사점에 있을 때 피스톤이 위치하는 영역의 실린더 내주면을 중심으로, 더욱 바람직하게는 상기 제 1 링(11) 및 제 2 링(12)이 접촉하는 영역을 중심으로 구조가 개선되어야 한다.
측정 결과, 피스톤(10)이 상사점에 있을 때 상기 제 1 링(11)과 제 2 링(12)이 접촉하는 실린더 내주면은 상사점으로부터 행정 구간에 대해 5%인 지점부터 행정 구간에 대해 32%인 지점 사이의 영역이다. 본 실시예에서는, 도 3에 도시된 바와 같이, 이러한 영역을 경화 영역(20)으로 설정하고 이 경화 영역(20)에 복수의 레이저 경화부(22)를 형성하였다.
도 3을 참조하면, 실린더 내주면의 경화 영역(20)에는 다수의 레이저 경화부(22)가 원주 방향(X축 방향)과 피스톤 운동 방향(Y축 방향)으로 상호 이격하여 배치되는 경화 패턴(21)이 형성된다. 본 발명에서 경화 패턴(21)이란 레이저 경화 영역(20) 상에 복수의 레이저 경화부(22)에 의하여 형성된 패턴을 의미한다.
보다 구체적으로, 상기 경화 패턴(21)은 상기 복수의 레이저 경화부(22)가 원주 방향(X축 방향)으로 상호 이격되게 형성되는 제 1 행과, 상기 제 1 행과 피스톤 운동 방향(Y축 방향)으로 이격되게 형성되는 제 2 행과, 상기 제 2 행과 피스톤 운동 방향(Y축 방향)으로 이격되게 형성되는 제 3 행과, 상기 제 3 행과 피스톤 운동 방향(Y축 방향)으로 이격되게 형성되는 제 4 행을 포함한다. 본 실시예에서는 상기 4개의 행으로 배치되는 것을 설명하였으나, 복수의 행을 구성하는 한 행의 개수는 실린더의 용량 등의 엔진 사양에 따라 변경될 수 있다.
한편, 상호 인접하는 행의 레이저 경화부(22)는 상호 어긋나게 배치되어 지그재그의 배열 행태를 가진다. 일 예로, 상기 제 1 행의 레이저 경화부(22)와 상기 제 2 행의 레이저 경화부(22)는 원주 방향(X축 방향)으로 진행하면서 상호 어긋나서 지그재그 형태로 배열된다. 이러한 레이저 경화부(22)의 가공은 경화 패턴(21)과 동일한 형태의 마스크 등을 통하여 형성할 수 있으나, 그 외의 다양한 방법으로도 형성될 수도 있다. 또한, 본 실시예에서는 레이저 경화부(22)가 장방형으로 형성되는 것을 예시하였으나, 레이저 경화부(22)의 형태는 딤플 형상 등 다양한 형상으로 구성될 수 있다.
한편, 레이저 경화부(22)가 차지하는 면적은 경화 영역(20)의 면적 중 50% 이상 80% 이하인 것이 바람직하다. 레이저 경화부(22)가 차지하는 면적이 경화 영역(20)의 50% 미만인 경우 경화에 의한 효과가 잘 나타나지 않으며, 80%를 초과할 경우 이후 설명할 오일홈(31)의 형성 공간이 부족하게 되어 제 1 링(11) 및 제 2 링(12)의 마모량이 증가하기 때문이다. 또한, 레이저 경화부(22)의 경화 깊이는 0.4mm 이내인 것(0∠경화 깊이∠0.4)이 바람직하다. 이는 실질적으로 실린더 내주면은 0.4mm 이상의 깊이에서 마모가 발생하기 어렵기 때문에 불필요한 가공을 줄여 생산성 향상은 물론 실린더 내주면의 변형을 최소화하기 위함이다.
본 실시예에서 엔진실린더 내주면의 경도(hardness)를 향상시키기 위해 레이저 조사에 의해 레이저 경화부(22)를 형성하는 것을 예시하였다. 이외에도 경도를 향상시키기 위해 고주파 열처리 방법을 사용할 수 있으나, 고주파 열처리는 가공 중 실린더 내주면에 변형이 발생할 수 있고 열처리 깊이의 제어가 쉽지 않다는 문제도 있을 뿐만 아니라 냉각 등의 이유로 가공 지연이 발생하여 생산성이 떨어지는 단점도 있다. 또한, 상기 실린더의 내주면에 질화 열처리를 진행하여 질화층을 형성시키거나, 코팅 및 도금층을 형성시키는 방법을 사용할 수 있으나, 이 경우 실린더 전체적으로 공정을 실시하여야 하기 때문에 불필요한 부분까지 가공 처리가 진행되는 문제점이 있고, 이들 또한 가공 공정이 복잡해지고 시간이 많이 걸린다는 단점이 있다. 이러한 이유로, 마모가 많은 영역인 경화 영역(20)에만 특정 깊이로 경화 처리가 가능한 레이저를 이용하여 경화 처리하는 방법을 사용하는 것이 바람직하다.
한편, 상기 제 1 링(11)과 오일링(13)의 사이는 상사점으로부터 행정 구간에 대해 5% ~ 50%의 거리에 해당하며, 이 영역을, 도 4에 도시된 바와 같이, 홈 가공영역(30)으로 설정하였다. 도 4에서는 오일홈(31)이 상사점으로부터 행정 구간에 대해 5% 미만인 영역에도 형성되는 것을 예시하였으나, 바람직하게는 5% 이상의 영역에 오일홈(31)이 형성되는 것이 바람직하다.
이러한 홈 가공영역(30)에는 미세한 크기의 오일홈(31)을 형성하여 공급되는 엔진 오일이 일정시간 체류할 수 있도록 하여 윤활 성능을 향상시켰다. 즉, 레이저 경화부(22)에 의해 경도를 높여 내마모성을 향상시키고, 미세한 크기의 오일홈(31)에 의해 윤활 성능을 향상시켜 실린더 내주면과 제 1 링(11), 제 2 링(12) 및 오일링(13)의 마모량을 최소화시켰다. 특히, 상기 홈 가공영역(30) 중 상기 경화 영역(20)에는 레이저 경화부(22)가 형성되지 않은 부분에 오일홈(31)을 가공하였다. 경화 패턴(21)과 오일홈(31)을 서로 겹치게 형성할 수도 있으나, 경화 패턴(21)에 오일홈(31)을 겹치게 형성하는 경우 가공이 어렵고, 오일홈(31)에 경화 패턴(21)을 겹치게 형성하는 경우 가공 형태가 뭉그러질 수 있다는 문제점이 있다.
상기 미세한 크기의 오일홈(31)의 깊이는 0mm 보다 크고 0.02mm 이하인 것(0∠오일홈 깊이≤0.02)이 바람직하며, 이는 오일홈(31)의 깊이가 0.02mm를 초과하더라도 내마모성의 추가적인 향상 효과가 없으며 오일홈(31)에 체류하는 오일의 양이 많아져서 엔진 오일의 소모가 커지기 때문이다. 이러한 오일홈(31) 역시 레이저를 이용한 가공 방법으로 형성할 수 있으나, 필요에 따라 레이저 가공 이외에 다양한 가공방법이 이용될 수 있다. 또한, 오일홈(31)의 형상은 특별히 한정되지 않고 다양한 형상(예를 들어, 원형, 타원형, 사각형 등)을 가질 수 있다. 이러한, 오일홈(31)이 차지하는 면적은 홈 가공영역(30)의 면적 중 5% 이상 25% 이하인 것이 바람직하다. 오일홈(31)이 차지하는 면적이 홈 가공영역(30)의 5% 미만인 경우 오일홈(31)에 의한 효과가 잘 나타나지 않으며, 25%를 초과할 경우 엔진 오일의 소모량이 커지기 때문이다.
본 발명에 따른 엔진 실린더의 내마모성을 확인하기 위해 4가지(실시예, 비교예 1 내지 3) 조건으로 시험을 실시하였다.
비교예 1은 아무런 가공을 하지 않은 일반적인 실린더를 마모시험하였고, 비교예 2는 오일홈(31)만 형성된 실린더를 마모시험하였으며, 비교예 3은 레이저 경화부(22)만 형성된 실린더를 마모시험하였고, 실시예는 오일홈(31)과 레이저 경화부(22)가 형성된 실린더로 마모시험을 하였다.
여기서, 레이저 경화부는 각각의 실린더 내주면에 다이오드 레이저 장비를 이용하여 7.9 mm/s 속도로 레이저를 조사하여 형성시켰다. 오일홈은 각각의 실린더 내주면에 Nd:YAG 레이저 장비를 이용하여 1000 mm/s 속도로 가공한 후 가공한 오일홈에 오일(10W40)을 충진하였다. 형성된 레이저 경화부와 오일홈의 면적비율 및 깊이는 하기 표1과 같다.
실시예 및 비교예 1 내지 3에 따른 엔진 실린더를 피스톤 링-실린더 보어 모션을 모사할 수 있는 왕복동 시험기(보어 사이즈 Φ 100)에서 마모시험을 실시하였다. 시험조건은 하중 300N, Frequency 10Hz, Stroke 10mm, 온도 80℃이고, 엔진오일을 공급하는 윤활상태에서 5시간씩 시험을 실시하였다. 가속시험을 위해 엔진오일에 마모 가속 입자를 사용하였으며, 시험을 3회 실시한 후 그 평균값을 도 5에 나타내었다.
표 1
실시예 비교예 1 비교예 2 비교예 3
오일홈 형상 장방형 - 장방형 -
오일홈 면적비율(홈 가공영역에서 오일홈의 표면적이 차지하는 비율, %) 15 - 15 -
오일홈 깊이(mm) 0.01mm - 0.01mm -
레이저 경화부 형상 장방형 - - 장방형
레이저 경화부 면적비율(경화 영역에서 레이저 경화부의 표면적이 차지하는 비율, %) 70 - - 70
레이저 경화부 깊이(mm) 0.3mm - - 0.3mm
도 5에 도시된 바와 같이, 실시예가 비교예 1 내지 3보다 제 1 링(11), 제 2 링(12) 및 오일링(13)의 마모량은 물론 실린더 내주면의 마모량이 모두 획기적으로 감소되었음을 알 수 있다.
한편, 본 실시예에서는 실린더의 내주면에 레이저 경화부(22)와 오일홈(31)이 형성되는 것을 예시하였으나, 실린더는 실린더 라이너를 포함하는 개념으로 사용하였으므로, 실린더 라이너에 레이저 경화부(22)와 오일홈(31)이 형성되는 것도 본 발명의 사상에 포함된다.

Claims (7)

  1. 내부에서 피스톤(10)이 상하 왕복 운동을 하는 엔진실린더로서,
    내주면 중 소정의 영역에 (i) 레이저에 의해 경화된 복수의 레이저 경화부(22)가 상호 이격하여 배치된 경화 패턴(21); 및 (ii) 상기 복수의 레이저 경화부(22)가 형성되지 않은 부분에 형성된 복수의 오일홈(31)을 포함하며,
    상기 소정의 영역은, 상기 피스톤(10)이 상사점에 도달하였을 때 피스톤과 접촉하는 영역인 것을 특징으로 하는 엔진실린더.
  2. 제1항에 있어서,
    상기 경화 패턴(21)은 상기 피스톤의 상사점과 하사점 사이의 구간 중 상기 피스톤의 상사점으로부터 5% ~ 32% 거리의 경화 영역(20) 내에 형성되는 것을 특징으로 하는 엔진실린더.
  3. 제2항에 있어서,
    상기 경화 패턴(21)은,
    상기 복수의 레이저 경화부(22)가 원주 방향(X축 방향)으로 상호 이격되게 배치되는 제 1 행과,
    상기 제 1 행으로부터 상기 피스톤(10)의 운동 방향(Y축 방향)으로 이격되게 배치되며, 상기 복수의 레이저 경화부(22)가 원주 방향(X축 방향)으로 상호 이격되게 배치되는 제 2 행을 포함하며,
    상기 제 1 행의 레이저 경화부(22)와 상기 제 2 행의 레이저 경화부(22)는 상호 어긋나게 배치되는 것을 특징으로 하는 엔진실린더.
  4. 제2항에 있어서,
    상기 경화 패턴(21)이 형성되는 면적은 상기 경화 영역(20)의 면적 중 50% ~ 80%인 것을 특징으로 하는 엔진실린더.
  5. 제1항에 있어서,
    상기 레이저 경화부(22)의 경화 깊이는 0mm보다 크고 0.4mm 보다 작은 것을 특징으로 하는 엔진실린더.
  6. 제1항에 있어서,
    상기 복수의 오일홈(31)은 상기 피스톤(10)의 상사점과 하사점 사이의 구간 중 상기 피스톤의 상사점으로부터 5% ~ 50% 거리의 홈 가공영역(30) 내에 형성되는 것을 특징으로 하는 엔진실린더.
  7. 제1항에 있어서,
    상기 오일홈(31)의 깊이는 0mm 보다 크고 0.02mm 이하인 것을 특징으로 하는 엔진실린더.
PCT/KR2011/009120 2010-12-23 2011-11-28 엔진실린더 WO2012086935A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0133061 2010-12-23
KR1020100133061A KR20120071495A (ko) 2010-12-23 2010-12-23 엔진실린더

Publications (2)

Publication Number Publication Date
WO2012086935A2 true WO2012086935A2 (ko) 2012-06-28
WO2012086935A3 WO2012086935A3 (ko) 2012-08-16

Family

ID=46314566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009120 WO2012086935A2 (ko) 2010-12-23 2011-11-28 엔진실린더

Country Status (2)

Country Link
KR (1) KR20120071495A (ko)
WO (1) WO2012086935A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106593673A (zh) * 2017-01-17 2017-04-26 中原内配集团股份有限公司 一种超微造型的气缸套及其制备方法
CN110627519A (zh) * 2019-10-16 2019-12-31 湖南嘉盛电陶新材料股份有限公司 一种多孔陶瓷雾化芯的制作方法
CN111520248A (zh) * 2020-05-07 2020-08-11 哈尔滨工程大学 一种仿生分布的气缸套表面织构结构
CN111520249A (zh) * 2020-05-07 2020-08-11 哈尔滨工程大学 一种菱形分布的气缸套表面织构结构

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102309927B1 (ko) 2014-12-29 2021-10-06 도레이첨단소재 주식회사 중공사형 정삼투 분리막 및 이의 제조방법
KR102302236B1 (ko) 2014-12-29 2021-09-13 도레이첨단소재 주식회사 중공사형 정삼투 분리막 및 이의 제조방법
KR102266896B1 (ko) 2014-12-31 2021-06-17 도레이첨단소재 주식회사 중공사형 정삼투 분리막 및 이의 제조방법
KR20180028159A (ko) * 2016-09-08 2018-03-16 현대자동차주식회사 전단저항 감소 패턴을 갖는 엔진

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074303A (ja) * 1993-06-15 1995-01-10 Mitsubishi Motors Corp エンジン用シリンダとこのシリンダの内面調質方法
JP2007002989A (ja) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd 摺動部材、当該摺動部材を適用したシリンダ、および当該シリンダを適用した内燃機関
JP2010054045A (ja) * 2008-07-31 2010-03-11 Nippon Piston Ring Co Ltd シリンダ
JP2010236444A (ja) * 2009-03-31 2010-10-21 Nippon Piston Ring Co Ltd シリンダとピストンの組み合わせ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074303A (ja) * 1993-06-15 1995-01-10 Mitsubishi Motors Corp エンジン用シリンダとこのシリンダの内面調質方法
JP2007002989A (ja) * 2005-06-27 2007-01-11 Nissan Motor Co Ltd 摺動部材、当該摺動部材を適用したシリンダ、および当該シリンダを適用した内燃機関
JP2010054045A (ja) * 2008-07-31 2010-03-11 Nippon Piston Ring Co Ltd シリンダ
JP2010236444A (ja) * 2009-03-31 2010-10-21 Nippon Piston Ring Co Ltd シリンダとピストンの組み合わせ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106593673A (zh) * 2017-01-17 2017-04-26 中原内配集团股份有限公司 一种超微造型的气缸套及其制备方法
CN110627519A (zh) * 2019-10-16 2019-12-31 湖南嘉盛电陶新材料股份有限公司 一种多孔陶瓷雾化芯的制作方法
CN111520248A (zh) * 2020-05-07 2020-08-11 哈尔滨工程大学 一种仿生分布的气缸套表面织构结构
CN111520249A (zh) * 2020-05-07 2020-08-11 哈尔滨工程大学 一种菱形分布的气缸套表面织构结构

Also Published As

Publication number Publication date
WO2012086935A3 (ko) 2012-08-16
KR20120071495A (ko) 2012-07-03

Similar Documents

Publication Publication Date Title
WO2012086935A2 (ko) 엔진실린더
US7104240B1 (en) Internal combustion engine with localized lubrication control of combustion cylinders
US10294885B2 (en) Cylinder liner for an internal combustion engine
JP2014062490A5 (ja) シリンダボア内面の加工方法およびシリンダの構造
US9341267B2 (en) Cylinder formed with uneven pattern on surface of inner wall
US9267538B2 (en) Rolling sliding parts
KR20140123587A (ko) 내연 엔진용 피스톤 링
JPH0512586B2 (ko)
US8986465B2 (en) Piston ring with localized nitrided coating
JP5772584B2 (ja) ピストンリング
US20170108122A1 (en) Inlaid ring with plated lateral side
JPH05148612A (ja) ピストンリングの製造方法
US11022063B2 (en) Cylinder bore for a cylinder housing of an internal combustion engine, and arrangement having a cylinder bore and a piston
JPS60260769A (ja) シリンダライナの製造方法
JP2013148026A (ja) シリンダライナ
JPS60155665A (ja) シリンダライナの製造方法
KR20110071176A (ko) 엔진의 실린더라이너 보어의 미세그루브 구조
KR102267020B1 (ko) 내마모성과 단열성 증대 피스톤 제조 방법 및 이 제조 방법에 의해 제조된 피스톤
CN202081989U (zh) 一种发动机气缸体
WO2020162702A2 (ko) 내연기관용 오일링 및 이를 포함하는 피스톤결합체
RU2625419C1 (ru) Маслосъемное поршневое устройство двигателя внутреннего сгорания
RU2276738C1 (ru) Двигатель внутреннего сгорания
RU172522U1 (ru) Гильза цилиндра
KR101648990B1 (ko) 내마모성 및 내마찰성을 강화시킨 캠 종동자
RU2284428C2 (ru) Поршневое кольцо

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851121

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851121

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013012851

Country of ref document: BR

ENP Entry into the national phase in:

Ref document number: 112013012851

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130523