WO2012086152A1 - 超音波画像生成装置及び画像生成方法 - Google Patents

超音波画像生成装置及び画像生成方法 Download PDF

Info

Publication number
WO2012086152A1
WO2012086152A1 PCT/JP2011/006960 JP2011006960W WO2012086152A1 WO 2012086152 A1 WO2012086152 A1 WO 2012086152A1 JP 2011006960 W JP2011006960 W JP 2011006960W WO 2012086152 A1 WO2012086152 A1 WO 2012086152A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
section
cross
ultrasonic
specific cross
Prior art date
Application number
PCT/JP2011/006960
Other languages
English (en)
French (fr)
Inventor
遠間 正真
淳 大宮
文平 田路
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012514012A priority Critical patent/JP5803909B2/ja
Priority to EP11851253.2A priority patent/EP2656790A4/en
Publication of WO2012086152A1 publication Critical patent/WO2012086152A1/ja
Priority to US13/591,304 priority patent/US9492141B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • A61B8/4263Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient using sensors not mounted on the probe, e.g. mounted on an external reference frame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/523Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for generating planar views from image data in a user selectable plane not corresponding to the acquisition plane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4417Constructional features of apparatus for radiation diagnosis related to combined acquisition of different diagnostic modalities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0891Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals

Definitions

  • the present invention relates to an ultrasonic image generation apparatus and an image generation method, and more particularly, to obtain a cross-sectional image of a specific cross section of a subject from a plurality of ultrasonic images obtained by scanning the subject from a plurality of directions with an ultrasonic probe.
  • the present invention relates to an ultrasonic image generating device to be generated.
  • X-ray diagnostic apparatuses X-ray diagnostic apparatuses, MR (magnetic resonance) diagnostic apparatuses, and ultrasonic diagnostic apparatuses are widely used as biological image diagnostic apparatuses.
  • the ultrasonic diagnostic apparatus has advantages such as non-invasiveness and real-time property, and is widely used for diagnosis including medical examination.
  • diagnostic sites such as the heart, liver, and breast.
  • the breast is one of the most important sites due to the high prevalence of breast cancer and the increase in the number of patients.
  • each ultrasonic image is mapped in a three-dimensional space based on the position information of the ultrasonic image (the position and orientation of the ultrasonic probe).
  • the position information is acquired from a camera, various sensors such as magnetism or acceleration, or a robot arm.
  • FIG. 16 is a block diagram showing the overall configuration of a conventional ultrasonic image generating apparatus 500 (ultrasonic diagnostic apparatus).
  • An element such as a piezoelectric element arranged in the ultrasonic probe 101 generates an ultrasonic signal based on a drive signal output from the transmission unit 102.
  • the ultrasonic signal is reflected by a structure in the living body such as a mammary gland or muscle, and a part of the reflected component returns to the ultrasonic probe 101 and is received again.
  • the receiving unit 103 generates a reception RF (Radio Frequency) signal by performing amplification, A / D (analog / digital) conversion, delay addition processing of the signal of each element, and the like on the received reflected signal. .
  • RF Radio Frequency
  • the operations of the transmission unit 102 and the reception unit 103 are controlled by the transmission / reception control unit 104.
  • the transmission / reception control unit 104 performs switching of a drive voltage, setting of a transmission frequency, and the like for the transmission unit 102 to perform predetermined scanning.
  • the transmission / reception control unit 104 sets, for the reception unit 103, a delay time for performing reception beamforming.
  • the received RF signal is input to the B mode processing unit 105, the Doppler processing unit 106, and the strain processing unit 107.
  • the B mode processing unit 105 performs logarithmic amplification, envelope detection processing, and the like on the received RF signal, thereby generating B mode data (also referred to as a B mode image) in which the signal intensity is represented by a luminance level. . Then, the B mode processing unit 105 outputs the B mode data to the image memory 108.
  • the Doppler processing unit 106 analyzes the received RF signal in the frequency domain, and calculates the flow velocity or the tissue motion speed based on the Doppler effect caused by the blood flow or the tissue motion. Then, the Doppler processing unit 106 outputs the calculation result to the image memory 108 as Doppler data.
  • the strain processing unit 107 calculates, for example, the amount of tissue strain between two different points using the movement of the specific part acquired from the received RF signal. Then, the strain processing unit 107 outputs the calculation result to the image memory 108 as strain data.
  • the image processing unit 509 selects display data from various data held in the image memory 108 and applies predetermined image processing to the selected data. Then, the processing result is displayed on the display unit 112.
  • the position information acquisition unit 110 and the cross-section position instruction unit 111 input cross-section position information necessary for acquiring a desired cross-section in the three-dimensional space to the image processing unit 509.
  • the position information acquisition unit 110 acquires position information 203 of the ultrasonic probe 101 at the time of acquiring an ultrasonic image based on an output signal from a camera or a magnetic sensor.
  • the cross-section position instruction unit 111 receives cross-section information 202 indicating the position information of the cut-out cross section (hereinafter referred to as a specific cross section) from the user, and outputs it to the image processing unit 509.
  • the image processing unit 509 generates a volume image 206 (volume data) that is a stereoscopic image in which an ultrasonic image is mapped in a three-dimensional space. Then, the image processing unit 509 generates a cross-sectional image 605 of a specific cross section designated by the cross-section information 202 using the volume image 206 mapped in the three-dimensional space based on the position information 203.
  • FIG. 17 is a block diagram showing a processing unit included in the image processing unit 509 and used when generating a cross-sectional image of a specific cross section.
  • the image processing unit 509 constructs a volume image by mapping the acquired ultrasonic image in a three-dimensional space based on the position information 203.
  • the three-dimensional space is composed of basic units called voxels corresponding to pixels in the two-dimensional space. For example, when a cube of 10 ⁇ 10 ⁇ 10 cm is divided every 1 cm, the voxel becomes an area of 1 ⁇ 1 ⁇ 1 cm, and the entire area of the cube is composed of 10 ⁇ 10 ⁇ 10 voxels.
  • the pixel value of the ultrasonic image is assigned to the nearest voxel.
  • the image processing unit 509 When the specific cross section is designated by the cross section position instruction unit 111, the image processing unit 509 performs nearest neighbor interpolation on the pixel value of the pixel based on the value of the voxel existing in the vicinity of the coordinate position of each pixel in the specific cross section, or Interpolation is generated by bicubic interpolation. The operation of each processing unit will be described below.
  • the frame image input unit 191 acquires an index number 211 of a two-dimensional image such as a B-mode image or a Doppler image.
  • the position information determination unit 192 determines the position information 212 corresponding to the two-dimensional image with the index number 211 based on the position information 203 acquired from the sensor.
  • the volume generation unit 199 maps the two-dimensional image with the index number 211 on the three-dimensional space based on the position information 212.
  • the mapping process is performed on all the frames to be processed, and the constructed volume image is held in the volume memory 198.
  • voxel data at a position where no frame image exists is generated by interpolation using the value of the voxel data existing in the vicinity thereof. In this way, a volume image mapped in the three-dimensional space using the frame image is generated.
  • the cross-sectional image generation unit 597 generates a cross-sectional image 605 by synthesizing each pixel value located on the cross-section specified by the cross-section information 202 from the value of the voxel located near the pixel, and the generated cross-sectional image 605 is output to the display unit 112. Further, display data for the volume image 206 is input from the volume memory 198 to the display unit 112.
  • the conventional ultrasonic image generation apparatus 500 once constructs a volume image, and then synthesizes an image of an arbitrary cross section using voxel values in the volume image.
  • the ultrasonic diagnostic apparatus of Patent Document 1 writes echo data to a memory address on a transmission / reception coordinate system, which is a coordinate calculated from a position at the time of measurement of a probe, and associates voxel data with a transmission / reception coordinate system.
  • a transmission / reception coordinate system which is a coordinate calculated from a position at the time of measurement of a probe
  • associates voxel data with a transmission / reception coordinate system Stored.
  • the ultrasonic diagnostic apparatus creates a conversion table that indicates in which position in the transmission / reception coordinate system the cross-sectional image (the cross-section specified in the transmission / reception space) specified by the user is located.
  • the ultrasonic diagnostic apparatus interpolates and generates the echo data of the pixels located on the cross-sectional image using the voxel data located at the peripheral addresses.
  • Patent Document 1 does not take into consideration that the resolution of the frame image used when generating the volume image varies depending on the scanning direction of the ultrasonic probe.
  • FIG. 18A to 18H are diagrams for explaining the direction dependency of resolution.
  • FIG. 18A is a diagram illustrating a state in which the ultrasonic probe 101 is scanned in the y direction.
  • 18B and 18C show the resolution of each surface when the ultrasonic probe 101 is scanned in the y direction.
  • FIG. 18B shows the resolution in the xz plane that is perpendicular to the scanning direction
  • FIG. 18C shows the resolution in the yz plane that is parallel to the scanning direction.
  • the resolution in the scanning direction decreases in a plane parallel to the scanning direction (hereinafter referred to as C plane). This is because the ultrasonic wave propagation region in the medium has a spread in the scanning direction. This phenomenon occurs when the ultrasonic probe has at least one transducer.
  • an ultrasonic probe including at least one row of ultrasonic transducers it is not possible to narrow down an ultrasonic beam by giving a phase difference to ultrasonic waves emitted from a plurality of transducers arranged in the scanning direction. Is remarkable. It is assumed that the arrangement direction of the ultrasonic transducers and the scanning direction of the ultrasonic probe are substantially perpendicular.
  • FIG. 18E shows a volume image generated by irradiating the cubic target object shown in FIG. 18D with ultrasonic waves and using the reflected waves. Since the resolution in the y-axis direction is reduced, a result of a rectangular shape extending in the y-axis direction as shown in FIG. 18E is obtained.
  • FIG. 18F, FIG. 18G, and FIG. 18H show the direction dependency of an ultrasonic image in a three-dimensional space.
  • FIG. 18F shows the resolution in the three-dimensional space
  • FIG. 18G shows the resolution in the xz plane
  • FIG. 18H shows the resolution in the xy plane.
  • the minimum resolution in the scanning direction of the ultrasonic probe is lower than the minimum resolution in the direction perpendicular to the scanning direction.
  • FIGS. 19A to 19F show volume images constructed based on ultrasonic images generated by scanning a target object from a plurality of directions. With reference to this figure, a problem in synthesizing an arbitrary cross-sectional image from a volume image will be described.
  • FIG. 19A shows a target object irradiated with ultrasonic waves. Two cubes are arranged along the y-axis.
  • FIG. 19B shows the result of imaging this target object using a reflection signal obtained by scanning the ultrasonic probe along the y-axis direction.
  • FIG. 19C shows a result of imaging the target object using a reflection signal obtained by scanning the ultrasonic probe along the x-axis direction.
  • FIG. 19D shows a volume image obtained by the synthesis.
  • the volume image has a reduced resolution as a result of synthesizing an image having a reduced resolution in the scanning direction. Therefore, an object that should actually be separated into two cannot be separated on the volume image.
  • FIG. 19E shows the result of cutting out a cross-sectional image parallel to the yz plane from the volume image of FIG. 19D.
  • FIG. 19F shows the correct answer of the cross-sectional image at the same position as FIG. 19E.
  • the conventional ultrasonic image generation apparatus creates a volume image using ultrasonic images obtained by scanning an ultrasonic probe in various directions, and then uses this volume image to specify a specific cross section. A cross-sectional image is generated. Accordingly, even if the object can be separated on the yz plane of FIG. 19C, a correct cross-sectional image may not be generated as shown in FIG. 19E.
  • the cross-sectional image obtained from the conventional ultrasonic image generating apparatus is synthesized by using the volume image constructed without considering the direction dependency of the resolution of the ultrasonic image. For this reason, the conventional ultrasonic image generating apparatus is affected by a decrease in resolution in the C-plane direction, and there is a problem in that accuracy decreases.
  • an object of the present invention is to provide an ultrasonic image generating apparatus capable of improving accuracy.
  • an ultrasonic image generation device provides a plurality of ultrasonic images obtained by scanning an object from a plurality of directions with an ultrasonic probe, and An ultrasonic image generation device that generates a cross-sectional image of a specific cross section, a cross-section position indicating unit that acquires cross-section information indicating the position and orientation of the specific cross-section, and a plurality of ultrasonic images in the subject From the position information acquisition unit that acquires position information including each position and orientation, and the plurality of ultrasonic images, the distance from the specific cross section is less than a first threshold, and the difference in direction from the specific cross section is second.
  • a reference image selection unit that selects at least one ultrasonic image that is less than the threshold value as a reference image; and a cross-sectional image generation unit that generates the cross-sectional image using the reference image.
  • the ultrasonic image generating apparatus generates a cross-sectional image using an ultrasonic image having a small difference in direction from a specific cross-section. Therefore, since the ultrasonic image generation apparatus can generate a cross-sectional image using an ultrasonic image with high resolution, the accuracy of the cross-sectional image can be improved.
  • the specific cross section includes a region of interest
  • the reference image selection unit is configured such that a distance between the specific cross section and a point included in the region of interest is less than the first threshold, and a difference in direction from the specific cross section is An ultrasound image that is less than the second threshold value may be selected as the reference image.
  • the ultrasonic image generating apparatus can improve the accuracy of the region of interest, which is particularly important.
  • the reference image selection unit for each of a plurality of regions obtained by dividing the specific section, from the plurality of ultrasonic images, a distance from the region is less than a first threshold, and there is a difference in orientation from the specific section.
  • An ultrasound image that is less than a second threshold is selected as a reference image for the region, and the cross-sectional image generation unit uses the reference image selected for the region for each region to select an image of the region. It may be generated.
  • the ultrasonic image generating apparatus can further improve the accuracy of the cross-sectional image by selecting the reference image for each region included in the specific cross-section.
  • the reference image selection unit for each of the plurality of regions, from the plurality of ultrasound images, the distance from the center point of the region is less than the first threshold, and the difference in orientation from the specific cross section An ultrasound image that is less than the second threshold value may be selected as the reference image.
  • the position information acquisition unit may acquire the position and orientation of the ultrasonic probe and calculate the position information using the acquired position and orientation of the ultrasonic probe.
  • the position information acquisition unit further acquires the direction of the ultrasonic wave emitted from the ultrasonic probe, and uses the acquired ultrasonic direction and the acquired ultrasonic probe position and orientation.
  • the position information may be calculated.
  • the ultrasonic image generating apparatus can acquire position information of an ultrasonic image generated by a swinging 3D probe or the like.
  • the first threshold value may be equal to or less than a resolution in a C plane parallel to the scanning direction of the ultrasonic probe, and the second threshold value may be equal to or less than 30 degrees.
  • the ultrasonic image generating apparatus can further improve the accuracy of the cross-sectional image.
  • the cross-sectional image generation unit when there is no ultrasonic image whose distance from the specific cross-section is less than the first threshold and whose orientation difference from the specific cross-section is less than the second threshold, You may produce
  • the ultrasonic image generating apparatus can generate a cross-sectional image even when there is no ultrasonic image corresponding to the condition of the reference image.
  • a volume generation unit configured to generate a volume image from the plurality of ultrasonic images; and the cross-section position instruction unit generates the cross-section information indicating the specific cross-section designated for the volume image by a user. Also good.
  • the user can easily select a specific cross section.
  • the reference image selection unit has a distance from the specific cross section that is less than the first threshold value, and a difference in direction from the specific cross section is less than the second threshold value.
  • the distance from the specific cross section and the difference between the specific cross section and the specific cross section The reference image may be selected using only the distance.
  • the ultrasonic image generating apparatus can improve the accuracy of a region of interest that is particularly important, and can reduce the amount of calculation for an unimportant portion.
  • the cross-sectional image generation unit generates a pixel value of a pixel included in the cross-sectional image by multiplying a pixel value of a pixel included in the plurality of reference images by a weighting coefficient, and adds the weighting coefficient.
  • the weighting coefficient may be increased as the reference image has a smaller difference in orientation from the specific cross section.
  • the ultrasonic image generating apparatus can further improve the accuracy of the cross-sectional image by using a plurality of reference images.
  • the cross-sectional image generation unit may be configured such that, among the plurality of reference images, a reference image having a smaller difference in orientation from the specific cross-section relative to a reference image whose distance from the specific cross-section is less than a third threshold value.
  • the weighting factor may be increased.
  • an ultrasonic image generation apparatus can be configured to obtain a sample of a subject from a plurality of Doppler images showing a blood flow obtained by scanning the subject from a plurality of directions with an ultrasonic probe.
  • An ultrasonic image generation apparatus that generates a cross-sectional image showing a blood flow in a specific cross section, a cross-section position indicating unit that acquires cross-sectional information indicating the position and orientation of the specific cross section, and the blood flow in the specific cross section
  • a blood flow direction acquisition unit that acquires blood flow information indicating a direction in which the blood flows
  • a position information acquisition unit that acquires position information including the position and orientation of each of the plurality of Doppler images in the subject
  • the reference image is at least one Doppler image whose distance from the specific cross section is less than a first threshold and whose difference from the direction of blood flow is less than a second threshold.
  • the ultrasonic image generating apparatus generates a cross-sectional image using an ultrasonic image having a small difference from the direction of blood flow. Therefore, since the ultrasonic image generating apparatus can generate a cross-sectional image using a highly sensitive Doppler image, the accuracy of the cross-sectional image can be improved.
  • the present invention can be realized not only as such an ultrasonic image generation apparatus, but also as an image generation method including steps as characteristic means included in the ultrasonic image generation apparatus. It can also be realized as a program for causing a computer to execute steps. Needless to say, such a program can be distributed via a non-transitory computer-readable recording medium such as a CD-ROM and a transmission medium such as the Internet.
  • the present invention can be realized as a semiconductor integrated circuit (LSI) that realizes part or all of the functions of such an ultrasonic image generation apparatus, or as an ultrasonic diagnostic apparatus including such an ultrasonic image generation apparatus. It can be realized.
  • LSI semiconductor integrated circuit
  • the present invention can provide an ultrasonic image generating apparatus capable of improving accuracy.
  • FIG. 1 is a block diagram of an ultrasonic image generation apparatus according to Embodiment 1 of the present invention.
  • FIG. 2A is a diagram showing a usage example of the ultrasonic image generating apparatus according to Embodiment 1 of the present invention.
  • FIG. 2B is a diagram showing a volume image obtained in the ultrasonic image generating apparatus according to Embodiment 1 of the present invention.
  • FIG. 2C is a diagram showing a cross-sectional image obtained in the ultrasonic image generating apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing a configuration of the ultrasonic image generating apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram showing a configuration of the image processing unit according to Embodiment 1 of the present invention.
  • FIG. 5 is a flowchart of processing for generating an image of a specific cross section according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart of reference image selection processing according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart of processing for generating a pixel value of a specific cross section according to the first embodiment of the present invention.
  • FIG. 8 is a flowchart of a modification of the process for generating the pixel value of the specific cross section according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart of processing for generating an image of a specific cross section according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart of reference image selection processing according to Embodiment 1 of the present invention.
  • FIG. 7 is a flowchart of processing for generating a pixel value of a
  • FIG. 9A is a diagram showing an ultrasound image group obtained when the ultrasound probe is scanned in the y-axis direction according to Embodiment 1 of the present invention.
  • FIG. 9B is a diagram showing an ultrasound image group obtained when the ultrasound probe is scanned in the x-axis direction according to Embodiment 1 of the present invention.
  • FIG. 9C is a diagram showing a reference image and a cross-sectional image according to Embodiment 1 of the present invention.
  • FIG. 10 is a diagram showing an example of selecting a reference image according to Embodiment 1 of the present invention.
  • FIG. 11 is a diagram showing another example of the volume image obtained in the ultrasonic image generating apparatus according to Embodiment 1 of the present invention.
  • FIG. 12 is a flowchart of a modification of the reference image selection process according to Embodiment 1 of the present invention.
  • FIG. 13 is a block diagram of a modification of the ultrasonic image generation apparatus according to Embodiment 1 of the present invention.
  • FIG. 14 is a diagram showing the sensitivity of the Doppler image according to the embodiment of the present invention.
  • FIG. 15A is a diagram showing a flexible disk according to Embodiment 2 of the present invention.
  • FIG. 15B is a diagram showing a configuration of a flexible disk according to Embodiment 2 of the present invention.
  • FIG. 15C is a diagram showing a computer system according to Embodiment 2 of the present invention.
  • FIG. 16 is a block diagram showing a configuration of a conventional ultrasonic image generating apparatus.
  • FIG. 17 is a block diagram illustrating a configuration of a conventional image processing unit.
  • FIG. 18A is a diagram illustrating a scanning example of the ultrasonic probe.
  • FIG. 18B is a diagram illustrating the resolution of the xz plane when the ultrasonic probe is scanned in the y-axis direction.
  • FIG. 18C is a diagram illustrating the resolution of the yz plane when the ultrasonic probe is scanned in the y-axis direction.
  • FIG. 18D is a diagram illustrating a three-dimensional shape of a target object.
  • FIG. 18E is a diagram showing a volume image.
  • FIG. 18F is a diagram illustrating the resolution in the three-dimensional space.
  • FIG. 18G is a diagram illustrating the resolution in the yz plane.
  • FIG. 18A is a diagram illustrating a scanning example of the ultrasonic probe.
  • FIG. 18B is a diagram illustrating the resolution of the xz plane when the ultrasonic probe is scanned
  • FIG. 18H is a diagram illustrating the resolution in the xy plane.
  • FIG. 19A is a diagram illustrating a target object irradiated with ultrasonic waves.
  • FIG. 19B is a diagram illustrating a volume image obtained when the ultrasonic probe is scanned in the y-axis direction.
  • FIG. 19C is a diagram illustrating a volume image obtained when the ultrasonic probe is scanned in the x-axis direction.
  • FIG. 19D is a diagram showing a volume image obtained by synthesis.
  • FIG. 19E is a diagram showing a cross-sectional image cut out from the volume image.
  • FIG. 19F shows a correct cross-sectional image.
  • the ultrasonic image generation apparatus does not generate a cross-sectional image from a volume image, but generates a cross-sectional image from an original ultrasonic image. Further, the ultrasonic image generating apparatus determines a reference image used for generating the cross-sectional image based on the distance and direction between the cross-sectional image and the ultrasonic image. Thereby, the ultrasonic image generating apparatus according to Embodiment 1 of the present invention can improve the accuracy of the cross-sectional image.
  • FIG. 1 is a block diagram of an ultrasonic image generating apparatus 100 according to the first embodiment of the present invention.
  • An ultrasonic image generating apparatus 100 illustrated in FIG. 1 generates a cross-sectional image 205 of a specific cross section of a subject from a plurality of ultrasonic images 201 obtained by scanning the subject from a plurality of directions with an ultrasonic probe 101.
  • the ultrasonic image generation apparatus 100 includes a cross-sectional position instruction unit 111, a position information acquisition unit 110, a reference image selection unit 196, and a cross-sectional image generation unit 197.
  • the cross-section position indicating unit 111 acquires cross-section information 202 indicating the position and orientation of the specific cross section.
  • the position information acquisition unit 110 acquires position information 203 including the position and orientation of each of the plurality of ultrasonic images 201 in the subject. Specifically, the position information acquisition unit 110 acquires, as position information 203, probe position information (position and orientation of the ultrasonic probe 101) detected by a position sensor such as a camera or a magnetic sensor when acquiring an ultrasonic image. To do. Note that the position information acquisition unit 110 may calculate the position information 203 using the probe position information.
  • the direction of the ultrasonic probe 101 is the direction of a surface along the direction in which the ultrasonic probe 101 emits ultrasonic waves and parallel to the arrangement direction of the ultrasonic transducers. In other words, the direction of the ultrasonic probe 101 is the direction of the B surface.
  • the reference image selection unit 196 extracts at least one ultrasonic image 201 having a distance from the specific cross section less than the first threshold and a difference in direction from the specific cross section from the plurality of ultrasonic images 201 being less than the second threshold. Select as reference image.
  • the cross-sectional image generation unit 197 generates a cross-sectional image 205 using the reference image selected by the reference image selection unit 196.
  • FIG. 2A is a diagram illustrating a usage example of the ultrasonic image generating apparatus 100.
  • the ultrasound image generating apparatus 100 scans the breast from a plurality of directions such as the direction (1) and the direction (2) using the ultrasound probe 101, thereby An ultrasonic image 201 is obtained.
  • a linear probe, a swing 3D probe, a matrix probe, or the like can be used as the ultrasonic probe 101.
  • the linear probe is composed of at least one row of ultrasonic probes, and a two-dimensional image can be obtained using the linear probe.
  • the oscillating 3D type probe has a row of ultrasonic probes, and the ultrasonic probe can oscillate or translate to continuously generate a two-dimensional image.
  • a three-dimensional image can be obtained using the plurality of generated two-dimensional images.
  • the matrix type probe has probe elements arranged in two dimensions, and a three-dimensional image can be acquired by the probe elements. In the present embodiment, a case where a linear probe is used will be described as an example.
  • An optical marker 301 is attached to the ultrasonic probe 101.
  • the camera 302 images the optical marker 301.
  • the ultrasonic image generating apparatus 100 uses the image taken by the camera 302 to analyze changes in the position and orientation of the optical marker 301, so that the ultrasonic image generating apparatus 100 generates the ultrasonic image 201.
  • the position information (hereinafter referred to as probe position information) of the ultrasonic probe 101 when the ultrasonic signal is acquired is acquired.
  • the time when the ultrasonic image generating apparatus 100 acquires an ultrasonic signal for generating the ultrasonic image 201 is referred to as acquisition timing of the ultrasonic image 201.
  • the probe position information indicates the position and orientation of the ultrasonic probe 101.
  • the probe position information includes a total of six pieces of positions (corresponding to coordinate values of the x, y, and z axes) and directions (rotation amounts around the three axes) in the three-dimensional space. It shall include parameters.
  • FIG. 2A shows an example in which the optical marker 301 is attached to the ultrasonic probe 101, the camera 302 is attached to the ultrasonic probe 101, and the optical marker 301 is arranged around the ultrasonic probe 101. May be. In this case, it is preferable to use a plurality of optical markers 301 in order to improve the accuracy of position detection.
  • FIG. 2B shows the volume image 206 in the breast shown in FIG. 2A.
  • a sectional image 205 of the specific section 351 is generated as shown in FIG. It is displayed on the display screen of the device 100.
  • FIG. 3 is a block diagram showing a configuration of the ultrasonic image generating apparatus 100 according to Embodiment 1 of the present invention.
  • the ultrasonic image generation apparatus 100 includes an ultrasonic probe 101, a transmission unit 102, a reception unit 103, a transmission / reception control unit 104, a B-mode processing unit 105, a Doppler processing unit 106, a strain processing unit 107, an image memory 108, and an image processing unit. 109, a position information acquisition unit 110, a cross-section position instruction unit 111, and a display unit 112.
  • the ultrasonic image generating apparatus 100 is characterized by the operation of the image processing unit 109, the operation of the image processing unit 109 will be mainly described below, and description of other processing units will be omitted as appropriate. To do.
  • the operation of each processing unit that transmits and receives ultrasonic signals and performs B-mode processing or Doppler processing is the same as that of the conventional ultrasonic image generating apparatus 500. Also, the same elements as those in FIG. 16 are denoted by the same reference numerals.
  • a B-mode processing unit 105 As a means for processing the ultrasonic signal obtained from the ultrasonic signal receiving unit 103, a B-mode processing unit 105, a Doppler processing unit 106, and a strain processing unit 107 are shown in FIG. However, these configurations are not indispensable components of the ultrasonic image generation apparatus 100, and the B-mode processing unit 105, the Doppler processing unit 106, and the like are selected according to the type of image that the ultrasonic image generation apparatus 100 displays on the display unit 112. At least one of the strain processing units 107 may be provided. Further, the ultrasonic image generating apparatus 100 may not include the display unit 112, and the ultrasonic image generating apparatus 100 may appropriately output a display image to the display unit 112 disposed outside.
  • data indicating an image and a volume image are simply referred to as an image and a volume image.
  • FIG. 4 is a block diagram illustrating a configuration of the image processing unit 109.
  • the image processing unit 109 includes a frame image input unit 191, a position information determination unit 192, a table generation unit 193, a position information memory 194, an image memory 195, a reference image selection unit 196, and a cross-sectional image generation unit 197.
  • a frame image input unit 191 a position information determination unit 192
  • a table generation unit 193 a position information memory 194
  • an image memory 195 a reference image selection unit 196
  • a cross-sectional image generation unit 197 a cross-sectional image generation unit 197.
  • the frame image input unit 191 acquires an ultrasonic image 201 that is a two-dimensional image such as a B-mode image or a Doppler image stored in the image memory 108 and an index number 211 of the ultrasonic image 201.
  • the index number 211 is associated with the ultrasonic image 201 and is stored in the image memory 108 together with the ultrasonic image 201.
  • the frame image input unit 191 stores the acquired ultrasonic image 201 and index number 211 in the image memory 195 and outputs the index number 211 to the position information determination unit 192.
  • the ultrasound image 201 is a B-mode image will be described.
  • the position information determination unit 192 determines the position information 212 corresponding to the ultrasonic image 201 with the index number 211 based on the position information 203 acquired by the position information acquisition unit 110.
  • the position information 203 and 212 indicates the position and orientation of the optical marker 301 attached to the ultrasonic probe 101 or a specific part of the ultrasonic probe 101 itself with respect to known reference coordinates.
  • the image processing unit 109 does not have the frame image input unit 191, and the table generation unit 193 may assign an index number to each image.
  • the table generation unit 193 associates the position information 212 for each ultrasound image 201 (frame) with the index number 211 of the ultrasound image 201 based on the position information 212, and indicates the correspondence relationship.
  • An information table 221 is generated.
  • the position information memory 194 stores the position information table 221 generated by the table generation unit 193. Note that the position information memory 194 only needs to store the position information 212 of the ultrasound image 201 in association with the index number 211 of the ultrasound image 201, and the correspondence relationship need not be stored as a table. Good. Further, the position information in the position information memory 194 may be the same as the position information 212 or may be a value converted into a different coordinate system. For example, the different coordinate system is a three-dimensional coordinate system used in the image processing unit 109 or the display unit 112.
  • the reference image selection unit 196 determines a frame (hereinafter referred to as a reference image) to be referred to when combining the pixel values of the cross-sectional image 205 with reference to the position information table 221. Then, the reference image selection unit 196 outputs the determined reference image index number to the cross-sectional image generation unit 197 as reference image information 213.
  • the cross-sectional image generation unit 197 acquires the reference image indicated by the reference image information 213 from the image memory 195. Then, the cross-sectional image generation unit 197 generates the cross-sectional image 205 by combining the pixel values after adaptively weighting the pixels in the reference image. In addition, the cross-sectional image generation unit 197 outputs the generated cross-sectional image 205 to the display unit 112.
  • the image processing unit 109 may separately include a volume generation unit 199 and a volume memory 198. In other words, the image processing unit 109 may not include the volume generation unit 199 and the volume memory 198.
  • the volume generation unit 199 constructs a volume image 206 based on the position information 203 and the ultrasonic image 201 and stores the volume image 206 in the volume memory 198.
  • the display unit 112 acquires the volume image 206 from the volume memory 198 and displays the acquired volume image 206.
  • the cross section position instruction unit 111 when the specific cross section 351 is designated by the user for the displayed volume image 206, the cross section position instruction unit 111 generates cross section information 202 indicating the position and orientation of the designated specific cross section 351. Then, the cross-sectional image generation unit 197 generates each pixel value of the specific cross-section 351 indicated by the cross-section information 202 using the reference image selected by the reference image selection unit 196.
  • FIG. 5 is a flowchart showing a cross-sectional image synthesis process executed by each processing unit of the image processing unit 109.
  • the frame image input unit 191 acquires the ultrasonic image 201 generated from the ultrasonic signal obtained by the ultrasonic probe 101 (S101).
  • the position information acquisition unit 110 acquires position information 203 corresponding to the ultrasonic image 201 based on an output signal from a position sensor or the like (S102).
  • the ultrasonic signal used to generate the ultrasonic image 201 is received, the position and orientation of the ultrasonic probe 101 are acquired as the position information 203.
  • the table generation unit 193 associates the ultrasonic image 201 with the position information 203 (212), and generates a position information table 221 indicating the corresponding relationship (S103).
  • the image processing unit 109 may simply add the position information 203 as index information to each ultrasonic image 201 without generating the position information table 221.
  • the acquisition timing of the ultrasonic image 201 and the acquisition timing of the position information 203 do not have to coincide exactly.
  • the position information acquisition unit 110 may acquire the position information 203 immediately after the acquisition timing of the ultrasonic image 201.
  • cross-section position indicating unit 111 acquires, for example, cross-section information 202 indicating a specific cross-section designated by the user (S104).
  • the image processing unit 109 executes pixel value generation processing in a specific cross section specified by the cross section information 202. This generation process is performed for each pixel or for each region where a plurality of pixels are gathered (however, a region smaller than a specific cross section).
  • This generation process is performed for each pixel or for each region where a plurality of pixels are gathered (however, a region smaller than a specific cross section).
  • processing is performed in units of pixels will be described as an example.
  • the image processing unit 109 selects a pixel to be processed (hereinafter referred to as a target pixel) included in a specific section (S105).
  • the reference image selection unit 196 calculates the position of the target pixel located on the specific cross section in the three-dimensional space. Then, the reference image selection unit 196 selects a reference image based on the position of the target pixel and the position of each ultrasonic image 201 (S106). Details of the reference image selection process will be described later.
  • the cross-sectional image generation unit 197 generates a pixel value of the target pixel using the pixel value of the reference image selected in step S106 (S107). Details of this process will be described later.
  • steps S105 to S107 have not been completed for all the pixels in the specific section (No in S108)
  • a new target image is selected in step S105, and steps are performed for the selected target pixel.
  • the process after S106 is performed.
  • the cross-sectional image generation unit 197 uses the pixel value of each pixel generated in the above processing to specify the specific cross-section.
  • the cross-sectional image 205 is generated (S109).
  • FIG. 6 is a flowchart showing details of the operation of the reference image selection unit 196.
  • the reference image selection unit 196 calculates the distance between the target pixel and each ultrasonic image 201 (S121). Next, the reference image selection unit 196 determines whether or not there is an ultrasonic image 201 whose distance is less than the threshold T1 (S122).
  • the reference image selection unit 196 selects the ultrasonic image 201 as a reference candidate image (S123).
  • the distance between the target pixel and the ultrasonic image 201 is defined as the length of a perpendicular line drawn from the target pixel mapped in the three-dimensional space to the ultrasonic image 201.
  • the distance is the distance between the target region and the ultrasound image 201.
  • the distance is the length of a perpendicular line drawn from the center point of the target area to the ultrasonic image 201.
  • ROI Region Of Interest
  • the distance may be a distance between a point included in the region of interest and the ultrasound image 201.
  • the region of interest is a tumor and a peripheral site when observing a tumor in a specific cross section.
  • the region of interest is set by the user or automatically set by an image processing technique such as boundary extraction or object recognition.
  • the ultrasonic image 201 used as the reference image indicates all or a part of the frames whose index numbers are stored in the position information table 221.
  • the threshold T1 is preferably set smaller than the width of the beam diameter at the position (focus point) where the spread of the ultrasonic wave is the narrowest, for example. Further, the threshold T1 is preferably set to a value equal to or lower than the resolution in the C plane at the target pixel position. As a result, it is possible to generate an accurate image with higher resolution than in the past.
  • the reference image selection unit 196 calculates an angle between the specific slice and each reference candidate image (S125). Then, the reference image selection unit 196 determines whether or not the reference candidate image includes a frame whose orientation difference from the specific section is less than the threshold T2 (S126).
  • the threshold T2 is preferably a value of 30 degrees or less.
  • the reference image selection unit 196 selects a reference candidate image whose orientation difference is less than the threshold T2 as a reference image (S127). ).
  • the reference image selection unit 196 selects the reference candidate image determined in step S123 as a reference image (S128).
  • the reference image selection unit 196 determines that there is no reference image (S124), and ends the reference image search process.
  • the reference image selection unit 196 uses two parameters for determining the reference image, the distance between the target pixel and the ultrasound image 201 and the difference between the specific cross section and the orientation of the ultrasound image 201. Other parameters may be used in combination.
  • the moving speed of the ultrasonic probe 101 when acquiring the ultrasonic image 201 the focus position in the ultrasonic image 201, and the frequency distribution in the ultrasonic image 201.
  • the moving speed is used. If the moving speed is fast with respect to the frame rate at the time of acquisition of the ultrasonic image 201, the ultrasonic probe 101 moves during acquisition of the ultrasonic image 201, and so-called motion blur occurs. As a result, the resolution of the ultrasonic image 201 is lowered.
  • the moving speed of the ultrasonic probe 101 can be defined as the moving distance of the ultrasonic probe 101 per unit time. Therefore, this moving speed can be calculated from the interval between adjacent frames and the frame rate.
  • the reference image selection unit 196 preferentially uses the ultrasonic image 201 whose motion blur is within the allowable range or the ultrasonic image 201 whose movement speed is equal to or less than the threshold when determining the reference image.
  • the table generation unit 193 may create a position information table 221 including information on the moving speed of the ultrasonic probe 101.
  • the image quality of the ultrasonic image 201 changes depending on the focus position of the ultrasonic wave transmitted from the ultrasonic probe 101. That is, in the ultrasonic image 201, focus is achieved at a depth near the converging position, and high-resolution image quality is obtained, but as the distance from the converging position increases, the focus is lost and the resolution decreases. Therefore, when determining the reference image from the pixels in the ultrasonic image 201, the reference image selection unit 196 preferentially selects a pixel close to the convergence position when determining the reference image.
  • the focusing position can be acquired as a parameter value of the ultrasonic probe 101 when the ultrasonic image 201 is acquired.
  • the position information table 221 may further include information on the focusing position.
  • the pixel depth can also be used as a parameter.
  • the reference image selection unit 196 preferentially selects pixels with a shallow depth when determining the reference image.
  • the reference image selection unit 196 performs frequency analysis on the ultrasonic image 201 by fast Fourier transform or the like, and preferentially selects the ultrasonic image 201 containing a lot of high frequency components as a reference image.
  • the position information table 221 may include a ratio (for example, average frequency) of high frequency components of each ultrasonic image 201.
  • the reference image may be determined in consideration of pixel continuity. This is because if the reference image is different for each pixel, the synthesis result may be discontinuous. Therefore, the reference image selection unit 196 may preferentially select the reference image selected for the pixel adjacent to the target pixel as the reference image of the target pixel. Specifically, when the first reference image selected for a certain target pixel is different from the second reference image used for the pixel adjacent to the target pixel, the reference image selection unit 196 If the difference in distance or orientation between the reference image and the second reference image is smaller than a predetermined value, the second reference image may be selected as a reference image for the target pixel.
  • the reference image may be selected for each specific section or for each region in the specific section. At this time, the above-described evaluation of the distance and direction may be performed on the pixel corresponding to the specific cross section or the center of gravity of the region in the specific cross section.
  • the reference image selection unit 196 may select a reference image with a fine granularity such as a pixel unit in the region of interest, and may select a reference image with a coarse granularity such as a region unit in a region other than the region of interest.
  • the reference image selection unit 196 selects the reference image according to the angle after selecting the reference candidate image according to the distance, but this order may be reversed. Further, some processes may be performed in parallel.
  • FIG. 7 is a flowchart showing details of the pixel value generation processing of the target pixel executed by the cross-sectional image generation unit 197.
  • the cross-sectional image generation unit 197 determines whether or not a reference image exists in the target pixel (S141).
  • the cross-sectional image generation unit 197 is determined from the first score determined from the distance between the target pixel and the reference image, and the difference in orientation between the specific cross-section and the reference image.
  • the importance score of the reference image is calculated by weighting and adding the second score (S142).
  • the cross-sectional image generation unit 197 sets the first score and the second score so that the weight of the first score increases as the distance decreases, and the weight of the second score increases as the orientation difference decreases. To do.
  • the cross-sectional image generation unit 197 calculates the importance score only from the first score. For example, the weights of the first score and the second score are the same.
  • the weight of the first score may be increased (the coefficient multiplied by the first score is larger than the coefficient multiplied by the second score).
  • the weight of the second score may be increased (the coefficient multiplied by the second score is larger than the coefficient multiplied by the first score).
  • the third threshold value is smaller than the first threshold value T1.
  • the cross-sectional image generation unit 197 selects a reference pixel to be used for generating the target pixel based on the importance score of each reference image (S143). Finally, the cross-sectional image generation unit 197 calculates the pixel value of the target pixel by weighting and adding the pixel value of the reference pixel selected in step S143 with the importance score of the reference image to which the pixel belongs (S144).
  • the cross-sectional image generation unit 197 does not perform the pixel value synthesis process on the target pixel and sets the pixel value of the target pixel to zero in advance.
  • the pixel value thus assigned is assigned to the target pixel (S145).
  • the cross-sectional image generation unit 197 uses the pixel value of the ultrasonic image 201 that is closest to the target pixel to select the target pixel. It may be generated (S145A).
  • the cross-sectional image generation unit 197 may generate the target pixel by interpolation using the pixel values of the already calculated pixels located around the target pixel.
  • both pixels are displayed in different colors so that a pixel that has been subjected to the synthesis process and a pixel that has not been subjected to the synthesis process because there is no reference image can be distinguished.
  • a volume image constructed from the ultrasonic image 201 may be displayed, and a cross-section that can be combined may be displayed. That is, a voxel including pixels in the ultrasonic image 201 within a range less than the distance T1 may be identified as a voxel that cannot be combined as a voxel that can be combined. For example, voxels that can be combined using different colors and voxels that cannot be combined may be displayed.
  • the specific cross section may be selected so that at least two or more compositable pixels exist with reference to the compositability information.
  • the display may be simplified so that a voxel including a pixel in any one of the ultrasonic images 201 and a voxel including no pixel in any of the ultrasonic images 201 can be identified.
  • a specific cross section is designated by the cross section position instruction unit 111
  • information indicating pixels that can be combined and pixels that cannot be combined in the specific cross section may be presented to the user by the display unit 112.
  • the display unit 112. when the number of pixels that cannot be combined in a specific cross section or a region of interest in the specific cross section exceeds a predetermined ratio, information that prompts the user to specify a different cross section in the vicinity may be presented.
  • FIG. 9A, FIG. 9B, and FIG. 9C are diagrams for explaining the effect of the ultrasonic image generating apparatus 100 according to the present embodiment.
  • the object to be imaged has two cubes arranged at an interval in the y-axis direction as shown in FIG. 19A.
  • the interval between the two cubes is assumed to be smaller than the spatial resolution on the C plane parallel to the scanning direction of the ultrasonic probe 101 and larger than the spatial resolution on the B plane perpendicular to the scanning direction of the ultrasonic probe.
  • a plurality of ultrasonic images 201 are generated by scanning the target object in two directions, the y-axis direction and the x-axis direction.
  • 9A and 9B show an ultrasound image 201 generated during scanning in the y-axis direction and the x-axis direction, respectively. Further, a specific section 351 shown in FIG. 9B is designated. Note that the specific cross section 351 does not coincide with the ultrasonic image 201.
  • the reference image selection unit 196 based on the distance from the specific cross section 351 and the proximity of the direction to the specific cross section 351, the reference image 361 positioned immediately before the specific cross section 351 and the reference positioned immediately after the specific cross section 351. Image 362 is selected.
  • FIG. 9C shows two reference images 361 and 362 and a cross-sectional image 205 of a specific cross-section generated from the two reference images 361 and 362.
  • two target objects can be separated in the cross-sectional image 205.
  • the reference image 361 and the reference image 362 correspond to the B surface. Therefore, by combining pixel values from the reference images 361 and 362 having the resolution of the B plane, a cross-sectional image 205 having a resolution close to that of the B plane can be obtained.
  • the two target objects cannot be separated by the cross-sectional image generated by the conventional ultrasonic image generating apparatus.
  • the ultrasonic image generating apparatus 100 can generate an image of a specified arbitrary cross section with high resolution. That is, the ultrasonic image generating apparatus 100 can improve the accuracy of the cross-sectional image 205.
  • FIG. 10 is a diagram showing another example of the specific cross section 351.
  • the specific section 351 shown in FIG. 10 is designated, four reference images 371 to 374 are selected.
  • pixels in the reference areas 381 to 384 included in the four reference images 371 to 374 are used as reference pixels for synthesis of the target pixel.
  • the ultrasonic image generating apparatus 100 uses the reference image used for the synthesis based on the similarity of the position information 203 such as the distance and orientation between the specific cross section 351 and the ultrasonic image 201. Is selected, when the ultrasonic image 201 whose position information 203 is close to the specific cross section 351 exists, a cross-sectional image 205 having a resolution close to the B plane can be generated.
  • the ultrasonic probe elements arranged in a row oscillate within the probe. Thereby, a two-dimensional ultrasonic image can be acquired continuously. Then, using this ultrasonic image, the three-dimensional region on the lower surface of the probe can be imaged.
  • Each two-dimensional ultrasonic image is the same as the acquired image obtained by the linear probe, and the processing similar to the above can be realized by regarding these as the ultrasonic image 201 described above.
  • the position information 203 of the ultrasonic image 201 depends on the position and orientation of the ultrasonic probe element (ultrasonic transducer) in the probe at the time of acquisition of the ultrasonic image 201 in addition to the probe position information. .
  • the position information acquisition unit 110 acquires information on the position and orientation of the ultrasonic probe element in addition to the probe position information (position and orientation of the ultrasonic probe).
  • the position information acquisition unit 110 calculates the position information 203 of the ultrasound image 201 by adding the position and orientation of the ultrasound element as an offset value to the position and orientation of the ultrasound probe 101.
  • the ultrasonic probe element does not physically move within the probe, but is the same as the oscillating 3D type probe in that the three-dimensional region on the lower surface of the probe is imaged. It is. Therefore, the imaged three-dimensional region is divided into a plurality of frames, and the position information of each frame is taken into consideration, so that it can be handled in the same manner as the swing 3D probe.
  • FIG. 11 is a diagram illustrating an example of a volume image when the carotid artery is a diagnosis target.
  • the region of interest described above is the plaque 391 formed in the carotid artery and its peripheral portion.
  • plaque means a raised lesion in which the intima or media of the blood vessel is thickened.
  • This plaque takes various forms such as thrombus, fatty and fibrous and can cause stenosis and occlusion of the carotid artery, as well as cerebral infarction and cerebral ischemia.
  • arteriosclerosis progresses, plaque is more easily formed.
  • Arteriosclerosis is considered to progress systemically, and mainly the superficial carotid artery is a measurement target when judging the presence or absence of plaque.
  • optical means using a camera and an optical marker is used as the means for acquiring the position information 203, but other means such as a magnetic sensor, an acceleration sensor, a gyroscope, or a robot arm may be used. .
  • other means such as a magnetic sensor, an acceleration sensor, a gyroscope, or a robot arm may be used.
  • a plurality of types of position information acquisition means may be used in combination.
  • the position information is not limited to six parameters of position and orientation. For example, in a case where the moving direction is limited to a specific axis, only necessary parameters may be acquired and used. .
  • the ultrasonic image generating apparatus 100 displays the volume image 206 and the user specifies a specific section from the volume image 206.
  • the specific section may be specified by other methods. Good.
  • the ultrasonic image generating apparatus 100 displays each B-plane image.
  • the user designates a B-side image in which a region of interest is displayed from the plurality of displayed B-side images.
  • the ultrasonic image generating apparatus 100 may designate a specific cross section so as to obtain an image of a peripheral area of the designated B-plane image (for example, an area having an angle of 0 degree or more and less than 360 degrees).
  • the ultrasonic image generation apparatus 100 applies the image generation method according to the first embodiment when a region of interest exists in a specific cross section, and if there is no region of interest in the specific cross section, the ultrasonic image generation device 100 simply applies an interest.
  • the reference image may be selected using only distance information with respect to the region.
  • FIG. 12 is a flowchart showing the operation of the reference image selection unit 196 in this case.
  • the process of step S129 is added to the process shown in FIG. Specifically, after selecting a reference candidate image in step S123, the reference image selection unit 196 determines whether or not the region of interest is included in the specific cross section (S129).
  • the reference image selection unit 196 selects the reference image according to the angle between the reference candidate image and the specific cross section, as in the case illustrated in FIG. 6 (S125). To S128). On the other hand, when the region of interest is included in the specific cross section (Yes in S129), the reference image selection unit 196 selects a reference candidate image as a reference image (S128).
  • the reference image selection unit 196 performs reference using distance information with respect to the specific cross section and difference information with respect to the specific cross section. Select an image. Further, when the region of interest does not exist in the specific cross section, the reference image selection unit 196 selects the reference image using only the distance information without using the difference information of the direction from the specific cross section.
  • the ultrasonic image generation device 100 may generate and display the volume image 206 obtained by cutting out only the vicinity of the region of interest.
  • one or a plurality of ultrasonic images whose difference in distance and angle from the target pixel are equal to or less than a threshold value are extracted, and each extracted ultrasonic image is used after being weighted.
  • all the extracted pixels may not be used. For example, when each extracted ultrasonic image is scored, only a part of the ultrasonic images showing a score with a high degree of coincidence may be used.
  • the ultrasonic image generating apparatus 100 may determine an image having a similar position and orientation from among the ultrasonic images 201 stored in the image memory 108 or 195 and delete one of the similar images. . Thereby, the capacity of the image memory 108 or 195 can be reduced.
  • the ultrasonic image generating apparatus 100 may store only the ultrasonic image 201 including the region of interest in the image memory 195. Thereby, the capacity of the image memory 195 can be reduced.
  • the division between the ultrasonic image generation apparatus 100 (main body unit) and the ultrasonic probe 101 shown in FIG. 3 is an example, and the present invention is not limited to this.
  • a system including the ultrasonic probe 101 and the main body may be defined as an ultrasonic image generating apparatus.
  • a part of the processing unit included in the main body unit may be included in the ultrasonic probe 101.
  • a B-mode image is mainly used as the ultrasound image 201
  • a Doppler image Doppler data
  • a flow of blood flow or the like may be used instead of the B-mode image. Good.
  • FIG. 13 is a block diagram showing a schematic configuration of the ultrasonic image generating apparatus 100A in this case.
  • This ultrasonic image generating apparatus 100A is configured to detect a subject from a plurality of Doppler images 201A showing a blood flow (showing a flow velocity and a direction) obtained by scanning the subject from a plurality of directions with an ultrasonic probe 101.
  • a cross-sectional image 205A showing a blood flow in a specific cross section is generated.
  • the ultrasonic image generating apparatus 100A includes a cross-sectional position instruction unit 111A, a blood flow direction acquiring unit 121, a position information acquiring unit 110A, a reference image selecting unit 196A, and a cross-sectional image generating unit 197A.
  • the cross-section position instruction unit 111A acquires cross-section information 202A indicating the position of the specific cross section.
  • the blood flow direction acquisition unit 121 acquires blood flow information 231 indicating the direction of blood flow in a specific cross section.
  • Information on the direction of blood flow can be obtained by, for example, a method designated by the user or a method of automatically detecting the position and orientation of blood vessel running by analyzing a Doppler image or a B-mode image.
  • the position information acquisition unit 110A acquires position information 203A including the position and orientation of each of the plurality of Doppler images 201A in the subject.
  • the reference image selection unit 196A refers to at least one Doppler image whose distance from the specific cross section is less than the first threshold and whose difference from the direction of blood flow is less than the second threshold from the plurality of Doppler images 201A. Select as.
  • the cross-sectional image generation unit 197 generates a cross-sectional image 205A using the reference image.
  • the measurement sensitivity changes according to the difference between the ultrasonic probe 101 and the direction of the blood flow. Specifically, the sensitivity increases as the difference between the direction of blood flow and the direction of ultrasonic emission from the ultrasonic probe 101 is smaller. Therefore, the accuracy of the cross-sectional image 205A can be improved by generating the cross-sectional image 205A using the Doppler image 201A whose difference from the direction of blood flow is less than the second threshold.
  • the detailed configuration of the ultrasonic image generating apparatus 100A is the same as the case where the “direction of the specific image” in the description of the ultrasonic image generating apparatus 100 described above is replaced with the “direction of blood flow”. Description is omitted.
  • the ultrasonic image generation apparatus and method according to the present invention have been described based on the above embodiments, but the present invention is not limited to these embodiments.
  • the present invention also includes modifications made to the present embodiment by those skilled in the art without departing from the scope of the present invention.
  • FIGS. 15A to 15C are explanatory diagrams when the image generation method of each of the above embodiments is executed by a computer system using a program recorded on a recording medium such as a flexible disk.
  • FIG. 15A shows an example of a physical format of a flexible disk that is a recording medium body
  • FIG. 15B shows an appearance, a cross-sectional structure, and the flexible disk as seen from the front of the flexible disk.
  • the flexible disk FD is built in the case F, and on the surface of the flexible disk FD, a plurality of tracks Tr are formed concentrically from the outer periphery toward the inner periphery, and each track Tr has 16 sectors Se in the angular direction. It is divided. Therefore, in the flexible disk FD storing the program, the program is recorded in an area allocated on the flexible disk FD.
  • FIG. 15C shows a configuration for recording and reproducing the program on the flexible disk FD.
  • the program is written from the computer system Cs to the flexible disk FD via the flexible disk drive FDD.
  • the image generation method is built in the computer system Cs by a program in the flexible disk FD
  • the program is read from the flexible disk FD by the flexible disk drive FDD, and the read program is transferred to the computer system Cs.
  • the recording medium is not limited to this, and any recording medium such as an IC card or a ROM cassette capable of recording a program can be similarly implemented.
  • the blocks such as the image processing unit 109 in FIG. 3 are typically realized as an LSI (Large Scale Integration) which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • LSI Large Scale Integration
  • LSI Integrated Circuit
  • IC Integrated Circuit
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • a dedicated circuit for graphics processing such as GPU (Graphic Processing Unit) can be used.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be.
  • functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
  • the present invention can be applied to an ultrasonic image generation apparatus and an image generation method.
  • the present invention has particularly high applicability in the medical diagnostic equipment industry.

Abstract

 被検体を超音波プローブ(101)で複数方向から走査することにより得られた複数の超音波画像(201)から、前記被検体の特定断面の断面画像(205)を生成する超音波画像生成装置(100)であって、前記特定断面の位置及び向きを示す断面情報(202)を取得する断面位置指示部(111)と、前記被検体中における、前記複数の超音波画像(201)の各々の位置及び向きを含む位置情報(203)を取得する位置情報取得部(110)と、前記複数の超音波画像(201)から、前記特定断面との距離が第1閾値未満、かつ前記特定断面との向きの差異が第2閾値未満である超音波画像を参照画像として選択する参照画像選択部(196)と、前記参照画像を用いて前記断面画像(205)を生成する断面画像生成部(197)とを備える。

Description

超音波画像生成装置及び画像生成方法
 本発明は、超音波画像生成装置及び画像生成方法に関し、特に、被検体を超音波プローブで複数方向から走査することにより得られた複数の超音波画像から、被検体の特定断面の断面画像を生成する超音波画像生成装置に関する。
 生体の画像診断装置としては、エックス線診断装置、MR(磁気共鳴)診断装置、及び、超音波診断装置が普及している。なかでも、超音波診断装置は、非侵襲性及び実時間性などの利点を持ち、検診も含めて広く診断に利用されている。診断部位は心臓、肝臓、及び乳房など多岐に渡っている。その一例として乳癌の罹患率の高さ、及び患者数の伸びなどから、乳房が特に重要度の高い部位の一つである。
 以下、乳房を診断する場合を例に説明する。超音波による乳房の診断では、乳房上で超音波プローブを走査させながらイメージングを行う。このとき、超音波プローブと乳房との接触状態、又は、乳房の変形に起因して、超音波画像の画質劣化又は乳腺組織の変形が発生する。これにより、1方向からの超音波画像だけでは正確な診断が困難な場合がある。
 そこで、超音波プローブの走査により得られた時間的に異なる複数の超音波画像から乳房内の三次元組織構造を構築する手法が近年注目されている。この手法では、複数の方向から同一領域を観察することにより診断精度を向上できる。三次元組織構造を構築する際には、それぞれの超音波画像を、超音波画像の位置情報(超音波プローブの位置及び向き)に基づいて三次元空間内にマッピングする。位置情報は、カメラ、磁気或いは加速度などの各種センサー、又は、ロボットアームなどから取得する。
 以下に、超音波画像取得時の位置情報に基づいて三次元組織構造を構築し、そこから任意断面の画像を合成する従来の超音波診断装置について図16及び図17を参照して説明する。
 図16は従来の超音波画像生成装置500(超音波診断装置)の全体構成を示すブロック図である。超音波プローブ101内に配置された圧電素子などのエレメントは、送信部102から出力される駆動信号に基づいて超音波信号を発生する。超音波信号は、乳腺又は筋肉など生体内の構造により反射され、反射成分の一部は再び超音波プローブ101に戻り、受信される。受信部103は、受信した反射信号に対して、増幅、A/D(アナログ/デジタル)変換、及び各エレメントの信号の遅延加算処理などを行うことで、受信RF(Radio Frequency)信号を生成する。
 ここで、送信部102及び受信部103の動作は、送受信制御部104により制御される。具体的には、送受信制御部104は、送信部102に対しては、所定の走査を行うために駆動電圧の切り替え及び送信周波数の設定などを行う。また、送受信制御部104は、受信部103に対しては、受信ビームフォーミングを実施するための遅延時間の設定などを行う。受信RF信号は、Bモード処理部105、ドップラー処理部106、及びストレイン処理部107に入力される。
 Bモード処理部105は、受信RF信号に対して対数増幅及び包絡線検波処理などを行うことで、信号強度が輝度の大きさで表されるBモードデータ(Bモード画像とも呼ぶ)を生成する。そして、Bモード処理部105は、このBモードデータを画像メモリ108に出力する。
 ドップラー処理部106は、受信RF信号を周波数領域で解析し、血流又は組織の動きに起因するドップラー効果に基づいて流速又は組織の運動速度などを計算する。そして、ドップラー処理部106は、計算結果をドップラーデータとして画像メモリ108に出力する。
 ストレイン処理部107は、受信RF信号から取得した特定部位の動きを利用して、例えば、異なる2点間の組織の歪み量を計算する。そして、ストレイン処理部107は、計算結果をストレインデータとして画像メモリ108に出力する。
 画像処理部509は、画像メモリ108に保持された各種データから表示用のデータを選択し、選択したデータに所定の画像処理を適用する。そして、処理結果が表示部112により表示される。
 位置情報取得部110及び断面位置指示部111は、三次元空間内で所望の断面を取得するために必要な断面の位置情報を画像処理部509に入力する。
 具体的には、位置情報取得部110は、カメラ又は磁気センサーなどの出力信号に基づいて超音波画像取得時における超音波プローブ101の位置情報203を取得する。
 断面位置指示部111は、切り出し断面(以下、特定断面)の位置情報を示す断面情報202をユーザーから受け取り、画像処理部509に出力する。
 画像処理部509は、超音波画像が三次元空間内にマッピングされた立体画像であるボリューム像206(ボリュームデータ)を生成する。そして、画像処理部509は、断面情報202により指定される特定断面の断面画像605を、位置情報203に基づいて三次元空間内にマッピングされたボリューム像206を用いて生成する。
 図17は、画像処理部509に含まれる、特定断面の断面画像の生成時に使用される処理部を示すブロック図である。画像処理部509は、取得した超音波画像を位置情報203に基づいて三次元空間内にマッピングすることで、ボリューム像を構築する。三次元空間は、二次元空間における画素に相当する、ボクセルと呼ばれる基本単位から構成される。例えば、10×10×10cmの立方体を1cm毎に分割すると、ボクセルは1×1×1cmの領域となり、立方体の全領域は10×10×10個のボクセルから構成される。マッピング時には、超音波画像の画素値を最近傍のボクセルに割り当てる。
 画像処理部509は、断面位置指示部111により特定断面が指定されると、特定断面内の各画素の座標位置近傍に存在するボクセルの値に基づき、当該画素の画素値を最近傍補間、又は、バイキュービック補間などにより補間生成する。以下に、各処理部の動作について説明する。
 フレーム画像入力部191は、Bモード画像又はドップラー画像などの二次元画像のインデックス番号211を取得する。位置情報決定部192は、センサーから取得した位置情報203に基づいてインデックス番号211の二次元画像に対応する位置情報212を決定する。続いて、ボリューム生成部199は、位置情報212に基づいてインデックス番号211の二次元画像を三次元空間にマッピングする。マッピング処理は、処理対象の全フレームに対して行われ、構築されたボリューム像はボリュームメモリ198に保持される。また、フレーム画像が存在しない位置のボクセルデータは、その近傍に存在するボクセルデータの値を用いて補間生成される。こうして、フレーム画像を用いて三次元空間内にマッピングされたボリューム像が生成される。
 断面画像生成部597は、断面情報202により指定される断面上に位置するそれぞれの画素値を、画素の近傍に位置するボクセルの値から合成することで断面画像605を生成し、生成した断面画像605を表示部112に出力する。また、ボリューム像206の表示用データが、ボリュームメモリ198から表示部112に入力される。
 上記の通り、従来の超音波画像生成装置500は、一旦ボリューム像を構築し、その後、ボリューム像内のボクセル値を用いて任意断面の画像を合成する。
 例えば、特許文献1の超音波診断装置は、プローブの測定時の位置から算出される座標である送受波座標系上のメモリアドレスに、エコーデータを書き込み、ボクセルデータを送受波座標系に対応付けて格納している。その上で、当該超音波診断装置は、ユーザーが指定する断面画像(送受波空間に指定された断面)が送受波座標系のどの位置に位置するかを示す変換テーブルを作成する。そして、当該超音波診断装置は、断面画像上に位置するピクセルのエコーデータをその周辺のアドレスに位置するボクセルデータを用いて補間生成する。
特許第3619425号公報
 従来の超音波画像生成装置では、特定の断面画像の画質は、ボクセルデータによって生成されるボリューム像の画質に依存する。そのため、ボリューム像には高分解能であることが要求される。しかし特許文献1では、ボリューム像を生成する際に使用するフレーム画像が、超音波プローブの走査方向に依存して分解能が異なることは一切考慮されていない。
 以下、この分解能の方向依存性について説明する。
 図18A~図18Hは、分解能の方向依存性を説明するための図である。図18Aは、超音波プローブ101をy方向に走査させる様子を示す図である。図18B及び図18Cは、超音波プローブ101をy方向に走査した場合の各面の分解能を示す。図18Bは走査方向に対して垂直であるxz平面の分解能を示し、図18Cは走査方向に対して平行であるyz平面における分解能を示す。
 図18Cに示すように、走査方向に平行な平面(以降C面と呼ぶ)内において、走査方向(図18Cのy方向)における分解能が低下する。これは、媒質中での超音波の伝播領域が走査方向に対して広がりを持つためである。この現象は、超音波プローブが少なくとも1つの振動子を有している場合に発生する。特に少なくとも一列の超音波振動子を含む超音波プローブでは、走査方向に配置された複数の振動子から出射される超音波に位相差を与えることによる超音波ビームの絞込みができないため、特にこの現象が顕著である。なお、この超音波振動子の配列方向と超音波プローブの走査方向とは略垂直であるとする。
 また、超音波プローブの走査方向に垂直かつ超音波振動子の配列方向に平行な面(以降B面と呼ぶ)の分解能は、C面の分解能よりも高い。ここで、図18Dに示す立方体形状の対象物体に超音波を照射し、その反射波を用いて生成されたボリューム像を、図18Eに示す。y軸方向の分解能が低下していることにより、図18Eに示すようにy軸方向に伸びた長方体形状の結果が得られる。
 なお、図18F、図18G及び図18Hは、超音波画像の方向依存性を三次元空間内で示したものである。図18Fは三次元空間における分解能を示し、図18Gはxz平面での分解能を示し、図18Hはxy平面での分解能を示す。
 xz平面内では図中の正方形が画像化できる最小単位となるが、yz平面内では図中の長方形が画像化できる最小単位となる。したがって、超音波プローブの走査方向の最小分解能が、走査方向と垂直な方向の最小分解能より低くなる。
 また、この現象を別の例を用いて説明する。
 図19A~図19Fは、対象物体を複数方向から走査して生成した超音波画像に基づいて構築したボリューム像を示す。この図を用いて、ボリューム像から任意の断面画像を合成する際の課題について説明する。
 図19Aは超音波が照射される対象物体を示す。y軸に沿って2つの立方体が配置されている。図19Bは、この対象物体を、y軸方向に沿って超音波プローブを走査して得た反射信号を用いて画像化した結果を示す。また、図19Cは、この対象物体をx軸方向に沿って超音波プローブを走査して得た反射信号を用いて画像化した結果を示す。
 ボリューム像の構築時には複数方向から走査した結果を合成するため、この例では、図19Bに示す画像と図19Cに示す画像とが合成される。図19Dは、合成されることにより得られたボリューム像を示す。このボリューム像は、走査方向の分解能が低下した画像を合成した結果、分解能が低下している。そのため、実際には2つに分離しているはずの対象物を、ボリューム像上では分離することができない。
 ボリューム像から任意の断面画像を生成する場合は、図19Dに示すボリューム像から当該断面画像を切り出すこととなる。
 図19Eは、図19Dのボリューム像からyz平面に平行な断面画像を切り出した結果を示す。当然ながら2つの対象物体は分離できず、1つの長方形が合成される。なお、図19Fは、図19Eと同一位置の断面画像の正解を示す。
 以上のように、従来の超音波画像生成装置は、さまざまな方向に超音波プローブを走査して得られた超音波画像を用いてボリューム像を作成した上で、このボリューム像を用いて特定断面の断面画像を生成する。これにより、例え図19Cのyz平面では対象物が分離できていたとしても、図19Eに示すように正しい断面画像を生成できない場合がある。このように、従来の超音波画像生成装置から得られる断面画像は、超音波画像の分解能の方向依存性を考慮せずに構築されたボリューム像を用いて合成される。そのため、従来の超音波画像生成装置は、C面方向の分解能低下の影響を受け、精度が低下するという課題があった。
 そこで、本発明は、精度を向上できる超音波画像生成装置を提供することを目的とする。
 上記目的を達成するために、本発明の一形態に係る超音波画像生成装置は、被検体を超音波プローブで複数方向から走査することにより得られた複数の超音波画像から、前記被検体の特定断面の断面画像を生成する超音波画像生成装置であって、前記特定断面の位置及び向きを示す断面情報を取得する断面位置指示部と、前記被検体中における、前記複数の超音波画像の各々の位置及び向きを含む位置情報を取得する位置情報取得部と、前記複数の超音波画像から、前記特定断面との距離が第1閾値未満、かつ前記特定断面との向きの差異が第2閾値未満である少なくとも1枚の超音波画像を参照画像として選択する参照画像選択部と、前記参照画像を用いて前記断面画像を生成する断面画像生成部とを備える。
 この構成によれば、本発明の一形態に係る超音波画像生成装置は、特定断面との向きの差異が小さい超音波画像を用いて断面画像を生成する。これにより、当該超音波画像生成装置は、分解能の高い超音波画像を用いて断面画像を生成できるので、断面画像の精度を向上できる。
 また、前記特定断面は関心領域を含み、前記参照画像選択部は、前記特定断面の前記関心領域に含まれる点との距離が前記第1閾値未満、かつ前記特定断面との向きの差異が前記第2閾値未満である超音波画像を前記参照画像として選択してもよい。
 この構成によれば、本発明の一形態に係る超音波画像生成装置は、特に重要である関心領域の精度を向上できる。
 また、前記参照画像選択部は、前記特定断面を分割した複数の領域毎に、前記複数の超音波画像から、当該領域との距離が第1閾値未満、かつ前記特定断面との向きの差異が第2閾値未満である超音波画像を当該領域に対する参照画像として選択し、前記断面画像生成部は、前記領域毎に、当該領域に対して選択された前記参照画像を用いて当該領域の画像を生成してもよい。
 この構成によれば、本発明の一形態に係る超音波画像生成装置は、特定断面に含まれる領域毎に参照画像を選択することにより、断面画像の精度をより向上できる。
 また、前記参照画像選択部は、前記複数の領域毎に、前記複数の超音波画像から、当該領域の中心点との距離が前記第1閾値未満、かつ前記特定断面との向きの差異が前記第2閾値未満である超音波画像を前記参照画像として選択してもよい。
 また、前記位置情報取得部は、前記超音波プローブの位置及び向きを取得し、取得した前記超音波プローブの位置及び向きを用いて前記位置情報を算出してもよい。
 また、前記位置情報取得部は、さらに、前記超音波プローブから出射される超音波の方向を取得し、取得した前記超音波の方向と、前記取得した超音波プローブ位置及び向きとを用いて前記位置情報を算出してもよい。
 この構成によれば、本発明の一形態に係る超音波画像生成装置は、揺動3D型プローブ等で生成された超音波画像の位置情報を取得できる。
 また、前記第1閾値は、前記超音波プローブの走査方向に平行なC面内での分解能以下であり、前記第2閾値は30度以下であってもよい。
 この構成によれば、本発明の一形態に係る超音波画像生成装置は、断面画像の精度をより向上できる。
 また、前記断面画像生成部は、前記特定断面との距離が前記第1閾値未満、かつ前記特定断面との向きの差異が前記第2閾値未満である超音波画像が存在しない場合、前記複数の超音波画像のうち、前記特定断面との距離が最も近い超音波画像を用いて前記断面画像を生成してもよい。
 この構成によれば、本発明の一形態に係る超音波画像生成装置は、参照画像の条件に該当する超音波画像がない場合でも、断面画像を生成できる。
 また、前記複数の超音波画像からボリューム像を生成するボリューム生成部を備え、前記断面位置指示部は、ユーザーにより前記ボリューム像に対して指定された前記特定断面を示す前記断面情報を生成してもよい。
 この構成によれば、ユーザーは、特定断面を容易に選択できる。
 また、前記参照画像選択部は、前記特定断面に関心領域が含まれる場合、前記特定断面との距離が前記第1閾値未満であり、かつ前記特定断面との向きの差異が前記第2閾値未満である超音波画像を前記参照画像として選択し、前記特定断面に前記関心領域が含まれない場合、前記特定断面との距離、及び前記特定断面との向きの差異のうち、前記特定断面との距離のみを用いて、前記参照画像を選択してもよい。
 この構成によれば、本発明の一形態に係る超音波画像生成装置は、特に重要である関心領域の精度を向上できるとともに、重要でない箇所に関しては演算量を低減できる。
 また、前記断面画像生成部は、複数の前記参照画像に含まれる画素の画素値に重み付け係数を乗算したうえで、加算することにより、前記断面画像に含まれる画素の画素値を生成し、前記複数の参照画像のうち、前記特定断面との向きの差異がより小さい参照画像ほど、前記重み付け係数を大きくしてもよい。
 この構成によれば、本発明の一形態に係る超音波画像生成装置は、複数の参照画像を用いることで、断面画像の精度をより向上できる。
 また、前記断面画像生成部は、前記複数の参照画像のうち、前記特定断面との距離が第3閾値未満である参照画像に対して、前記特定断面との向きの差異がより小さい参照画像ほど、前記重み付け係数を大きくしてもよい。
 また、本発明の一形態に係る超音波画像生成装置は、被検体を超音波プローブで複数方向から走査することにより得られた、血流の流れを示す複数のドップラー画像から、前記被検体の特定断面における血流の流れを示す断面画像を生成する超音波画像生成装置であって、前記特定断面の位置及び向きを示す断面情報を取得する断面位置指示部と、前記特定断面における前記血流の流れる向きを示す血流情報を取得する血流方向取得部と、前記被検体中における、前記複数のドップラー画像の各々の位置及び向きを含む位置情報を取得する位置情報取得部と、前記複数のドップラー画像から、前記特定断面との距離が第1閾値未満、かつ前記血流の流れる向きとの差異が第2閾値未満である少なくとも1枚のドップラー画像を参照画像として選択する参照画像選択部と、前記参照画像を用いて前記断面画像を生成する断面画像生成部とを備える。
 この構成によれば、本発明の一形態に係る超音波画像生成装置は、血流の流れの向きとの差異が小さい超音波画像を用いて断面画像を生成する。これにより、当該超音波画像生成装置は、感度の高いドップラー画像を用いて断面画像を生成できるので、断面画像の精度を向上できる。
 なお、本発明は、このような超音波画像生成装置として実現できるだけでなく、超音波画像生成装置に含まれる特徴的な手段をステップとする画像生成方法として実現したり、そのような特徴的なステップをコンピュータに実行させるプログラムとして実現したりすることもできる。そして、そのようなプログラムは、CD-ROM等の非一時的なコンピュータ読み取り可能な記録媒体、及びインターネット等の伝送媒体を介して流通させることができるのは言うまでもない。
 さらに、本発明は、このような超音波画像生成装置の機能の一部又は全てを実現する半導体集積回路(LSI)として実現したり、このような超音波画像生成装置を備える超音波診断装置として実現したりできる。
 本発明は、精度を向上できる超音波画像生成装置を提供できる。
図1は、本発明の実施の形態1に係る超音波画像生成装置のブロック図である。 図2Aは、本発明の実施の形態1に係る超音波画像生成装置の使用例を示す図である。 図2Bは、本発明の実施の形態1に係る超音波画像生成装置において得られるボリューム像を示す図である。 図2Cは、本発明の実施の形態1に係る超音波画像生成装置において得られる断面画像を示す図である。 図3は、本発明の実施の形態1に係る超音波画像生成装置の構成を示すブロック図である。 図4は、本発明の実施の形態1に係る画像処理部の構成を示すブロック図である。 図5は、本発明の実施の形態1に係る、特定断面の画像を生成する処理のフローチャートである。 図6は、本発明の実施の形態1に係る、参照画像の選択処理のフローチャートである。 図7は、本発明の実施の形態1に係る、特定断面の画素値を生成する処理のフローチャートである。 図8は、本発明の実施の形態1に係る、特定断面の画素値を生成する処理の変形例のフローチャートである。 図9Aは、本発明の実施の形態1に係る、y軸方向に超音波プローブを走査した場合に得られる超音波画像群を示す図である。 図9Bは、本発明の実施の形態1に係る、x軸方向に超音波プローブを走査した場合に得られる超音波画像群を示す図である。 図9Cは、本発明の実施の形態1に係る、参照画像及び断面画像を示す図である。 図10は、本発明の実施の形態1に係る、参照画像の選択例を示す図である。 図11は、本発明の実施の形態1に係る超音波画像生成装置において得られるボリューム像の別の例を示す図である。 図12は、本発明の実施の形態1に係る、参照画像の選択処理の変形例のフローチャートである。 図13は、本発明の実施の形態1に係る超音波画像生成装置の変形例のブロック図である。 図14は、本発明の実施の形態に1係るドップラー画像の感度を示す図である。 図15Aは、本発明の実施の形態2に係るフレキシブルディスクを示す図である。 図15Bは、本発明の実施の形態2に係るフレキシブルディスクの構成を示す図である。 図15Cは、本発明の実施の形態2に係るコンピュータシステムを示す図である。 図16は、従来の超音波画像生成装置の構成を示すブロック図である。 図17は、従来の画像処理部の構成を示すブロック図である。 図18Aは、超音波プローブの走査例を示す図である。 図18Bは、超音波プローブをy軸方向に走査した場合のxz平面の分解能を示す図である。 図18Cは、超音波プローブをy軸方向に走査した場合のyz平面の分解能を示す図である。 図18Dは、対象物体の立体形状を示す図である。 図18Eは、ボリューム像を示す図である。 図18Fは、三次元空間での分解能を示す図である。 図18Gは、yz平面での分解能を示す図である。 図18Hは、xy平面での分解能を示す図である。 図19Aは、超音波が照射される対象物体を示す図である。 図19Bは、超音波プローブをy軸方向に走査した場合に得られるボリューム像を示す図である。 図19Cは、超音波プローブをx軸方向に走査した場合に得られるボリューム像を示す図である。 図19Dは、合成により得られるボリューム像を示す図である。 図19Eは、ボリューム像から切り出した断面画像を示す図である。 図19Fは、正しい断面画像を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。
 (実施の形態1)
 本発明の実施の形態1に係る超音波画像生成装置は、ボリューム像から断面画像を生成するのではなく、元の超音波画像から断面画像を生成する。さらに、当該超音波画像生成装置は、断面画像の生成に用いる参照画像を、断面画像と超音波画像との距離及び方向に基づき決定する。これにより、本発明の実施の形態1に係る超音波画像生成装置は、断面画像の精度を向上できる。
 まず、本発明の実施の形態1に係る超音波画像生成装置の基本構成を説明する。図1は、本発明の実施の形態の1に係る超音波画像生成装置100のブロック図である。
 図1に示す超音波画像生成装置100は、被検体を超音波プローブ101で複数方向から走査することにより得られた複数の超音波画像201から、被検体の特定断面の断面画像205を生成する。この超音波画像生成装置100は、断面位置指示部111と、位置情報取得部110と、参照画像選択部196と、断面画像生成部197とを備える。
 断面位置指示部111は、特定断面の位置及び向きを示す断面情報202を取得する。
 位置情報取得部110は、被検体中における、複数の超音波画像201の各々の位置及び向きを含む位置情報203を取得する。具体的には、位置情報取得部110は、カメラ又は磁気センサーなどの位置センサーにより検出された、超音波画像取得時におけるプローブ位置情報(超音波プローブ101の位置及び向き)を位置情報203として取得する。なお、位置情報取得部110は、当該プローブ位置情報を用いて位置情報203を算出してもよい。また、超音波プローブ101の向きとは、超音波プローブ101による超音波の出射方向に沿い、かつ超音波振動子の配列方向に平行な面の向きである。言い換えると、超音波プローブ101の向きとはB面の向きである。
 参照画像選択部196は、複数の超音波画像201から、特定断面との距離が第1閾値未満、かつ特定断面との向きの差異が第2閾値未満である少なくとも1枚の超音波画像201を参照画像として選択する。
 断面画像生成部197は、参照画像選択部196により選択された参照画像を用いて断面画像205を生成する。
 以下、実施の形態1に係る超音波画像生成装置100及び画像生成方法について、図面を参照しながら説明する。また、以下では、超音波画像生成装置100の機能の概要について乳房診断を例に説明する。図2Aは、超音波画像生成装置100の使用例を示す図である。
 図2Aに示されるように、超音波画像生成装置100は、超音波プローブ101を用いて方向(1)及び方向(2)などの複数方向から乳房を走査することにより、複数方向からの乳房の超音波画像201を得る。超音波プローブ101としては、リニア型プローブ、揺動3D型プローブ、又はマトリクス型プローブなどが使用できる。リニア型プローブは、少なくとも一列の超音波探触子から構成され、当該リニア型プローブを用いて二次元画像を得ることができる。揺動3D型プローブは、一列の超音波探蝕子を有し、当該超音波探蝕子が揺動又は平行移動することで二次元画像を連続的に生成できる。そして生成された複数の二次元画像を用いて三次元画像を得ることができる。マトリクス型プローブは、二次元に配列された探蝕子を有し、当該探蝕子により三次元画像を取得できる。なお、本実施の形態では、リニア型プローブを用いる場合を例に説明する。
 超音波プローブ101には光学マーカー301が取付けられている。カメラ302は、この光学マーカー301を撮像する。超音波画像生成装置100は、カメラ302で撮影された画像を用いて、光学マーカー301の位置及び姿勢の変化を解析することにより、超音波画像生成装置100が超音波画像201を生成するための超音波信号を取得したときの超音波プローブ101の位置情報(以下、プローブ位置情報)を取得する。以下、超音波画像生成装置100が超音波画像201を生成するための超音波信号を取得したときのことを、超音波画像201の取得タイミング、と呼ぶ。
 超音波画像201の取得タイミングと位置情報203の取得タイミングとを一致させるため、超音波プローブ101とカメラ302とは同期しながら、又は、それぞれが既知の基準クロックに従って動作する。プローブ位置情報は、超音波プローブ101の位置及び向きを示す。具体的には、プローブ位置情報は、三次元空間内での位置(x、y、z軸の座標値に相当する)と向き(3軸の各軸周りの回転量)との計6個のパラメータを含むものとする。
 なお、図2Aで光学マーカー301が超音波プローブ101に取付けられている例を示しているが、カメラ302が超音波プローブ101に取付けられ、光学マーカー301が超音波プローブ101の周囲に配置されていてもよい。この場合、位置検出の精度を向上するために複数の光学マーカー301を用いることが好ましい。
 図2Bは、図2Aに示す乳房内のボリューム像206を示す。図中で点線により図示される特定断面351が、ディスプレイ内のユーザーインターフェースなどを介して、ユーザーにより指定されると、図2Cに示すように特定断面351の断面画像205が生成され超音波画像生成装置100の表示画面に表示される。
 図3は、本発明の実施の形態1に係る超音波画像生成装置100の構成を示すブロック図である。この超音波画像生成装置100は、超音波プローブ101、送信部102、受信部103、送受信制御部104、Bモード処理部105、ドップラー処理部106、ストレイン処理部107、画像メモリ108、画像処理部109、位置情報取得部110、断面位置指示部111、及び、表示部112を有する。
 本実施の形態に係る超音波画像生成装置100は、画像処理部109の動作に特徴を有するため、以下では主に画像処理部109の動作について説明し、その他の処理部については適宜説明を省略する。また、超音波信号を送受信し、Bモード処理又はドップラー処理を実施する各処理部の動作は従来の超音波画像生成装置500と同様である。また、図16と同様の要素には同一の符号を付している。
 なお、超音波信号の受信部103から得られた超音波信号を処理する手段として、Bモード処理部105、ドップラー処理部106及びストレイン処理部107を図3に示している。しかし、これらの構成は超音波画像生成装置100の必須の構成ではなく、超音波画像生成装置100が表示部112に表示する画像の種類に応じて、Bモード処理部105、ドップラー処理部106及びストレイン処理部107の少なくとも一つを具備すればよい。また、超音波画像生成装置100が表示部112を有しておらず、超音波画像生成装置100は、外部に配置された表示部112に表示画像を適宜出力してもよい。
 また、本実施の形態では、画像及びボリューム像等を示すデータのことを単に画像及びボリューム像と記す。
 図4は、画像処理部109の構成を示すブロック図である。この画像処理部109は、フレーム画像入力部191と、位置情報決定部192と、テーブル生成部193と、位置情報メモリ194と、画像メモリ195と、参照画像選択部196と、断面画像生成部197とを備える。
 フレーム画像入力部191は、画像メモリ108に記憶されているBモード画像又はドップラー画像などの二次元画像である超音波画像201と、当該超音波画像201のインデックス番号211とを取得する。このインデックス番号211は、例えば、超音波画像201に対応付けられており、超音波画像201とともに画像メモリ108に記憶されている。また、フレーム画像入力部191は、取得した超音波画像201及びインデックス番号211を画像メモリ195に格納するとともに、インデックス番号211を位置情報決定部192に出力する。また、以下では、超音波画像201がBモード画像である場合の例を説明する。
 位置情報決定部192は、位置情報取得部110により取得された位置情報203に基づいてインデックス番号211の超音波画像201に対応する位置情報212を決定する。この位置情報203及び212は、既知の基準座標に対する、超音波プローブ101に取り付けられた光学マーカー301、又は、超音波プローブ101自体の特定部位の位置及び向きを示す。なお、画像処理部109は、フレーム画像入力部191を有さず、テーブル生成部193で各画像にインデックス番号を付与してもよい。
 次に、テーブル生成部193は、位置情報212に基づいて、超音波画像201(フレーム)毎の位置情報212と、当該超音波画像201のインデックス番号211とを対応付け、当該対応関係を示す位置情報テーブル221を生成する。位置情報メモリ194は、テーブル生成部193で生成された位置情報テーブル221を格納する。なお、位置情報メモリ194には、超音波画像201の位置情報212が当該超音波画像201のインデックス番号211と対応付けられて格納されていればよく、当該対応関係をテーブルとして格納しなくてもよい。また、位置情報メモリ194における位置情報は、位置情報212と同一であってもよいし、異なる座標系に変換された値であってもよい。例えば、この異なる座標系とは、画像処理部109又は表示部112において用いられる三次元座標系などである。
 参照画像選択部196は、断面画像205の各画素値の合成時に参照するフレーム(以下、参照画像)を、位置情報テーブル221を参照して決定する。そして、参照画像選択部196は、決定した参照画像のインデックス番号を、参照画像情報213として断面画像生成部197に出力する。
 断面画像生成部197は、参照画像情報213により示される参照画像を画像メモリ195から取得する。そして、断面画像生成部197は、参照画像内の画素に適応的に重み付けしたうえで画素値を合成することで、断面画像205を生成する。また、断面画像生成部197は、生成した断面画像205を表示部112へ出力する。
 なお、表示部112にボリューム像206を表示する場合には、画像処理部109は別途ボリューム生成部199、及びボリュームメモリ198を有していてもよい。言い換えると、画像処理部109は、ボリューム生成部199、及びボリュームメモリ198を有さなくてもよい。
 ボリューム生成部199は、位置情報203と超音波画像201とに基づいてボリューム像206を構築し、当該ボリューム像206をボリュームメモリ198に格納する。そして、表示部112は、ボリューム像206をボリュームメモリ198から取得し、取得したボリューム像206を表示する。
 また、表示されているボリューム像206に対して、ユーザーにより特定断面351が指定された場合、断面位置指示部111は、指定された特定断面351の位置及び向きを示す断面情報202を生成する。そして、断面画像生成部197は、断面情報202で示される特定断面351の各画素値を参照画像選択部196で選択された参照画像を用いて生成する。
 図5は、画像処理部109の各処理部により実行される断面画像の合成処理を示すフローチャートである。
 まず、フレーム画像入力部191は、超音波プローブ101によって得られた超音波信号から生成された超音波画像201を取得する(S101)。
 次に、位置情報取得部110は、位置センサー等の出力信号に基づき、超音波画像201に対応する位置情報203を取得する(S102)。ここでは、超音波画像201の生成に使用した超音波信号を受信したときに、超音波プローブ101の位置及び向きが位置情報203として取得される。
 次に、テーブル生成部193は、超音波画像201と位置情報203(212)とを対応付け、当該対応関係を示す位置情報テーブル221を生成する(S103)。なお、画像処理部109は、位置情報テーブル221を生成せず、単に各超音波画像201に位置情報203をインデックス情報として付加してもよい。また、超音波画像201の取得タイミングと位置情報203の取得タイミングとは厳密に一致していなくてもよい。例えば、位置情報取得部110は、超音波画像201の取得タイミング直後に位置情報203を取得してもよい。
 また、断面位置指示部111は、例えば、ユーザーにより指定された特定断面を示す断面情報202を取得する(S104)。
 続いて、画像処理部109は、断面情報202により指定される特定断面内の画素値の生成処理を実行する。この生成処理は画素単位、又は複数の画素が集合した領域(ただし特定断面よりも小さい領域)ごとに行う。なお、以下では、画素単位で処理を行う場合を例に説明する。
 まず、画像処理部109は、特定断面に含まれる処理対象の画素(以下、対象画素)を選択する(S105)。
 次に、参照画像選択部196は、特定断面上に位置する対象画素の三次元空間内での位置を算出する。そして参照画像選択部196は、対象画素の位置と、各超音波画像201の位置とに基づき、参照画像を選択する(S106)。なお、参照画像の選択処理の詳細は、後述する。
 次に、断面画像生成部197は、ステップS106で選択された参照画像の画素値を用いて、対象画素の画素値を生成する(S107)。なお、この処理の詳細は、後述する。
 そして、ステップS105~S107の処理が、特定断面内の全画素に対して終了していない場合(S108でNo)、ステップS105で新たな対象画像が選択され、選択された対象画素に対してステップS106以降の処理が行われる。
 また、ステップS105~S107の処理が、特定断面内の全画素に対して終了した場合(S108でYes)、断面画像生成部197は、上記処理で生成した各画素の画素値を用いて特定断面の断面画像205を生成する(S109)。
 以下、上記参照画像の選択処理(S106)の詳細を説明する。図6は、参照画像選択部196の動作の詳細を示すフローチャートである。
 まず、参照画像選択部196は、対象画素と各超音波画像201との距離を算出する(S121)。次に、参照画像選択部196は、距離が閾値T1未満の超音波画像201が存在するか否かを判定する(S122)。
 距離が閾値T1未満の超音波画像201が存在する場合(S122でYes)、参照画像選択部196は、その超音波画像201を参照候補画像として選択する(S123)。
 ここで、対象画素と超音波画像201との距離とは、三次元空間にマッピングされた対象画素から超音波画像201に下ろした垂線の長さであると定義する。なお、領域単位で処理を行う場合には、当該距離とは、当該対象領域と超音波画像201との距離である。例えば、当該距離は、対象領域の中心点から、超音波画像201におろした垂線の長さである。また、特定断面又は対象領域が関心領域(ROI:Region Of Interest)を含む場合には、当該距離とは、当該関心領域に含まれる点と超音波画像201との距離であってもよい。また、関心領域とは、特定断面内の腫瘍を観察する場合には、腫瘍及び周辺部位である。なお、関心領域はユーザーが設定する、又は、境界抽出或いはオブジェクト認識などの画像処理技術により自動的に設定される。
 ここで、参照画像として用いられる超音波画像201とは、位置情報テーブル221にインデックス番号が格納されたフレームの全て、又は、一部のフレームを指す。また、閾値T1は、例えば、超音波の広がりがもっとも狭くなっている位置(フォーカス点)におけるビーム径の幅よりも小さく設定されることが好ましい。また、閾値T1は、対象画素の位置におけるC面内での分解能以下の値に設定することが好ましい。これより、従来よりも分解能の高い正確な画像を生成することができる。
 次に、参照画像選択部196は、特定断面と各参照候補画像との角度を算出する(S125)。そして、参照画像選択部196は、参照候補画像の中に特定断面との向きの差異が閾値T2未満であるフレームが含まれるか否かを判定する(S126)。ここで閾値T2は、30度以下の値であることが好ましい。
 向きの差異が閾値T2未満である参照候補画像が存在する場合(S126でYes)、参照画像選択部196は、当該向きの差異が閾値T2未満である参照候補画像を参照画像として選択する(S127)。
 一方、向きの差異が閾値T2未満である参照候補画像が存在しない場合(S126でNo)、参照画像選択部196は、ステップS123で決定された参照候補画像を参照画像として選択する(S128)。
 また、距離が閾値T1未満の超音波画像201が存在しない場合(S122でNo)、参照画像選択部196は、参照画像が存在しないと決定し(S124)、参照画像の探索処理を終了する。
 なお、上記では、参照画像選択部196は、参照画像の決定に、対象画素と超音波画像201との距離と、特定断面と超音波画像201と向きの差との2つのパラメータを使用したが、その他のパラメータを組み合わせて使用してもよい。以下に、他のパラメータ例として、超音波画像201の取得時の超音波プローブ101の移動速度、超音波画像201におけるフォーカス位置、超音波画像201における周波数分布の3つを用いる場合について述べる。
 まず、移動速度を用いる場合を説明する。超音波画像201の取得時のフレームレートに対して移動速度が速いと、超音波画像201の取得中に超音波プローブ101が移動してしまい、いわゆる動きボケが発生する。その結果、超音波画像201の解像度が低下する。超音波プローブ101の移動速度は単位時間における超音波プローブ101の移動距離と定義できる。よって、この移動速度は隣接フレームの間隔、及びフレームレートから計算できる。
 そして、参照画像選択部196は、参照画像の決定時には、動きボケが許容範囲内である超音波画像201、又は、移動速度が閾値以下の超音波画像201を優先して使用する。この場合、テーブル生成部193は、超音波プローブ101の移動速度の情報を含む位置情報テーブル221を作成してもよい。
 次に、フォーカス位置情報を決定条件に加える場合について述べる。超音波画像201の画質は、超音波プローブ101から送信される超音波の集束位置に依存して変化する。すなわち、超音波画像201において集束位置近傍の深さではフォーカスが合い高分解能な画質が得られるが、集束位置から離れるにつれてフォーカスが外れ分解能が低下する。そこで、参照画像選択部196は、超音波画像201内の画素から参照画像を決定する場合には、集束位置に近い画素を参照画像の決定時に優先的に選択する。なお、集束位置は超音波画像201の取得時の超音波プローブ101のパラメータ値として取得できる。この場合、位置情報テーブル221は、さらに、集束位置の情報を含んでもよい。また、超音波の分解能は深さの増加と共に低下するため、画素の深さもパラメータとして使用できる。具体的には、参照画像選択部196は、深さの浅い画素を参照画像の決定時に優先的に選択する。
 最後に、超音波画像201における周波数分布を決定条件に加える場合について述べる。参照画像を選択する目的は、対象画素の近傍で高い分解能を持つ超音波画像201を選択することである。そこで、参照画像選択部196は、超音波画像201を高速フーリエ変換などにより周波数解析し、高周波成分を多く含む超音波画像201を優先的に参照画像として選択する。また、この場合、位置情報テーブル221は、各超音波画像201の高周波成分の割合(例えば平均周波数)を含んでもよい。
 さらに、画素の連続性を考慮して参照画像を決定してもよい。これは、画素ごとに参照画像が異なると合成結果が不連続になる可能性があるためである。そこで、参照画像選択部196は、対象画素に隣接する画素に対して選択された参照画像を、当該対象画素の参照画像に優先的に選択してもよい。具体的には、参照画像選択部196は、ある対象画素に対して選択される第1参照画像が、当該対象画素に隣接する画素に使用された第2参照画像と異なる場合に、当該第1参照画像と第2参照画像との間の距離又は向きの差異が所定の値よりも小さければ、第2参照画像を当該対象画素に対する参照画像として選択してもよい。
 また、参照画像の選択を画素単位で実施すると演算量が多い。また、断面画像をリアルタイムに切替えながら表示するようなケースでは、演算量の削減が有効である。そこで、特定断面毎、又は、特定断面内の領域毎に参照画像を選択してもよい。このとき、上述した距離及び向きの評価は、特定断面又は特定断面内の領域の重心に相当する画素に対して行えばよい。
 また、特定断面内の腫瘍を観察する場合には、腫瘍及び周辺部位である関心領域が特に重要である。そこで、参照画像選択部196は、関心領域では画素単位など細かい粒度で参照画像を選択し、関心領域以外の領域では、領域単位などの粗い粒度で参照画像を選択してもよい。
 また、図6では、参照画像選択部196は、距離に応じて参照候補画像を選択した後に、角度に応じて参照画像を選択しているが、この順序は逆であってもよい。また、一部の処理を並列に行なってもよい。
 以下、図5に示す対象画素の画素値の生成処理(S107)の詳細を説明する。図7は、断面画像生成部197により実行される対象画素の画素値の生成処理の詳細を示すフローチャートである。
 まず、断面画像生成部197は、対象画素に参照画像が存在するか否か判定する(S141)。
 参照画像が存在する場合(S141でYes)、断面画像生成部197は、対象画素と参照画像との距離から決定される第1スコアと、特定断面と参照画像との向きの差異から決定される第2スコアとを重み付け加算することで、参照画像の重要度スコアを算出する(S142)。また、断面画像生成部197は、距離が近いほど第1スコアの重みが大きくなるように、向きの差異が小さいほど第2スコアの重みが大きくなるように、第1スコア及び第2スコアを設定する。また、断面画像生成部197は、参照画像に向きの差異が閾値T2未満であるフレームが含まれない場合には、第1スコアのみから重要度スコアを算出する。例えば、第1スコアと第2スコアとの重みは、同一である。
 なお、対象位置の近くで取得した超音波画像を重視する際には第1スコアの重みを大きく(第1スコアに乗ずる係数を第2スコアに乗ずる係数よりも大きく)すればよい。また、対象画素からの距離よりもB面に近い超音波画像を重視する際には第2スコアの重みを大きく(第2スコアに乗ずる係数を第1スコアに乗ずる係数よりも大きく)すればよい。
 なお、選択された参照画像のうち、対象画素との距離が第3閾値未満である参照画像に対してのみ、特定断面との向きの差異がより小さい参照画像ほど、重み付け係数を大きく設定してもよい。ここで、第3閾値は上記の第1閾値T1より小さい。これにより、従来の超音波画像よりもより良好な画質の断面画像を得ることができる。
 次に、断面画像生成部197は、各参照画像の重要度スコアに基づいて、対象画素の生成に使用する参照画素を選択する(S143)。最後に、断面画像生成部197は、ステップS143において選択した参照画素の画素値を、当該画素が属する参照画像の重要度スコアで重み付け加算することで対象画素の画素値を算出する(S144)。
 一方、ステップS141において参照画像が存在しない場合(S141でNo)、断面画像生成部197は、対象画素に対する画素値の合成処理は行わず、対象画素の画素値をゼロに設定するなど、予め設定した画素値を対象画素に割り当てる(S145)。
 なお、図8に示すように、参照画像が存在しない場合(S141でNo)に、断面画像生成部197は、対象画素との距離が最も近い超音波画像201の画素値を用いて対象画素を生成してもよい(S145A)。
 また、断面画像生成部197は、対象画素の周辺に位置する既に算出済みの画素の画素値を用いて、対象画素を補間生成してもよい。
 さらに、生成された断面画像205において、合成処理が行われた画素と、参照画像が存在しないために合成処理が行われなかった画素とを区別できるように、両者の画素を異なる色で表示するなどしてもよい。
 また、合成処理の実施には、対象画素から距離T1未満の範囲に、少なくとも1つの超音波画像201の画素が存在する必要がある。よって、指定される特定断面によっては、合成処理ができない画素が多く含まれることがある。このため、図2Bに示すように、超音波画像201から構築したボリューム像を表示し、合成処理が可能な断面を表示してもよい。すなわち、距離T1未満の範囲に、超音波画像201内の画素が含まれるボクセルを合成処理可能なボクセルとして、合成処理ができないボクセルと識別できるようにしてもよい。例えば、異なる色を用いて合成処理可能なボクセルと合成処理ができないボクセルとを表示してもよい。
 ユーザーが特定断面を指定、又は自動的に特定断面を設定する場合には、この合成可否情報を参照して、少なくとも2つ以上、合成可能な画素が存在するように特定断面を選択することが好ましい。または、より簡単化して、いずれかの超音波画像201内の画素が含まれるボクセルと、いずれの超音波画像201内の画素も含まれないボクセルとを識別できるように表示してもよい。
 さらに、断面位置指示部111により特定断面が指定された際に、特定断面内で合成可能な画素と合成できない画素とを示す情報を表示部112によりユーザーに提示してもよい。また、特定断面内又は特定断面内の関心領域において合成できない画素が所定の割合を超える場合には、近傍の異なる断面を指定するようにユーザーに促す旨の情報を提示してもよい。
 図9A、図9B及び図9Cは、本実施の形態に係る超音波画像生成装置100の効果を説明するための図である。
 ここで、イメージングの対象となる物体は、図19Aに示すように、2個の立方体がy軸方向に間隔を空けて配置されているとする。また、2個の立方体の間隔は超音波プローブ101の走査方向に平行なC面における空間分解能よりも小さく、超音波プローブの走査方向に垂直なB面における空間分解能よりも大きいものとする。
 この対象物体を、y軸方向とx軸方向の2つの方向に走査することで、複数の超音波画像201が生成される。図9A及び図9Bは、それぞれ、y軸方向とx軸方向に対する走査時に生成される超音波画像201を示す。また、図9Bに示す特定断面351が指定されている。なお、特定断面351は超音波画像201とは一致していない。
 この場合、参照画像選択部196は、特定断面351からの距離、及び、特定断面351との向きの近さに基づいて、特定断面351の直前に位置する参照画像361と、直後に位置する参照画像362を選択する。
 図9Cは、2枚の参照画像361及び362と、これら2枚の参照画像361及び362から生成される特定断面の断面画像205を示す。図9Cに示すように、断面画像205において2つの対象物体が分離できている。また、参照画像361及び参照画像362はB面に相当する。よって、B面の分解能を持つ参照画像361及び362から画素値を合成することで、B面に近い分解能を有する断面画像205が得られる。
 一方で、上述したように、従来の超音波画像生成装置により生成した断面画像では2つの対象物体を分離できない。
 以上のように、本発明の実施の形態1に係る超音波画像生成装置100は、指定した任意断面の画像を高分解能に生成できる。つまり、当該超音波画像生成装置100は、断面画像205の精度を向上できる。
 なお、図9A~図9Cでは簡略化のため超音波プローブ101をx方向とy方向とに沿って直線状に走査させる場合について示したが、超音波プローブ101が走査者によってフリーハンドで任意に走査されている場合でも同様の効果を実現できる。この場合、特定断面351上の各画素の合成に使用される超音波画像201は、超音波画像201の取得順を利用したとしても(単に隣接する前後のフレームを使用したとしても)より高分解能の画像が得られるわけではない。そのため、本実施の形態は、このような場合に、より顕著な効果を有することができる。
 また、図10は、特定断面351の別の例を示す図である。図10に示す特定断面351が指定された場合、4枚の参照画像371~374が選択される。また、この4枚の参照画像371~374に含まれる参照領域381~384の画素が参照画素として対象画素の合成に用いられる。
 このように、本発明の実施の形態1に係る超音波画像生成装置100は、特定断面351と超音波画像201との距離及び向きなどの位置情報203の類似度に基づいて合成に用いる参照画像を選択することで、位置情報203が特定断面351と近い超音波画像201が存在する場合には、B面に近い分解能を有する断面画像205を生成できる。
 以下に、本実施の形態の変形例について説明する。
 まず、超音波プローブ101として揺動3D型プローブ、又は、マトリクス型プローブを用いる場合の動作について説明する。
 揺動3D型プローブを用いる場合、1列に配置された超音波探触エレメントがプローブ内で揺動する。これにより、連続的に二次元の超音波画像を取得できる。そして、この超音波画像を用いて、プローブ下面の三次元領域を画像化できる。それぞれの二次元超音波画像はリニア型プローブによる取得画像と同様であり、これらを上記の超音波画像201とみなすことで上記と同様の処理が実現できる。ただし、超音波画像201の位置情報203は、プローブ位置情報に加えて、超音波画像201の取得時における超音波探触エレメント(超音波振動子)のプローブ内での位置及び向きにも依存する。従って、位置情報取得部110は、上記のプローブ位置情報(超音波プローブの位置及び向き)に加え、超音波探触エレメントの位置及び向きの情報を取得する。そして、位置情報取得部110は、超音波プローブ101の位置及び向きに対して超音波エレメントの位置及び向きをオフセット値として加算することで、超音波画像201の位置情報203を算出する。
 また、マトリクス型プローブを用いる場合には、プローブ内での超音波探触エレメントの物理的な移動は発生しないが、プローブ下面の三次元領域が画像化される点では揺動3D型プローブと同一である。よって、画像化された三次元領域を複数フレームに分割し、各フレームの位置情報を考慮することで揺動3D型プローブと同様に扱える。
 また、上記説明では乳房を診断対象としたが、対象は肝臓、頚動脈、又は前立腺など乳房以外の部位及び臓器であってもよい。図11は、頚動脈を診断対象とする場合のボリューム像の一例を示す図である。この場合、上述した関心領域は、頚動脈に形成されているプラーク391及びその周辺部分となる。
 ここでプラークとは、血管の内膜又は中膜が肥厚した隆起性病変を意味している。このプラークは、血栓、脂肪性、及び繊維性など様々な形態をとり、頚動脈の狭窄及び閉塞、並びに、脳梗塞及び脳虚血を起こす原因になる恐れがある。また、動脈硬化が進行するほどプラークが形成されやすくなる。なお、動脈硬化は全身的に進行すると考えられており、主に表在性の頚動脈がプラークの有無を判断する際の計測対象となっている。
 また、上記説明では、位置情報203の取得手段としてカメラと光学マーカーとを用いる光学的な手段を用いたが、磁気センサー、加速度センサー、ジャイロ、又はロボットアームなどの他の手段を用いてもよい。また、単一の手段では性能が不十分である場合、例えば、検査者の手などに隠れて光学マーカーがカメラの死角になり光学的な手段では位置情報を取得できなくなるケース、などに備えて、複数種類の位置情報取得手段を組み合わせて用いてもよい。さらに、位置情報は、位置及び向きの6個のパラメータに限定されるものではなく、例えば、移動方向が特定の軸に限定されるようなケースでは、必要なパラメータのみ取得及び使用してもよい。
 また、上記説明では、超音波画像生成装置100がボリューム像206を表示し、ユーザーが、そのボリューム像206から特定断面を指定する方法について述べたが、その他の方法で特定断面を指定してもよい。例えば、フリーハンドスキャン等の方法により超音波プローブ101が走査された後に、超音波画像生成装置100は各B面画像を表示する。ユーザーは、表示された複数のB面画像から関心領域が表示されているB面画像を指定する。その後、超音波画像生成装置100は、指定されたB面画像の周辺領域(例えば角度が0度以上360度未満の領域)の画像を得るように、特定断面を指定してもよい。
 なお、超音波画像生成装置100は、特定断面中に関心領域が存在する場合に、本実施の形態1の画像生成方法を適用し、特定断面中に関心領域が存在しない場合には、単に関心領域との距離情報のみを使用して参照画像を選択してもよい。
 図12は、この場合の参照画像選択部196の動作を示すフローチャートである。図12の処理は、図6に示す処理に加え、ステップS129の処理が追加されている。具体的には、参照画像選択部196は、ステップS123で参照候補画像を選択した後、特定断面に関心領域が含まれるか否かを判定する(S129)。
 特定断面に関心領域が含まれる場合(S129でYes)、参照画像選択部196は、図6に示す場合と同様に、参照候補画像と特定断面との角度に応じて参照画像を選択する(S125~S128)。一方、特定断面に関心領域が含まれる場合(S129でYes)、参照画像選択部196は、参照候補画像を参照画像として選択する(S128)。
 すなわち、ボリューム像206中において指定される特定断面中に関心領域が存在する場合には、参照画像選択部196は、特定断面との距離情報、及び特定断面との向きの差分情報を用いて参照画像を選択する。また、特定断面中に関心領域が存在しない場合には、参照画像選択部196は、特定断面との向きの差分情報を使用せず、距離情報のみを使用して参照画像を選択する。
 また、ボリューム像206の内部が透過して見えるように当該ボリューム像206を表示する際には、関心領域の近傍のみを切り出したほうが関心領域内の視認性が向上する。そのため、超音波画像生成装置100は、関心領域の近傍のみを切り出したボリューム像206を生成及び表示してもよい。
 また、本実施の形態では、対象画素からの距離、及び角度の差異が閾値以下の超音波画像を1つ又は複数抽出し、抽出された各超音波画像に重み付けを行った上で使用しているが、全ての抽出画素を使用しないものであってもよい。例えば、抽出された各超音波画像をスコア付けした場合に、一致度が高いスコアを示す一部の超音波画像のみを使用してもよい。
 また、超音波画像生成装置100は、画像メモリ108又は195に格納されている超音波画像201のうち、位置及び向きが類似する画像を判定し、当該類似する画像の一方を削除してもよい。これにより、画像メモリ108又は195の容量を削減できる。
 また、超音波画像生成装置100は、画像メモリ195に、関心領域が含まれる超音波画像201のみを格納してもよい。これにより、画像メモリ195の容量を削減できる。
 また、図3に示す超音波画像生成装置100(本体部)と、超音波プローブ101との分割は、一例であり、本発明はこれに限定されない。例えば、超音波プローブ101と本体部(図3に示す超音波画像生成装置100)とを含むシステムを超音波画像生成装置と定義してもよい。また、本体部に含まれる処理部の一部が、超音波プローブ101に含まれてもよい。
 また、上記説明では、超音波画像201として主にBモード画像を用いる場合を例に説明したが、Bモード画像の代わりに、血流等の流れを示すドップラー画像(ドップラーデータ)を用いてもよい。
 図13は、この場合の超音波画像生成装置100Aの概略構成を示すブロック図である。
 この超音波画像生成装置100Aは、被検体を超音波プローブ101で複数方向から走査することにより得られた、血流の流れ(流速と向きを示す)を示す複数のドップラー画像201Aから、被検体の特定断面における血流の流れを示す断面画像205Aを生成する。この超音波画像生成装置100Aは、断面位置指示部111Aと、血流方向取得部121と、位置情報取得部110Aと、参照画像選択部196Aと、断面画像生成部197Aとを備える。
 断面位置指示部111Aは、特定断面の位置を示す断面情報202Aを取得する。
 血流方向取得部121は、特定断面における前記血流の流れる向きを示す血流情報231を取得する。なお、血流の流れる向きの情報は、例えば、ユーザーが指定する方法、又は、ドップラー画像又はBモード画像を解析して血管走行の位置と向きを自動的に検出する方法を用いて取得できる。
 位置情報取得部110Aは、被検体中における、複数のドップラー画像201Aの各々の位置及び向きを含む位置情報203Aを取得する。
 参照画像選択部196Aは、複数のドップラー画像201Aから、特定断面との距離が第1閾値未満、かつ血流の流れる向きとの差異が第2閾値未満である少なくとも1枚のドップラー画像を参照画像として選択する。
 断面画像生成部197は、参照画像を用いて断面画像205Aを生成する。
 ここで、図14に示すように、超音波プローブ101と、血流の流れの向きとの差に応じて、計測感度が変化する。具体的には、血流の流れの向きと超音波プローブ101からの超音波出射方向との差が小さいほど感度が高くなる。よって、血流の流れる向きとの差異が第2閾値未満であるドップラー画像201Aを用いて、断面画像205Aを生成することで、断面画像205Aの精度を向上できる。
 なお、超音波画像生成装置100Aの詳細な構成は、上述した超音波画像生成装置100の説明における「特定画像の向き」を、「血流の流れる向き」に置き換えた場合と同様なので、詳細な説明は省略する。
 以上、本発明に係る超音波画像生成装置及び方法について、上記実施の形態に基づいて説明したが、本発明は、これら実施の形態に限定されるものではない。本発明の主旨を逸脱しない範囲内で、当業者が思いつく変形を本実施の形態に施したものも、本発明に含まれる。
 (実施の形態2)
 上記実施の形態で示した画像生成方法を実現するためのプログラムを、フレキシブルディスク等の記録媒体に記録するようにすることにより、上記実施の形態で示した処理を、独立したコンピュータシステムにおいて簡単に実施することが可能となる。
 図15A~図15Cは、上記各実施の形態の画像生成方法を、フレキシブルディスク等の記録媒体に記録されたプログラムを用いて、コンピュータシステムにより実施する場合の説明図である。
 図15Aは、記録媒体本体であるフレキシブルディスクの物理フォーマットの例を示し、図15Bは、フレキシブルディスクの正面からみた外観、断面構造、及びフレキシブルディスクを示している。フレキシブルディスクFDはケースF内に内蔵され、フレキシブルディスクFDの表面には、同心円状に外周からは内周に向かって複数のトラックTrが形成され、各トラックTrは角度方向に16のセクタSeに分割されている。従って、上記プログラムを格納したフレキシブルディスクFDでは、上記フレキシブルディスクFD上に割り当てられた領域に、上記プログラムが記録されている。
 また、図15Cは、フレキシブルディスクFDに上記プログラムの記録再生を行うための構成を示す。画像生成方法を実現する上記プログラムをフレキシブルディスクFDに記録する場合は、コンピュータシステムCsから上記プログラムを、フレキシブルディスクドライブFDDを介してフレキシブルディスクFDに書き込む。また、フレキシブルディスクFD内のプログラムにより上記画像生成方法をコンピュータシステムCs中に構築する場合は、フレキシブルディスクドライブFDDによりプログラムをフレキシブルディスクFDから読み出し、読み出したプログラムをコンピュータシステムCsに転送する。
 なお、上記説明では、記録媒体としてフレキシブルディスクを用いて説明を行ったが、光ディスクを用いても同様に行うことができる。また、記録媒体はこれに限らず、ICカード、ROMカセット等、プログラムを記録できるものであれば同様に実施することができる。
 なお、図3の画像処理部109などのブロックは典型的には集積回路であるLSI(Large Scale Integration)として実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 ここでは、LSIとしたが、集積度の違いにより、IC(Integrated Circuit)、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサーで実現してもよい。例えば、GPU(Graphic Processing Unit)などのグラフィクス処理用の専用回路が使用できる。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。
 また、上記実施の形態に係る、超音波画像生成装置、及びその変形例の機能のうち少なくとも一部を組み合わせてもよい。
 また、上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。
 また、上記のステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。
 更に、本発明の主旨を逸脱しない限り、本実施の形態に対して当業者が思いつく範囲内の変更を施した各種変形例も本発明に含まれる。
 本発明は、超音波画像生成装置及び画像生成方法に適用できる。特に、本発明は医療診断機器産業において特に高い利用可能性を有する。
 100、100A、500 超音波画像生成装置
 101 超音波プローブ
 102 送信部
 103 受信部
 104 送受信制御部
 105 Bモード処理部
 106 ドップラー処理部
 107 ストレイン処理部
 108 画像メモリ
 109、509 画像処理部
 110、110A 位置情報取得部
 111、111A 断面位置指示部
 112 表示部
 191 フレーム画像入力部
 192 位置情報決定部
 193 テーブル生成部
 194 位置情報メモリ
 195 画像メモリ
 196、196A 参照画像選択部
 197、197A、597 断面画像生成部
 198 ボリュームメモリ
 199 ボリューム生成部
 201 超音波画像
 201A ドップラー画像
 202、202A 断面情報
 203、203A、212 位置情報
 205、205A、605 断面画像
 206 ボリューム像
 211 インデックス番号
 213 参照画像情報
 221 位置情報テーブル
 231 血流情報
 301 光学マーカー
 302 カメラ
 351 特定断面
 361、362、371、372、373、374 参照画像
 381、382、383、384 参照領域
 391 プラーク

Claims (15)

  1.  被検体を超音波プローブで複数方向から走査することにより得られた複数の超音波画像から、前記被検体の特定断面の断面画像を生成する超音波画像生成装置であって、
     前記特定断面の位置及び向きを示す断面情報を取得する断面位置指示部と、
     前記被検体中における、前記複数の超音波画像の各々の位置及び向きを含む位置情報を取得する位置情報取得部と、
     前記複数の超音波画像から、前記特定断面との距離が第1閾値未満、かつ前記特定断面との向きの差異が第2閾値未満である少なくとも1枚の超音波画像を参照画像として選択する参照画像選択部と、
     前記参照画像を用いて前記断面画像を生成する断面画像生成部とを備える
     超音波画像生成装置。
  2.  前記特定断面は関心領域を含み、
     前記参照画像選択部は、前記特定断面の前記関心領域に含まれる点との距離が前記第1閾値未満、かつ前記特定断面との向きの差異が前記第2閾値未満である超音波画像を前記参照画像として選択する
     請求項1に記載の超音波画像生成装置。
  3.  前記参照画像選択部は、前記特定断面を分割した複数の領域毎に、前記複数の超音波画像から、当該領域との距離が第1閾値未満、かつ前記特定断面との向きの差異が第2閾値未満である超音波画像を当該領域に対する参照画像として選択し、
     前記断面画像生成部は、前記領域毎に、当該領域に対して選択された前記参照画像を用いて当該領域の画像を生成する
     請求項1に記載の超音波画像生成装置。
  4.  前記参照画像選択部は、前記複数の領域毎に、前記複数の超音波画像から、当該領域の中心点との距離が前記第1閾値未満、かつ前記特定断面との向きの差異が前記第2閾値未満である超音波画像を前記参照画像として選択する
     請求項3に記載の超音波画像生成装置。
  5.  前記位置情報取得部は、前記超音波プローブの位置及び向きを取得し、取得した前記超音波プローブの位置及び向きを用いて前記位置情報を算出する
     請求項1~4のいずれか1項に記載の超音波画像生成装置。
  6.  前記位置情報取得部は、さらに、前記超音波プローブから出射される超音波の方向を取得し、取得した前記超音波の方向と、前記取得した超音波プローブ位置及び向きとを用いて前記位置情報を算出する
     請求項5に記載の超音波画像生成装置。
  7.  前記第1閾値は、前記超音波プローブの走査方向に平行なC面内での分解能以下であり、
     前記第2閾値は30度以下である
     請求項1~6のいずれか1項に記載の超音波画像生成装置。
  8.  前記断面画像生成部は、前記特定断面との距離が前記第1閾値未満、かつ前記特定断面との向きの差異が前記第2閾値未満である超音波画像が存在しない場合、前記複数の超音波画像のうち、前記特定断面との距離が最も近い超音波画像を用いて前記断面画像を生成する
     請求項1~7のいずれか1項に記載の超音波画像生成装置。
  9.  前記複数の超音波画像からボリューム像を生成するボリューム生成部を備え、
     前記断面位置指示部は、ユーザーにより前記ボリューム像に対して指定された前記特定断面を示す前記断面情報を生成する
     請求項1~8のいずれか1項に記載の超音波画像生成装置。
  10.  前記参照画像選択部は、
     前記特定断面に関心領域が含まれる場合、前記特定断面との距離が前記第1閾値未満であり、かつ前記特定断面との向きの差異が前記第2閾値未満である超音波画像を前記参照画像として選択し、
     前記特定断面に前記関心領域が含まれない場合、前記特定断面との距離、及び前記特定断面との向きの差異のうち、前記特定断面との距離のみを用いて、前記参照画像を選択する
     請求項1に記載の超音波画像生成装置。
  11.  前記断面画像生成部は、
     複数の前記参照画像に含まれる画素の画素値に重み付け係数を乗算したうえで、加算することにより、前記断面画像に含まれる画素の画素値を生成し、
     前記複数の参照画像のうち、前記特定断面との向きの差異がより小さい参照画像ほど、前記重み付け係数を大きくする
     請求項1~10のいずれか1項に記載の超音波画像生成装置。
  12.  前記断面画像生成部は、
     前記複数の参照画像のうち、前記特定断面との距離が第3閾値未満である参照画像に対して、前記特定断面との向きの差異がより小さい参照画像ほど、前記重み付け係数を大きくする
     請求項11に記載の超音波画像生成装置。
  13.  被検体を超音波プローブで複数方向から走査することにより得られた、血流の流れを示す複数のドップラー画像から、前記被検体の特定断面における血流の流れを示す断面画像を生成する超音波画像生成装置であって、
     前記特定断面の位置及び向きを示す断面情報を取得する断面位置指示部と、
     前記特定断面における前記血流の流れる向きを示す血流情報を取得する血流方向取得部と、
     前記被検体中における、前記複数のドップラー画像の各々の位置及び向きを含む位置情報を取得する位置情報取得部と、
     前記複数のドップラー画像から、前記特定断面との距離が第1閾値未満、かつ前記血流の流れる向きとの差異が第2閾値未満である少なくとも1枚のドップラー画像を参照画像として選択する参照画像選択部と、
     前記参照画像を用いて前記断面画像を生成する断面画像生成部とを備える
     超音波画像生成装置。
  14.  被検体を超音波プローブで複数方向から走査することにより得られた複数の超音波画像から、前記被検体の特定断面の断面画像を生成する画像生成方法であって、
     前記特定断面の位置及び向きを示す断面情報を取得するステップと、
     前記被検体中における、前記複数の超音波画像の各々の位置及び向きを含む位置情報を取得するステップと、
     前記複数の超音波画像から、前記特定断面との距離が第1閾値未満、かつ前記特定断面との向きの差異が第2閾値未満である少なくとも1枚の超音波画像を参照画像として選択するステップと、
     前記参照画像を用いて前記断面画像を生成するステップとを含む
     画像生成方法。
  15.  被検体を超音波プローブで複数方向から走査することにより得られた、血流の流れを示す複数のドップラー画像から、前記被検体の特定断面における血流の流れを示す断面画像を生成する画像生成方法であって、
     前記特定断面の位置及び向きを示す断面情報を取得するステップと、
     前記特定断面における前記血流の流れる向きを示す血流情報を取得するステップと、
     前記被検体中における、前記複数のドップラー画像の各々の位置及び向きを含む位置情報を取得するステップと、
     前記複数のドップラー画像から、前記特定断面との距離が第1閾値未満、かつ前記血流の流れる向きとの差異が第2閾値未満である少なくとも1枚のドップラー画像を参照画像として選択するステップと、
     前記参照画像を用いて前記断面画像を生成するステップとを含む
     画像生成方法。
PCT/JP2011/006960 2010-12-24 2011-12-13 超音波画像生成装置及び画像生成方法 WO2012086152A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012514012A JP5803909B2 (ja) 2010-12-24 2011-12-13 超音波画像生成装置及び画像生成方法
EP11851253.2A EP2656790A4 (en) 2010-12-24 2011-12-13 Ultrasound image-generating apparatus and image-generating method
US13/591,304 US9492141B2 (en) 2010-12-24 2012-08-22 Ultrasonic image generating device and image generating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010287291 2010-12-24
JP2010-287291 2010-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/591,304 Continuation US9492141B2 (en) 2010-12-24 2012-08-22 Ultrasonic image generating device and image generating method

Publications (1)

Publication Number Publication Date
WO2012086152A1 true WO2012086152A1 (ja) 2012-06-28

Family

ID=46313444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006960 WO2012086152A1 (ja) 2010-12-24 2011-12-13 超音波画像生成装置及び画像生成方法

Country Status (4)

Country Link
US (1) US9492141B2 (ja)
EP (1) EP2656790A4 (ja)
JP (1) JP5803909B2 (ja)
WO (1) WO2012086152A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100488A (ja) * 2013-11-22 2015-06-04 株式会社東芝 超音波診断装置
JP2016190009A (ja) * 2015-03-31 2016-11-10 富士フイルム株式会社 放射線画像撮影装置、並びに放射線画像撮影装置の制御方法およびプログラム
JP2018000775A (ja) * 2016-07-07 2018-01-11 東芝メディカルシステムズ株式会社 超音波診断装置、及び医用画像処理装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101805619B1 (ko) * 2011-01-25 2017-12-07 삼성전자주식회사 3차원 의료 영상으로부터 최적의 2차원 의료 영상을 자동으로 생성하는 방법 및 장치
WO2013176188A1 (ja) * 2012-05-22 2013-11-28 株式会社東芝 医用画像診断装置及び画像表示装置
US9786097B2 (en) 2012-06-22 2017-10-10 Matterport, Inc. Multi-modal method for interacting with 3D models
US10127722B2 (en) 2015-06-30 2018-11-13 Matterport, Inc. Mobile capture visualization incorporating three-dimensional and two-dimensional imagery
US10139985B2 (en) 2012-06-22 2018-11-27 Matterport, Inc. Defining, displaying and interacting with tags in a three-dimensional model
US10163261B2 (en) 2014-03-19 2018-12-25 Matterport, Inc. Selecting two-dimensional imagery data for display within a three-dimensional model
KR20140024190A (ko) 2012-08-20 2014-02-28 삼성메디슨 주식회사 초음파 영상 관리 방법, 표시 방법 및 그 장치
EP2994053B1 (en) * 2013-04-03 2016-09-28 Koninklijke Philips N.V. 3d ultrasound imaging system
WO2014210430A1 (en) * 2013-06-27 2014-12-31 Tractus Corporation Systems and methods for tissue mapping
EP3001219B1 (en) * 2013-08-20 2019-10-02 CureFab Technologies GmbH Optical tracking
KR20160066927A (ko) * 2014-12-03 2016-06-13 삼성전자주식회사 컴퓨터 보조 진단 지원 장치 및 방법
US20180018025A1 (en) * 2015-02-02 2018-01-18 OCR Systems Inc. Optical terminal device and scan program
JP6590519B2 (ja) * 2015-05-13 2019-10-16 キヤノン株式会社 被検体情報取得装置
JP6626319B2 (ja) * 2015-11-18 2019-12-25 キヤノン株式会社 符号化装置、撮像装置、符号化方法、及びプログラム
WO2023121755A2 (en) * 2021-10-21 2023-06-29 Massachusetts Institute Of Technology Systems and methods for guided intervention

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116316A (ja) * 2004-10-22 2006-05-11 Medison Co Ltd 超音波断面映像改善装置及び方法
JP2008125692A (ja) * 2006-11-20 2008-06-05 Aloka Co Ltd 超音波診断装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4984157A (en) * 1988-09-21 1991-01-08 General Electric Company System and method for displaying oblique planar cross sections of a solid body using tri-linear interpolation to determine pixel position dataes
JPH0744932B2 (ja) * 1990-10-24 1995-05-17 アロカ株式会社 超音波画像表示装置
US5754618A (en) * 1995-12-22 1998-05-19 Matsushita Electric Industrial Image processing apparatus and image processing method for favorably enhancing continuous boundaries which are affected by noise
US6117078A (en) * 1998-12-31 2000-09-12 General Electric Company Virtual volumetric phantom for ultrasound hands-on training system
JP3619425B2 (ja) 2000-05-22 2005-02-09 アロカ株式会社 超音波診断装置
KR100437974B1 (ko) 2002-05-11 2004-07-02 주식회사 메디슨 측면거리 상관함수를 이용한 3차원 초음파 영상 형성 방법및 장치
JP2003325513A (ja) * 2002-05-16 2003-11-18 Aloka Co Ltd 超音波診断装置
US8226560B2 (en) * 2003-05-08 2012-07-24 Hitachi Medical Corporation Reference image display method for ultrasonography and ultrasonic diagnosis apparatus
JP2007301030A (ja) * 2006-05-09 2007-11-22 Toshiba Corp 超音波診断装置
JP5148094B2 (ja) * 2006-09-27 2013-02-20 株式会社東芝 超音波診断装置、医用画像処理装置及びプログラム
JP5400466B2 (ja) * 2009-05-01 2014-01-29 キヤノン株式会社 画像診断装置、画像診断方法
US20100286526A1 (en) * 2009-05-11 2010-11-11 Yoko Okamura Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus and ultrasonic image processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116316A (ja) * 2004-10-22 2006-05-11 Medison Co Ltd 超音波断面映像改善装置及び方法
JP2008125692A (ja) * 2006-11-20 2008-06-05 Aloka Co Ltd 超音波診断装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015100488A (ja) * 2013-11-22 2015-06-04 株式会社東芝 超音波診断装置
JP2016190009A (ja) * 2015-03-31 2016-11-10 富士フイルム株式会社 放射線画像撮影装置、並びに放射線画像撮影装置の制御方法およびプログラム
JP2018000775A (ja) * 2016-07-07 2018-01-11 東芝メディカルシステムズ株式会社 超音波診断装置、及び医用画像処理装置

Also Published As

Publication number Publication date
EP2656790A4 (en) 2017-07-05
JPWO2012086152A1 (ja) 2014-05-22
US20120316441A1 (en) 2012-12-13
EP2656790A1 (en) 2013-10-30
US9492141B2 (en) 2016-11-15
JP5803909B2 (ja) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5803909B2 (ja) 超音波画像生成装置及び画像生成方法
US10912536B2 (en) Ultrasound system and method
CN103251429B (zh) 超声波成像装置
JP5858783B2 (ja) 非集束送信ビームを用いる高フレームレートの量的ドップラーフローイメージング
US9005128B2 (en) Ultrasound imaging apparatus and method for displaying ultrasound image
JP3878343B2 (ja) 3次元超音波診断装置
JP4413909B2 (ja) 3次元超音波診断装置
JP5753798B2 (ja) 超音波診断装置およびその作動方法
JP2010534078A (ja) 定量化された超音波の厚いスライスでのイメージングによる灌流検査
JP2014217745A (ja) 超音波診断装置、およびその制御方法
JP2003204963A (ja) 複数の2dスライスから画像を作成するための超音波診断方法及び装置
JP7267928B2 (ja) ボリュームレンダリングされる超音波画像
CN110678128A (zh) 用于使用超声矢量流成像的血流的同时的可视化和量化的系统和方法
JP2007222533A (ja) 超音波診断装置及び超音波画像処理方法
JP2018140073A (ja) 超音波診断装置、画像処理装置、及び画像処理プログラム
JP2001128982A (ja) 超音波画像診断装置および画像処理装置
JP5191183B2 (ja) 超音波診断装置
JP4350214B2 (ja) 超音波診断装置
JP4709937B2 (ja) 超音波診断装置及び画像処理装置
JP5823184B2 (ja) 超音波診断装置、医用画像処理装置および医用画像処理プログラム
CN114601496A (zh) 一种基于线性阵列的三维超声剪切波弹性成像方法
JP2021102086A (ja) 最適な超音波式臓器セグメンテーション
JP2013099386A (ja) 超音波診断装置および医用画像処理装置
US20230355213A1 (en) Ultrasound image processing
US20220061803A1 (en) Systems and methods for generating ultrasound probe guidance instructions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012514012

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851253

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011851253

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011851253

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE